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Abstract
In some practical enciphering frameworks, operational constraints may require that a secret

key be embedded into the cryptographic algorithm. Such implementations are referred to as
White-Box Cryptography (WBC). One technique consists of the algorithm’s tabulation special-
ized for its key, followed by obfuscating the resulting tables. The obfuscation consists of the
application of invertible diffusion and confusion layers at the interface between tables so that
the analysis of input/output does not provide exploitable information about the concealed key
material.

Several such protections have been proposed in the past and already cryptanalyzed thanks
to a complete WBC scheme analysis. In this article, we study a particular pattern for local
protection (which can be leveraged for robust WBC); we formalize it as DIBO (for Diffused-
Input-Blocked-Output). This notion has been explored (albeit without having been nicknamed
DIBO) in previous works. However, we notice that guidelines to adequately select the invertible
diffusion φ and the blocked bijections B were missing. Therefore, all choices for φ and B were
assumed as suitable. Actually, we show that most configurations can be attacked, and we even
give mathematical proof for the attack. The cryptanalysis tool is the number of zeros in a
Walsh-Hadamard spectrum. This “spectral distinguisher” improves on top of the previously
known one (Sasdrich, Moradi, Güneysu, at FSE 2016). However, we show that such an attack
does not work always (even if it works most of the time).

Therefore, on the defense side, we give a straightforward rationale for the WBC implemen-
tations to be secure against such spectral attacks: the random diffusion part φ shall be selected
such that the rank of each restriction to bytes is full. In AES’s case, this seldom happens if φ is
selected at random as a linear bijection of F32

2 . Thus, specific care shall be taken. Notice that
the entropy of the resulting φ (suitable for WBC against spectral attacks) is still sufficient to
design acceptable WBC schemes.

∗The research of the first author is partly supported by the Trond Mohn Foundation.
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1 Introduction

1.1 Historical Background on White-Box Cryptography
White-Box Cryptography is an implementation strategy for cryptographic algorithms that need to
conceal a secret key even though their design is public. The requirement is very strong, as WBC
shall resist even if the source code of the algorithm entangled with the key is completely disclosed.
The first WBC implementations have been pioneered by Chow, Eisen, Johnson, and van Oorschot.
They were examples of implementations for block ciphers DES [CEJvO02a] and AES [CEJvO02b].
Initially, the principle of WBC was to protect software implementations, which are very amenable
to code disclosure (attack termed code lifting). However, WBC has also been repurposed to protect
embedded firmware or even hardware implementations [CFD+10, SMG16]. Still, the idea is that the
attacker will either manage to read intermediate values within the implementation or correlate on
them directly or through some side-channel analysis.

Being aware of both those attacks, a WBC methodology often consists of two steps:

1. First, the representation of the block cipher is specialized for a given key as a succession of
table lookups;

2. Second, each table is composed with input and/or output random bijections.

Those bijections are statically drawn (by the so-called white-boxing software), and aim at decorre-
lating the table contents before and after the composition. The reason for the randomness to be
static is that the WBC instance can be produced in secure facilities. While it is deployed, refreshing
the randomness is hopeless because it is assumed that the attacker is capable of hooking the random
number source (i.e., to disable it).

The threat model assumes that the attacker knows precisely the abovementioned tables, e.g.,
he can decompile them or identify them through some side-channel information. Therefore, in the
sequel, we take for granted that the attacker knows the WBC design, including its rationale precisely:
he knows the tables and how they are built (but not the static randomness they embed nor the secret
key they conceal).

Such a blending of lookup tables is based on usual primitives in block cipher design, namely
linear operations for the diffusion and non-linear operations for the confusion. There are two kinds
of bijections.

1. Internal encodings: they are randomizations within the algorithm, and therefore cancel pair-
wise (i.e., the second operation is the inverse of the first one, such that their composition is
the identity) in the dataflow of table lookups, since the total application must not have its
functionality altered.

2. External encodings: they modify the algorithm by applying a first transformation on the
plaintext and a final one of the ciphertext, hence change the algorithm.

Clearly, in both cases, encodings must be invertible.

1.2 State-of-the-art approaches
The field of WBC is characterized by cryptanalyses appearing fast after white-box schemes have
been proposed. For example, the early work of Chow et al. [CEJvO02a, CEJvO02b] has soon been
shown vulnerable to differential cryptanalysis [GMQ07, WMGP07] as well as algebraic cryptanalytic
attacks [BGEC04, MGH08, LRM+13]. This led to some new proposals for white-box implementa-
tions of AES. In 2009, Xiao et al. in [XL09] proposed a variant of the design of Chow et al. using
larger linear encodings, for which again algebraic cryptanalytic attacks were identified in [MRP12].
Other approaches suggest building white-box AES implementations using perturbations [BCD06]
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(which were broken in [MWP10]). Lately, some protections leveraging masking and shuffling tech-
niques (repurposed from side-channel analysis) have been proposed by Lee et al. [LKK18]. But these
countermeasures failed against new attack methods, equally inspired from the field of side-channel
analysis, such as that of Rivain et al. [RW19]. Consequently, new WBC schemes inspired from
high-order masking protection, such as [SEL21], aim to resist all the same. Today, it is too early to
know whether this scheme provides enough security.

It is possible to classify the attacks on WBC into three categories:

1. statistical attacks (similar to cryptanalysis techniques), such as [GMQ07, WMGP07];

2. those which leverage techniques from grey-box analysis [BBB+19] (i.e., side-channel or fault
injection analyses), such as differential fault analysis (DFA [TH16]), differential computation
analysis (DCA [BHMT16, BBMT18]), collision or mutual information [RW19], or high-order
computational attacks [BRVW19, MA20, GRW20];

3. those which rely on Fourier transforms, such as [SMG16, LK20, LJK20].

To be exhaustive in our presentation of the state-of-the-art, let us also mention survey papers such
as [BT20, GPRW20], which typically report on attack methods observed at public contests, such
as WhibOx [whi16, che17]. Eventually, a technical report is currently under drafting within the
International Standardization Organization [ISO21].

In this paper, we develop the third category of attacks, in that we show that they are very
well suited for attacking a WBC scheme based on tables dissimulation. We briefly introduce the
theoretical notions required in this respect.

1.3 Spectral analysis mathematical notions
Let n and m be two positive integers. Given an n-variable Boolean function f , the support of f is
the set supp(f) = {x ∈ Fn2 ; f(x) = 1} and the Walsh transform of f maps every element u ∈ Fn2 to:

Wf (u) =
∑
x∈Fn

2

(−1)f(x)+u·x,

where an inner product in Fn2 has been chosen and is denoted by “·”. The Walsh transform can be
seen as the correlation between (−1)f and a basis of functions (x 7→ (−1)u·x)u∈Fn

2
. In this respect

it is a powerful tool to analyse the properties of the target function f . The Walsh transform
is closely related to the Fourier-Hadamard transform f̂(u) =

∑
x∈supp(f)(−1)u·x by the relations

Wf (0) = 2n−2f̂(0) andWf (u) = −2f̂(u) for u 6= 0. A butterfly algorithm allows for the computation
of Wf with complexity n2n additions [Car21, §2.3.1, at page 54].

Given any vectorial (n,m)-function F : Fn2 7→ Fm2 , the Walsh transform of F maps every pair
(u, v) ∈ Fn2 × Fm2 to the value at u of the Walsh transform of the Boolean function v · F , that is:

WF (u, v) =
∑
x∈Fn

2

(−1)v·F (x)+u·x,

where two inner products in Fn2 and Fm2 have been chosen and are both denoted by “ ·”. Any function
v · F , v 6= 0, is called a component function of F . The multi-set of those values WF (u, v) where
u ∈ Fn2 , v ∈ Fm2 , v 6= 0, is called the Walsh spectrum of F . The extended Walsh spectrum of a
function is the multi-set of the values taken by the absolute values of its Walsh transform. Affine
equivalence (that is, composition on the left and on the right by affine automorphisms) preserves the
extended Walsh spectrum. The computational complexity of the evaluation of the Walsh spectrum
of (n,m)-functions is 2mn2n.
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Incidentally, any vectorial Boolean function can be uniquely represented under the Algebraic
Normal Form (ANF, [Car21, (2.6) at page 39]), as:

F (x) =
∑

I⊆{1,...,n}

(∏
i∈I

xi

)
aI =

∑
I⊆{1,...,n}

xIaI ,

where aI belongs to Fm2 . The algebraic degree of F is defined as:

Definition 1 (Algebraic degree of F , [Car21, §2.2.1, at page 40]).

d◦algF = max
{
|I| | I ⊆ {1, . . . , n}, aI 6= 0

}
.

Intuitively, the algebraic degree relates to the randomness of the (n,m)-function. We have that
d◦algF = 1 for non-constant affine functions (i.e., sums of constants and nonzero linear functions),
whereas d◦algF is close to its maximal value n in general.

The following notion will not play a role in the present paper but it played a role in [SMG16],
leading the authors to the choice of a particular distinguisher for their attack; this is why we recall
its definition:

Definition 2 (Correlation-immunity [Car21, Def. 37, in §3.3.1 at page 129]). Let F be an (n,m)-
function and t such that 0 ≤ t ≤ n. The vectorial Boolean function F (x) is termed correlation-
immune of order t if its output distribution does not change when at most t coordinates xi of x are
kept constant.

Let us denote by wH the Hamming weight function. Correlation-immune functions can be charac-
terized in terms of Walsh spectrum:

Lemma 1 ([Car21, Proposition 41, in §3.3.1 at page 130]). Let F be an (n,m)-function. Then F is
correlation-immune at order t if and only if WF (u, v) = 0 for every u ∈ (Fn2 )∗ such that wH(u) ≤ t
and for every v ∈ (Fm2 )∗, that is for every v ∈ Fm2 .

We shall also need to use the univariate representation of (n, n)-functions. Through an identifi-
cation between the vector space Fn2 and the finite field F2n (the latter being an n-dimensional vector
space over F2, it can indeed be identified with the former), there is a unique representation of any
(n, n)-function F in the form

F (x) =

2n−1∑
i=0

aix
i ∈ F2n [x]/(x

2n + x)

with ai ∈ F2n . The algebraic degree of F equals then the maximum 2-weight w2(i) (i.e. binary
expansion’s Hamming weight) of the exponent i such that ai 6= 0.

1.4 Contributions
In this paper, we study the security of WBC leveraging internal encoding, in particular through
the random obfuscation of tabulated algorithm parts, like the T -box, based on DIBO concept. In
particular, we expand the knowledge related to “spectral attacks”. Namely, Our contributions are as
follows:

• We prove that in most of the cases, there is indeed a bias in the analyzed tables related to
the Walsh transform, which had been only observed previously, without that the reason be
understood. This bias, which provides then what we call a spectral distinguisher, is related
to a property of DIBO functions: the number of zeros in the spectrum (that is, the number
of zero values taken by the Walsh transform) of their component functions is large. We show
how this justifies the distinguisher that has been used in the state-of-the-art, which is the
arithmetic mean of the absolute value of the Walsh transform of coordinate functions;
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• We show that this state-of-the-art distinguisher is not the best possible, being only indirectly
related to the property of DIBO functions. Our distinguisher by the number of zero values
taken by the Walsh transform is stronger;

• We show that for most DIBO random obfuscations, our attack (leveraging our improved dis-
tinguisher) succeeds;

• We mathematically prove our attack success under a simple condition on the linear diffusion
layer of the obfuscation scheme; our proof also justifies a posteriori why the state-of-the-art
distinguisher works as well in similar conditions;

• We exhibit a subset of DIBO obfuscating functions for which the attack fails, hence the WBC
is secure against spectral attacks.

1.5 Outline
The rest of the paper is organized as follows. The precise definition of the targeted algorithms to be
protected and the DIBO white-boxing protection is provided in Sec. 2. The concept of the spectral
distinguishers is presented in Sec. 3. This section also provides a comparison between one prominent
state-of-the-art distinguisher (Sasdrich, Moradi, Güneysu, [SMG16]) and ours. The demonstration
that the attack works unconditionally when weak random linear permutations (termed φ) are selected
is provided in Sec. 4. Finally, we explicit in Sec. 5 the conditions upon which a DIBO can be secure
w.r.t. our attack, which constitutes guidelines for robust WBC (it implies a reduction of choices
for φ). Conclusions and perspectives are in Sec. 6. In appendix A, some examples of attacks are
illustrated.

2 Studied WBC rationale: DIBO

2.1 Use-case on AES
In this section, we are concerned with a simple protection pattern, namely the white-boxing of the
AES T -box.

The Advanced Encryption Standard (AES) block cipher relies on several rounds of encryption
with a different round key at each round. The security of the AES relies on the growing complexity
of the encryption with the number of rounds of encryption assuming that an attacker has only access
to the input of the first round and the output of the final round. Nevertheless, as we explained,
assuming in white-box cryptography that an attacker can have access to each encryption round input
and output makes necessary to obfuscate the encryption rounds (even internally of their structure)
to complexify the level of the required attack.

Each round of the AES can be implemented by calling public standard T boxes (4 in total for
encryption, which means there are another 4 for decryption), which evaluate 8-bit to 32-bit functions.
Notice that AES datapath (128 bit) consists of four T box calls per round column, hence sixteen per
round. The encryption starts by an AddRoundKey step (sometimes abridged ARK), a mere bitwise
XOR. Namely, each 8-bit message x is added a private key k? before applying the composition of the
Substitution box S (also known as SubBytes) and the diffusion (by MixColumns).

The operation we therefore consider for being white-boxed is thus this algorithmic step:

x 7→ T (x+ k?). (1)

Notice that x and k? are seen as elements of the finite field F28 = F256, hence addition is the
XOR operation. The subtraction is the same operation as the addition, and we use “+” for both
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operations. For instance, we consider the first T -box, which is:

T (x) =


02
01
01
03

S(x) =


02S(x)
S(x)
S(x)

03S(x)


where 01 (resp. 02, 03) is the element 1 (resp. α, α+1) in F256 seen as F2[α]/〈α8+α4+α3+α+1〉.
In the sequel, the elements of F2n , depending on the context, are considered as elements of a finite
field or vectors of n bits. We will refer to either of the cases using the notation F2n vs Fn2 .

2.2 WBC lookup tables protection with DIBO
It is easy to extract k? from the table of 256 words of 32-bit defined as {T (x + k?), x ∈ F256} (as
per (1)). Indeed, there are only 256 tables, each one corresponding to one key.

In the DIBO white-boxing concept, the secret k? is concealed by applying an internal encoding,
which consists in the application of a random secret permutation φ to the output of the T -box and
then of a second secret function B designed by blocks of small random permutations applied in
parallel to the 32-bit words.
The obfuscated function is therefore defined as Ok? :

x 7→ Ok?(x) = B ◦ φ ◦ T (x+ k?). (2)

An example of WBC-obfuscated T -box is provided in equation (8) of Appendix 3.5. In this scenario,
we recall that we assume that there is no external encoding. We call the chained function B ◦ φ
“DIBO”, referring to “Diffused-Input-Blocked-Output”.

Definition 3. Given two positive integers n and n0, such that n is a multiple of n0, we call Diffused-
Input-Blocked-Output functions those F : F2n → F2n such that, up to a permutation of the output
coordinates, F = B◦φ, where φ is a linear permutation1 of Fn2 and B is such that there exist bijective
(n0, n0)-functions B1, . . . , Bn/n0

such that:

B(x1, . . . , xn) =

(B1(x1, . . . , xn0), B2(xn0+1, . . . , x2n0), . . . , B n
n0

(xn−n0+1, . . . , xn)),

that is, B(x1, . . . , xn) equals the concatenation of the vectors

B1(x1, . . . , xn0), B2(xn0+1, . . . , x2n0), . . . , B n
n0

(xn−n0+1, . . . , xn).

Remark 2.1. We could wish to also write “up to a permutation of the input coordinates of B”, but
such permutation can be without loss of generality taken equal to the identity since applying such
permutation is equivalent to applying a permutation to the output coordinates of φ and permuting
the output coordinates of a linear permutation changes it in another linear permutation.

The structure of the DIBO obfuscation scheme is motivated hereafter:

• The linear function φ shall have the full MixColumns bitwidth to protect the complete datapath
of one AES column; therefore, we consider n = 32.

1Beware that a “permutation” has different meanings in different contexts. A permutation of an ordered list is a
rearrangement of the elements into a one-to-one correspondence with the original list. In the context of functions, a
permutation is synonymous for a bijective function (linear or non-linear); a linear permutation is a linear bijection.
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Figure 1: White-box protection Ok? (equation (2)) of x ∈ F8
2 7→ T (x+ k?) ∈ F32

2 (where T is known
but k? is one byte of the secret key), with DIBO function B ◦ φ (i.e., the internal encoding). Notice
that “NL” stands for the non-linear Bi, for 1 ≤ i ≤ 4

• The blocked non-linear operations are so because the output of the T -box (i.e., MixColumns) is
followed downstream by a XOR operation. Hence, the XOR concatenated two-inputs need to be
a table of 2× n0 (where n0 is the Bi output bitwidth); for this reason, s shall be of moderate
size (2, 3, 4, ..., 8 max — as 22×8-input tables are the maximum which is tolerable from an
implementation standpoint2). Thus, we consider n0 = 8.

Similar modelization is considered in state-of-the-art papers, such as [SMG16] (see TMC in Fig. 1
or Fig. 4) and [LK20] (see bottom part of type-II in Fig. 1(a) and type-IIM in Fig. 2).

The white-boxed version of x 7→ T (x+ k?) is still a F8
2 → F32

2 function, depicted in Fig. 1. The
function Ok? protects k? using secret bijections φ and B. Indeed, the full truth table of Ok? is
public, but it is assumed that the secret functions φ and B are sufficiently entropic to hide k?. (We
shall prove in this paper that this assumption does not hold unless provisions are taken concerning
properties of φ.)

Interestingly, the DIBO internal encoding (namely, B ◦ φ) has a mini-cipher structure with a
linear function for diffusion and a non-linear function for confusion.

2.3 Intuitive rationale regarding the security of DIBO
Leveraging DIBO as an internal encoding is not new: it has been employed in [CEJvO02b, SMG16,
LK20]. Most probably, submissions to competitions (WhibOx, Capture-The-Flag contests, etc.) also
resort to DIBO without saying so (the white-boxing application being generally not disclosed). Sadly,
most of the aforementioned competitions have resulted in successful WBC scheme attacks.

Now, the design of the white-box protection displayed in Fig. 1 seems strong, owing to the great
deal of entropy a designer injects in the random DIBO internal encoding. Thus, it is tempting to

2Obfuscated binary XOR function, which takes as input not one WBC-ed input, but two of them. It is the equiv-
alent of the type-IV encoding in [CEJvO02b, Fig. 1, page 257], where nibbles are traded for bytes for increased
security [RW19, §4].
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believe that DIBO internal encoding provably hides the key k?. One way to get an intuition in favor
of such a hasty claim would consist in resorting to one representative example, showing that the
DIBO construction implements the WBC ambiguity concept introduced in [CEJvO02b, §4.2].

Nota bene. Beware that this Subsection 2.3 is just an argumentation to insist that a WBC shall
be scrutinized carefully. The actual formal analysis of DIBO is the topic of Section 4.

Assume φ : F32
2 → F32

2 is the identity, and that the blocked bijection B is chosen such that, for
any x ∈ F8

2:

• B1(x) = (02S)−1(x+ c1),

• B2(x) = S−1(x+ c2),

• B3(x) = S−1(x+ c3),

• B4(x) = (03S)−1(x+ c4),

where we recall that S : F8
2 → F8

2 is the byte-level SubBytes bijection. Then B ◦ φ ◦ T (x + k?) =
(x + (k? + c1), x + (k? + c2), x + (k? + c3), x + (k? + c4)), where ci (1 ≤ i ≤ 4) are unknown.
Hence the secret key k? is unconditionally protected. The addition of the random bijection φ adds
more entropy, thereby apparently increasing the secret’s protection. Let us already notice that this
strategy is incorrect, as we will elaborate on later in Sec. 4.

This argumentation is incomplete since absolute security holds only when there is no linear map
(φ = Id). Indeed, white-box diversity and ambiguity are required, as recalled in Sec. 5.2.

3 Distinguishers
In this section we detail the attack methodology against a white-boxed T -box protected by DIBO
applied as an internal encoding.

3.1 Methodology
The white-boxing with DIBO generates tables Ok? which admittedly are difficult to relate to k? in
the first place. However, owing to the absence of external encoding, it is possible, for all 256 key
hypotheses, to attempt to revert the T -box part.

For each hypothesis on k ∈ F8
2, the attacker removes the functional part by defining a guess

function:
Ak : y 7→ Ok?

(
T−1(y) + k

)
= B ◦ φ ◦ T

(
T−1(y) + (k + k?)

)
.

This table (represented as a tabulated function, where input y lives in Im(T ), a subset of 256 values
from F32

2 ) has the following properties:

1. It is clear that when the guessed key k matches the key actually concealed in Ok? , then
Ak = B ◦ φ, i.e., the T -box part has been successfully peeled off. The guess function Ak? is
thus only the DIBO part (i.e., the secret internal encoding).

2. On the contrary, when the guess key k is different from the actual key k?, then Ak is less
structured (multiple composition of functions with different structures).

The attack strategy therefore boils down to distinguishing a DIBO from a more random-looking
function.

Notice that the guessed function Ak is a restriction of a function F32
2 → F32

2 . The input values of
Ak live within a unique set (i.e., its support), that is the image of T : F8

2 → F32
2 , since {T (x+k),∀x ∈

F8
2} = {T (x),∀x ∈ F8

2} = Im(T ).
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Figure 2: Two WBC situations to be distinguished, cases Ak? and Ak, for k 6= k?.

In practice, it is more convenient to consider the guess function, Ak : F8
2 → F32

2 , defined as:

Ak : x 7→ Ak(02x, x, x, 03x) =
Ok?

(
S−1(x) + k

)
= B ◦ φ ◦ T

(
S−1(x) + (k + k?)

)
.

The problem, put chiefly, is to distinguish between the two situations depicted in Fig. 2. In
this figure, the attacker does not know the internals (the non-linear functions Bi and φ are secret),
therefore finding the correct key k = k? amounts to deciding whether or not function Ak is the
composition of µ : x 7→ (02x, x, x, 03x) and a DIBO. The question therefore amounts to finding
some distinguishing property that the composition of µ and an unknown DIBO would feature (case
k = k?), and that a less structured function Ak would not have (case k 6= k?).

In the sequel, we will denote by L : F28 → F232 the onto linear function L(x) = φ ◦ µ(x) =
φ(02x, x, x, 03x). Therefore, the guess function also rewrites as:

Ak : x 7→ O?k
(
S−1(x) + k

)
= B ◦ L ◦ S

(
S−1(x) + (k + k?)

)
. (3)

3.2 State-of-the-art attacks
Historically, the first WBC settings were considering that the blocked outputs where only 4 × 4.
Therefore, they had some linearities remaining. Hence the trial (e.g., in DCA [BHMT16]) was
to correlate the output bits of the obfuscated function Ok? (Fig. 1) with merely the function
x 7→ T (x+ k) before white-boxing (for all guesses on the key k).

Remark 1. This method is a direct transposition from the situation of Boolean masked implementa-
tions leaking (through their power) the Hamming weight, where the best model for correlation (using
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so-called Correlation Power Analysis) happens to be the leakage with mask set to zero. This is
explained for instance in Lemma 21 of [PRB09].

The second trial was also with a situation of 4× 4 blocked outputs. The paper [SMG16] noticed
that DCA could fail and hinted (by analogy from the correlation highlighted in Remark 1) that
the correlation-immunity might characterize the difference between the two situations in Fig. 2.
Indeed, it is thus expected that the vectorial Boolean function Ak? (case for the correct key) is more
correlation-immune than others (i.e., Ak, k 6= k?). This spectral distinguisher is detailed in the next
Section 3.3, and then our improved spectral distinguisher is introduced in Sec. 3.4.

Remark 2. The problem of devising the best distinguisher has been solved in some contexts. For
instance, when the available information to the attacker is tainted with additive white Gaussian noise
(AWGN), the maximum likelihood distinguisher allows to optimize the probability of recovering the
secret key under minimum number of observations. This is explained in [HRG14] for unprotected
schemes and in [BGHR14] in the masked case. Optimal distinguishers in the context of WBC are
different in that they shall maximize the probability to extract the key leveraging one sole observation
(the WBC implementation). Such optimal distinguishers are probabilistic, as each and every WBC
implementation is generated amongst different randomization parameters (the DIBO part in this
paper).

3.3 Spectral distinguisher of Sasdrich et al.
Coming back to the distinguisher issue illustrated in Fig. 2, Sasdrich et al. in [SMG16] came up with
an idea in two steps. First of all, in the context of 4×4 blocked outputs, which feature some linearity,
a notion of (generalized) correlation-immunity is leveraged. Namely, the Ak? function is recognized
as more likely to be correlation-immune than Ak for k 6= k?. As highlighted by Lemma 1, the Walsh
spectrum of correlation-immune functions has a smaller support. Indeed, there are many zero values;
precisely, the number of such zero values is at least

∑t
i=1

(
n
i

)
for correlation-immune functions of

order t. Hence, it is expected that for the correct key guess k = k?, the spectrum “weight” is light.
Second, a distinguisher which is able to capture this fact is sought. Correlation-immunity is not
invariant under composition (on the right) with a linear permutation, since the spectrum is shuffled
by such transformation and the structure of the Walsh support is modified (correlation-immunity is
only invariant under composition by a permutation of the input coordinates). Correlation-immunity
is then not really the proper notion from which a distinguisher can be derived. This (probably)
led Sasdrich et al. to opt for the handy Walsh spectrum sum of absolute values distinguisher (or
extended Walsh spectrum mean). In this respect, the most likely3 key k̂ according to Sasdrich et al.
is:

Definition 4 (Spectral distinguisher of Sasdrich et al. [SMG16, §4.4 at page 200]).

k̂ = argmin
k∈F8

2

∑
x∈F8

2

32∑
i=1

∣∣W(Ak)i(x)
∣∣ . (4)

This distinguisher has subsequently been reused in [Lee18, LJK20, Ras20]. This distinguisher con-
siders absolute values (norm-1) and not squares (norm-2) of the Walsh spectrum, since according to

3The most likely key, as uncovered by a distinguisher, is denoted by k̂ (estimated key). This notation shall not be
confused with that of the Fourier transform (introduced earlier in Sec. 1.3).
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the Parseval relation, the sum of squares is independent of the choice of f = Ak:

∑
x∈F8

2

W 2
fi(x) =

∑
x

(∑
u

(−1)fi(u)+u·x
)2

=
∑
u,v

(−1)fi(u)+fi(v)
∑
x

(−1)x·(u+v)

=
∑
u,v

(−1)fi(u)+fi(v)28 1u=v = 28
∑
u

(−1)fi(u)+fi(u) = 216.

Also, Eqn. (4) considers each coordinate instead of each component function, for two reasons:

1. the computation in Eqn. (4) would otherwise be hardly tractable,

2. the criterion is reminiscent to DCA, which analyses bits one by one.

3.4 Our novel spectral distinguisher
There are two reasons that motivate for an improvement of distinguisher (4):

1. There is no argument in Sasdrich et al.’s paper to consider absolute values of the Walsh
spectrum, though their original idea would naturally have led them to consider the number of
zeros and not the values themselves;

2. According to the Cauchy-Schwarz inequality and to the Parseval relation, the expression∑
x∈F28

∑32
i=1

∣∣W(Ak)i(x)
∣∣ in their distinguisher is bounded above by

√
32× (28)2 ×N , where

N equals the number of non-zeros among the values of the Walsh transform of the coordinate
functions. This gives a clue that N could turn out to be adequate as a distinguisher, with a
value all the smaller as the key hypothesis is likely. Clearly, having N small would provide an
independent explanation why the distinguisher of Sasdrich et al. is efficient (by the virtue of
the aforementioned Cauchy-Schwarz bound).

Therefore, we proceed differently, in that we also noticed the small number of non-zeros in the
spectrum of Ak when k = k?, but did not attempt to attribute it to an alleged correlation-immunity.

Instead, we analyzed the two situations depicted in Fig. 2, and noticed that the linear part in
the T -box (namely MixColumns) could be merged into the DIBO linear diffusion φ. Another way
to look at this is that φ is evaluated only through the restriction to the image of the function
x ∈ F8

2 7→ µ(x) = (02x, x, x, 03x) ∈ F32
2 . Let us denote by L = L1‖L2‖L3‖L4 the linear function:

x ∈ F8
2 7→ φ(02x, x, x, 03x) = (L1(x), L2(x), L3(x), L4(x)) = L(x) ∈ F32

2 , (5)

where each Li is a linear function from F8
2 to F8

2, for 1 ≤ i ≤ 4. We recall that:

• each linear application x 7→ x, x 7→ 02x, x 7→ 03x (all being F8
2 → F8

2), and

• each linear application x 7→ φ(x) (permutation F32
2 → F32

2 )

are bijective. Though, we notice that the Li from Eqn. (5) may not be bijective. The bijectivity of
a linear function Li from Fn2 to itself can be characterized by its rank, denoted as rank(Li) (which
is equal, by definition, to the dimension of its image). We have that rank(Li) ∈ {0, ·, n}, and Li is
bijective if and only if Li is of full rank, i.e., rank(Li) = n.

From this central observation, we understood that the depletion in Ak spectrum (when k = k?)
had to be accounted by the non-injectivity of at least one Li, 1 ≤ i ≤ 4. Remarkably, it happens
that this property can also be accounted for by a spectral property:

Lemma 2. Let 1 ≤ i ≤ 4, and let F = Bi ◦ Li a function from F8
2 to F8

2 (corresponding to the ith
output of Ak?). Then the number of zeros in WF (u, v) is at least 28 − 2rank(Li).
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Proof. The number of zeros in a spectrum is invariant when composing on the right of the function by
any linear bijection. Thus Li can be replaced by L′i(x) = (x1, . . . , xk, 0, . . . , 0), where k = rank(Li).
Then, the spectrum is equal to zero for all u such that (uk+1, . . . , un) is not all-zero, i.e., 2n − 2k of
them.

Therefore, our attack consists in the exact enumeration of the number of zeros in the Walsh
spectrum. Namely, we leverage the following distinguisher:

Definition 5 (Our spectral distinguisher for WBC based on DIBO).

k̂ = argmax
k∈F8

2

#
{
WAk

(u, v) = 0 | u ∈ F8
2, v ∈ E

}
(6)

where:

E = {(F8
2, 0, 0, 0), (0,F8

2, 0, 0), (0, 0,F8
2, 0), (0, 0, 0,F8

2)} ⊂ F32
2 , (7)

considering that (F28 , 0, 0, 0) stands for F28 × {0}3 where 0 is the zero in F28 .

Notice that our distinguisher restricts the 4×256 values of v to E, because it aims at highlighting
the impact of the rank of each Li on the spectrum of Bi ◦ Li. As there is no clue for the attacker
which Li has a rank strictly less than 8 (if any), the sum over all the 1 ≤ i ≤ 4 is considered.
Another equivalent formulation for our distinguisher (6) is:

k̂ = argmax
k∈F8

2

4∑
i=1

#
{
WOk? [1+8i,...,8(i+1)](S−1(·)+(k+k?))(u, v) = 0 | u, v ∈ F8

2

}
= argmax

k∈F8
2

4∑
i=1

#
{
WBi◦Li◦S(S−1(·)+(k+k?))(u, v) = 0 | u, v ∈ F8

2

}
.

Remark 3. This expression highlights that our distinguisher depends only in k + k?, denoted by c
in the sequel. The same remark applies to the distinguisher of Sasdrich et al.

A comparison between distinguishers (4) and (6) is provided in the next section 3.5.
Our new attack features several advantages. Namely, our differentiators are:

• our attack is not based on an arbitrary distinguisher, but on a motivated one. As we already
described, our attack relies on distinguishing a DIBO function from the other (n,m)-functions,
leveraging the number of zeros in its Walsh spectrum, which is high when k = k? owing to the
property related to ranks of Li linear functions (Lemma 2).

• the distinguisher computation is tractable. Indeed, we recall from Sec. 1.3 that the computation
of a Walsh Hadamard transform of an n-input Boolean function requires n2n additions. Thus
the complexity of our distinguisher is: 229 = 28×4×28× (8×28). In contrast, the complexity
of Eqn. (4) is 223 = 28 × 32 × (8 × 28) but uses less information since it only considers
the 32 coordinate functions while we consider 4 × 28 component functions; the complexity
of the Sasdrich et al. distinguisher would be the same as ours if as many components were
studied, instead of only coordinates moreover, since we only count the number of zeros, our
complexity in memory would be lower; (still, the natural extension of Sasdrich et al. would
not be to consider the output as four bytes, but as a 32-bit vector, hence a total complexity
of 251 = 28 × 232 × (8× 28));

• we provide with a proof that our distinguisher always succeeds provided at least one Li (1 ≤
i ≤ 4) is neither bijective nor null (see Sec. 4).

12



Owing to Lemma 2, it is clear at this stage that our attack (counting the zeros in the Walsh
spectrum) works only if not all ranks of Li are full.

Remark 4. In particular, it is therefore wrong that spectral attacks always work, and the DIBO
protection pattern is not broken. We show in Section 5 how it can be repaired, by forcing to choose
φ in a given class of values.

3.5 Comparison between our distinguisher and that of Sasdrich et al. [SMG16]
Let us first notice that both distinguishers ([SMG16] and ours) apply in different contexts:

• It is explained in §4.2 of [SMG16] that this distinguisher is geared towards noisy power-analysis
leakage (a situation referred to as “grey-box”), whereby correlations can be estimated across
numerous (power, electromagnetic, etc.) side-channel traces. As another specificity, the dis-
tinguisher of Sasdrich et al. is definitely flexible regarding the internal encoding scheme: it is
likely that it applies for a larger class than “pure” DIBO functions.

• Our context is that of genuine “white-box”, where the white-boxed table Ok? is exactly known
by the attacker; there is thus no need to collect multiple traces. In particular, the Walsh
spectrum can be computed, and zero values can be enumerated without ambiguity. Still, this
scenario only works provided the white-boxing rationale is DIBO. As a corollary, it would not
apply in the “grey-box” context since it does not allow for accurate zero-value counting (the
spectrum is not known).

This being said, we wish nonetheless to compare empirically the distinguishing power of our dis-
tinguisher and that of Sasdrich et al., in the canonical white-box context (where the algorithm has
been successfully lifted).

In a view to exacerbate the differences between both distinguishers, we allow switching the S-box
from the AES (x 7→ x2

n−2) to a Gold function (x 7→ x3). Indeed, when sticking with the AES S-box,
the two distinguishers (4) and (6) happen to perform the same empirically. Indeed, Lemma 2 is very
strong: the number of zeros induced by a reduction of the rank of one Li is the dominant factor.
This is not the same when resorting to taking (8,32)-functions whose extended Walsh spectrum (i.e.,
taken as an absolute value) and stripped of its zero values has significant variance, for example, has
two absolute values appearing about the same number of times and one very small and the other
very large. Note that this is a property independent of the linear bijection we compose (i.e., which
only depends on T in the standard case). The T function does not have this property. For example,
the Gold power function (x 7→ x2

i+1) and the Kasami power function (x 7→ x2
2t−2t+1) have either

bent or semi-bent components under some conditions; which is not precisely what we want to obtain
(absolute values too close), but they could be suitable if we make them undergo the same treatment
as the inverse function to get T .

For the sake of clarity, we exhibit explicitly one example of a T -box which can be attacked
with our distinguisher and not with the one of Sasdrich et al. It consists in the choice of φ as the

13



permutation of F32
2 of a matrix:

0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1
1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0
1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1
0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0
0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1
1 0 0 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1
1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0 1
1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 1 0
1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 1
0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1
0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0
0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0
1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0
0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0
1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 1 1 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0
1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1
0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 1
1 1 0 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 1 0 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0
0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1
0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1
0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0
1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1
0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1
0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0
1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0
1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1


and of B chosen as B1, B2, B3 and B4, displayed consecutively below:

158 83 170 101 150 200 118 236 63 135 149 235 109 189 153 73
207 171 157 97 188 45 245 138 110 255 8 55 222 37 196 126
111 198 168 145 187 5 22 191 125 12 186 179 90 129 223 44
64 182 71 162 159 76 59 215 232 18 224 15 152 74 7 89
184 249 33 108 156 229 246 214 92 16 96 75 107 176 4 116
61 124 52 66 26 234 154 227 40 13 3 106 24 30 228 60
56 139 122 19 190 136 54 204 80 51 2 220 104 134 86 10
144 181 238 41 14 27 50 231 20 180 46 173 251 123 212 178
62 210 166 130 155 137 43 199 146 161 112 206 98 160 93 201
244 113 0 94 95 69 49 48 85 253 141 23 225 143 78 100
131 205 254 6 68 84 121 239 219 217 247 194 91 218 233 11
119 102 35 57 169 65 1 120 203 42 105 132 221 17 38 133
53 164 250 128 34 28 183 114 163 151 202 31 209 127 185 226
237 32 167 142 213 147 29 177 241 99 82 252 175 79 197 208
115 148 248 72 77 25 165 81 240 174 243 39 230 193 58 140
88 216 70 87 36 242 21 211 9 103 195 67 192 117 47 172




247 98 219 143 78 15 110 11 161 102 187 217 183 221 162 40
165 196 175 37 86 171 107 212 45 82 21 153 97 113 166 119
246 240 173 50 104 130 62 151 222 46 95 115 77 1 148 154
144 100 155 138 229 231 134 12 19 125 218 210 121 109 152 228
31 188 202 10 47 205 76 75 65 42 3 255 252 206 90 9
238 137 131 223 224 27 96 57 159 163 54 225 253 156 172 245
23 56 185 60 213 108 220 71 239 6 99 226 192 79 157 127
7 118 8 208 38 132 169 215 191 184 49 193 227 124 204 244
59 182 48 53 70 170 216 55 234 142 248 214 201 241 179 52
74 26 200 4 139 178 250 5 141 61 135 207 122 22 68 20
243 14 32 230 64 180 236 81 58 13 194 72 147 160 87 123
195 211 242 51 233 24 94 164 106 16 63 128 186 105 28 73
89 149 174 93 41 177 83 43 92 18 199 198 145 158 150 249
39 167 85 235 111 66 117 44 140 101 69 2 84 17 146 254
29 30 114 237 103 67 25 176 251 116 168 91 120 35 112 209
129 189 136 190 80 181 126 197 34 203 0 36 232 133 33 88




140 31 1 27 187 189 157 222 86 219 56 14 16 212 111 11
192 130 147 0 13 19 84 68 197 60 126 143 210 43 149 8
153 30 151 79 99 144 195 50 54 213 39 232 150 240 208 122
108 246 146 103 85 41 44 201 167 9 253 2 181 245 23 209
154 124 20 162 137 152 249 156 203 75 37 48 106 95 165 239
228 76 64 52 218 139 160 242 191 170 29 142 216 202 186 7
116 18 33 107 55 49 113 36 40 110 117 24 193 63 121 17
217 58 69 184 131 175 252 229 236 238 10 67 42 237 199 5
45 72 62 177 251 250 133 129 127 221 21 25 136 35 81 77
176 211 214 248 101 102 235 168 220 241 28 134 225 70 223 3
34 88 182 120 155 112 196 125 180 80 12 161 254 230 174 159
100 78 92 114 66 200 65 135 82 171 53 166 169 15 215 224
6 94 71 141 138 128 255 47 188 61 46 51 90 98 204 22

118 244 183 73 227 247 109 158 205 4 190 105 164 119 207 231
234 148 194 163 145 91 93 185 132 233 173 178 57 59 172 97
198 115 32 206 26 83 96 87 123 226 243 74 89 38 179 104


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

46 136 28 212 45 27 249 31 58 12 77 179 213 108 42 14
185 142 99 44 50 238 160 209 87 255 176 55 236 25 156 189
123 175 139 82 70 111 57 119 73 170 3 216 66 227 52 197
203 184 252 49 24 35 169 163 165 251 53 122 183 153 246 214
244 223 231 21 192 161 177 215 250 186 201 164 155 124 221 17
104 173 208 26 63 196 172 72 152 65 235 39 16 88 199 97
121 94 134 103 232 242 128 159 41 190 130 60 86 168 171 106
20 4 129 141 148 205 240 146 180 29 245 207 69 137 195 8
107 19 101 211 68 239 198 109 233 81 54 34 187 30 78 11
234 217 174 98 22 7 110 91 23 162 71 167 132 220 228 117
145 206 222 56 224 84 112 144 67 61 131 74 0 188 80 135
226 182 204 210 5 127 83 36 202 147 150 90 229 64 93 248
138 219 32 96 95 113 59 37 191 143 254 158 154 40 48 100
241 105 92 13 89 18 120 149 218 47 230 62 79 43 193 181
116 247 200 115 9 157 76 2 51 178 237 126 85 114 75 166
102 243 125 6 10 1 38 133 253 151 33 118 15 140 225 194


which results in Ok? laid out as follows:

cd6f8aa7 2efa21fa 2ebbb93a cd0d4b09 2e7e26ba 2ecbf30f 2e3cc2c0 2e76fa27
2e7e26ba 6cab5331 cd45d7c6 b4250117 b450ed3e 2e49414a b4bc7f8b 2ed54d52
b43437cc cd0d4b09 2e910891 6ca73669 b45bf0ea 2e43221f cd8ee143 6cba6313
b459d6d9 6cf8e58d 2ed54d52 cd77c18c cd3b8597 cd8ee143 b4f6423d b4d2cfbe
cdc082f5 b459d6d9 6c9ba29b 2e49414a 6ca73669 cdd42396 2efa21fa b4e80e2e
6cd119a6 b44a0c71 cde914bf 2e41ec47 b4642afb b4e6b656 cd1149a2 cde914bf
6c23ade4 b4e6b656 b4fba0a9 6cd119a6 2edebae8 2eb36e87 2edebae8 2e317049
2e3cc2c0 6c82a938 cd45d7c6 b4940a84 2e5567a3 b45bf0ea 2ea05eac b4d2cfbe
2ed54d52 cd4f7ca5 b41fdf32 6cb0a86b b4edd489 b4aef5cb cdd8b080 cd0d4b09
cd4d7b2f b4e6b656 6c803088 2e2a2f57 2e2a2f57 b481d07a 6cd119a6 cd077d2d
cde914bf b47a5d5f 2e2a2f57 6c1e81f6 b408cd23 2e8cf79e b4b1c462 2edebae8
cd1a394c 2e7e26ba 2e1b921d cdfcabe2 cd709c46 cdd647e6 cd8ee143 cd578e48
b4aef5cb cd8d4fb3 6ca73669 2ecc3b2c 6cfffd39 cd45d7c6 6caa756a cdfcabe2
2e679f58 cdfcabe2 cd2f281c 2e3cc2c0 b459d6d9 b474fe30 b41fdf32 b49dd104
b4aef5cb 6c0b1744 2efa21fa cde02ef1 b43769b4 b4d2cfbe cdf904ae cd709c46
cd7f25b7 b41fdf32 6c5e1dce 2e49414a b45bf0ea 2ec8bf4d cd709c46 6c7978e5
2ec8bf4d 2e43221f b4f6423d b43769b4 cd2f281c 2e76fa27 b4250117 6cfffd39
2e317049 b4b1c462 b4b1c462 2eb36e87 b4642afb cd4d7b2f cd077d2d b44a0c71
cd4d7b2f 6c23ade4 2e41ec47 b47a5d5f cd077d2d b4fba0a9 cd1149a2 b47a5d5f
2e910891 2ecc3b2c cde02ef1 cd6f8aa7 6cf8e58d b474fe30 6c5e1dce b450ed3e
6cba6313 cd578e48 b43769b4 2ea05eac cdc082f5 b474fe30 cd4f7ca5 b4bc7f8b
2ec8bf4d 2e5567a3 cd3b8597 cd578e48 cdd8b080 2ebbb93a cdd42396 2ecc3b2c
6c9ba29b 6c5e1dce cd4f7ca5 cd77c18c 2ecbf30f cd1a394c 6cfffd39 b4940a84
cd1a394c 6cab5331 6c82a938 cd2f281c cde02ef1 b4e80e2e b43437cc cdd8b080
2e5567a3 2e43221f cdd647e6 cdf904ae b49dd104 6cb0a86b b450ed3e 6c9ba29b
2ea05eac b4f6423d cdd647e6 6c7978e5 cd8d4fb3 b4edd489 cd6f8aa7 b4e80e2e
6cf8e58d cdc082f5 cd7f25b7 6cb0a86b 2e1b921d 6caa756a 6c82a938 2e76fa27
b4250117 b4940a84 2e679f58 2e1b921d b4edd489 6c0b1744 cdd42396 2e910891
cdf904ae 6c7978e5 6cba6313 cd3b8597 2ecbf30f 6cab5331 6caa756a 2e679f58
b408cd23 b408cd23 2e317049 2eb36e87 2e41ec47 cd1149a2 6c803088 b481d07a
6c1e81f6 6c803088 b4fba0a9 b44a0c71 6c23ade4 b4642afb 6c1e81f6 b481d07a
cd8d4fb3 6c0b1744 2ebbb93a b43437cc b4bc7f8b cd77c18c b49dd104 cd7f25b7

. (8)

This table shows the 256 entries of Ok?(x), for x ∈ {0, 1, . . . , 255}; the values are encoded in hex-
adecimal. For instance, Ok?(0) = 0xcd6f8aa7, Ok?(1) = 0x2efa21fa, . . . , Ok?(255) = 0xcd7f25b7.

Our distinguisher (6) finds the correct key k? = 0x55, whereas the distinguisher (4) of Sasdrich
et al. fails. Nonetheless, the correct key is ranked at 6th position, which is close to being the best.

One example is insufficient to draw significant conclusions. Hence, we propose to compare the
distinguisher’s performance in average and for examples on several ranks, as shown in Fig. 3. The
distinguisher of Sasdrich et al. is computed negatively, so that the figure of merit is: “the larger the
distinguisher, the more likely the key”.

Various metrics proposed in Fig. 3 show that our distinguisher is able (in most cases) to distin-
guish better than that of Sasdrich et al. Those metrics are respectively:

• Success rate: probability to extract the correct key;

• Guessing entropy: rank of the correct key amongst the guessed candidates;

• Value of the distinguisher: gives some hint about the distinguishing margin, later on defined
as (15) in Sec. A.2.1.
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Notice that the situation depicted in Fig. 3 is not the one analyzed mathematically in Sec. 4 because
the S-box is different.

Now, let us underline the two compelling reasons why it is important to study our (motivated)
distinguisher:

1. we managed to come up with the proof (Sec. 4) that our distinguisher always works if at least
one Li is not bijective, hence a so-called “structural cryptanalysis”, and

2. this gave us the solution to repair the DIBO scheme (Sec. 5), by ensuring that all four Li are
invertible.

4 Mathematical proof of the cryptanalysis
Let n be an even integer, that will be equal to 8 in practice. We identify Fn2 with the finite field F2n

and we recall that tr(x) denotes the trace of any element x of F2n over F2: tr(x) =
∑n−1
i=0 x

2i . Let
Bn be the vector space over F2 of all Boolean functions over F2n , equipped with the inner product
f · g =

∑
x∈F2n

f(x)g(x). For a vector subspace V of Bn, we denote by V⊥ its dual (i.e. orthogonal):
V⊥ = {f ∈ Bn | ∀g ∈ V, f · g = 0}. Let RM(r, n) be the Reed-Muller code of length 2n and order r,
that is, the vector space of all n-variable Boolean functions of algebraic degree at most r. We recall
that the dual code RM(r, n)⊥ of RM(r, n) equals RM(n− r − 1, n).

In this section, we fix 1 ≤ i ≤ 4. We fix also v = (v1, v2, v3, v4) ∈ F4
2n where vi 6= 0 and vj = 0

for j 6= i.

4.1 Setting up the mathematical criterion
We are interested in counting the number of those u ∈ F2n such that WF (u, v) = 0 where F (x)
equals the concatenation of the vectors equal to Bi ◦Li(S(S−1(x)+c)) for i = 1, . . . , 4, where Bi is a
(8, 8)-function, L = (L1, L2, L3, L4) is a linear injective (8, 32)-function, S is the SubBytes function
(at byte level, namely S : F8

2 → F8
2) and c = k + k? :

WF (u, v) =
∑
x∈F2n

(−1)tr(ux)+tr(viBi◦Li(S(S
−1(x)+c))).

Now, let us make two observations:

• Without loss of generality, we may take S(x) equal to the multiplicative inverse function x−1,
since the composition of x−1 with a linear permutation only permutes the values of the Walsh
transform. More precisely, the size of {u ∈ F2n |WF (u, v) = 0} is equal to the number of u in
F2n such that the Walsh transform of x ∈ F2n 7→ tr(viBi ◦Li((x−1 + c)−1)) is equal to 0 at u.

• Let us denote by r the rank of Li. Then, Li(x) =
∑r
l=1 tr(blx)al for some linearly in-

dependent elements b1, . . . , br of Fn2 and some linearly independent elements a1, . . . , ar of
Fn2 . Therefore, tr(viBi ◦ Li(x)) may be viewed as the composition g(tr(b1x), . . . , tr(brx))
of some r-variable Boolean function g, depending only on v and the al’s, with the linear map
x ∈ F2n 7→ (tr(b1x), . . . , tr(brx)) ∈ Fr2.

Following the above observations, the number of u in F2n such that WF (u, v) = 0 is equal to the
number of u in F2n such that the Walsh transform

Wgc(u) =
∑
x∈F2n

(−1)tr(ux)+g(tr(b1(x−1+c)−1),...,tr(br(x
−1+c)−1) (9)

is equal to 0 where gc is defined as gc(x) = g(tr(b1(x
−1 + c)−1), . . . , tr(br(x

−1 + c)−1)) = tr(viBi ◦
Li((x

−1 + c)−1)).
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Distinguisher: Ak spectrum mean absolute value
((4) from [SMG16])

Distinguisher: number of zeros in the Ak Walsh
spectrum ((6), this work)
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Figure 3: Distinguisher performance comparison between [SMG16] and ours
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We are now in position to state the key problem, on which relies the attack proposed in the
paper, and that we shall address successfully.

Problem 1. Fix 1 ≤ r ≤ 7 and linearly independent elements b1, . . . , br of F2n . Let g be a non
constant r-variable Boolean function. Prove that the size of (Wgc)

−1(0) = {u ∈ F2n | Wgc(u) = 0}
is less than the size of (Wg0)

−1(0) = {u ∈ F2n |Wg0(u) = 0} for any c 6= 0.

Remark 5. When r = 0, gc is a constant, hence the number of zeros of Wgc is 2n − 1 irrespective
c = 0 or c 6= 0. This yields to a tie in our distinguisher, namely more than one key (namely, the set
of all possible keys) is returned. Nonetheless, in this case, we can shift the focus to another output
byte 1 ≤ i ≤ 4, such that rank(Li) 6∈ {0, 8}.

We firstly study the case r = 1. In that case, there are only two possibilities: g(tr(b1x)) = tr(b1x)
or g(tr(b1x)) = tr(b1x) + 1. If c = 0, then Wgc(u) vanishes at all points except u = b1, and if c 6= 0,
then Wgc(u) vanishes at less that 2n − 1 points, since it is well known that the only functions that
vanish at 2n − 1 points are affine functions, and gc is not affine.

We investigate the case 2 ≤ r ≤ 7 in the two next subsections considering firstly the case where
c = 0 (k = k?) and secondly the case c 6= 0 (k 6= k?).

4.2 When k = k?

When c = k + k? = 0, we can state a simple lower bound on the number of 0 of Wg0 depending
only on r. According to Lemma 2, let g be an r-variable Boolean function. The size of (Wg0)

−1(0)
is larger than or equal to 2n − 2r.

Remark 6. This result actually works for any value 0 ≤ r ≤ 8.

Therefore, we need now to prove that the number of zeros in Wgc is strictly less than 2n − 2r

when c 6= 0.

4.3 When k 6= k?

4.3.1 Upper bound on the number of zeros in Wgc

Concerning c = k+k? 6= 0, we use in our study a result established in [BC99] and not so well known.

Theorem 1 ([Car21, §2.3.5, page 70]). Let f be a Boolean function over F2n . The size of the
Fourier-Hadamard support {u ∈ F2n ; f̂(u) =

∑
x∈F2n

f(x)(−1)tr(ux) 6= 0} is larger than or equal to
2d
◦
algf .

Let us say a few words on how this bound can be proven, since this will have an impact below.
The size of the support {u ∈ Fn2 ; f̂(u) 6= 0} is larger than or equal to the size of the support of
the Fourier-Hadamard transform of any restriction g of f , obtained by keeping constant some of its
input bits (we do not give an argument for this fact, which is either related to Cayley graphs or
deduced from the so-called Poisson summation formula, and would lead us too far from our subject,
but these arguments can be found in Subsection 2.3.5 of [Car21]), and choosing a multi-index I of
size d◦algf such that xI is part of the algebraic normal form of f , the restriction obtained by fixing
to 0 the coordinates of indices lying outside I has odd weight and its Fourier-Hadamard transform
takes therefore nonzero values only. We observe that, in general, there will be many more elements in
the support of the Fourier-Hadamard transform of f than in that of g, and the bound of Theorem 1
is often far from being an equality, but it will be enough to reach our goal. We deduce from the
theorem:

Corollary 1. Let g be an r-variable Boolean function. Let b1, . . . , br be linearly independent
elements of F2n . Let c 6= 0. Then, the size of (Wgc)

−1(0) is less than or equal to 2n − 2d + 1 where
d denotes the algebraic degree of gc : x 7→ g(tr(b1(x

−1 + c)−1), . . . , tr(br(x
−1 + c)−1)).
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Proof. According to Theorem 1, there are at most 2n − 2d elements u in F2n such that f̂(u) = 0.
And since for u 6= 0 we have Wgc(u) = −2ĝc(u), there are at most 2n− 2d+1 such inputs for which
Wgc(u) = 0.

Theorem 1 and Corollary 1 give together a positive answer to Problem 1 for any r-variable
Boolean function g such that 2n − 2r > 2n − 2d

◦
alggc + 1, that is, such that 2d

◦
alggc > 2r + 1, or

equivalently, d◦alggc ≥ r+1. Note that in the case d◦alggc = r, we have that the size of (Wgc)
−1(0) is

less than or equal to 2n − 2r + 1 and in most cases, it will be less than 2n − 2r − 1 (because, as we
explained, the bound of [BC99] is very seldom an equality or almost an equality, and also because
there are other reasons that we give in the remark at the end of the present section why there must
be a difference between the cases c = 0 and c 6= 0).

4.3.2 Study of d◦alggc

According to the preceding arguments, we need to study the algebraic degree of

gc : x 7→ g(tr(b1(x
−1 + c)−1), . . . , tr(br(x

−1 + c)−1))

To make our expressions lighter, we set h(x) = g(tr(b1x), . . . , tr(brx)). Note that h is an n-variable
of algebraic degree at most r. We now prove that there is a high probability of getting x 7→
h((x−1 + c)−1) of algebraic degree n− 1.

We for that equip the set Bn of all n-variable Boolean functions with the uniform probability Pr
(defined as Pr(A) = |A|/|Bn|). We denote Pr[A | B] the conditional probability of A given B. With
this notation, we prove

Theorem 2. For any r ≤ n− 1 and c 6= 0,

Pr[{d◦algh((x−1 + c)−1) = n− 1} | {d◦algh ≤ r}] ≥ 1− 2−n

where {d◦alggc = n − 1} denotes the subset of Br formed by all r-variable Boolean functions g such
that the function gc is of algebraic degree n− 1.

Proof. The probability distribution that we consider for h is uniform over the vector space of Boolean
functions of algebraic degree at most r over F2n . It is shown in [Car20] that given a permutation F
and a function G we have:

d◦alg(G ◦ F ) = max
i∈{0,...,2n−2}

d◦
alg

((F−1(y))iG(y))=n

(
n− w2(i)

)
, (10)

where F−1 is the compositional inverse of F (beware that “−1” represents here the compositional
inverse while in “(x−1 + c)−1”, it represents the multiplicative inverse). Taking here F (x) = (x−1 +
c)−1, which is its own compositional inverse, we deduce:

d◦algh((x
−1 + c)−1) = max

i∈{0,...,2n−2}
d◦alg((x

−1+c)−ih(x))=n

(n− w2(i)).

Thus, since we know that d◦algh ≤ n − 1 (which is equivalent to saying that the sum of the values
taken by h(x) when x ranges over F2n equals 0), and then d◦algh((x

−1+c)−1) ≤ n−1 since (x−1+c)−1
is a permutation, we have d◦algh((x

−1 + c)−1) ≤ n− 2 if and only if

∀i ∈ {0, . . . , n− 1}, d◦alg((x−1 + c)−2
i

h(x)) < n.

Since h is a Boolean Function, this is equivalent to d◦alg((x
−1 + c)−1h(x)) < n, that is,∑

x∈F2n

(x−1 + c)−1h(x) = 0
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or equivalently:
∀β ∈ F2n ,

∑
x∈F2n

tr(β(x−1 + c)−1)h(x) = 0. (11)

Let E be the following subspace of Bn : E = {hβ := tr(β(x−1+c)−1), β ∈ F2n}. Since (x−1+c)−1
is a permutation of F2n , E is a subspace of dimension n. Condition (11) says that h lies in the vector
space E⊥ ∩RM(r, n). The dual of E⊥ ∩RM(r, n) is E +RM(n− r − 1, n).

We shall show that any function hβ has algebraic degree n − 1. This will imply that the sum
E + RM(n − r − 1, n) is direct and allow us to deduce its dimension. Let us now compute the
algebraic degree of hβ . Before all, observe that tr(β(x−1 + c)−1) = tr(βc−1((cx)−1 + 1)−1). Thus,
since two affinely equivalent Boolean functions have the same algebraic degree, one can suppose
without loss of generality, that c = 1 when determining the algebraic degree of tr(β(x−1 + c)−1).
Now, observe that,

(x−1 + 1)−1 =
(
(x2

n−2 + 1)2
n−1−1

)2
=

2n−1−1∑
w=0

x(2
n−2)w

2

= 1 +

2n−1−1∑
w=1

x2
n−1−w

2

.

For β 6= 0, we have then:

tr
(
β(x−1 + 1)−1

)
= tr(β) +

2n−1−1∑
w=1

tr
(
β1/2x2

n−1−w
)
.

There is no exponent of 2-weight n in this sum and the terms whose exponents have 2-weight n− 1
are those corresponding to w = 2i for i = 0, . . . , n − 2. The part in the above expression made of
the terms with exponents of 2-weight n− 1 equals then:

n−2∑
i=0

tr
(
β1/2x2

n−1−2i
)

= tr

((
n−2∑
i=0

β2n−i−2

)
x2

n−1−1

)

j=n−i−2
= tr

n−2∑
j=0

β2j

x2
n−1−1

 .

This vanishes if and only if
∑n−2
j=0 β

2j = tr(β) + β2n−1

= 0, that is, β = 0 since tr(β) + β2n−1

= 0

implies β ∈ F2 and n being even,
∑n−2
j=0 β

2j equals 1 for β = 1. Hence, we deduce that every nonzero
component function tr(β(x−1 + c)−1) is of algebraic degree n− 1 for any β 6= 0.

That implies that the sum E + RM(n − r − 1, n) is a direct sum, any element of RM(n −
r − 1, n) having algebraic degree at most n − r − 1 < n − 1 for r ≥ 1. Thus, the dimension of
E⊥∩RM(r, n) is 2n−n−∑n−r−1

k=0

(
n
k

)
= −n+∑n

k=n−r
(
n
k

)
= −n+∑r

k=0

(
n
k

)
. Thus, the conditional

probability that h((x−1 + c)−1) is of algebraic degree at most n− 2 given that h lies in RM(r, n) is
2−n+

∑r
k=0 (

n
k)/2

∑r
k=0 (

n
k) = 2−n.

A numerical validation is computed empirically over 10, 000 random draws. We get that, for
n = 8 and r = n − 1, Pr[{d◦alggc = n − 1}] ≈ 0.997, which is indeed better than the bound of
Theorem 2 (1 − 2−n ≈ 0.996). Besides, this confirms that our spectral attack (definition 5) works
in an overwhelming number of situations.

4.4 A final remark
There is another possible approach, to complete our view of Problem 1. Consider a vectorial function
of the form F = B ◦ L where L is an injective (8, 32)-function and B is the concatenation of four
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(8, 8)-functions B1, . . . , B4. Let Ei = {x ∈ F8
2; L(x) ∈ {(0, . . . , 0)} × F8

2 × {(0, . . . , 0)}} where the
number of zeros on the left is i − 1 and the number of zeros on the right is n − i. Then L being
injective, the vector spaces Ei are in a direct sum equal to F8

2 (and the sum of their dimensions
equals then 8). We have F (

∑4
i=1 xi) =

∑4
i=1Bi ◦ L(xi) =

∑4
i=1 F (xi) with xi ∈ Ei. We can

see that in the expression of F , there is no product of one coordinate of xi with those of other
xj . On the other hand, there can be products between the coordinates of the same xi. This is
characterized by the Walsh transform of F : for any u ∈ F8

2 and v ∈ F32
2 , we have WF (u, v) =∑

xi∈Ei,∀i=1,...,4(−1)
∑4

i=1(v·F (xi)+u·xi) =
∏4
i=1

∑
xi∈Ei

(−1)v·F (xi)+u·xi . We can see that thanks to
the fact that 0 is absorbent, WF has more zeros than a random function. But it is more difficult to
precisely compare the cases c = 0 and c 6= 0 with this approach than with the previous one.

5 Our countermeasure: conditions for DIBO to resist our
spectral attack

5.1 Average insecurity of DIBO on AES
From the previous analysis, one can state the following

Countermeasure 1. A DIBO obfuscation scheme is immune to our attack provided all four
linear functions Li, 1 ≤ i ≤ 4, are invertible.

In general, many linear Li : F8
2 → F8

2 are permutations. Namely, the number of permutations is∏7
i=0(2

8 − 2i), therefore the proportion of invertible linear mappings in F8
2 is 2−8

2 ∏7
i=0(2

8 − 2i) ≈
0.290.

But now, for a DIBO obfuscations scheme to be attackable by our distinguisher, it suffices that
at least one Li is non-invertible. Hence the proportion of vulnerable DIBO is:

1−
(

7∏
i=0

(
1− 2i−8

))4

≈ 0.993. (12)

Thus, a WBC implementation of AES leveraging DIBO with random (unconstrained) L has an
overwhelming probability (> 99%) to be attackable.

5.2 The White-Box diversity and ambiguity
The condition to resist our attack is therefore to choose L : F8

2 → F32
2 such that all four Li are

permutations. The number of such permutations is cryptographically large: for a given i, the
number of permutations Li is

7∏
i=0

(
28 − 2i

)
≈ 262.

The estimate of the diversity (defined in [CEJvO02b, §4.1]) of one byte of output of Ok? is the
number of bijections in F8

2, which is 256! ≈ 21684. Indeed, Bi ◦ φi boils down to a bijection in F256.
Therefore, by restricting the choice of φ to those such that Li has maximum rank (or null rank) for
all 1 ≤ i ≤ 4, our spectral attack (and therefore also that of Sasdrich et al. [SMG16]) is efficiently
avoided.

Ambiguity follows from a similar argument as in Sec. 2.3: Let Ak? the guess function (3) for the
correct key.

Ak?(x) = (Bi ◦ Li)(x)
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where Li is a permutation. (Indeed, we ignore the trivial case where Li = 0.) Then, Ak? has the
expression of a licit Ak, for any k 6= k?. Indeed, let c = c+ k?, one has

Ak?(x) = (B′i ◦ L′i) ◦ S(S−1(x) + c),

where L′i is any permutation, and B′i(x) = Bi ◦ Li ◦ S(S−1(L′−1i (x)) + c) is a bijection.

5.3 Resistance to other attacks
Restricting the values that L takes on (from GL(32,F2) to this group modulo rank(Li) = 8, namely
the countermeasure 1 considered at the beginning of Sub. 5.1) does not open specific vulnerabilities
against correlation attacks.

For instance, in front of the DCA, which is a correlation attack (see fifth step in [BHMT16, §4,
page 226]), it is well-known [PRB09] that the optimal attack is the expectation of the model over
all randomization parameters. Owing to our WBC framework (2), the optimal DCA model is:

M(x) = E(B ◦ φ ◦ T (X + k?) | X = x) = E(B ◦ L ◦ S(X + k?) | X = x).

The expectation is taken on blocked bijections B and linear permutations L as mentioned above.
The set B of blocked bijections can be partitioned as:

B = B0 ∪B1 = {b ∈ B | LSB(b(0)) = 0} ∪ {b ∈ B | LSB(b(0)) = 1},

where LSB is the Least Significant Bit. It is to be noticed that B1 = B0 + 0xffffffff, where
0xffffffff is the “all one” 32-bit word. Therefore,

M(x) =
1

2
E(B ◦ L ◦ S(X + k?) | X = x,MSB(B(0)) = 0)

+
1

2
E(B ◦ L ◦ S(X + k?) | X = x,MSB(B(0)) = 1)

=
1

2
E(B ◦ L ◦ S(X + k?) | X = x,MSB(B(0)) = 0)

+
1

2
E(0xffffffff+B ◦ L ◦ S(X + k?) | X = x,MSB(B(0)) = 0)

=
1

2
0xffffffff = (0.5, . . . , 0.5).

As a consequence, the model x 7→ M(x) is constant and therefore does not depend on the key k?.
Therefore attacks of DCA type do fail.

6 Conclusions and perspectives
We introduced a novel distinguisher for AES T -box obfuscated by a random DIBO function. It
consists in the counting of zero values in a Walsh-Hadamard spectrum of a guess function.

We started by justifying why such an enumeration makes sense in the context of WBC. Then,
we proved that it works as long as at least one restriction (out of four) of the DIBO linear part to
external blocked bijections is not invertible. In this respect, we have concluded on the mathematical
investigations aiming at accounting for the reason of success of spectral attacks in the field of DIBO;
First and foremost, our characterization of weak vs strong linear parts allows to solve the remaining
open problem stated in the research of Lee, Jho and Kim in IEEE Access 2020 [LJK20].

In such situation (which happens > 99% of the time), we showed mathematically that our attack
always works. On the opposite, we indicated that when all four linear restrictions are bijective, then
our attack (and others, such as “correlation attacks”) fails. This situation can happen even without
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jeopardizing the entropy in the DIBO linear (diffusion) part. Hence, this is a new recommendation
to make sure WBC schemes based on DIBO obfuscation are safe. Thus, we have repaired the DIBO
obfuscation scheme against spectral attacks.

Our attack efficiency is backed by a thorough analysis of the distinguishing feature of DIBO (when
at least one Li does not have full rank) compared to a random function. As a perspective, we notice
that further investigations could lead to either the identification of more powerful distinguishers, or
to establish formally that our distinguisher achieves the best.
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A Some examples of attacks
In this appendix, we will experimental show the impact of the ranks of Li on the efficiency of the
distinguishers.

A.1 Preliminaries
We recall that L = φ ◦ µ (see (5)), where φ is a secret permutation of F32

2 and µ : F8
2 → F32

2 is
the diffusion function MixColumns. Notice that our attack would work as well if µ was any linear
F8
2 → F32

2 onto.
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Let us detail how we choose random permutations φ such that each Li has a given rank. It is
possible to draw random φ at random, and discarding it if the ranks of Li do not correspond to the
expected ones. However, in practice this approach is very inefficient. For this reason, we opted to
choose Li and deduce φ from them.

• Building a random Li of rank r can be done as follows. Three random matrices ML, MC , MR

containing bits, of size respectively 8 × 8, 8 × r, and r × 8, are drawn. While their ranks are
not respectively 8, r and r, they are drawn again. (In practice, 3 or 4 iterations are sufficient.)
Then, Li is chosen as the linear function of matrix MLMCMR.

• The deduction of φ from the four Li (1 ≤ i ≤ 4) is obtained from Lemma 3.

Lemma 3. Let L : F8
2 → F32

2 a linear injection. Then, there exists a linear bijection φ such that
L = φ◦µ, where µ is the MixColumns application x : F28 7→ (02x, x, x, 03x) ∈ F4

28 (exploded on bits).

Proof. Let L : F8
2 → F32

2 a linear injection. The dimension of Im(L) is 8. As µ (defined in the body
of the lemma) is also injective, Im(µ) has also dimension 8. Let φ0 a bijection from Im(µ) to Im(L).
The space vector Im(µ) (resp. Im(L)) can be completed in a space vector E (resp. F ) of dimension
24. Let ψ a linear bijection from E to F . Then, φ can be chosen as φ(y) = φ0(y) + ψ(y).

In the next subsection A.2, we illustrate how our distinguisher works (in terms of distinguishing
margin).

A.2 Some examples of attacks
We contrast in this section the success rate of our distinguisher (recall Def. 5) and a related one
which would consist in selecting coordinates instead of values of v in E (defined in (7)). The second
variant is closer to that of Sasdrich et al., in that it has a lesser complexity.

A.2.1 Outcome of attacks on DIBO without constraints on φ

In order to illustrate the performance of the distinguishers, we repeat multiple experiments. They
all consist in breaking the DIBO obfuscation of x 7→ T (x+ k?), where the correct key is k? = 0x80.
The random parts involved are:

• φ, a random bijective linear function, drawn randomly by selecting 32× 32 random i.i.d. bits
forming a matrix, and repeating the process until the matrix is invertible.

• B, the concatenation of 4 bijections F8
2 → F8

2, each of which being obtained by permuting
randomly the set {0x00, 01, . . . , 0xff}.

Namely, we represent in a first graph:

Dcomponent(c) =

4∑
j=1

#{WAk
(u, v) = 0 | u ∈ F8

2, v ∈ E}, (13)

as a function of c = k+ k?. It is represented in Fig. 4. For a low number of experiments (namely 50
different WBC T -boxes are generated), our attack always works. However, as per (12), after 1, 000
experiments, circa 993 WBC T -boxes are attackable whereas circa 7 are not. This can be seen in
the right hand side graph of Fig. 4, where the minimum value of our distinguisher for the correct
key guess k = k? disappears amongst the values for incorrect key guesses k 6= k?.
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Figure 4: Number of zeros of Walsh spectrum of Ak when sampling Walsh transform by byte
component (correct key k? = 0x80 is in the middle).
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Figure 5: Number of zeros of Walsh spectrum of Ak when sampling Walsh transform by coordinates
(correct key k? = 0x80 is in the middle).

The second graph represents in Fig. 5 the following distinguisher:

Dcoordinate(c) = #{WAk
(u, v) = 0 | u ∈ F8

2, wH(v) = 1}

=

32∑
i=1

#{W(Ak)i(u, v) = 0 | u ∈ F8
2}, (14)

as a function of c = k + k?. It samples the number of values in the Walsh spectrum only on the
coordinates of Ak.

It can be seen that sometimes, the attack fails (not on the 50 first attacks case, but on the 1,000
ones, sometimes, the distinguisher for the good has a number of zero which cannot be distinguished
from that of the incorrect keys.) This is inline with the computation of the proportion of vulnerable
DIBOs shown in (12).

Besides, one can notice that our distinguisher (recall Def. 5, or (13)) and the “per-coordinate”
sibling perform qualitatively the same. However, the version of Def. 5 is more acute in that the
contrast between the peak for the correct key k? = 0x80 and the incorrect key guesses (k 6= k?)
is larger. Such contrast can be quantified with a notion of relative distinguishing margin (RDM),
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Table 1: Relative distinguishing margins ,as per (15), extracted from distinguisher computations of
Fig. 4 and 5

50 experiments 1,000 experiments
Dcomponent (13) (favorite, our Def. 5) 60.1 46.1
Dcoordinate (14) (weaker variant) 53.5 43.1

defined in [WO11, §3]. For a given distinguisher D, it is equal to:

RDM(D) =
D(k?)−maxk 6=k? D(k)√
Var({D(k) | k ∈ F8

2})
. (15)

This metric is computed in Tab. 1. It shows quantitatively that our spectral distinguisher Dcomponent
distinguishes more accurately than the version Dcoordinate operating coordinate-wise.

A.2.2 Outcome of attacks on DIBO with constraints on φ

We now analyse our repair of DIBO (forcing that ∀i, 1 ≤ i ≤ 4, rank(Li) = 8), and the strength of
our spectral attack when this is not the case.

We therefore classify the attack results according to the dimension of the kernel of the linear
applications Li. Namely, we illustrate 7 situations, using Dcoordinate (since its discriminating power
is similar to that of Dcomponent):

• Case ‘0,0,0,0’, where ∀i ∈ {1, 2, 3, 4}, ker(Li) = {0} (attack failure)

• Case ‘0,0,0,1’, where {rank(Li), 1 ≤ i ≤ 4} = {0, 0, 0, 1} (attack success)

• Case ‘0,0,1,1’, where {rank(Li), 1 ≤ i ≤ 4} = {0, 0, 1, 1} (attack success, with larger margin)

• Case ‘0,1,1,1’, where {rank(Li), 1 ≤ i ≤ 4} = {0, 1, 1, 1} (attack success, with still larger
margin)

• Case ‘1,1,1,1’, where {rank(Li), 1 ≤ i ≤ 4} = {1, 1, 1, 1} (attack success, with still even larger
margin)

• Case ‘0,0,0,2’, where {rank(Li), 1 ≤ i ≤ 4} = {0, 0, 0, 2} (attack success)

• Case ‘0,0,0,3’, where {rank(Li), 1 ≤ i ≤ 4} = {0, 0, 0, 3} (attack success)

The results are displayed in Tab. 2. We notice that when Li all have full rank, then the attack
always fails. This confirms the theoretical analysis we conducted in Sec. 4.

Besides, one can see that having at least one kernel (out of the four) of Li which has a non-zero
dimension allows one to distinguish the correct key from the incorrect keys. Now, one can also see
that it is more important to have more trivial kernels than having kernels of larger dimensionality.
Indeed, the RDM between correct key and rivals is getting linearly larger when number of non-trivial
kernels increases (from 1 to 4), whereas the number of zeros in the Walsh transform only increases
marginally when the dimensionality of the kernel is growing from 1 to 2, and from 2 to 3. Precisely,
some statistics about the count of zeros in the Walsh transform is given in Tab. 3.
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Table 2: Attack statistics based on 1,000 attacks, for L matching the properties expressed above
(correct key k? = 0x80 is in the middle).
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Table 3: Statistics on the number of zeros in the Walsh transform. We recall that “Case” is the list
of the four kernel dimensions, sorted in increasing order.

Case Mean Median
Case ‘0,0,0,0’ 844 843
Case ‘0,0,0,1’ 1728 1727
Case ‘0,0,1,1’ 2616 2615
Case ‘0,1,1,1’ 3498 3498
Case ‘1,1,1,1’ 4384 4385
Case ‘0,0,0,2’ 2218 2218
Case ‘0,0,0,3’ 2461 2460
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