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Abstract. An encrypted search algorithm (ESA) allows a user to encrypt its data while
preserving the ability to search over it. As all practical solutions leak some information,
cryptanalysis plays an important role in the area of encrypted search. Starting with
the work of Islam et al. (NDSS’12), many attacks have been proposed that exploit
different leakage profiles under various assumptions. While these attacks improve our
understanding of leakage, it can sometimes be difficult to draw definite conclusions
about their practical performance. This is due to several reasons, including a lack
of open-source implementations (which are needed to reproduce results), empirical
evaluations that are conducted on restricted datasets, and in some cases reliance on
relatively strong assumptions that can significantly affect accuracy.
In this work, we address these limitations. First, we design and implement LEAKER,
an open-source framework that evaluates the major leakage attacks against any
dataset and that we hope will serve the community as a common way to evaluate
leakage attacks. We identify new real-world datasets that capture different use cases
for ESAs and, for the first time, include real-world user queries. Finally, we use
LEAKER to systematically evaluate known attacks on our datasets, uncovering
sometimes unexpected properties that increase or diminish accuracy. Our evaluation
shows that some attacks work better on real-world data than previously thought and
that others perform worse.
Keywords: Encrypted Search, Cryptanalysis, Leakage Attacks

1 Introduction
Encrypted search algorithms (ESAs) allow a user to encrypt its data while preserving the
ability to search over it. ESAs have received a lot of attention due to applications to cloud
storage and database security (see the survey by Fuller et al. [23] for an overview). At a high
level, ESAs consist of two algorithms: a setup algorithm that encrypts a data collection (or
database) and a search/query algorithm that is used to query it. Dynamic ESAs also have
an update algorithm to add or remove data.

ESAs are designed via various, sometimes intersecting cryptographic techniques: property-
preserving encryption (PPE) [4, 8], fully-homomorphic encryption (FHE) [24], search-
able/structured symmetric encryption (SSE/STE) [15,17,77], functional encryption [11], or
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ORAM [28]. They have varying tradeoffs between efficiency, expressiveness of the search,
and security.
Efficiency. When evaluating the efficiency of an ESA, we usually focus on the query or
search time; that is the time needed to search over the encrypted data. ESAs based on FHE
require linear time in the size of the data so they are usually considered impractical. For
practical purposes, one needs sub-linear ESAs which can be achieved with ORAM in
opt · logO(1) n time, STE in opt time or PPE also in opt time, where opt is the optimal
time to search and n is the number of items in the data collection.
Adversarial models and leakage. ESAs can be analyzed in different adversarial models.
The most common are the snapshot and persistent models. A snapshot adversary receives a
copy of the encrypted data at various times and tries to recover information about the data
collection. A persistent adversary receives the encrypted data and a transcript of the query
operations and tries to recover information about the data collection and the queries. The
information an adversary can recover about the data or queries is referred to as leakage and,
ideally, one would prefer a zero-leakage solution, which can be achieved in several ways. In
the snapshot model, it is possible to design very efficient zero-leakage ESAs using structured
encryption [5], whereas in the persistent model zero-leakage ESAs can be designed using
FHE at the cost of linear-time queries. In the persistent model oblivious, structured, and
property-preserving ESAs all leak some information; though recent work has shown how
to suppress some of this leakage for certain encrypted data structures [6, 25, 47, 48, 69].
For instance, prominent leakage profiles include the response identity (or access) pattern,
which reveals the response to a query, or the query equality (or search) pattern, which
reveals whether and when a query repeats.
Leakage attacks. Because sub-linear solutions leak information, cryptanalysis plays an
important role in the area of encrypted search. By designing leakage attacks one can try
to ascertain whether a leakage profile is exploitable. Starting with the work of Islam et
al. [38], leakage attacks were first designed against structured ESAs in the persistent model.
Later, Naveed et al. [64] designed attacks against PPE in the snapshot model and Kellaris
et al. [51] showed attacks against oblivious ESAs in the persistent model.

These works were improved by a series of papers [9, 12, 32–34, 54–56, 67, 74]. While
the attacks improve our understanding of leakage, it can sometimes be difficult to draw
definite conclusions about their performance in practical settings. This is due to several
limitations: (1) none of the implementations are open-source (with the exception of [74])
which makes it burdensome to reproduce results, especially in new empirical settings; (2)
most of the prior evaluations are based on a few and often small datasets without real
query logs; (3) some attacks and/or their evaluations are based on assumptions which may
or may not be realistic, depending on the application scenario. We stress that some of
these limitations are due to the fact that obtaining real-world query logs is very challenging.
In fact, this has been recognized as an important impediment to the evaluation of attacks
for some time [34, 74]. A consequence of this is that prior evaluations vary greatly in what
assumptions they make about queries, e.g., some evaluations of keyword attacks use the
most frequent keywords [12,38] while others use the least frequent keywords [9,74], a choice
that can significantly affect results.
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Our contributions. We broaden the scope of ESA cryptanalysis with the following
contributions:

1. We design and implement an open-source Python framework called LEAKER that
evaluates the major leakage attacks against keyword and range (oblivious or struc-
tured) ESAs on arbitrary datasets. It is intended as an easy-to-use reference tool for
research on leakage attacks and mitigations. With LEAKER we enable and invite the
community to contribute additional attacks and evaluations to continually advance our
understanding of leakage.

2. We uncover a wide set of real-world datasets that capture different realistic use cases for
ESAs and, for the first time, include real user queries (query logs), which has long been
a well-known challenge in the field. For keyword search, this includes search engine and
genetic data. For range search, this includes scientific, medical, human resources, sales,
and insurance data. The datasets we consider cover significantly more settings than
those used in previous work and can serve the community for future benchmarks.

3. We use LEAKER to systematically evaluate attacks on oblivious and structured ESAs
on real-world data. Our analysis is an important step towards understanding the
practicality of many well-known leakage attacks and provides some new insights which
were not obtained by previous evaluations. For example, we find that the BKM attacks1

of Blackstone et al. [9] can achieve higher recovery rates than previously reported when
evaluated with real query logs. On the other hand, the recovery rates of the IKK
attack of Islam et al. [38] and of the Count attacks of Cash et al. [12] were lower
on our datasets. Similarly, the recovery rates of many well-known range attacks were
(expectedly) lower on our real-world query logs and data collections. However, when
using synthetic query distributions based on statistics from our query logs, the recovery
rates improved enough to be considered practical.

Guidance on how to interpret our results. We stress that the goal of our work is
to better understand the state-of-the-art leakage attacks and not to provide a security
analysis of various leakage profiles. In other words, the fact that an attack has low recovery
rates on a given leakage profile under real-world queries and data says nothing about the
security of that leakage profile. Understanding whether an attack improves on real-world
data or does worse, however, is important for several reasons. First, since the recovery rates
of leakage attacks often depend (strongly) on the query and data distributions, it is natural
to ask how they perform on a variety of distributions and especially on distributions that
capture real-world scenarios. Second, understanding how attacks perform on real-world
data allows designers to improve their intuition about their designs and whether there is
enough of a “security margin" for practical deployment or whether they should switch to a
scheme with a different leakage profile. What constitutes the right “security margin" here
is, of course, subjective and different opinions are possible but making such evaluations
available to the community is important. A third reason that evaluating state-of-the-art
attacks on a variety of datasets is important is that it can help us to uncover new data
and query characteristics that affect recovery rates.
Outline. We give related work in §2, preliminaries in §3, and a general overview of leakage
attacks in §4. In §5, we detail the design of our LEAKER framework for evaluating leakage
attacks. Our real-world datasets are presented in §6 and our evaluation of attacks is shown
in §7. We conclude in §8.

1Throughout, we denote attacks by first letter of author names.
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2 Related Work
Our work is on the evaluation of leakage attacks. Since these are described in §4, we focus
here on ESAs and query log analysis.
Encrypted search algorithms. We use the term encrypted search algorithm to refer to
any cryptographic primitive/protocol that allows one to execute search algorithms on en-
crypted data. ESAs can be built using a variety of techniques including fully-homomorphic
encryption (FHE) [24], property-preserving encryption (PPE) [4, 8], functional encryp-
tion [11], oblivious RAMs (ORAM) [28], secure multi-party computation (MPC) [27,85],
and SSE/STE (see below). In this work we refer to ESAs built from ORAM as oblivious
ESAs and to ESAs built from SSE/STE as structured ESAs. Note, however, that the line
between these notions is blurry as one can also view ORAM as a (low-leakage) structured
encryption scheme for arrays [48].
Searchable/structured encryption. Searching on encrypted data was first explicitly
considered by Song, Wagner and Perrig [77], though previous work by Goldreich and
Ostrovsky on ORAM [28] could also be used. Boneh et al. [10] then considered the
problem of public-key searchable encryption. Security definitions for searchable symmetric
encryption (SSE) were proposed by Goh [26] and Chang and Mitzenmacher [13]. Curtmola
et al. [17] introduced the now standard notion of adaptive security for SSE, proposed
the first optimal-time solution and were the first to identify and formalize leakage. The
index-based SSE constructions of [17] were later generalized as structured encryption (STE)
by Chase and Kamara [15]. The purpose of STE (referred to as structure-only STE in [15])
is to encrypt data structures in such a way that they can be privately queried. This
is different than the purpose of SSE which is to encrypt data collections so that they
can support private keyword search. Of course, STE and, specifically the special case of
encrypted multi-maps, are a building block for optimal SSE schemes. STE, however, has
other applications beyond SSE including various kinds of encrypted databases [2,48–50,89].
Other SoKs. Fuller et al. [23] provide a survey of encrypted search and Yao et al. [86]
provide a survey of leakage attacks, largely focusing on property-preserving encryption.
Our work focuses on leakage attacks against structured and oblivious ESAs and provides
a new software framework and datasets to evaluate these attacks.
Query log analysis. Researchers across different fields have tried to better understand
users’ search behavior. This is known as query log analysis, and is surveyed in [40–42].

Many works analyze query logs gathered by proprietary systems that only the authors
had access to. Unfortunately, almost none of these works [41,44,45,62,81] had data we
felt was appropriate to evaluate leakage attacks. We also reached out to multiple services
for relevant statistics, but none were willing to provide us with even basic information.
As no information relevant to leakage attacks was available, we thus identified novel,
real-world query data sources (cf. §6) and performed our own analyses of leakage attacks
on them (cf. §7).

3 Preliminaries
With [n] we denote the set {1, . . . , n}, with 2[n] its power set, and with |s|b the bit length
of a string s.
Document collections. A document collection D over a keyword space W is a sequence
of documents (D1, . . . , Dn), each of which is a set Di ⊆W. Given a keyword w ∈ Q from
a query space Q ⊆W, a keyword search returns the documents that contain w which we
denote as D(w) = {D ∈ D : w ∈ D}. The function ids : W → 2[n] takes a keyword as
input and returns the identifiers of the documents in D(w). The frequency of a keyword
w is the number of entries that contain w.
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Numerical collections. A numerical collection N over the universe [N ] is a (multi)
sequence of positive integers (e1, . . . , en), each of which is an integer ei ∈ [N ]. The density
of a numerical collection N is defined as δ(N) = #{e ∈ N}/N ; i.e., the number of unique
values in N over the universe size.

Given a range r = (a, b), where a, b ∈ [N ] and a ≤ b, a range query returns N(r) =
{e ∈ N : a ≤ e ≤ b}. We overload the function ids : [N ]× [N ]→ 2[n] which takes a range
as input and returns the identifiers of the elements that are within the range r = (a, b).
The width of a range query r = (a, b) is the value b− a+ 1.
Leakage. The leakage profile of an ESA is a set of leakage patterns which are functions
that map the collection and queries to some target space. We denote a (document or
numerical) collection of data entries as C, and a query which can be either a keyword or a
range as q. We recall common leakage patterns as defined in [9]:

• The response identity pattern rid (or access pattern) reveals the identifiers: rid(C, q1, . . . , qt) =(
ids(q1), . . . , ids(qt)

)
.

• The query equality pattern qeq (or search pattern) reveals if and when queries are equal:
qeq(C, q1, . . . , qt) = M ∈ {0, 1}t×t, where M [i, j] = 1 iff qi = qj .

• The response length pattern rlen leaks the number of matching entries: rlen (C, q1, . . . , qt) =
(|ids(q1)|, . . . , |ids(qt)|).

• The co-occurrence pattern co leaks how often keywords co-occur within the same
document: co (D, w1, . . . , wt) = M ∈ [n]t×t, where M [i, j] = |ids(wi) ∩ ids(wj)|. This
information is implied by rid and implies rlen.

• The volume pattern vol leaks the bit length of matching entries: vol (C, q1, . . . , qt) =(
(|e|b)e∈C(q1) , . . . , (|e|b)e∈C(qt)

)
.

• The total volume pattern tvol leaks the total bit length of matching entries: tvol (C, q1, . . . , qt) =(∑
e∈C(q1) |e|b, . . . ,

∑
e∈C(qt) |e|b

)
.

Additional patterns include order(N), the order of the elements, and rankv(N), the number
of entries that are less than or equal to a given value v.

4 Existing Leakage Attacks
Here, we provide an overview of leakage attacks against oblivious and structured key-
word (point) and range ESAs and classify them according to the following properties.
Adversarial model. The two main adversarial models considered against ESAs are
snapshot and persistent adversaries. A snapshot adversary has only access to the encrypted
structures and any associated ciphertexts. This captures attackers that, e.g., corrupt a
server and read its memory. A persistent adversary has access to the encrypted structures,
ciphertexts, and to the transcripts of query and update operations. This captures an
attacker that corrupts a server and observes all interactions.
Target. Different information can be targeted. In a data reconstruction attack, the
adversary tries to recover information about the data, whereas in a query reconstruction
attack, it tries to recover information about the queries.
Auxiliary data. Many leakage attacks require some auxiliary data or knowledge. A
sampled-data attack requires a sample from a distribution that is close to the data’s
distribution and a sampled-query attack requires one from a distribution close to the
queries. On the other hand, a known-data attack requires explicit knowledge of a subset of
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Table 1: Major leakage attacks and our perceived risk. The target is either Keyword
query (K) or Range data (Value/Count, RV/RC) reconstruction. B is the maximum width
and k the amount of missing queries per width. A denotes that all possible response lengths
occur (only within all widths ≤ B for AB, or k missing therein for AB,k). ## shows
no success on our real-world datasets, H# denotes some success (K for high partial
Knowledge ≥ 75%, D for Dense data, W for large Widths close to N , S for Specific
data values, E for Evenly and ¬E for unevenly distributed data collections),   is severe
risk across all of our evaluated instances.

Attack Target Leakage Auxiliary Data Assumptions Risk (§7)
Profile (§3) Queries Data Queries Data

IKK [38] K co Partial Partial Non-rep. − ##
DetIKK [74] K co − Partial Non-rep. − H# K
Count v.2 [12] K co − Partial Non-rep. − H# K
Subgraph-ID [9] K rid − Partial Non-rep. −   
Subgraph-VL [9] K vol − Partial Non-rep. −   
VolAn [9] K tvol − Partial − − H# K
SelVolAn [9] K tvol, rlen − Partial − − H# K

LMP-RK [56] RV rid, rank − − − Dense H# D
LMP-ID [56] RV rid − − − Dense H# D
LMP-App [56] RV rid − − − Dense H# D
GenKKNO [33] RV rid − − Uniform − H# W∨¬E
ApproxValue [33] RV rid − − Uniform Specific H# S∧(W∨¬E)
ARR [54] RV rid, qeq − − − − H# W
ARR-OR RV rid, qeq, order − − − −   

GLMP [32] RC rlen − − A − ##
GJW-Basic [34] RC rlen B − AB − ##
GJW-Missing [34] RC rlen B, k − AB,k − ##
APA [55] RC rlen, qeq − − − − H# E

the data (partial knowledge). A known-query attack requires knowledge of a subset of the
queries.

Passive or active. In a passive attack, the adversary does not choose any data or queries.
In an active attack, it is able to interact with the user, e.g., by injecting data.

This work. We focus on the evaluation of persistent query- and data-recovery attacks
that require either no auxiliary data, known data or known queries. More precisely, in the
case of keyword search we evaluate query-recovery attacks with known-data and in the case
of ranges we evaluate data-recovery attacks. We leave the evaluation of sampled-data and
sampled-query attacks under real-world data as future work. Properly modeling real-world
auxiliary data is challenging since the auxiliary data needs to come from a real-world
distribution that is “close" to real-world query or data distribution. Collections of datasets
with these properties are hard to find.

Risk factors. We summarize our findings in Tab. 1, where we consider query-recovery
attacks that recover more than 15% of the queries and data-recovery attacks with recon-
struction error less than 15% on our datasets as successful. This threshold is, of course,
subjective so the reader can use our detailed empirical results from §7 to formulate their
own interpretation and conclusions. Note that the recovery rate of an attack depends on a
wide range of factors which we identify in §7. For example, in the case of ranges, these
factors include the adversary’s knowledge of the data, the query width, and characteristics
of the data such as density and whether specific values appear. In addition, we also
observed that a skew in the data towards endpoints (1 or N) can result in very different
recovery rates (see details in App. C.2.1).
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4.1 Attacks Against Keyword ESAs
For keyword search, most attacks are known-data attacks which require some partial
knowledge of the data collection.
The IKK attacks. The first leakage attack was described by Islam et al. [38], who
proposed a query reconstruction attack in the persistent model using the co-occurrence
pattern co and a known fraction of the queries. Known as IKK it, roughly speaking,
solves an optimization problem minimizing a distance between candidate and observed
co-occurrence. Since finding the optimal solution is NP-complete, IKK uses simulated
annealing [52] to probabilistically find an approximation. Originally introduced as a
sampled-data attack, we evaluate it as a known-data attack as in [12]. Recently, Roessink
et al. [74] showed how IKK can be improved with deterministic techniques from the Count
attack [12] (described next). This modified attack, which we refer to as DetIKK, reduces
the search space for the annealing process and, compared to IKK, requires no query
knowledge.
The Count attacks. A simpler attack called the Count attack was proposed by Cash et
al. [12]. Like IKK, Count is a query reconstruction attack that exploits the co-occurrence
pattern co. There are two versions of it. The first, which we refer to as Count v.1, requires
knowledge of some fraction of the data and queries. Its original description contained a
bug which was addressed in an updated version of the paper and lead to an improved
variant of the attack, Count v.2, which only requires knowledge of some fraction of the
data. Count v.2 constructs a co-occurrence matrix and compares it to the observed
co-occurrences from co. Candidate matches are identified via confidence intervals, and are
iteratively eliminated if they are inconsistent with previously confirmed matches.
The BKM attacks. Recently, Blackstone et al. [9] introduced three new passive query
reconstruction attacks. The first, VolAn, exploits the total volume pattern tvol and
matches a query to the keyword with the closest expected total volume from the adversary’s
known data. The second attack, SelVolAn, extends this by further identifying candidates
with a total volume in the known data falling within a window of the expected volume
based on tvol. It then selects the best candidate using the response length pattern rlen.

The third attack, Subgraph, is a framework used to design several attacks using
any atomic leakage pattern, i.e., any pattern leaking information about individual docu-
ments. It constructs two bipartite graphs: one from the observed leakage and the other
from the known data. It then filters candidates via inconsistencies between the graphs,
confidence intervals (the leakage roughly has to match the expected value), and an optional
cross-filtering that tries to invert the leakage and checks if the candidate appears in all
resulting entries. Two concrete attacks that result from the framework are Subgraph-
ID and Subgraph-VL, which exploit the response identity pattern rid and the volume
pattern vol, respectively.
Other attacks not covered. An attack that exploits qeq with auxiliary data was given
by Liu et al. [58], and was recently improved by Oya and Kerschbaum [67] also using rid.
Recently, Damie et al. [18] and Gui et al. [35] proposed sampled-data attacks. Active
file-injection attacks are considered by Zhang et al. [88], Blackstone et al. [9], as well as
Poddar et al. [72]. Additional specialized attacks against specific ESA instantiations were
considered in [1, 73, 78]. We focus on general passive attacks that do not rely on auxiliary
data.

4.2 Attacks Against Range ESAs
We now turn to attacks against oblivious or structured range ESAs. In this setting, there
are three variants of attacks: reconstruction attacks, approximate reconstruction attacks
and count reconstruction attacks. More precisely, a reconstruction attack recovers the exact
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values in a numerical collection whereas an approximate reconstruction attack only recovers
an approximation of the values. A count reconstruction attack recovers the (approximate)
number of times the values occur. Range attacks tend to work “up to reflection", meaning
that the attack recovers either the original numerical collection (e1, . . . , en) or its reflec-
tion (N − e1 + 1, . . . , N − en + 1). This can be viewed as a loss of 1 bit of information. In
our experiments in §7 we always report the minimum error rate over either the original
collection or its reflection.
The KKNO attacks. The first attacks against encrypted range schemes were proposed
by Kellaris et al. [51]. Two attacks were described, both of which are data reconstruction
attacks in the persistent model. The first, KKNO-1, exploits the response identity
pattern rid and assumes that queries are chosen uniformly at random. At a high level,
it determines an entry as having minimal (or maximal) value if it is not contained in
the largest proper subset of all identifiers, and determines other entries based on co-
occurrence with that entry. The second attack, KKNO-2, only needs the response length
pattern rlen but still assumes uniform queries. Intuitively, the attack solves a system of
quadratic equations of distances between values and the amount of observed queries with
the corresponding response length to uncover the distances between entries. Because both
attacks were directly improved upon (described next), we did not evaluate them in our
work.
The (G)LMP attacks. Lacharité et al. [56] improved KKNO-1, proposing three attacks
which we refer to as LMP-RK, LMP-ID, and LMP-App. These are data recovery attacks
in the persistent model exploiting the response identity pattern rid, with LMP-RK also
using the rank pattern. The third attack only recovers an approximation of the values
based on reconstructed intervals, but all attacks assume dense numerical collections. In
general, the attacks identify the left endpoints of the queries (e.g., via rank) and assign
these values to entries by excluding differing entries seen in the response.

Grubbs et al. [32] also improved on the KKNO-2 attack with a new attack we refer
to as GLMP that only requires the response length rlen. GLMP, however, only recovers
the frequency (or value counts) of values as opposed to the values themselves. The attack
relies on the assumption that the queries are made in such a way that all response lengths
are observed. At a high level, it reduces the observed response lengths to “elementary”
queries (in the sense that they have the form (1, y)) and uses graph theory to reconstruct
counts based on basic properties of elementary queries.
The GJW attacks. Gui et al. [34] proposed attacks in the persistent model that only
exploit the response length rlen for count reconstruction. The main attack, called GJW-
Basic, works when the query width is bounded. It builds an initial solution similar
to GLMP and uses a breadth-first search that incrementally extends solutions consistent
with the leakage. Modifications were introduced for missing queries (GJW-Missing) and
other countermeasures, which we consider outside the scope of this work.
Approximate reconstruction attacks. Several works attempted to weaken the as-
sumptions needed by the KKNO attacks and their extensions. Grubbs et al. [33] describe
three attacks that do not require density but still assume uniform queries. The first
is GenKKNO, which extends KKNO-1 to an approximate data reconstruction attack by
assigning values to entries based on a comparison of the observed and expected amount of
occurrences in the leakage. Due to these estimations being individually symmetric with
regard to the endpoints (1 and N), queries close to one endpoint are used to establish a
global reflection. The second attack is ApproxVal, which assumes the existence of at least
one entry with values occurring in a specific data range, and uses a single favorably-located
entry as an anchor that can be identified more easily than other entries. The values around
the anchor are then estimated similarly to the GenKKNO attack. The third attack is
called ApproxOrder and uses the PQ-tree data structure to approximate the order of
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the data collection based on the response identity pattern rid, assuming that the data is
not heavily concentrated over a few values.
The KPT attacks. Kornaropoulos et al. [54] describe an approximate value reconstruc-
tion attack in the persistent model that is agnostic to the query distribution, denoted as
ARR (agnostic reconstruction range). It reduces to the problem of support size estimation,
in which the number of outcomes not observed is estimated from the frequency of observed
outcomes. By estimating support sizes of identifier subsets using the response identity
and query equality patterns (rid and qeq), the corresponding distances and, therefore, the
values can be uncovered and are assigned according to an order, which can be uncovered
via ApproxOrder. While ARR does not require density or uniform queries, the instanti-
ation of [54] assumes that the values are all unique. They suggest alternatives for dealing
with the more general case of repeating values, which we use in our work. We provide
more details on this in App. A. In our evaluation, ARR uses ApproxOrder to uncover
the order, but we also investigate the case where it is directly leaked, which we denote
by ARR-OR.

Very recently, Kornaropoulos et al. [55] also applied support size estimation to the setting
where only the response length and query equality patterns (rlen and qeq) are available,
resulting in an approximate count reconstruction attack. It generalizes previous rlen
attacks to estimating the number of queries for specific response lengths and solving their
relation to value distances, including observations about state-of-the-art encrypted range
search schemes [19, 21]. As a result, the attack is parameterized by the ESA, and denoted
by APA (agnostic parameterized attack). Crucially, APA requires no assumptions about
the query distribution and also deals with non-dense data.
Other attacks not covered. The above works also introduced sampled-data variants: A
version of LMP [56] uses auxiliary data information to require fewer queries, while Grubbs
et al. [32] also incorporate frequency information. ApproxData [33] demonstrates how to
use ApproxOrder to uncover exact values if density and an auxiliary data distribution
are given, and [34] show how GJW-Basic can be improved with auxiliary information
about the data. [32] also recover values of update operations in case the frequencies have
already been determined. k-NN queries are considered in [53,54] and Falzon et al. [22] and
Markatou et al. [60] recently proposed attacks on two-dimensional ranges. Also we did not
consider the attack of Markatou et al. [61] which targets one-dimensional range queries
but assumes that all possible queries are issued.

5 The LEAKER Framework
We designed and implemented LEAKER with the following goals in mind:

• integration: LEAKER makes the integration and evaluation of new attacks effortless.
Researchers can focus on the design and leave the evaluation process to LEAKER. This
ranges from interfacing with various data sources to plotting and visualizing the results.

• comparisons: LEAKER includes implementations of the main leakage attacks for
both point/keyword and range queries. By having attacks implemented in the same
framework, they are easier to compare.

• data sources: practitioners with proprietary data can use LEAKER to evaluate attacks
on their specific data, leading to a tailored evaluation.

• usability: LEAKER runs on many platforms and does not require domain-specific
knowledge—one only needs to specify the data sources and evaluation criteria.

• open-source: LEAKER (including its evaluation scripts) are freely available as open
source software at https://encrypto.de/code/LEAKER.
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5.1 Architecture
For interoperability, we implemented LEAKER in Python 3.8. It has 8 149 lines of
code (1 148 are tests). LEAKER evaluates a leakage attack on a data collection using
queries from a query log and outputs a visualization of the results. It consists of several
modules described next: a pre-processor, a datastore, an attack and pattern library, an
evaluator, a visualizer, and a statistical analyzer.
Pre-processor. The pre-processor parses and prepares data collections and query logs
for use by the other LEAKER modules. It includes a set of parsers that can be arbitrarily
combined to build a data collection or query log from a directory of files. Currently,
LEAKER includes file parsers for .csv, .json, .xml, .txt, .mbox, .pdf, .docx and .pptx
files. In the query logs that we identified, range queries were often part of a larger SQL
query so we implemented a SQL parser that identifies and extracts range queries contained
in complex SQL queries.

Once parsed, LEAKER uses standard information retrieval techniques to tokenize
strings into keywords, extract stems, remove stop words, and identify numerical values.
Due to its modular design, the pre-processor can be easily extended for new file types.
Datastore and cache. After a file has been processed, it is passed to an indexer which
stores the data in a set of internal data structures for later use. Numerical data is
additionally discretized before being stored. Our choice of data structures to store and
manage data collections and query logs is important because one of our main goals is
to evaluate attacks on large datasets. For example, compared to previous evaluations
of co-occurrence attacks, which used datasets with 500 [12], 1 500 [74], or up to 2 500
keywords [38], LEAKER evaluates the same attacks on datasets with more than 250 000
keywords (cf. §6). To achieve this, we use NumPy [37] arrays to store and process numerical
data and Whoosh [14] to store and process keyword data. We chose Whoosh because
of its Python compatibilitiy and ability to store additional metadata such as document
volume in the index.

To get significant results, a single LEAKER analysis can require a large number of
repeated evaluations. We speed up NumPy operations by integrating the optimized just-in-
time compiler Numba [7]. To address the costly repeated querying of Whoosh structures
on large datasets, we use memoization and store the results of Whoosh queries in a cache
so we can reuse them across evaluations.
Attack & pattern library. LEAKER comes with a library of attacks and leakage
patterns that can be called on any data collection and query log. We implemented the
main attacks from Tab. 1 and—with the exception of GLMP and GJW2—verified their
correctness by replicating the results from the original papers. The attack library is easily
extendable to new attacks. One just has to realize an interface performing recovery given
the observed required leakage. Examples are given in Listings 1 and 2 in App. B.

All attacks in LEAKER’s library are purely in Python except for ApproxOrder [33],
where we use a C++ implementation of PQ-trees [30]. Since we could not find any public
Python-compatible implementations of the Jackknife or Valiant-Valiant estimators used in
the ARR and APA attacks [54,55] we implemented them ourselves in Python.
Evaluator. This module evaluates attacks. Given an attack and a leakage pattern from
the library and a data collection and query log from the datastore, LEAKER proceeds
as follows. It creates the observed leakage of the leakage patterns on the data collection
and query log. Since this can be expensive (e.g., the co-occurrence pattern requires
O(#W · (#W + n)) storage and time) it is also cached. Then, it executes the attack on
the observed leakage a number of times (in parallel) and stores the results. To evaluate

2We used synthetic data to verify the correctness of these two attacks because we did not have the
original data that was used.
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Table 2: Overview of our keyword search use cases and dataset properties. #QD is the
size of the entire log and #Q the amount of unique queries. n is the amount of documents
and #W the amount of unique keywords.

Case Data Query log Data collection
#users #QD #Q n #W

Web AOL [68] 656k 52M 2.9M 151k 268k
Genetic TAIR [20] 1.3k 650k 54k 115k 690k
Email GMail (ours) 6 – 16-100 6k-47k 60k-895k
Cloud Drive (ours) 1 – 45 200 19k

attacks that require known data and/or queries, it first executes an attack-specific sampling
algorithm for the known data.
Visualizer. Once all results have been collected, they are used to compute the desired
accuracy results (e.g., depending on a choice of available errors) and passed to a visualizer.
The visualizer then translates them into graphical .png and TikZ plots, which can easily
be extended to different error or visualization types. All plots in this work were generated
with LEAKER.
Statistical analyzer. LEAKER also includes a statistical analyzer module which com-
putes and plots statistics over its data sources. This is useful to get a better understanding
of a data collection’s and a query log’s characteristics.

6 Data Collections & Query Logs
We describe new datasets including query logs that we believe capture a broad range of
realistic scenarios. The datasets include both publicly-available and private data collections
and query logs. We provide in App. C.1 a list of other possible data sources that could be
used with LEAKER. In App. C.1 we also describe how we pre-processed our data and in
App. C.2 we provide some statistics of our datasets.
Data availability. All data is publicly available, except for the private datasets we
collected from our volunteers. All our data pre-processing is integrated into LEAKER.

6.1 Keyword Data
We present an overview of all of our keyword data in Tab. 2 and give more background in
the following.
Search engines. A major proposed application for ESAs are encrypted search engines,
e.g., for desktop search applications or to add search capabilities to email clients or file
managers. Due to privacy concerns, we were not able to find public datasets matching
these settings so we proceeded as follows.

First, we evaluated attacks on the private data of 7 volunteers by providing scripts to
locally extract their GMail and Google Drive query logs and data collections. Out of these
participants, 6 evaluated the attacks on their GMail accounts and 1 on their Google Drive
account. They returned to us basic statistics of their data, the accuracy of the attacks,
and their consent to use and publish the results. We will note the average results of all
evaluations as well as the worst and best cases. No personal information is included in
this work or in LEAKER.
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Table 3: Summary of our scientific data range query logs on the PhotoObjAll.dec collec-
tion [75] (n = 5 242 134 entries with domain N = 10 456, density 95.82%, and an even data
distribution). #QD is the size of the entire log and #Q the amount of unique queries.

Data #users #QD #Q

SDSS-S 1 1.4k 215
SDSS-M 1 13.4k 5 562
SDSS-L 1 38.2k 8 220

Because the number of private users we had access to was small and because we
cannot release their data, we also used public search engine data. Specifically, we used
Wikipedia [82] as a data collection and the AOL query log [68]. We recognize, of course,
that Wikipedia is public so it is not completely representative of the scenarios mentioned
above in which one often queries private data. Furthermore, it is clear that using AOL
queries on a Wikipedia data collection is not ideal but, given the scarcity of real-world
data with matching query logs, this is the best one can do at the current time.
Genetic. We were also interested in domain-specific instances that might be queried in a
totally different manner. As a prominent case, consider a lab querying large-scale human
genetic data for health research, e.g., looking for expressions of specific proteins in gene
annotations. Because this query data is very sensitive and not publicly available, we used
the following approach.

We performed evaluations on publicly available data that can be seen as related to the
above case. Concretely, we use The Arabidopsis Information Resource (TAIR) database [57]
as a data collection as well as its publicly released query log [20]. The data contains genetic
annotations and expression information of the Arabidopsis Thaliana plant, which itself
is not sensitive. However, we believe it provides a close model for querying in genomic
research, as similar information might be queried in the sensitive case of human genomic
data.

6.2 Numerical Data
We found five datasets that capture scientific, medical, human resources, sales, and
insurance scenarios. The dataset characteristics are summarized in Tab. 3 and Tab. 4.
The data is discretized by scaling3, rounding, and mapping to integers which allows
us to evaluate attacks without losing too much precision. We display selected data
distributions in Fig. 5 in App. C.2.1, from which we derive the general risk factors of
different distributions.
Scientific data. Data from scientific research can often be sensitive. This is the case, e.g.,
with data generated from satellites, drug and medical studies, or nuclear experiments. For
this, we use the Sloan Digital Sky Survey (SDSS), which contains a variety of astronomical
data [75]. In addition to astronomy, the SDSS has also been used to investigate user
behavior [65,87]. We used the SDSS to create one data collection and 3 query logs (cf. Tab. 3)
using a scale factor of 100.
Medical. Due to high sensitivity, medical data has long been proposed as an ESA
application and many works used health data like HCUP [3] to evaluate attacks [32, 34, 51,
55, 56, 64]. While HCUP is a real-world dataset with millions of patients, its attributes
usually have small domain, e.g., a patient’s age. While evaluation on small domains is
important, we also wanted to know how various attacks performed on varying and large
domains so we considered the Medical Information Mart for Intensive Care (MIMIC)

3To scale a value we multiply it by a scale factor 10a, where a ∈ Z.
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Table 4: Summary of our range use cases and data with n entries, domain size N , and
density δ. E and ¬E denote even and uneven data distributions, respectively (cf. §4).

Case Data collection Scale n N δ (%) Distr.

Medical
MIMIC-T4 [43] ×10 8 058 73 80.8 ¬E
MIMIC-PC [43] ×10 7 709 2 684 8.6 ¬E
MIMIC-CEA [43] ×1 2 844 9 978 3.3 ¬E

HR Salaries [29] ×0.01 536 395 2.3 E
Sales Sales [80] ×1 143 6 288 2.3 E
Insurance Insurance [16] ×1 886 25 425 1.2 ¬E

dataset [43] which includes records of medical blood and urine tests performed on ICU
patients of the Beth Israel Deaconess Medical Center between 2001 and 2012. We used
MIMIC to create three data collections: (1) MIMIC-T4 for patients’ free thyroxine, used
to evaluate thryroid function; (2) MIMIC-PC for patients’ protein/creatine ratio to detect
kidney damage or pregnancy; and (3) MIMIC-CEA for patients’ carcinoembyronic antigen
to detect cancer.
Human resources. Human resource databases contain personally identifiable information
like salaries and demographic information. To capture this, we used a March 2018 snapshot
of minimum salaries of the UK Attorney General’s Office junior civil servants [29].
Sales. Sales data can also be sensitive as it contains trade secrets. We use data released
by Walmart for a prediction competition [80], containing weekly sales of department 1 of
store 36 from 2010 to 2012.
Insurance. Insurance data may be sensitive since it can reveal financial or health
challenges. We use a dataset of property damage insurance claims [16] released by the New
York Department of Transportation. They were filed with Allstate in September 2018.

6.3 Privacy Considerations
The experiments described in this work were exempt of IRB approval from our institutions.
None of the datasets used were de-anonymized and we stress that LEAKER cannot be
used to de-anonymize data; its only use is to evaluate the efficacy of leakage attacks. All
the datasets we use are public with the exception of the private data for the search engine
scenario. We obtained consent from all involved parties to publish the attack evaluations
and some statistics. Access to PhysioNet’s MIMIC [43] data is constrained and was only
handled by approved authors who completed the required training courses and strictly
adhered to PhysioNet’s data use agreement.

7 Empirical Evaluation
In this section, we use LEAKER to evaluate all the attacks described in §4 on the datasets
from §6 and identify the main characteristics that impact each attack’s recovery rate.

7.1 Keyword Attacks
We present results for the private GMail and Drive logs in Fig. 1 and results for the public
AOL and TAIR query logs in Figs. 2 and 3. Further plots are given in App. D. Prior to
describing our results, we introduce relevant parameters and our experimental setting.
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Figure 1: 3×3 private data evaluations (full query sampling, no repetitions, and single-user
setting). Only one user evaluated Count v.2 for GMail.

Frequency. Each query in the query log matches a number of entries in the data collection
which is its frequency. We investigated two settings: high frequency and low frequency.
The former includes an average frequency ranging from 1 806 to 5 707, whereas the latter
ranges from 1 to 859.
Number of users. When it comes to the number of users, there are two main settings
in which structured and oblivious ESAs can be deployed: single-user or multi-user. The
former characterizes a setting in which a single user queries its dataset, while in the latter
multiple users query the same dataset. In the single-user case, we evaluated the attacks
by taking the average recovery rate over the queries of 5 users each of which made at least
2 000 queries. In the multi-user setting, we evaluate attacks on a sample of the query logs
which, in the case of AOL consists of 656 038 users and in the case of TAIR consists of 1 263
users. For the private Google data, we only evaluated the attacks in the single-user setting
since each user queried their own data collection. While the number of users in our private
Google dataset is low, the experiments on AOL and TAIR can give some indications as to
how the attacks would perform on datasets with a large number of users.
User activity. We noticed that users have different query activities, with some issuing
a lot of queries while others are less active. Over all of our datasets, with the exception
of the Google data, the most active user issued 6 389 queries while the least active user
issued 2 000 queries. Since we did not find any noticeable difference in recovery rates (for
all attacks) against the most active and the least active users, we only report the least
active case in Fig. 2. The most active case is provided in Fig. 7 in App. D.
Query sampling. Real-world query logs can be extremely large, and given the com-
putational complexity of some attacks, we had to limit the number of queries we used.
To do this we sampled the query logs using two approaches which we refer to as full
sampling and partial sampling. Full sampling outputs a new, smaller query log composed
of keywords sampled independently of whether they exist in the adversary’s known-data
set or not; in other words, it is possible that a keyword appears in the query log but is
unknown to the adversary. In contrast, partial sampling generates a new and smaller query
log that is only composed of keywords in the adversary’s known-data set. This captures a
worst-case scenario where the user only queries for keywords in documents known to the
adversary.

For each of the public query logs, we sampled logs of size 500, 2500 and 5000. Since we
did not observe any major deviations in the recovery rates of the attacks based on size we
only show the results for (sampled) query logs of size 500. Since the private query logs
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Figure 2: Attack evaluations against AOL and TAIR. All evaluations are 5 × 5, except
for 3× 3 evaluations done for Count v.2 and DetIKK. 150 queries are drawn for (a) each
of the least active users (single user setting; S) or (b) all users (A) without replacement
according to their query frequency from the 500 most (H) or least (L) selective queries in
the query log that are also contained in the partial knowledge, respectively. The resulting
mean frequency is given by freq(Q).

were already small, we did not sample them.
Query repetition. We observed that some of the queries in the log are repeated
whereas some previous works assumed distinct queries. This assumption makes sense if the
adversary can distinguish between queries based on the query equality (which is disclosed
by many structured ESAs) and ignore repeated queries but the assumption no longer holds
for oblivious ESAs or structured ESAs that do not leak the query equality [25, 48]. Given
that some attacks apply to both structured and oblivious ESAs and may be affected by
this, it was important to evaluate both settings: with and without repetition.
Experimental setting. For public datasets, all our evaluations were run on an Ubuntu
20.04 machine with 390GB memory and 1TB disk space. Unless explicitly specified,
every attack is evaluated as follows: given a query log, a data collection, and a specific
combination of the parameters highlighted above, we sample a new query log and data
collection. For a fixed rate of adversarial knowledge (i.e., known-data rate), we first sample
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a subset of the entire data collection ` times, and for each sample, we sample a subset
of the query log λ times. We denote this as a ` × λ evaluation and it accounts for ` · λ
evaluations. For most experiments we picked ` = λ = 5 and display the median, maximum
and minimum recovery rate.4 In the public setting, we attack 150 queries drawn from the
query log according to their frequencies. We denote by X-Y a setting in which the type of
user and the frequency are set to X and Y, respectively.5 Recall that X can be set to all
users (A) or to the single-user setting (S). Y can be set as low (L) or high (H) frequency.
For private data, each participant ran the evaluation on their own machine using their
entire query log, which did not require any query sampling process.
Discussion. There are obvious limitations to some of our experiments. One example is
in how we obtain the adversary’s known-data. Since we do not know how an adversary
would choose/obtain this data in practice, we have to make some assumptions. For
our experiments, we chose to run experiments with multiple known-data samples chosen
uniformly at random but other approaches could be considered and it would be interesting
to know how they affect the recovery rates. Another aspect is in how we sample the public
query logs to generate smaller more tractable logs. We considered different strategies and
opted for uniform sampling but, again, one could consider other ways to sample.

7.1.1 The IKK Attacks [38,74]

Given the attacks’ quadratic costs in the number of keywords, evaluating them on TAIR
was infeasible so we only considered AOL.

IKK did not work in any of our settings. This stands in contrast to previous results
which showed high recovery rates but assuming almost full knowledge of the data [12,74]
on small datasets. The best recovery rate we observed was less than 15%; even with
full knowledge of the data and in the A-H setting (all users, high frequency), which is
the least realistic setting. We stopped the attack’s annealing process after it ran for 48
hours. We attribute this to a large search space, since the DetIKK [74] attack—which
has a reduced number of states—does not suffer from this in the high-frequency setting
(cf. Fig. 2). This evaluation suggests that DetIKK may only work in practical settings
with high known-data rates.

7.1.2 The Count Attack [12]

Like IKK, Count v.2 is also quadratic in the number of keywords so we only ran it on
the AOL query log.

In our evaluations, Count v.2 succeeded in all of our settings but using full knowledge
of the data. Without full knowledge, it only succeeded in the A-H setting with a recovery
rate of 63% based on a 30% known-data rate. Here, the query frequency had a mean
of 5 707. This aligns with the results stated in [9]. However, we observed that without
full knowledge of the data, Count v.2 failed to achieve adequate recovery rates. For
example, in the S-L setting, it achieved 8% recovery rate even with knowledge of 90% of
the data (cf. Fig. 2a for more data points). Similarly to IKK, this suggests that Count v.2
may require very high known-data rates in more practical settings.

7.1.3 The BKM Attacks [9]

The BKM attacks were efficient enough to evaluate on all of our query logs.
4We limited evaluations to 25 per user due to the computational overhead incurred by some attacks.

As an instance, the Count v.2 attack took one day to complete a single iteration for 5 users.
5For ease of exposition, we mainly focus on these two parameters, but we also varied the type of the

query sampling, the query repetition, or the length of the query log.
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Figure 3: 5× 5 evaluation of [9] on lowest-frequency queries from the 5 least active AOL
users for different query sampling/repetition scenarios (samples are not restricted to the
partial knowledge or are sampled with replacement).

The Subgraph framework. Against our private dataset (Fig. 1), both attacks did
surprisingly well. For the email case, more than 18.75% of the real-world queries are
recovered with knowledge of only 5% of the data.6 Though the private dataset had a very
small number of users, we did observe that the recovery rates of the Subgraph attacks on
the Gmail data were very consistent across users and always greater than 18.75%. On the
Drive dataset, the attacks achieved a much lower recovery rate with low known-data rates;
however when 35% of the data is known, both attacks recovered half the queries.

In the public data setting (Fig. 2), both Subgraph attacks also achieve non-trivial
recovery rates. For high-frequency queries, SubgraphVL achieves very high recovery
rates almost independently of the known-data rate and of whether the queries come from
a single user or aggregated users. SubgraphID, however, has a slightly lower but still
significant recovery rate: 86% in the S-H setting for AOL with known-data rate of 10%.
For low-frequency queries (.-L), both attacks still perform well for an average frequency as
low as 4.85 (cf. Fig. 7 in App. D). For frequency 1, however, we found that SubgraphVL
does not work at all, while SubgraphID can still correctly recover queries at a low but
significant rate (cf. Fig. 2b). This is in contrast to the original evaluation of the attack [9],
where queries with frequency 1 (sampled from the data collection) could not be recovered.
This again illustrates the value of using real-world query logs for evaluations as it can
uncover new settings in which existing attacks work.

In Fig. 3, the queries are fully sampled from the query logs and we allow for repeated
queries. We noticed that: (1) the variance of the recovery rate increases; and (2) the
recovery rate of Subgraph is reduced by about 40% if we allow for repeated queries.
Both attacks achieve lower minimum recovery rates—around 40% for 10% known-data
rate—whereas their median recovery rate drops to similar levels for all known-data rates if
queries repeat. We can see that the recovery rate is affected by full sampling and repeated
queries but remains significant in all cases. The attacks also work slightly better even
with lower known-data rates on AOL compared to our private datasets (Fig. 1). A possible
intuition why these attacks may work better than others is that they rely on atomic leakage
concerning individual documents.
Total volume attacks. Compared to the Subgraph attacks, the VolAn and the
SelVolAn attacks achieved significantly lower recovery rates in the private data setting.

6Given that email data often contains public information such as updates and spam, we consider a 5%
known-data rate to be realistic.
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Table 5: Normalized mean errors on the entire SDSS query logs. The collection is
sampled 25× uniformly at random with size n = 104 (n = 103 for APA and ARR).
Instance GKKNO AValue ARR ARR-OR APA-ORBT APA-ORABT

SDSS-S 0.413 0.432 0.473 0.249 0.242 0.239
SDSS-M 0.408 0.435 0.287 0.128 0.242 0.240
SDSS-L 0.417 0.456 0.286 0.141 0.241 0.242

More precisely, they only achieved 20% recovery rate on the GMail dataset even with 75%
known-data rate (see Fig. 1).

We also noticed that the attacks did poorly in the public setting considered in Fig. 2.
For high-frequency queries, they needed almost perfect knowledge of the data to achieve
an adequate recovery rate. Specifically, at least 70% of the data needs to be known in
order to recover more than 7% of the queries in the S-H setting. For very low frequencies,
none of the attacks worked with less than 100% known-data rate. Therefore, based on our
datasets, we only consider them to pose a risk for very high known-data rates.

7.2 Range Attacks
We ran our evaluation against the numerical datasets described in §6.2. Our results are
summarized in Tab. 5 and Fig. 4. Similar to our keyword attack evaluation (§7.1), we first
describe the main parameters that impact accuracy as well as our experimental setting,
and then proceed to a high-level description of our results.
Query distribution. This captures how a user queries its own dataset. For the SDSS
dataset, we were fortunate to have access to both the query log and its corresponding data
collection. For datasets with no available query log, we had to consider synthetic query
distributions. Previously considered query distributions include the uniform distribution
and instances of the beta distribution [54, 55]. Given that none of these distributions
are supported by real-world query logs, we introduce a new distribution we call the
truncated Zipf distribution which has some of the basic properties of the distributions
we observed in SDSS (cf. App. C.2.3). To summarize, this distribution is a variant of
the standard Zipf(a,N) distribution where we fix a to be 5. It also has two additional
parameters: the maximum width B, and the fraction f. The former removes any range
that has width larger than B, and the latter ensures that only a fraction f of possible
ranges occur. We denote this new variant of the Zipf distribution TZipf(B, f). We varied
both B and f and found that B can have a significant impact on recovery rates. Thus, in
our evaluation we present results for both (relatively) small and large B, and set f to be
small but large enough to give us a meaningful query space.
Amount of queries. For the SDSS dataset, we did not sample the query logs and,
instead, used them in their entirety, see Tab. 3. For the other numerical datasets, however,
we sampled 102 to 105 queries with replacement.
Characteristics of the data. The datasets we use and that are described in §6, have
different characteristics and properties which allows us to assess attacks in different scenarios.
We recall some of their basic properties here (more details are provided in App. C.2.1):
the medical dataset, MIMIC, and the insurance dataset, Insurance, are skewed towards
low values with just a few high-value outliers so we refer to them as uneven distributions,
whereas entries in the human resources dataset, Salaries, and the sales dataset, Sales, are
spread more evenly across the domain range so we refer to them as even distributions.
Data density and size. Other basic properties are the size of a dataset and the density
of an attribute/column of dataset. The size refers to the number of records in the collection
and the density of an attribute/column is the ratio of unique values in the attribute/column
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Figure 4: Normalized mean absolute error of value reconstruction attacks on different
datasets using a truncated Zipf distribution. Captions include the respective dataset’s
general data distribution (cf. §4, App. C.2.1) identified as risk factors. i resp. j iterations
were performed for GenKKNO and ApproxVal resp. LMP, ARR, and APA.

over its domain size. We recall that the medical dataset MIMIC-T4 is much more dense
than the other datasets.
Experimental setting. Contrary to the keyword attacks we evaluated which were
all query recovery attacks, the range attacks we consider are all data recovery attacks.
To measure success, we use a normalized mean absolute error. This error is a distance
measure equal to the mean of the normalized differences between the true and recovered
values. For count reconstruction attacks, we compute the error between the sorted values,
i.e., independent of the order. To make this difference clear and comparable to all
attacks (disregarding order information), we add the suffix -OR in the plots for these cases.
As a reference, an error close to 0.5 means that the attack does not work, while one close
to 0 is synonymous to a practical attack. Every attack is evaluated several times and we
report the mean, maximum, and minimum error.
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7.2.1 The (G)LMP Attacks [32,56]

As expected, the LMP [56] attacks were successful on MIMIC-T4, which is dense, under
uniform queries. The attacks were also successful on MIMIC-T4 with queries sampled from
a truncated Zipf and they achieved very small error rates (e.g., LMP-RK achieves a 0.0003
error rate). If the attacks output the reflection, the error is significantly larger. Based on
our experiments, as predicted, we consider LMP as risky if the data is dense.

The GLMP [32] attack, which is a count-reconstruction attack, achieved perfect
recovery on MIMIC-T4 if we disregard density.7 This occurred with 105 queries from a
truncated Zipf distribution with B = 73 and f = 0.2.

7.2.2 The GJW Attacks [34]

With the exception of the Salaries case, both GJW-Basic and GJW-Missing aborted due
to infeasible search spaces. More precisely, for Salaries, the recovered counts were always
completely incorrect when queries are sampled from TZipf, and while the correct counts
were uncovered for a uniform distribution for 105 queries, they were assigned to the wrong
values due to the low density.

7.2.3 Approximate Reconstruction Attacks [33]

Though the GenKKNO and ApproxVal attacks of [33] were designed to work with
uniform queries, we still evaluated them using our SDSS data collections and query
logs. As expected, they failed to recover any meaningful data, achieving an error of at
least 0.41 (cf. Tab. 5). However, and perhaps surprisingly, we did find that both attacks
achieved significant recovery rates when queries were sampled from the truncated Zipf
distribution (cf. Fig. 4).

We identified two settings where GenKKNO succeeds with a truncated Zipf: (1) when
it has relatively large B; and (2) when the data is skewed towards lower values as is the
case in MIMIC and Insurance, where it even succeeds for a small B. Note that there was
an exception to (1) which was when we evaluated it on the Sales dataset. Generally, we
believe (1) holds because queries with large width are more likely to cover values close to
one of the endpoints (1 or N), which is required to determine the global reflection (i.e.,
whether the value belongs to the first or second N/2-half of the domain).8 For (2), we
believe that the skewness of the values in a dataset helps to easily determine one of the
endpoints, and therefore the global reflection. This is not the case for Sales, where the
probability of hitting any value is almost uniform, as seen by an error larger than 0.4
for B = 100.

The same holds for ApproxVal, under the additional condition that specific values
have to be present in the collection. Namely, the attack assumes that at least one value in
the dataset is in the range [0.2N, 0.3N ] or its reflection to find its anchor. Though this is
true for all data collections, the fraction of such records is much lower for MIMIC-PC (0.03%)
and MIMIC-CEA (0.4%) than the others (≥ 2.9%), which are exactly the cases where it has
much worse and unpredictable performance compared to GenKKNO with a maximum
error equal to 0.49 for 5 000 queries, see Fig. 4.

7.2.4 The KPT Attacks [54,55]

Contrary to the previous attacks, these attacks achieved low error rates on the SDSS data
and queries but were computationally demanding since they have to solve non-convex or
nonlinear optimization problems with solution size n+ 1. This computational overhead

7Running the attack on a collection that has been made completely dense by removing values that do
not occur from the collection’s universe.

8This is not the case for the SDSS logs, also diminishing accuracy.
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also meant we could not evaluate them on our MIMIC datasets. We also had to rely
on SciPy [79] instead of the original MATLAB optimization to meet our open-source
goals (cf. §5). In the following, we give more details on attack performance.
ARR and ARR-OR. ARR-OR reconstructs with error rate 0.15 in almost all of our
settings but standard encrypted ranges schemes do not leak the order [19, 21]. In our
experiments, ARR only came close to ARR-OR’s performance when queries were sampled
from truncated Zipf distributions with large B.
APA. Since APA [55] is parameterized by the underlying range scheme, we show results
for the state-of-the-art schemes [21] and [19]. Although APA only achieves an error rate
of about 0.24 on the SDSS data collection and queries, it performs well on other datasets
and with various query amounts and query widths. It is sensitive, however, to the data
distribution. In particular, while it achieves an error rate of 0.06 on Salaries and of 0.15 on
Sales, it had an error rate of 0.45 on Insurance.

8 Conclusions
In this work, we described LEAKER, a new framework to implement and evaluate leakage
attacks on real-world data collections and query logs. We hope that LEAKER will enable
the community to easily implement, independently evaluate, and compare current and
future attacks and countermeasures. Additional evaluations on more data would also be
valuable in our opinion. We then used our framework to re-evaluate the major leakage
attacks for keyword and range queries. The implications of our evaluation are as follows.
Keyword search. The IKK [38] and Count [12] attacks did not work as well on our
datasets whereas the Subgraph attacks of [9] performed surprisingly well even in settings
with low known-data rates, and on low-frequency queries on small private datasets. This
contradicts previous intuitions that Subgraph attacks might not work as well on real-world
data [9]. As a consequence, we view Subgraph attacks as practical even for low-frequency
keywords and therefore recommend schemes that hide the response identity and response
length patterns in such settings (for example, building on [6, 9, 25, 31, 36, 47, 48, 69] for
various structures). Compared to the other attacks, Subgraph relies on atomic leakage
of individual documents, and our evaluations strengthen the intuition that such leakage
might be more risky. Our results also confirm the conclusions of [9] that the VolAn
and SelVolAn attacks (which exploit the total volume and response length patterns)
could pose some risk for known-data rates ≥ 75%.
Range search. In contrast to keyword search, our evaluations uncovered many subtleties
in the case of range search. As expected—since many range attacks are designed to work
for specific query distributions—the only attack to succeed on all of our real-world datasets
was ARR-OR which requires leakage of the response identity, the query equality and the
order. Standard encrypted range schemes, however, do not leak the order [19,21].

If range queries have large width or if they are skewed towards the end points, we found
that leaking the response identity is risky because the GenKKNO attack was successful.
If, in addition, the query equality is also leaked then we found that the ARR attack was
also successful. We found that leaking the response length and the query equality on evenly
distributed data could be risky in light of the APA [55] attack. However, our experiments
showed that attacks that solely rely on the response length rarely worked on our datasets.
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A ARR with Repeating Values
Agnostic Reconstruction Range (ARR) [54] can be slightly modified in order to also cover
the case of repeating values, i.e., a non-injective mapping from records to values [54]. This
can be achieved by allowing the distance between values to be 0 and requires a deviation
from the original pseudocode of [54] since the employed error function would be undefined
if a distance of 0 was to be used. Concretely, for finding the distance Li = ei−ei−1 between
ordered data collection entries ei and ei−1, an error function E between pairs Li, Lj , j > i

and the support size L̂i,j estimating Li,j = Li · Lj is used for finding the minimum
solutions Li, Lj , thereby reconstructing the (ordered) data collection. The original error
function E2(Li, Lj) = log(Li) + log(Lj)− log(L̂i,j) stems from a logarithmic transform of
products into sums, allowing for an efficient representation of the optimization problem with
a convex, linear function. However, this prevents a solution Li to be 0, thus assuming no
repeated values. We therefore use E1(Li, Lj) = (Li ·Lj−L̂i,j), which was introduced in [54],
as the error function to cover the more general and realistic case of repeated values occurring
in the data collection. Additionally, the default value for lengths needs to be set to 0 rather
than 1. Changing the error function also results in a new optimization problem, which is
not convex in general. As a result of the more complex optimization problem, we noticed
increased runtimes and attacking our MIMIC instances became infeasible (cf. §7.2.4).

B LEAKER Code
We provide example LEAKER implementations in Listings 1 and 2.

C Additional Data Information
C.1 Alternate Sources and Pre-Processing

Search engines. There are other query logs we could have used, including from the
Excite [40], Yandex [84], and Sogou [59, 76] search engines or from Yahoo! Answers [83] or
the TREC session track [66]. We preferred the AOL dataset, however, due to its large size
and the fact that it comes divided by user.

The AOL query log contains queries issued between March 1st and May 31st, 2006.
We discarded the 1 000 most active users from the data because they appeared to be bots.
Also, 67 383 of the 2.9M keywords of the AOL query log can be found in the data collection
which provides us with a large dataset.
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Salaries Sales Insurance

Figure 5: Frequencies of numerical dataset values.

SDSS-M SDSS-L Zipf distribution (a = 5)
restricted to 0.002% of all queries

Figure 6: Query frequency distribution of SDSS query logs on the PhotoObjAll.dec collec-
tion (here scaled by ×105; N = 10 455 488) as well as an artificial Zipf distribution on a
random collection with N = 104.

Genetic. The TAIR query log contains all queries issued between January 1st, 2012
and April 30th, 2013 and is associated with user sessions. To obtain the TAIR data
collection state at the time of the queries, we use the Araport11 release [70] together with
the TAIR 2013 update data [71]. Out of the 650k queries, 5 272 can be found in the
collection, giving us a sufficiently large dataset9.
Scientific data. We also identified SQLShare [39] as a potential dataset. It contains a
range of scientific measurements by physicists, biologists and social scientists. However,
after integrating it and analyzing the query logs we found very few range queries; a total
of 12. We therefore discarded this dataset, though it could prove useful in the future if
more relevant queries are added.
Census data. The SPARTA project [63] includes data and SQL query generation based
on census data. We did not use this in our work, as the queries are generated randomly
to fit desired response lengths, but we believe this could potentially be useful in other
evaluation scenarios that require the generation of relational queries.

C.2 Statistical Analysis

We used LEAKER to analyze the datasets of §6 and describe relevant statistical insights
here.

9We attribute the low size of the intersection between query and data to the missing publications and
people datasets, which have not been released for download.
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C.2.1 Data Distributions

Fig. 5 shows the frequencies of values for the datasets that we can display without violating
access restrictions. Notice that Insurance has a significant skew towards low values, with
values greater than 10 000 out of a maximum of N = 25 425 being very rare outliers (8
out of 886). We note that this is also the case in all MIMIC data, in that most entries have
a low value: for MIMIC-T4, only 301 out of 8 058 entries have a value greater than 20 out
of a maximum of N = 73; for MIMIC-PC only 9 out of 7 709 entries have value greater
than 500 out of a maximum of N = 2 684; and for MIMIC-CEA only 25 out of 2 844 entries
have value greater than 2 500 out of a maximum of N = 9 978.

In contrast, this is clearly not the case for Salaries and Sales, where no such skew is
noticeable in Fig. 5. Since we notice that different attacks behave very differently according
to whether this skew exists (cf. §7), we call the former case with the skew an uneven data
distribution in our potential general risk factors (cf. §4), and consequently we denote the
latter case as an even data distribution.

C.2.2 Keyword data – Frequency distribution

The frequency of queries has been identified as the main attack performance metric [9, 74]
and, therefore, we analyzed the frequency distribution of queries issued in real-world
systems. In particular, [9] already noted that keyword data usually follows the Pareto
principle, i.e., the probability mass function is heavy-tailed with the bulk of the keywords
appearing in a few documents. This was used by [9] to argue that, because most keywords
appear in the tail with a low occurrence, most queries might have a very low frequency as
well. A similar argument for low-frequency keywords in real-world queries can be found
in [74]. Being able to see which keywords are queried in real systems for the first time, we
noted that this is not the case for any of our data sources: The queries are usually not from
the tail of the data distribution and have a high frequency (a mean of 1 804 for AOL, 2 023
for TAIR and 326 for GMail). Only Drive has a mean query frequency of 11.2, which
was considered as pseudo-low by [9]. We conclude that, in our evaluations, users are not
interested in querying keywords of a low frequency and conjecture that they may rely on
the system’s ranking to obtain the desired results.

Additionally, we investigated if the activity of a user has an effect on their queries’ fre-
quencies, but found no correlation between number of queries and mean frequency (Pearson
correlation of about 0.1 for TAIR and 0.014 for AOL).

C.2.3 Range data – Query distribution

The core of range attack analysis has been the query distribution. The heavily-used uniform
distribution is an unlikely case in the real world, and while specific parametrizations of the
beta (family) distribution were considered [54, 55] and already provide important insights,
these do not have any empirical basis. Using real query logs (cf. §6.2), we investigated two
major factors of query distributions: query frequencies and their widths.

We plot frequencies of all possible queries for SDSS-M and SDSS-L in Fig. 6 as well
as a comparable Zipf distribution. The case of SDSS-S does not need to be plotted, as
queries only appear once or twice. The Zipf distribution has a probability mass function of

p(k) = k−a

ζ(a) ,

where ζ is the Riemann Zeta function and a is the shape parameter. This means that an
element’s frequency is inversely proportional to its rank among all elements according to
decreasing frequency. From Fig. 6, we deduced that queries are roughly sampled according
to a Zipf distribution, but this only holds for a tiny fraction of queries.
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We also looked at the query widths and found that they are fixed: SDSS-S either has a
width of 113 or 112, while sizes range between 161 and 173 for SDSS-M and 51 and 61
for SDSS-L.

Based on these empirical observations, we considered a new kind of query distribution
in our experiments for data without query logs, where queries are distributed according
to Zipf, but, in contrast to [54, 55], they are restricted to specific widths and a fraction
of possible queries before the probabilities are assigned. However, since this analysis was
confined to one specific case, it might not be representative. While we consider a large
fraction of possible queries missing as intuitive, the fixed-sized widths might be unique
to SDSS and we expect more variable widths in other cases. We thus varied the upper
bound of widths in our experiments. For some attacks, a large upper bound (close to N)
has been identified as a risk factor (cf. §7).

D Additional Evaluations for Most Active Users
We show further evaluations of the AOL and TAIR datasets in Fig. 7 for the single user
setting using five users with the highest activity. Note that the results are not significantly
different to the least active users case in Fig. 2 in §7.1. This confirms our statistical analysis
that activity does not influence the frequency of queries (cf. App. C.2). Further, we note
an anomaly of a low amount of unique queries for AOL’s most active users, resulting in
equal query spaces for highest and lowest frequency.
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Figure 7: X-Y attack evaluations against AOL and TAIR. All evaluations are 5× 5, except
for 3 × 3 evaluations done for Count v.2. 150 queries are drawn for each of the most
active users (single user setting; S) without replacement according to their query frequency
from the 500 most (H) or least (L) selective queries in the query log that are also contained
in the partial knowledge, respectively. The resulting mean selectivity is given by sel(Q).
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Listing 1: Slightly simplified example of LEAKER code for implementing the basic count
attack (Algorithm 1 of [12]) using co leakage.

1 class BasicCount ( KeywordAttack ):
2 def __init__ (self , known_data_collection ):
3 # Set up self. _known_keywords the set of known keywords ,

↪→ self. _known_coocc the known co - occurence matrix , and
↪→ _known_unique_rlens mapping unique rlens to known keywords .

4

5 @classmethod
6 def required_leakage (cls):
7 return [ CoOccurrence ()]
8

9 def _known_response_length (self , keyword ):
10 #rlen is the diagonal of co matrix
11 return self. _known_coocc . co_occurrence (keyword , keyword )
12

13 def __initialize_known_queries (self , queries , rlens ):
14 return {i: self. _known_unique_rlens [ rlens [i]] for i, _ in

↪→ enumerate ( queries ) if rlens [i] in self. _known_unique_rlens }
15

16 def recover (self , data_collection , queries ):
17 coocc = self. required_leakage () [0]( data_collection , queries )
18 rlens = [ coocc [i][i] for i, _ in enumerate ( queries )]
19

20 known_queries = self. __initialize_known_queries (queries , rlens )
21

22 while True:
23 unknown_queries = [i for i, _ in enumerate ( queries ) if i not

↪→ in known_queries ]
24 old_size = len( known_queries )
25 for i in unknown_queries :
26 candidate_keywords = [k for k in self. _known_keywords if k

↪→ not in known_queries . values () and rlens [i] ==
↪→ self. _known_response_length (k)]

27 for s in candidate_keywords [:]:
28 for j, k in known_queries . items ():
29 if coocc [i][j] !=

↪→ self. _known_coocc . co_occurrence (s, k):
30 candidate_keywords . remove (s)
31 break
32 if len( candidate_keywords ) == 1:
33 known_queries [i] = candidate_keywords [0]
34 if old_size >= len( known_queries ):
35 break
36

37 uncovered = []
38 for i, _ in enumerate ( queries ):
39 if i in known_queries :
40 uncovered . append ( known_queries [i])
41 else:
42 uncovered . append ("")
43

44 return uncovered
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Listing 2: Simple example of LEAKER code for implementing the co pattern (without
pre-computation and caching).

1 class CoOccurrence ( LeakagePattern ):
2 def leak(self , data_collection , queries ):
3 doc_ids = {q: map( lambda doc: doc.id () , data_collection (q)) for q

↪→ in queries }
4 return [[ len ([i for i in doc_ids [qp] if i in doc_ids [q]]) for qp

↪→ in queries ] for q in queries ]
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