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Abstract
This paper presents AdVeil, a private targeted advertising
ecosystem with strong security guarantees for end users.
AdVeil is built around an untrusted advertising network which
targets relevant ads to users and processes metrics without
learning any of the users’ personal information in the process.
Our targeting protocol combines private information re-

trieval with locality-sensitive hashing for nearest neighbor
search. User data is kept locally on the client, giving users
full control over and transparency into the contents of their
targeting profiles.
AdVeil supports private billing metrics, allowing the ad

network to correctly charge advertisers and pay websites for
publishing ads. This is done without the ad network learning
which user interacted with which ads. AdVeil achieves this
using an anonymizing proxy (e.g., Tor) along with unlinkable
anonymous tokens to identify and prevent fraud.
We build a prototype implementation of AdVeil to demon-

strate its potential for real-world deployment. Our evaluation
shows that AdVeil scales to ad networks with millions of tar-
geting categories. Targeting from a set of 1 million possible
categories takes roughly 1.6 seconds with a single 16-core
server and is highly parallelizable. Targeting is performed
out-of-band (e.g., on a daily basis) while ad delivery happens
in real time as users browse the web. Verifying reports (for
fraud prevention) requires less than 300 microseconds per
report.

1 Introduction

Internet advertising is a $140 billion industry that relies on
pervasive surveillance of people for the purpose of serving
them relevant advertisements [30]. Termed targeted advertis-
ing, this process has been the focus of recent controversy due
to the often highly personal nature of the data being used and
the invasive collection practices [50, 85, 97]. Proposals for
moving away from targeted advertising often tout contextual
advertising as a private alternative [62, 72, 94]. Contextual

ads are chosen based only on the website they will be displayed
on, and not on personal data, preserving user privacy.
However, relevancy of advertisements for end users is

believed to increase user engagement which, consequently,
increases profit [66, 79]. Alphabet and Meta, the most promi-
nent ad-tech companies today, respectively earned 93% and
97% of their 2021 revenue from advertising alone [14, 83].
Because of this, ad networks have proven unwilling to move
away from targeted advertising and the associated surveillance.
Recent proposals from Google for a privacy preserving alter-
native [114, 115] fall short, with privacy advocates such as
the Electronic Frontier Foundation (EFF) referring to them as
“the opposite of privacy-preserving technology” [38]. Other
solutions for privacy-preserving targeted advertising have
practical performance limitations or fail to achieve accu-
racy comparable to non-private advertising [19, 24, 53, 55–
57, 63, 87, 107, 108, 114, 115].

AdVeil is a low-latency, scalable solution for targeted adver-
tising with clear-cut privacy guarantees. The main goal of
AdVeil is to provide unlinkability between users and their
personal data. We define personal data to mean any informa-
tion about the user, including which ads they interact with.
The interests and demographics contained in users’ targeting
profiles are not sent in the clear—even anonymized—to the
ad network as part of the targeting process. AdVeil ensures
that the ad network learns only which ads are viewed (and
clicked on) by users, but not which user saw any given ad.
AdVeil is (trivially) compliant with existing data privacy

legislation (e.g., GDPR [6] and CCPA [7]). User profiles are
held locally, with users themselves having full control over and
transparency into which of their features are used for targeting.
Theymay even opt out of targeted advertising entirely, inwhich
case websites can cleanly fall back to serving contextual ads.
Giving users control over their own data is important, since
companies have been found to use protected demographics
like gender, race, or religion to target advertisements in a
discriminatory manner [13, 31, 58, 116]. This practice can
limit the visibility of needed services, such as education, to
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people who might have benefited from them [41, 88].
Finally, addressing ad fraud is a crucial requirement for

online advertising [99, 122]. Malicious parties may attempt
to generate false ad interactions to artificially deplete an
advertiser’s budget or increase revenue for awebsite displaying
ads. AdVeil provides integrated fraud-prevention based on
unlinkable anonymous tokens, preventing abuse by botnets.

Components. AdVeil is realized using well-established build-
ing blocks which we combine to provide a scalable, accurate,
and privacy-preserving advertising ecosystem. We use single-
server private information retrieval (PIR) in conjunction with
nearest neighbor search to achieve private ad targeting. We
note that, while faster, the trust and availability requirements
for multi-server PIR make it an impractical choice in this
setting (Section 7.1.2). To the best of our knowledge, we are
the first to use PIR to privately target ads to users. Our fraud-
prevention mechanism is built using unlinkable tokens with
metadata [67, 96, 110], which enable anonymous flagging
of suspicious requests. A generic anonymizing proxy (e.g.,
Tor [43]) is used during delivery and reporting to hide user
identities. Targeting (unlike delivery and reporting) does not
run over the anonymizing proxy because targeting operates
on personal data which, without PIR, would need to be sent
to the Broker. See Section 5.2 for details.

Contributions:
1. A novel and efficient protocol for ad targeting that reveals
no information about the user profile.

2. A fraud prevention mechanism based on anonymous
tokens that is fully compatible with private browsing and
existing ad-fraud countermeasures.

3. Out-of-the-box compliance with privacy regulations such
as GDPR and CCPA, in addition to full compatibility
with existing anti-tracking and privacy-enhancing web
technologies.

4. An open-source prototype implementation [4] which we
empirically evaluate to demonstrate applicability to a
real-world deployment.

Limitations:
1. AdVeil imposes a computational overhead on the ad
network, which translates to higher operational costs.
However, we provide concrete cost estimates and show
that AdVeil can remain profitable, even when deployed
on commodity hardware (Section 7).

2. AdVeil is intended to disincentivize web tracking by
ad networks, but is not itself a defense against browser
fingerprinting or user tracking.

3. AdVeil requires cooperation of browsers. However, ma-
jor browser vendors already support aspects of privacy-
preserving advertising [87, 105, 114, 117].

Publisher
Ad

Ad $$
Advertiser

$AdCampaign

Targeting

Ad Click (Reditect)

User Cookie

User Profiles
Broker

= Privacy Violation User

Figure 1: A non-private targeted advertising pipeline.

2 Background

In this section, we introduce the existing, non-private advertis-
ing ecosystem. This ecosystem consists of a set of parties who
engage in different stages of an advertising pipeline, which
supports targeted advertising.

2.1 Participants
We use standard terminology for parties that comprise the
advertising pipeline [19, 53, 55, 63, 107]:

• Users: people browsing the web and viewing ads;
• Clients: web browsers (e.g., Firefox or Chrome) con-
trolled by users;

• Advertisers: companies with products and services to
advertise (e.g., Squarespace or Bose);

• Publishers: websites that display ads to users viewing
the webpage (e.g., wired.com or mobile apps);

• Broker: an ad-tech company (e.g., Google) responsi-
ble for matching users to ads, billing advertisers, and
compensating publishers for user interactions.

The Broker, or ad network, can be thought of as the governing
body of the advertising ecosystem. The Broker’s primary
goal is matching ads from an Advertiser to the users most
likely to engage with the ad. This is done via Publishers
which generate revenue by displaying ads to users visiting
their webpage.

2.2 Advertising pipeline
The advertising pipeline, shown in Figure 1, begins when
an Advertiser creates a new ad campaign with the Broker,
specifying a target audience and allocating a campaign budget.
Abstractly, the target audience can be specified as a feature
vector which contains information about the contents of the ad,
e.g., tags such as mechanical keyboards or outdoor gear.
In addition to the feature vectors provided by Advertisers, the
Broker possesses user profiles containing demographics and
interests, e.g., [woman, computers, high-income], about
users. These profiles are constructed by pervasively tracking
users on the web [116]. The Broker then targets ads to users
using their personal profile [90, 114]. This can be abstracted
as a nearest neighbor search problem between vectors [16].
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Figure 2: Overview of AdVeil. Description of the components is provided in Section 5.

When users are shown an ad on a publisher’s webpage, a
browser script generates an impression report for the Broker.
This is by far the most common type of user engagement,
followed by clicks, which are redirected through the Broker
to measure engagement. With impression reports and click
redirects, the Broker obtains necessary metrics for billing
Advertisers, compensating Publishers, and updating targeting
algorithms. Crucially, the Broker eliminates all fraudulent
views and clicks that it deems to be generated by bots, or
malicious Publishers and clients, to artificially skew perceived
user interactions with ads [99].

2.3 Styles of online advertising.
Online advertising consists of two main targeting strategies
for matching ads to users: contextual and behavioral.

Contextual advertising is done independently of the user’s
profile. Publishers display ads that are relevant to their own
content, which is presumably of interest to visiting users based
on their choice to access the Publisher’s site or app.

Behavioral ad targeting matches a user to a set of ads based on
the user’s profile. Each profile consists of the user’s browsing
behavior obtained by the Broker through user tracking. Retar-
geting is a common type of behavioral advertising in which
the Broker may preferentially display an Advertiser’s ads to
users who have previously interacted with the Advertiser.

Real-time Bidding is a mechanism associated with both
behavioral and contextual advertising. It occurs on-demand
when a user requests an ad and auctions the targeted category
to the highest bidding Advertiser.

2.4 Ad Fraud
In online advertising, fraud refers to ad interactions that never
involved a real user. Often, this is perpetrated by malicious

Publishers to increase their ad revenue, using botnets to
generate fake interactions. Defense strategies thus rely on
identifying traffic that originates from a botnet or otherwise
does not involve a human and covertly demonetizing it [67].
This is because fraud detection strategies are heuristic and
providing any feedback on whether an interaction was classi-
fied as fraudulent would allow the perpetrators to refine their
strategy and evade detection in the future.

3 The AdVeil system

AdVeil is a general-purpose ecosystem for targeted advertising
that provides privacy to users while retaining comparable
targeting accuracy, performance, metrics, and fraud prevention
for the Broker.

3.1 Overview
AdVeil follows the steps described in Figure 2, which transform
the advertising pipeline of Figure 1 into a private ecosystem.
AdVeil is designed around targeting, delivery, and reporting.
These three stages abstract the parts of the advertising pipeline
where personal user information is involved (see Figure 1).

Targeting (steps 1a to 1c in Figure 2) assigns relevant ads to
a user. The client holds a user profile (step 1a ) described as a
high-dimensional feature vector [90]. Targeting categories are
likewise associated with a feature vector describing attributes
of the ads in each category. The targeting protocol outputs a
selection of ad categories to the user’s client. In addition, for
each targeted category, the Broker provides a blind signature
on a special anonymous token with an embedded private
metadata bit [67] indicating whether the client is identified as
a “human” or a “bot.” The client later returns the unblinded
token (step 1c ) to the Broker in reporting, allowing the Broker
to discard “bot” reports.
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Delivery (steps 2a to 2c in Figure 2) retrieves a new ad
from a targeted category to display to the user. The client
first sends the category to the Broker via the anonymizing
proxy to hide its identity (step 2a ). The Broker selects an ad
for the given targeting category in real-time (step 2b). This
mechanism provides support for real-time bidding and other
on-demand delivery logic (see Section 5.3). As in Targeting,
the Broker provides a blind signature on a fresh anonymous
token with embedded public metadata bits [96], binding the
token signature to the returned ad. In reporting, the unblinded
token (step 2c ) ensures that the report is uniquely associated
to a delivered ad. The anonymizing proxy prevents the Broker
from linking the ad identifier to the client.

Reporting (steps 3a to 3c in Figure 2) provides interaction
reports (e.g., views and clicks; step 3a ) to the Broker. To
do so privately, the client batches and sends all reports to
the Broker at fixed time intervals through the anonymizing
proxy. The client also attaches the signed tokens obtained in
the targeting and delivery protocols. All reports with invalid
tokens are deemed fraudulent and discarded by the Broker. All
remaining (valid) reports are used by the Broker for metrics
and billing purposes (step 3c ).

3.2 Threat model and requirements
AdVeil has two independent security concerns: user privacy,
which we define as unlinkability between users and their
personal data, and fraud prevention, which we define as
reporting statistics that are resilient to botnets.

Personal data. Concretely, we define personal data to be
any information that is related, either directly or indirectly,
to a user’s targeting profile. This includes elements of the
user’s feature vector used for targeting, which may contain
demographics and interests, and are thus directly related to
the user’s profile. It also includes any ads or ad categories
the user sees or interacts with. This is because, given the
nature of targeting, ads are indirectly related to the user’s
profile through the targeting algorithm. While the Broker
may indirectly infer profile features from the ad reports, they
remain unlinked from the identity of any users (Section 6).
Importantly, ad reports are also not linkable to each other,
even those that are generated by the same user. As such, the
Broker never learns whether any two ads were seen by the
same or different users, limiting its ability to even indirectly
inferring personal data.

Adversarial model. AdVeil assumes a rational [48, 54, 119]
Broker thatmay try to link the identity of users to their personal
data. A rational Broker is incentivized to provide correct
functionality for its advertising ecosystem. We make two
assumptions about the Broker’s behavior in order to provide
user unlinkability:
1. the Broker does not deny service to honest users during
ad targeting or delivery and,

2. the Broker covertly excludes all fraudulent reports.

These assumptions mirror those made in online advertising
today and are upheld by the financial incentives of the Broker.
If the Broker refuses to serve ads, then it cannot collect revenue
from advertisers. Similarly, if fraudulent reports are included
in metrics, then the Broker violates the billing contract it has
with Publishers and Advertisers. Overtly excluding fraudulent
reports by denying service rather than using AdVeil’s covert
fraud prevention mechanism would alert bots of detection and
allow them to evolve their strategies.

Unlinkability. Privacy in AdVeil is defined as unlinkability
between users and their personal data. AdVeil guarantees
that any data that users report on cannot be tied back to
their identity. For accurate billing, it suffices to report the
interaction type (e.g., view or click) and the ad involved;
reports do not need to contain any information about the user.
Unlinkability is defined on a per-epoch basis, where each

epoch is the time period from the start of the targeting pro-
tocol through the end of reporting. Epochs hide timing
correlations between AdVeil’s protocols and ensure that all
users participating in a given epoch are part of an anonymity
set. The Broker cannot determine which user within an
anonymity set was responsible for any given report. We
discuss potential cross-epoch leakage resulting from intersec-
tion attacks [39, 40, 75, 77, 118] in Section 6.1. To achieve
unlinkability, we require that users make some requests via
an anonymizing proxy such as Tor [43] (any anonymizing
proxy hiding the sender identity is sufficient); see Section 4.
The anonymizing proxy ensures that, while the Broker learns
which ads are delivered, seen, and reported on, it does not
learn the identity of the user involved.

Fraud Prevention. AdVeil expects users of the system to
arbitrarily misbehave or be impersonated by large scale bot
networks. Users may try to avoid seeing ads entirely or incur
billing for ads that were never delivered.
AdVeil integrates a fraud-prevention mechanism using

anonymous tokens [67, 96] that cleanly composeswith existing
bot detectionmechanisms. Importantly, this is a covertmethod
of fraud prevention. That is, while the Broker can recognize
reports with invalid tokens, no other user can. This prevents
bots from using AdVeil’s tokens to learn which of their evasion
strategies were successful [67]. In addition, AdVeil ensures
that users only obtain tokens for the exact ads they were
delivered, preventing them from generating valid reports on
arbitrary ads. In AdVeil, fraud-prevention guarantees that:
1. (only) the Broker can identify fraudulent reports,
2. reports are never double-counted in billing, and
3. only delivered ads can be reported on.

We note that AdVeil does not make it easier for users to block
ads. If users opt out of targeted advertising by not participating,
then Publishers can automatically fall back to contextual ads
which do not require any user data or participation.
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Non-goals. While AdVeil supports the return of arbitrary data
during the reporting phase, it only requires reports to contain
the ad identifier. Determining what, if any, user features can
be reported on privately is an orthogonal problem. AdVeil is
compatible with any choice of data privacy mechanism such
as differential privacy [44] or k-anonymity [103] if any user
data beyond ad interactions is to be reported.

4 Building blocks

We design AdVeil around several cryptographic and data
structure building blocks. Overall, we aim to make AdVeil
general and modular, so as to fit a wide array of potential
deployment scenarios.

For private targeting, we use single-server PIR [17, 69] in
conjunction with a standard similarity search data structure
based on locality-sensitive hashing (LSH) [16, 49]. We
emphasize that using an LSH-based data structure ensures
that AdVeil is compatible with targeting techniques used in
practice [90, 114].

For private delivery and reporting, we use an anonymizing
proxy (e.g., Tor [43]), which reveals which ad was retrieved
or reported on but not which client downloaded the ad.

For data integrity in both targeting and delivery, the Broker
commits to all data structures using a vector commitment
(e.g., Merkle tree) that can be efficiently verified by the client.

For fraud prevention, we use anonymous one-time-use
tokens with public metadata. These tokens enforce a “one
delivery; one report” policy and ensure that each report is
uniquely associated with a prior ad delivery.

4.1 Private information retrieval
Private information retrieval (PIR) is a protocol for retriev-
ing items from a remote database or data structure without
revealing which item was retrieved [25, 34, 35]. PIR in the
single-server setting [69] with a database of 𝑁 items requires
𝑂 (𝑁) work on the server and sublinear communication (in
practice 𝑂 (

√
𝑁) communication [17]) between the client and

database. In AdVeil, PIR is used by the client to privately
query the targeting data structure and obtain a set of ad
categories.

Definition 1 (PIR [69]; informal). Let 𝑀 be scheme-specific
public parameters. For a database (or a key-value store [35]),
PIR has the following functionality:

Query(𝑀, idx) → (𝑠,𝑄). Takes as input public parameters
and an index. Outputs secret state 𝑠 and query 𝑄.

Answer(D,𝑄) → 𝐴. Takes as input a database D and query
𝑄. Outputs answer 𝐴.

Recover(𝑠, 𝐴) → D[idx]. Takes as input secret state 𝑠 and
query answer 𝐴. Outputs recovered database item D[idx].

The functionality must satisfy correctness and privacy. Infor-
mally, correctness holds if the computed answer produces the
item at index idx in the databaseD when fed through Recover.
Privacy for the client holds if the (potentially malicious) server
learns no information on the query. We refer to Kushilevitz
and Ostrovsky [69] and Angel et al. [17] for more formal
definitions.

4.2 Anonymous one-time-use tokens
Wemake use of anonymous one-time-use tokens [67, 96, 110]
for fraud prevention. These tokens are instantiated between a
prover and a verifier. The Broker (i.e., acting as the verifier)
signs a blinded token generated by the client (e.g., acting as
the prover). During signing, the Broker can embed public
metadata [96, 110] into the signature. Later, the unblinded
token and the signature is redeemed by the Broker as part of
a report. The redeemed token is unlinkable to the originally
signed token. When redeeming a token, the Broker can:
1. check if the signed token is valid,
2. check if the token was previously redeemed, and
3. read the public metadata from the token signature.
We use the randomized anonymous tokens of Kreuter et al.
[67] based on Okomoto-Schnorr blind signatures [86] to
achieve fraud prevention and rate limiting in AdVeil. We
use the public metadata extension of Tyagi et al. [110] when
required. Specifically, AdVeil uses two distinct token schemes:
one that supports valid/invalid tokens and one that supports
embedded public metadata. For simplicity, we present a single
interface that captures both functionalities.

Definition 2 (Anonymous tokens; informal).
An anonymous token scheme [42, 67, 96, 110] consists of
efficient algorithms Setup, KeyGen, TokenGen, Sign, Unblind
and Redeem with the following functionality:

Setup(1𝜆) → crs. Outputs a common reference string crs.

KeyGen(crs) → (pk,sk). Outputs a new public key pk and
secret token signing key sk.

TokenGen(pk) → (𝜏, 𝜏,𝑟). Outputs a new token 𝜏, blinded
token 𝜏, and blinding randomness 𝑟 using the public key.

Sign(sk, 𝜏,md) → 𝜎. Takes as input the secret signing key,
blinded token 𝜏, and (optional) public metadata. Outputs
signature 𝜎 on the blind token 𝜏 containing md.

Verify(pk, 𝜏,𝜎,md) → yes/no. Takes as input the token, sig-
nature, and public metadata. Outputs yes if and only if 𝜎
contains embedded public metadata md.

Unblind(pk, 𝜏,𝜎,𝑟) → (𝜏,𝜎). Takes as input the public key,
blinded token 𝜏, blind signature 𝜎, and blinding randomness
𝑟. Outputs unblinded token 𝜏 and signature 𝜎.
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Redeem(sk, ℓ, 𝜏,𝜎) → (md, ℓ). Takes as input a secret key sk,
spent token list ℓ, token 𝜏, and signature 𝜎. Outputs whether
the token is valid with respect to the spent list and signature,
public metadata md, and updated spent list ℓ′. For notational
convenience, we let md = invalid if the token 𝜏 or signature 𝜎

is invalid.

The functionality must satisfy completeness, unlinkability, and
unforgeability. A token may have no embedded metadata, in
which case the metadata is denoted by ⊥.

Properties of one-time-use anonymous tokens. Complete-
ness states that a verifier always accepts valid tokens using
Redeem. Unforgeability states that a prover cannot forge a
valid token or change the embedded metadata. Unlinkability
requires that the verifier learns nothing beyond the public
metadata and token validity.

A new construction. We make a new observation on the
Okomoto-Schnorr Privacy Pass (OSPP) token construction
described by Kreuter et al. [67]. Our insight is that the
OSPP-without-NIZK construction [67] is ideally suited to
fraud-prevention. Using OSPP-without-NIZK, the Broker
can prevent fraud by giving invalid token signatures to bots
and valid signatures to honest clients during targeting. By
the randomization of the token, clients cannot tell whether
they received a valid or invalid token (thus not alerting bots to
detection). Such tokens satisfy 2-unlinkability [67], meaning
that all valid and invalid tokens are unlinkable within their
respective anonymity sets. See Appendix C for details.

4.3 Other tools

Locality-sensitive hashing (LSH) [16, 49, 59] is a tool used
in recommendation engines for efficiently matching users to
products. More concretely, LSH is useful for solving the
nearest neighbor search problem. Neighboring (i.e., similar)
feature vectors can indicate potential relevancy of a specific
ad to a user (e.g., Google’s FLoC [114] proposal uses LSH
to group users to interest categories). We use LSH as the
building block in our private targeting mechanism, described
in Section 5.1.

Vector commitments [12, 23, 32, 82, 106] (e.g., Merkle trees)
are used for proving correctness of a value at a given index in
a vector, relative to a short commitment. In AdVeil, vector
commitments guarantee targeting consistency across clients,
which prevents “tagging” clients through ad targeting. The two
properties that are important for understanding AdVeil are that
each proof is (1) of logarithmic (or constant [12, 23, 32, 106])
size relative to the size of the vector and (2) can be efficiently
verified given only the commitment, value, and proof.

Anonymizing proxies [10, 43, 112] serve as an intermediary,
or proxy, for communications between a client and server
to hide the relationship between the sender and recipient of

messages. AdVeil only requires client anonymity [20] from
the proxy. That is, the identity (IP address) of the client should
be hidden by the proxy. The Onion Router (Tor) [43], Invisible
Internet Project (I2P) [10], and VPN0 [112] all provide this
property. Tor is the most widely deployed anonymizing proxy
and is bundled by default in the Brave browser [1] and available
through add-ons for Firefox [9] and Chrome [8].

5 System architecture

This section introduces our construction of AdVeil. We de-
scribe protocols for each stage of the advertising pipeline,
using the tools of Section 4. We start by explaining a mecha-
nism for non-private targeting, which forms the foundation of
our private targeting protocol.

5.1 Targeting and nearest neighbor search
Hashing-based data structures solve approximate nearest
neighbor (ANN) search. ANN search is at the core
of recommendation systems, including ad targeting sys-
tems [90, 92, 114, 121]. We note that ANN search is a
general problem and can be applied to many definitions of
“similarity” [16]. ANN search is defined over a set 𝑆 of
high-dimensional feature vectors and a query vector 𝒒. For a
fixed similarity metric, ANN search returns the approximate
nearest neighbor(s) of 𝒒 in 𝑆.

Ad targeting can be realized using ANN search [114]. LetD
be a set of 𝑁 ad categories and corresponding feature vectors.
Each (id𝑖 , 𝒗𝒊) ∈ D has id𝑖 representing the 𝑖th category and 𝒗𝒊
describing the targeting attributes for the category. To find
the most relevant ad category for a user profile 𝒒, we can
find the ANN of 𝒒, which we denote by 𝒗 𝒋 , and output the
corresponding id 𝑗 .

A common data structure used for solving ANN search effi-
ciently is based on LSH (e.g., MinHash [27] or SimHash [33]).
In the context of ad targeting, we define the data structure
by two algorithms: Build and Target. We present a concrete
instantiation of Build and Targetwhich follow the ANN search
data structure of Gionis et al. [49]. In Section 5.2, we trans-
form Target into a privacy-preserving protocol between the
client and the Broker using PIR. See the survey of Andoni
et al. [16] for many details on ANN search and parameter
selection.

Targeting.Build(D,H , 𝐿) → S.
1: Build 𝐿 hash tables 𝑇1, . . . ,𝑇𝐿 using LSH functions

h1, . . . ,h𝐿 sampled i.i.d. from LSH familyH ;
2: For each 𝒗𝒊 ∈ D, compute 𝑘 𝑗 ← h 𝑗 (𝒗𝒊), and append
(id𝑖 , 𝒗𝒊) to the bucket in hash table 𝑇𝑗 with key 𝑘 𝑗 ;

3: Output S = {𝑇1, . . . ,𝑇𝐿 ,h1, . . . ,h𝐿}.

Targeting.Query
(
S, 𝒒

)
→ id.
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1: Compute 𝑘 𝑗 ← ℎ 𝑗 (𝒒) for 𝑗 ∈ [𝐿];
2: Set C := 𝐵1∪ · · ·∪𝐵𝐿 where each 𝐵 𝑗 is the bucket in hash
table 𝑇𝑗 with key 𝑘 𝑗 ;

3: Output the id of the most similar vector to 𝒒 in C.

5.2 AdVeil protocols
AdVeil realizes each stage of the advertising pipeline via
separate and modular protocols. We first describe the context
in which the protocols are instantiated. With the exception of
Protocol 1 (Setup), the protocols describe the steady state of
AdVeil.1 We begin by describing the background setting and
assumptions.

Epochs. AdVeil divides time into discretized epochs. Aside
from Protocol 1, which runs only once, all protocols run
within the context of these epochs. Epoch duration affects
the frequency of ad targeting and reporting, but not delivery,
which remains on-demand.

Ad feature vectors. As a starting point, we assume that the
Broker has a set of targeting categories and a database of
ads within these categories. AdVeil is agnostic to how the
Broker defines the categories, making it compatible with a
variety of strategies (mapping of user features to ad category
features [92]).

User profile. The user’s profile feature vector is constructed
locally by the client using any “profile building” function
Fprofile, provided as part of the public parameters generated
in setup (Protocol 1). For example, Fprofile can map user
browsing history to a profile feature vector. It can also
include information about websites they visit and searches
performed [64, 68, 91, 114]. However, because AdVeil
depends on Fprofile being local to the client, the choice of
what inputs Fprofile is evaluated on depends entirely on the
client. A malicious client can choose to not evaluate Fprofile.
However, this is a feature not a bug: it guarantees that users
have full control over their personal data and makes AdVeil
immediately compatible with privacy regulations such as the
GDPR [6].

5.2.1 Setup (Protocol 1).

The setup for the Broker involves publicly committing to all
the parameters required for targeting, delivery, and reporting
such that it cannot equivocate. This commitment can be posted
to a public bulletin board [21, 36] or disseminated through
a gossip network [70, 81, 84]. The Broker commits to the
targeting hash tables (using vector commitments [32, 52, 71]).
The Broker also generates a new token keypair (Definition 2)
and posts the public key. For simplicity, we assume that
all commitments and public parameters are consistent and
accessible to all clients via the public bulletin board.

1Protocol 1 can be re-run to update targeting parameters.

Protocol 1: AdVeil Setup

Step 1 (Broker)
// D: feature vectors for each targeting category

1: S ← Targeting.Build(D,params). // See Section 5.1

2: 𝐶S ← VC.Commit(S). // Commitment to hash tables

3: (pk,sk) ← AT.KeyGen(crs). // Anonymous token keys

4: Publish: common reference string crs, public key pk, params,
commitment 𝐶S , profile building function Fprofile, and LSH func-
tions h1, . . . ,h𝐿 on a public bulletin board.

5.2.2 Targeting (Protocol 2)

Targeting occurs at the beginning of each epoch (e.g., once
a day) and runs between the client and the Broker. The
client obtains the relevant ad category while the Broker
learns nothing about which category was targeted in the
process. Protocol 2 trivially extends to output the top-𝑘 [49] ad
categories with minimal overhead. Along with the categories,
the client receives the Broker’s blind signature on the provided
anonymous token(s). Each token signature is either valid or
invalid, indicating whether the client is believed to be a “bot”
or a “human” and is later used in Protocol 4 to discard bot
reports.2 To ensure that the Broker returns the correct set of
targeted categories, the client checks the vector commitment
𝐶S . To facilitate this, we assume the Broker concatenates the
proof string for each hash table bucket to the bucket contents.
Thus, the client can retrieve the proof along with the contents
when privately querying the targeting hash tables through PIR
in Protocol 2. The client aborts if any of the proofs fail to
verify.

5.2.3 Delivery (Protocol 3)

Clients use Protocol 3 on-demand within epochs to retrieve
ads corresponding to the targeted categories obtained from
Protocol 2. The client fetches ads for the targeted category
from the Broker via the anonymizing proxy. Because of this,
the Broker has the ability to decide which ad to deliver for
the requested category. Broker-side selection logic such as
real-time bidding can be applied to decide which ad to serve,
on demand. We discuss the use of PIR as an alternate delivery
mechanism in Section 7, but note that it does not provide the
required performance for on-demand delivery nor the ability
to support Broker-side ad selection.

5.2.4 Reporting (Protocol 4)

Reporting occurs at the end of an epoch. When the user inter-
acts with a previously retrieved ad displayed on a Publisher’s
webpage, such as seeing (or clicking on) an ad, an impression

2We note that the clients cannot determine the validity of the token
signature (Appendix C) which prevents alerting malicious clients or bots of
detection.
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Protocol 2: Targeting

Step 1 (Client)
// 𝒒: user profile feature vector held by the client

// h𝑖: LSH functions in the public parameters

1: 𝑘𝑖 ← h𝑖 (𝒒) for 𝑖 ∈ [𝐿]. // Compute profile hash keys

2: 𝑄𝑖 ← PIR.Query(𝑀, 𝑘𝑖) for 𝑖 ∈ [𝐿]. // Query for bucket

3: (𝜏𝑡 , 𝜏𝑡 , 𝑟) ← AT.GenToken(pk). // New reporting token

4: Send queries 𝑄1 . . .𝑄𝐿 and 𝜏𝑡 to the Broker.

Step 2 (Broker)
1: 𝐴𝑖 ← PIR.Answer(𝑇𝑖 ,𝑄𝑖) for 𝑖 ∈ [𝐿]. // Query answer

2: ŝk←
{

sk∗ if client identified as bot. // invalid signature

sk if client identified as human. // valid signature

3: 𝜎𝑡 ← AT.Sign(ŝk, 𝜏𝑡 ,⊥).
4: Send 𝐴1, . . . , 𝐴𝐿 and 𝜎𝑡 to the client.

Step 3 (Client)
1: (𝐵1∥𝜋1, . . . , 𝐵𝐿 ∥𝜋𝐿) ← PIR.Recover(𝐴1, . . . , 𝐴𝐿).
2: If there exists 𝑖 such that VC.Verify(𝐶S , 𝐵𝑖 , 𝜋𝑖) = no, abort.
3: id← nearest neighbor to 𝒒 in C where C := 𝐵1∪ · · · ∪𝐵𝐿 .
4: (𝜏𝑡 ,𝜎𝑡 ) ← AT.Unblind(pk, 𝜏𝑡 ,𝜎𝑡 , 𝑟). // Unblind signature

5: Output (id, 𝜏𝑡 ,𝜎𝑡 ).

report is generated and stored by the client. At the end of the
epoch, the client sends all stored reports to the Broker via
the anonymizing proxy, as specified in Protocol 4. The client
includes the signed tokens obtained in Protocols 2 & 3. Upon
receiving a report, the Broker verifies the tokens, discarding
all reports with invalid tokens. All reports with valid and a
yet-unspent token are processed by the Broker.

5.3 The AdVeil ecosystem
AdVeil focuses on general targeted advertising, with support
for multiple targeting and metrics strategies.

Targeting strategies. By giving the Broker control over the
choice of ANN search data structure and real-time ad selection
logic, AdVeil does not restrict the Broker to a specific targeting
strategy. Types of targeting that can be supported in AdVeil
include:

• Contextual targeting can bypass clients entirely by having
the Publisher engage in the protocols. Users still see and
interact with ads, but are not involved in any other aspect
of the pipeline.

• Behavioral targeting is supported via the profile building
function Fprofile, which can locally observe information
about users’ browsing habits to build their profile feature
vector. Protocol 2 can be run periodically to retrieve a
new set of targeted ads following changes to the user’s
profile. Retargeting, or preferentially displaying ads to

Protocol 3: Delivery

Step 1 (Client)
// id : targeted category obtained from Protocol 2

1: (𝜏𝑑 , 𝜏𝑑 , 𝑟) ← AT.GenToken(pk). // New delivery token

2: Send (id, 𝜏𝑑) to the Broker, via the proxy.

Step 2 (Broker)
// D: database of ads

1: adid← SelectAd(D, id). // real-time selection logic

2: 𝜎𝑑 ← AT.Sign(sk, 𝜏𝑑 ,adid). // Ad ID as public metadata

3: Send (ad,adid,𝜎𝑑) to the client, via the proxy.

Step 3 (Client)
1: (𝜏𝑑 ,𝜎𝑑) ← AT.Unblind(pk, 𝜏𝑑 ,𝜎𝑑 , 𝑟).
2: If AT.Verify(pk,𝜎𝑑 ,adid) = no, abort. // Invalid metadata

3: Output (ad, 𝜏𝑑 ,𝜎𝑑).

Protocol 4: Reporting

Step 1 (Client)
// report: report payload

// (𝜏𝑡 , 𝜎𝑡 ): token and signature from Protocol 2

// (𝜏𝑑 , 𝜎𝑑): token and signature from Protocol 3

1: Send (report, 𝜏𝑡 ,𝜎𝑡 , 𝜏𝑑 ,𝜎𝑑) to the Broker, via the proxy.

Step 2 (Broker)
// (ℓ𝑡 , ℓ𝑑): lists of all redeemed tokens

1: (md𝑡 , ℓ′𝑡 ) ← AT.Redeem(sk, ℓ𝑡 , 𝜏𝑡 ,𝜎𝑡 ).
2: (md𝑑 , ℓ

′
𝑑
) ← AT.Redeem(sk, ℓ𝑑 , 𝜏𝑑 ,𝜎𝑑).

3: If md𝑑 = valid or md𝑑 = invalid: reject. // Invalid token

4: If md𝑑 = ⊥: reject. // No metadata in delivery token

5: Else, set ℓ𝑡 ← ℓ′𝑡 and ℓ𝑑 ← ℓ′
𝑑

and accept report.

users who have had prior interactions with an Advertiser,
is one example of behavioral targeting that AdVeil can
support.

The only requirement for targeting strategies is that they are
fully local. Users must not make any requests other than those
specified in Protocol 2, Protocol 3, and Protocol 4 as part of
any targeting mechanism. Making such requests can reveal
information that might link a user to personal data or the ads
they see.

Real-time delivery. AdVeil delivers ads over any anonymiz-
ing proxy. We require delivery to run on demand, rather than
periodically as is done with targeting, primarily to support
real-time bidding. For example, using Tor, AdVeil’s users
can—in real time—request an ad from the targeted category
and have advertisers bid for the slot. Because the delivery
and reporting requests are unlinkable from the targeting re-
quest, delivering different ads for the same category does not
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compromise unlinkability (we elaborate in Section 6).

Measurement strategies. Reports in AdVeil are individual
without being linkable. The Broker learns precisely which ads
were seen and how often, without ever learning who saw them.
This allows the Broker to support a variety of measurement
strategies including:

• Impressions are reported when users see an ad.
• Clicks are reported when users click on an ad.
• Conversions are reported when a user engages with
the Advertiser after clicking on an ad. The local client
is capable of observing when an ad click generates a
conversion and creates the resulting report (similar to
conversion tracking in Safari [117]).

All reports in AdVeil contain the ad delivered and interaction
type (e.g., view or click). AdVeil supports reporting on
arbitrary additional data but, as discussed in Section 3.2,
determining what additional data can be reported privately is
an orthogonal problem.

6 Security arguments

Here, we analyze the security of AdVeil. We frame our
analysis in terms of user unlinkability and fraud prevention,
the requirements from our threat model.

6.1 User unlinkability
We recall that the security guarantee of AdVeil, as established
in Section 3.2, is unlinkability between users and their personal
data, including which ads they see and interact with. The crux
of the unlinkability argument lies in analyzing the combination
of targeting (where the Broker learns the client’s identity;
required for effective fraud prevention) and delivery/reporting
(where the client’s identity is hidden by the anonymizing
proxy). Concretely, we must ensure that the Broker cannot
deviate in targeting to link the client in delivery or reporting,
without also compromising its own goals (and violating the
rationality assumption; see Section 3.2).

Theorem 1 (Unlinkability). Fix a reporting epoch. The set of
reports recovered through Protocol 4 is unlinkable from the
set of clients that submitted them—as well as prior executions
of Protocol 2 and Protocol 3—conditioned on:
1. the user and client not explicitly or implicitly leaking

personally identifying information to any party ,
2. the Broker being rational and not denying service to

honest users or sabotaging fraud prevention, and
3. the privacy of PIR [69], soundness of the vector com-

mitment [32, 71, 82], unlinkability of one-time-use to-
kens [67, 96, 110], and the client anonymity property
of the anonymizing proxy [20], being true under their
respective security assumptions.

Proof (sketch). See Appendix A.2 for full proof. At a high
level, we show that a malicious Broker can only partition
users into two sets: those with valid tokens and those with
invalid tokens. If the Broker exploits tokens to separate a
small subset of victim users, rather than for fraud prevention,
it must necessarily compromise either its billing metrics or
the covertness of its fraud prevention. By using one type of
token for victims, the Broker must either (1) deny service to
bots entirely, (2) deny service to all honest users not in its
victim subset, or (3) issue valid tokens to both bots and all
honest users excepting the users in its victim subset. In case
(1), the Broker loses covertness of fraud detection allowing
bots to rapidly evolve their evasion strategies. In case (2), the
Broker loses the ability to bill for all non-victim users. In
case (3), the Broker can no longer distinguish honest reports
from fraudulent reports, resulting in invalid billing. As a
result, a rational (monetarily-driven) Broker is incentivized
to follow the protocol ensuring the unlinkability property of
AdVeil. □

Cross-epoch unlinkability If only a subset of users
participate in each epoch, then AdVeil cannot provide
full unlinkability across epochs due to intersection at-
tacks [39, 40, 75, 77, 118]. Intersection attacks across epochs
are possible because users are correlated with the ads they see.
Over time, the Broker can infer the relationship between a
user and the ads they are shown by observing the intersection
of epochs in which the user participated, even though the
unlinkability property is satisfied within each epoch. That is,
ads that appear most frequently alongside a certain user are
likely to be the ads that the user reported on. This leakage is
small, but is not resolvable without holding either the set of
users or ads constant across all epochs—neither of which is
reasonable for an internet-scale system.

6.2 Fraud prevention
Recall that the requirements for fraud prevention (detailed in
Section 3.2), are that the Broker (1) flags all targeting requests
it believes to be fraudulent and (2) only includes unique, valid
reports in Protocol 4.

Theorem 2 (Fraud Prevention). Assuming the unforgeability
property of anonymous tokens [67, 96, 110], each report
recovered by the Broker through Protocol 4:
1. includes a valid token signature output in Protocol 2,
2. is unique in the set of all reports across epochs, and
3. is associated with an ad delivered in Protocol 3.

Proof. (1) comes from the unforgeability property of the
anonymous tokens; no client can forge a valid token signature
without knowledge of the secret signing key held by the
Broker [67], thus clientsmay only obtain valid token signatures
via Protocol 2. (2) is likewise guaranteed by the anonymous
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token unforgeability property and the list ℓ of all redeemed
tokens maintained in Protocol 4 (see Privacy Pass [42] for
more details and optimizations). Similarly, (3) is due to the
public metadata issued by the Broker with the token signature
in Protocol 3. Unforgeability [96, 110] guarantees that no
client can produce a valid token with metadata indicating an
ad other than the one that was delivered through Protocol 3.
To expand on token validity, only clients marked as “human”
in Protocol 2 are given valid signatures on the token. However,
the clients themselves cannot determine the validity of their
token signature (see Appendix C) which provides covert fraud
detection. □

7 Evaluation

We implement a prototype of AdVeil and measure its end-to-
end performance in a networked deployment. We evaluate
the computational overhead of the Broker when serving client
requests and the end-to-end latency of targeting and deliv-
ery on the client. We note that we do not compare AdVeil
quantitatively with existing work in privacy-preserving adver-
tising. Prior proposals are either of a theoretical/qualitative
nature [63, 115], only solve one aspect of the pipeline under
different assumptions [53, 57, 108], or have incomparable
approaches [55, 57, 107]. We qualitatively compare all these
systems with AdVeil in Section 8. In particular, as highlighted
by Table 8, prior designs provide privacy by relying on a
trusted third party in a way that limits the scalability of the
system to the capabilities of the third party, while AdVeil’s
scalability depends only on the Broker and the anonymiz-
ing proxy. The anonymizing proxy can be instantiated by
any variety of scalable systems such as Tor [43] or I2P [10]
(both of which are already widely deployed, with millions of
users [11, 73]).

Implementation. We implement AdVeil in Go (v1.13) and
C++17 in approximately 2,000 lines of code. Our imple-
mentation is open source [4]. We use the Microsoft SealPIR
library [17] to instantiate single-server PIR. Our implementa-
tion of anonymous one-time-use tokens is partially based on
Cloudflare’s Privacy Pass code [42]. We assume the Broker
commits to the targeting data structure hash table using the
vector commitment of Libert and Yung [71], which requires a
one-time trusted setup but has very succinct opening proofs of
48B. Succinct proofs improve the performance of targeting
given that the user retrieves the proof in conjunction with the
value from the hash table via PIR.

Environment. We deploy AdVeil on an Amazon EC2 server
instance for the Broker and a MacBook Pro for the client.
The Broker’s server runs on c4.4xlarge VM (16 vCPUs @
2.9 GHz; 32GB RAM) with an hourly cost of $0.80 as of
January 2022 [15]. We run the client on a MacBook Pro (8
CPUs; 32GB RAM). We measure a throughput of 85Mbit/s

download and 33Mbit/s upload using the speedtest-cli
tool [98].

Parameters. The tunable parameters in AdVeil include the
number of unique ad targeting categories, the size (in kilobytes)
of each ad, and the number of hash tables used in the targeting
data structure (Section 5.1). The total number of categories has
a direct impact on network bandwidth and server processing
time due to PIR (see Section 4.1). However, the total number
of ads does not impact AdVeil’s performance. Increasing the
number hash tables in the targeting data structure improves
accuracy (Section 7.1.1), but also increases the total number of
parallel PIR queries required (Protocol 2). To evaluate AdVeil,
we select parameters to mirror those of other ANN search
data structure accuracy evaluations [16, 74, 95]. We vary the
number of hash tables from 𝐿 = 2 to 16, set each hash table
to have 𝑁 keys (i.e., total number of unique ad categories),
and cap the size of each hash table bucket to at most one
category. We use the LSH-multi-probing [74] optimization
(which allows for retrieval of multiple candidates from the
same hash table) in conjunction with batch-PIR [60, 95],
following a similar evaluation performed in Servan-Schreiber
et al. [95]. This setup and techniques are standard and are not
novel to AdVeil.

Data. Real-world ad features are proprietary. Instead, we
evaluate AdVeil using four open-source datasets frequently
used in ANN search benchmarks [2]. (A similar compromise
is made in the evaluation of Google’s FLoC proposal [114].)
We use the deep1b, gist,mnist, and sift) datasets, which have
10,000,000, 1,000,000, 64,000, and 1,000,000 unique feature
vectors (i.e., “categories”), respectively. The performance of
PIR (which is used to query the hash tables) is not impacted
by the underlying data distribution. These datasets serve only
to determine the number of hash tables (𝐿) required for good
accuracy. We set the number of LSH multi-probes [74, 95]
(keys queried per hash table) to 5 for all experiments. We
use dimensionality reduction [61] to map all feature vectors
to 𝑑 = 50 dimensions, so as to have a universal performance
evaluation. We find that on real world datasets, it suffices
to have 𝐿 = 4 to achieve over 95% accuracy of finding the
approximate nearest neighbor (i.e., the closest targeting cat-
egory). We set the approximation factor to 2 (the result is
within 2× of the true nearest neighbor [16]).

Ad sizes. Common online banner ads [51] (which account
for 89% of ads on some platforms [76, 80]) are typically
under 150 kB in size. Video ads are typically under 4MB in
size [80]. Ad size only impacts delivery as all other protocols
operate on fixed-size category IDs.

Methodology. Unless otherwise stated, we run each experi-
ment 10 times and report mean and 95% confidence interval
over the trials. We parallelize computation on the servers
when possible.
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Figure 3: Evaluation of ad targeting in AdVeil. We report end-to-end latency as measured on the client machine. Communication is measured
as the network overhead between the client and Broker. Throughput measures the raw computational processing throughput of the Broker’s
server (parallelized across 16 cores) to answer client targeting requests. Shaded regions and error bars represent a 95% confidence.

Protocol Timing Latency Communication
Targeting Periodic 1.6 8 MB
Delivery On-demand 3 s 7 kB
Reporting On-demand — 500 B

Table 4: Summary of our prototype evaluation. For the targeting
protocol, we have 𝐿 = 4 hash tables, 5 LSH multiprobes per table,
and one million targeting categories. For delivery, we use 5 kB ads.

7.1 Results
In this section, we describe our evaluation results for targeting,
delivery, and metric recovery in terms of processing time,
latency, and communication. We summarize the results of
our evaluation in Table 4.

7.1.1 Targeting accuracy

ANN search accuracy is typically measured through recall:
the fraction of approximate nearest neighbors found over the
total number of queries performed. While AdVeil is agnostic
to the ANN search parameters (e.g., the LSH family used)
we measure the accuracy of nearest neighbor queries as a
function of the number of hash tables used in the ANN search.
In Table 5, we report the number of hash tables required to
achieve ≥ 95% accuracy for each dataset. We find that 𝐿 ≥ 4
hash tables (and 5 multi-probes [74]) is sufficient.

7.1.2 Client latency.

Targeting (Protocol 2) latency. Figure 3a shows the impact
that the number of ad categories and targeting hash tables

Dataset Num. categories Accuracy Num. tables (𝐿)
deep1b 10,000,000 98 % 4
gist 1,000,000 95 % 4
mnist 64,000 97 % 3
sift 1,000,000 95 % 4

Table 5: Number of hash tables (𝐿) for ≥ 95% accuracy.

has on client latency. Latency ranges from a couple seconds
with around 300,000 categories to around ten seconds when
there are over 2,000,000 categories. Network throughput
accounted for one to five seconds of end-to-end latency on
the client (which has throughput comparable to a home WiFi
network).

Delivery (Protocol 3) latency. Figure 6 shows the relative
performance of Tor vs. single and two-server PIR for deliver-
ing ad payloads. We take the mean latency for downloading a
50 kB and 1MB file from Tor metrics [73] data for February-
May 2021. Delivery latency for a 50 kB ad (e.g., a small
image) through Tor is approximately one second while latency
for a 1MB ad (e.g., 5 second 480p video) is approximately
three seconds. To illustrate the impracticality of using PIR
for delivering ads, we evaluate SealPIR over 500B to 1 kB
ads while varying the total number of ads in the database.
We also consider two-server PIR, which is more concretely
efficient in practice [25, 113]. Our results show that both
single-server and two-server (requiring non-colluding servers)
PIR impose a high overhead for delivery, even when only
considering small ads. As such, we choose to focus on the
use of the anonymizing proxy for ad delivery in AdVeil. We
stress that targeting must use PIR as replacing it with Tor (or

11



214 217 220

Database size (# of ads)

0

2

4

6

8

10

La
te

nc
y 

(s
)

Client End-to-End Delivery Latency

500 B
1 KB
50 KB
1 MB

PIR (1 server)
PIR (2 server)
Tor

PIR (1 server)
PIR (2 server)
Tor

Figure 6: Client end-to-end ad delivery latency (seconds) using PIR,
two-server PIR, and Tor. Latency for PIR queries is proportional
to the size of the ad database. Latency for Tor is only dependent
on individual ad size. Shaded region represents a 95% confidence
interval (Tor has high variance in latency).

any anonymizing proxy) would require user data to be sent to
the Broker during targeting, directly revealing PII.

7.1.3 Communication overhead

We report the total communication (in MB) exchanged be-
tween the Broker and the client when targeting ads in Figure 3c.
Communication depends on database size and number of ta-
bles. The total communication remains under 32MB with
16 tables and under 10MB with 4 tables. We find that the
majority of communication is from the PIR query response
since the PIR queries themselves are of constant size with
respect to the number of categories (due to SealPIR query
compression [17]). We believe this communication to be
reasonable for the average internet client, especially consid-
ering targeting happens once per epoch (e.g., once a day)
and is “download-heavy,” which aligns well with real-world
networks [5]. Moreover, 10MB of communication is approx-
imately equivalent to visiting four mobile websites [104]. In
Figure 3d, we contrast the bandwidth usage of SealPIR with
“naive PIR” where the entire ANN search data structure is sent
to the client.

7.1.4 Targeting throughput

We report the targeting throughput (in terms of clients per
minute) of the Broker in Figure 3b. Throughput is limited
by the computational overhead of processing the PIR queries
over the targeting hash tables. With 𝐿 = 4 hash tables and
one million ad categories, targeting throughput was approxi-
mately 50 clients per minute. We note that the throughput is
massively parallelizable; increasing linearly with the Broker’s
computational capacity. For example, with 100 million active
users in the ecosystem (and one million unique categories), the
Broker would need approximately 1,500 commodity virtual
machines to refresh user targeting on a daily basis.

7.1.5 Reporting

Per-report computation on the Broker is light and consists of
redeeming the two tokens attached to each report. In total,
redeeming the tokens for a single report requires under 300
𝜇s of processing time on one core (see Table 7). Thus, a
single 16-core server can process upwards of 50,000 reports
per second when parallelized.

7.1.6 Client and Broker microbenchmarks

We measure the client processing time for PIR queries and the
anonymous tokens. Generating the PIR queries requires under
one millisecond. Decryption of the PIR query response takes
approximately twomilliseconds. All client-side token process-
ing (generating and unblinding) is under 300 𝜇s. Server-side
processing of tokens requires under 300 𝜇s for all operations.

Client
879 𝜇s
PIR.Query

2007 𝜇s
PIR.Recover

252 𝜇s
AT.GenToken

328 𝜇s
AT.Unblind

Broker
278 𝜇s
AT.Sign

(no metadata)

167 𝜇s
AT.Redeem
(no metadata)

178 𝜇s
AT.Sign

(pub metadata)

151 𝜇s
AT.Redeem
(pub metadata)

Table 7: Microbenchmarks (in microseconds) for SealPIR (query
and answer recovery) and anonymous one-time-use tokens (with and
without public metadata).

7.1.7 Operational costs

We estimate the operational costs of running AdVeil. Our
estimate focuses on an ad database and reports-per-epoch size
of one million ad categories. We assume the Broker uses 4
LSH tables and use the AWS costs from our own evaluation
– $0.80/hr for the Broker’s machine. Given this setup, the
processing time of the Broker is approximately 1100 ms per
execution of the targeting protocol (Protocol 2). (Note that
Figure 3a includes network latency in addition to processing
time.) The total costs to target and recover a report for one
(𝑘 = 1) ad category is 0.02¢, as computed using Equation (1).

($0.80/hour) ·1100 ms
targeting 𝑘 categories

+ 𝑘 · ($0.80/hour ·0.5 ms)
token signing and redemption

(1)

Using the average revenue generated by an ad impression
(≈ 0.20¢ [100]), we find that AdVeil’s expected revenue
is roughly 10× the cost of serving a single ad (on a non-
enterprise server). Amortized over 𝑘 = 10 ad categories
targeted simultaneously (see Gionis et al. [49] for how ANN
search trivially extends to k-nearest neighbors), the expected
revenue is over 100× the cost of targeting. Hence, AdVeil can
be deployed (with off-the-shelf infrastructure) and still result
in net profit for the Broker.
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Table 8: Comparison of AdVeil to related work on targeted advertising.

Privacy Correctness Scalability
Trusted Third
Party (TTP)

Targeting Data
Sent to Broker

Targeting
Accuracy

Fraud
Prevention

Report
Granularity

TTP
Workload

TTP
Availability

Simultaneous
Requests

Adnostic [107] Decryption Oracle Contextual Contextual+ Limited i Aggregate ≪ Broker ≪ Broker ✓

ObliviAd [19] TEE Noneii Full Targeted Full Individual N/A iii N/A ✗

Privad [55] Dealer Broad Categories Limited Targeted Full Individual ≈ Broker = Broker iv ✓

Themis [87] PoA Blockchain None Full Targeted Full Individual ≈ Broker v ≈ Broker v ✓

AdVeil None None Full Targeted Full Individual N/A N/A ✓

iAdnostic does not perform fraud detection beyond guaranteeing that an individual report is for a single ad.
iiComplete targeting data is sent to the TEE held by the Broker.
iiiOblivad’s TTP is a TEE held by the Broker. It does not correspond to a physically or administratively separate entity.
ivThe TTP participates in processing every targeting request, on demand. In Privad it also participates in reporting.
vThe blockchain authorities must validate every report on demand and selected users must participate in MPC to compute metrics.

8 Related work

There exists a large body of work on privacy-preserving
advertising [19, 24, 53, 55–57, 63, 87, 107, 108, 114, 115].
We focus here on providing a comparison to other systems like
AdVeil that cover the complete advertising pipeline. Table 8
compares the privacy, correctness, and scalability of AdVeil
to other full-pipeline proposals.

Juels [63] is the first proposal for supporting privacy-
preserving targeted advertising on the internet. Juels preserves
user privacy when delivering ads in two primary ways: using
a relaxed version of a mixnet (similar to AdVeil’s use of an
anonymizing proxy) and grouping users to hide which user
from the group requested an ad. However, the work is theoret-
ical and does not account for all aspects of online advertising
or the complexity of today’s advertising ecosystems.

Privad [55] provides a targeting model based on broad interest
categories that are narrowed locally by the client. Privad relies
on a centralized anonymizing proxy, referred to as the Dealer,
to provide user privacy and enforce fraud prevention. The
Dealer is assumed not to collude with the Broker and provides
user privacy by mediating all user communication. Thus,
the Broker learns the contents, but not the origin, of each
request. To do this, the Dealer must sustain the load of the
entire ad network as a non-colluding third party. Privad
cannot trivally solve this issue by replacing the Dealer with an
existing, distributed anonymizing proxy as this would leave
their system without fraud prevention.

ObliviAd [19] relies heavily on a Trusted Execution Envi-
ronment (TEE) to provide user privacy. The TEE is single-
handedly responsible for all stages of the advertising pipeline,
from ad targeting to unlinkability of reports and fraud pre-
vention. To prevent the Broker from learning which ads are
delivered to which clients, the TEE uses ORAM [101] to

retrieve ads from the ad database. ORAM can only serve
a single client request at a time; concurrent accesses would
require a replica of the ORAM instance per-request [18, 101].
In addition, TEEs have seen a series of powerful attacks since
ObliviAd was published [26, 29, 37, 111]. As a result, we
do not believe that either issue is surmountable with today’s
instantiations of TEEs or ORAM [18, 37, 101].

Adnostic [107] primarily focuses on the targeting and report-
ing stages. Similarly to Privad, Adnostic performs targeting
locally on the client. However, Adnostic only uses contextual
features during targeting and does not make an effort to hide
which ads are delivered to a user. Adnostic attempts to prevent
the Broker from linking the delivery and reporting phases
by aggregating reports using homomorphic encryption and
zero-knowledge proofs rather than revealing them individually.
Decryption of aggregate reports is handled by a TTP that
checks the size of reports prior to decryption to ensure that
only large groups of users are reported on. However, Adnostic
makes no effort to hide users’ browsing or click behavior from
the Broker, leading us to agree with Privad’s description of
their Broker model as “honest-and-not-curious” [55].

Themis [87] is the Brave browser’s contribution to private
targeted advertising. It attempts to replace the role of the
Broker with a permissioned blockchain, run by Publishers or
foundations such as the EFF. Themis additionally supports
payment to users for their interaction with ads. Privacy for
payments, metrics, and auditing of the blockchain is based on a
Proof of Authority protocol [3]. The attempted removal of the
Broker, auditability, and user compensation are all interesting
directions for the future of private advertising. Unfortunately,
Themis achieves them by entirely offloading both targeting
and delivery to clients. Each user must download both the
targeting model and the entire database of ads and ad features
to their local device.
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9 Discussion and conclusions

In recent years, a fundamental conflict between privacy and
advertising has emerged. AdVeil provides full compliance
with technological and legislative best practices for user
privacy without limiting the relevance of advertisements
shown on the internet. Ultimately, we believe that AdVeil is a
viable alternative to existing, non-private targeted advertising
schemes that meets the needs of both users and ad networks.

Targeted Advertising can have serious negative side effects,
from web tracking to discriminatory or manipulative prac-
tices [45]. In light of this, it seems challenging to advocate
for even privacy-preserving targeted advertising. However,
current legislative and technological efforts to prevent targeted
ads or their ill effects have been markedly unsuccessful. Ad
tech companies are more willing to fight legal battles and pay
fines than they are to stop collecting user data [22, 65, 65, 102]
and, despite anti-tracking measures, most peoples’ browsers
remain uniquely identifiable [28, 47, 78, 89, 120].
In AdVeil, users have transparency into the ad targeting

process and control over any features they deem sensitive. It
does not require ad-tech companies to track users for targeting
data, instead giving control over the collection and use of
this data back to the users themselves. While AdVeil is
not a complete solution to discriminatory or manipulative
advertising, we believe it provides a platform for future work
in this direction.

Practicalitymotivated our decision to rely on anonymous com-
munication over Tor for delivery of ads. PIR, while effective
for private targeting, fails to support necessary components of
advertising such as real-time bidding and cannot achieve the
performance required for on-demand delivery of ads. This is
true even for muti-server PIR which also introduces unrealistic
trust and availability assumptions. We believe that requiring
a separate entity with the same computational power and
availability requirements as the ad network—a necessity for
multi-server PIR—is unreasonable, especially considering the
lack of support for real-time bidding.
Similarly, the ad network requires that any computational

overhead imposed by AdVeil be sustainable. While AdVeil is
more computationally expensive than non-private alternatives,
we showed in Section 7.1.7 that it remains profitable. We
additionally note that current, non-private advertising, while
less expensive to run, carries a high cost in fines [93, 97] and
damage to reputation [46] associated with privacy violations.

Conclusions. We presented AdVeil, a system for privacy-
preserving targeted advertising that addresses usability and
privacy concerns of existing work. In doing so, we introduce
a novel method of targeting ads that provides strong privacy
guarantees for users, while ensuring targeting accuracy that
is on-par with existing systems. We provide an open-source
prototype implementation with an end-to-end evaluation. Our

results show the practical and economic feasibility of deploy-
ing AdVeil to provide user privacy, without compromising on
the needs of the ad network.
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A Proofs

A.1 Privacy of individual protocols
We first show that the targeting, delivery, and reporting proto-
cols, individually provide unlinkability from the user (specifi-
cally, the user’s targeting profile).

Claim 1. Protocol 2 (targeting) reveals the identity of the
client but no other information to the Broker, conditioned on
the privacy requirement of the PIR scheme.

Proof. The claim follows immediately from protocol inspec-
tion. Specifically, in Protocol 2 (targeting), the client only
interacts with the Broker through a series of PIR queries
which, by definition, hide the user’s query (i.e., profile) from
the Broker. The anonymous token issued in Protocol 2 is
generated by the client independently of all user data and
hence reveals no information on its own. □

Claim 2. Protocol 3 (delivery) and Protocol 4 (reporting)
reveal the ad category, ad delivered for the category, and
report contents to the Broker, but not the identity of the
client, conditioned on the client anonymity property of the
anonymizing proxy [20].

Proof. In Protocols 3 & 4, the client interacts with the Broker
through the anonymizing proxy, which reveals the targeted
category and which ad was served (resp. the contents of the
report) but not which client it was served to (resp. which
client submitted the report). This follows directly from the
client anonymity property of the anonymizing proxy [20]. The
anonymous tokens generated and sent by the client in both the
delivery and the reporting protocols contain no identifiable
information as they are computed independently of the user
data (and are uniformly random). □

A.2 Proof of Theorem 1.
The unlinkability argument hinges on showing that a mali-
cious (but rational) Broker cannot deviate in the targeting
(Protocol 2) to link the client in delivery (Protocol 3), or
reporting (Protocol 4).
At a high level, this follows from the Broker committing

to the targeting hash tables in Protocol 1 (setup) and the total
number of targeting categories, coupled with the unlinkability
property of anonymous tokens. More formally, we must
individually examine interactions taken by the client and the
Broker in an epoch.
First, because the targeting hash tables are committed to in

Protocol 1, amalicious Broker cannot change the targeting data
structure between clients, which ensures that all clients retrieve
the targeted category from the same targeting data structure, in
each epoch. That is, the contents of the targeting data structure
must be consistent across all clients. This prevents a malicious
Broker from “tagging” a client by evaluating the PIR queries
on different targeting data structures, depending on the client.
This guarantee is upheld by the vector commitment proof
returned to the clients with their PIR queries. If the Broker is
capable of answering the PIR query with a valid proof (with
respect to the commitment𝐶S) for a bucket value that is not in
the queried hash table, with better than negligible probability
in a security parameter, then the Broker is also capable of
breaking the soundness property of the vector commitment
with non-negligible probability [32, 71, 82].
Second, we examine the anonymous token (and the embed-

ded public metadata) as a means for linking a client to a report.
We show that exploiting anonymous tokens for linking clients
to reports, while possible, is monetarily disincentivized and
hence falls under irrational behavior. Specifically, because
each token issued in Protocol 2 is set up to reveal one bit
of information (valid or invalid), the Broker can only parti-
tion the anonymity set into two groups: clients with valid
tokens and clients with invalid tokens (see Appendix C for
additional details). This division is necessary for any scheme
that allows the Broker to silently tag fraudulent requests for
later identification. However, all tokens within these two sets
are unlinkable from other tokens in their respective set by
the properties of anonymous tokens [67] (also Appendix C);
hence the Broker cannot link a valid (resp. invalid) token to a
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prior targeting request.
A malicious Broker can still split a single client into their

own group (by issuing only one valid token), allowing it
to directly link their identity to the contents of their report.
However, this sabotages fraud prevention, as the Broker must
group all other users and all bots into the other set (invalid
tokens), losing its ability to distinguish fraudulent reports and
causing it to violate its billing arrangement with Advertisers
and Publishers. Such a strategy is equivalent to denying
service to all-but-one user, which is diametrically opposed
to the Broker’s goal of running an advertising ecosystem.
Specifically, such a strategy results in significant monetary
losses for the Broker and is thus irrational.

B Extended related work

FLoC [114], which ran on Chrome during 2021, focuses
specifically on the targeting phase of the advertising pipeline.
It assigns users to groups based on their browsing behavior –
users with similar browsing habits and, presumably, interests
are assigned to the same group. FLoC users then receive
ads based on their group rather than their individual features.
However, it is unclear what, if any, privacy FLoC provides as
the process by which users are formed into groups is entirely
opaque and these groups could be arbitrarily specific.

Turtledove [115] takes a similar approach to Privad where
users subscribe to interest groups and can participate in local
auctions to receive an ad based on these interest groups.
However, Turtledove does not make any assumptions about
the specificity of these groups or what metadata may be
included in the auction. It only requires that group size
meets an unspecified k-anonymity threshold. Additionally,
Turtledove requires a trusted server to support the inclusion
of real time external data into the local auction. User requests
to this server are not required to conform to any k-anonymity
bound. Between the specificity of interest groups, the blind
trust in this server, and the lax restrictions on reporting, it
is not clear that Turtledove provides its users with any more
privacy than traditional advertising.

PPAD [24] is a group-based ad targeting system where the
privacy for users is guaranteed relative to the group that a
user belongs to. Each user is assigned to a group based on
their attributes and hence reveals coarse grained interests
of users. The Broker and a semi-trusted third party run a
variant of a private-set intersection protocol (using shares of
user-provided feature vectors) to determine which ads should
be displayed to a group. The advantage of PPAD is that the
Broker can target and deliver ads at a group level and can
evaluate set intersection while the user is “offline” in order
to serve ads when the user goes back online. However, the
model of PPAD provides a tradeoff between targeting accuracy
and privacy. Specifically, the more fine-grained the group

selection, the more privacy leakage it incurs; PPAD does not
provide an analysis of this leakage.

BAdASS [57] (and its precursor AHEAd [56]) are designed
for online targeting and do not delve into other aspects of the
advertising ecosystem such as reporting and fraud prevention.
BAdASS uses a multi-party computation protocol executed
between a group of honest-but-curious parties. Moreover,
BAdASS requires splitting trust among a set of Demand-
Side Platforms (DSPs) which manage content targeting in an
ad network. Even a single malicious DSP can disrupt the
correctness of the protocol (or worse yet de-anonymize the
user) unless expensive zero-knowledge proofs are added to
prevent deviations from protocol.

Tran et al. [108] is designed to address the retargeting aspect
of online advertising. Their primary assumption is that the
Broker (or ad exchange) will not collude with retargeting
services. Clients engage in a protocol between the Broker and
retargeter to fetch ads for products they have previously shown
interest in (e.g., by adding a product to a shopping cart). The
retargeter learns which ad was displayed but not which user
requested it, while the Broker learns which user requested
the ad but not which ad was retrieved via the retargeter. User
privacy is ensured if the Broker and retargeter do not collude.

Tulabandhula et al. [109] propose a collection of functions
for privacy-preserving association rule mining and recom-
mendations. Their protocols work between a client and server,
where the client stores the feature vector locally. Their results
can be applied to AdVeil in the targeting process and may be
useful for certain deployments.

AdScale [53] improves the reporting scheme proposed in
Adnostic, but does not address other aspects of the pipeline.
Users in Adscale respond with homomorphically encrypted
reports that are aggregated by the Broker, but can only be
decrypted by a designated trusted third party (TTP). This is
intended to ensure that neither the Broker nor the TTP are
individually capable of learning the plaintext responses of a
single user. As a consequence, only aggregate information
can be used for billing and targeting purposes.

C Anonymous token construction

For completeness, we describe the OSPP-without-NIZK con-
struction of one-time-use anonymous tokens. Kreuter et al.
[67] do not explicitly describe the construction that we present
below, however, we note that it is a direct corollary of two
constructions they do present (and is explicitly alluded to in
their paper).

Motivation. In AdVeil, we require that only the verifier (i.e.,
the Broker) can generate a valid token, while anyone can
generate an invalid token. Crucially, we must also guarantee
that recipients of tokens cannot tell whether the token is valid
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KeyGen(crs)

1 : parse crs = (G, 𝑔, ℎ)
2 : (𝑥, 𝑦) ← Z∗𝑝 ×Z∗𝑝
3 : pk := (G, 𝑔, ℎ, 𝑔𝑥 , ℎ𝑦)
4 : sk := (𝑥, 𝑦)
5 : return (pk,sk)

Sign(sk, 𝜏)

1 : parse sk = (𝑥, 𝑦)

2 : 𝑧
𝑅← Z∗𝑝

3 : 𝑠← 𝐻𝑧 (𝜏, 𝑧)
4 : 𝑤← 𝜏𝑥 𝑠𝑦

5 : return 𝜎 = (𝑧,𝑤)

TokenGen(pk)

1 : parse pk = (G, 𝑔, ℎ, 𝑔𝑥)
2 : 𝜏← {0,1}𝜆

3 : 𝑡← 𝐻 (𝜏)

4 : 𝛼, 𝛽
𝑅← Z∗𝑝

5 : 𝜏← (𝑡𝑔−𝛽)𝛼
−1

6 : 𝑟 := (𝛼, 𝛽)
7 : return (𝜏, 𝜏,𝑟)

Setup(1𝜆)

1 : return crs := (G, 𝑔, ℎ)

Unblind(pk, 𝜏,𝜎,𝑟)

1 : parse 𝑟 = (𝛼, 𝛽),
𝜎 = (𝑧,𝑤),

pk = (G, 𝑔, ℎ, 𝑔𝑥 , ℎ𝑦)
2 : 𝑢← 𝐻𝑧 (𝜏, 𝑧)𝛼ℎ𝛽

3 : 𝑣← 𝑤𝛼 (𝑔𝑥ℎ𝑦)𝛽

4 : return 𝜎 = (𝑢, 𝑣)

Redeem(sk, ℓ, 𝜏,𝜎)

1 : parse sk = (𝑥, 𝑦)
𝜎 = (𝑢, 𝑣)

2 : 𝑡← 𝐻𝜏 (𝜏)
3 : 𝑤← 𝑡𝑥𝑢𝑦

4 : if 𝑤 = 𝑣 and 𝜏 ∉ ℓ then
5 : ℓ′← ℓ∪ 𝜏
6 : return (valid, ℓ′)
7 : else return (invalid, ℓ)

Figure 9: OSPP-without-NIZK anonymous one-time-use token con-
struction providing 2-unlinkability with one bit of private metadata.

or invalid. This covertness property is required to avoid
alerting bots that they have been detected by the Broker.
The challenge is that anonymous token constructions [42,

110] explicitly reveal token validity to the prover (specifically,
in [42, 110] the verifier provides a NIZK proof of correct
token signing). Kreuter et al. [67] provide a construction
for an anonymous token with a private metadata bit (only
readable to the verifier) and which does not require a NIZK of
correct signing. While this does allow the Broker to identify
and exclude “bot” reports, it does so using a metadata bit
𝑏 ∈ {0,1} included in valid tokens. That is, there are three
types of tokens, and thus three possible ways to divide clients,
under this construction:
1. valid token signatures with 𝑏 = 0,
2. valid token signatures with 𝑏 = 1 and,
3. invalid token signatures.
This allows a malicious Broker to target a specific user by
issuing only a single token with 𝑏 = 1 while still excluding
fraudulent requests using invalid tokens. In this way, the
Broker is able to link the identity of a targeted user to their
report contents without compromising on the accuracy of

either metrics or fraud prevention.
To prevent this attack, we require a construction with at

most two sets: clients with valid tokens and clients with invalid
tokens. We observe that an implicit construction alluded to
but not described by Kreuter et al. [67] gives us the required
properties:
1. any party can generate invalid token signatures,
2. only the Broker can generate valid token signatures,
3. clients do not learn the validity of the token signature
received from the verifier.

We call the construction OSPP-without-NIZK, following the
naming convention of Kreuter et al. [67]. For simplicity, in
Figure 9, we present the OSPP-without-NIZK construction
without embedded public metadata but hypothesize that
the construction is extendable to that regime following
the transformation of Silde and Strand [96]. We note the
resemblance to the OSPP [67, Construction 2] and PMBT-
without-NIZK [67, Construction 5]. LetG be any prime order
𝑝 > 2𝜆 with generators 𝑔 and ℎ. For security, we assume that
the Chosen-target Diffie–Hellman assumption holds inG [67].

Correctness of OSPP-without-NIZK. To see correctness,
observe that

𝑤 = 𝑡𝑥𝑢𝑦

= 𝑡𝑥 (𝐻𝑧 (𝜏, 𝑧)𝛼ℎ𝛽)𝑦

= 𝑡𝑥𝐻𝑧 (𝜏, 𝑧)𝛼𝑦ℎ𝛽𝑦

= 𝑡𝑥𝑔−𝛽𝑥𝐻𝑧 (𝜏, 𝑧)𝛼𝑦𝑔𝛽𝑥ℎ𝛽𝑦

= 𝑡𝑥𝑔−𝛽𝑥𝐻𝑧 (𝜏, 𝑧)𝛼𝑦 (𝑔𝑥ℎ𝑦)𝛽

= (𝑡𝛼−1𝑥𝑔−𝛽𝛼
−1𝑥𝐻𝑧 (𝜏, 𝑧)𝑦)𝛼 (𝑔𝑥ℎ𝑦)𝛽

= ((𝑡𝛼−1
𝑔−𝛽𝛼

−1 )𝑥𝐻𝑧 (𝜏, 𝑧)𝑦)𝛼 (𝑔𝑥ℎ𝑦)𝛽

= (((𝑡𝑔−𝛽)𝛼−1 )𝑥𝐻𝑧 (𝜏, 𝑧)𝑦)𝛼 (𝑔𝑥ℎ𝑦)𝛽

= (𝜏𝑥𝐻𝑧 (𝜏, 𝑧)𝑦)𝛼 (𝑔𝑥ℎ𝑦)𝛽

= 𝑤𝛼 (𝑔𝑥ℎ𝑦)𝛽

= 𝑣

For security, we point to the definitions and proofs of Kreuter
et al. [67]. The unlinkability (specifically 2-unlinkability [67,
Definition 2]), unforgeability, and privacy of the token valid-
ity [67, Theorem 15] follow from the security analysis OSPP
and PMBT-without-NIZK constructions of Kreuter et al. [67].

Application of OSPP-without-NIZK to AdVeil. Following
the one-time setup and key generation, a client runs TokenGen
to generate a new token with a targeting or delivery request.
The blind token is sent to the Broker for signing. If the Broker
believes the client to be a “human,” then it generates a valid
signature using Unblind. Otherwise, the Broker returns 𝜎 =

(𝑧,𝑤) with random 𝑧,𝑤
𝑅← Z∗𝑝 (invalid signature). The client

22



cannot differentiate between a valid and invalid signature [67,
Theorem 15]. The client unblinds the signature using Unblind.
The unblinded (and unlinkable) token and signature is given to
the Broker in reporting. The Broker rejects all reports where

Redeem outputs invalid. As mentioned earlier, the Broker can
only partition clients based on the token validity, partitioning
all clients into at most two anonymity sets.
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