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Abstract. In cryptography, the private simultaneous messages (PSM)
and conditional disclosure of secrets (CDS) are closely related funda-
mental primitives. We consider k-party PSM and CDS protocols for a
function f with a common random string, where each party Pi generates
a message and sends it to a referee P0.

We consider bounds for the optimal length ρ of the common random
string among k parties (or, randomness complexity) in PSM and CDS
protocols with perfect and statistical privacy through combinatorial and
entropic arguments. (i) We provide general connections from the optimal
total length λ of the messages (or, communication complexity) to the
randomness complexity ρ. (ii) We also prove randomness lower bounds
in PSM and CDS protocols for general functions. (iii) We further prove
randomness lower bounds for several important explicit functions.

They contain the following results: For PSM protocols with perfect pri-
vacy, we prove λ − 1 ≤ ρ as the general connection. From the gen-
eral lower bound, we prove ρ ≥ 2(k−1)n − 1 for a general function
f : ({0, 1}n)k → {0, 1} under universal reconstruction, in which P0 is
independent of f . This implies that the Feige-Killian-Naor PSM proto-
col for a general function [Proc. STOC ’94, pp.554–563] is optimal with
respect to randomness complexity. We also provide a randomness lower
bound ρ > kn− 2 for a generalized inner product function. This implies
the optimality of the 2-party PSM protocol for the inner-product function
of Liu, Vaikuntanathan, and Wee [Proc. CRYPTO 2017, pp.758–790].

For CDS protocols with perfect privacy, we show ρ ≥ λ−σ as the general
connection by similar argument to those for PSM protocols, where σ
is the length of secrets. We also obtain randomness lower bounds ρ ≥
(k− 1)σ for XOR, AND, and generalized inner product functions. These
imply the optimality of Applebaum and Arkis’s k-party CDS protocol
for a general function [Proc. TCC 2018, pp.317–344] up to a constant
factor in a large k.
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1 Introduction

1.1 Background and Related Work

The private simultaneous messages (PSM) and conditional disclosure of secrets
(CDS) are closely related primitives in cryptography. (See Figure 1 for mod-
els of PSM and CDS.) These primitives have been studied broadly for the last
two decades from viewpoints of information-theoretic security since these are
regarded as natural and fundamental primitives in the information-theoretic
cryptography. In particular, the investigation of efficiency, or complexity (for
instance, necessary and sufficient amount of communication overhead, common
random resources, etc.) for these primitives is quite important towards deep un-
derstanding for strong notions such as information-theoretic secrecy and privacy.

PSM is a model of multi-party secure computation in a minimal scenario.
The 2-party PSM protocol was originally introduced by Feige, Kilian, and Naor
[21], and the notion of PSM was explicitly defined and extended to k-party
protocols by Ishai and Kushilevitz [27]. PSM is an important primitive to provide
several cryptographic constructions such as generalized oblivious transfers based
on standard oblivious transfers [27], distributed multiparty secure computation
over some general network topology [35], and more. In particular, it is known
that PSM is equivalent with the (decomposable) randomized encodings, which
also has a number of cryptographic applications. (See survey papers, e.g., [2,26].)

CDS is originally introduced by Gertner, Ishai, Kushilevitz, and Malkin for ef-
ficient realization of symmetrically private information retrieval schemes [24]. As
well as PSM, CDS provides several cryptographic applications such as attribute-
based encryption schemes [9,37], priced oblivious transfer [1] and secret sharing
schemes for uniform access structures [3, 12, 13] other than the symmetrically
private information retrieval.

In a PSM protocol, k parties P1, . . . , Pk individually have private inputs
x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk and a common random string r. Pi first com-
putes a message mi ∈ {0, 1}λi on xi ∈ {0, 1}ni and r ∈ {0, 1}ρ, and sends mi

to the referee P0. Then, P0 outputs f(x1, . . . , xk) from m1, . . . ,mk for a func-
tion f :

∏
i∈[k]{0, 1}ni → {0, 1}v without learning anything except the output

value f(x1, . . . , xk). In other words, there are distributions Di (i ∈ [2v]) such
that the joint distribution of (Pj(xj))j∈[k] is identical (or statistically close) to
Df(x1,...,xk).

In a CDS protocol, P1, . . . , Pk send messagesm1 ∈ {0, 1}λ1 , . . . ,mk ∈ {0, 1}λk

on individual inputs x1, . . . , xk, common random string r ∈ {0, 1}ρ, and secret
s ∈ {0, 1}σ to the referee P0, respectively. If a predicate f is satisfied with
x1, . . . , xk, P0 succeeds recovering the secret from x1, . . . , xk and m1, . . . ,mk.
Otherwise, P0 learns nothing, i.e., there is a distribution D0 such that the
joint distribution (Pi(xi, s; r))i is identical (or statistically close) to D0 for every
x1, . . . , xk for which f(x1, . . . , xk) = 0.

In this paper, we are particularly interested in the minimum length of the
messages, or communication complexity, and the common random string, or ran-
domness complexity, in order to achieve the information-theoretic privacy as a
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(a) Private Simultaneous
Messages (PSM)

(b) Conditional Disclosure of
Secrets (CDS)

Fig. 1. Multi-party computation with the minimal communication pattern

measure of the efficiency of the protocols. It is very important to understand
limitations for efficiency of PSM and CDS protocols by demonstrating the lower
bounds of those complexity measures towards the optimal protocol construc-
tions.

There are many studies of upper bounds for the communication complexity
from explicit constructions of PSM and CDS protocols and lower bounds of the
communication complexity. On the contrary, lower bounds for the randomness
complexity are much less known in studies of PSM and CDS protocols so far,
while several results are known for randomness complexity in more general mod-
els of the secure computation [22,25,28–30]. (See Section A and Table 1 for more
details on the related results of PSM and CDS.)

The randomness complexity is important cryptographic resources as so is the
communication complexity. For instance, the common random string in CDS pro-
tocols corresponds to a random string shared among databases which is hidden
from users querying to databases in the application to symmetrically private in-
formation retrieval schemes [24] and the public key used for every encryption in
the application to attribute-based encryptions [9]. Thus, it is directly connected
to the resource for secret and public information in the applications.

To the best knowledge of the authors, there is only one known study by Pillai,
Prabhakaran, Prabhakaran, and Sridhar [36] for randomness lower bounds in
PSM and CDS protocols. They focused on the 2-bit input functions, and proved
the optimality of the 2-party PSM protocol for the 2-bit input AND function
given by [21] with respect to the length of a common random string.
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Table 1. Complexity bounds for CDS and PSM protocols

Scheme Ref. Bound Functions Comm. Rand.

2-party PSM FKN94 [21] Upper† General 2n + n+ 1 2n + n

BIKK14, LVW17 [12,32] Upper General O(2n/2) O(2n/2)
LVW17 [32] (Corollary 3) Upper fIP

1 2n+ 2 2n
PPPS19, FKN94 [21,36] Matching 1-bit input fand

3 2 log2 3 log2 6
folklore Matching 1-bit input fxor

2 2 1

BIKK14 [12] Lower† Non-explicit 2n

AHMS20 [6] Lower Non-explicit 3n−O(logn)
AHMS20 [6] Lower Explicit∗∗ 3n−O(logn)

k-party PSM BKN18 [13] (k > 3) Upper General O(k32kn/2) O(k32kn/2)
Theorem 2 Lower General λ λ− 1

Theorem 3 Lower† General 2(k−1)n 2(k−1)n − 1
Theorem 4 Lower fIP

1 kn kn− 2

2-party CDS GKW15 [23] Upper General σ2(n/2)+1 σ2(n/2)+1

LVW17 [32] Upper General σ2o(n) σ2o(n)

GKW15 [23] (Appendix C) Upper fIP
1 (n+ 2)σ (n+ 2)σ

GKW15 [23] (Appendix C) Upper 1-bit input fand
3 3σ 3σ

GKW15 [23] Lower General Ω(logn)
GKW15 [23] (Section 4) Lower General 2σ
GKW15 [23] (Section 5) Lower∗ fIP

1 Ω(n)
AARV17 [4] Lower Non-explicit Ω(n)

AV21 [8] Lower§ fIP
1 Ω(n)

k-party CDS AA18 [3] (σ ≥ 2kn−1) Upper General (4k − 2)σ (4k − 4)σ

BP18 [14] Upper∗ General O(σ2(k−1)n/2)

LVW18 [33] Upper General 2O(
√
kn log (kn))

BFMP17 [11] (See also [14]) Lower∗ Non-explicit Ω(k−12(k−1)n/2)
Lemma 1 Lower General λ λ− σ

Theorem 5 (2σ ≤ 2|C|) Lower†‡ General Ω
(

σ2kn

log|C|

)
Ω

(
σ(2kn−log|C|)

log|C|

)
Theorem 6 Lower fIP

1 kσ (k − 1)σ
Theorem 6, Theorem 15 Matching fand

3 kσ (k − 1)σ
Theorem 6 Lower fxor

2 kσ (k − 1)σ
Theorem 7 Lower θ-nontrivial θσ (θ − 1)σ

∗: The protocol has linear reconstruction. ∗∗: The assumption that some hitting-set
generator exists is required. †: The protocol has universal reconstruction. ‡: C is a set
of possible referees. §: The protocol admits either a small constant privacy error or
a small constant correctness error. 1: fIP(x1, . . . , xk) = ⟨x1, x2⟩ ⊕ · · · ⊕ ⟨xk−1, xk⟩. 2:
fxor(x) =

⊕k
i=1 xi.

3: fand(x) =
∧k

i=1 xi.



Randomness Bounds for PSM and CDS 5

1.2 Our Results

In this paper, we focus on the randomness complexity in PSM and CDS pro-
tocols with perfect and statistical privacy through combinatorial and entropic
arguments (Table 2). Particularly, (i) we provide general connections from the
communication complexity to randomness complexity. (ii) We prove randomness
lower bounds in PSM and CDS protocols for general functions. (iii) We further
prove randomness lower bounds for several important explicit functions.

Table 2. Summary of results on randomness complexity ρ and communication com-
plexity λ and used techniques

Connection between ρ and λ in PSM
Theorem 1 Entropic
Theorem 2 Combinatorial

k-party PSM ρ and λ for general functions Theorem 3 Combinatorial
ρ and λ for an explicit function Theorem 4 Entropic

Connection between ρ and λ in CDS Lemma 1 Entropic
k-party CDS ρ and λ for general functions Theorem 5 Combinatorial

ρ and λ for explicit functions Theorems 6 & 7 Entropic

We describe more details of our results below. In the following, we denote by
n̄ = n1 + · · · + nk the total input bit length of k parties. Let σ denote the bit
length of secrets. See Table 1 for summary of previous results and ours. In the
table, we suppose the case of the perfect privacy for CDS and PSM protocols
and the secret length is equal to one if the symbol σ does not appear in the
complexity.

We can simply prove the following connection from the communication com-
plexity to randomness complexity for k-party PSM protocols by an entropic
argument.

Theorem 1. Let λ be the communication complexity for a function f : {0, 1}n̄ →
{0, 1} of k-party PSM protocols. Then, the randomness complexity ρ for f of a
k-party PSM protocol is larger than λ− n̄− 1.

On the other hand, we can prove a stronger connection by employing a combi-
natorial argument.

Theorem 2. Consider k-party PSM protocols with the perfect correctness for
a function f : {0, 1}n̄ → {0, 1}. Then, the randomness complexity ρ of those
with the perfect privacy is at least λ − 1 for the communication complexity λ.
The randomness complexity ρ of those with the δ-statistical privacy is at least
λ− 1− log (1− 2δ)−1.

The key observation for the proof of Theorem 2 is a similarity between the pri-
vacy of PSM protocols and secrecy of symmetric-key encryption schemes. As
a fundamental fact shown by Shannon (e.g., see Section 9.1 in [20]), in order
to achieve the perfect secrecy, the length of secret keys must be at least that
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of the plaintexts to be encrypted. In some sense, the privacy of the inputs of
P1, · · · , Pk is “encrypted” by the common random string shared among them.
Thus, a similar combinatorial argument presented by Shannon appears to work
well for the randomness lower bound for PSM protocols. However, there are
technical differences between encryption schemes and PSM protocols. For exam-
ple, the original proof for the secrecy of encryption schemes explicitly used the
injective property of the encryption function; however, we cannot assume such
a property for P1, . . . , Pk in PSM protocols. Furthermore, the referee needs to
learn the output value of f from given messages that depend on f . Namely, the
message distributions that may depend on f for some output value should be
distinct from those for the other output values. In order to resolve the challenges,
we exploit the communication lower bounds of PSM protocols.

By Theorem 2 with the communication lower bounds of k-party PSM proto-
cols with universal reconstruction for a general function, we can obtain explicit
randomness lower bounds as follows.

Theorem 3. Suppose that n = n1 = · · · = nk. Consider k-party PSM protocols
that have universal reconstruction with the perfect correctness for a function
f : {0, 1}n̄ → {0, 1}. Then, it holds that λ ≥ 2(k−1)n. Furthermore, if they
have the perfect privacy (the δ-statistical privacy, respectively), it holds that ρ ≥
2(k−1)n − 1 (ρ ≥ 2(k−1)n − 1− log (1− 2δ)−1, respectively).

Note that the communication lower bound of 2(k−1)n is a simple generalization
of the one given in [12] for the case when k = 2. This bound shows the 2-
party Feige-Kilian-Naor PSM protocol with universal reconstruction for a general
function [21] is optimal (up to additive factors) with respect to not only the
communication complexity but also the randomness complexity.

We also provide a direct proof of communication and randomness lower
bounds for a generalized inner product function by an entropic argument, which
shows the randomness optimality (up to an additive constant factor) of the 2-
party PSM protocol for the inner product function given by Liu et al. [32].

Theorem 4. Suppose that n = n1 = · · · = nk. Consider k-party PSM protocols
with perfect privacy for a generalized inner product function fIP : (x1, . . . , xk) 7→
⟨x1, x2⟩⊕· · ·⊕⟨xk−1, xk⟩, where ⟨·, ·⟩ is the inner product modulo 2, i.e., ⟨x, y⟩ =
⊕j∈[n]x[j] · y[j] for x = (x[1], . . . , x[n]), y = (y[1], . . . , y[n]) ∈ {0, 1}n. Then, it
holds that λ ≥ kn. Furthermore, if they have the perfect privacy (the δ-statistical
privacy, respectively), it holds that ρ > kn − 2 (ρ + 2δλ > (1 − 2δ)kn − 2(1 −
2δ) + 2δ log δ, respectively).

The connection from the communication complexity is also quite useful for
the randomness complexity of CDS protocols. We obtain another randomness
lower bound characterized by λ and the secret length σ, which can be directly
derived from the data processing inequality.

Lemma 1. For every function f , we have ρ > λ − σ − 1, where ρ (λ, respec-
tively) is the randomness complexity (communication complexity, respectively)
of k-party CDS protocols for f , and σ is the length of secrets.
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Note that this lemma holds whether the privacy is perfect or statistical. From
Lemma 1, if we want to show randomness lower bounds of CDS protocols, it
suffices to prove communication lower bounds of the protocols.

The best known lower bound of the communication complexity is linear in in-
put length [6] for 2-party CDS protocols with a single-bit secret. From the above
lemma, we also obtain linear randomness lower bounds. In order to show higher
communication lower bounds (and consequently, randomness lower bounds), we
examine two sorts of CDS protocols in this paper.

The first one is a k-party CDS protocol for a general function under re-
striction of reconstruction procedures. While exponential communication upper
bounds of CDS protocols for general functions were known such as a k-party

upper bound of 2O(
√
kn log(kn)) by [33], much less is known for lower bounds for

short secrets [4,6,23], and super-linear communication lower bounds remain open
for short secrets. (See Table 1 for more results.) As an attempt to breaking the
barrier, we provide communication lower bounds, and consequently, randomness
lower bounds from Lemma 1, of CDS protocols for a general function under the
restriction of possible referees.

Theorem 5. Suppose n1 = · · · = nk. Let F := {f : {0, 1}n̄ → {0, 1}} and C be a
set of possible referees in CDS protocols. Suppose that it holds that 2σ ≤ 2|C| for
the secret length σ. If a k-party CDS protocol for F with universal reconstruction
has the perfect correctness and perfect privacy, it holds that

λ = Ω(2n̄ · σ/ log|C|),

and if it has δ-statistical privacy, it holds that

λ = Ω

(
2n̄ · log

{
(2−σ + δ)−1

}
log|C|

)
.

For example, if we consider a single-bit secret (σ = 1) and a non-trivially small

number of possible referees, say |C| ≤ 22
0.1λ

, the communication lower bound
must be exponential in n̄. From Lemma 1, we also obtain the randomness lower
bounds, e.g., ρ ≥ λ − σ = Ω((2n̄ − log|C|) · σ/ log|C|) in the case of the perfect
privacy.

The proof is based on Larsen and Simkin’s argument for lower bounds of share
size in secret sharing schemes [31]. Similar to the communication complexity for
CDS protocols, determining the tight bound of share complexity (i.e., minimum
share size) for k-party secret sharing schemes for a general access structure is
one of the longstanding open problems in cryptography. While the best known
upper bound is 20.892k shown by Applebaum, Beimel, Farràs, Nir, and Peter [5],
the lower bound for an explicit access structure is k/ log k, which was presented
by Csirmaz [16,17].

Larsen and Simkin proved the share lower bounds of Ω(2k/(
√
k log |C|)) for a

non-explicit access structure by specifying a set C of possible reconstruction func-
tions (or, the referees). Their result implies that an exponential share complexity
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can be obtained if a reconstruction function is implemented by polynomial-size
circuits. As mentioned above, the best known upper and lower bounds for com-
munication complexity of 2-party CDS protocols are 2o(n) [32] and Ω(n) [4], re-
spectively: therefore, it is evident that there remains a large gap between upper
and lower bounds of the communication complexity. We arrange the argument
of Larsen and Simkin against differences between definitions of secret sharing
schemes and CDS protocols to obtain the communication lower bounds of k-
party CDS protocols for a non-explicit function.

Note that this result provides nontrivial lower bounds only for short secrets
from the condition 2σ ≤ 2|C|. For example, it can provide only trivial constant
lower bounds in the case of exponentially long secrets such as the setting of [3].

The second one is k-party CDS protocols for some class of explicit functions
with potentially long secrets. Unlike previous communication lower bounds for
CDS protocols from Theorem 5 and derived by [4, 6, 23] with respect to the
input length n̄, we also show other communication lower bounds for explicit
functions with respect to the secret length σ, and hence, we can obtain high
communication lower bounds (and randomness lower bounds) for long secrets.

Let fxor(x) =
⊕k

i=1 xi and let fand(x) =
∧k

i=1 xi where n1 = n2 = · · · = nk = 1.
We prove the following communication and randomness lower bounds of k-party
CDS protocols for these explicit functions.

Theorem 6. If a k-party CDS protocol with a σ-bit secret for f ∈ {fxor, fand, fIP}
has perfect correctness and perfect privacy, then λ ≥ kσ and ρ ≥ (k− 1)σ. If the
protocol has δ-statistical privacy, we have

λ ≥ 1− 2δ

1 + 2δk
kσ +

2δk

1 + 2δk
log δ, and ρ ≥ (k − 1)σ + 2δk(λ+ σ − log δ).

An interesting point is that the overhead factor of k is inherent even in the CDS
setting where a referee does not collude with any parties (minimal resiliency).
This result provides tight lower bounds (up to a constant factor) for a large k
with respect to both of the communication and randomness lower bounds for
k-party CDS protocols with long secrets. Applebaum and Arkis’s construction
of a k-party CDS protocol for a general function with exponentially long secrets
actually gave the communication upper bounds of (4k−2)σ and the randomness
upper bounds of (4k − 4)σ [3].

In [8], Applebaum and Vasudevan also provided a linear lower bound for fIP
via the communication complexity games in the cases of 2-party CDS protocols
with imperfect privacy and those with imperfect correctness. While it is not clear
whether our proof technique can apply to the case of imperfect correctness, our
technique provides a more direct proof and generalization to k-party cases.

The key techniques for these lower bounds are based on information-theoretic
arguments developed for communication lower bounds in multi-party secure com-
putation protocols [18,19]. Data, Prabhakaran and Prabhakaran [19] proved the
first generic communication lower bounds in a variety of 3-party secure com-
putation protocols without common random strings. In particular, they showed
an explicit function f : {0, 1}n × {0, 1}n → {0, 1}n−1 such that a referee must
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interact with two parties at least 3n− 1 bits. Damg̊ard, Larsen, and Nielsen [18]
considered k-party secure computation protocols with and without preprocess-
ing. Under both conditions, they obtained communication lower bounds for ex-
plicit Boolean functions combined with Fano’s inequality for statistical security.
However, their communication lower bounds decrease as the resiliency is weak-
ened. Our techniques are tailored for CDS protocols so that smooth application
of the data processing inequality to derive the lower bounds is made possible.
In particular, we use non-trivial input pairs for conditioning and applying the
chain rule.

Furthermore, we can prove communication and randomness lower bounds
for a wide class of functions, we name θ-nontrivial functions, by extending the
above entropic arguments. (For the details of θ-nontriviality, see Definition 5 in
Section 4.)

Theorem 7. If a k-party CDS protocol with a σ-bit secret for a θ-nontrivial
function f has perfect correctness and perfect privacy, then λ ≥ θσ and ρ ≥
(θ − 1)σ. If the protocol has δ-statistical privacy, we have

λ ≥ 1− 2δ

1 + 2δθ
θσ +

2δθ

1 + 2δθ
log δ, and ρ ≥ (θ − 1)σ − 2δθ(λ+ σ − log δ).

The class of θ-nontrivial functions contains not only fxor and fIP but also natural
functions appeared in the area of secret sharing schemes such as θ-threshold
access functions, θ-uniform access functions, etc.

1.3 Organization

The remaining part of this paper is organized as follows. In Sect. 2, we define the
models of PSM and CDS more formally, and then, we provide basic notions and
a useful corollary in the information theory. In Sects. 3 and 4, we demonstrate
results on PSM and CDS protocols with the perfect privacy, respectively. We
put the details of our results on PSM and CDS protocols with the statistical
privacy at Sects. B and C in the supplementary material, respectively. Each of
Sects. 3, 4, B, and C has the same organization: We first demonstrate the gen-
eral connections from the communication complexity to randomness complexity.
Then, we provide lower bounds for general functions, and subsequently, those
for explicit functions.

2 Preliminaries

In this section, we introduce the formal definitions of PSM and CDS protocols.
In addition, we review the fundamental notions and entropic tools that we use
for proofs of lower bounds.
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2.1 Private Simultaneous Messages

Let Xi and Mi denote finite domains of inputs and messages of the i-th party
(i ∈ [k]). Also, let X ,M and R denote finite domains of the total inputs, total
messages, and common random strings, respectively. Let Y be a finite domain
of an output and let f : X → Y be a function.

In a PSM protocol, there are k + 1 parties P0, P1, . . . , Pk. For i ∈ [k], Pi is
connected only to P0 by secure point-to-point channels. P0 is a special party
called a referee. Each party Pi with i ∈ [k] sends the referee P0 a message mi

that is computed on an input xi ∈ Xi and a common random string r
$← R,

where r
$← R means that r is sampled uniformly at random from R. Note that

the common random string r is not given to the referee P0. Eventually, P0 gives
an output y ∈ Y from messages m1, . . . ,mk.

A PSM protocol is required to satisfy correctness and privacy. The correctness
means that the output is correct, and the privacy means that some procedure
can generate a distribution that is identical to (or statistically close to) the view
of the referee only from the output.

More formally, a PSM protocol for a function f : X → Y is modeled as
follows. For every i ∈ [k], let Pi be an algorithm that gives a message mi ∈ Mi

on an input xi ∈ Xi and a common random string r
$← R at the start of the

protocol. Therefore, we can write mi = Pi(xi; r). Let P0 be an algorithm that
receives a sequence of messages m = (m1, . . . ,mk) = (P1(x1; r), . . . , Pk(xk; r))
from P1, . . . , Pk. For simplicity, let P(x; r) = (P1(x1; r), . . . , Pk(xk; r)). We call
P a message function of the PSM protocol. Also, let P(x) denote a run of P(x; r)
with uniformly random r ∈ R. Eventually, P0 gives an output f(x) = y ∈ Y for
every input x = (x1, . . . , xk) on a sequence of messages m for f .

The correctness and privacy are defined as follows.

Definition 1 (Perfect correctness). We say that a PSM protocol for f has
perfect correctness if for every input x = (x1, . . . , xk) ∈ X and every common
random string r ∈ R, it holds that P0(P(x; r)) = f(x).

Definition 2 (Perfect privacy and δ-statistical privacy). We say that a
PSM protocol for f has δ-statistical privacy if there exists a simulator sim for
every input x = (x1, . . . , xk) ∈ X it holds that ∆(sim(f(x)),P(x)) ≤ δ. In
particular, it is said to have perfect privacy if it has 0-statistical privacy.

Let F be a function family. If a PSM protocol works for every function f ∈ F ,
we say that it is a PSM protocol for F . In particular, if its referee is independent
of f ∈ F , we say that it has universal reconstruction.

2.2 Conditional Disclosure of Secrets

Let Xi and Mi denote finite domains of inputs and messages of the i-th party
(i ∈ [k]). Also, let X ,M and R denote finite domains of the total inputs, total
messages, and common random strings, respectively. Let S be a finite domain
of a secret and let f : X → {0, 1} be a predicate.
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There are k + 1 parties P0, P1, . . . , Pk in a CDS protocol as well as a PSM
protocol, where P0 is the referee. For i ∈ [k], Pi is connected only with P0

by secure point-to-point channels. Each party Pi with i ∈ [k] sends the referee
P0 a message mi ∈ Mi that is computed on an input xi ∈ Xi, secret s ∈ S
and common random string r ∈ R. Eventually, P0 learns a secret s ∈ S from
inputs x1, . . . , xk and messages m1, . . . ,mk without a common random string r
if f(x1, . . . , xk) = 1 for a given function f : X → {0, 1}; otherwise P0 learns
nothing for s ∈ S.

A CDS protocol is required to satisfy correctness and privacy. The correctness
means that the referee outputs a correct secret s ∈ S if f(x) = 1, and the privacy
means that some procedure can generate a distribution that is identical to (or
statistically close to) the view of the referee only from the inputs x, for which
f(x) = 0.

More formally, a CDS protocol for a predicate f is modeled as follows. For
every i ∈ [k], let Pi be an algorithm that gives a message mi = Pi(xi, s; r) ∈
Mi on an input xi ∈ Xi, secret s ∈ S, and common random string r

$← R
at the start of the protocol, where the secret s is common among all par-
ties P1, . . . , Pk. We also define a message function P of the CDS protocol as
P(x, s; r) = (P1(x1, s; r), . . . , Pk(xk, s; r)). Let P0 be an algorithm that receives a
sequence of messages P(x, s; r) = (P1(x1, s; r), . . . , Pk(xk, s; r)) from P1, . . . , Pk.
Eventually, P0 outputs s′ ∈ S on sequences of inputs x and messages P(x, s; r).

The correctness and privacy are defined as follows.

Definition 3 (Perfect correctness). We say that a CDS protocol for f has
perfect correctness if for every input x = (x1, . . . , xk) ∈ X , every secret s ∈ S,
and every common random string r ∈ R, if f(x) = 1, it holds that

P0(x, P1(x1, s; r), . . . , Pk(xk, s; r)) = s.

Definition 4 (Perfect privacy and δ-statistical privacy). We say that a
CDS protocol for f has δ-statistical privacy if there exists a simulator sim for
every input x = (x1, . . . , xk) ∈ X for which f(x) = 0, and every secret s ∈ S

∆(sim(x),P(x, s)) ≤ δ,

where P(x, s) denotes a random run of P(x, s) with uniformly random r ∈ R.
In particular, it is said to have perfect privacy if it has 0-statistical privacy.

Let F be a predicate family. If a CDS protocol works for every predicate
f ∈ F , we say that it is a CDS protocol for F . In particular, if its referee is
independent of f ∈ F , we say that it has universal reconstruction.

2.3 Information Theory

For a random variable X, let H(X) be the Shannon entropy. That is, H(X) =
−
∑

x∈X Pr(X = x) log Pr(X = x), where X is the sample space of X. For
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random variables X1 and X2, let H(X1X2), H(X1|X2), and I(X1;X2) be the
joint entropy, the conditional entropy, and the mutual information, respectively.

From Fano’s inequality (Theorem 2.10.1 in [15]), the following corollary fol-
lows.

Corollary 1 (Corollary 1 in [18]). Assume ∆((X,Y ), (X ′, Y ′)) ≤ δ, and
let XY be the support set of X,Y . Then, we have |H(X|Y ) − H(X ′|Y ′)| ≤
2δ(lg(|X ||Y|)− lg δ).

3 Randomness Bounds for PSM with Perfect Privacy

In this section, we show randomness lower bounds of k-party PSM protocols with
the perfect privacy. In order to show the randomness lower bounds, we first pro-
vide general connections from communication lower bound to randomness lower
bound by entropic and combinatorial arguments. Then, we obtain a randomness
lower bound of PSM protocols for general functions from the connections with a
communication lower bound. Furthermore, we prove randomness lower bounds
for a generalized inner product function by an entropic argument.

For k-party PSM protocols, a party Pi is defined as a map Pi : Xi×R →Mi

for every i ∈ [k], and a referee P0 is defined as P0 :
∏k

i=1Mi → {0, 1} in this
section.

3.1 Connections from Communication to Randomness in PSM

We first show a simple connection from an entropic viewpoint. LetX = (X1, . . . , Xk)
denote the random variables describing the inputs x = (x1, . . . , xk). Let R
be the random variables describing the common random string r. Let M =
(M1, . . . ,Mk) be the random variables describing m = (m1, . . . ,mk) after a run
on X and R.

Theorem 8. For every function f and every PSM protocol for f , it holds that
H(R) ≥ H(M)−H(X).

Proof. Recall Mi(xi) = Pi(xi;R). From the data processing inequality, we have
H(XR) ≥ H(M). Because X and R are mutually independent, it holds H(R) ≥
H(M) − H(X). Note that this inequality depends on neither the correctness
requirement nor privacy requirement. Thus, the statement of this theorem holds
for both perfect and statistical cases. 2

From the above theorem, we immediately obtain the following corollary from
the source coding theorem (ρ ≥ H(R) and λ ≥ H(M) > λ− 1), which provides
a weak connection between lower bounds of communication and randomness in
PSM protocols.

Corollary 2 (Theorem 1 in Sect. 1). Let λ be the communication complexity
for a function f : ({0, 1}n)k → {0, 1} of a k-party PSM protocol. Then, the
randomness complexity ρ for f of the k-party PSM protocol is larger than λ −
nk − 1.
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We next provide a better lower bound of the randomness domain size from
the message one by a combinatorial argument. Let X[b] := {x ∈ X : f(x) = b}
and let M[b] := {P(x; r) ∈ M : x ∈ X[b], r ∈ R} for b ∈ {0, 1}. We also define
M[b](r) := {P(x; r) : x ∈ X[b]} ⊆ M[b].

Theorem 9. If a k-party PSM protocol has perfect correctness and perfect pri-
vacy, it holds that |R| ≥ maxb∈{0,1}|M[b]|.

Proof. Fix any b ∈ {0, 1}. If a PSM protocol has perfect correctness and per-
fect privacy, there exists a distribution Db such that for every x ∈ X[b] we
have P(x) ≡ Db and Supp(Db) = M[b]. (Note that we have Supp(Db) =
Supp(P(x)) = ∪x′∈X[b]

Supp(P(x′)) = M[b] for every x ∈ X[b] from the per-
fect privacy.) It obviously holds that |Supp(P(x))| ≤ |R|. Therefore, we obtain
|R| ≥ |Supp(P(x))| = |Supp(Db)| = |M[b]|. This lower bound holds for any
b ∈ {0, 1}, and thus, we obtain |R| ≥ maxb∈{0,1}|M[b]|. 2

From the above theorem, we immediately obtain the following corollary,
which provides the connection from communication lower bounds to random-
ness lower bounds in PSM protocols.

Corollary 3 (Perfect-privacy part of Theorem 2 in Sect. 1). Let λ be
the communication complexity for a function f : [N ]k → {0, 1} of a k-party
PSM protocol that has the perfect correctness and perfect privacy. Then, the
randomness complexity ρ for f of the k-party PSM protocol is at least λ− 1.

3.2 Lower Bounds for General Functions in PSM

We next apply Theorem 9 to the randomness optimality of the PSM protocol
provided by [21] with universal reconstruction for a general function. We consider
k-party PSM protocols with universal reconstruction for a family of functions
F = {f :

∏k
i=1 Xi → {0, 1}}. Note that P0 must be independent of f ∈ F for

the universal reconstruction, but P1, . . . , Pk may depend on f .
For simplicity, we assume Xi = [N ] for every i. For a party Pi, let Pi(x) denote

a random run of Pi on any fixed x ∈ [N ]. Similarly, let P(x) denote a random run

of P1, . . . , Pk on x ∈ [N ]k. Let Supp(P(x)) :=
{
m ∈

∏k
i=1Mi : Pr[P(x) = m ] > 0

}
.

We defineMi(r) := Im(Pi( · ; r)) andM(r) :=
∏k

i=1Mi(r).
In order to prove the randomness lower bound from Theorem 9, we prove

communication lower bounds of k-party PSM protocols with universal recon-
struction for general functions, which is a simple generalization of the commu-
nication lower bounds for the 2-party version in [12].

Lemma 2. If a k-party PSM protocol with universal reconstruction for F has

perfect correctness, it holds that |M(r)| ≥ 2N
k−1

for every r ∈ R.

Proof. Fix any r ∈ R. In the execution of the PSM for f ∈ F with fixed r,
the k parties individually generate P f

1 (x1; r) ∈ M1(r), . . . , P
f
k (xk; r) ∈ Mk(r)

on input x = (x1, . . . , xk), where the superscript f indicates that every Pi may
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depend on f ∈ F . For each f ∈ F , the tuple Sf (r) = (P f
1 (x1; r))x1∈[N ] ◦ · · · ◦

(P f
k (xk; r))xk∈[N ] determines all values (f(x))x∈[N ]k , i.e., f ∈ F , from the perfect

correctness and universal reconstruction, where the operator ◦ denotes concate-
nation of tuples. Then, it must hold that

∏k
i=1|Mi(r)|N = |M(r)|N ≥ 2N

k

, and

thus, |M(r)| ≥ 2N
k−1

. 2

By combining Theorem 9 with Lemma 2, we can obtain the randomness lower
bounds for the PSM protocol with universal reconstruction.

Theorem 10 (Perfect-privacy part of Theorem 3 in Sect. 1). If a k-
party PSM protocol ΠF with universal reconstruction has perfect correctness and

perfect privacy, it holds that |R| ≥ 2N
k−1

/2. Furthermore, if its message function
P is surjective, that is,M = ∪f∈F,x∈X ,r∈RPf (x; r), it holds that |R| ≥ |M|/2.

Proof. We can identify the PSM protocol with universal reconstruction as the
one whose message function P takes the truth table of f and the private inputs
(x1, . . . , xk) of k parties as an input. From Theorem 9, it holds |R| ≥ |M[b]| for
every b ∈ {0, 1}. Since maxb∈{0,1}|Mb(r)| ≥ |M(r)|/2 and |M(r)| ≥ 2N

k−1

by

Lemma 2, we obtain |R| ≥ 2N
k−1

/2.

Now, we suppose that P is surjective. Then, {M[b]}b∈{0,1} is a partition of
M and it holds |R| ≥ maxb∈{0,1}|M[b]| ≥ |M|/2 by Theorem 9. Thus, we obtain
|R| ≥ |M|/2. 2

Theorem 10 shows the optimality of the famous FKN protocol [21] for general
functions with respect to the randomness complexity, which is a 2-party PSM
protocol for F with universal reconstruction that has perfect correctness and
perfect privacy. Its message function is defined as follows. Fix N := 2n and F :=
{f : {0, 1}n×{0, 1}n → {0, 1}}. Let (r, s) ∈ {0, 1}N×{0, 1}n be common random
string between two parties P1 and P2. For their private inputs x1, x2 ∈ {0, 1}n
and a function f ∈ F , let P f

1 (x1; r, s) := (f(x1, i + s))i∈[N ], and P f
2 (x2; r, s) :=

(x2 − s, rx2), where the operators + and − are under modulo N . The message
spaceM of this protocol is {0, 1}N × {0, 1}n × {0, 1} and randomness space R
is {0, 1}N × {0, 1}n. It is easy to see that the message function Pf (x; r, s) =

(P f
1 (x1; r, s), P

f
2 (x2; r, s)) is surjective on the message spaceM.

By Theorem 10, any PSM protocol with universal reconstruction that has
perfect correctness and perfect privacy requires the randomness space of size at
least 2N · 2n if the range of its message function is {0, 1}N × {0, 1}n × {0, 1},
which is achieved by the FKN protocol. So, the randomness complexity of their
protocol is optimal for the message space {0, 1}N ×{0, 1}n×{0, 1}. There would
be a room for improvement of the communication complexity and randomness
complexity since the best lower bound of the communication complexity given
in [12] (see also Lemma 2) is 2N . Even if the upper bound of the communication
complexity could be improved to 2N , the randomness complexity is at least
2N/2, as shown in Theorem 10.
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3.3 Lower Bounds for Explicit Functions in PSM

Next, we focus on randomness and communication lower bounds of PSM pro-
tocols for a generalized inner product function. For simplicity, we also assume
Xi = [N ] for every i and N = 2n for some n. Let ⊕ denote the XOR oper-
ation. For even number k, define fIP by fIP(x) = ⟨x1, x2⟩ ⊕ · · · ⊕ ⟨xk−1, xk⟩,
where ⟨·, ·⟩ is the inner product modulo 2, i.e., ⟨x, y⟩ = ⊕j∈[n]x[j] · y[j] for
x = (x[1], . . . , x[n]), y = (y[1], . . . , y[n]) ∈ {0, 1}n. For odd number k, define fIP
by fIP(x) = ⟨x1, x2⟩ ⊕ · · · ⊕ ⟨xk−2, xk−1⟩ ⊕ ⟨xk, x1⟩, i.e., the inner product is
applied to x1 twice.

We now prove lower bounds for k-party PSM protocols for fIP as follows:

Theorem 11 (Perfect-privacy part of Theorem 4 in Sect. 1). If a PSM
protocol for fIP has perfect correctness and perfect privacy, it holds that H(R) ≥
H(X | fIP(X))) and H(M) ≥ H(X). For uniformly random inputs, it holds that
H(R) > kn− 2 and H(M) ≥ kn.

Proof. We prove some basic facts about PSM from the perfect correctness.

Claim. If a PSM protocol for fIP has perfect correctness, then there exists a
function fi for every i ∈ [k] such that xi = fi(mi, r) for every xi ∈ Xi = {0, 1}n
and every r ∈ R. Then, x = (f1(m1, r), . . . , fk(mk, r)).

Proof. For simplicity, consider the case of i = 1. f1 can be implemented by
computing x1 = (x1[1], . . . , x1[n]) for given m1 and r as follows. For j ∈ [n], set
x2[j] = 1, x2[j

′] = 0 for j′ ̸= j, and xi = (0, . . . , 0) for i ∈ [k] \ {1, 2}, and then
execute P0(m1, P2(x2; r2), . . . , Pk(xk; rk)). From perfect correctness, the output
is x1[j]. For a general i ∈ [k], x2 is replaced by its paired input value and the
other inputs are set to (0, . . . , 0). In particular, for fk with an odd number k,
xk = (xk[1], . . . , xk[n]) is obtained for given mk and r as follows. For j ∈ [n],
set x1[j] = 1, x1[j

′] = 0 for j′ ̸= j, and x2 = · · · = xk−1 = (0, . . . , 0), and then
execute P0(P1(x1; r1), . . . , Pk−1(xk−1; rk−1),mk). 2

Then, we have

H(M) ≥ H(M | R)
= H(M,X | R)−H(X |M, R)
≥ H(X | R)−H(X |M, R) (Independence of X and R)
= H(X). (Claim 3.3)

In a similar manner, we also have

H(R) ≥ H(R |M)
= H(RX |M)−H(X | RM) (Chain rule)
≥ H(X |M)−H(X | RM) (Independence of X and R)
= H(X |M) (Claim 3.3)
= H(X | sim(fIP(X))) (Perfect privacy)
≥ H(X | fIP(X)). (Data processing inequality)
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There are 2kn possible x’s. We know that if just one of every paired value of x
is (0, . . . , 0), then fIP(x) = 0: otherwise, fIP(x) = 0 and fIP(x) = 1 are equally
likely. Thus, the number of x with fIP(x) = 1 is slightly smaller than that with
fIP(x) = 0. In other words, fIP(x) = 1 leaks slightly more information on x.
Let y and Y be the output fIP(x) and the random variable describing fIP(x),
respectively. Let n′ = kn/2. For uniformly random inputs x, it follows that

H(X | fIP(X)) ≥ −
∑

x∈X ,y∈{0,1}

Pr(x, y) log Pr(x | y)

= −
∑

x:fIP(x)=0

Pr(x, 0) log Pr(x | 0)
∑

x:fIP(x)=1

Pr(x, 1) log Pr(x | 1)

= 2−n′−1 · (2n
′
+ 1) log 2n

′−1 · (2n
′
+ 1)

> n′ − 1 + log(2n
′
− 1) > kn− 2.

Thus, the statement of the theorem holds. 2

We can extend the above randomness lower bounds for a PSM protocol with
the perfect privacy to one with the statistical privacy. See Theorem 17, Corol-
lary 4, and Theorem 19 in Sect. B.

4 Randomness Bounds for CDS with Perfect Privacy

In this section, we consider CDS protocols in which a party Pi : Xi×S×R →Mi

for every i ∈ [k] and a referee P0 : X ×M → S, where X = X1 × · · · Xk and
M⊆M1 × · · · ×Mk.

Let S denote the random variable describing the secret s ∈ S. Let R be the
random variable describing the common random string r ∈ R. For xi ∈ Xi, let
Mi(xi) be the random variable describing mi after a run on xi, S, and R. That
is, Mi(xi) = Pi(xi, S;R). For x = (x1, . . . , xk), let M(x) be the random variable
describing m after a run on x, S, and R.

4.1 Connections from Communication to Randomness in CDS

By using the following lemma, we can show a randomness lower bound from the
communication complexity and secret length by an entropic argument, and thus,
it is useful to prove randomness lower bounds directly from the communication
complexity.

Lemma 3 (Lemma 1 in Sect. 1). For every function f and every CDS pro-
tocol for f , it holds that H(R) ≥ H(M(x))−H(S).

Proof. Recall Mi(xi) = Pi(xi, S;R). From the data processing inequality, we
have H(SR) ≥ H(M(x)). Because S and R are mutually independent, the state-
ment of the lemma holds. 2

Recall that we can provide a better connection from communication to ran-
domness for randomness lower bounds in PSM protocols by a combinatorial
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argument. (See Theorem 3 and Corollary 3.) In contrast to PSM protocols, the
following CDS protocol with no common random string shows that combina-
torial arguments cannot generally improve the connection obtained from the
entropic argument of Lemma 3. Let ∨ denote the bit-wise OR operation. Let
for(x) =

∨k
i=1

∨ni

j=1 xi[j] where xi ∈ {0, 1}ni for i ∈ [k].

Theorem 12. An randomness-optimal CDS protocol for for with perfect cor-
rectness and perfect privacy satisfiesM = Sk and R = ∅.

Proof. The optimal protocol is given by as follows:

– Pi(xi, s; r): If x1[1] ∨ · · · ∨ xi[ni] = 1, then set mi = s, and otherwise set m1

to the null string.

– P0(m1, . . . ,mk): If somemi is not null, then outputmi, and otherwise output
a special symbol ⊥.

The perfect correctness is obvious. Thus, we show the perfect privacy. If for(x) =
0, then all xi = (0, . . . , 0). Then, all messages are null strings. Thus, sim(x) is
defined by outputting null strings. 2

4.2 Lower Bounds for General Functions in CDS

We next consider a k-party CDS protocol with universal reconstruction for a
general function. In the following theorem, we obtain a communication lower
bound under restriction of possible reconstruction functions, and thus, we also
obtain the corresponding randomness lower bound from Lemma 3.

Theorem 13 (Perfect-privacy part of Theorem 5 in Sect. 1). Let F :=
{f : X → {0, 1}} and let C be a set of possible referees in CDS protocols. Suppose
|C| ≥ |S|/2. If a k-party CDS protocol with universal reconstruction for F has
perfect correctness and perfect privacy, it holds that λ ≥ |X | · σ/ log|C|.

Proof. We consider an encoding procedure from any given f ∈ F by using the

CDS protocol. Given f ∈ F , sample si
$← S and ri

$← R for each i ∈ [T ], where T
is specified later. From the perfect correctness, it holds that for every x for which
f(x) = 1, we have Pr{si,ri}i∈[T ]

[P0(x, (P(x, si; ri))) = si ] = 1. for every i ∈ [T ].
From the perfect privacy and the following claim, it holds that for every P ∗

0 and
every x for which f(x) = 0, we have Prsi,ri [P

∗
0 (x, (P(x, si; ri))) = si ] = 1/|S|

for every i ∈ [T ].

Claim. If a CDS protocol has perfect privacy, for every referee P ∗
0 and every

x ∈ X for which f(x) = 0 we have
∑

s∈S Prr [P
∗
0 (x,P(x, s; r)) = s ] = 1.

Proof. From the perfect privacy, there exists a simulator sim such that for ev-
ery s ∈ S and every x for which f(x) = 0 we have Prsim [P ∗

0 (x, sim(x)) = s ] =
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Prr [P
∗
0 (x,P(x, s; r)) = s ] . Therefore, it holds that

∑
s∈S Prr [P

∗
0 (x,P(x, s; r)) = s ] =∑

s∈S Prsim [P ∗
0 (x, sim(x)) = s ] = 1. 2

Therefore, we can see that

Pr
{si,ri}i∈[T ]

[∀i ∈ [T ], P0(x, (P(x, si; ri))) = si ] =

{
1 if f(x) = 1;

|S|−T otherwise.
(1)

Let T := ⌈ log|C|+1
log |S| ⌉. Note that T ≥ 1 since |S| ≤ 2|C|. By the union bound, for

every x for which f(x) = 0, from Eq. (1), it holds that

Pr
{si,ri}i∈[T ]

[∃P ∗
0 , ∀i ∈ [T ], P ∗

0 (x, (P(x, si; ri))) = si ]

≤
∑
P∗

0

Pr
{si,ri}i∈[T ]

[∀i ∈ [T ], P ∗
0 (x, (P(x, si; ri))) = si ] ≤ |C| · |S|−T ≤ 1/2.

Thus, there exists a non-empty set T ⊂ (S × R)T (precisely, of size at least
(1/2)|(S ×R)T |) such that for every (si, ri)i∈[T ] ∈ T it holds that

∀i ∈ [T ], P0(x,P(x, si; ri)) = si, and ∀P ∗
0 , ∃i ∈ [T ], P ∗

0 (x,P(x, si; ri)) ̸= si.
(2)

Therefore, there exists a (ŝi, r̂i)i∈[T ] that satisfies Eq. (2). Then, a sequence
(P(x, ŝi; r̂i), ŝi)i∈[T ] provides an encoding of f since we can determine if f(x) = 1
on any given x ∈ X by checking P0(x,P(x, ŝi; r̂i)) = ŝi for every i ∈ [T ]. The
description length |f | of this encoding of f is at most O(T ·λ+T · log |S|), and |f |
should be at least log|F| = |X |. Therefore, we have λ = Ω (|X | · log|S|/ log |C|) .
2

By extending the above argument, we can obtain a communication lower
bound for a δ-statistical privacy version. See Theorem 21 in Section C.

4.3 Lower Bounds for Explicit Functions in CDS

In this section, we further discuss communication and randomness lower bounds
of CDS protocols with perfect privacy for several explicit functions.

Let ⊕ and ∧ denote the bit-wise XOR and AND operations, respectively. Let
fxor(x) =

⊕k
i=1

⊕ni

j=1 xi[j]. Let fand(x) =
∧k

i=1

∧ni

j=1 xi[j]. For i ∈ [k], we define
X<i := X1×· · ·×Xi−1, X>i := Xi+1×· · ·×Xk, and X−i := X<i×X>i. We then
consider x<i, x>i, and x−i as elements in X<i, X>i, and X−i, respectively. We
say that f is nontrivial if there exists an input pair (x(0),x(1)) and index i such

that f(x(0)) = 0, f(x(1)) = 1 and x
(0)
−i = x

(1)
−i . Then, we call (x0,x1) a nontrivial

input pair on index i for f .

We first prove communication and randomness lower bounds of CDS proto-
cols for three functions, fxor, fand, and fIP by entropic arguments. (See Sect. 3.3
for the definition of fIP.)
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Theorem 14 (Perfect-privacy part of Theorem 6 in Sect. 1). If a CDS
protocol for f : ({0, 1}n)k → {0, 1} ∈ {fxor, fand, fIP} has perfect correctness
and perfect privacy, then it holds that λ ≥ k · H(S), and ρ ≥ (k − 1) · H(S).
In particular, for uniformly random secrets, it holds that λ ≥ k · log|S| and
ρ ≥ (k − 1) · log|S|.

Proof. To derive lower bounds, we prove the following claim.

Claim. Let f ∈ {fxor, fand, fIP}. There is x ∈ ({0, 1}n)k such that f(x) = 1 and
for every i ∈ [k], x is one element of a nontrivial input pair on i for f .

Proof. For f ∈ {fxor, fand}, choose an arbitrarily x with f(x) = 1. For f =
fIP, set x = ((1, 0, . . . , 0), . . . , (1, 0 . . ., 0)) if ⌈k/2⌉ is odd, and otherwise, x =
((1, 0, . . . , 0), . . . , (1, 0, . . . , 0), (0, 0 . . ., 0)). We define x(1) and x(0) by x(1) = x,

x
(0)
−i = x−i, x

(0)
i = xi ⊕ (1, 0, . . . , 0). Then, f(x(1)) = f(x) = 1, fxor(x

(0)) =

fxor(x)⊕1 = 0, fand(x
(0)) = fand(x)∧(1⊕1) = 0, and fIP(x

(0)) = fIP(x)⊕1·1 =
0. Then, the claim holds. 2

We use the above x(1) = x and x(0). Let M
(1)
i and M

(0)
i denote Mi(x

(1)
i ) =

Pi(x
(1)
i ;R) and Mi(x

(0)
i ) = Pi(x

(0)
i , R), respectively. Let M

(1)
i:j and M

(0)
i:j with

i ≤ j denote (M
(1)
i , . . . ,M

(1)
j ) and (M

(0)
i , . . . ,M

(0)
j ), respectively. Then, from

the chain rule, for any 1 ≤ i ≤ k, we obtain

H(M
(1)
1:i ) = H(M

(1)
i |M

(1)
1:i−1) +H(M

(1)
1:i−1).

We have

H(M
(1)
i |M(1)

1:i−1) ≥ H(M
(1)
i |M(1)

1:i−1M
(1)
i+1:k)

= H(M
(1)
i S |M(1)

1:i−1M
(1)
i+1:k)

−H(S |M (1)
i M

(1)
1:i−1M

(1)
i+1:k) (Chain rule)

≥ H(S |M(1)
1:i−1M

(1)
i+1:k)−H(S |M(1)

1:k)

= H(S |M(1)
1:i−1M

(1)
i+1:k) (Perfect correctness)

≥ H(S |M (0)
i M

(1)
1:i−1M

(1)
i+1:k)

≥ H(S |M(x(0))) (Relation of (x(1),x(0)))
≥ H(S | sim(x(0)))) (Perfect privacy)
≥ H(S). (Independence of S)

By summing up for 1 ≤ i ≤ k, we have H(M(x)) ≥ k · H(S). Here, it holds
that λ ≥ H(M(x)) ≥ k · H(S). From Lemma 3 and ρ ≥ H(R), it follows that
ρ ≥ H(R) ≥ (k − 1) ·H(S).Thus, the theorem holds. 2

For fand, we can obtain the matching communication and randomness bounds
from an optimal construction of a CDS protocol for fand.

Theorem 15. Let S = {0, 1}σ. The communication complexity and randomness
complexity of k-party CDS protocols for fand with perfect correctness and perfect
privacy is at most kσ and (k − 1)σ, respectively.
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Proof. To show the upper bounds, we construct a CDS protocol as follows:

– Setup: For s ∈ {0, 1}σ, choose r1, . . . , rk−1 ∈ {0, 1}σ and set rk =
⊕

1≤i≤k−1 ri
where ⊕ is the element-wise XOR.

– Pi(xi, s; r): If xi[1] ∧ · · · ∧ xi[ni] = 1, then for i = 1, set mi = s⊕ ri and for
i ̸= i, set mi = ri. Otherwise set mi to the null string.

– P0(m1, . . . ,mk): If some mi is the null string, then output a special symbol
⊥, and otherwise output m1 ⊕ · · · ⊕mk.

The perfect correctness is obvious. Thus, we show the perfect privacy. If f(x) = 0,
some message is the null string and thus the remaining messages are mutually
independent and random. sim(x) is defined by outputting random mi for i with
xi[1] ∧ · · ·xi[ni] = 1 and the null string for i with xi[1] ∧ · · ·xi[ni] = 0. 2

Next, we prove lower bounds of CDS protocols for some family of functions,
named θ-nontrivial functions, which are defined below.

Definition 5. A function f is θ-nontrivial if there exist input pairs (x(1):j,
x(0):j)j∈[θ] and indices (ij)j∈[θ] such that for every j ∈ [θ], f(x(1):j) = 1,

f(x(0):j) = 0, x
(1):j
−ij

= x
(0):j
−ij

, and x
(1):j
Ij−1

= x
(1):j−1
Ij−1

with Ij−1 = {i1, . . . , ij−1}.
We call (x(1):j ,x(0):j)j∈[θ] nontrivial input pairs on (ij)j∈[θ] for f . We also call
(ij)j∈[θ] a nontrivial index sequence for f .

The famous three types of access functions appeared in secret sharing schemes
are nontrivial functions.

Example 1 (θ-threshold, θ-uniform, and monotone access functions). The fa-
mous three types of access functions appeared in secret sharing schemes are
nontrivial functions. A θ-threshold access function fthr : {0, 1}k → {0, 1} is de-
fined so that fthr(x) = 1 if and only if the weight of x is not smaller than θ.
Then, fthr is θ-nontrivial. For simplicity, consider the 3-threshold access function
for k = 4. Let

x(1):1 = x(1):2 = x(1):3 = (1, 1, 1, 0),

x(0):1 = (0, 1, 1, 0),x(1):2 = (1, 0, 1, 0),x(1):3 = (1, 1, 0, 0),

where a nontrivial index sequence is (ij)j∈[3] = (1, 2, 3). Then, for j = 1, it holds
that

fthm(x
(1):1) = fthm(1, 1, 1, 0) = 1,

fthm(x
(0):1) = fthm(0, 1, 1, 0) = 0,

x
(1):1
−1 = x

(0):1
−1 = (1, 1, 0),

and I0 = ∅. Similarly, for j = 2,

fthm(x
(1):2) = 1,

fthm(x
(0):2) = fthm(1, 0, 1, 0) = 0,

x
(1):2
−2 = x

(0):2
−2 = (1, 1, 0), x

(1):2
I1

= x
(1):1
I1

= 1,
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where I1 = {1}. For j = 3,

fthm(x
(1):3) = 1,

fthm(x
(0):3) = fthm(1, 1, 0, 0) = 0,

x
(1):3
−3 = x

(0):3
−3 = (1, 1, 0), x

(1):3
I2

= x
(1):2
I2

= (1, 1),

where I2 = {1, 2}. Thus, the 3-threshold access function is a 3-nontrivial func-
tion. For any θ ≥ 1 and any k ≥ θ, we can show a similar example of nontrivial
input pairs. A θ-uniform access function funi : {0, 1}k → {0, 1} is defined so that
funi(x) = 1 (resp. funi(x) = 0) if the weight of x is larger than θ (resp. smaller
than θ). Then, funi is at least θ-nontrivial because some x of weight θ with
funi(x) = 1 can be used as x(1):1 = x(1):2 = · · · = x(1):θ. In such a way, for a
monotone access function f , a minimal weight input x with f(x) = 1 can be
used as one of the nontrivial input pairs. Thus, letting θ be the maximal weight
of such inputs, the monotone access function is θ-nontrivial.

The lower bounds for nontrivial functions are given by the following theorem.
The complexity depends on the parameter θ of nontriviality.

Theorem 16 (Perfect-privacy part of Theorem 7 in Sect. 1). If a CDS
protocol for a θ-nontrivial function f has perfect correctness and perfect privacy,
then it holds that λ ≥ θH(S) and ρ ≥ (θ − 1)H(S). In particular, for uniformly
random secrets, it holds that λ ≥ θ log|S| and ρ ≥ (θ − 1) log|S|.

Proof. For a θ-nontrivial function f , we use nontrivial input pairs (x(1):j ,

x(0):j)j∈[θ] on (ij)j∈[θ]. For each j ∈ [θ], LetM
(1):j
i and M

(0):j
i denoteMi(x

(1):j
i ) =

Pi(x
(1):j
i , S;R) andMi(x

(0):j
i ) = Pi(x

(0):j
i , S;R), respectively. For Ij = {i1, . . . , ij},

let Īj = [k] \ Ij and I0 = ∅.
Then, from the chain rule, for any 1 ≤ j ≤ θ, we obtain

H(M
(1):j

Īj−1
) = H(M

(1):j
ij
|M(1):j

Īj
) +H(M

(1):j

Īj
).

We have

H(M
(1):j
ij
|M(1):j

Īj
) ≥ H(M

(1):j
ij

|M(1):j

Īj
M

(1):j
Ij−1

)

= H(M
(1):j
ij

S |M(1):j

Īj
M

(1):j
Ij−1

)

−H(S |M (1):j
ij

M
(1):j

Īj
M

(1):j
Ij−1

) (Chain rule)

≥ H(S |M(1):j

Īj
M

(1):j
Ij−1

)

−H(S |M(1):j)

= H(S |M(1):j

Īj
M

(1):j
Ij−1

) (Perfect correctness)

≥ H(S |M (0):j
ij

M
(1):j

Īj
M

(1):j
Ij−1

)

≥ H(S |M(x(0):j)) (Relation between x(1):j and x(0):j)
≥ H(S | sim(x(0):j))) (Perfect privacy)
≥ H(S). (Independence of S)
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By summing up for 1 ≤ j ≤ θ, we have H(M(x)) ≥ θH(S). Here, it holds
that λ ≥ H(M(x)) ≥ H(S). From Lemma 3 and ρ ≥ H(R), it follows that
ρ ≥ H(R) ≥ (θ − 1)H(S). Thus, the theorem holds. 2

The statistical-privacy version of the above theorem will be provided in The-
orem 23 of Sect. C.2.
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A Survey on Related Results

Feige et al. constructed 2-party PSM protocols of polynomial communication
complexity for functions in the class NL, which was later generalized to k parties
and extended to the classes modpL and #L by Ishai et al. [27]. Furthermore, Feige
et al. provided another 2-party PSM protocol of exponential communication
complexity for an arbitrary function f : {0, 1}n×{0, 1}n → {0, 1} with universal
reconstruction, in which the referee is independent of f . The latter protocol
showed upper bounds 2n + n + 1 of the communication complexity and 2n + n
of the randomness complexity in the case of general functions with universal
reconstruction.

Beimel, Ishai, Kumaresan, and Kushilevitz constructed a 2-party PSM pro-
tocol for an arbitrary function f : {0, 1}n×{0, 1}n → {0, 1} in which the referee
can depend on f [12], which differs from the universal reconstruction. Their pro-
tocol demonstrated that the dependency of f for the referee actually provides a
quadratic improvement over [21]; the upper bounds for complexity of the com-
munication and randomness are O(

√
2n). Later, Liu et al. provided a more direct

construction of the same complexity [32].
The upper bound of [12,32] was extended to multi-party versions of PSM pro-

tocols by Beimel, Kushilevitz, and Nissim [13]. They constructed k-party PSM

protocols for f : ({0, 1}n)k → {0, 1} of communication complexity Ok(
√
2kn) for

k ≥ 6, and better bounds for 3 ≤ k ≤ 5, which improves the previous upper
bounds Ok(2

(k−1)n) [21,27], where Ok hides a constant factor in k. Most recently,
Assouline and Liu [7] improved the upper bound presented by Beimel et al. [13].
For example, they showed the upper bounds of Ok(2

(k−1)n/2) for infinitely many
k. Liu et al. [32] also improve the upper bound to a polynomial in the input
length by specifying the class to homogeneous polynomials including the inner
product [32].

As well as upper bounds, the lower bounds of communication complexity for
PSM protocols were also investigated. Beimel et al. provided the lower bound
2n of communication complexity for 2-party PSM protocols with universal re-
construction [12], which approximately matches the upper bound 2n + n + 1
by [21]. Applebaum, Holenstein, Mishra, and Shayevitz proved the lower bound
3n − O(log n) of the communication complexity of PSM protocols for a non-
explicit function by the random function argument [6]. They also constructed
explicit functions, for which the communication complexity of PSM protocols
is at least 3n − O(log n) under the assumption that some hitting-set generator
exists by partially derandomizing the proof for the non-explicit function. Most
recently, Ball, Holmgren, Ishai, Liu, and Malkin proved nearly quadratic lower
bounds in k for codeword length of k-decomposable randomized encoding for the
element distinctness function [10], which equivalently corresponds to a k-party
PSM protocol with 1-bit private inputs.

Gay, Kerenidis, and Wee showed the upper bounds σ2(n/2)+1 of communica-
tion complexity for a two-party CDS protocol with a σ-bit secret for a general
function f : {0, 1}n×{0, 1}n → {0, 1} with linear reconstruction, in which the ref-
eree can be represented as a linear function in messages, and the first non-trivial
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lower bounds Ω(log n) for a general function of 2-party general CDS protocols
by revealing relationships of the communication complexity between CDS and
2-party one-way communication models [23]. Furthermore, they provided tight
upper and lower bounds of 2-party CDS protocols with linear reconstruction for
several explicit functions and parameter settings, and also provided applications
to attribution-based encryption.

The lower bounds for a general function were later improved exponentially
by Applebaum, Arkis, Raykov, and Vasudevan [4]. They showed the lower bound
Ω(n) of communication complexity for 2-party general CDS protocols. Apple-
baum, Holenstein, Mishra, and Shayevitz also showed lower bounds for 2-party
CDS protocols that satisfy some combinatorial properties from lower bounds of
a weak variant of PSM protocols [6].

The upper bounds of communication complexity for k-party CDS protocols
were studied by Beimel and Peter [14]. They constructed a k-party CDS protocol
with linear reconstruction for f : {0, 1}n′ × ({0, 1}n)k−1 → {0, 1} of communica-
tion complexity O(2(k−1)n/2), which is independent of n′. This corresponds to the
lower bounds provided by Beimel, Farràs, Mintz, and Peter up to a polynomial
factor in k in linear reconstruction settings [11].

Liu, Vaikuntanathan, and Wee improved the upper bounds presented in [23]
via non-linear reconstruction. They showed the subexponential upper bound
2o(n) of communication complexity by constructing 2-party CDS protocols with
non-linear reconstruction [32]. They also extended the result to constructions of
PSM protocols for some explicit functions.

For a long secret, Applebaum and Arkis constructed k-party CDS protocols
for a general function whose communication complexity of each party is bounded
by a constant information rate with respect to the secret. More specifically, if
the length σ of the secrets is exponential in the input length of the function,
the communication complexity is at most 4σ for each party, and thus, the total
communication complexity is at most 4kσ.

Most recently, Applebaum and Vasudevan succeeded to prove new lower
bounds for 2-party CDS protocols in [8] by relating them with communication
complexity games such as coNPcc,PPcc,AMcc, etc. In particular, they showed a
linear lower bound of 2-party CDS protocols with imperfect privacy (with im-
perfect correctness, respectively) for the inner product function by reducing it
to a lower bound in coNPcc (in PPcc, respectively).

B Randomness Bounds for PSM with Statistical Privacy

In this section, we provide statistical-privacy versions of the results in Sect. 3.

B.1 Connections from Communication to Randomness in PSM
with Statistical Privacy

We will provide connections from communication complexity to randomness
complexity in PSM protocols with statistical privacy. We first prove a statistical-
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privacy version of Theorem 9, namely, a randomness lower bound from commu-
nication complexity of PSM protocols with statistical privacy.

Theorem 17. If a k-party PSM protocol has the perfect correctness and δ-
statistical privacy, it holds that |R| > (1 − 2δ)minr∈R|M[b](r)| for every b ∈
{0, 1}.

Proof. Fix any b ∈ {0, 1}. From the δ-statistical privacy, there exists a distribu-
tion Db such that we have ∆(P(x), Db) ≤ δ for every x ∈ X[b]. For every x,x′ ∈
X[b], we have ∆(P(x),P(x′)) ≤ ∆(P(x), Db) +∆(Db,P(x′)) ≤ 2δ from the tri-
angle inequality. We now fix x0 ∈ X[b] arbitrarily. It holds ∆(P(x0),P(x)) ≤ 2δ
for every x ∈ X[b].

For contradiction, we assume that |R| ≤ (1−2δ)minr∈R|M[b](r)|. We define
a binary random variable Ar as follows. Choose x from X[b] uniformly at random.
Set Ar = 1 if P(x; r) ∈ Supp(P(x0)); otherwise, 0. From the perfect correctness,
we have

Pr
x
[Ar = 1 ] ≤ |Supp(P(x0))|

|M[b](r)|
≤ |R|

minr∈R|M[b](r)|
≤ 1− 2δ.

Therefore, we have E[Ar] ≤ 1−2δ. Let A :=
∑

r∈R Ar. From the linearity of ex-
pectation, E[A] =

∑
r∈R E[Ar] ≤ (1−2δ)|R|. This implies that Prx [A ≤ (1− 2δ)|R| ] >

0, i.e., there exists x∗ ∈ X[b] such that |{r : P(x∗; r) ∈ Supp(P(x0))}| ≤
(1− 2δ)|R|. Thus, we have ∆(P(x∗),P(x0)) > 2δ. Contradiction. 2

Corollary 4 (Statistical-privacy part of Theorem 2 in Sect. 1). Let λ
be the communication complexity for a function f : [N ]k → {0, 1} of a k-party
PSM protocol that has the perfect correctness and δ-statistical privacy. Then,
the randomness complexity ρ for f of a k-party PSM protocol is at least λ +
log (1− 2δ)− 1.

Next, we prove a randomness upper bound from the communication com-
plexity. In the setting of statistical privacy, we follow the same derandomization
approach as those of Newman [34] and Applebaum and Vasudevan [8]. For the de-
randomization, we use a variant of pseudorandom generator called non-Boolean
pseudorandom generator (nbPRG), which is defined below.

Definition 6. We say that a function G : L → R ϵ-fools a function D : R →M
if it holds ∆(D(G(s)), D(r)) ≤ ϵ for s

$← L and r
$← R. We say that G is a

(D, ϵ)-nbPRG if G ϵ-fools every D ∈ D.

By a probabilistic argument, we can show the existence of nb-PRGs with
good parameters. (See Claim 2 in [8].)

Lemma 4. For every finite sets R, M, family D ⊆ {D : R →M}, and ϵ > 0,
there exists a function G : L → R where |L| = |M|2 · log|M| · log|D| · ϵ−2 such
that G is a (D, ϵ)-nbPRG.
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By applying the good nbPRG obtained in Lemma 4 to PSM protocols with
statistical privacy, we can sparsify the randomness domain with an additional
privacy error, as shown in the following theorem.

Theorem 18. Suppose that we have a k-party PSM protocol for f : X → {0, 1}
of message domain size |M| and randomness domain size |R| with perfect cor-
rectness and δ-statistical privacy. Then, there exists a k-party PSM protocol
for f : X → {0, 1} of message domain size |M| and randomness domain size
|M|2 · log|M| · log|X | · δ−2 with perfect correctness and 2δ-statistical privacy.

Proof. From Lemma 4, there exists a ({P(x; · )}x∈X , δ)-nbPRG G : L → R,
where |L| ≤ |M|2 · log|M| · log|X | · δ−2. Let Pi : Xi × R → Mi be the origi-
nal message function of the i-th party in the k-party PSM protocol for f . For
every i, we define a corresponding new message function P ′

i : Xi × L → Mi as

P ′
i (xi, G(s)) for a common random string s

$← L. Then, the new message func-
tion P′ = (P ′

i )i∈[k] and the original referee R provide the desired PSM protocol
for f , as shown below.

The new PSM protocol has the perfect correctness since for every r ∈ {G(s) :
s ∈ L} ⊆ R we have R(P(x; r)) = f(x) from the perfect correctness of the
original PSM protocol.

Since the original PSM protocol has δ-privacy, it holds ∆(sim(f(x)),P(x)) ≤
δ. Then, we have from the triangular inequality

∆(sim(f(x)),P′(x)) ≤ ∆(sim(f(x)),P(x)) +∆(P(x),P′(x)) ≤ 2δ.

Thus, the new PSM protocol has 2δ-privacy. 2

From the above theorem, we directly obtain the following connection.

Corollary 5. Let λ be the communication complexity for a function f : [N ]k →
{0, 1} of a k-party PSM protocol that has perfect correctness and δ-statistical
privacy. Then, the randomness complexity ρ for f of a k-party PSM protocol is
at most 2λ+ log λ+ log (k logN) + 2 log δ−1.

Therefore, we can see that a (2λ+log λ+O(1))-bit random string is sufficient
for k-party PSM protocols of communication complexity λ for f : [N ]k → {0, 1}
with perfect correctness and O(1)-privacy from Corollary 5.

B.2 Lower Bounds for General Functions in PSM with Statistical
Privacy

We provide a statistical-privacy version of Theorem 10, that is, communication
and randomness lower bounds of k-party PSM protocols for general functions
with universal reconstruction that has perfect correctness and δ-statistical pri-
vacy.

Theorem 19 (Statistical-privacy part of Theorem 3 in Sect. 1). If a
PSM protocol with universal reconstruction has perfect correctness and δ-statistical

privacy, it holds that |R| ≥ (1− 2δ)2N
k−1

/2.
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Proof. The proof is similar to that of Theorem 10. As before, we identify f ∈ F as
a part of inputs to the message function P. From Theorem 17, it holds |R| ≥ (1−
2δ)minr∈R maxb∈{0,1}|M[b](r)|. From Lemma 2, it holds maxb∈{0,1}|M[b](r)| ≥
2N

k−1

/2 for every r ∈ R. Therefore, we obtain |R| ≥ (1− 2δ)2N
k−1

/2. 2

B.3 Lower Bounds for Explicit Functions in PSM with Statistical
Privacy

We provide a proof of the randomness lower bound for k-party PSM protocols
for fIP with δ-statistical privacy as follows:

Theorem 20 (Statistical-privacy part of Theorem 4 in Sect. 1). If a
PSM protocol for fIP has perfect correctness and δ-statistical privacy, it holds
that

H(R) ≥ H(X | f(X))− 2δ(λ+ kn− log δ).

For uniformly random inputs, it holds that H(R) > (1−2δ)kn−2−2δ(λ−log δ).

Proof. From the perfect correctness, Claim 3.3 in Theorem 11 also holds. Then,
we have

H(R) ≥ H(R |M)
= H(RX |M)−H(X | RM) (Chain rule)
≥ H(X |M)−H(X | RM) (Independence of X and R)
= H(X |M) (Claim 3.3)
= H(X | sim(fIP(X)))− 2δ(log(|X ||M|)− log δ) (Statistical privacy, Cor. 1)
≥ H(X | fIP(X))− 2δ(λ+ kn− log δ). (Data processing inequality)

Let y and Y be the output fIP(x) and the random variable describing fIP(x),
respectively. Let n′ = kn/2. For uniformly random inputs x, it follows that

H(X | fIP(X)) ≥ −
∑

x∈X ,y∈{0,1}

Pr(x, y) log Pr(x | y)

= −
∑

x:fIP(x)=0

Pr(x, 0) log Pr(x | 0)
∑

x:fIP(x)=1

Pr(x, 1) log Pr(x | 1)

= 2−2n′
· 2n

′−1 · (2n
′
+ 1) log 2n

′−1 · (2n
′
+ 1)

+2−2n′
· 2n

′−1 · (2n
′
− 1) log 2n

′−1 · (2n
′
+ 1)

= 2−n′−1 · (2n
′
+ 1) log 2n

′−1 · (2n
′
+ 1)

> n′ − 1 + log(2n
′
− 1)

> kn− 2.

Thus, the statement of the theorem holds. 2
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C Randomness Bounds for CDS with Statistical Privacy

C.1 Lower Bounds for General Functions in CDS with Statistical
Privacy

We provide a statistical-privacy version of Theorem 13, that is, communica-
tion lower bounds of k-party CDS protocols with universal reconstruction for
a general function that has statistical privacy. In the following theorem, we
By Lemma 3, we also obtain the corresponding randomness lower bound from
Lemma 3 as in the case of Theorem 13.

Theorem 21 (Statistical-privacy part of Theorem 5 in Sect. 1). Let
F := {f : X → {0, 1}} and let C be a set of possible referees in CDS protocols.
Suppose |C| ≥ (|S|−1 + δ)−1/2. If a CDS protocol for F has perfect correctness
and δ-statistical privacy, it holds that

λ = Ω

(
|X | · log

{
(|S|−1 + δ)−1

}
log|C|

)
.

Proof. The proof of Theorem 21 follows almost the same direction with that of
Theorem 13. The major difference is the counterpart of Claim 4.2:

Claim. If a CDS protocol has δ-statistical privacy, for every referee P ∗
0 , every

s ∈ S, and every x ∈ X for which f(x) = 0,∑
s∈S

Pr
r
[P ∗

0 (x,P(x, s; r)) = s ] ≤ 1 + δ|S|

holds.

Proof. From the δ-statistical privacy and triangle inequality, there exists a sim-
ulator sim such that for every s ∈ S and every x for which f(x) = 0 we have

∆(P(x, s; ·), sim(x; ·)) ≤ δ.

Then, from the definition of ∆, it holds that∣∣∣Pr
r
[P ∗

0 (x,P(x, s; r)) = s ]− Pr
sim

[P ∗
0 (x, sim(x)) = s ]

∣∣∣ ≤ δ.

By the triangle inequality,∣∣∣∣∣∑
s∈S

Pr
r
[P ∗

0 (x,P(x, s; r)) = s ]−
∑
s∈S

Pr
sim

[P ∗
0 (x, sim(x)) = s ]

∣∣∣∣∣ ≤ δ|S|.

Thus, the statement follows directly from the above inequality. 2

Rather than Eq. (1), we obtain the following in the case of statistical privacy.

Pr
{si,ri}i∈[T ]

[∀i ∈ [T ], P0(x, (P(x, si; ri))) = si ]

{
= 1 if f(x) = 1;

≤ (|S|−1 + δ)T otherwise.

(3)
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By Eq. (3) and the union bound, setting T := ⌈ log|C|+8
log{(|S|−1+δ)−1}⌉, for every x for

which f(x) = 0,

Pr
{si,ri}i∈[T ]

[∃P ∗
0 , ∀i ∈ [T ], P ∗

0 (x, (P(x, si; ri))) = si ] ≤ |C| · (|S|−1 + δ)T ≤ 1/2.

(Note that T ≥ 1 since |C| ≥ (|S|−1 + δ)−1/2.) The remaining part of the proof
proceeds similar to that of Theorem 13, and we can obtain the lower bound. 2

C.2 Lower Bounds for Explicit Functions in CDS with Statistical
Privacy

In this section, we provide communication and randomness lower bounds of CDS
protocols for explicit functions with statistical privacy as generalized results of
Theorems 14 and 16

We first prove the lower bounds for fxor, fand, and fIP.

Theorem 22 (Statistical-privacy part of Theorem 6). If a CDS protocol
for f : ({0, 1}n)k → {0, 1} ∈ {fxor, fand, fIP} has perfect correctness and δ-
statistical privacy, then it holds that

λ ≥ k

1 + 2δk
H(S)− 2δk

1 + 2δk
(log|S| − log δ),

ρ ≥ (k − 1)H(S)− 2δk(λ+H(S)− log δ).

Proof. To derive lower bounds, we also use Claim 4.3 in Theorem 14 and the

values of x(1) and x(0) defined in the proof of the claim. Let M
(1)
i and M

(0)
i

denote Mi(x
(1)
i ) = Pi(x

(1)
i ;R) and Mi(x

(0)
i ) = Pi(x

(0)
i , R), respectively. Let M

(1)
i:j

and M
(0)
i:j with i ≤ j denote (M

(1)
i , . . . ,M

(1)
j ) and (M

(0)
i , . . . ,M

(0)
j ), respectively.

Then, from the chain rule, for any 1 ≤ i ≤ k, we obtain

H(M
(1)
1:i ) = H(M

(1)
i |M

(1)
1:i−1) +H(M

(1)
1:i−1).

We have

H(M
(1)
i |M(1)

1:i−1) ≥ H(M
(1)
i |M(1)

1:i−1M
(1)
i+1:k)

= H(M
(1)
i S |M(1)

1:i−1M
(1)
i+1:k)

−H(S |M (1)
i M

(1)
1:i−1M

(1)
i+1:k) (Chain rule)

≥ H(S |M(1)
1:i−1M

(1)
i+1:k)

−H(S |M(1)
1:k)

= H(S |M(1)
1:i−1M

(1)
i+1:k) (Perfect correctness)

≥ H(S |M (0)
i M

(1)
1:i−1M

(1)
i+1:k)

≥ H(S |M(x(0))) (Relation between x(1) and x(0))
≥ H(S | sim(x(0))))
−2δ(log(|M||S|)− log δ) (Statistical privacy, Cor. 1)

≥ H(S)− 2δ(λ+ log|S| − log δ). (Independence of S)
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By summing up for 1 ≤ i ≤ k, we have

H(M(x)) + 2δkλ ≥ kH(S)− 2δk(log|S| − log δ).

Here, it holds that λ ≥ H(M(x)). Thus, we have

λ+ 2δkλ ≥ kH(S)− 2δk(log|S| − log δ),

and then

λ ≥ k

1 + 2δk
H(S)− 2δk

1 + 2δk
(log|S| − log δ).

From Lemma 3 and ρ ≥ H(R), it follows that

ρ ≥ H(R) ≥ (k − 1)H(S)− 2δk(λ+ log|S| − log δ).

Thus, the statement of the theorem holds. 2

We next prove the lower bounds for nontrivial functions.

Theorem 23 (Statistical-privacy part of Theorem 7). Let f be a θ-nontrivial
function. If a CDS protocol for f has perfect correctness and δ-statistical privacy,
then it holds that

λ ≥ θ

1 + 2δθ
H(S)− 2δθ

1 + 2δθ
(log|S| − log δ),

ρ ≥ (θ − 1)H(S)− 2δθ(λ+ log|S| − log δ).

Proof. For a θ-nontrivial function f , we use nontrivial input pairs (x(1):j ,

x(0):j)j∈[θ] on (ij)j∈[θ]. For each j ∈ [θ], LetM
(1):j
i and M

(0):j
i denoteMi(x

(1):j
i ) =

Pi(x
(1):j
i , S;R) andMi(x

(0):j
i ) = Pi(x

(0):j
i , S;R), respectively. For Ij = {i1, . . . , ij},

let Īj = [k] \ Ij and I0 = ∅.
Then, from the chain rule, for any 1 ≤ j ≤ θ, we obtain

H(M
(1):j

Īj−1
) = H(M

(1):j
ij
|M(1):j

Īj
) +H(M

(1):j

Īj
).

We have

H(M
(1):j
ij
|M(1):j

Īj
) ≥ H(M

(1):j
ij

|M(1):j

Īj
M

(1):j
Ij−1

)

= H(M
(1):j
ij

S |M(1):j

Īj
M

(1):j
Ij−1

)

−H(S |M (1):j
ij

M
(1):j

Īj
M

(1):j
Ij−1

) (Chain rule)

≥ H(S |M(1):j

Īj
M

(1):j
Ij−1

)

−H(S |M(1):j)

= H(S |M(1):j

Īj
M

(1):j
Ij−1

) (Perfect correctness)

≥ H(S |M (0):j
ij

M
(1):j

Īj
M

(1):j
Ij−1

)

≥ H(S |M(x(0):j)) (Relation between x(1):j and x(0):j)
≥ H(S | sim(x(0):j)))
−2δ(log(|M||S|)− log δ) (Statistical privacy, Cor. 1)

≥ H(S)− 2δ(λ+ log|S| − log δ). (Independence of S)
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By summing up for 1 ≤ j ≤ θ, we have

H(M(x)) + 2δθλ ≥ θH(S)− 2δθ(log|S| − log δ).

Here, it holds that λ ≥ H(M(x)). Thus, we have

λ+ 2δθλ ≥ θH(S)− 2δθ(log|S| − log δ),

and then

λ ≥ θ

1 + 2δθ
H(S)− 2δθ

1 + 2δθ
(log|S| − log δ).

From Lemma 3 and ρ ≥ H(R), it follows that

ρ ≥ H(R) ≥ (θ − 1)H(S)− 2δθ(λ+ log|S| − log δ).

Thus, the statement of the theorem holds. 2


