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Abstract. We formally define polynomial packing methods and initi-
ate a unified study of related concepts in various contexts of cryptogra-
phy. This includes homomorphic encryption (HE) packing and reverse
multiplication-friendly embedding (RMFE) in information-theoretically
secure multi-party computation (MPC). We prove several upper bounds
and impossibility results on packing methods for Zpk or Fpk -messages
into Zpt [x]/f(x) in terms of (i) packing density, (ii) level-consistency,
and (iii) surjectivity. These results have implications on recent devel-
opment of HE-based MPC over Z2k secure against actively corrupted
majority and provide new proofs for upper bounds on RMFE.
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1 Introduction

HE Packing. Homomorphic encryption (HE), which allows computations on
ciphertexts without decryption, is such a versatile tool that it is often referred as
the holy grail of cryptography. After Gentry’s breakthrough [Gen09], HE has un-
dergone extensive study and development. HE is now considered to be exploitable
in real-life applications (e.g. privacy-preserving machine learning [KSK+18]) and
regarded as a core building block in various cryptographic primitives (e.g. secure
multi-party computation [DPSZ12]).

One drawback of contemporary lattice-based HE schemes [BGV12, FV12] is
that their plaintext space is of the form Zq[x]/ΦM (x), as their security is based
on Ring Learning with Errors (RLWE) [LPR10]. That is, these schemes are
homomorphic with regards to the addition and multiplication of polynomial ring
Zq[x]/ΦM (x). This raises a question of how to homomorphically encode messages
into the plaintexts, as our data are usually binary bits, integers, fixed/floating
point numbers, or at least Zp and Fpk .

Among a number of works on how to encode data into HE plaintexts [CJLL17,
CLPX18, CIV18, CKKS17], Smart-Vercauteren [SV10, SV14] first introduced
the idea of packing several Zp (or Fpk) elements into the HE plaintext space
Zp[x]/ΦM (x) via CRT3 ring isomorphism with well-chosen prime p. Their sim-
ple yet powerful technique enables SIMD4-like optimizations and enhances amor-
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tized performance. That is, with a polynomial packing method, we can securely
compute on multiple Zp-messages simultaneously by homomorphically comput-
ing on a single packed HE plaintext in Zp[x]/ΦM (x). In particular, through the
packing, the complex multiplicative structure of Zp[x]/ΦM (x) embeds the more
handy coordinate-wise multiplication (a.k.a. Hadamard product) of Zn

p , where
n denotes the number of packed messages. Packing has now become a standard
technique in HE research, and it is not too much to say that the performance of
HE applications are determined by how well packings are utilized.

However, this conventional packing method has a limitation: it cannot (ef-
ficiently) pack Z2k -messages.5 This limitation has recently attracted attention
due to development of secure multi-party computation (MPC) over Z2k secure
against actively corrupted majority by SPDZ2k [CDE+18]. SPDZ2k follows the
framework of HE-based MPC protocol SPDZ [DPSZ12], while targeting Z2k -
messages rather than prime field Zp-messages, with a motivation from the fact
that Z2k arithmetic matches closely what happens on standard CPUs. In this
context, Overdrive2k [OSV20] and MHz2k [CKL21], whose goal are efficient
constructions of HE-based MPC over Z2k , came up with new and more involved
polynomial packing methods for Z2k -messages (Section 4).

RMFE in Perfectly Secure MPC. Another context where polynomial pack-
ings appear is information-theoretically secure MPC (or perfectly secure MPC).
A main tool in this area is Shamir’s linear secret sharing scheme(LSSS). A
cumbersome fact when using LSSS is that the number of shares is restricted
by the field where computation takes place.6 Thus, it is standard to lift the
computation to a larger field which supports enough number of shares, but
this causes substantial overheads. In their seminal work [CCXY18], Cascudo-
Cramer-Xing-Yuan first defined and studied reverse multiplication-friendly em-
bedding (RMFE) which is, roughly speaking, an embedding of several elements
of small finite field into a larger finite field while providing somewhat homo-
morphism of degree-2. Note that an RMFE can be indeed viewed as a poly-
nomial packing Fn

pk → Fpd
∼= Fp[x]/f(x), where p is a prime and f(x) ∈

Fp[x] is an irreducible polynomial of degree d. Surprisingly, [CCXY18] con-
structed constant-rate RMFEs, leveraging algebraic geometry, and applied them
to remove logarithmic overhead in amortized communication complexity which
appears to enable Shamir’s secret sharing. Since [CCXY18], RMFE has be-
come a standard tool in information-theoretically secure MPC, to achieve linear
amortized communication cost while preserving optimal corruption tolerance:
[BMN18, DLN19, CG20, CXY20, DLSV20, PS21].

In [CRX21], the notion of RMFE was extended to over Galois rings for
construction of efficient perfectly secure MPC over Zpk . Again, RMFE over
Galois rings for Zpk -messages can be viewed as a polynomial packing Zn

pk →
5 The original method of [SV10] does not consider packings for Zpk . Gentry-Halevi-
Smart [GHS12] later generalized the method to support such packing. However, this
method achieves only considerably low efficiency. See Section 4.1.

6 Indeed, the number of evaluation points is bounded by the size of the field.
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GR(pk, d) ∼= Zpk [x]/f(x), where p is a prime and f(x) ∈ Zpk [x] is a degree-d
irreducible polynomial in Fp[x].

Other Contexts. Other than HE and perfectly secure MPC, there are still
more areas where polynomial packings are used for amortization: correlation ex-
traction for secure computation [BMN17], zk-SNARK [CG21], etc. Moreover, we
believe that polynomial packing will be even more prominent and universal tool
for efficiency and practicality in the future: (i) RLWE-based cryptosystems are
emerging, where plaintexts are Zq[x]/ΦM (x); (ii) Secure computation is emerg-
ing, where some parts of protocols need to be large or of certain form due to
security or mathematical properties required, whereas where we actually want
to compute in is (extremely) small and typical such as F2 or Z232 .

1.1 Our Contribution

Unified Definition and Survey. In this work, we formally define polynomial
packing methods, which can be understood as (somewhat) homomorphic encod-
ing for copies of a small ring, e.g. Zp or Fpk , into a larger ring, e.g. Zq[x]/f(x),
(Section 3.1). The notion of polynomial packing unifies forementioned concepts
in various contexts of cryptography, including HE packing and RMFE in per-
fectly secure MPC. Then, we gather existing packing methods in one place. This
includes RMFE (Section 2.3 and 3.1), classic HE packing methods (Section 3.1),
and recent development occurred in HE-based MPC over Z2k (Section 4). We
also provide decomposition lemmas which suggest that it is enough to study
packing methods for Zn

pk (or Fn
pk) into Zpt [x]/f(x) where t ≥ k and p is prime,

instead of general case of Zn
P (or Fn

P ) into ZQ[x]/f(x) where P,Q ∈ Z+ (Sec-
tion 3.2). The results also rule out the possibility of using composite modulus
for better packing.

Upper Bounds and Impossibility. We prove several upper bounds and im-
possibility results on packing methods for Zpk or Fpk -messages into Zpt [x]/f(x).

– Upper Bounds on Packing Density (Section 5): We evaluate the efficiency of
packing methods by packing density which measures how densely the mes-
sages are packed in (plaintext) polynomials (Def. 3.3).7 We prove that, when
a packing method provides somewhat homomorphism upto degree-D poly-
nomials, the packing density is roughly upper bounded by 1/D (Thm. 5.1
and 5.3). These results have several implications:

7 We note that packing density differs from ciphertext rate which is the main interest
of recent developments in compressible or optimal-rate FHE [BDGM19, GH19]. Ci-
phertext rate measures the ratio of plaintext size to ciphertext size, whereas packing
density measures the ratio of message size to plaintext size. On the distinction of
message and plaintext, please refer to Section 2.1.
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• The packing method of MHz2k [CKL21] achieves nearly optimal density
in some sense when using their parameters (Example 5.1). Our results
justify the lifting of MHz2k packing (See Section 4.4).

• We provide the first upper bound on RMFE over Galois ring for Zpk -
messages (Example 5.2).

• We provide a new proof for upper bound on RMFE, which can be ex-
tended to higher-degree settings unlike the previous proof (Example 5.7).

– Impossibility of Level-consistency (Section 6): The notion of level-consistency
captures the property whether packings are decodable in an identical way at
different multiplicative levels (Def. 6.1). The level-consistency is a desirable
feature as it allows homomorphic computation between different packing lev-
els. We prove sufficient and necessary conditions on parameters to allow a
level-consistent packing method. These results have the following implica-
tions:

• HELib packing [HS15] (a.k.a. GHS packing [GHS12], See Section 4.1)
is essentially the optimal method to use in fully homomorphic encryp-
tion(FHE) (Example 6.1).

• It is impossible to construct efficient level-consistent packing methods in
most cases. This justifies the use of level-dependent packings in SPDZ-
like MPC protocols over Z2k [OSV20, CKL21] and highlights the use-
fulness of the trick proposed by MHz2k [CKL21], which closed the gap
between the level-consistent and level-dependent packing methods in so-
called reshare protocol. (See Section 6.1.)

– Impossibility of Surjectivity (Section 7): For a packing method into R, the
notion of surjectivity captures the condition whether every element of R
is decodable (Def. 7.1). This distiction is essential when designing a cryp-
tographic protocol with the packing method in a malicious setting, where
an adversary might freely deviate from the protocol. If there is an element
in R which fails to decode, a malicious adversary might make use of the
element to illegitimately learn information of other parties, if such invalid
packings are not properly handled. We prove sufficient and necessary con-
ditions on parameters to allow a surjective packing method. Our results
suggest that it is impossible to construct a meaningful surjective packing
method in most cases. This justifies the use of non-surjective packings and
the need of ZKPoMK8, which ensures an HE ciphertext encrypts a validly
packed plaintext, in SPDZ-like MPC protocols over Z2k [OSV20, CKL21].

1.2 Organization

In Section 2, we introduce our notations (Section 2.1) and some preliminaries
on polynomial factorization (Section 2.2) and RMFE (Section 2.3). We highly

8 Zero-knowledge proof of message knowledge
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recommend readers to read at least the first three items of Section 2.1, as we
will be slightly abusing some terminologies for simplicity.

In Section 3, we formally define the concept of packing methods and in-
troduce basic examples. In Section 3.2, we prove decomposition lemmas, which
enable us to focus on packing methods into Zpt [x]/f(x). Continuing Section 3.1,
in Section 4, we introduce more involved examples of packing methods. These
examples are not necessary to follow our main theorems. However, most of def-
initions and statements in this paper are motivated from these examples, they
are helpful for understanding implications of our theorems.

In Section 5, 6, and 7, we present our main results on packing density, level-
consistency, and surjectivity, respectively. These sections can be read indepen-
dently, except Thm. 7.2 and 7.4 in Section 7 which refer the notion of level-
consistency of Section 6. In these sections, we defer lengthy proofs of our main
results to the last subsections of each sections for readability. However, we did
the efforts to keep key ideas and lemmas of the proofs in the main body. Each
section is structured in four parts: (i) definitions and basic facts (ii) main the-
orem for Zpk case and its implications (iii) main theorem for Fpk case and its
implications and (iv) deferred proofs. Subsections (ii) and (iii) can be read in-
dependently, so whom only interested in Zpk case can skip the subsection on
Fpk case, and vice versa. Whom only interested in the results and implications
can skip the subsections on proofs. Finally, in Section 8, we list remaining open
problems.
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2 Preliminaries

2.1 Notations and Terminologies

– In this paper, we only consider finite commutative rings with unity. Thus,
we omit the long description and simply refer them as rings. Readers must
understand the term ring as finite commutative rings with unity, even if not
explicitly stated.

– In this paper, we only consider monic polynomials when defining quotient
rings. Thus, we omit description on monic property throughout the paper
for readability. Readers must understand any polynomials defining quotient
rings as monic polynomials, even if not explicitly stated.

– This paper carefully distinguishes between the use of the terms message and
plaintext. Messages are those we really want to compute with. On the other
hand, plaintexts are defined by encryption scheme (particularly, HE schemes)
we are using. In this paper, messages are in Zpk or Fpk and plaintexts are in
Zq[x]/f(x).

– For prime fields, we use both notations Fp and Zp, depending on whether we
want to emphasize that it is a field or that it is the ring of integer modulo p.

– The multiplicative order of b modulo a is denoted as orda(b).
– We use Inva(b) to denote the smallest positive integer which is a multiplica-

tive inverse of b modulo a.
– We use ⊙ to denote the coordinate-wise multiplication (a.k.a. Hadamard

product) in products of rings.
– In a product of rings Rn, the element ei denotes a standard unit vector

whose i-th coordinate is 1 and the other coordinates are 0.
– We denote theM -th cyclotomic polynomial as ΦM (x) and the Euler’s totient

function as ϕ(·).
– We use GR(pk, d) to denote the Galois ring, a degree-d extension of Zpk .
– We use notations [n] := {1, 2, · · · , n} and [0, n] := {0, 1, · · · , n}.

2.2 Polynomial Factorizations

Here, we briefly review some basic facts on polynomial factorizations in Zpk [x].
First, recall Hensel lifting (or Hensel’s lemma). For a proof and detailed discus-
sions, refer to [Wan03] or any other textbook.

Lemma 2.1 (Hensel Lifting). Let f(x) ∈ Zpk [x] be a monic polynomial which
factors into

∏r
i=1 gi(x)

ℓi in Fp[x], where gi(x) are distinct irreducible polynomi-
als. Then there exist pairwise coprime monic polynomials f1(x), · · · , fr(x) ∈
Zpk [x] such that f(x) =

∏r
i=1 fi(x) in Zpk [x] and fi(x) = gi(x)

ℓi (mod p), for
all i ∈ [r].

When gcd(M,p) = 1, ΦM (x) factors into
∏r

i=1 gi(x) in Fp[x], where gi(x)
are distinct irreducible polynomials of degree d := ordM (p). Thus, ϕ(M) = r · d
holds. To see this, consider a primitive M -th root of unity in a sufficiently large
extension field of Fp. Then, it is easy to see that the number of its conjugates is
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d which coincides with the degree of its minimal polynomial. Applying Hensel’s
lemma, we have a factorization ΦM (x) =

∏r
i=1 fi(x) in Zpk [x], where deg(fi) =

d and fi(x) = gi(x) (mod p). Accordingly, we have a CRT ring isomorphism
Zpk [x]/ΦM (x) ∼=

∏r
i=1 Zpk [x]/fi(x). Each Zpk [x]/fi(x) is often referred to as a

CRT slot of Zpk [x]/ΦM (x).

2.3 RMFE

Reverse multiplication-friendly embeddings (RMFE) were first defined and stud-
ied in-depth by [CCXY18].9 At a high level, RMFEs are embeddings of several
elements of small finite field into a larger finite field, while providing somewhat
homomorphism of degree-2.

Definition 2.1 (RMFE). A pair of maps (φ,ψ) is called a (n, d)pk -reverse
multiplication-friendly (RMFE) if it satisfies the following.

– The map φ : Fn
pk → Fpkd is Fpk -linear.

– The map ψ : Fpkd → Fn
pk is Fpk -linear.

– For all a, b ∈ Fn
pk , it holds ψ(φ(a) · φ(b)) = a⊙ b

Surprisingly, [CCXY18] constructed families of (n, d)pk -RMFE where the
density n/d converges to some constant, for arbitrary prime power pk, lever-
aging algebraic geometry. That is, [CCXY18] constructed constant-rate RM-
FEs. For instance, we have a family of (n, d)2-RMFE with n/d → 0.203 from
[CCXY18].10. Since this seminal work, RMFE has become a standard tool in
information-theoretically secure MPC, to achieve linear amortized communi-
cation cost while preserving optimal corruption tolerance: [CCXY18, BMN18,
DLN19, CG20, CXY20, DLSV20, PS21]. RMFE was also leveraged in zk-SNARK
context recently [CG21].

Recently in [CRX21], RMFE over Galois rings was first defined and studied.
It is a natural generalization of RMFE over fields to Galois rings.

Definition 2.2 (RMFE over Galois Ring). A pair of maps (φ,ψ) is called
an (n, d)pr -RMFE over modulus pk if it satisfies the following.

– The map φ : GR(pk, r)n → GR(pk, d) is GR(pk, r)-linear.

– The map ψ : GR(pk, d) → GR(pk, r)n is GR(pk, r)-linear.

– For all a, b ∈ GR(pk, r)n, it holds ψ(φ(a) · φ(b)) = a⊙ b

9 Nonetheless, this object was also previously studied in [BMN17], to amortize obliv-
ious linear evaluations (OLE) into a larger extension field for correlation extraction
problem in MPC. However, their construction achieved only sublinear density (See
Section 4.3).

10 We have found out that we can slightly improve this rate by the hybrid approach
with 3-free sets (Section 4.3), but we omit here for simplicity.
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The authors also showed that any (n, d)pr -RMFE over fields can be naturally
lifted upto an (n, d)pr -RMFE over modulus pk. That is, there are asymptotically
good RMFE also in the Galois ring setting.

Their goal was to construct efficient (n, d)p-RMFEs over modulus pk for Zpk -
messages as a building block for more efficient information-theoretically secure
MPC over Zpk . More generally, it seems there are very limited applications
where messages in Galois ring (except Zpk or Fpk) play important roles. Thus,
in our work, we focus on (n, d)p-RMFE over modulus pk for Zpk -messages. Note
that this case can be interpreted as packing Zpk -messages into GR(pk, d) ∼=
Zpk [x]/f(x) for some degree-d f(x) ∈ Zpk [x] which is irreducible modulo p.
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3 Packing: Definitions and Basic Facts

In this section, we formally define packings and related concepts which are our
main interests in this work. Some basic examples of packing methods are intro-
duced for illustrative purpose. We also present some propositions which allow us
to modularize our study of packing methods. We begin with a formal definition
of packing.

3.1 Definitions and Basic Examples

Definition 3.1 (Packing). Let R and R be rings. We call a pair of algorithms
(Pack,Unpack) a packing method for n R-messages into R, if it satisfies the
following.

– Pack is an algorithm (possibly probabilistic) which, given a ∈ Rn as an input,
outputs an element of R.

– Unpack is a deterministic algorithm which, given a(x) ∈ R as an input,
outputs an element of Rn or ⊥ denoting a failure.

– Unpack(Pack(a)) = a holds for all a ∈ Rn with probability 1.

For simplicity, the definition is presented a bit generally. In this paper, we
are mostly interested in the cases where R is Zp with p ∈ Z+ (or a finite field
Fpk) and R is a polynomial ring Zq[x]/f(x) with q ∈ Z+ and monic f(x).

Notice that in Def. 3.1 the ring structure is not considered. Packing methods
are interesting only when algebraic structures of the rings come in, since oth-
erwise a packing is nothing more than a vanilla data encoding. The following
definition of degree captures quality of (somewhat) homomorphic correspondence
between packed messages and a packing. In this work, we are interested in pack-
ings of at least degree-2.

Definition 3.2 (Degree-D Packing). Let P = (Packi,Unpacki)
D
i=1 be a col-

lection of packing methods for Rn into R. We call P a degree-D packing method,
if it satisfies the following for all 1 ≤ i ≤ D:

– If a(x), b(x) satisfy Unpacki(a(x)) = a, Unpacki(b(x)) = b for a, b ∈ Rn,
then Unpacki(a(x)± b(x)) = a± b holds;

– If a(x), b(x) satisfy Unpacks(a(x)) = a, Unpackt(b(x)) = b for a, b ∈ Rn and
s, t ∈ Z+ such that s+ t = i, then Unpacki(a(x) · b(x)) = a⊙ b holds.

Notice that the definition is heavy on the use of Unpack rather than Pack.
Some readers might find it unnatural to define a property of packing methods
with their unpacking structures. However, this is how things are. For instance,
given that a collection of unpacking algorithms (Unpacki)

D
i=1 allows a degree-D

packing method, it is trivial to find an appropriate collection of packing algo-
rithms (Packi)

D
i=1: we can just define Packi as an algorithm which randomly

outputs an preimage of the input regarding Unpacki. On the other hand, if a
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collection of packing algorithms (Packi)
D
i=1 is given, it requires non-trivial com-

putations to find an appropriate collection of packing algorithms (Unpacki)
D
i=1

in this case. In this regard, definitions and proofs coming up are also aligned to
Unpack rather than Pack.

Here are some direct but noteworthy consequences of the definition.

Remark 3.1. Note that the definition implies that Unpacki(c · a(x)) = c ·a holds
for all c ∈ Z with probability 1. In particular, Unpacki(0) = 0.

Remark 3.2. A packing method P = (Packi,Unpacki)
D
i=1 is of degree-D, only if

P ′ = (Packi,Unpacki)
D′

i=1 is a degree-D′ packing method for all D′ < D.

The following are some basic examples of packing methods. More sophisti-
cated examples are introduced in Section 4.

Example 3.1 (Coefficient Packing). Let f(x) be a degree-d monic polynomial in

Zp[x]. Define Pack as a bijection which maps (a0, · · · , ad−1) ∈ Zd
p to

∑d−1
i=0 ai·xi ∈

Zp[x]/f(x). Define Unpack as the inverse of Pack. Then, (Pack,Unpack) is a
degree-1 packing method for Zd

p into Zp[x]/f(x). We often refer this method as
coefficient packing. As coefficient packing is already too good, we do not further
examine degree-1 packing methods in this paper. Note that this method also
applies to Fpk -messages if degree-1 is sufficient, since Fn

pk is isomorphic to Zkn
p

as Zp-modules.

Example 3.2 (Conventional HE Packing). When making use of lattice-based HE
schemes, where the plaintext space is of the form Zp[x]/ΦM (x), it is standard to
choose prime p such that p = 1 (mod M) (and M as a power-of-two to enable
efficient implementations). Then, ΦM (x) fully splits in Zp[x], and Zp[x]/ΦM (x) ∼=
Zϕ(M)
p holds. The isomorphism induces a natural packing method, which is of

degree-∞, i.e. degree-D for any D ∈ Z+. This packing is more than good in
several aspects, but has quite heavy restrictions on parameters. In particular,
the method does not allow packing Z2k -messages.

Example 3.3 (HE Packing for Fpd). If one want to pack Fpd -messages when
making use of lattice-based HE schemes, we often choose M so that ΦM (x)
factorizes into r distinct degree-d irreducible polynomials in Zp[x]. Then, we have
Zp[x]/ΦM (x) ∼= Fr

pd . As Example 3.2, this isomorphism induces a natural packing
method which is of degree-∞, but has even heavier restriction on parameters.

Example 3.4 (RMFE). Essentially, an RMFE is nothing more than a degree-2
packing method for copies of a finite field Fpk into a larger finite field Fpd

∼=
Zp[x]/f(x), where p is a prime and f(x) is a monic degree-d irreducible polyno-
mial in Zp[x]. The only additional requirement is that the packing algorithm at
level-1 and unpacking algorithm at level-2 must be Zp-linear functions. However,
any degree-2 packing method can be easily transformed to satisfy the require-
ment.
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Example 3.5 (RMFE over Galois Ring). Essentially, an RMFE over Galois ring
for Zpk -messages is nothing more than a degree-2 packing method for copies
of Zpk into a larger Galois ring GR(pk, d) ∼= Zpk [x]/f(x), where p is a prime
and f(x) is a degree-d irreducible polynomial in Zp[x]. The only additional re-
quirement is that the packing algorithm at level-1 and unpacking algorithm at
level-2 must be Zpk -linear functions. However, any degree-2 packing method can
be easily transformed to satisfy the requirement.

Lastly, we define packing density which measures efficiency of packing meth-
ods. It measures how dense messages are packed in a single packing.

Definition 3.3 (Packing Density). For a packing method for Rn into R, we
define its packing density as log(|R|n)/ log(|R|).

Example 3.1, 3.2, and 3.3 have perfect packing density of 1. However, we will
see that these are very special cases. In most cases such perfect packing density
is not achievable, and even moderate packing density is hard to achieve.

3.2 Decomposition Lemmas

In this subsection, we state and prove several necessary conditions on existence
of certain packing methods. The following propositions allow us to modularize
our study and focus on the case of packings into Zpt [x]/f(x).

Proposition 3.1. Let R be a ring with characteristic p and R be a ring with
characteristic q. There exists a degree-0 packing method (Pack,Unpack) for Rn

into R only if p divides q.

Proof. Let a(x) be an output of Pack(1). Then, Unpack(q · a(x)) = q · 1 by
Remark 3.1. Meanwhile, q · a(x) = 0 in R. Thus, q · 1 = 0 in Rn, again by
Remark 3.1. ⊓⊔

Proposition 3.2. Let R be a ring with characteristic p. Let q = q1 · q2, where
p|q1 and gcd(q1, q2) = 1. There exists a degree-D packing method P for Rn into
Zq[x]/f(x), if and only if there exists a degree-D packing method P ′ for Rn into
Zq1 [x]/f(x).

Proof. Suppose (Packi,Unpacki)
D
i=1 is a degree-D packing method P for Rn into

Zq[x]/f(x). Let a(x) satisfy Unpacki(a(x)) = a for some a ∈ Rn and 1 ≤ i ≤ D.
We can identify a(x) with (a1(x), a2(x)) ∈ Zq1 [x]/f(x) × Zq2 [x]/f(x) via CRT
isomorphism. Now, consider multiplying a constant Invq1(q2) · q2. Observe the
following.

– (Invq1(q2) · q2) · a = (Invp(q2) · q2) · a = a ∈ Rn

– (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) ∈ Zq1 [x]/f(x)
– (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 ∈ Zq2 [x]/f(x)



12 J. H. Cheon and K. Lee

Thus, if Unpacki(a(x)) = Unpacki(a1(x), a2(x)) = a then Unpacki(a1(x), 0) = a.
Let πq1 and ιq1 denote the projection and injection between Zq[x]/f(x) and

Zq1 [x]/f(x) respectively. Then, for all a(x) ∈ Zq[x]/f(x), Unpacki(a(x)) is fully
determined by πq1(a(x)), given it does not output a failure ⊥.

Define Pack′i := πq1 ◦Packi and Unpack′i := Unpacki ◦ ιq1 (Fig. 1). Then, it is
straightforward that (Pack′i,Unpack

′
i)

D
i=1 is a degree-D packing method for Rn

into Zq1 [x]/f(x).

Rn Zq[x]/f(x)

Zq1 [x]/f(x)

Packi

Pack′i
πq1

(a) Pack′i

Rn Zq[x]/f(x)

Zq1 [x]/f(x)

Unpacki

ιq1
Unpack′i

(b) Unpack′i

Fig. 1: Definitions of Pack′i and Unpack′i in Prop. 3.2

On the other hand, suppose that (Pack′i,Unpack
′
i)

D
i=1 is a degree-D packing

method for Rn into Zq1 [x]/f(x). Define Packi := ιq1 ◦ Pack′i and Unpacki :=
Unpack′i ◦ πq1 (Fig. 2). Then, it is straightforward that (Packi,Unpacki)

D
i=1 is a

degree-D packing method for Rn into Zq[x]/f(x). ⊓⊔

Rn Zq[x]/f(x)

Zq1 [x]/f(x)

Packi

Pack′i
ιq1

(a) Packi

Rn Zq[x]/f(x)

Zq1 [x]/f(x)

Unpacki

πq1
Unpack′i

(b) Unpacki

Fig. 2: Definitions of Packi and Unpacki in Prop. 3.2

Proposition 3.3. Let p = p1 · p2 and q = q1 · q2, where p1|q1, p2|q2 and
gcd(q1, q2) = 1. There exists a degree-D packing method P for Zn

p into R :=

Zq[x]/f(x), if and only if there exist degree-D packing methods P(j) for Zn
pj

into
Rj := Zqj [x]/f(x) for j = 1, 2.

Proof. Suppose (Packi,Unpacki)
D
i=1 is a degree-D packing method P for Zn

p into
R. Let a(x) ∈ R satisfy Unpacki(a(x)) = a for some a ∈ Zn

p and 1 ≤ i ≤ D.
We can identify a(x) with (a1(x), a2(x)) ∈ R1×R2 and a with (a1,a2) ∈ Zn

p1
×
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Zn
p2

via CRT isomorphisms. Now, consider multiplying a constant Invq1(q2) · q2.
Observe the following.

– (Invq1(q2) · q2) · a1 = (Invp1
(q2) · q2) · a1 = a1 ∈ Zn

p1

– (Invq1(q2) · q2) · a2 = Invq1(q2) · 0 = 0 ∈ Zn
p2

– (Invq1(q2) · q2) · a1(x) = 1 · a1(x) = a1(x) ∈ R1

– (Invq1(q2) · q2) · a2(x) = Invq1(q2) · 0 = 0 ∈ R2

That is, if Unpacki(a1(x), a2(x)) = (a1,a2) then Unpacki(a1(x), 0) = (a1,0).
The similar holds for j = 2.

Let πpj and ιpj denote the projection and injection between Zn
p and Zn

pj

respectively. Also let πqj and ιqj denote the projection and injection between
R and Rj respectively. Then, for all a(x) ∈ R, πpj

◦ Unpacki(a(x)) is fully
determined by πqj (a(x)), given it does not output a failure ⊥.

Define Pack
(j)
i := πqj ◦Packi ◦ιpj

and Unpack
(j)
i := πpj

◦Unpacki ◦ιqj (Fig. 3).

Then, it is straightforward that (Pack
(j)
i ,Unpack

(j)
i )Di=1 is a degree-D packing

method for Zn
pj

into Rj .

Znp R

Znpj Rj

Packi

πqjιpj

Pack
(j)
i

(a) Pack
(j)
i

Znp R

Znpj Rj

πpj

Unpacki

ιqj

Unpack
(j)
i

(b) Unpack
(j)
i

Fig. 3: Definitions of Pack
(j)
i and Unpack

(j)
i in Prop. 3.3

On the other hand, suppose (Pack
(j)
i ,Unpack

(j)
i )Di=1 are degree-D packing

methods for Zpjn into Rj , for j = 1, 2. Let ψp denote the CRT ring isomorphism
from Zn

p to Zn
p1

× Zn
p2
. Also, let ψq denote the CRT ring isomorphism from R

to R1 × R2. Define Packi := ψ−1
q ◦ (Pack

(1)
i × Pack

(2)
i ) ◦ ψp and Unpacki :=

ψ−1
p ◦ (Unpack

(1)
i × Unpack

(2)
i ) ◦ ψq (Fig. 4). Then, it is straightforward that

(Packi,Unpacki)
D
i=1 is a degree-D packing method for Zn

p into R. ⊓⊔

According to Prop. 3.1 and 3.2, to study degree-D packing methods for copies
of a finite field Fpk into Zq[x]/f(x), it is enough to study degree-D packing
methods into Zpt [x]/f(x) for some t ≥ 1. The similar holds for packing methods
for copies of Zp according to Prop. 3.1, 3.2, and 3.3. That is, to study degree-D
packing methods for copies of Zp into Zq[x]/f(x) where p is an arbitrary integer,
it is enough to study degree-D packing methods for Zn

pk into Zpt [x]/f(x) for some
t ≥ k where p is a prime.

Therefore, from now on, we focus on packing methods for Zn
pk or Fn

pk into

Zpt [x]/f(x) where p is a prime. (Afterwards, p is a fixed prime, even if it is
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Znp R

Znp1 × Znp2 R1 ×R2

Packi

ψp

Pack
(1)
i ×Pack

(2)
i

ψ−1
q

(a) Packi

Znp R

Znp1 × Znp2 R1 ×R2

Unpacki

ψqψ−1
p

Unpack
(1)
i ×Unpack

(2)
i

(b) Unpacki

Fig. 4: Definitions of Packi and Unpacki in Prop. 3.3

not explicitly stated.) This is not only because they are the most interesting
case containing Z2k and F2k , but also because they play roles as building blocks
when constructing general packing methods (Prop. 3.2, 3.3). We note that the
properties of packing methods, which we examine in the following sections (level-
consistency in Section 6 and surjectivity in Section 7), are preserved by the
constructions in Prop. 3.2 and 3.3.
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4 More Examples

In continuation of Section 3.1, we give more examples on packing methods. The
following examples are degree-2 packing methods for Z2k -messages, which are
(or can be) used to construct HE-based MPC protocol over Z2k following the
approach of SPDZ [DPSZ12]. Most of definitions and statements in this paper
are motivated from these examples.

4.1 HELib Packing

In Example 3.2, we introduced the conventional HE packing method for Zq-
messages into Zq[x]/ΦM (x), where M is a power-of-two and q = 1 (mod M).
However, it is not always applicable, e.g. if we consider Z2k -messages. The prob-
lem here is that ΦM (X) never fully splits in Z2k . One way to detour this problem
is the following. It was first proposed by Gentry-Halevi-Smart [GHS12] and gen-
eralized by Halevi-Shoup [HS15] to optimize bootstrapping procedure for fully
homomorphic encryption (particularly, for HELib [HS14]). In this paper, we will
refer this method as HELib packing.

To construct a packing method for Zpk -messages into Zpk [x]/ΦM (x), choose
M to satisfy gcd(M,p) = 1. Let ΦM (x) factor into r distinct degree-d irreducible
polynomials in Zp[x], where d := ordM (p). Then, we have the factorization
ΦM (x) =

∏r
i=1 fi(x) in Zpk [x] via Hensel lifting and the CRT ring isomorphism

Zpk [x]/ΦM (x) ∼=
∏r

i=1 Zpk [x]/fi(x). The packing algorithm Pack puts i-th Zpk -
message at the constant term of Z2k [x]/fi(x) and puts zeroes at the other coeffi-
cients. Define Unpack as the inverse of Pack. It is easy to see that (Pack,Unpack)
defines a degree-∞ packing method. However, the HELib packing achieves very
low packing density 1/d.

4.2 Overdrive2k Packing

To design an efficient HE-based MPC protocol over Z2k , Overdrive2k [OSV20]
constructed a degree-2 packing method for Zn

2k into Z2k [x]/ΦM (x), where M is
odd (so yielding a CRT ring isomorphism Z2k [x]/ΦM (x) ∼=

∏r
i=1 Z2k [x]/fi(x)

with deg(fi) = d). For construction, they considered the following problem.
Consider a subset A of [0, d−1] with A = {a1, · · · , am} so that 2ai ̸= aj +ak for
all (i, i) ̸= (j, k) and ai+aj < d for all i, j. The problem is to find the maximum
value of m = |A| with A for given d. Given a solution m and A for given d,
the packing algorithm of Overdrive2k at level-1 put i-th m messages in Z2k at
the coefficients of xai of an element in Z2k [x]/fi(x) for ai ∈ A and put zeroes
at the other coefficients. Then, via the ring homomorphism, we can pack r ·m
messages into a plaintext achieving the packing density of m/d. The authors
Overdrive2k noted that the packing density of their method seems to follow the
trend of approximately d0.6/d.

Since the set A is carefully designed, if we multiply two packed plaintexts, the
(2 ·ai)-th coefficient of the result equals the multiplied value of ai-th coefficients
of the original plaintexts. That is, Overdrive2k packing is of degree-2. Note that
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Overdrive2k packing naturally extends to arbitrary degree-2 packing methods
for Zn

pk into Zpk [x]/f(x).

4.3 Notes on Overdrive2k Packing

There are other cryptography literature those considering similar problems of
Overdrive2k packing [Lip12, BMN17, DLSV20]. They are also interested in em-
bedding several elements into a larger polynomial ring for amortizing computa-
tions while providing one multiplication. Even though the authors of Overdrive2k
did not present detailed discussions, behind the scene of [Lip12], [BMN17],
[DLSV20], and Overdrive2k [OSV20], there is one of the central problems in
additive number theory.

3-free Set Problem. A set of numbers no three of which form an arithmetic
progression is called 3-free set (a.k.a. progression-free set or Salem-Spencer Set).
Especially, we are most interested in 3-free subset of [n]. We denote the size of
a largest 3-free subset of [n] by r3(n).

After Erdős and Turán first considered 3-free set and stated the famous
Erdős-Turán conjecture on arithmetic progression [ET36], 3-free set, its variants,
and its generalizations have been researched extensively. The strongest lower
bound on r3(n) until now is given by Behrend [Beh46]: r3(n) = n/eO(

√
logn).

On the other hand, an upper bound by Bloom [Blo16] is known: r3(n) =
O(n(log log n)4/ log n). Meanwhile, a recent manuscript by Bloom and Sisask
[BS20] claimed a proof of a stronger upper bound: r3(n) = O( n

log1+c n
) for some

c > 0.

Recall that Overdrive2k considered the following problem to embed ring el-
ements as much as they can into a polynomial ring. Consider a subset A of
{0, 1, · · · , d−1} with A = {a1, · · · , am} so that 2ai ̸= aj+ak for all (i, i) ̸= (j, k)
and ai + aj < d for all i, j. The problem is to find the maximum value of
m = |A| with A for given d. We denote the solution to this problem for d by
ρ3(d). Clearly, this problem is closely related to 3-free sets. It is easy to see that
ρ3(d) = r3(⌊d+1

2 ⌋).

Constructing 3-free Sets. There is an elementary method constructing 3-
free sets via ternary representations of nonnegative integers. If we construct a
set composed of ternary numbers that use only the digits 0 and 1, not 2, such
a set must be a 3-free set. If two of its elements a1 and a2 are the first and the
second of an arithmetic progression of length three, the third a3 must have the
digit two at the position of the least significant digit where a1 and a2 differ.
Using this method, we can obtain a 3-free subset of [n] with size approximately
nlog3(2) ≈ n0.631, which is considerably smaller than the lower bound by Behrend.
Observing the paper, the authors of Overdrive2k seem to have only considered
this ternary construction.
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Note that ternary construction can be naturally extended to (D + 1)-ary
construction, yielding a degree-D packing method of density roughly

(d/D)logD+1(2)

d
.

Meanwhile, Behrend’s contruction does not well extend to be used for degree-
D packing methods. We also note that constructing an optimal 3-free subset
requires an intense amount of computation at the current stage of research.
The optimal solutions are known only for small input n’s: Gasarch, Glenn, and
Kruskal [GGK08] found the exact size of the largest 3-free subset of [n] for
n ≤ 187.

Generalized 3-free Set Problem. To achieve a better packing density, Block,
Maji, and Nguyen [BMN17] proposed a generalized version of the 3-free set
problem. The idea is to consider two subsets A and B of {0, 1, · · · , d− 1} with
A = {a1, · · · , am} and B = {b1, · · · , bm} so that ai + bi ̸= aj + bk for all
(i, i) ̸= (j, k) and ai + bj < d for all i, j. The generalized problem is to find the
maximum value of m = |A| = |B| with A and B for given d. We denote the
solution to this generalized problem for d by ρ̂3(d). Obviously, ρ̂3(d) is greater
than ρ3(d). Applying the solution of generalized 3-free set problem on polynomial
multiplication, we can use two different embedding methods for right operands
and left operands and directly improve the capacity of Overdrive2k. However,
the asymmetric nature of the generalized problem significantly reduces freedom
in homomorphic computations between packed plaintexts. Therefore, we exclude
this approach from the scope of our study.
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4.4 MHz2k Packing

To further improve the packing density of Overdrive2k, MHz2k [CKL21] con-
struct a degree-2 packing method for Z2k -messages into Z2t [x]/ΦM (x), where t
is slightly larger than k. Their core idea is to pack messages at evaluation points
via interpolation unlike Overdrive2k which rather pack at coefficients. The caveat
here is, however, that the polynomial interpolation on Z2k is not always possible,
e.g. there is no f(x) ∈ Z2k satisfying f(0) = 1 and f(2) = 0 simultaneously. In
this context, they propose the tweaked interpolation, where they lift the target
points of Z2k upto a larger ring Z2k+δ , multiplying an appropriate power-of-two
to eliminate the effect of non-invertible elements.

Let t = k + 2δ and Z2t [x]/ΦM (x) factors into
∏r

i=1 Z2t [x]/fi(x) via CRT,
where fi(x) are all of degree-d. The packing algorithm at level-1 perform tweaked
interpolation on i-th ⌊d+1

2 ⌋ Z2k -messages {µij}, so that we have Li(x) ∈ Z2t [x]

which satisfies (i) deg(Li) ≤ ⌊d−1
2 ⌋ and (ii) Li(j) = µij · 2δ. Then, put Li(x)

in the i-th CRT slot of Z2t [x]/ΦM (x), i.e. Z2t [x]/fi(x). This gives us a packing
density of roughly k/(2k+ 2d).11 Since the degree condition on Li(x) and extra
δ in the modulus are designed to avoid degree overflow and modulus overflow,
when the product of two packings is given, we can decode the homomorphically
multiplied messages without any loss of information. That is, we can unpack
at level-2 by evaluating points on each CRT slot and observing the upper k
bits of outputs. For detailed and precise description of MHz2k packing, refer to
[CKL21].

Note that MHz2k packing can be naturally extended to a degree-D pack-
ing method for Zpk -messages into Zpt [x]/ΦM (x) with gcd(M,p) = 1 of density
roughly

k

D · (k + d
p−1 )

.

4.5 Comparison

In this subsection, we compare some properties of the examples previously given
in this section. These features are motivations of the definitions and results in
later sections. This subsection is summarized in Table 1.

Notice that, in HELib packing which is of degree-∞, packing algorithms and
unpacking algorithms are identical for all level. We will later refer these kind of
packings as level-consistent packings (Section 6). However, in Overdrive2k and
MHz2k packing, the packing algorithm differs for each level. For example, in
Overdrive2k packing, messages are coefficients of xai ’s at level-1, and coefficients
of x2·ai ’s at level-2. We will later refer these kind of packings as level-dependent
packings (Section 6).

One big difference of MHz2k packing from the previous packings is that
it uses larger modulus for polynomial ring than that of messages. The other

11 We have noticed that one can slightly increase the density by employing point-at-
infinity technique of RMFE constructions [CCXY18]. However, for simplicity, we
omit the details here.
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Table 1: Comparisons on degree-2 packing methods for Z2k -messages

Method HELib Overdrive2k MHz2k

Level-consistency consistent dependent dependent

t
?
= k t = k t = k t > k

Density 1/d ≈ d0.6/d ≈ k/(2k + 2d)

packing methods are sort of coefficient packing, making it no use of increasing
the modulus for polynomial ring. This difference will serve as one of the topics
in Section 5 (e.g. Example 5.1).

Note that degree-2 MHz2k packing reaches density of nearly 1/2 when k is
sufficiently larger than d. This is true for typical parameters used in HE-based
MPC over Z2k : k = 64, 128, 196 and d ≤ 20. In Section 5, we will show that
MHz2k packing achieves a certain form of near-optimality (Example 5.1).

We now examine common features of these methods. Note that there are
invalid packings regarding to these packing methods. For example, in HELib
packing, a(x) ∈ Z2k [x]/ΦM (x) is not a valid packing, i.e. Unpack(a(x)) =⊥, if
a(x) modulo fi(x) is not a constant. We will later refer these kind of packings
as non-surjective packings (Section 7).

Also notice that all these packings leverage CRT ring isomorphism, which
is a natural and convenient way to achieve parallelism. They pack messages
into each CRT slot in an identical and independent manner. We refer packing
methods following this approach as CRT packings. However, we shed light on
the possibility that this CRT approach might be hindering us to achieve a better
packing density (Example 5.5).
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5 Bounds on Packing Density

In this section, we examine upper bounds on packing density of degree-D packing
methods for Zpk and Fpk , where p is a prime (See Section 3.2).

5.1 Algebraic Background

We first remark some algebraic facts, which enable proofs in the following sub-
sections.

Proposition 5.1. When R is a principal ideal ring (PIR), every submodule of
a free R-module of rank n can be finitely generated with n generators.

Proof. See Section 5.4 ⊓⊔

Remark 5.1. Note that Zpt is a local PIR. Consider R := Zpt [x]/f(x) as a free
Zpt -module with the rank deg(f). Then by Nakayama’s lemma, the cardinality
of minimal generating sets is a well-defined invariant for submodules of R.

Let A be a linearly independent subset of R. Then, since the span ⟨A⟩ is a
submodule of R with a minimal generating set A, inequality deg(f) ≥ |A| holds
by Prop. 5.1.

5.2 Packing Density of Zpk-Message Packings

In this subsection, we examine upper bounds on packing density of degree-D Zpk -
message packings. We begin with an upper bound for degree-1 packing methods:
we cannot pack copies of Zpk more than the degree of the quotient polynomial.
Unlike the simple and plausible statement, the proof is quite involved. In partic-
ular, it depends on Remark 5.1. The following proposition says that we cannot
reduce the degree of quotient polynomial significantly and tower the packings
along a large modulus. Notice that there are no restriction on t and f(x).

Proposition 5.2. There exists a degree-1 packing method for Zn
pk into R :=

Zpt [x]/f(x) with k ≤ t, only if n ≤ deg(f).

Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Zn
pk into R. For

each i ∈ [n], choose ai(x) ∈ R such that Unpack1(ai(x)) = ei. View R as a
free Zpt-module of rank deg(f), and consider the submodule ⟨a1(x), · · · , an(x)⟩.
By linear homomorphic property (Remark 3.1), when

∑n
i=1 ci · ai(x) = 0 for

some ci ∈ Zpt , then ci = 0 (mod pk) must hold. Thus, {a1(x), · · · , an(x)} is a
minimal generating set of ⟨a1(x), · · · , an(x)⟩, and therefore n ≤ deg(f) holds
(Remark 5.1). ⊓⊔

In the rest of this subsection, we narrow our scope to packing methods for
Zn
pk into Zpk [x]/f(x) with the same modulus. Indeed, this setting is less general.

Nonetheless, our results still have interesting consequences (See Example 5.1 -
5.6). The following is a small remark on packings of non-zero elements modulo
p in this setting.
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Remark 5.2. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Zn

pk into

R := Zpk [x]/f(x). For any i ∈ [D], if Unpacki(a(x)) = a for some a ∈ Zn
pk

which is non-zero modulo p, then a(x) is also non-zero modulo p. Otherwise,
Unpacki(p

k−1 · a(x)) = Unpacki(0) = 0 ̸= pk−1 · a, contradicting the linear
homomorphic property (Remark 3.1). In particular, when f(x) is an irreducible
polynomial in Zp[x], such a(x) is a unit in R.

Roughly speaking, our main result is that we cannot pack more than d/D
Zpk -messages into Zpk [x]/f(x) while satisfying degree-D homomorphic property,
where d = deg(f). Intuitively, the statement can be understood as that we
must pack the inputs into lower d/D coefficients since reduction by the quotient
polynomial act as randomization and will ruin the structure of packing. However,
the proof is much more involved since we have to handle all possible packing
methods. Notice that the following theorem subsumes Prop. 5.2 as the D = 1
case in the t = k setting. The essence of the proof is a generic construction of
a large set which is required to be linearly independent regardless of specific
structures of packing methods.

Theorem 5.1. There exists a degree-D packing method for Zn
pk into R :=

Zpk [x]/f(x) where f(x) ∈ Zpk [x] is a degree-d irreducible polynomial modulo
p, only if d ≥ D · (n− 1) + 1.

Proof. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Zn

pk into R.

For each i ∈ [n], choose ai(x) ∈ R such that Unpack1(ai(x)) = ei. Let us denote
A(r,s) := {a1(x)r · aj(x)s}1<j≤n. For example, A(0,D) = {a2(x)D, · · · , an(x)D},
A(D,0) = {a1(x)D}, and A(1,D−1) = {a1(x)a2(x)D−1, · · · , a1(x)an(x)D−1}.

Step 1: Consider the following set of level-t packings.

At :=
⋃

r+s=t
0<s

A(r,s)

We will show that At is linearly independent in R for all t ≤ D by induction on
t. The case where t = 1 is true by the linear homomorphic property at level-1
(Remark 3.1): A1 = {a2(x), · · · , an(x)} (See also Prop. 5.2).

Suppose At is linearly independent for some t < D. View At+1 as A(0,t+1) ∪
a1(x) · At. Suppose

∑
aα(x)∈At+1

(cα · aα(x)) = 0, for some cα ∈ Zpk . Then,

by linear homomorphic property at level-(t + 1), cα = 0 must hold for all
aα(x) ∈ A(0,t+1), since elements of a1(x) · At unpack to 0 and A(0,t+1) unpacks
to a linearly independent set by construction. Subsequently, we have again the
following equality: ∑

aα(x)∈a1(x)·At

(cα · aα(x)) = 0.

Meanwhile, since a1(x) is a unit inR (Remark 5.2) andAt is linearly independent
by induction hypothesis, cα = 0 must also hold for all aα(x) ∈ a1(x) · At. Thus,
At is linearly independent in R for all t ≤ D.
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Step 2: Now consider the set A := AD ∪ {a1(x)D}, which coincides with
{a1(x)D, · · · , an(x)D} ∪ a1(x) · AD−1. Suppose

∑
aα(x)∈A(cα · aα(x)) = 0, for

some cα ∈ Zpk . Then, by linear homomorphic property at level-D, cα = 0 must
hold for all aα(x) ∈ {a1(x)D, · · · , an(x)D}, since elements of a1(x) · AD−1 un-
pack to 0 and {a1(x)D, · · · , an(x)D} unpacks to a linearly independent set by
construction. Subsequently, we have again the following equality:∑

aα(x)∈a1(x)·AD−1

(cα · aα(x)) = 0.

Meanwhile, since a1(x) is a unit in R and AD−1 is linearly independent by
Step 1, cα = 0 must also hold for all aα(x) ∈ a1(x) · AD−1. Thus, A is linearly
independent, and therefore d ≥ |A| = D(n− 1)+ 1 must hold (Remark 5.1). ⊓⊔

The following are direct consequences of our theorem.

Example 5.1. Degree-D packing methods for Zpk -messages into Zpk [x]/f(x),
where f(x) is a degree-d irreducible polynomial modulo p, have packing density
of no larger than 1

D + 1
d ·(1−

1
D ). Consequently, degree-D CRT packing methods

for Zpk -messages into Zpk [x]/f(x), where f(x) factors into r distinct irreducible
factors modulo p, have packing density of no larger than 1

D + r
deg(f) · (1 − 1

D )

(Section 4.5). In particular, degree-D CRT packing methods for Z2k -messages
into Z2t [x]/ΦM (x), where M is odd and ΦM (x) factors into distinct degree-d ir-
reducible factors modulo p, have packing density of no larger than 1

D+ 1
d ·(1−

1
D ).

That is, when parameters are carefully chosen, the MHz2k packing already
nearly reach the optimal packing density for packing methods for Zpk -messages
into Zpk [x]/f(x) (Section 4.4). Thus, if one wants to construct a degree-D pack-
ing method for Z2k -messages into Z2t [x]/ΦM (x) with substantially better density
than the MHz2k packing, the only possibility is choosing t > k or not employing
the CRT approach. (See also Example 5.6)

Example 5.2 (RMFE over Galois Ring). Consider RMFE over Galois rings for
copies of Zpk into a larger Galois ring isomorphic to Zpk [x]/f(x), which is ex-
actly the setting of Thm. 5.1. The theorem states that such RMFE cannot have
packing density larger than 1

2 + 1
2 deg(f) . To the best of our knowledge, this is

the first upper bound result on packing density of RMFE over Galois rings. Our
theorem also yields upper bounds on packing density of degree-D generalization
of RMFE over Galois rings.

Example 5.3. For D > 1, consider degree-D packing methods for Zpk -messages
into Zpt [x]/f(x), where f(x) is irreducible modulo p. By Prop. 5.2, when t > k,
we cannot achieve a perfect packing density 1. When t = k, we cannot achieve
a perfect packing density 1 unless deg(f) = 1, by Thm. 5.1. That is, there is no
perfect degree-D packing method for Zpk -messages into Zpt [x]/f(x), when f(x)
is irreducible modulo p and deg(f) > 1.

Example 5.4. For D > 1, consider degree-D packing methods for Zpk -messages
into Zpt [x]/f(x), where f(x) is square-free modulo p. By Example 5.3, there is
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no perfect degree-D CRT packing method for Zpk -messages into Zpt [x]/f(x),
unless f(x) splits into distinct linear factors. In particular, there is no perfect
degree-D CRT packing method for Z2k -messages into Z2t [x]/ΦM (x) when M is
odd.

The following theorem is a bit more general version of Thm. 5.1 which has
no restriction on the quotient polynomial. However, it assumes the existence of
a unit of R which unpacks to an element of Zn

pk .

Theorem 5.2. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Zn

pk

into R := Zpk [x]/f(x). Suppose a linear combination of {ai(x)}i∈I is a unit in R,
where each ai(x) ∈ R satisfies Unpack1(ai(x)) = ei. Then, d ≥ D · (n− |I|)+ |I|
holds.

Proof (Sketch). Assume u(x) :=
∑

i∈I ci · ai(x) is a unit, for some ci ∈ Zpk .
The proof is exactly same as that of Thm. 5.1, but with only difference in the
definition of A(r,s) and A. Here, we define A(r,s) := {u(x)r · aj(x)s}j /∈I and
A := AD ∪ {ai(x)D}i∈I . ⊓⊔

The following are some consequences of Thm. 5.2.

Example 5.5. We can revisit upper bound on packing density of CRT pack-
ings (Section 4.5) using Thm. 5.2. Consider degree-D CRT packing methods
(Packi,Unpacki)

D
i=1 for Zpk -messages into R := Zpk [x]/f(x), where f(x) factors

into r distinct irreducible factors modulo p. Let f(x) =
∏r

i=1 fi(x) via Hensel
lifting.

By Remark 5.2, for each i ∈ [r], we have a(i)(x) such that (i) a(i)(x) is a unit
modulo fı(x) if and only if ı = i and (ii) Unpack1(a

(i)(x)) = ej for some distinct
j ∈ [n]. Then,

∑r
i=1 a

(i)(x) is a unit in R. That is, we have |I| = r for Thm. 5.2,
yielding the upper bound 1

D + r
deg(f) · (1−

1
D ) previously shown in Example 5.1.

Example 5.6. Suppose one wants to design a degree-D packing method for Zpk -
messages into Zpk [x]/f(x) which has a packing density substantially larger than
1/D. The only possibility is designing a packing method where every unit element
of Zpk [x]/f(x) unpacks to elements of Zn

pk with very few zero coordinates or fails
to unpack at level-1.

5.3 Packing Density of Fpk-Message Packings

In this subsection, we examine upper bounds on packing density of degree-D Fpk -
message packings. We begin with an upper bound for degree-1 packing methods,
which is an analogue of Prop. 5.2. Unlike the simple and plausible statement,
the proof is quite involved. In particular, it depends on Remark 5.1. The follow-
ing proposition says that we cannot reduce the degree of quotient polynomial
significantly and tower the packings along a large modulus. Notice that there
are no restriction on t and f(x).
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Proposition 5.3. There exists a degree-1 packing method for Fn
pk into R :=

Zpt [x]/f(x), only if n · k ≤ deg(f).

Proof. Let (Pack1,Unpack1) be a degree-1 packing method for Fn
pk into R. Fix

a basis of Fpk as {β1, · · · , βk}. For each i ∈ [n] and j ∈ [k], choose aij(x) ∈ R
such that Unpack1(aij(x)) = βj ·ei. View R as a free Zpt-module of rank deg(f),
and consider the submodule ⟨aij(x)⟩i∈[n],j∈[k]. By linear homomorphic property
(Remark 3.1), when

∑n
i=1 cij ·aij(x) = 0 for ci ∈ Zpt , then ci = 0 (mod p) must

hold. Thus, {aij(x)}i∈[n],j∈[k] is a minimal generating set of ⟨aij(x)⟩i∈[n],j∈[k],
and therefore n · k ≤ deg(f) holds (Remark 5.1). ⊓⊔

In the rest of this subsection, we narrow our scope to packing methods for
Fn
pk into Zp[x]/f(x) with the prime modulus. Indeed, this setting is less general.

Nonetheless, our results still have interesting consequences (See Example 5.7 -
5.10).

Our main result in this subsection is the following theorem, which is a finite
field analogue of Thm. 5.1. However, it is much more involved since we must also
handle the multiplicative structure inside Fpk . Notice that our theorem subsumes
Prop. 5.3 as the D = 1 case in the t = 1 setting. The essence of the proof is again
a generic construction of a large set which is required to be linearly independent
regardless of specific structures of packing methods.

Theorem 5.3. Let B := {β1, · · · , βk} be a basis of Fpk as a Fp-vector space.
There exists a degree-D packing method for Fn

pk into R := Zp[x]/f(x) where

f(x) ∈ Zp[x] is a degree-d irreducible polynomial modulo p, only if the following
inequality holds.

d ≥ dim⟨βD
1 , · · · , βD

k ⟩+ (n− 1)

D∑
t=1

dim⟨βt
1, · · · , βt

k⟩

Proof. Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Fn

pk into R.

For each i ∈ [n] and j ∈ [k], choose aij(x) ∈ R such that Unpack1(aij(x)) =
βj · ei. For each s ∈ Z+, fix a basis Bs := {β(s)j}j of ⟨βs

1, · · · , βs
k⟩. Then, there

exist a
(s)
ij (x) ∈ R such that (i) Unpacks(a

(s)
ij (x)) = β

(s)
j · ei and (ii) a

(s)
ij (x)

is a linear combination of {aiȷ(x)s}ȷ∈[k]. Let us denote A(r,s) := {a11(x)r ·
a
(s)
ij (x)}1<i≤n & j∈[|Bs|].

Step 1: Consider the following set of level-t packings.

At :=
⋃

r+s=t
0<s

A(r,s)

We will show that At is linearly independent in R for all t ≤ D by induction on
t. The case where t = 1 is true by the linear homomorphic property at level-1
(Remark 3.1): A1 = {aij(x)}1<i≤n & j∈[k] (See also Prop. 5.2).
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Suppose At is linearly independent for some t < D. View At+1 as A(0,t+1) ∪
a11(x) · At. Suppose

∑
aα(x)∈At+1

(cα · aα(x)) = 0, for some cα ∈ Zp. Then,

by linear homomorphic property at level-(t + 1), cα = 0 must hold for all
aα(x) ∈ A(0,t+1), since elements of a11(x) · At unpack to 0 and A(0,t+1) unpacks
to a linearly independent set by construction. Subsequently, we have again the
following equality: ∑

aα(x)∈a11(x)·At

(cα · aα(x)) = 0.

Meanwhile, since a11(x) is non-zero (and hence a unit in R) (Remark 3.1) and
At is linearly independent by induction hypothesis, cα = 0 must also hold for
all aα(x) ∈ a11(x) · At. Thus, At is linearly independent in R for all t ≤ D.

Step 2: Now consider the set A := AD ∪{a(D)
1j (x)}j∈[|BD|], which coincides with

{a(D)
ij (x)}i∈[n] & j∈[|BD|] ∪ a11(x) · AD−1. Suppose

∑
aα(x)∈A(cα · aα(x)) = 0, for

some cα ∈ Zp. Then, by linear homomorphic property at level-D, cα = 0 must

hold for all aα(x) ∈ {a(D)
ij (x)}i∈[n] & j∈[|BD|], since elements of a11(x) · AD−1

unpack to 0 and {a(D)
ij (x)}i∈[n] & j∈[|BD|] unpacks to a linearly independent set

by construction. Subsequently, we have again the following equality:∑
aα(x)∈a11(x)·AD−1

(cα · aα(x)) = 0.

Meanwhile, since a11(x) is a unit in R and AD−1 is linearly independent by
Step 1, cα = 0 must also hold for all aα(x) ∈ a11(x) · AD−1. Thus, A is linearly
independent, and therefore d ≥ |A| must hold. ⊓⊔

To have a more concrete bound, we prove the following proposition. Let σ
(t)

pk

denote the multiplicative order of p modulo pk−1
gcd(pk−1,t)

.

Proposition 5.4. Let β be a primitive element of Fpk . Let σ
(t)

pk be defined as

the multiplicative order of p modulo pk−1
gcd(pk−1,t)

. Regarding the primitive element

basis {1, β, β2, · · · , βk−1}, the following equality holds.

dim⟨1t, βt, β2t, · · · , β(k−1)t⟩ = σ
(t)

pk

Proof. Observe that dim⟨1t, βt, β2t, · · · , β(k−1)t⟩ is equal to the degree of the
minimal polynomial of βt in Fp[x]. The degree of the minimal polynomial of βt

is again equal to the length of the orbit of βt regarding Frobenius map x 7→ xp.
Since β is a primitive element, we are finding the smallest s ∈ Z+ satisfying

t = t · ps (mod pk − 1), which is σ
(t)

pk by definition. ⊓⊔
Corollary 5.1. There exists a degree-D packing method for Fn

pk into R :=

Zp[x]/f(x) where f(x) ∈ Zp[x] is a degree-d irreducible polynomial modulo p,
only if the following inequality holds.

d ≥ σ
(D)

pk + (n− 1)

D∑
t=1

σ
(t)

pk
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Proof. Choose a primitive element β of Fpk and apply Thm. 5.3 on the basis
{1, β, β2, · · · , βk−1} with the help of Prop. 5.4. ⊓⊔

Remark 5.3. Since gcd(pk − 1, t) ≤ t, we have σ
(t)

pk ≥ logp (
pk−1

t ). Subsequently,

we have a very rough bound of σ
(t)

pk ≳ k−logp(t). Applying this bound to Cor. 5.1,
we have the following bound.

d ≥ k · (D · (n− 1) + 1)− logp(D · (D!)n−1)

The following are some consequences of our main result.

Example 5.7 (RMFE). Note that σ
(1)

pk and σ
(2)

pk are always k. Then, by Cor. 5.1,

degree-2 packing methods for Fpk -messages into Zp[x]/f(x), where f(x) is a

degree-d irreducible polynomial, have packing density of no larger than 1
2 + k

2d .

That is, packing density of RMFE is upper bounded by 1
2 +

k
2d . This is a known

result (See [CXY20]). However, previous proofs do not extend to higher-degree
cases (See Example 5.9) or to the Galois ring case (See Example 5.2).

Example 5.8 (Degree-2 Packing). By Example 5.7, degree-2 CRT packing meth-
ods for Fpk -messages into Zp[x]/f(x), where f(x) factors into r distinct irre-

ducible factors, have packing density of no larger than 1
2+

r·k
2 deg(f) (Section 4.5). In

particular, degree-2 CRT packing methods for F2k -messages into Z2[x]/ΦM (x),
where M is odd and ΦM (x) factors into distinct degree-d irreducible factors
modulo 2, have packing density of no larger than 1

2 + k
2d .

Suppose one wants to design a degree-2 packing method for Fpk -messages into
Zpt [x]/f(x) which has a packing density substantially larger than 1/2. Note that
choosing t ≥ 2 already yields packing density no larger than 1/2 by Prop. 5.3.
Thus, only possibility is not employing the CRT approach (See also Remark 5.4).

Example 5.9 (Degree-3 Packing). Note that σ
(3)

pk is always k, except the case

of pk = 4. Then, by Cor. 5.1, degree-3 packing methods for Fpk -messages into
Zp[x]/f(x), where f(x) is a degree-d irreducible polynomial, have packing den-
sity of no larger than 1

3+
2k
3d , unless p

k = 4. Consequently, degree-3 CRT packing
methods for Fpk -messages into Zp[x]/f(x), where f(x) factors into r distinct irre-

ducible factors, have packing density of no larger than 1
3 +

2r·k
3 deg(f) . In particular,

degree-3 CRT packing methods for F2k -messages into Z2[x]/ΦM (x), where M is
odd and ΦM (x) factors into distinct degree-d irreducible factors modulo 2, have
packing density of no larger than 1

3 + 2k
3d , given k ̸= 2.

Suppose one wants to design a degree-3 packing method for Fpk -messages into
Zpt [x]/f(x) which has a packing density substantially larger than 1/3. Note that
choosing t ≥ 3 already yields packing density no larger than 1/3 by Prop. 5.3.
Thus, only possibility is choosing t = 2 or not employing the CRT approach (See
also Remark 5.4).

Example 5.10. By the same arguments as in Example 5.3 and 5.4, we have the
following: For D > 1, there is no perfect degree-D packing method for Fpk -
messages into Zpt [x]/f(x), when f(x) is irreducible modulo p and deg(f) > 1.
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Thus, there is no perfect degree-D CRT packing method for Fpk -messages into
Zpt [x]/f(x), unless f(x) splits into distinct linear factors. In particular, there is
no perfect degree-D CRT packing method for F2k -messages into Z2t [x]/ΦM (x)
when M is odd.

The following theorem is a bit more general version of Thm. 5.3 which has
no restriction on the quotient polynomial. However, it assumes the existence of
a unit of R which unpacks to an element of Fn

pk .

Theorem 5.4. Let B := {β1, · · · , βk} be a basis of Fpk as a Fp-vector space. Let
(Packi,Unpacki)

D
i=1 be a degree-D packing method for Fn

pk into R := Zp[x]/f(x).

Suppose a linear combination of {aij(x)}i∈I & j∈[k] is a unit in R, where each
aij(x) ∈ R satisfies Unpack1(aij(x)) = βj · ei. Then, the following inequality
holds.

d ≥ |I| · dim⟨βD
1 , · · · , βD

k ⟩+ (n− |I|)
D∑
t=1

dim⟨βt
1, · · · , βt

k⟩

Proof (Sketch). Assume u(x) :=
∑

i∈I & j∈[k] cij · aij(x) is a unit, for some ci ∈
Zp. The proof is exactly same as that of Thm. 5.3, but with only difference in the

definition of A(r,s) and A. Here, we define A(r,s) := {u(x)r · a(s)ij (x)}i/∈I & j∈[|Bs|]

and A := AD ∪ {a(D)
ij (x)}i∈I & j∈[|BD|]. ⊓⊔

Remark 5.4. As Cor. 5.1, and Rem. 5.3, we can apply Prop. 5.4 to have a more
concrete version of Thm. 5.4. The theorem has analogous consequences of Ex-
ample 5.5 and 5.6.

5.4 Proof of Prop. 5.1

We believe the following proposition is a classic fact in algebra. Nonetheless,
since we could not find a proper reference containing the statement, we give a
proof. Our proof is a more or less verbatim of the proof given in [Con] for the
analogous fact on principal ideal domains (PID).

Proposition 5.1. When R is a principal ideal ring (PIR), every submodule of
a free R-module of rank n can be finitely generated with n generators.

Proof. A free R-module of rank n is isomorphic to Rn, so we can assume the
free R-module is Rn without loss of generality. We proceed by induction on n.
The case where n = 0 is trivial. The case where n = 1 is true since R is a PIR:
every R-submodule of R is a principal ideal, i.e. can be finitely generated with
1 generator.

Suppose the statement is proved for all free R-modules of rank not larger
than n. Let M be a submodule of Rn+1. Let π : Rn+1 → Rn be the projection
which maps an element of Rn+1 to its first n coordintes. First consider the image
of π|M , the restriction of π toM . Indeed, the image is πM (Rn+1) = π(M), which
is a submodule of Rn and therefore has at most n generators by the inductive



28 J. H. Cheon and K. Lee

hypothesis. Thus, we can put π(M) =
∑k

i=1R · bi for some b1, · · · , bk ∈ Rn

where k ≤ n. Let bi = π(ai) for some ai ∈ M . Then, πM (Rn+1) = π(M) =∑k
i=1R · π(ai). And ker(π|M ) = M ∩ ker(π). Notice ker(π) ∼= R as R-modules.

Since R is a PIR, ker(π|M ) = R · a0 for some a0 ∈M .

We will show M =
∑k

i=0R · ai, and therefore M can be generated by k + 1

generators a0, · · · ,ak with k+1 ≤ n+1. It is clear that
∑k

i=0R·ai ⊂M . For the
other direction, choose an arbitrary a ∈ M . Then, from the above discussions,
π|M (a) = r1π(a1)+· · ·+rkπ(ak) = π(r1a1+· · ·+rkak) for some r1, · · · , rk ∈ R.

Therefore a−
∑k

i=1 riai ∈ ker(π|M ), and a−
∑k

i=1 riai = r0a0 for some r0 ∈ R.

Thus a = r0a0 + r1a1 + · · ·+ rkak ∈
∑k

i=0R · ai, and M ⊂
∑k

i=0R · ai. ⊓⊔
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6 Level-consistency

In this section, we define and examine the concept of level-consistency, which is a
favorable property for a packing method to have. Our main results are necessary
and sufficient conditions for a polynomial ring to allow a level-consistent packing
method for Zpk and Fpk , where p is a prime (See Section 3.2). They limit the
achievable efficiency of level-consistent packing methods, yielding the impossib-
lity of designing an efficient packing methods while satisfying level-consistency.
We begin with the definition.

6.1 Definition and Basic Facts

Definition 6.1. For D > 1, a degree-D packing method (Packi,Unpacki)
D
i=1 is

called level-consistent if Unpacki is all identical for 1 ≤ i ≤ D. Otherwise, we
say a packing method is level-dependent.

The notion of level-consistency captures the property whether packings are
decodable in an identical way at different levels (Prop. 6.1). In an algebraic
viewpoint, a level-consistent packing has a single Unpack for all levels, which is
a ring homomorphism defined on where it does not abort. The level-consistency
is a desirable feature, as it allows homomorphic computation between different
packing levels. On the other hand, when working with level-dependent packing
methods, we must be careful about whether the operands are packed in the same
packing level as we perform homomorphic computation on packed messages.

For instance, Overdrive2k [OSV20] and MHz2k [CKL21] design and utilize
Z2k -message packing methods, which are level-dependent, to construct HE-based
MPC protocols over Z2k following the approach of SPDZ [DPSZ12]. Their level-
dependency complicates the so-called reshare protocol which re-encrypts a level-
zero HE ciphertext to a fresh ciphertext allowing two-level HE to be sufficient
for their purpose. The problem here is that a masking HE ciphertext is used
twice in the reshare protocol: once to mask the input ciphertext of level-zero
and once to reconstruct the fresh ciphertext of level-one by subtracting it. While
the difference of HE levels can be managed easily with modulus-switching, that
of the packing levels seems to be problematic.

In order to remedy this issue caused by level-dependency, Overdrive2k and
MHz2k had to come up with their own solutions. Overdrive2k provides two
masking ciphertexts having the same messages but in different packing : one with
level-zero packing and the other with level-one packing. However, this solution
substantially degrades the efficiency of the protocol. MHz2k resolves this issue
by a technical trick which does not cause any extra cost, closing the gap between
the level-consistent and level-dependent packing methods in this case.

This issue does not arise in SPDZ-family [DPSZ12, DKL+13, KPR18, BCS19]
over a finite field Zp, where the conventional packing method is already level-
consistent (See Example 3.2). For detailed discussion, refer to [CKL21]. In a later
subsection, we prove the impossibility of designing an efficient Z2k -message pack-
ings while satisfying level-consistency. This justifies the use of level-dependent
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packings in SPDZ-like MPC protocols over Z2k and highlights the usefulness of
the trick proposed by MHz2k [CKL21].

The following proposition says that a level-consistent packing method can be
trivially extended to an arbitrary degree.

Proposition 6.1. A level-consistent degree-D packing method P can be ex-
tended to a level-consistent degree-D′ packing method P ′ for arbitrary D′ > D.

Proof. When P is (Packi,Unpack)
D
i=1, just define P ′ as (Pack1,Unpack)

D′

i=1. ⊓⊔

A crucial tool when dealing with a level-consistent packing method is idem-
potents. We extensively leverage the concept of idempotents and their properties
when proving our main results on level-consistency. Here, we list and prove the
properties of idempotents related to level-consistent packing methods, which are
used afterwards.

The following proposition on idempotents is a classic result in finite ring
theory. Nevertheless, for completeness, we give a proof.

Proposition 6.2. Let R be a finite ring. For all a ∈ R, there exists a positive
integer s such that as is idempotent, i.e. a2s = as.

Proof. Consider the sequence (ai)i∈Z+ of R-elements. Since R is finite, there is
an element of R which appears infinitely many times in the sequence. Thus, we
can choose i, j ∈ Z+ satisfying ai = aj and 2i ≤ j. Letting s = j − i proves the
proposition: as = aj−2iai = aj−2iaj = a2s. ⊓⊔

The following proposition says that any idempotent a must have an idem-
potent packing a(x), regarding to a level-consistent method.

Proposition 6.3. Let R and R be rings. Let P be a level-consistent packing
method for Rn into R with identical unpacking algorithms Unpack. For any idem-
potent a ∈ Rn, there exists an idempotent a(x) ∈ R such that Unpack(a(x)) = a.

Proof. First, extend P to a degree-D packing method for a sufficiently large D
(Prop. 6.1). Let a ∈ Rn be idempotent. Choose an element ã(x) ∈ R such that
Unpack(ã(x)) = a. By Prop. 6.2, there exists s ∈ Z+ such that a(x) := ã(x)s is
idempotent in R. Then, Unpack(a(x)) = Unpack(ã(x)s) = as = a holds. ⊓⊔

The following proposition is a slight generalization of the property of Galois
rings having only 0 and 1 as idempotents.

Proposition 6.4. For a prime p, let R := Zpt [x]/f(x) and f(x) = g(x)ℓ

(mod p), where g(x) is an irreducible polynomial in Fp[x]. Then, an idempo-
tent element of R is either 0 or 1.

Proof. Suppose a(x) ∈ R is idempotent. Then, f(x) divides a(x)2 − a(x) in
Zpt [x], and therefore g(x)ℓ divides a(x)(a(x)−1) in Fp[x]. Since g(x) is irreducible
and a(x) and a(x)− 1 are coprime in Fp[x], a(x) equals 0 or 1 in R/pR.
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Suppose a(x) = 1 in R/pR. We can represent a(x) as 1 + ps · ã(x) for
some t ≥ s > 0, where ã(x) is not divisible by p. Then, 0 = a(x)2 − a(x) =
p2s · ã(x)2 + ps · ã(x) in R. Since s > 0 and p ∤ ã(x), s must be t and therefore
a(x) = 1 in R. We can similarly show that if a(x) = 0 in R/pR then a(x) = 0
in R. ⊓⊔

Another tool which is useful when dealing with level-consistent packing meth-
ods is nilpotents. The following proposition says any nilpotent must unpack to
a nilpotent, given it is a valid packing regarding to a level-consistent method.

Proposition 6.5. Let R and R be rings, and let P be a level-consistent pack-
ing method for Rn into R with identical unpacking algorithms Unpack. For any
nilpotent a(x) ∈ R, Unpack(a(x)) outputs a nilpotent a ∈ Rn or a failure ⊥.

Proof. Suppose Unpack(a(x)) outputs a ∈ Rn. Let s be a positive integer such
that a(x)s = 0 in R. Extend P to a degree-s packing method (Prop. 6.1). Then,
as = Unpack(a(x)s) = Unpack(0) = 0 holds. ⊓⊔

Lastly, we introduce the notion of one-to-one packing which plays an impor-
tant role in the proof of our main result.

Definition 6.2 (One-to-one Packing). Let R and R be rings. We say a pack-
ing method (Packi,Unpacki)

D
i=1 for Rn into R is one-to-one, if there is unique

a(x) ∈ R such that Unpacki(a(x)) = a for all a ∈ Rn and i ∈ [D].

6.2 Level-consistency in Zpk-Message Packings

Our main result on level-consistency in Zpk -message packings is the following
theorem. Our theorem illustrates a necessary condition for a surjective packing
method for Zpk -messages to exist. As mentioned, the proof regards the notion
of idempotents (Prop. 6.3, 6.4).

Theorem 6.1. For a prime p, let f(x) ∈ Zpt [x] have exactly r distinct irre-
ducible factors in Zp[x]. There exists a level-consistent packing method for Zn

pk

into Zpt [x]/f(x) only if n ≤ r.

Proof. Let f(x) be factorized into
∏r

i=1 f̄i(x) in Zp[x], where each f̄i(x) is a
power of a distinct irreducible polynomial in Zp[x]. The factorization can be
lifted upto Zpt [x] via Hensel lifting. Let f(x) =

∏r
i=1 fi(x), where fi(x) ∈ Zpt [x]

is the Hensel lift of f̄i(x) satisfying f̄i(x) = fi(x) (mod p). By Prop. 6.4, there
are 2r idempotents in Zpt [x]/f(x) ≈

∏r
i=1 Zpt [x]/fi(x), namely {0, 1}r. Also

note that there are 2n idempotents in Zn
pk , namely {0, 1}n.

By Prop. 6.3, for each idempotent a of Zn
pk , there is a distinct idempotent a(x)

of Zpt [x]/f(x) such that Unpack(a(x)) = a. Thus, the number of idempotents in
Zn
pk cannot be larger than that of Zpt [x]/f(x), and n ≤ r holds. ⊓⊔

The following are some consequences of Thm. 6.1. We begin with an opti-
mality result for HELib packing (Section 4.1).
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Example 6.1. Essentially, Thm. 6.1 asserts that HELib packing offers the op-
timal packing density if level-consistency is required. As level-consistency is
more than a favorable feature for fully homomorphic encryption(FHE), our re-
sult reassures that HELib packing is an excellent packing method to use for
FHE, and it strongly justifies long line of researches based on such packing
method [GHS12, HS15, CH18].

The following examples illustrate the hardness of designing an efficient HE
packing method for Z2k -messages while satisfying level-consistency. We have
similar results for Zpk -messages with p ̸= 2.

Example 6.2. When M = 2m, since ΦM (x) = (x+ 1)2
m−1

in F2[x], we can pack
at most one copy of Z2k into Z2t [x]/ΦM (x) while satisfying level-consistency.

Example 6.3. When M is an odd, ΦM (x) factors into a product of distinct ir-
reducible polynomials of degree d = ordM (2) in F2[x]. Let ϕ(M) = r · d. Then,
we can pack at most r copies of Z2k into Z2t [x]/ΦM (x) while satisfying level-
consistency. Note that, since d > logM by definition, r < ϕ(M)/ logM .

Example 6.4. WhenM = 2s ·M ′, whereM ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of Z2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying level-consistency.

Thm. 6.1 also yields the impossibility of level-consistent RMFEs over Galois
ring for Zpk -messages.

Example 6.5. In GR(pt, d) ∼= Zpt [x]/f(x) with a degree-d f(x) which is irre-
ducible modulo p, we can pack at most one copy of Zpk while satisfying level-
consistency. That is, there is no meaningful level-consistent RMFE over Galois
ring for Zpk -messages.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 6.1 is also a sufficient one.

Theorem 6.2. If there are r distinct irreducible factors of f(x) ∈ Zpt [x] in
Fp[x], then there is a level-consistent packing method for Zr

pk into Zpt [x]/f(x).

Proof. Let f(x) be factorized into
∏r

i=1 gi(x)
ℓi in Fp[x], where each gi(x) is

distinct irreducible polynomial in Fp[x]. The factorization can be lifted upto
Zpk [x] via Hensel lifting. Let f(x) =

∏r
i=1 fi(x), where fi(x) ∈ Zpk [x] is the

Hensel lift of gi(x)
ℓi satisfying fi(x) = gi(x)

ℓi (mod p). Then, we can identify
Zpk [x]/f(x) with

∏r
i=1 Zpk [x]/fi(x) via the CRT ring isomorphism.

There is a trivial ring monomorphism ψ : Zr
pk → Zpk [x]/f(x) defined as the

following.

ψ(a1, · · · , ar) = (a1, · · · , ar) ∈
r∏

i=1

Zpk [x]/fi(x)
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Define the function ψ−1 : Zpk [x]/f(x) → Zr
pk ∪ {⊥} as the following.

ψ−1(a(x)) =

{
a, if there is a ∈ Zr

pk such that ψ(a) = a(x)

⊥, otherwise

Let πk and ιk denote the projection and injection between Zpt [x]/f(x) and
Zpk [x]/f(x) respectively. Define Pack := ιk ◦ψ and Unpack := ψ−1 ◦ πk (Fig. 5).
Then, it is straightforward that (Pack,Unpack) is a level-consistent packing
method. ⊓⊔

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Pack

ψ
ιk

(a) Pack

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Unpack

πk
ψ−1

(b) Unpack

Fig. 5: Definitions of Pack and Unpack in Thm. 6.2

Corollary 6.1. For a prime p, let f(x) ∈ Zpt [x] have exactly r distinct irre-
ducible factors in Zp[x]. There exists a level-consistent packing method for Zn

pk

into Zpt [x]/f(x) if and only if n ≤ r.

Proof. Straightforward from Thm. 6.1 and 6.2. ⊓⊔

6.3 Level-consistency in Fpk-Message Packings

Our main result on level-consistency in Fpk -message packings is the following
theorem. It is a finite field analogue of Thm. 6.1 which is on Zpk -message pack-
ings. Our theorem illustrates a necessary condition for a level-consistent packing
method for Fpk -messages to exist.

Theorem 6.3. Let r be the number of distinct irreducible factors of f(x) ∈
Zpt [x] in Fp[x] whose degrees are multiples of k. There exists a level-consistent
packing method Fn

pk into Zpt [x]/f(x) only if n ≤ r.

Proof. See Section 6.4. ⊓⊔

The following are some consequences of Thm. 6.3. They illustrate the hard-
ness of designing an efficient HE packing method for F2k -messages while satis-
fying level-consistency. We have similar results for Fpk -messages with p ̸= 2.
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Example 6.6. When M = 2m, since ΦM (x) = (x+ 1)2
m−1

in F2[x], we can only
pack copies of F2 into Z2t [x]/ΦM (x) while satisfying level-consistency. Even in
that case, we can pack at most one copy of F2.

Example 6.7. When M is an odd, ΦM (x) factors into a product of distinct ir-
reducible polynomials of degree d = ordM (2) in F2[x]. Let ϕ(M) = r · d. Then,
we can only pack copies of F2k such that k|d into Z2t [x]/ΦM (x) while satisfying
level-consistency. In that case, we can pack at most r copies of F2k . Note that,
since d > logM by definition, r < ϕ(M)/ logM . For instance, if one wants to
pack F28 into Z2t [x]/ΦM (x) with an odd M while satisfying level-consistency,
then one must choose M such that ordM (2) is a multiple of 8.

Example 6.8. WhenM = 2s ·M ′, whereM ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of F2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying level-consistency.

Thm. 6.3 also yields the impossibility of level-consistent RMFEs.

Example 6.9. In Fpd
∼= Zp[x]/f(x) with a degree-d irreducible f(x), we can

pack at most one copy of Fpk while satisfying level-consistency. Furthermore,
if k ∤ d, we cannot pack even a single copy of Fpk into Fpd while satisfying
level-consistency. That is, there is no meaningful level-consistent RMFE.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 6.3 is also a sufficient one.

Theorem 6.4. Suppose there are r distinct irreducible factors of f(x) ∈ Zpt [x]
in Fp[x] whose degrees are multiples of k. Then, there exists a level-consistent
packing method Fr

pk into Zpt [x]/f(x).

Proof. Let g(x) ∈ Fp[x] be the product of r distinct irreducible factors of f(x)
in Fp[x] whose degrees are multiples of k. Then, there is a ring monomorphism
ψ : Fr

pk → Fp[x]/g(x). Define the function ψ−1 : Fp[x]/g(x) → Fr
pk ∪ {⊥} as the

following.

ψ−1(a(x)) =

{
a, if there is a ∈ Fr

pk such that ψ(a) = a(x)

⊥, otherwise

Let πp and ιp denote the projection and injection between Zpk [x]/f(x) and
Fp[x]/f(x), and let πg and ιg denote those of Fp[x]/f(x) and Fp[x]/g(x) respec-
tively.

Define Pack := ιp ◦ ιg ◦ ψ and Unpack := ψ−1 ◦ πh ◦ πp (Fig. 6). Then, it is
straightforward that (Pack,Unpack) is a level-consistent packing method. ⊓⊔

Corollary 6.2. Let r be the number of distinct irreducible factors of f(x) ∈
Zpt [x] in Fp[x] whose degrees are multiples of k. There exists a level-consistent
packing method Fn

pk into Zpt [x]/f(x) if and only if n ≤ r

Proof. Straightforward from Thm. 6.3 and 6.4. ⊓⊔



Limits of Polynomial Packings for Zpk and Fpk 35

Frpk Zpt [x]/f(x)

Fp[x]/f(x)

Fp[x]/g(x)

Pack

ψ

ιp

ιg

(a) Pack

Frpk Zpt [x]/f(x)

Fp[x]/f(x)

Fp[x]/g(x)

Unpack

πp

πg

ψ−1

(b) Unpack

Fig. 6: Definitions of Pack and Unpack in Thm. 6.4

6.4 Proof of Thm. 6.3

In this subsection, we prove Thm. 6.3. The proof is elementary, but consists
of a number of steps. As mentioned, idempotents (Prop. 6.3) and nilpotents
(Prop. 6.5) are at the core of the proof. Even if they are not directly referred,
many parts of the proof are motivated from the concepts. Also notice the crucial
role of one-to-one property in the proof of Lem. 6.4.

Theorem 6.3. Let r be the number of distinct irreducible factors of f(x) ∈
Zpt [x] in Fp[x] whose degrees are multiples of k. There exists a level-consistent
packing method Fn

pk into Zpt [x]/f(x) only if n ≤ r.

Proof. Straightforward from Lem. 6.1, 6.2, 6.3, and 6.4. ⊓⊔

Lemma 6.1. Suppose there exists a level-consistent packing method for Fn
pk into

Zpt [x]/f(x). Then, there exists a level-consistent packing method for Fn
pk into

Fp[x]/f(x).

Proof. Let (Pack,Unpack) be a level-consistent packing method for Fn
pk into

Zpt [x]/f(x). Suppose a(x), b(x) ∈ Zpt [x]/f(x) satisfy Unpack(a(x)) = a and
Unpack(b(x)) = b for some a, b ∈ Fn

pk . If a(x) = b(x) modulo p, then a = b

since (i) Unpack(a(x)− b(x)) = a−b, (ii) a(x)− b(x) is nilpotent in Zpt [x]/f(x),
and (iii) 0 is the only nilpotent element in Fn

pk (Prop. 6.5). Thus, for all a(x) ∈
Zpt [x]/f(x), Unpack(a(x)) is fully determined by a(x) mod p, given it does not
output a failure ⊥.

Let Pack′ = πp ◦ Pack where πp denotes the projection from Zpt [x]/f(x) to
Fp[x]/f(x). Let Unpack

′ : Fp[x]/f(x) → Fn
pk ∪ {⊥} be defined as the following.

Unpack(a(x)) =

a,
if there is ã(x) ∈ Zpt [x]/f(x) such that πp(ã(x)) = a(x)
and Unpack(ã(x)) = a for some a ∈ Fn

pk

⊥, otherwise

Then, it is straightforward that (Pack′,Unpack′) is a level-consistent packing
method. ⊓⊔
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Lemma 6.2. Suppose there exists a level-consistent packing method for Fn
pk into

Fp[x]/f(x). Then, there exists a level-consistent packing method for Fn
pk into

Fp[x]/ĝ(x), where ĝ(x) is the largest square-free factor of f(x).

Proof. Let (Pack,Unpack) be a level-consistent packing method for Fn
pk into

Fp[x]/f(x). Note that a(x) ∈ Fp[x]/f(x) is nilpotent if and only if it is divisible
by ĝ(x). We can use the same argument used in the proof of Lem. 6.1 with the
help of Prop. 6.5. Then, for all a(x) ∈ Fp[x]/f(x), Unpack(a(x)) is fully deter-
mined by a(x) mod ĝ(x), given it does not output a failure ⊥. Consequently,
we can design a level-consistent packing method (Pack′,Unpack′) for Fn

pk into

Fp[x]/ĝ(x) as in the proof of Lem. 6.1. ⊓⊔

Lemma 6.3. Suppose there exists a level-consistent packing method for Fn
pk

into Fp[x]/ĝ(x) where ĝ(x) is square-free. Then, there exists a factor g(x) of
ĝ(x) which allows a level-consistent one-to-one packing method for Fn

pk into

Fp[x]/g(x).

Proof. Let (Pack,Unpack) be a level-consistent packing method for Fn
pk intoR :=

Fp[x]/ĝ(x). Let ĝ(x) factorizes into r distinct irreducible polynomials {ĝi(x)}ri=1.
We identify R with

∏r
i=1 Fp[x]/ĝi(x).

Step 1: For a subset A ⊂ [r], let eA(x) ∈ R denote the element which is 1 modulo
ĝi(x) for i ∈ A and 0 modulo ĝi(x) for i /∈ A. Note that eA∪B(x) = eA(x) +
eB(x)− eA(x) · eB(x). Thus, if Unpack(eA(x)) = 0 and Unpack(eB(x)) = 0, then
Unpack(eA∪B(x)) is also 0 by the level-consistency. We can therefore choose the
maximal set I ⊂ [r] such that Unpack(eI(x)) = 0.

Step 2: Let g(x) :=
∏

i/∈I ĝi(x). Consider the ideal Z ⊂ R generated by eI(x),
which coincides with g(x) · R. Then, for any a(x) ∈ Z, Unpack(a(x)) outputs 0
or a failure ⊥, since a(x) · eI(x) = a(x). Thus, for all a(x) ∈ R, Unpack(a(x)) is
fully determined by a(x) mod g(x), given it does not output a failure ⊥.

Step 3: Let a(x) ∈ R satisfies Unpack(a(x)) = 0. Suppose a(x) is non-zero
modulo ĝi(x) if i ∈ A and 0 modulo ĝi(x) if i /∈ A, for some A ⊂ [r]. Since
Fp[x]/ĝi(x) are fields, there exists s ∈ Z+ such that a(x)s = eA(x). By definition,
A ⊂ I holds. Thus, for any a(x) ∈ R satisfying Unpack(a(x)) = 0, it holds that
a(x) ∈ Z, i.e. a(x) = 0 (mod g(x)).

Step 4: Following the proof of Lem. 6.1 together with Step 2, we can design a
level-consistent packing method (Pack′,Unpack′) for Fn

pk into Fp[x]/g(x). More-

over, such (Pack′,Unpack′) is a one-to-one packing method by Step 3. ⊓⊔

Lemma 6.4. Let g(x) ∈ Fp[x] be square-free and r be the number of distinct
irreducible factors of g(x) whose degrees are multiples of k. There exists a level-
consistent one-to-one packing method for Fn

pk into Fp[x]/g(x), only if r ≤ n.

Proof. Let P = (Pack,Unpack) be a level-consistent one-to-one packing method
for Fn

pk into R := Fp[x]/g(x). Let g(x) factorizes into r̂ distinct irreducible poly-

nomials {gi(x)}r̂i=1 and let di := deg(gi). We identify R with
∏r

i=1 Fp[x]/gi(x).
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For a subset A ⊂ [r̂], let eA(x) ∈ R denote the element which is 1 modulo gi(x)
for i ∈ A and 0 modulo gi(x) for i /∈ A. Let ei ∈ Fn

pk denote the element with 1
in its i-th coordinate and 0 in the others.

Since P is one-to-one, there is only one element which unpacks to ei, which
we can set as eAi

(x) for some Ai ⊂ [r̂] by Prop. 6.3 and 6.4. Moreover, Ai∩Aj = ∅
for distinct i, j since eAi

(x) ·eAj
(x) must be 0 to be unpacked to 0 by one-to-one

property.
Let u ∈ Fpk be a multiplicative generator of Fpk , and let ui(x) ∈ R be

the element which unpacks to u · ei. Observe that ui(x) mod gj(x) is non-zero

if and only if j ∈ Ai, since (u · ei)p
k−1 = ei and consequently ui(x)

pk−1 =
eAi(x). Moreover, for j ∈ Ai, the multiplicative order s of ui(x) mod gj(x) in
Fp[x]/gj(x) ∼= Fpdj must divide pk − 1.

Meanwhile, if the multiplicative order s is less than pk − 1, then ui(x)
s =

eAi(x) = 1 (mod gj(x)). This contradicts the one-to-one property, since there
must be another element of R, a power of ui(x)

s − eAi(x), which unpacks to
ei and is 0 modulo gj(x). Consequently, s = pk − 1 must hold. To allow such
conditions on the orders, dj ’s must be multiples of k for j ∈ Ai. Thus, for each
ei, we can choose distinct gj(x) whose degree is a multiple of k, and r ≤ n
holds. ⊓⊔
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7 Surjectivity

In this section, we define and examine the concept of surjectivity, which is a
favorable property for a packing method to have. Our main results are necessary
and sufficient conditions for a polynomial ring to allow a surjective packing
method for Zpk and Fpk , where p is a prime (See Section 3.2). They limit the
achievable efficiency of surjective packing methods, yielding the impossiblity of
designing an efficient packing methods while satisfying surjectivity. We begin
with the definition.

7.1 Definition and Basic Facts

Definition 7.1 (Surjective Packing). Let R be a ring. We say a degree-D
packing method (Packi,Unpacki)

D
i=1 into R is surjective12 if there is no a(x) ∈ R

such that Unpack1(a(x)) =⊥.

For a packing method for Rn into R, the notion of surjectivity captures the
condition whether every element of R is decodable. This distiction is essential
when designing a cryptographic protocol with the packing method in a malicious
setting, where an adversary might freely deviate from the protocol. If there is
a(x) ∈ R such that Unpack1(a(x)) =⊥, a malicious adversary might make use of
a(x), when one is supposed to use a valid packing according to the protocol. The
deviation may not only harm the correctness of the protocol, but also may leak
information of honest parties, if such invalid packings are not properly handled.

For instance, Overdrive2k [OSV20] and MHz2k [CKL21] design and utilize
Z2k -message packings which are not surjective to construct HE-based MPC pro-
tocols over Z2k following the approach of SPDZ [DPSZ12]. In order to mitigate
the invalid packings, they perform ZKPoMK (Zero-Knowledge Proof of Message
Knowledge) to ensure an HE ciphertext encrypts a validly packed plaintext.13

ZKPoMK do not appear in SPDZ-family [DPSZ12, DKL+13, KPR18, BCS19]
over a finite field Zp, where the conventional packing method is already sur-
jective with perfect packing density (See Example 3.2). In a later subsection,
we prove the impossibility of designing an efficient Z2k -message packings while
satisfying surjectivity. This justifies the use of non-surjective packings and the
need of ZKPoMK in SPDZ-like MPC protocols over Z2k .

The following proposition says that the definition of surjectivity trivially
extends to all levels. The fact is used throughout this section.

Proposition 7.1. Suppose (Packi,Unpacki)
D
i=1 is a degree-D surjective packing

method for Rn into R. Then, there is no a(x) ∈ R such that Unpacki(a(x)) =⊥,
for all i ∈ [D].

12 In a sense that any element of R could be an image of Pack1(·).
13 ZKPoMK was first conceptualized in MHZ2k [CKL21], but it is also performed in

Overdrive2k [OSV20] implicitly. For detailed discussion, refer to [CKL21].
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Proof. By surjectivity and multiplicative homomorphic property, it holds that
Unpack2(a(x)) = Unpack1(1)⊙ Unpack1(a(x)) ∈ Rn, for all a(x) ∈ R. Likewise,
we can proceed inductively upto UnpackD(·). ⊓⊔

A crucial fact when dealing with a surjective packing method is the following
proposition on zero-sets. We extensively use the proposition when proving our
main results on surjectivity.

Proposition 7.2 (Zero-set Ideal). Let R and R be rings. For D > 1, let
(Packi,Unpacki)

D
i=1 be a degree-D surjective packing method for Rn into R. Let

Zi be the set consisting of elements a(x) ∈ R such that Unpacki(a(x)) = 0.
Then, Z = Z1 = · · · = ZD for some ideal Z of R. Moreover, |Z| = |R|/|R|n.

Proof. By Prop. 7.1 and multiplicative homomorphic property, R · Zi ⊂ Zi+1

holds for i < D. Since 1 ∈ R, Zi ⊂ R · Zi holds, and therefore Zi ⊂ R · Zi ⊂
Zi+1. By Prop. 7.1 and additive homomorphic property, Zi’s have the same size,
namely |Zi| = |R|/|R|n. Thus, Zi = R · Zi = Zi+1 holds. We can now put
Z := Z1 = · · · = ZD. Moreover, since R · Z = Z holds, Z is an ideal of R. ⊓⊔

7.2 Surjectivity in Zpk-Message Packings

Our main result on surjectivity in Zpk -message packings is the following theorem.
Our theorem illustrates a necessary condition for a surjective packing method
for Zpk -messages to exist.

Theorem 7.1. Let ř be the number of linear factors of f(x) ∈ Zpt [x] in Zpk [x]
which are mutually distinct modulo p. For D > 1, there exists a degree-D sur-
jective packing method Zn

pk into Zpt [x]/f(x) only if n ≤ ř.

Proof. See Section 7.4. ⊓⊔

Before we proceed, we state a simple fact on irreducibility of Φ2m(x) over a
power-of-two modulus.

Proposition 7.3 (Irreducibility of Φ2m(x)). For M = 2m, cyclotomic poly-
nomial ΦM (x) is irreducible modulo 4, i.e. there are no f(x), g(x) ∈ Z4[x] such
that f(x) · g(x) = ΦM (x) (mod 4) and deg(f),deg(g) ≥ 1.

Proof. Suppose such f(x) and g(x) exist. Let f(x) :=
∑df

i=0 fi · xi and similarly

for g(x), with df + dg = 2m−1. Since ΦM (x) factors into (x + 1)2
m−1

in F2[x],
f(x) and g(x) must be xdf + 1 = (x + 1)df and xdg + 1 = (x + 1)dg in F2[x],
respectively. Thus, fi = 0 (mod 2) for 0 < i < df , and gi = 0 (mod 2) for
0 < i < dg. Meanwhile, we can assume fdf

= gdg = 1 (mod 4) without loss
of generality. Also note that, since f0 · g0 = 1 (mod 4), either f0 = g0 = 1 or
f0 = g0 = 3 must hold modulo 4.

Suppose df ̸= dg, and without loss of generality assume df > dg. Consider

the dg-th coefficient of ΦM (x). It is 0 mudulo 2 as ΦM (x) = x2
m−1

+1. However,
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computing it as
∑dg

i=0 fi · gdg−i = f0 · gdg
(mod 2), it is 1 modulo 2 and leads to

a contradiction. Thus, df = dg must hold.
Consider the dg-th coefficient of ΦM (x), again. It is 0 mudulo 4 as ΦM (x) =

x2
m−1

+1. However, computing it as
∑dg

i=0 fi · gdg−i = f0 · gdg
+ fdf

· g0 (mod 4),
it is 2 modulo 4 and leads to a contradiction. Thus, such f(x) and g(x) do not
exist. ⊓⊔

The following are some consequences of Thm. 7.1. They illustrate the im-
possibility of designing a surjective HE packing method for Z2k -messages with
cyclotomic polynomials. We have similar results for Zpk -messages with p ̸= 2.

Example 7.1. When M = 2m, by Prop. 7.3, we cannot pack any copies of Z2k

into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2 homomorphism.

Example 7.2. When M is an odd, ΦM (x) factors into a product of distinct ir-
reducible polynomials of degree d = ordM (2) in F2[x]. Thus, we cannot pack
any copies of Z2k into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2
homomorphism.

Example 7.3. WhenM = 2s ·M ′, whereM ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) in
Z[x]. Thus, by Example 7.2, we cannot pack any copies of Z2k into Z2t [x]/ΦM (x)
while satisfying surjectivity and degree-2 homomorphism.

Thm. 7.1 also yields the impossibility of surjective RMFEs over Galois ring
for Zpk -messages.

Example 7.4. In GR(pt, d) ∼= Zpt [x]/f(x) with a degree-d f(x) which is irre-
ducible modulo p, we cannot pack any copy of Zpk while satisfying surjectivity,
unless d = 1. That is, there is no meaningful surjective RMFE over Galois ring
for Zpk -messages.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 7.1 is also a sufficient one.

Theorem 7.2. Suppose there are r linear factors of f(x) ∈ Zpt [x] in Zpk [x]
which are mutually distinct modulo p. Then, there exists a level-consistent sur-
jective packing method Zr

pk into Zpt [x]/f(x).

Proof. Let g(x) ∈ Zpk [x] be the product of such r linear factors of f(x) in Zpk [x].

Then, there is a CRT ring isomophism ψ : Zr
pk

∼=−→ Zpk [x]/g(x). Let πk and ιk
denote the projection and injection between Zpt [x]/f(x) and Zpk [x]/f(x), and
let πg and ιg denote those of Zpk [x]/f(x) and Zpk [x]/g(x) respectively.

Define Pack := ιk ◦ ιg ◦ ψ and Unpack := ψ−1 ◦ πh ◦ πk (Fig. 7). Then,
it is straightforward that (Pack,Unpack) is a level-consistent surjective packing
method. ⊓⊔

Corollary 7.1. Let r be the number of linear factors of f(x) ∈ Zpt [x] in Zpk [x]
which are mutually distinct modulo p. For D > 1, there exists a degree-D sur-
jective packing method Zn

pk into Zpt [x]/f(x) if and only if n ≤ r.
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Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Zpk [x]/g(x)

Pack

ψ

ιk

ιg

(a) Pack

Zrpk Zpt [x]/f(x)

Zpk [x]/f(x)

Zpk [x]/g(x)

Unpack

πk

πg

ψ−1

(b) Unpack

Fig. 7: Definitions of Pack and Unpack in Thm. 7.2

Proof. Straightforward from Thm. 7.1 and 7.2. ⊓⊔

The following corollary suggests that surjectivity is a somewhat stronger
notion than level-consistency for Zpk -message packings.

Corollary 7.2. For D > 1, if there exists a degree-D surjective packing method
for Zn

pk into Zpt [x]/f(x), then there exists a level-consistent surjective packing

method for Zn
pk into Zpt [x]/f(x).

Proof. Straightforward from Thm. 7.1 and 7.2. ⊓⊔

7.3 Surjectivity in Fpk-Message Packings

Our main result on surjectivity in Fpk -message packings is the following theorem.
It is a finite field analogue of Thm. 7.1 which is on Zpk -message packings. Our
theorem illustrates a necessary condition for a surjective packing method for
Fpk -messages to exist.

Theorem 7.3. Let r be the number of distinct degree-k irreducible factors of
f(x) ∈ Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective packing
method Fn

pk into Zpt [x]/f(x) only if n ≤ r.

Proof. See Section 7.5. ⊓⊔

The following are some consequences of Thm. 7.3. They illustrate the hard-
ness of designing an efficient HE packing method for F2k -messages while satis-
fying surjectivity. We have similar results for Fpk -messages with p ̸= 2.

Example 7.5. When M = 2m, since ΦM (x) = (x+ 1)2
m−1

in F2[x], we can only
pack copies of F2 into Z2t [x]/ΦM (x) while satisfying surjectivity and degree-2
homomorphism. Even in that case, we can pack at most one copy of F2.

Example 7.6. When M is an odd, ΦM (x) factors into a product of distinct ir-
reducible polynomials of degree d = ordM (2) in F2[x]. Let ϕ(M) = r · d. Then,
we can only pack copies of F2d into Z2t [x]/ΦM (x) while satisfying surjectivity
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and degree-2 homomorphism. In that case, we can pack at most r copies of F2d .
Note that, since d > logM by definition, r < ϕ(M)/ logM .

For instance, if one wants to pack F28 into Z2t [x]/ΦM (x) with an odd M
while satisfying the conditions, then one must choose M such that ordM (2) = 8.
However, such M cannot be larger than (28 − 1) and might be too small for a
secure parameter of HE.

Example 7.7. WhenM = 2s ·M ′, whereM ′ is an odd, ΦM (x) = ΦM ′(−x2s−1

) =

ΦM ′(x)2
s−1

in F2[x]. Thus, we cannot pack more copies of F2k into Z2t [x]/ΦM (x)
than Z2t [x]/ΦM ′(x) while satisfying surjectivity and degree-2 homomorphism.

Meanwhile, using such M can be useful when packing copies of a small field:
it enables to meet certain level of HE security by enlarging the degree of the
ring. See Example 7.6.

Thm. 7.3 also yields the impossibility of surjective RMFEs.

Example 7.8. In Fpd
∼= Zp[x]/f(x) with a degree-d irreducible f(x), we cannot

pack even a single copy of Fpk while satisfying surjectivity and degree-2 homo-
morphism, if k ̸= d. That is, there is no meaningful surjective RMFE.

On the other side, we have the following theorem with a constructive proof,
which asserts that the necessary condition in Thm. 7.3 is also a sufficient one.

Theorem 7.4. If there are r distinct degree-k irreducible factors of f(x) ∈
Zpt [x] in Fp[x], then there exists a level-consistent surjective packing method
Fr
pk into Zpt [x]/f(x).

Proof. Let g(x) ∈ Fp[x] be the product of r distinct degree-k irreducible factors

of f(x) in Fp[x]. Then, there is a ring isomophism ψ : Fr
pk

∼=−→ Fp[x]/g(x). Let πp
and ιp denote the projection and injection between Zpk [x]/f(x) and Fp[x]/f(x),
and let πg and ιg denote those of Fp[x]/f(x) and Fp[x]/g(x) respectively.

Define Pack := ιp ◦ ιg ◦ ψ and Unpack := ψ−1 ◦ πh ◦ πp (Fig. 8). Then,
it is straightforward that (Pack,Unpack) is a level-consistent surjective packing
method. ⊓⊔

Corollary 7.3. Let r be the number of distinct degree-k irreducible factors of
f(x) ∈ Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective packing
method for Fn

pk into Zpt [x]/f(x) if and only if n ≤ r.

Proof. Straightforward from Thm. 7.3 and 7.4. ⊓⊔

The following corollary suggests that surjectivity is a somewhat stronger
notion than level-consistency, also in the Fpk case.

Corollary 7.4. For D > 1, if there exists a degree-D surjective packing method
for Fn

pk into Zpt [x]/f(x), then there exists a level-consistent surjective packing

method for Fn
pk into Zpt [x]/f(x).

Proof. Straightforward from Thm. 7.3 and 7.4. ⊓⊔
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Frpk Zpt [x]/f(x)

Fp[x]/f(x)

Fp[x]/g(x)

Pack
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Fp[x]/f(x)

Fp[x]/g(x)

Unpack

πp

πg

ψ−1

(b) Unpack

Fig. 8: Definitions of Pack and Unpack in Thm. 7.4

7.4 Proof of Thm. 7.1

In this subsection, we prove Thm. 7.1. The proof is elementary, but consists of a
number of steps. As mentioned, Prop. 7.2 plays an important role in the proof.

Theorem 7.1. Let ř be the number of linear factors of f(x) ∈ Zpt [x] in Zpk [x]
which are mutually distinct modulo p. For D > 1, there exists a degree-D sur-
jective packing method Zn

pk into Zpt [x]/f(x) only if n ≤ ř.

Proof. Straightforward from Lem. 7.1, 7.2, and 7.3. ⊓⊔

Lemma 7.1. For D > 1, if there exists a degree-D surjective packing method
for Zn

pk into Zpt [x]/f(x), then there exists a degree-D surjective packing method

for Zn
pk into Zpk [x]/f(x).

Proof. Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method for Zn

pk

into Zpt [x]/f(x). For all b(x) ∈ Zpt [x]/f(x), since Unpacki(b(x)) = b for some b ∈
Zn
pk by surjectivity(Prop. 7.1), Unpacki(p

k · b(x)) = 0 holds. Thus, at any level-i

and for all a(x) ∈ Zpt [x]/f(x), Unpacki(a(x)) is fully determined by a(x) mod pk.

Let Pack′i = πk ◦ Packi and Unpack′i = Unpacki ◦ ιk, where πk and ιk denote
the projection and injection between Zpt [x]/f(x) and Zpk [x]/f(x) respectively.
Then, it is straightforward that (Pack′i,Unpack

′
i)

D
i=1 is a degree-D surjective pack-

ing method. ⊓⊔

For the remaining parts of this subsection, let f(x) be a monic polynomial
in Zpk [x], and let R := Zpk [x]/f(x). Let f(x) be factorized into

∏r
i=1 gi(x)

ℓi in
Fp[x], where each gi(x) is distinct irreducible polynomial in Fp[x]. The factoriza-
tion can be lifted upto Zpk [x] via Hensel lifting. Let f(x) =

∏r
i=1 fi(x), where

fi(x) ∈ Zpk [x] is the Hensel lift of gi(x)
ℓi satisfying fi(x) = gi(x)

ℓi (mod p).
Let dj := deg(fi). Then, we can identify R with

∏r
i=1 Zpk [x]/fi(x) via the CRT

ring isomorphism. We denote as Ri for the subring of R which is isomorphic
to Zpk [x]/fi(x) according to the CRT isomorphism. Let Z be the zero-set ideal
defined in Prop. 7.2
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Lemma 7.2. Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method

for Zn
pk into R, for some D > 1. For each standard unit vector ei ∈ Zn

pk , there

exists ai(x) such that Unpack1(ai(x)) = ei and ai(x) ∈ Rj for some j ∈ [r].
Moreover, such ai(x) is a unit in Rj, and such j is distinct for all i’s.

Proof. Let ai(x) satisfy Unpack1(ai(x)) = ei, and let Ai ⊂ [r] be the set of j’s
such that ai(x) is non-zero modulo fj(x). Without loss of generality, assume
that ai(x) has the smallest such subset of [r], among the elements satisfying
Unpack1(·) = ei.

Step 1: Suppose, for j ∈ Ai, ai(x) (mod fj(x)) is a non-unit in Zpk [x]/fj(x).
Let Unpack1(ej(x)) outputs an element in Zn

pk with ci in its i-th coordinate.

Then, at level-1, (ej(x) − ci · ai(x)) unpacks to an element with 0 in its i-th
coordinate. Thus, the following holds.

Unpack2

(
ai(x) ·

(
ej(x)− ci · ai(x)

))
= 0

That is, ai(x) · (ej(x)− ci ·ai(x)) ∈ Z. Meanwhile, notice that (ej(x)− ci ·ai(x))
(mod fj(x)) is a unit, since Zpk [x]/fj(x) is a local ring. Therefore, ai(x) ·ej(x) ∈
Z and ai(x)−ai(x) ·ej(x) unpacks to ei at level-1, contradicting the assumption
on the size of Ai. Thus, for all j ∈ Ai, ai(x) (mod fj(x)) must be a multiplicative
unit in Zpk [x]/fj(x).

Step 2: Consider ej(x) · ai(x) ∈ Rj , and let Unpack1(ej(x) · ai(x)) outputs an
element in Zn

pk with c̃i in its i-th coordinate. Then, at level-1, (ej(x) · ai(x)− c̃i ·
ai(x)) unpacks to an element with 0 in its i-th coordinate. Thus, the following
holds.

Unpack2

(
ai(x) ·

(
ej(x) · ai(x)− c̃i · ai(x)

))
= 0

That is, ai(x)
2 · (ej(x)− c̃i) ∈ Z, and therefore ai(x) · (ej(x)− c̃i) ∈ Z since ai(x)

(mod fȷ(x)) is a multiplicative unit in Zpk [x]/fȷ(x) for all ȷ ∈ Ai by Step 1.
Consequently, it holds that Unpack1(ej(x) · ai(x)) = Unpack1(c̃i · ai(x)) = c̃i · ei.

Suppose c̃i ∈ Zpk is a non-unit. Then, (1 − c̃i) is a unit, and (1 − c̃i)
−1 ·

(ai(x) − ej(x) · ai(x)) unpacks to ei at level-1 contradicting the assumption on
the size of Ai. Thus, c̃i is a unit. Then, c̃−1

i · ej(x) ·ai(x) unpacks to ei at level-1
satisfying the desired conditions.

Step 3: Suppose ai′(x) is also in Rj and unpacks to a standard unit vector ei′ at
level-1. Then, ai(x)·ai′(x) unpacks to 0 at level-2, and therefore ai(x)·ai′(x) ∈ Z.
However, since ai(x) and ai′(x) are both units in Rj , all elements of Rj must
be included in Z, leading to a contradiction. ⊓⊔

Lemma 7.3. Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method

for Zn
pk into R, for some D > 1. If there exists ai(x) ∈ Rj which satisfies

Unpack1(ai(x)) = ei for a standard unit vector ei ∈ Zn
pk , then fj(x) has a linear

factor in Zpk [x].
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Proof. Consider x ·ai(x) ∈ Rj . Suppose Unpack1(x ·ai(x)) outputs an element in
Zn
pk with ci in its i-th coordinate. Then, at level-1, (x ·ai(x)− ci ·ai(x)) unpacks

to an element with 0 in its i-th coordinate. Thus, the following holds.

Unpack2

((
x · ai(x)− ci · ai(x)

)
· ai(x)

)
= Unpack2

(
(x− ci) · ai(x)2

)
= 0

That is, (x− ci) · ai(x)2 ∈ Z, and therefore (x− ci) · ej(x) ∈ Z as ai(x) is a unit
in Rj (Lem. 7.2).

Now consider (x − ci) ∈ Zpk [x]/fj(x) and the ideal ⟨x − ci⟩ ⊂ Zpk [x]/fj(x)

generated by it. The ideal ⟨x − ci⟩ contains at least pk·(dj−1) elements, namely
(x − ci) · h(x)’s for h(x) ∈ Zpk [x] with deg(h) < dj − 1, which are multiples of
(x− ci) in Z[x]. On the other hand, ⟨x− ci⟩ cannot contain more than pk·dj/pk

elements: this is becauseRj must contain pk distinct elements modulo Z, namely
c · ai(x)’s for c ∈ Zpk . Thus, |⟨x − ci⟩| = pk·(dj−1) holds. In particular, it must
hold that (x− ci)

dj − fj(x) is a multiple of (x− ci) in Z[x]. Consequently, fj(x)
has a linear factor (x− ci) in Zpk [x]. ⊓⊔

7.5 Proof of Thm. 7.3

In this subsection, we prove Thm. 7.3. The proof is elementary, but consists of a
number of steps. As mentioned, Prop. 7.2 plays an important role in the proof.

Theorem 7.3. Let r be the number of distinct degree-k irreducible factors of
f(x) ∈ Zpt [x] in Fp[x]. For D > 1, there exists a degree-D surjective packing
method Fn

pk into Zpt [x]/f(x) only if n ≤ r.

Proof. Straightforward from Lem. 7.4, 7.5, and 7.6. ⊓⊔

Lemma 7.4. For D > 1, if there exists a degree-D surjective packing method
for Fn

pk into Zpt [x]/f(x), then there exists a degree-D surjective packing method

for Fn
pk into Fp[x]/f(x).

Proof. Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method for Fn

pk

into Zpt [x]/f(x). For all b(x) ∈ Zpt [x]/f(x), since Unpacki(b(x)) = b for some
b ∈ Fn

pk by surjectivity, Unpacki(p · b(x)) = 0 holds. Thus, at any level-i and for

all a(x) ∈ Zpt [x]/f(x), Unpacki(a(x)) is fully determined by a(x) mod p.

Let Pack′i = πp◦Packi and Unpack′i = Unpacki◦ιp, where πp and ιp denote the
projection and injection between Zpt [x]/f(x) and Fp[x]/f(x) respectively. Then,
it is straightforward that (Pack′i,Unpack

′
i)

D
i=1 is a degree-D surjective packing

method. ⊓⊔

Lemma 7.5. For D > 1, if there exists a degree-D surjective packing method
for Fn

pk into R := Fp[x]/f(x), then there exists g(x) ∈ Fp[x] which divides f(x),

is of degree k ·n, and allows a degree-D packing method for Fn
pk into Fp[x]/g(x).
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Proof. Let (Packi,Unpacki)
D
i=1 be a degree-D surjective packing method for Fn

pk

into R. By Prop. 7.2, the sets Zi consisting of elements a(x) ∈ R such that
Unpacki(a(x)) = 0 coincide with an ideal Z = ǧ(x) · R for some ǧ(x) ∈ Fp[x]
which divides f(x), as cR is a principal ideal ring. Let g(x) := f(x)/ǧ(x). Then,
R/Z ∼= Fp[x]/g(x), and therefore deg(g) = k ·n since |R/Z| = pkn. Moreover, at
any level-i and for all a(x) ∈ Fp[x]/f(x), Unpacki(a(x)) is fully determined by
a(x) mod g(x).

Let Pack′i = πg◦Packi and Unpack′i = Unpacki◦ιg, where πg and ιg denote the
projection and injection between Fp[x]/f(x) and Fp[x]/g(x) respectively. Then,
it is straightforward that (Pack′i,Unpack

′
i)

D
i=1 is a degree-D packing method. ⊓⊔

Lemma 7.6. For D > 1, there exists a degree-D packing method for Fn
pk into

R := Fp[x]/g(x), where g(x) ∈ Fp[x] is a polynomial of degree k · n, only if g(x)
factors into n distinct degree-k irreducible polynomials.

Proof. Step 1: Let (Packi,Unpacki)
D
i=1 be a degree-D packing method for Fn

pk

into R. Since |Fn
pk | = |R|, all Packi and Unpacki are bijective, and 0 ∈ R is the

only element which packs 0 at each level-i. Thus, a(x) · b(x) = 0 if and only if
a ⊙ b = 0, where a := Unpack1(a(x)) and similar for b, since Unpack1(a(x)) ⊙
Unpack1(b(x)) = Unpack2(a(x) · b(x)).

Step 2: Suppose g(x) is not square-free. Then, there exists a non-zero a(x) ∈ R
such that a(x)2 = 0. By Step 1, a2 = 0, where a := Unpack1(a(x)). However,
there is no non-zero a ∈ Fn

pk satisfying a2 = 0. Thus, g(x) is square-free. Let g(x)

factorizes into r distinct irreducible polynomials {gi(x)}ri=1 and let di := deg(gi).
We identify Fp[x]/g(x) with

∏r
i=1 Fp[x]/gi(x).

Step 3: Note that for any a ∈ Fn
pk with s zero-coordinates, there are pks elements

in Fn
pk whose Hadamard product with a is 0. Then, consider ěi(x) ∈ Fp[x]/g(x)

which corresponds to the vector of polynomials in
∏r

i=1 Fp[x]/gi(x) with 0 in
its i-th coordinate and 1 in the others. Observe that there are pdi elements
in Fp[x]/g(x) whose product with ěi(x) is 0. By Step 1 and the above facts,
pdi = pks for some s. Thus, the degree di is a positive multiple of k and we can
let di := kci where

∑r
i=1 ci = n.

Step 4: By Step 1, the number of zero-divisors in Fn
pk and R must be same. The

number of elements which are not zero-divisors in Fn
pk is (pk − 1)n. Meanwhile,

the number of elements which are not zero-divisors in R is
∏r

i=1(p
di − 1). Thus,

the following must hold.

r∏
i=1

(pdi − 1) = (pk − 1)n =

r∏
i=1

(pk − 1)ci

Observe that pdi − 1 ≥ (pk − 1)ci holds, where the equality holds if and only if
ci = 1. Thus, di = k for all 1 ≤ i ≤ r. ⊓⊔
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8 Open Problems

(i) The authors believe that the statement of Thm. 5.1 and 5.3 are also true in the
general case of packing methods for Zpk -messages into Zpt [x]/f(x) with t ̸= k.
However, we could not eventually prove it or come up with a counterexample
(See also Example 5.1, 5.8, and 5.9). We would be happy to see a proof for these
generalized conjectures or a counterexample (e.g. a degree-2 packing method
for Zn

pk into Zpt [x]/f(x), where f(x) is irreducible in Fp[x], achieving density of

larger than 1/2 + 1/(2 deg(f))).

(ii) The authors believe that CRT approach is optimal for packing density (Sec-
tion 4.5). However, we could not eventually prove it or come up with a coun-
terexample (See also Example 5.6 and Remark 5.4). We would be happy to see
a stronger version of Thm. 5.2 and 5.4, or a packing method which is not based
on CRT approach but outperforms known packing methods.

(iii) Although MHz2k packing offers nearly optimal packing density of 1/2 in
some circumstances, its density is highly dependent on the degree of the quotient
polynomials. On the other hand, recent RMFE constructions [CCXY18] offer
asymptotically optimal density, namely Θ(1) regarding the degree of quotient
polynomial. However, in a concrete manner they are substantially below the
optimal density of 1/2, namely below 1/4 (when packing prime field elements14).
There is a gap between asymptotically optimal constructions and concretely
(near)-optimal constructions. Also, there is a substantial gap between upper
bounds and the achieved packing densities in general parameters. We would be
happy to see better upper bounds on packing density or new constructions of
packing methods with better density, reducing these gaps.
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