ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AAAAAAAAAAA

AVAILABLE

REPRODUCED

Zero-Knowledge Middleboxes

Paul Grubbs* Arasu Arun

Ye Zhang

Joseph Bonneau Michael Walfish

NYU Department of Computer Science, Courant Institute

Abstract. This paper initiates research on zero-knowledge
middleboxes (ZKMBs). A ZKMB is a network middlebox that
enforces network usage policies on encrypted traffic. Clients
send the middlebox zero-knowledge proofs that their traffic
is policy-compliant; these proofs reveal nothing about the
client’s communication except that it complies with the pol-
icy. We show how to make ZKMBs work with unmodified
encrypted-communication protocols (specifically TLS 1.3),
making ZKMBs invisible to servers. As a contribution of
independent interest, we design optimized zero-knowledge
proofs for TLS 1.3 session keys.

We apply the ZKMB paradigm to several case studies.
Experimental results suggest that in certain settings, perfor-
mance is in striking distance of practicality; an example is
a middlebox that filters domain queries (each query requir-
ing a separate proof) when the client has a long-lived TLS
connection with a DNS resolver. In such configurations, the
middlebox’s overhead is 2—5 ms of running time per proof,
and client latency to create a proof is several seconds. On the
other hand, clients may have to store hundreds of MBs de-
pending on the underlying zero-knowledge proof machinery,
and for some applications, latency is tens of seconds.

1 Introduction and Motivation

A decades-old conflict in Internet architecture pits user pri-
vacy against network administration. Network administra-
tion is typically carried out by middleboxes inspecting traffic.
Strong privacy, however, requires concealing information—
both what and with whom users are communicating—from
all intermediate parties, including the middleboxes.

Recent developments in encrypted DNS form an illustra-
tive example. DNS queries from end hosts (e.g., “What is
the IP address for example.com?”’) have traditionally been
sent to resolvers operated by the local network administra-
tor. This architecture arose for performance reasons; as a
byproduct, the administrator can use the local resolver as a
middlebox, monitoring DNS queries and enforcing network
policies like content filtering. Network providers sometimes
abuse this capability, for example, by redirecting users to ads
via DNS responses [15, 19, 75]. Selling data derived from
DNS queries to advertisers has also been legal in the US since
2017 [75]. Another alarming practice is targeted government
surveillance [15,62] using DNS.

*Now at the University of Michigan.

In response, several protocols have emerged for encrypting
DNS queries to remote resolvers outside the control of the lo-
cal network administrator [70,73,78]. While the primary goal
is privacy, encrypted DNS also bypasses any local network
policies. For this reason, many providers, including commer-
cial ISPs, have lobbied hard against encrypted DNS [29]. As
an attempted compromise, Mozilla introduced a special ca-
nary domain [24] that instructs clients to fall back to legacy
DNS. But this is no compromise: it is simply handing the
local network a (silent) veto over encrypted DNS.

Encrypted DNS represents a fraught tussle [30,72] that we
specifically want to confront and resolve. Thus, this paper’s
overarching question: can we create mechanisms that achieve
meaningful compromise? Note that we do not take a philo-
sophical position for or against middleboxes.! That debate is
almost as old as the Internet architecture itself. Instead, we ac-
cept that policy-enforcing middleboxes are a fact of life today
and likely to remain so. For example, adult content blocking
is legally mandated for U.S. K—12 school networks [27, 63]
and commercial U.K. ISPs [126]; these networks comply with
their legal mandate by filtering DNS.

The privacy-vs-policy conflict in middleboxes has moti-
vated prior research efforts (§9). These efforts either (like
SGX-Box [66] and EndBox [58]) rely on trusted execution
environments [37,42,59,65,84,110,127,135] or (like Blind-
Box [119] and mcTLS [102]) require application-specific
modifications to standard cryptographic protocols [47,77, 86—
88,90,94,104,105,111, 140, 143].

These works conflict with a requirement that we regard as
essential: compatibility. This means, first, no changes to stan-
dard protocols and deployed servers. Protocols such as TLS
and HTTPS have been carefully developed over several gen-
erations and are now widely deployed; it is thus impractical
to presume ubiquitous change [33]. We do assume changes to
middleboxes and the clients behind them, but these can hap-
pen incrementally. Compatibility also means that the network
is open to all, not just clients with particular trusted hardware.

This paper initiates research on zero-knowledge middle-
boxes (ZKMB). The approach is inspired and enabled by dra-
matic progress over the last decade in probabilistic proofs,
including zero knowledge (ZK) proofs (§3, §9). Once purely
a theoretical construct, they have received sustained interdisci-
plinary focus, including real-world deployment in blockchain

"However, we want to be clear that this work is not about enabling cen-
sorship or surveillance. On the contrary, as discussed in Section 2, this work
will make it harder to justify those activities.

applications. A ZK proof protocol allows a prover to convince
a verifier of the truth of a statement (for example, that a given
Boolean formula is satisfiable) while keeping secret the basis
of its argument (for example, the satisfying assignment it-
self). If the statement is false (for example, no satisfying input
exists), then the verifier is highly unlikely to be convinced.

Under ZKMBs, clients and servers communicate with stan-
dard encryption protocols (HTTPS, for example); the scheme
is invisible to servers. The mechanics happen between clients
and their local networks, preserving today’s network archi-
tecture. Given a policy mandated by the middlebox, honest
clients send only traffic that complies (by default, clients know
the middlebox’s policies, though ZKMBs accommodate pro-
prietary policies; §7.5). The middlebox sees this traffic in
encrypted form, and clients are required to include a ZK proof
that the plaintext traffic indeed complies. The middlebox acts
as a ZK verifier, allowing only traffic with valid proofs.

Challenges. There are three mutually exacerbating chal-
lenges. The first is preventing the client from circumventing
policy by encrypting and sending one (non-compliant) plain-
text while generating a proof about another (compliant) one.
Equivocation of this kind is possible if the encryption scheme
is binding (meaning that, given a ciphertext, there is only one
correct decryption). But encryption protocols don’t need a
binding property to be secure, and it has a performance cost,
so modern encryption protocols like TLS 1.3 do not provide
it [38,64,93]. Consequently, ZKMBs need to somehow extract
novel security guarantees from existing protocols.

The second challenge is the formalism within which one
writes a statement to be proved in zero knowledge: the circuit
model of computation (§3). Computations generally have ver-
bose representations in that formalism, creating unacceptably
large overhead. Indeed, despite all of the recent progress (and
hype) in ZK proofs, they are not usable as a turnkey solution.
“Practical” proof projects all have application-specific design,
not only in deciding how to express a given computation as
a circuit but also in choosing a circuit-friendly computation
in the first place (for example, hash functions with special
algebraic structure).

The last challenge stems from our compatibility require-
ment. Because we must work with legacy network protocols,
we often have no choice about the computation. We have to
implement circuit-unfriendly functionality in circuits.

Contributions and results. We introduce a modular
pipeline for expressing a ZKMB circuit (§4), and apply it
to three case studies (§6—§7): firewalling non-HTTPS traffic,
blocklisting domains for encrypted DNS (addressing the ear-
lier example), and allowlisting resolvers for oblivious DNS.
As a contribution of independent interest, we show how
to prevent the client from equivocating in TLS 1.3 (§5). We
start with a simple but new observation: the messages ex-
changed during the key agreement protocol, together with
a given ciphertext, bind the client to a single plaintext. One

way to exploit this observation is to re-run major parts of
the key agreement protocol in a circuit. That would entail
elliptic-curve cryptography (with circuit-unfriendly parame-
ters) as well as hashing the entire key agreement transcript
with SHA-256 (which is likewise circuit-unfriendly). How-
ever, we exhibit a shortcut that removes these expensive opera-
tions from the circuit. The enabling insight is that the server’s
authentication messages contain a hash of the results of these
operations, and for security, it suffices for the circuit to re-
run only the hash’s last block. We analyze the security of
the baseline and the shortcut (Appendix C). A feature of our
approach is that it amortizes over an entire TLS connection,
and can be extended to support early data sent in a O-RTT
resumption (Appendix B.3).

Another aspect of our work is parsing legacy protocols in
circuits. The naive approach, expressing a full parser in circuit
form, would be too expensive. Instead, we carefully tailor the
parsing to the policy, to identify just the needed tokens. We
also have to adapt the parsing algorithms to the costs imposed
by circuits. For example, we identify the first CRLF in an
HTTP request using a loop that is carefully written to avoid
certain branches (§6).

Our experimental evaluation of ZKMBs (§8) uses xJs-
nark [81] for compiling code to circuits and the Groth16 [61]
proof protocol. As a consequence of Groth16, proofs are 128
bytes and take 2-5ms to verify, regardless of the encoded
policy. The salient performance issue is prover (client) time.
A proof that accompanies the initiation of a TLS connection
costs roughly 14 seconds to generate on a good CPU; proofs
in successive packets cost 3—8 seconds to generate, depending
on the policy. Also, the client must store hundreds of MB of
data to participate in the proof protocol.

The foregoing implies that ZKMBs are close to practical in
specialized settings. Notice that a long-lived TLS connection
between client and server (to amortize the initiation cost),
with proofs needed at most every few seconds, exactly fits
blocklisting domains for encrypted DNS (§7). Of course, for
many middlebox functionalities, our “v1 ZKMBs” are decid-
edly not practical. One avenue for future work (§10) is to
interrogate tradeoffs (§9) among setup costs, trust, verifier
performance, and prover performance, to identify the best ZK
machinery for the context. For example, if there are not many
clients behind a given middlebox, then we should use ZK
proof protocols with far lower proving time, at the expense
of verification time [1, 11,44,92, 116, 138, 139, 142, 145].
Another area of future work is expanding the scope of con-
figurations (for example, to support off-path middleboxes)
and functionalities (for example, to support scanning-style
middleboxes).

Despite the limitations of our work, we believe that ZKMBs
are worthy of continued research: the approach expands the
frontiers of network architectures, pushes privacy-enhancing
technologies into new settings, and surfaces new applications
of efficient zero-knowledge proofs (whose real-world impact

so far has been substantial but on the other hand, limited to
blockchains). In summary, our contributions are:

e A new application of ZK proofs;

e The ZKMB paradigm (§2-§4) and a modular framework
for circuits in this setting;

e Sub-circuits for efficiently decrypting TLS 1.3 (§5);

e Three case studies (§6—§7) showing how ZKMBs can
resolve tensions between network administration and
user privacy, including for encrypted DNS; and

e Implementation and evaluation (§8). Source code is at
https://github.com/pag-crypto/zkmbs

2 Overview, Model, and (Non)-Objectives

Our setting includes three principals: a client, a server, and a
middlebox. Middleboxes have tremendous variety in function,
configuration, and architecture [101, 120]. In this work, we
focus on the simplest case: a single, stateless middlebox on
the local network, and hence on the path between the client
and any server; Figure 1 depicts the basic arrangement. We
expect the ZKMB paradigm to generalize (§9-§10).

The client’s goal is to communicate with the server using an
end-to-end encrypted channel. The middlebox’s goal is to en-
force some policys; as is typically the case with middleboxes,
policy enforcement means dropping traffic that does not ad-
here to the policy. This policy can affect which servers and
protocols the client can use, or it can affect communication
content (for example, checking for malware signatures).

The ZKMB protocol should be incrementally deployable:
clients without support for ZKMBs should be able to use
the network. However, as happens today, the middlebox will
block their encrypted traffic, forcing a downgrade to unen-
crypted protocols. The ZKMB protocol thus represents an
opportunistic privacy upgrade.

In the basic ZKMB protocol flow, the client downloads a
network policy specification from the middlebox upon joining
the network. (Looking ahead, in Section 7.5 we will show
how policies can be kept secret from clients in some cases,
with moderate overhead, and in Section 10 we discuss policy
updates.) This specification defines a policy-relevant scope;
for example, all traffic sent over a certain protocol. Then, for
each encrypted channel to a remote server that is within scope,
the client submits a proof that the contents of the channel
comply with the network policy; the middlebox verifies it.
Note that the middlebox has to identify in-scope traffic; we
discuss how this can be done for our case studies (§6,§7). The
server is unaware that a ZKMB protocol is even in use.

Threat model, objectives, and non-objectives. We assume
that parties cannot break cryptographic primitives. In partic-
ular, we assume that all parties are probabilistic polynomial-
time adversaries, as is standard in cryptography. We also
assume that the middlebox and server do not collude.

Client Middlebox Server

(1) setup policy
() register policy
<

A

@ channel handshake

<
A

~

C < encrypt message M

@

T <— prove compliance of M

cn (5) verify proof #}

Figure 1: Structure of our ZKMB protocol. The client convinces the
middlebox that the message M is policy-compliant without revealing
it. The handshake and encryption algorithms are part of the underly-
ing secure channel (such as TLS). Transcripts and secrets generated
in the handshake may be inputs to the proving and verification steps.

The ZKMB protocol should ensure that an adversarial mid-
dlebox can’t learn anything from ZKMB proofs beyond the
fact that the encapsulated plaintext is policy-compliant. Of
course, if an underlying protocol leaks information through
timing or metadata—as is the case with encrypted DNS [22,
121, 122]—ZKMBs necessarily inherit that leak.

Another objective is compatibility with existing servers; a
non-objective is to work with unmodified clients and middle-
boxes. We make these choices because modern browsers are
empirically easier to update than web servers. For example, as
of January 2022 only 51% of TLS servers supported TLS 1.3,
which was finalized nearly four years prior [85], whereas 50%
of Chrome users were already running Chrome 97, which was
less than one month old [130]. That said, server-side changes
would enable additional use cases and the ZKMB framework
would still be motivated.

ZKMBs should ensure that any client abiding by standard
protocols complies with policy within the relevant network
layer. For example, a client’s traffic to its stated destination
should be subject to the middlebox’s policy. Of course, the
client’s true destination may be other than what is stated in
packets, using VPNs, Tor [36], hidden proxies [141], “inner
encryption,” or steganography [137]. Detecting and blocking
such circumvention is an arms race (see, for example, the
progression of obfuscated Tor transport-layer encodings [45]).

We can’t hope to build a protocol that defeats all circumven-
tion, but more importantly we don’t want to. We view ZKMBs
as establishing a default that respects both policy enforcement
and privacy, while retaining the ability of advanced users to
circumvent the policy, at a comparable level of difficulty to
circumventing traditional network filtering. Seeking to block
all circumvention of network policy would cross a line from
filtering into censorship. Note that this does not imply that
ZKMBs are equivalent to an “honor system” model with no
proofs, in which clients download the middlebox’s policy and

https://github.com/pag-crypto/zkmbs

simply exercise discretion about whether to abide by the pol-
icy. Such a design would explicitly dissmpower the provider
from enforcing policy.

Why would providers adopt the ZKMB model? We be-
lieve that most network administrators do not want to surveil.
Using ZKMBs, they can establish publicly that they are not
surveilling (but are meeting their obligations to apply policy).
In fact, we hope that ZKMBs will ultimately demonstrate
that “policy enforcement requires plaintext” does not follow,
removing an alleged rationale for surveillance.

Performance considerations. We evaluate ZKMB perfor-
mance on several dimensions: client computation costs for
proof generation, middlebox verification costs, communica-
tion costs to send proofs from client to middlebox, and setup
costs for clients to download parameters when joining the
network. Connection latency is the sum of computation time
for clients and middleboxes, plus time to transfer proofs; the
primary performance goal is to minimize this quantity.

Some proof protocols have public parameters (an SRS; §3).
Who generates the SRS? As discussed in Section 10, options
include the middlebox, the browser vendor, or else using a
back-end proof protocol that has no SRS.

3 Background on Zero-Knowledge Proofs

This section gives necessary context on zero-knowledge (ZK)
proofs. Our treatment is simplified and tailored to a partic-
ular strand of implemented ZK proof pipelines. We discuss
specific systems further in Section 9.

A ZK proof protocol surrounds a given computation (or
statement) C, a verifier V, and a prover P. We formulate the
computation as a function C(X; W) that produces output Y.
Each of X,Y,W are vectors of variables. X and Y are known
as public input and output variables, respectively; W is known
as the secret input, or witness. The semicolon between X and
W delineates the public and the secret input.

In a ZK proof protocol run, ¥ starts with a pair (x,y). P
produces a short certificate, or proof, that convinces ¥ that
(x,y) are valid according to C. (We call protocols consisting
of a single P — 7/ message “non-interactive™.) “Valid” means
that there exists a w such that y = C(x;w), and furthermore
that 2 knows such a w. As an example in our context, imagine
that y is yes-or-no, x is encrypted data, w is secret auxiliary
information needed to decrypt, and C embeds decryption
logic and policy logic. Semantically, the protocol convinces
7/ that the putative yes-or-no is consistent with the underlying
plaintext that corresponds to the encrypted data.

For many modern ZK constructions, C is expressed as a
generalization of arithmetic circuits, called R1CS [54]. For
convenience, we call this formalism “circuits”. Circuits bring
challenges [17,32,106, 108, 118, 132]. There is no notion of
state (unlike in hardware circuits) nor a program counter. To
encode a loop, one unrolls it—to the worst-case number of it-

erations. Similarly, conditional statements pay for all branches.
Bitwise operations and order comparisons are verbose. RAM
is costly [10,18,81,107,132].

Our work uses the QAP-based [54] proof protocol
Groth16 [61], which is a non-interactive zero knowledge
proof, or NIZK [13,48] (Groth16 is a kind of NIZK called
a zkSNARK [12, 54].) For our purposes, a NIZK is a tuple
of (possibly probabilistic) algorithms (ZKSetup, ZKProve,
ZKVerify) that depend on C:

e 0 < ZKSetup(C). This is run by ¥ or a party that V
trusts. ¢ is called a structured reference string, or SRS,
and is a necessary aid to both P and 9. The SRS is
generated once for C and reused over different (x,y, w).

e 1 < ZKProve(C,o,(x,y),w). © is referred to as the
proof.

e accept/reject + ZKVerify(C,o, (x,y),T).

If © has a legitimate witness w for a particular (x,y), P
can produce 7 that makes ZKVerify accept. If the statement
is not valid (that is, there is no w for which y = C(x;w)) or P
does not know a w for which y = C(x;w), then the probability
(over random choices by ZKSetup and/or ZKVerify) that 7/
accepts is negligible.

In Groth16, the proof length, ||, is short, and ZKVerify
runs in nearly constant time with good concrete costs. How-
ever, ZKProve and ZKSetup are relatively expensive (§8).

4 ZKMB Protocol

In this section we define a ZKMB protocol, as represented
in Figure 1. A ZKMB augments a base secure channel pro-
tocol, SChan. In our case studies, this is TLS, but we define
it abstractly as SChan = (Handshake, Enc, Dec). Handshake
is an interactive protocol between the client and server which
establishes a shared symmetric key K. Given K, Enc and
Dec are used by the client and server to encrypt and decrypt
messages, respectively. A ZKMB protocol will not modify
SChan.

A ZKMB protocol is a tuple of algorithms:
ZKMBJ[SChan] = (Setup, Registration, Prove, Verify)
each of which are interactive between the client and mid-
dlebox. Our presentation assumes that the ZKMB protocol
uses an underlying ZK proof protocol, however this interface
could potentially work with other cryptographic primitives
(e.g. secure multi-party computation).

The Setup procedure (@ in Figure 1) is run once at the
beginning of some era; it is not re-run for each client. Setup
takes as input a description of the network security policy and
outputs policy metadata PMD. The metadata in PMD may
include the SRS (§3) for the underlying ZK proof scheme
(if not preloaded by the client) and possibly some additional
public inputs to the proof such as a list of blocked domains.

HT

Policy

Channel %
Check

T~
} Opening
of

Figure 2: The parts of a ZKMB proof. HT = handshake transcript, C
= ciphertext, a = client’s handshake secret, M = plaintext message,
D = policy-relevant substring.

Parse & | D,

- 0/1
Extract

The Registration procedure (@ in Figure 1) is an interac-
tive algorithm run by a client and the middlebox to give the
client the policy metadata PMD upon joining the network.
We expect this to piggy-back on network-layer bootstrap pro-
tocols, e.g. using DHCP [40] extensions [41].

The client runs SChan.Handshake to open a secure con-
nection to a server (® in Figure 1). When the client wants to
send a message M to the server, the client first checks that M
is policy-compliant; if it isn’t then no proof can be generated
so the client will decline to send M to the server and instead
report an error to the user. Otherwise, the client first runs
SChan.Enc(K, M) to obtain a ciphertext C, then runs the in-
teractive, randomized Prove algorithm (both in @ in Figure 1)
to prove that M is allowed by the policy. Prove takes as pub-
lic input the handshake transcript HT, policy metadata PMD,
and ciphertext C, and as private input the secret randomness
a generated by the client during the handshake. In TLS 1.3
for example, a is the client’s Diffie-Hellman secret.

Prove produces a proof 7 (using the underlying ZKProve
algorithm) which the client sends to the middlebox along
with the ciphertext C. After receiving from the client, the
middlebox runs the Verify procedure (® in Figure 1). This
procedure takes as input C and 7, along with the transcript
of SChan.Handshake, and invokes the underlying ZKVerify
algorithm to output 0/1. The result determines whether the
middlebox forwards the client’s encrypted traffic C to the
server, which decrypts using SChan.Dec.

Some ZKMB applications may require a single proof per
channel opening. Others may require ongoing proofs as multi-
ple messages are sent, in which case the client and middlebox
can repeat steps @—® for the duration of the connection.

Framework for expressing ZK statements. The circuit
that the ZK proof works over (§3) comprises three parts, as
depicted in Figure 2:

1. channel opening: Given the handshake secret a and tran-
script HT, derive (hidden) key K and use it to decrypt
ciphertext C and obtain (hidden) message M.

2. parse-and-extract: This is a translation layer between
the network protocol wire format of M and the input for-
mat of the policy check component of the circuit. In our
case studies, parse-and-extract will generally extract the
policy-relevant substring of a network packet (call that
string D), while checking that some syntactic require-
ments are met.

SimpleTLS.S2(b,A, cert): SimpleTLS.C3(qa, (B,Ceert||SF)):

1: B« g0 ;85 AP

: FK + KDF(SS, 1)

: HK « KDF(SS,2)

t hy < H(A||B||cert)

: SF « HMAC(FK, hy)

: kh < H(hy||SF)

: K < KDF(SS, kh)

: Ceert < Enc(HK, cert)

: Send B, (Ceert||SF) to client
10: Return K

1: SS + B¢

: FK < KDF(SS, 1)

: HK + KDF(SS,2)

: cert « Dec(HK,Ceert)

t hy < H(g"||B||cert)

: SF' < HMAC(FK, hy)

1 kh + H(hy||SF)

: K + KDF(SS, kh)

If SF # SF' then Return |
10: Return K

e 0 N A AW
.\.DOO\IG\UI-BMN

Figure 3: The latter two steps of SimpleTLS.Handshake. The first
step (SimpleTLS.C1) and all notation are defined in Section 5.

3. policy check: Check that D satisfies the policy in the
metadata PMD.

Terminology: circuit vs. sub-circuit We will often, in the
sections ahead, refer to these parts as individual circuits. How-
ever, they are truly sub-circuits. From the perspective of the
ZK proof protocol (§3), the combination of the three parts is
a single circuit C, with a single associated SRS. Section 10
discusses extensions to this model.

5 Channel Opening for Simplified TLS 1.3

This section discusses the core technical challenges of design-
ing channel opening sub-circuits for modern secure channels.
For ease of exposition, we present a simplified variant of
TLS 1.3, which we call SimpleTLS. Appendix B presents our
channel opening sub-circuits for TLS 1.3 in detail.

SimpleTLS begins with an interactive handshake
SimpleTLS.Handshake that establishes a session key K.
After the handshake, the client and server use an authenticated
encryption scheme like AES-GCM or ChaCha20/Poly 1305
to encrypt (Enc) and decrypt (Dec) messages with K.

SimpleTLS.Handshake comprises three algorithms
(C1,52,C3), corresponding to TLS as (C1 = client hello, S2
= server reply, C3 = client finished). To initiate a channel,
the client first runs SimpleTLS.C1, which samples a <sZ,,
computes A < g%, and sends A to the server.

The server replies by generating its private exponent
b<-sZ, and running SimpleTLS.52 (left-hand side of Fig-
ure 3) on inputs b, A, and its server certificate cert. The server
first computes the shared secret SS, then derives the finished
key FK and the handshake key HK (lines 2-3). The former
is used to authenticate /s, a hash of the handshake, via the
server finished value SF, and the latter is used to encrypt cert,
so the server’s identity is not revealed to eavesdroppers. The
server then derives K from SS and a transcript hash (line 7),
sends its reply to the client, and returns K.

SimpleBCO(A, B, Ceert||SF,C;a):

K = SimpleTLS.C3(a, (B, Ceert||SF)
M <+ Dec(K,C)

Return (A=g%)?M : L

SimpleSCO(SF,C; SS, hy):
FK « KDF(SS, 1)

SF' « HMAC(FK, hy)

kh H(hy,SF)

K « KDF(SS, kh)

M < Dec(K,C)

Return (SF=SF')7M : L

Figure 4: Channel opening sub-circuits for SimpleTLS.

The client finishes by running SimpleTLS.C3 (right-hand
side of Figure 3). It starts by deriving SS, FK, and HK
(lines 1-3), then decrypting Cert. Then, it derives K, checks
SF (lines 5-8), and returns K only if the check passes.

Comparison to TLS 1.3. All the messages sent in
SimpleTLS’s handshake are also sent in a TLS 1.3 hand-
shake. TLS 1.3 sends further values in its handshake—such
as the server’s signature. The value SF, while plaintext in
SimpleTLS, is encrypted in TLS 1.3. The key schedule of
SimpleTLS is substantially simplified compared to TLS 1.3;
the operations that are relevant for explaining our optimiza-
tions, such as the derivation of the hash 4, appear in both.
Like SimpleTLS, TLS 1.3’s key schedule derives FK, HK,
and K from SS, but with more steps and inputs.

The challenge. We assume SimpleTLS (like TLS 1.3) sup-
ports only non-committing authenticated encryption schemes.
For such schemes, it is possible to create a single ciphertext
C with two valid (non-_L) decryptions M, M, under two dif-
ferent keys K, K. Efficient algorithms for doing this are
known [38, 64,93]. Thus, the client could create a ciphertext
with two decryptions M|, M, where M| obeys the policy and
M, violates it. Then the client could run Prove to generate a
proof about M, and instead send M2 Asa consequence, a
naive channel opening solution, in which the sub-circuit takes
K as a witness and verifies that decryption with K does not
output L, is not secure.

A secure approach. Put differently, the problem with the
naive approach is that nothing ensures that K (the key given
as a witness to the proof) is the session key the server will
use to decrypt. We prevent key equivocation in SimpleBCO
(BCO is “baseline channel opening”, top of Figure 4) by re-
deriving the session key in the sub-circuit. The sub-circuit
takes the handshake transcript and the client’s ciphertext C

2One might wonder whether the channel opening sub-circuit could ad-
ditionally check that the plaintext has the expected packet format for the
application-layer protocol, such as DNS. However, even structured formats
admit equivocation attacks, as Dodis et al. [38] demonstrated for images.

as (public) input, and a as private input. The sub-circuit runs
SimpleTLS.C3 using the public transcript and its private input
to obtain key K, which it then uses to decrypt C and obtain
M. Finally, it checks that a is consistent with the sent A and
outputs the derived M.

Because A is a perfectly binding commitment to a, and K is
determined only by a and the public transcript, this sub-circuit
prevents equivocating about K. Our baseline channel-opening
(BCO) sub-circuit for TLS 1.3 is described in Appendix B; it
works similarly. In Appendix C we analyze BCO’s security.

The SimpleBCO sub-circuit has very high proving costs.
It requires two group operations: one to check A = g% and
one to derive SS (line 1 of SimpleTLS.C3). It also requires
decrypting (line 4) and hashing (line 5) the server’s certifi-
cate (which could be a chain of multiple certificates, totaling
thousands of bytes [35]). These costs are shared by BCO, our
TLS 1.3 baseline, as well (§8.1).

A shortcut. The channel opening sub-circuit does not need
to verify every step of SimpleTLS.C3, as the baseline does;
for security, the sub-circuit need only check the correctness
of K, which is derived from SS and kh. During the handshake,
the server (line 5 of SimpleTLS.S2) sends SF, which is the
MAC of two related values: the finished key FK and the hash
hi. By re-using SF as a check on the correctness of SS and
hy, the sub-circuit can take those arguments directly as input
from the client instead of re-deriving them. This eliminates
the two group operations and decrypting and hashing the
certificate. Importantly, with this shortcut, the sub-circuit’s
size is independent of the handshake transcript length.

The pseudocode of the shortcut channel-opening (SCO)
sub-circuit, SimpleSCO, is in Figure 4. Note that A, B, Ceert
are not inputs, as SimpleSCO does not use them. We apply a
very similar shortcut idea to reduce the cost of our channel
opening sub-circuit for TLS 1.3, but the resulting sub-circuit
is much more complicated due to details of the TLS 1.3 key
schedule that SimpleTLS elides. We present this shortcut
sub-circuit for TLS 1.3, SCO, in Figure 9 of Appendix B. In
Appendix C we analyze the security of SCO, and show that
it prevents the client from equivocating about K. We use a
similar approach to build a sub-circuit for early data sent in a
0-RTT resumption in TLS 1.3. See Appendix B.3.

Amortization. Since K is fixed for the duration of a con-
nection, deriving K can be done just once during the channel
opening. This amortizes the work of deriving K across all
ciphertexts sent. Specifically, after running SimpleTLS.C3
to finish a new SimpleTLS handshake, the client hashes K
(call this hash fyey), then sends the middlebox the hash along
with a proof that the hash’s preimage is consistent with the
handshake messages. This circuit consists of one hash com-
putation, along with the operations not dependent on C in
SimpleSCO. When the client sends a ciphertext C, the chan-
nel opening sub-circuit only needs to check that the decryption
key’s hash is equal to hyey. Appendix B.4 gives pseudocode

HTTPFirewallPE(M, ¢):
i < MatchFirstCRLF(M)

b+i</t

LE < M[i—8:i—1]
If b then Return LE
Return L

MatchFirstCRLF(M):

prev < M([0] ; notfound « 1;first_ind < 0
For j < 1 to {max:
curr < M}
If prev||curr = \r\n then:
first_ind <~ notfound x (j—1);notfound < 0
prev < curr

Return first_ind

Figure 5: Parse-and-extract logic for HTTP firewalling.

for our amortized channel opening sub-circuit for TLS 1.3,
and explains that, if we model the hash as a random oracle,
the client cannot equivocate about K and /ey does not reveal
K to the middlebox.

6 HTTP Firewalling

This section describes our first of three case studies of zero-
knowledge middlebox protocols: verifying that outgoing en-
crypted connections contain HTTP packets.

Context and motivation. Many networks wish to block out-
bound connections that are not HTTP or HTTPS [115]. The
standard enforcement mechanism is port blocking: discard
all outbound traffic where the destination port is not equal to
80 or 443, the HTTP and HTTPS default ports. Port block-
ing is simple, does not require inspecting traffic directly, and
imposes low latency.

However, it is a blunt instrument that leads to overblocking
and underblocking. It overblocks (i.e. disallows legitimate
connections) because it does not allow HTTP(S) connections
on non-default ports. It underblocks because it allows out-
bound non-HTTP(S) connections that use port 80 or 443. This
case study outlines a ZKMB protocol that implements a much
more precise outbound HTTPS firewall, by having clients
prove all their outbound TLS traffic contains HTTP requests.

Proof Details. For simplicity, this case study will describe
parse-and-extract and policy check circuits for a very specific
check: that the request uses version 1.1 of HTTP.

The first line of any HTTP request must end with the ver-
sion — HTTP/1. 1 indicates version 1.1 — and lines are de-
limited with the two-byte sequence \r\n. (For reference, see
Section 7.3 for an example HTTP request.)

To check the version, the parse-and-extract circuit just
needs to output last eight bytes prior to the first \r\n in the

request. As depicted in the pseudocode in Figure 5, we imple-
ment this in a few steps: first, the circuit computes the index
of the first \r\n using string matching (the MatchFirstCRLF
procedure). The value i is computed in the circuit, rather than
letting the prover specify it as an input, to ensure i is indeed
the first \r\n, and not a later one — even if the circuit ex-
plicitly checked for a \r\n at the prover-specified index, a
request containing the string HTTP/1. 1\r\n at the end of
some later line could be used to bypass the policy. We imple-
mented MatchFirstCRLF as a linear scan over the request to
minimize dynamic memory accesses.

Second, the circuit compares i to the length ¢. Since the
request must be padded out to the largest possible length,
this check ensures the prover does not insert \r\n into the
padding. (Note that ¢ is public.) Finally, if i is less than the
message length, the circuit outputs bytes i — 8 through i — 1
of the input; else, it returns an error.

The policy-check circuit just outputs the result of compar-
ing its input to the string HTTP/1. 1. This is logically equiv-
alent to the AND of eight clauses. To generalize to HTTP/2
traffic, this circuit can instead check that the start of the proto-
col stream has a request line that ends with HTTP/2.0\r\n.

7 ZKMBs for Encrypted DNS

This section describes two more case studies.

One of them is a ZKMB that blocks encrypted DNS
queries, sent via DNS-over-TLS (DoT) or DNS-over-HTTPS
(DoH), for domains on a pre-determined blocklist BL =
{D1,D,,...,D,}, which we assume is given to users during
Registration. After channel opening outputs the TLS plain-
text M, the parse-and-extract step of Prove takes M as input
and outputs the queried domain name D. Sections 7.2 and 7.3
cover parse-and-extract for DoT and DoH, respectively. The
policy check step (§7.4) proves D ¢ BL. We also show how to
keep the blocklist hidden from the client (§7.5) if necessary.

The other case study is a ZKMB for allowlisting resolvers
in Oblivious DoH (§7.6).

These case studies assume that the middlebox requires
proofs only for encrypted DNS queries, not all TLS traffic;
the middlebox can distinguish encrypted DNS if given a list
of IP addresses of resolvers that support DoT/DoH.

7.1 Background: Encrypting DNS Queries

The Domain Name System (DNS) is the phone book of
the Internet: it translates human-readable domain names
(e.g., example. com) to machine-readable IP addresses (e.g.
142.250.190.14). While a user is browsing the web, their
browser makes a DNS query to a resolver — a server that
stores the name—IP mapping — to learn the IP address of
each site they visit.> Thus, a user’s queries reveal a great deal

3For brevity, we present a greatly simplified picture of the DNS ecosystem
and direct the interested reader to [72,98,99] for more details.

of information about their web browsing habits. DNS queries
have historically been sent in the clear to a resolver controlled
by the local network or Internet Service Provider (ISP).

Encrypting DNS queries with TLS 1.3 improves the privacy
of DNS. There are two main standards for encrypted DNS:
DoT [73] and DoH [70]. DoH has been supported by default
for US users since mid-2020 by Mozilla [34], Google [5], and
Apple [123]. Their browsers send users’ queries to central-
ized encrypted DNS resolvers run by, for example, Cloud-
flare [112] or Google [129]. As noted in the introduction,
this arrangement prevents network operators from enforcing
network policies at the DNS layer.

This has proven to be a major issue for network opera-
tors [29], and has impeded the deployment of DoT and DoH.
The Google Chrome and Microsoft Edge browsers only allow
“auto-upgrade”: switching to DoH when the system’s resolver
is on a (small) list of resolvers known to support it. Where
DNS encryption is the default, operator concern about filtering
led to downgrade attacks being built into user-facing software
to give networks the ability to disable DNS encryption without
informing the user. For example, in the Firefox browser, DoH
is enabled by default, but on browser startup the local network
can selectively disable DoH by configuring its local DNS
resolver to return an NXDOMAIN response to a (plaintext) DNS
query for the canary domain use-application-dns.net.
An early study found over 15% of networks utilizing this
method to disable encrypted DNS [67]. Clearly, better so-
lutions are needed than an all-or-nothing trade-off between
privacy and network policy enforcement.

7.2 Parse-And-Extract for DoT

Request format. A DNS query canonically has two parts. A
12-byte header contains an identifier and metadata about the
query. A variable-length question begins with a domain name,
serialized in a length-label format (see below), and ends with
four bytes indicating the question’s type and class.

A domain name is a sequence of labels delimited by the pe-
riod (full stop) character. For example, “www.example.com”
has three labels: “www”, “example”, and “com”. The serial-
ization format of domain names is a sequence of length-label
pairs, where each label is preceded by its length, ending with
a single zero byte indicating the special “root” label at the top
of the DNS hierarchy. The domain “www.example.com” is
serialized as 3www7example3com®.

Many extensions to this basic request format have been
developed during the long lifetime of DNS, but they don’t
affect the invariant that we rely on, namely that the DNS
question starts at the thirteenth byte of the request.

In DoT, DNS queries are sent in TLS records preceded by
a two-byte length indicator [73]. Those bytes plus the twelve-
byte header situate the serialized DNS question at the fifteenth
byte of plaintext. The parsing task is thus to deserialize the

bytes beginning at byte 15.

Deserializing DNS questions. The deserialization circuit
need not handle arbitrary-length questions: domain names
can be at most 255 bytes long. This allows us to deserialize
with a single pass consisting of a fixed number of iterations
over the request. Letting output be a length-255 array, and
request be the request, our circuit is conceptually just an
unrolled version of the following loop:

nlsi < 0 // “next label start index”
stop <+ 0
For i +— 0 to 255:
If stop # 1:
If i # nlsi:
outputli] < request[14 + i
If i = nlsi:
If request[14 + i] = 0x00:
stop < 1
Else:
output[i] < “.”
nlsi < request[14 +i] + 1
Return output

The circuit keeps track of the current index and current
label length. When the current input byte is a length label,
the circuit writes a period to the output; when the current
byte is 0x00, the circuit stops copying bytes to the output.
This approach is somewhat unnatural; the advantage is that
the accessed locations of request and output depend only
on the loop index, thereby avoiding overhead from random
accesses (§3).

Our deserialization circuit has some limitations, and does
not support all the features of a modern DNS query. One limi-
tation is case-sensitivity: DNS questions are case insensitive
to servers, but our circuit does not normalize the case of the
domain name. The cost of doing this in the circuit would be
very small. Our circuit also does not handle internationalized
domain names (IDNs) [46,74,79]. DNS clients convert non-
ASCII labels in domain names to an ASCII-compatible encod-
ing called Punycode [31]. (Punycode handles case sensitivity
issues as well [68,69].) A naive solution would be to decode
Punycode to some other encoding (e.g. UTF-8) in the circuit.
However, this decoding algorithm is complicated and would
likely incur expense in circuits, as it requires data-dependent
memory accesses. A better solution would adapt the policy
check to use Punycode as its string representation, if possible
— this would obviate the need for Punycode-decoding in the
circuit. We leave the details to future work.

7.3 Parse-and-Extract for DoH

Parse-and-extract for DoH is slightly more complex than DoT,
because the query name is not guaranteed to begin at a fixed

plaintext offset. DoH can use HTTP GET or POST; the circuit
determines which it is by looking at the first four bytes of the
plaintext HTTP request (for the strings “GET” or “POST”).

DoH POST. In this case, the query is sent in the request body.
Although the starting location of an HTTP request body is not
fixed — it is determined by the header lengths — it is unam-
biguously delimited by the byte sequence “\r\n\r\n” [103].
Thus, the prover can give the location of this sequence as a
witness to the circuit, which can check its validity (cf.§6).

GET /dns-query?dns=<b64 DNS query> HTTP/1.1\r\n
Host: cloudflare-dns.com:443\r\n

Accept-Encoding: identity\r\n

accept: application/dns-message\r\n

\r\n

DoH GET. An example DoH GET request is above. In a GET,
the DNS query is the value of an HTTP query parameter,
usually “dns”. Its location is not fixed and is affected by
the presence or absence of other query parameters. This is
handled similarly to the POST case, verifying the starting
location with the string “dns=" instead of “\r\n\r\n”.

7.4 Policy Check for Domain Blocklisting

The policy check circuit takes as input a domain name (as out-
put in period-delimited format by a parse-and-extract circuit)
and verifies that it is not in a set of blocked domains. For this,
we use Merkle tree non-membership proofs: by sorting the
blocklist and computing a Merkle root, non-membership of
a domain can be proved by exhibiting two elements that are
adjacent in the Merkle tree and lexicographically bracket the
queried domain [80]. We implemented this for exact-match
blocklisting, using Poseidon [60] for circuit efficiency.

Handling wildcards. We would also like to support more
complex blocklisting policies. Blocklisting tools have varied
semantics, but mandatory sub-domain blocking appears very
common. For example, if example. com is on the blocklist,
any sub-domain like foo.example.com will be blocked. Es-
sentially, each entry on the blocklist has an implied “*.” in
front of it, and our policy check circuit must prove that no
suffix of the input domain is on the blocklist.

We handle this with a variant of the exact-match non-
membership circuit. As above, our circuit takes two Merkle
paths of adjacent list elements. However, our circuit assumes
the strings in the list to have been reversed (e.g., the domain
“example.com” is sorted as “moc.elpmaxe”) before sorting
and Merkle tree computation; reversing the strings ensures
that a string’s position in the list is determined by its suffix.
The circuit checks the Merkle paths of the two adjacent list el-
ements, and also checks that neither element is a proper prefix

I3}

of the (reversed) input. Note that this last check respects “.”,

so that (e.g.) “bexample.com” is not blocked if “example.com”
is on the blocklist.

7.5 Keeping the Blocklist Private

Above, we assumed the blocklist is visible to clients. This is
good for transparency, since any user could in principle review
the network’s policy. (The value of this transparency has been
observed elsewhere: for example, Mozilla’s “trusted recursive
resolver” policy requires DNS blocklists to be public [128].)
However, a client-visible blocklist is infeasible if (e.g.) the
blocklist is proprietary.

Here, we outline a potential extension to our protocol which
can address this issue by allowing the middlebox to hide the
blocklist from the client, while still letting the client prove
that its queried domain D is not blocked. This can be achieved
using an oblivious pseudorandom function (OPRF). For con-
creteness, we use the simple and efficient OPRF of Naor and
Reingold [100], defined over a cyclic group G of order p:
F(x,m):=H(m)* where H: {0,1}* - Gandx€[l,...,p].

Rather than sending the client the plaintext blocklist
BL < {D;,...,D,} during Registration, the middlebox gen-
erates a random OPRF key x and gives the client BLy <
{F(x,Dy),...,F(x,D,)}. Then Prove begins with a first
round where the client and middlebox F'(x, D) on the domain
name D that the client intends to query, in three steps: first,
the client generates a random key r and sends the middlebox
B <+ F(r,D). Second, the middlebox replies with BV < B*.
Finally, the client computes F (x,D) < BV'/".

In the second round of Prove, the client generates and sends
its proof. The circuit is as above, except it takes F(x,D) and
r as private input, and B and BV as public input. The circuit
verifies a non-membership proof that F(x,D) & BLy and uses
r to “open” the OPRF transcript and prove that its DNS query
in fact contains D: the circuit checks that F(r, D) = B and that
BV'/" was the value supplied to the non-membership proof.

The OPRF hides unqueried blocklist entries from the client.
Also, the blinded value B hides the D from the middlebox,
and the client cannot use different D in the first and second
rounds: if H is a random oracle and discrete log is hard in G,
B is a commitment to D, and the circuit verifies that parse-
and-extract outputs D and that F(r,D) = B.

The client learns D € BL for only one D per execution,
comparable to learning the blocklist of a filtering (non-ZK)
middlebox by sending probe packets and seeing which are
transmitted. However, in that case the middlebox learns which
domains have been probed. With our approach, the middlebox
can’t tell which blocked domains clients have probed.

7.6 Oblivious DoH

Our third case study shows how a middlebox can verify that a
client’s DNS queries are destined for a filtered resolver, even
when the client is using the Oblivious DoH (ODoH) protocol,

an extension to DoH which enables stronger privacy. ODoH
adds a proxy resolver between the client and target resolver:
the client encrypts (using HPKE [6]) the DNS query with
the target resolver’s public key and sends it, along with the
target’s identity, to the proxy resolver via HTTPS. (Specifi-
cally, the target resolver’s identity is sent as the value of the
targethost query parameter.) This hides the client’s identity
from the target resolver. ODoH is motivated by the fact that
in practice DoH resolvers are run by a few large companies
like Google and Cloudfiare.

ODoH is incompatible with the increasingly common prac-
tice of networks enforcing filtering by directing their users
to a filtered third-party resolver: by design it prevents the
local network from seeing the target resolver’s IP address and
thus prevents a non-ZK middlebox from blocking traffic to
non-allowed target resolvers.

With a ZKMB, users can prove to the middlebox that their
ODoH query is destined for a specific target resolver. For
brevity, we sketch our circuit, omitting most details. Since the
target resolver is sent in a query parameter, a modified version
of the DoH parse-and-extract circuit outputs the targethost
parameter. Then the policy check ensures equality between
this string and the domain name of the filtered third-party
resolver. To handle more than one third-party resolver, one
could use Merkle-tree-based set membership proofs (§7.4).

To handle ODoH domain blocklisting, the channel opening
phase would have to nest a ZKMB-style circuit that decrypts
and parses the HPKE ciphertext. Doing this securely is some-
what involved: to prevent the client from equivocating about
the HPKE decryption key, the circuit must verify that the
public key used by the client is in fact the correct key for the
destination ODoH resolver identified in the request. This can
be done by performing, in the circuit, a lookup against a public
mapping between identifiers of ODoH resolvers and HPKE
public keys. As a benefit, this approach hides the destination
resolver from the middlebox. We leave the implementation
and evaluation of ODoH blocklisting to future work.

8 Empirical Evaluation

Our empirical evaluation addresses three questions: (1) What
is the baseline performance of channel opening (§5) and how
effective are our optimizations?, (2) How well do our pro-
tocols perform for the case studies? (§6—§7), and (3) How
tolerable or intolerable are the costs for real-world use?

Implementation. We implemented channel opening circuits
for TLS 1.3, following the approach described for SimpleTLS
in Section 5. Appendix B provides details for our full TLS 1.3
versions. We implemented parse-and-extract and policy-check
circuits for all of the applications described in Sections 67,
except the private blocklist extension of 7.5. Our implemen-
tation does not handle requests that are split across multiple
TLS records. We did not implement a full ZKMB system, just

Gate Counts (x 10%)

Method EC Hash Dec Total Time SRS
BCO (§B.1) 274 255 219 748 94.0s 1.18GB
SCO (§B.2) - 97 14 111 16.5s 149MB
ECO (§B.3) - 61 - 61 86s 8IMB
ACOMES (§B4) - 0.03 19 19 44s 27MB
ACO® (§B4) - 0.03 9 9 14s 14MB

Figure 6: The multiplication gate count, proof generation time, and
SRS size for each channel opening sub-circuit described in Ap-
pendix B, operating on a 255-byte ciphertext. Costs are broken down
into the elliptic curve (EC), hashing, and decryption (Dec) steps.
ACOAES/Cha means Amortized Channel Opening, with AES-128-
GCM or ChaCha20/Poly1305. Verification time is always less than
5 ms; verification key size is less than 1 MB.

the ZKMB circuits.

Our implementation framework is xJsnark, a high-level
language for writing zero-knowledge proofs [81]. We use
xJsnark’s gadget library extensively, in particular its AES and
SHA-256 gadgets and its efficient random-access memory
type. The xJsnark system uses libsnark for all backend proof
implementations; we use libsnark’s implementation of the
Groth16 [61] protocol with the BN128 curve.

Harness and testbed. We wrote an experiment harness in
Python to generate inputs for circuits, including simulated
transcripts of TLS connections and DNS queries. We heavily
modified the tlslite-ng library [125] to give us the ability to
extract its internal state. We also used this harness to com-
pute Merkle paths for our blocklisting policy in Section 7.
We ran all our experiments using an Amazon EC2 instance
t3a.2xlarge, using all cores of an 8-core 2.2 GHz AMD
EPYC 7571 CPU and 32 gigabytes of RAM.

8.1 Microbenchmarks for Channel Opening

Figure 6 provides microbenchmarks for our TLS 1.3 channel
opening circuits. We measure the size (in gates) of the circuit
output by xJsnark, the proof generation time (median of 5 tri-
als), and SRS size for opening a 255-byte ciphertext. To evalu-
ate the baseline channel opening circuit (BCO), we use an up-
per bound of 3000 bytes on the size of Cgg, (the server’s exten-
sions). We use SHA-256 [49] and ECDHE over the secp256r1
(NIST P-256 [76]) curve in all cases; for decryption, we use
either AES-128-GCM [43,97] or ChaCha20/Poly1305 [89].

Figure 6 splits the results into the one-time cost of verifying
the session key (§5) in the top three rows and the per-packet
decryption cost in the bottom two rows. The shortcut channel
opening circuit (SCO) improves on the baseline dramatically:
proving time is 5x faster, and the circuit has 6x fewer gates.

Gate Counts (x 10%)

Case Study Channel Opening Parse & Extract Policy Check Total Time SRS
Firewall — (§6) SCO/500 149.0 Find First CRLF 0.9 Match HTTP 1.2 151.1 21.0s 208SMB
DoT (§7.2) ACOM2/255 9.0 Extract DoT Label 5.5 Merkle Testing 4.0 19.5 3.1s 32MB
DoH GET (§7.3) ACO”E5/500 38.0 Extract DoH Label 7.5 Merkle Testing 4.0 495 6.8s 75MB
ODoH (§7.6) ACO”ES/500 38.0 Parse targethost 1.5 Match Resolver 8.5 480 64s 61MB

Figure 7: Gate counts, proving time, and SRS size for our case studies. Gate count is for the three stages of the ZKMB pipeline (§4). CO/N
indicates packets N bytes long. Verification time is less than 5 ms in all cases; verification key size is less than 1 MB.

This shows that removing elliptic curve operations and re-
ducing the cost of /3 derivation produces substantial benefit.
Also noteworthy is the three-second improvement in proving
time offered by ChaCha20 vs. AES-GCM.

8.2 Full benchmarks for case studies

Next we evaluate the performance of a full Prove implemen-
tation for each of our three case studies (§6 and §7). For each
experiment, we use either SCO or ACO for channel opening,
then apply the parse-and-extract and policy check sub-circuits
described in the corresponding section.

HTTP Firewalling (§6). For this experiment, we evaluated
Prove on a 500-byte ciphertext. HTTP requests can be larger
than this, but since this policy only concerns the first line of a
given request, the prover only needs to decrypt a prefix of the
ciphertext long enough to contain the first line.

The results are shown in the first row of Figure 7. For this
case study, the dominant cost, by far, is channel opening: SCO
by itself costs nearly 1.5 million gates, where about 380,000
are for AES decryption; the other two steps take just 21,000.

Domain Blocklisting for DoT/DoH (§7.2, §7.3). For this
experiment, we use the Python experiment harness described
above to create the Merkle tree and compute Merkle paths for
the non-membership proof. We use the Poseidon [60] hash
function; because of a subtlety with how Poseidon works, our
implementation only supports 253-byte domain names, one
less than the real length limit. We use a blocklist containing
two million entries, obtained from an online blocklist of adult-
content domains [96], which we believe to be comparable
to the size of proprietary adult-content blocklists [147]. Be-
cause the blocklist must be downloaded by the client during
Registration, a practical question is the size of the blocklist.
Our two million domain blocklist is about fifty megabytes
in size and can be compressed with gzip to just over seven
megabytes—thus, the cost of downloading and storing the
blocklist is relatively small.

Creating the Merkle tree for this blocklist is expensive:
it takes nearly two hours. The hash tree itself is over 500
megabytes (roughly two million 254-bit hashes). Computing

the Merkle tree is a one-time cost for the client; even still, two
hours is impractical. The high cost here is likely because of
our unoptimized Python implementation of Poseidon.

Our DoT and DoH experiments use ACO. Because en-
crypted DNS uses a long-lived TLS connection, it makes
sense to run the setup once and use amortized channel open-
ing for each packet. For DoT we use a 255-byte ciphertext
with ChaCha20/Poly 1305 decryption. Overall, the cost is only
195,000 gates. Parse-and-extract and policy check take only
90,000 gates. Even for our fairly large blocklist, proving non-
membership costs only 40,000 gates: Merkle paths are com-
pact and Poseidon’s circuit is small, costing only 250 gates.

We next evaluate DoH GET with AES and a 500 byte cipher-
text. The cost is much higher than the DoT circuit: 495,000
gates. The parse-and-extract policy check costs about 115,000
gates; thus, the bulk of the cost is AES decryption.

Resolver Allowlisting for ODoH (§7.6). We evaluate our
ODoH case study described in Section 7.6 with the amortized
channel opening circuit for a 500-byte ciphertext. Our current
implementation of the policy check circuit only supports a
one-entry allowlist and cannot yet use Merkle proofs. This
experiment results in similar performance to DoH.

Summary. Overall, our experiments indicate ZKMBs are
not yet practical for all use cases: for example, SRS sizes (up
to 235 MB) are a barrier to deployment. Also, proving time
is too high in our HTTPS firewalling case study, where each
new connection would have a ~20-second setup cost.

On the other hand, in some settings ZKMBs’ proving time
is nearly practical. For encrypted DNS, where the client has
a long-lived TLS connection to a DNS resolver, the setup
time must be incurred only once. Then, each query for a
new domain costs only 3 seconds, which, while not ideal, is
within bounds for latency-sensitive workloads, like a human
browsing the web. A browser implementation could even
precompute proofs as DNS names are prefetched.

9 Related Work

Implementations of probabilistic proofs. Probabilistic
proofs are fundamental in cryptography and complexity the-

ory [2—4,55-57]. At a high level, they allow a verifier to effi-
ciently and probabilistically check a claim made by a prover.
Over the last decade, and accelerating over the last few years,
there has been intense interest in refining and implementing
probabilistic proofs, with particular interest in proofs with
zero-knowledge properties. See [124, 131, 134] for surveys.

Built systems generally involve a back-end (a probabilistic
proof protocol) and a front-end (a mechanism for transform-
ing from a high-level computation to a circuit). We use the
Groth16 [61] back-end, summarized earlier (§3). Groth16 is
built atop the seminal QAP formalism [54], which was ini-
tially implemented in Pinocchio [108] (see also BCTV [10]).
All of these works have the qualitative performance described
earlier (§3, §8). For relatively recent comparisons of Groth16
and other strands of back-ends, see Hyrax [133, §8] and Spar-
tan [116, §9]. Subsequent work has not changed the quali-
tative costs and trade-offs, though there has been progress
in relaxing setup assumptions [1,8,11,21,25,26,52,91,92,
116,117,133, 145] and extending the machinery to circuits
and statements of greater size and scope via recursive proof
composition [16,20,53,82,83].

Turning to front-end work, there are two main approaches:
“ASIC” and “CPU” [131, 134]. We use the xJsnark [81] front-
end, which is an “ASIC” approach, meaning that each high-
level computation transforms to a custom circuit C. A pro-
gram compiler works over the high-level computation, going
line-by-line to produce corresponding arithmetic circuit gates
(or constraints), using various techniques to produce concise
encodings when possible [17,18,28,32,106,108,109,118,132,
148]. A variant of this approach is to hand-design circuits by
exploiting recent enhancements to arithmetization [14,51]. In
contrast, the “CPU” front-end approach encodes a “universal
machine” in a circuit [8—10, 146]. This approach, while in
principle facilitating programmability, results in performance
that is not competitive (overhead of 50x [132]).

Applications of general-purpose ZK proofs have so far
mainly surrounded cryptocurrency [114] (with exploding
commercial interest in blockchain applications), though a
recently launched program by DARPA, called SIEVE, seeks
to develop applications beyond that sphere. To our knowledge,
no prior work has applied this machinery to network security.

Middlebox architectures. Many works have proposed al-
ternate middlebox architectures to cope with encrypted traffic.
Sherry’s dissertation provides an overview [120] while Nay-
lor et al. [101] provide a thoughtful framework for comparing
different solutions [101].

TEE-based approaches. ETTM [37] creatively re-imagines
network architecture, placing middlebox functionality in a
trusted virtual machine on the end host, which requires
trusted hardware (to attest to, and boot, the hypervisor).
Endbox [58] refines this vision, placing the middlebox code
in a trusted execution environment (TEE), such as an SGX
enclave, on end hosts. A variant of this architecture runs

the middlebox code in an in-cloud TEE to which key ma-
terial is disclosed [66, 110, 127]; the motivation is enterprise-
deployed middleboxes running on untrusted cloud platforms.
mbTLS [101] replaces end-to-end TLS with hop-by-hop TLS
with TEE enclaves implementing middlebox functionality be-
tween each hop in a manner agreed by both endpoints. These
works and many others [42, 59, 65, 84, 135] rely on trusted
enclaves, which we consider not to meet our compatibility
requirement (§1).

TLS modification approaches. Like ZKMBs, Blind-
box [119] is based on advanced cryptographic tools, specif-
ically Oblivious Transfer, circuit garbling, and searchable
encryption. Blindbox encrypts all traffic with ordinary TLS
and a separate, weaker encryption that allows the middlebox
to compute obliviously. Blindbox requires changes to servers,
which must check the consistency of the TLS contents and the
weaker encryption, otherwise the client can equivocate (§5).
Successive work in the same model includes Embark [88] and
many others [47,77,86,87,90,94,104, 105,111, 140, 143].

Another approach is mcTLS [102], which maintains the
standard cryptographic properties of TLS but enables granting
one or more middleboxes read and/or write access to certain
portions of a TLS connection by revealing context-specific
keys. Middleboxes can thereby enforce network policy or
provide functionality without removing all security benefits
of TLS. For example, DNS filtering can be implemented using
mcTLS by granting the middlebox read-only access to the
request body, and traffic compression can be implemented by
granting read/write access to the response body.

All of these proposals require server-side changes, which
we regard as incompatible with widespread adoption.

Comparison to ZKMBs. Assessing our work using Nay-
lor et al.’s taxonomy [101] of design options for middlebox-
enabling modifications to TLS highlights that ZKMBs rep-
resent a new point in the design space. On the one hand,
ZKMBs don’t support middleboxes with write access to traf-
fic (only read access); don’t (by design) provide transparency
to servers about the presence of middleboxes; and don’t pro-
vide path integrity [101]. On the other hand, in ZKMBs, the
middlebox learns only that traffic policy is compliant, as op-
posed to (in mcTLS) reading all or part of the client’s request.
ZKMBs thus represent a new category within Naylor et al.’s
“granularity of data access” property. A potential avenue for
future work is to combine the zero-knowledge data access of
ZKMBs with other properties like path integrity or bilateral
transparency achieved by mcTLS or mbTLS.

Proving properties of encrypted data. Some prior re-
search shares a high-level goal with ZKMBs: proving some-
thing about the (hidden) plaintext of a (public) ciphertext.
One such line of work develops verifiable encryption (VE)
schemes [23], which are public-key encryption schemes that
enable efficient generation of proofs for predetermined func-
tions of plaintexts (for example, that the message is the dis-

crete log of a public group element). Each function usually
requires its own dedicated VE scheme. ZKMBs are conceptu-
ally similar to VE; however, VE is not compatible with exist-
ing protocols, so VE techniques are inapplicable to ZKMBs.

Two more recent papers share our compatibility require-
ment (§1). Wang et al. [136] build a certificate authority that
can issue certificates to anonymous users. One step of their
certificate issuance protocol involves proving that part of a
TLS 1.2 record has a given hash value. They do not con-
sider TLS 1.3, and the goals and techniques of their work are
otherwise distinct from ours.

Zhang et al. [144] build a “decentralized oracle” (DECO)
primitive that allows a user to reveal server responses to a non-
inline third party. Their construction relies on the user and
third party jointly running a TLS client via secure multiparty
computation (MPC). Clients can optionally prove statements
about responses using a ZK proof system instead of revealing
them. In an appendix, they suggest that the third party could
be an inline proxy, to reduce MPC overhead.

Zhang et al. make a few important observations that pre-
figure some of the technical challenges in building ZKMBs:
first, as described in Section 5, they recognize the need for
TLS records to commit to plaintexts. They also highlight the
risk of the prover equivocating the message by lying about its
structure. The authors address this via specialized sub-circuits
for extracting contents from JSON responses, essentially a
special case of the parse-and-extract step in our proof pipeline.
However, there are several crucial differences between their
work and ours. First, the high-level goal of a decentralized or-
acle is to let the client prove statements about TLS responses
from servers; in contrast, in ZKMBs, clients prove statements
about their own traffic. Second, their ZK proof protocols rely
on the prover and verifier having a secret-shared version of
the TLS session key output from their MPC protocol. Finally,
though they consider TLS 1.3, their main focus is on TLS 1.2
and optimizing for HMAC-then-CBC encryption, which is
unavailable in TLS 1.3.

10 Summary, Discussion, and Future Work

To summarize, this paper introduced ZKMBs (§2, §4), thereby
identifying a novel application of general-purpose ZK proofs.
Instantiating secure and efficient protocols, however, was eas-
ier said than done. The biggest challenge was representing
enough of the TLS handshake in the circuit formalism (§3)
to achieve the needed binding property (§5) while keeping
the circuit as compact as possible (for performance). Another
challenge was embedding DNS filtering (§7) in a circuit.

In our experiments (§8), proof length is 128 bytes, and
the verifier (middlebox) runs in 2—-5ms. These quantities are
inherited from Groth16 [61].

Three aspects of performance give us pause for near-term
ZKMB deployment. First, even several milliseconds of veri-
fication time (roughly, 300-500 proofs per second) could be

too costly, when considering that network links often carry
many more then several hundred packets per second. A mit-
igating factor, however, is that policy enforcement need not
be synchronous. Although we have described the middlebox
as dropping non-compliant traffic, an alternate arrangement
would have the middlebox auditing: verifying proofs, perhaps
in batches, after it has forwarded traffic. The remediation
for an invalid proof, which is to say a failed audit, would be
blocking the client from the network.

Second, the prover’s (client’s) running time is around 14
seconds to initiate a TLS connection and several seconds for
any packets that call for proofs. On the other hand, there are
specialized settings, such as encrypted DNS (§7), where the
initiation cost amortizes and the per-proof cost is affordable,
or nearly so (§8).

Third, the SRS (§3) is large (hundreds of megabytes). How
does the SRS get to clients? If each middlebox generates its
own, clients have to download a large package when join-
ing a new network. Alternatively, a trusted entity (such as
a browser vendor) could install on clients SRSes for appro-
priate, fixed circuits. A maliciously generated SRS is a risk
only to middleboxes, not clients: a compromised SRS would
undermine soundness of the proof system, enabling policy cir-
cumvention via forged proofs, but clients’ privacy would not
be affected [50]. Notice that if the middlebox needs to update
policy, pre-installation is not a practical option, but it might
still be advantageous to have browser vendors disseminate
SRS updates, perhaps with browser upgrades.

Several items in our paper are clear targets for future work:
implementing the private blocklist technique (§7.5), support-
ing requests that span several TLS records, and implementing
functionality that necessitates proofs per packet (such as IDS
and malware scanning).

There are several larger extensions to explore. One is cir-
cuit decomposition, in which each of channel opening, parse
and extract, and policy-check (§4) are separate circuits, each
with a separate SRS. Each circuit would output a commitment,
which would be opened in the successive circuit. This arrange-
ment would allow the middlebox to run its own ZKSetup
for the smaller circuits (parse-and-extract and policy-check),
while trusted parties could install the infrequently-changing
channel-opening circuit on clients. One systems question is
what language the middlebox should use for expressing policy
to clients, so that the client’s networking stack can prevent
non-compliant messages, and so that the client and middlebox
can agree on the relevant circuits.

Another extension is alternate back-end proof proto-
cols (§9). Universal SNARKSs [25,52,95] are proof protocols
in which a single SRS can be applied to different circuits
of the same length. Using this machinery would ease the
tradeoff between setup costs and trust (because now the setup
has to be done once, without ongoing revision), at the possi-
ble cost of more circuit design work and larger proofs. Also
intriguing are backends that achieve excellent prover over-

head [1,11,92,116,145] and require no trusted setup, though at
the expense of larger verifier running time and larger proofs.
Indeed, preliminary investigations indicate that by using a
MPC-style proof protocol [44, 138, 139, 142], proving times
of roughly one second are achievable, at the cost of verifier
time rising to one second as well.

Another interesting direction is extending ZKMBs to other
middlebox architectures. We focused here on the simplest
case, a single middlebox located in the same local network
as the client. We expect ZKMBs to adapt naturally to other
settings, for example a middlebox interposed in front of the
server, a middlebox running “off-path” in the cloud (§9), a
chain of middleboxes enforcing different policies, stateful
middleboxes, or traffic-rewriting middleboxes. Finally, a chal-
lenging task for future work is an implementation of a ZKMB
that runs at the network’s line rate.

Acknowledgements

We are indebted to Chris Wood for suggestions and insights
about DNS throughout this project. Srikar Varadaraj provided
help during the early stages of this work. Malavika Bal-
achandran Tadeusz, Bill Budington, Richard Clayton, Henry
Corrigan-Gibbs, Zachary DeStefano, Felix Giinther, Anurag
Khandelwal, Ian Miers, Eric Rescorla, Justin Thaler, Collin
Zhang, Pete Zimmerman, and the anonymous reviewers gave
helpful comments. This research was supported by DARPA
under Agreement No. HR00112020022. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the United States Government or DARPA.

References

[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthura-
makrishnan Venkitasubramaniam. Ligero: Lightweight
Sublinear Arguments Without a Trusted Setup. In ACM
CCS, 2017.

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu
Sudan, and Mario Szegedy. Proof Verification and the
Hardness of Approximation Problems. Journal of the
ACM, 45(3), 1998.

[3] Sanjeev Arora and Shmuel Safra. Probabilistic Check-
ing of Proofs: A New Characterization of NP. Journal
of the ACM, 45(1), 1998.

Laszl6 Babai, Lance Fortnow, Leonid A Levin, and
Mario Szegedy. Checking Computations in Polyloga-
rithmic Time. In ACM STOC, 1991.

Kenji Baheux. A safer and more private browsing
experience with Secure DNS. Chromium Blog, May
2020.

2

[}

[4

[}

[5

—_

[6] R.L. Barnes, K. Bhargavan, and C. Wood. Hybrid
Public Key Encryption, 2020. https://tools.ietf.
org/html/draft-irtf-cfrg-hpke-04.

[7] Mihir Bellare and Phillip Rogaway. The security
of triple encryption and a framework for code-based
game-playing proofs. In JACR Eurocrypt, 2006.

[8] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018.

[9] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,
Eran Tromer, and Madars Virza. SNARKSs for C: Veri-
fying program executions succinctly and in zero knowl-
edge. In JACR CRYPTO, 2013.

[10] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowl-
edge for a von Neumann architecture. In USENIX
Security, 2014.

[11] Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay,
Muthuramakrishnan Venkitasubramaniam, Tiancheng
Xie, and Yupeng Zhang. Ligero++: A new optimized
sublinear IOP. In ACM CCS, 2020.

[12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and
Eran Tromer. From extractable collision resistance
to succinct non-interactive arguments of knowledge,
and back again. In ITCS, 2012.

[13] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
Interactive Zero-Knowledge and its Applications. In
ACM STOC, 1988.

[14] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune
Jakobsen, and Mary Maller. Arya: Nearly Linear-Time
Zero-Knowledge Proofs for Correct Program Execu-
tion. In JACR Asiacrypt, 2018.

[15] Stéphane Bortzmeyer. DNS Privacy Considerations.
RFC 7626, 2015.

[16] Sean Bowe, Jack Grigg, and Daira Hopwood. Recur-
sive proof composition without a trusted setup. Cryp-
tology ePrint Archive, Report 2019/1021, 2019.

[17] Benjamin Braun. Compiling computations to con-
straints for verified computation. UT Austin Honors
thesis HR-12-10, December 2012.

[18] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Sri-
nath Setty, Andrew J. Blumberg, and Michael Walfish.
Verifying computations with state. In ACM SOSP,
2013.

[19] Jon Brodkin. AT&T to end targeted ads program, give
all users lowest available price. Ars Technica, 2016.

[20] Benedikt Biinz, Alessandro Chiesa, Pratyush Mishra,
and Nicholas Spooner. Proof-Carrying Data from Ac-
cumulation Schemes. In JACR TCC, 2020.

[21] Benedikt Biinz, Ben Fisch, and Alan Szepieniec. Trans-
parent SNARKSs from DARK compilers. In JACR Eu-
rocrypt, 2020.

[22] Jonas Bushart and Christian Rossow. Padding Ain’t

https://tools.ietf.org/html/draft-irtf-cfrg-hpke-04
https://tools.ietf.org/html/draft-irtf-cfrg-hpke-04

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Enough: Assessing the Privacy Guarantees of En-
crypted DNS. In USENIX FOCI, 2020.

Jan Camenisch and Victor Shoup. Practical verifiable
encryption and decryption of discrete logarithms. In
IACR CRYPTO, 2003.

Configuring networks to disable DNS over HTTPS.
https://support.mozilla.org/en-US/kb/

configuring-networks-disable-dns-over-https,

2022.

Alessandro Chiesa, Yuncong Hu, Mary Maller,
Pratyush Mishra, Noah Vesely, and Nicholas P. Ward.
Marlin: Preprocessing zkSNARKSs with universal and
updatable SRS. In JACR Eurocrypt, 2020.
Alessandro Chiesa, Dev Ojha, and Nicholas Spooner.
Fractal: Post-quantum and transparent recursive proofs
from holography. In JACR Eurocrypt, 2020.
Children’s Internet Protection Act. 106th U.S.
Congress Public Law 554, 2000.

Collin Chin, Howard Wu, Raymond Chu, Alessan-
dro Coglio, Eric McCarthy, and Eric Smith. Leo: A
Programming Language for Formally Verified, Zero-
Knowledge Applications. Cryptology ePrint Archive,
Report 2021/651, 2021.

Catalin Cimpanu. UK ISP group names Mozilla ’Inter-
net Villain’ for supporting "DNS-over-HTTPS’. ZDNet,
2019.

D.D. Clark, J. Wroclawski, K.R. Sollins, and R. Braden.
Tussle in cyberspace: defining tomorrow’s Internet.
IEEE/ACM Transactions on Networking, 13(3), 2005.
First appeared in SIGCOMM 2002.

Adam Costello. Punycode: A Bootstring encoding
of Unicode for Internationalized Domain Names in
Applications (IDNA). RFC 3492, 2003.

Craig Costello, Cédric Fournet, Jon Howell, Markulf
Kohlweiss, Benjamin Kreuter, Michael Naehrig, Bryan
Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In /[EEE Security & Privacy, 2015.
Xavier de Carné de Carnavalet and Paul C. van
Oorschot. A survey and analysis of TLS interception
mechanisms and motivations, 2020.

Selena Deckelmann. Firefox continues push to bring
DNS over HTTPS by default for US users. Mozilla
Blog, February 2020.

Antoine Delignat-Lavaud, Cédric Fournet, Markulf
Kohlweiss, and Bryan Parno. Cinderella: Turning
shabby X.509 certificates into elegant anonymous cre-
dentials with the magic of verifiable computation. In
IEEE Security & Privacy, 2016.

Roger Dingledine, Nick Mathewson, and Paul Syver-
son. Tor: The second-generation onion router. Techni-
cal report, Naval Research Lab Washington DC, 2004.
Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic,
Dane Brandon, Thomas Anderson, and Arvind Krish-
namurthy. ETTM: A scalable fault tolerant network

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

manager. In USENIX NSDI, 2011.

Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and
Joanne Woodage. Fast message franking: From invis-
ible salamanders to encryptment. In JACR CRYPTO,
2018.

Benjamin Dowling, Marc Fischlin, Felix Giinther, and
Douglas Stebila. A cryptographic analysis of the TLS
1.3 handshake protocol. IACR Journal of Cryptology,
2020.

Ralph Droms. Dynamic Host Configuration Protocol.
RFC 2131, 1997.

Ralph Droms and Steve Alexander. DHCP Options
and BOOTP Vendor Extensions. RFC 2132, 1997.
Huayi Duan, Xingliang Yuan, and Cong Wang. Light-
box: SGX-assisted secure network functions at near-
native speed. arXiv preprint arXiv:1706.06261, 2017.
Morris Dworkin, Elaine Barker, James Nechvatal,
James Foti, Lawrence Bassham, E. Roback, and James
Dray. Advanced encryption standard (AES). NIST
FIPS 197, 2001.

EMP-toolkit: Efficient MultiParty computation toolkit,
2021. https://github.com/emp-toolkit/
emp- zk.

Roya Ensafi, David Fifield, Philipp Winter, Nick Feam-
ster, Nicholas Weaver, and Vern Paxson. Examining
how the Great Firewall discovers hidden circumvention
servers. In ACM IMC, 2015.

Patrick Faltstrom, Paul Hoffman, and Adam Costello.
Internationalizing Domain Names in Applications
(IDNA). RFC 3490, 2003.

Jingyuan Fan, Chaowen Guan, Kui Ren, Yong Cui, and
Chunming Qiao. Spabox: Safeguarding privacy during
deep packet inspection at a middlebox. IEEE/ACM
Transactions on Networking, 25(6), 2017.

Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature prob-
lems. In JACR CRYPTO, 1986.

Secure hash standard. NIST FIPS 180-2, 2002.

Georg Fuchsbauer. Subversion-zero-knowledge
SNARK:S. In JACR PKC, 2018.

Ariel Gabizon and Zachary J. Williamson. plookup:
A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, Report 2020/315, 2020.
Ariel Gabizon, Zachary J. Williamson, and Oana Ciob-
otaru. Plonk: Permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Report 2019/953, 2019.
Nicolas Gailly, Mary Maller, and Anca Nitulescu.
SnarkPack: Practical SNARK aggregation. Cryptology
ePrint Archive, Report 2021/529, 2021.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mar-
iana Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In IACR Eurocrypt, 2013.
Oded Goldreich. Probabilistic proof systems — a primer.

https://support.mozilla.org/en-US/kb/configuring-networks-disable-dns-over-https
https://support.mozilla.org/en-US/kb/configuring-networks-disable-dns-over-https
https://github.com/emp-toolkit/emp-zk
https://github.com/emp-toolkit/emp-zk

Foundations and Trends in Theoretical Computer Sci-
ence, 3(1), 2008.

[56] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Roth-
blum. Delegating computation: interactive proofs for
muggles. Journal of the ACM, 62(4), 2015.

[57] Shafi Goldwasser, Silvio Micali, and Charles Rack-
off. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1), 1989.

[58] David Goltzsche, Signe Riisch, Manuel Nieke,
Sébastien Vaucher, Nico Weichbrodt, Valerio Schi-
avoni, Pierre-Louis Aublin, Paolo Cosa, Christof
Fetzer, Pascal Felber, et al. Endbox: Scalable middle-
box functions using client-side trusted execution. In
IEEE/IFIP DSN, 2018.

[59] Deli Gong, Muoi Tran, Shweta Shinde, Hao Jin, Vyas
Sekar, Prateek Saxena, and Min Suk Kang. Practical
verifiable in-network filtering for DDoS defense. In
2019 IEEE ICDCS, 2019.

[60] Lorenzo Grassi, Dmitry Khovratovich, Christian Rech-
berger, Arnab Roy, and Markus Schofnegger. Poseidon:
A new hash function for zero-knowledge proof systems.
In USENIX Security, 2021.

[61] Jens Groth. On the size of pairing-based non-
interactive arguments. In JACR Eurocrypt, 2016.

[62] Christian Grothoff, Matthias Wachs, Monika Ermert,
and Jacob Appelbaum. Toward secure name resolution
on the Internet. Computers & Security, 77, 2018.

[63] Electronic Frontier Foundation & Online Policy
Group. Internet blocking in public schools,
2003. https://www.eff.org/files/filenode/
net_block_report.pdf.

[64] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-
sage franking via committing authenticated encryption.
In JACR CRYPTO, 2017.

[65] Juhyeng Han, Seongmin Kim, Daeyang Cho, Byungk-
won Choi, Jaechyeong Ha, and Dongsu Han. A Secure
Middlebox Framework for Enabling Visibility Over
Multiple Encryption Protocols. IEEE/ACM Transac-
tions on Networking, 28(6), 2020.

[66] Juhyeng Han, Seongmin Kim, Jachyeong Ha, and
Dongsu Han. SGX-Box: Enabling visibility on en-
crypted traffic using a secure middlebox module. In
Asia-Pacific Workshop on Networking, 2017.

[67] Wes Hardaker. Measuring the size
of Mozilla’s DOH Canary Domain.
https://www.isi.edu/~hardaker/news/
20191120-canary-domain-measuring.html,
2019.

[68] Paul Hoffman and Marc Blanchet. Preparation of In-
ternationalized Strings (stringprep). RFC 3454, 2002.

[69] Paul Hoffman and Marc Blanchet. Nameprep: A
Stringprep Profile for Internationalized Domain Names.
RFC 3491, 2003.

[70] Paul E. Hoffman and Patrick McManus. DNS Queries

over HTTPS (DoH). RFC 8484, 2018.

[71] Ralph Holz, Johanna Amann, Abbas Razaghpanah, and
Narseo Vallina-Rodriguez. The era of TLS 1.3: Mea-
suring deployment and use with active and passive
methods. arXiv preprint arXiv:1907.12762, 2019.

[72] Austin Hounsel, Paul Schmitt, Kevin Borgolte, and
Nick Feamster. Designing for tussle in encrypted DNS.
In ACM HotNets, 2021.

[73] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin,
Duane Wessels, and Paul E. Hoffman. Specification
for DNS over Transport Layer Security (TLS). RFC
7858, 2016.

[74] Internationalized domain names. https://en.
wikipedia.org/wiki/Internationalized_
domain_name, 2021.

[75] Jacob Kastrenakes. It’s official: your Internet provider
can share your web history. The Verge, 2017.

[76] Cameron F Kerry and Patrick D Gallagher. Digital
signature standard (DSS). NIST FIPS 186-4, 2013.

[77] Jongkil Kim, Seyit Camtepe, Joonsang Baek, Willy
Susilo, Josef Pieprzyk, and Surya Nepal. P2DPI: Prac-
tical and Privacy-Preserving Deep Packet Inspection.
AsiaCCS, 2021.

[78] Eric Kinnear, Patrick McManus, Tommy Pauly, Tanya
Verma, and Christopher A. Wood. Oblivious DNS Over
HTTPS. Internet-Draft draft-pauly-dprive-oblivious-
doh-06, Internet Engineering Task Force, 2021.

[79] John Klensin. Internationalized Domain Names in
Applications (IDNA): Protocol. RFC 5891, 2010.

[80] Paul C Kocher. On certificate revocation and validation.
In Financial Crypto, 1998.

[81] Ahmed Kosba, Charalampos Papamanthou, and Elaine
Shi. xJsnark: a framework for efficient verifiable com-
putation. In IEEE Security & Privacy, 2018.

[82] Abhiram Kothapalli, Elisaweta Masserova, and Bryan
Parno. Poppins: A direct construction for asymptoti-
cally optimal zkSNARKSs. Cryptology ePrint Archive,
Report 2020/1318, 2020.

[83] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla.
Nova: Recursive Zero-Knowledge Arguments from
Folding Schemes. Cryptology ePrint Archive, Report
2021/370, 2021.

[84] Dmitrii Kuvaiskii, Somnath Chakrabarti, and Mona
Vij. Snort intrusion detection system with Intel soft-
ware guard extension (Intel SGX). arXiv preprint
arXiv:1802.00508, 2018.

[85] SSL Labs. SSL Pulse. https://www.ssllabs.com/
ssl-pulse/.

[86] Shanggqi Lai, Xingliang Yuan, Joseph K Liu, Xun Yi,
Qi Li, Dongxi Liu, and Surya Nepal. OblivSketch:
Oblivious Network Measurement as a Cloud Service.
In ISOC NDSS, 2021.

[87] Shanggqi Lai, Xingliang Yuan, Shifeng Sun, Joseph K.
Liu, Ron Steinfeld, Amin Sakzad, and Dongxi Liu.

https://www.eff.org/files/filenode/net_block_report.pdf
https://www.eff.org/files/filenode/net_block_report.pdf
https://www.isi.edu/~hardaker/news/20191120-canary-domain-measuring.html
https://www.isi.edu/~hardaker/news/20191120-canary-domain-measuring.html
https://en.wikipedia.org/wiki/Internationalized_domain_name
https://en.wikipedia.org/wiki/Internationalized_domain_name
https://en.wikipedia.org/wiki/Internationalized_domain_name
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/

Practical Encrypted Network Traffic Pattern Matching
for Secure Middleboxes. IEEE TDSC, 2021.

[88] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia
Ratnasamy, and Zhi Liu. Embark: Securely outsourc-
ing middleboxes to the cloud. In USENIX NSDI, 2016.

[89] Adam Langley, Wan-Teh Chang, Nikos Mavro-
giannopoulos, Joachim Strombergson, and Simon
Josefsson. ChaCha20-Poly1305 Cipher Suites for
Transport Layer Security (TLS). RFC 7905, June 2016.

[90] Hyunwoo Lee, Zach Smith, Junghwan Lim, Gyeongjae
Choi, Selin Chun, Taejoong Chung, and Ted Tackyoung
Kwon. maTLS: How to make TLS middlebox-aware?
In ISOC NDSS, 2019.

[91] Jonathan Lee. Dory: Efficient, Transparent argu-
ments for Generalised Inner Products and Polynomial
Commitments. Cryptology ePrint Archive, Report
2020/1274, 2020.

[92] Jonathan Lee, Srinath Setty, Justin Thaler, and Riad
Wahby. Linear-time and post-quantum zero-knowledge
SNARKSs for R1CS. Cryptology ePrint Archive, Report
2021/030, 2021.

[93] Julia Len, Paul Grubbs, and Thomas Ristenpart. Parti-
tioning Oracle Attacks. In USENIX Security, 2021.

[94] Cong Liu, Yong Cui, Kun Tan, Quan Fan, Kui Ren,
and Jianping Wu. Building generic scalable middlebox
services over encrypted protocols. In I[EEE INFOCOM,
2018.

[95] Mary Maller, Sean Bowe, Markulf Kohlweiss, and
Sarah Meiklejohn. Sonic: Zero-knowledge SNARKSs
from linear-size universal and updatable structured ref-
erence strings. In ACM CCS, 2019.

[96] Chad Mayfield.
blocklists/pi_blocklist_porn_all.list.
https://github.com/chadmayfield/
my-pihole-blocklists, 2021.

[97] David McGrew and John Viega. The galois/counter
mode of operation (GCM). NIST Modes of Operation
Process, 20, 2004.

[98] P. Mockapetris. Domain names - concepts and facili-
ties. RFC 1034, 1987.

[99] P. Mockapetris. Domain names - implementation and
specification. RFC 1035, 1987.

[100] Moni Naor and Omer Reingold. Number-theoretic
constructions of efficient pseudo-random functions. In
IEEE FOCS, 1997.

[101] David Naylor, Richard Li, Christos Gkantsidis, Thomas
Karagiannis, and Peter Steenkiste. And Then There
Were More: Secure Communication for More Than
Two Parties. In ACM CoNEXT, 2017.

[102] David Naylor, Kyle Schomp, Matteo Varvello, Ilias
Leontiadis, Jeremy Blackburn, Diego R Lépez, Kon-
stantina Papagiannaki, Pablo Rodriguez Rodriguez,
and Peter Steenkiste. Multi-context TLS (mcTLS): En-
abling secure in-network functionality in TLS. ACM

my-pihole-

SIGCOMM Computer Communication Review, 45(4),
2015.

[103] Henrik Nielsen, Jeffrey Mogul, Larry M Masinter,
Roy T. Fielding, Jim Gettys, Paul J. Leach, and Tim
Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1.
RFC 2616, 1999.

[104] Jianting Ning, Xinyi Huang, Geong Sen Poh, Sheng-
min Xu, Jia-Chng Loh, Jian Weng, and Robert H Deng.
Pine: Enabling privacy-preserving deep packet inspec-
tion on TLS with rule-hiding and fast connection es-
tablishment. In ESORICS, 2020.

[105] Jianting Ning, Geong Sen Poh, Jia-Ch’ng Loh, Ja-
son Chia, and Ee-Chien Chang. PrivDPI: privacy-
preserving encrypted traffic inspection with reusable
obfuscated rules. In ACM CCS, 2019.

[106] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. Uni-
fying compilers for SNARKSs, SMT, and more. Cryp-
tology ePrint Archive, Report 2020/1586, 2020.

[107] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan
Boneh. Scaling verifiable computation using efficient
set accumulators. In USENIX Security, 2020.

[108] Bryan Parno, Craig Gentry, Jon Howell, and Mariana
Raykova. Pinocchio: Nearly practical verifiable com-
putation. In IEEE Security & Privacy, 2013.

[109] Pequin: A system for verifying outsourced compu-
tations, and applying SNARKs. https://github.
com/pepper-project/pequin.

[110] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. Safebricks: Shielding network func-
tions in the cloud. In USENIX NSDI, 2018.

[111] Geong Sen Poh, Dinil Mon Divakaran, Hoon Wei
Lim, Jianting Ning, and Achintya Desai. A Survey of
Privacy-Preserving Techniques for Encrypted Traffic
Inspection over Network Middleboxes. arXiv preprint
arXiv:2101.04338, 2021.

[112] Matthew Prince. Announcing 1.1.1.1: the fastest,
privacy-first consumer DNS service. Cloudflare Blog,
April 2018.

[113] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, 2018.

[114] Eli Ben Sasson, Alessandro Chiesa, Christina Garman,
Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized anonymous payments
from Bitcoin. In IEEE Security & Privacy, 2014.

[115] Calyptix Security. Egress Filtering 101: What it is and
how to do it, 2015.

[116] Srinath Setty. Spartan: Efficient and general-purpose
zkSNARKSs without trusted setup. In JACR CRYPTO,
2020.

[117] Srinath Setty and Jonathan Lee. Quarks: Quadruple-
efficient transparent zZkSNARKSs. Cryptology ePrint
Archive, Report 2020/1275, 2020.

[118] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin
Braun, Andrew J. Blumberg, and Michael Walfish. Tak-

https://github.com/chadmayfield/my-pihole-blocklists
https://github.com/chadmayfield/my-pihole-blocklists
https://github.com/pepper-project/pequin
https://github.com/pepper-project/pequin

ing proof-based verified computation a few steps closer
to practicality. In USENIX Security, 2012.

[119] Justine Sherry, Chang Lan, Raluca Ada Popa, and
Sylvia Ratnasamy. BlindBox: Deep packet inspection
over encrypted traffic. In ACM SIGCOMM, 2015.

[120] Justine M. Sherry. Middleboxes as a Cloud Service.
PhD thesis, University of California, Berkeley, 2016.

[121] Haya Shulman. Pretty bad privacy: Pitfalls of DNS
encryption. In ACM WPES, 2014.

[122] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo
Vallina-Rodriguez, and Carmela Troncoso. Encrypted
DNS—> privacy? a traffic analysis perspective. arXiv
preprint arXiv:1906.09682, 2019.

[123] Anthony Spadafora. Apple devices will get encrypted
DNS in iOS 14 and macOS 11. Tech Radar, July 2020.

[124] Justin Thaler. Proofs, arguments, and zero-
knowledge. http://people.cs.georgetown.
edu/jthaler/ProofsArgsAndZK.html, 2020.

[125] tlslite-ng: TLS implementation in pure Python, 2021.

[126] Amar Toor. UK to block all online porn by default
later this year. The Verge, 2013.

[127] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer.
Shieldbox: Secure middleboxes using shielded exe-
cution. In Symposium on SDN Research, 2018.

[128] Mozilla policy requirements for DNS over HTTPs
partners. https://wiki.mozilla.org/Security/
DOH-resolver-policy, 2022.

[129] Marshall Vale. Google Public DNS over HTTPS (DoH)
supports RFC 8484 standard. Google Security Blog,
June 2019.

[130] W3Schools. Chrome Statistics. https:
//www.w3schools.com/browsers/browsers_
chrome. asp.

[131] Riad Wahby. Practical proof systems: implementa-
tions, applications, and next steps. https://www.
pepper-project.org/simons-vc-survey.pdf,
September 2019.

[132] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J.
Blumberg, and Michael Walfish. Efficient RAM and
control flow in verifiable outsourced computation. In
ISOC NDSS, 2015.

[133] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin
Thaler, and Michael Walfish. Doubly-efficient zk-
SNARKSs without trusted setup. In IEEE Security &
Privacy, 2018.

[134] Michael Walfish and Andrew J. Blumberg. Verifying
computations without reexecuting them: from theoreti-
cal possibility to near practicality. Communications of
the ACM, 58(2), 2015.

[135] Juan Wang, Shirong Hao, Yi Li, Zhi Hong, Fei Yan,
Bo Zhao, Jing Ma, and Huanguo Zhang. TVIDS:
Trusted virtual IDS with SGX. China Communica-
tions, 16(10), 2019.

[136] Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ris-
tenpart, and abhi shelat. Blind certificate authorities.
In IEEE Security & Privacy, 2019.

[137] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and
Dan Boneh. Stegotorus: a camouflage proxy for the
Tor anonymity system. In ACM CCS, 2012.

[138] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao
Wang. Wolverine: fast, scalable, and communication-
efficient zero-knowledge proofs for boolean and arith-
metic circuits. In IEEE Security & Privacy, 2021.

[139] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz,
and Xiao Wang. Mystique: Efficient Conversions for
Zero-Knowledge Proofs with Applications to Machine
Learning. In USENIX Security, 2021.

[140] Florian Wilkens, Steffen Haas, Johanna Amann, and
Mathias Fischer. Passive, transparent, and selective
TLS decryption for network security monitoring. arXiv
preprint arXiv:2104.09828, 2021.

[141] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J Alex
Halderman. Telex: Anticensorship in the network in-
frastructure. In USENIX Security, 2011.

[142] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao
Wang. QuickSilver: Efficient and Affordable Zero-
Knowledge Proofs for Circuits and Polynomials over
Any Field. In ACM CCS, 2021.

[143] Xingliang Yuan, Huayi Duan, and Cong Wang. Assur-
ing string pattern matching in outsourced middleboxes.
IEEE/ACM Transactions on Networking, 26(3), 2018.

[144] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven
Goldfeder, and Ari Juels. DECO: Liberating web data
using decentralized oracles for TLS. In ACM CCS,
2020.

[145] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and
Dawn Song. Transparent Polynomial Delegation and
Its Applications to Zero Knowledge Proof. In IEEE
Security & Privacy, 2020.

[146] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dim-
itrios Papadopoulos, and Charalampos Papaman-
thou. VRAM: Faster verifiable RAM with program-
independent preprocessing. In IEEE Security & Pri-
vacy, 2018.

[147] Pete Zimmerman. Private communication, February
2021.

[148] ZoKrates: A toolbox for zkSNARKSs on Ethereum.
https://github.com/Zokrates/ZoKrates.

A Additional Preliminaries

In this appendix, we include some additional background on
the cryptographic primitives discussed in the main body. We
will leave some notational details, such as input and output
spaces, implicit unless they are needed.

http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://wiki.mozilla.org/Security/DOH-resolver-policy
https://wiki.mozilla.org/Security/DOH-resolver-policy
https://www.w3schools.com/browsers/browsers_chrome.asp
https://www.w3schools.com/browsers/browsers_chrome.asp
https://www.w3schools.com/browsers/browsers_chrome.asp
https://www.pepper-project.org/simons-vc-survey.pdf
https://www.pepper-project.org/simons-vc-survey.pdf
https://github.com/Zokrates/ZoKrates

Hash functions, HMAC and HKDF. A hash function H
takes as input a variable-length string x and outputs a fixed-
size digest y. A pair of inputs x # x’ so that H(x) = H(x) is
called a collision. A common way to build hash functions for
variable-length messages is by starting with a compression
function f whose input length is fixed, then iteratively apply-
ing it to each fixed-length block of the variable-length input
(starting with some initial fixed input value). In this work,
the main compression function f of interest is SHA-256’s,
which has {0,1}2% x {0,1}'2 — {0,1}%. To build SHA-
256 from f, the input must first be padded to a multiple of
512 bits. We do not need to worry about the details of this;
we abstract it away as the procedure PadLB. For notational
convenience we may sometimes write H[f](V1,V2) to mean
iterating f with initial chaining value V; over every 512-bit
block of V,, which we assume is block-aligned.

The Hash-based Message Authentication Code, or HMAC,
is (for our purposes) a kind of two-input hash function pa-
rameterized by a hash H. The first input x is fixed-length and
often called a “key”’; the second y is variable-length and often
called the “message”. If x is less than the block size of H (e.g.
512 bits for SHA-256) it is right-padded with zeros until it
is the size of a block. For distinct constant strings opad and
ipad, The HMAC function is

HMAC[H](x,y) = H(x@® opad||H (x & ipad||y)) .

HMAC is the basis of HKDF, the key derivation function
used in TLS 1.3. HKDF is composed of two procedures: one
which extracts entropy from input strings, which we denote
hkdf.ext, and one which expands extracted entropy into key
material, which we denote hkdf.exp. In TLS1.3, hkdf.ext
takes two arguments (x,y) and simply outputs HMAC(x,y).

hkdf.exp takes 4 inputs: source key K, a label string Ibl,
context cnxt, and output length ¢. (In this work, it is always
the case that / is less than the output length of the underlying
hash function.) Define the labeling function hkdflabel as

hkdflabel(Ibl, cnxt,)
= (0)16[(Ci)16]]"tls13 "[[1bI][(€7,) 16] |cnxt

where ¢}, and 2, are the lengths of "tls13 "[|Ibl and cnxt in
bytes. We compute hkdf.exp by

hkdf.exp(K, Ibl,cnxt, £)
= HMAC(K, hkdflabel(Ibl cnxt, £)|| 0x01)

If the fourth argument is left unspecified, it is assumed to be
equal to the hash function’s output length. As a convenience
function below, we also define the function DeriveTK(s) to
derive traffic keys and IVs from some input secret s by out-
putting the pair

(hkdf.exp(s, Ibliey, e, 16), hkdf.exp(s, Iblry, /e, 12)) .

All hkdf.exp calls in TLS 1.3 take a label input describing
the context of the derived value — for example, the label “c
ap traffic” for CATS. To simplify the presentation below, we
will abstract away the concrete strings, and just number the
labels (e.g. Iblg) following the numbering convention of [39]
so that distinct labels have distinct numbers. See [113] for
these labels’ values.

GCM-CTR encryption. For a block cipher £ with
block size n, key K nonce N of n — 32 bits and mes-
sage M define the GCM-Counter encryption scheme
GCM-CTRI[E|(K,N,M,¢;,¢;) to be CTR-mode encryp-
tion of the substring of M between bytes ¢; and
{5, inclusive, but with the ith block of pad computed
as E(K,N||(2 4+ i)32). We will usually omit the last
two arguments, writing GCM-CTR[E](K,N,M) to mean
GCM-CTRIE](K,N,M,1,len(M)). This CTR mode variant
is how messages are encrypted in GCM, the AEAD scheme
we will assume is used for TLS 1.3’s record layer.

The derived early secret dES. One particular value in
the key schedule needs additional explanation. The derived
early secret dES is passed as an input to the derivation
of the handshake secret HS. It is the result of the “early”
stage of the key schedule, which derives secrets for use dur-
ing resumption and PSK-authenticated handshakes. When
there is no PSK (i.e., during standard handshakes), dES is
hkdf.exp(hkdf.ext(0,0), Ibls, &).

B Channel Opening for TLS 1.3

This section describes our channel opening sub-circuits for
TLS 1.3 [113]. These sub-circuits are used by all of our case
studies (§6-87).

TLS 1.3 Overview. TLS 1.3 sessions involve a client, who
initiates the connection, and a server. TLS 1.3 has two sub-
protocols: a handshake protocol and a record protocol. The
handshake protocol begins with the client constructing a
“Client Hello” message CH. (This corresponds to C1 in our
simplified SimpleTLS.Handshake in Section B.) This mes-
sage usually contains a random value N, and an ephemeral
Diffie-Hellman (DH) key share g“. The client starts the hand-
shake by sending CH to the server. The server responds with
two messages: first, a “Server Hello” message SH of its own,
containing a random N, and key share g?. (In SimpleTLS,
the corresponding message is the DH value B sent during
SimpleTLS.S2.

The second message is a ciphertext Cgg. It contains the
server’s authentication data, namely its certificate and both a
signature ¢ and MAC SF (the “ServerFinished” value) of the
transcript. The encryption key is derived from the shared DH
secret and a hash of CH||SH. (The corresponding message
in SimpleTLS is Ceert||SF, sent during SimpleTLS.S2. See
Figure 3. Note that in TLS 1.3, SF is encrypted, while in

SimpleTLS, it is sent in the clear.)

Once the client decrypts and verifies ¢ and SF, it responds
with the encryption of a MAC CF of its own — the “ClientFin-
ished” value — which completes the handshake protocol. (For
simplicity, SimpleTLS does not send a client finished value,
but its handshake is completed with SimpleTLS.C3 in Fig-
ure 3.)

After the handshake protocol finishes, the client and server
can use the record protocol to send data back and forth. The
data is split into records and encrypted using one of two
AEAD schemes: AES-GCM or ChaCha20/Poly1305.# (Read-
ers will find some additional preliminaries on algorithms used
in TLS 1.3 in Appendix A.)

Resumption in TLS 1.3. TLS 1.3 has special handling for
handshakes that resume a previously-established session be-
tween a client and server. Such handshakes are called “re-
sumption” handshakes, and are usually more efficient than
non-resumption handshakes because they rely on the client
and server having established a shared secret value psk for
resumption during the previous session.

Resumption handshakes are different in two concrete ways
that are important below: first, CH includes an extension that
identifies psk. This extension ends with an HMAC of CH,
keyed with a psk-derived key. This HMAC is called the “PSK
binder”. Second, in a resumption handshake the client can
send encrypted data immediately after the CH, without wait-
ing for the server’s response. This data is usually called “early
data”, and resumption handshakes that include it are usually
called “O-RTT”.

B.1 Baseline Channel Opening Circuit

The baseline channel opening sub-circuit prevents the client
from equivocating by using the client’s DH secret a to
re-derive the session key CATK. The resulting sub-circuit is
depicted in pseudocode in Figure 8. Computations on solely
public data are done outside the sub-circuit by the verifier. We
omit some details of TLS 1.3’s key schedule for simplicity.
Here, as in Section 5, we depict the sub-circuit as decrypting
C to derive message M and delivering it to the next sub-circuit
in the pipeline.

This sub-circuit works the same way as our baseline sub-
circuit for SimpleTLS in Figure 4, namely by re-running in
the sub-circuit all the operations the client uses to derive the
session key K when it receives the server’s reply.

Efficiency of the baseline. This sub-circuit is expensive:
for two realistic parameter choices, the corresponding arith-
metic sub-circuit has over 7.5 million and over 10 million
multiplication gates. (See Section 8 for a more detailed break-

4Per RFC 8446, only AES-GCM support is required. ChaCha20/Poly 1305
is optional, but so widely used that support is de facto required. A third
scheme, AES-CCM, is also optional; for both performance and security
reasons, it is almost never supported [71].

BCO(CH,SH,Cgg,C;a):
K < BKV(CH,SH,Cgg,a)
M + Dec(K,C)

Return M

BKV(CH, SH,Cgg,a):

A < GetDH(CH)

B+ GetDH(SH)

DHE <« B* // EC scalar multiplication

HS <+ hkdf.ext(DHE)

SHTS <+ hkdf.exp(HS,H(CH||SH))

SHTK < hkdf.exp(SHTS, “shtkey”)

EEP < Dec(SHTK,Cgg)// decrypt to get h3 input suffix
hs < H(CH||SH||EEP)// input for CATK derivation
dHS < hkdf.exp(HS, he)

MS <+ hkdf.ext(dHS)

CATS < hkdf.exp(MS, h3)

CATK < hkdf.exp(CATS, “catkey”)

b < g* = A // EC scalar multiplication

Return b ? CATK : 1

Figure 8: Baseline channel opening circuit. All notation is defined
in Appendix A. Certain details, such as label inputs to hkdf.exp and
TLS record headers, are omitted.

down of costs.) Some of these costs are inherent and stem
from TLS 1.3’s use of cryptographic primitives like AES and
SHA-256. For example, each hkdf.ext or hkdf.exp operation
requires about 100,000 multiplication gates. However, as with
the SimpleTLS baseline SimpleBCO, the two most expensive
parts of the sub-circuit are (1) the two group operations, which
in TLS 1.3 are elliptic-curve scalar multiplications, and (2)
computing the transcript hash k3, which corresponds to k# in
Figure 3. The two elliptic-curve operations together cost 2.4
million gates, while computing A3 costs 4 million gates for a
3000-byte transcript. The sub-circuit size must also depend
on the transcript length; thus, the sub-circuit must be padded
to handle the largest possible transcript.

B.2 Optimizing the Baseline

In Section 5, we explain how the shortcut SimpleSCO re-
purposes the SF value sent in SimpleTLS as a commitment
to two intermediate values of the key schedule. Here we show
that a very similar optimization is possible for TLS 1.3.

Figure 9 shows pseudocode for this TLS 1.3 shortcut sub-
circuit SCO. For simplicity, the figure presents a simplified
variant of the optimization; we discuss the differences at the
end of this subsection. It uses two functions we have not
yet defined: f refers to the SHA-256 compression function
and PadLB the padding function used for the last block of
SHA-256.

SCO(CH,SH,C;4lf ¢ HS,LCCV, vsuff):
K + SKV(CH,SH,C4 HS,LCCV, vsuff)
M < Dec(K,C)

Return M

SKV(CH,SH,C3f, HS,LCCV, vsuff):
SHTS < hkdf.exp(HS, H(CH||SH))
SHTK < hkdf.exp(SHTS, “shtkey”)
FKg < hkdf.exp(SHTS, “fkey”)

h7 < f(LCCV,PadLB(vsuff))

SF' + HMAC(FKs,I’W)

SF + Dec(SHTK,C34il) // At most 3 AES blocks.
h3 < f(LCCV,PadLB(vsuff||SF))
dHS < hkdf.exp(HS, he)

MS « hkdf .ext(dHS)

CATS < hkdf.exp(MS, h3)

CATK < hkdf.exp(CATS, “catkey”)
Return (SF' = SF) ? CATK : L

Figure 9: The shortcut channel opening circuit. All notation is de-
fined in Appendix A. Certain details, such as label inputs to hkdf.exp
and TLS record headers, are omitted.

Its public input is the client and server Hello messages and
the ciphertext C, but only the last 32 bytes of Cgg, which we
denote C%‘};ff. These public inputs are roughly the same as for
SimpleSCO, except Csull corresponds to SF. (Note that since
the client and server Hello messages are public, and SCO only
needs their hash, the middlebox can simply compute the hash
itself instead of incurring overhead in circuit size proportional
to the lengths of the Hello messages.)

SCO’s private input is the handshake secret HS (corre-
sponding to SS in SimpleTLS). It also takes values LCCV and
vsuff which are, respectively, the last intermediate compres-
sion function output in common between the hashes /7 and
h3, and the last full block input to the compression function to
derive h7. These two values correspond to /1 in SimpleSCO.

The optimization happens in SKV, which works as follows.
It first derives SHTK, which we used in BKV to decrypt Cgg.
Here we use it to decrypt only the last 32 bytes, C%“ff, con-
taining the finished value SF. It then uses the chaining value
LCCV and vsuff to complete the derivation of /7, re-derives
SF' (SimpleSCO does the same thing), and then appends SF
to vsuff and applies f to recompute /3 (the line that derives kA
in SimpleSCO). This optimization works because the inputs
to h7 and h3 share a common prefix, to which SF commits.
Because of the way we simplified SimpleTLS, there is not
a direct correspondence to how SimpleSCO works, but the
value h; passed as a witness to SimpleSCO is playing the part
both of /7 and LCCV here. Likewise, &3 is equivalent to kh.

With HS and h3, SKV re-derives CATK. It then ensures
that SF obtained from the ciphertext is the same as the re-

ECO(CH,Cgp ; psk):
K < EKV(CH, psk)
M <+ Dec(K,Cgp)
Return M

EKV(CH, psk):

ES < hkdf.ext(psk)

BK < hkdf.exp(ES,“resbinder”)
Sfkp < hkdf.exp(BK,“fkey”)
CHyg,PSKExt,BD < CH

hs < H(CHNEHPSKEXt)

BD' + HMAC(fkg, hs)

hi < H(CHyE)

ETS < hkdf.exp(ES, hy)

EATK < hkdf.exp(ETS, “tkey”)
Return (BD' = BD) ? EATK : L

Figure 10: Channel opening circuit for early data sent in a 0-RTT re-
sumption handshake. All notation is defined in Appendix A. Certain
details, such as label inputs to hkdf.exp and TLS record headers, are
omitted.

computed one SF’ before returning CATK. This corresponds
to the last three lines of SimpleSCO.

This description of SCO made a few simplifications. First,
we assumed (len(EE) —36) mod 64 < 48, which means both
h7 and h3 require only one more call to f. If this is not the
case, the sub-circuit may need to do two compression function
calls to compute i3 and possibly /7. Second, we give vsuff
as a witness to the sub-circuit, but in our implementation and
analysis of SCO, we recompute vsuff by decrypting a few ad-
ditional blocks of Cgg in the sub-circuit. Our security analysis
suggests recomputing vsuff is not strictly necessary, but its
concrete cost is fairly low and it may improve the concrete
security of SCO somewhat. Appendix C further discusses this
point.

B.3 Opening Early Data

Next, we describe our channel opening circuit for data sent
with the O-RTT resumption feature of TLS 1.3. The pseu-
docode is in Figure 10. The circuit takes as public input CH
and the client’s early data ciphertext Cgp, and as private input
the PSK psk. The main idea is to use the PSK binder as a
commitment to psk, analogous to the Finished value SF in
SCO and SimpleSCO.

The key consistency procedure EKV computes the relevant
parts of the resumption key schedule, such as the binder key
Jkp. Note that the two context hashes /; and A5 are computed
on different prefixes of CH: CHyp is everything except for
the final extension which identifies the PSK and contains the
binder value; PSKExt is the beginning of the PSK extension.

This sub-circuit is actually the closest to SimpleSCO: like
SimpleTLS, the binder value for early data in TLS 1.3 is sent
in the clear, and commits to psk.

This method of channel opening leads to the smallest cir-
cuit, but has some drawbacks: because it is only for resump-
tion handshakes, it requires the client and server to have previ-
ously set up a session with a normal handshake. Another draw-
back is that it requires the server to accept early data. Early
data support is optional in TLS 1.3 because early ciphertexts
are susceptible to replay attacks. Nevertheless, some large
web hosting providers (e.g. Cloudflare) support it in cases
where replay attacks are not a threat, such as GET requests in
HTTP.

B.4 Security and Discussion

Appendix C contains a provable-security analysis of the se-
curity of BCO and SCO, showing that both prevent the client
from equivocating about M or K during an interaction with
an honest server. We do not give a full analysis of ECO; how-
ever, in Appendix C we explain why it follows easily from
the analysis of SCO.

Amortizing channel opening. In Section 5, we explain
that for long-lived SimpleTLS connections, it makes sense
to check consistency between the key K and the handshake
only once, when the connection is set up, then re-use this
work for all subsequent packets. We sketched an approach to
doing this for SimpleTLS; here, we present our corresponding
“amortized” channel opening sub-circuit for TLS 1.3:

AKV(CH,SH,C8t hyey ; HS,LCCV, vsuff):
K < SKV(CH,SH,C34 HS,LCCV, vsuff)
hkey {— H(K)

Return Agey

ACO(C, Iney ;K):

M <+ Dec(K,C)
Return (fey = H(K))? M: L

The SKV in this pseudocode is the same procedure as in
Figure 9. Given that SKV outputs the correct session key K
derived by the client and server during the TLS 1.3 handshake,
if we model the hash function as a random oracle, this sub-
circuit prevents equivocation and hides the session key from
the middlebox.

After the middlebox has verified the proof, it can be con-
vinced that ey is the hash of the session key. Then, the client
can use the above ACO sub-circuit per-packet channel open-
ing. As described in Section 5, we assume the middlebox
keeps track of the sequence number for the TLS 1.3 session;
this needs to be given as input to decryption, but we have
omitted it in pseudocode for simplicity.

C Security Analyses

In this appendix, we analyze the security of our channel open-
ing circuits from Section 5. We begin with the baseline BCO.
The security experiment, TLS-BINDp;, is depicted in Fig-
ure 11. It is (implicitly) parameterized by a group G of order
p with generator g, a hash function H underlying both HMAC
and HKDF, and a block cipher E. It also uses a value dES;
this is a fixed 256-bit value resulting from running TLS 1.3’s
PSK key schedule with the all-zeros PSK.

Note that we make a few simplifications to omit de-
tails which are unimportant for us: we abstract away the
format of TLS1.3 protocol messages with the GetDH and
MakeServerHello functions; the former extracts the DH value
from a Hello message, and the latter formats a SH per the spec,
given a nonce and DH value. We also use a fixed string SC
of length s in place of the server’s Certificate and Certificat-
eVerify messages. The semantics of these messages do not
matter to us — the only thing about them that is relevant to our
analysis is that their contents are out of the client’s control.

The security experiment gives the adversarial client A4 ora-
cle access to an oracle O that takes as input an adversarially-
chosen CH and completes the server’s part of the TLS 1.3
handshake — choosing a Diffie-Hellman secret b and nonce
Ns to put in the SH, then computing the key schedule up to the
client’s application keys. The oracle stores (CH,SH,Cgg) in
a table, along with the client application keys that are output
by the key schedule for this handshake. The oracle outputs
the handshake messages SH and Cgg. (Note that we assume
the client can compute the application keys itself using the
key schedule, and do not return them from O.)

After querying O some number of times, 4 must output
a secret DH value a and one of the handshake transcripts
stored in the table T. The adversary wins if BKV returns a
key/IV pair different than the one stored in the table for this
handshake. Now we can state and prove the security theorem
for BCO.

Theorem 1 Let 4 be an adversary in game TLS-BINDg;, as
described above, making any number of queries to its oracle
O. Then

Pr| TLS-BINDZ, = 1} ~0.

Proof: The proof of this theorem is extremely simple. The
adversary’s CH contains g%, which is a perfectly binding com-
mitment to DH secret a and is checked inside BKV. Since
fixing a and the handshake fixes the client keys, the adver-
sary cannot cause BKV to produce any output other than the
keys derived in the oracle call that inserted the adversary’s
handshake (CH, SH,Cgg) into the table.

Note that in our security experiment, the client has no con-
trol over the randomness the server uses to generate its DH

TLS-BIND7; :

a,CH,SH,Cgg <= 4°

If T[(CH,SH,Cgg)] = L then Return 0
(CATK, CATN) + T[(CH,SH,Cgg)]
(CATK',CATN') + BKV(CH, SH,Cgg ; a)
Return (CATK, CATN) # (CATK', CATN")

CATKeyGen(HS,CH,SH,CgE):

hy < H(CH||SH)

SHTS + hkdf.exp(HS, Ibls, 1)
(SHTK,SHTN)) <+ Derive TK(SHTS)

EEP + GCM-CTR[E|(SHTK, SHTN, Cg)

h3 < H(CH||SH||EEP)

dHS <+ hkdf.exp(HS,Ibls, h¢)
MS « hkdf.ext(dHS,0)

CATS <« hkdf.exp(MS, Ibly, h3)
Return Derive TK(CATS)

BKV(CH, SH,Cgz 1 a):

A < GetDH(CH)

B « GetDH(SH)

HS « hkdf.ext(dES, B)

CATK,CATN + CATKeyGen(HS,CH,SH,CgE)
Return (g* = A) ? (CATK,CATN) : L

Cgg + GCM-CTR[E|(SHTK, SHTN, EEP)
hs + H(CH||SH||EEP)

dHS + hkdf.exp(HS, Ibls, he)

MS « hkdf .ext(dHS,0)

Return (SH, Cgg)

O(CH):

A < GetDH(CH)

Ny +5{0,1}2%
b<s{l,...,p}:B«gb

SH < MakeServerHello(Ng, B)
HS + hkdf.ext(dES,A")

hy « H(CH||SH)

SHTS < hkdf.exp(HS, Ibls, hy)
(SHTK,SHTN) < Derive TK(SHTS)
FKg <+ hkdf.exp(SHTS, Iblg,€)
h7 < H(CH||SH||SC)

SF HMAC(FK&/’W)

EEP < SC||SF

CATS + hkdf.exp(MS, Ibl7, 13)
T[(CH,SH,Cgg)] < Derive TK(CATS)

Figure 11: Security experiment for binding security of the BCO protocol in Section 5. Notation is explained there and in the prose in this
appendix. The string SC is an arbitrary fixed string. DeriveTK is defined in Appendix A.

value and nonce. In fact, Theorem 1 holds even if the client
can control the server’s randomness, since the pair of DH val-
ues (B,A) is a binding commitment to the shared DH secret.

C.1 Analyzing SCO

Next we analyze the security of the optimized SCO circuit
discussed in Section 5. Note that this appendix presents a
slightly different variant of the protocol: SKV gets Cgg as
input instead of just a suffix; importantly, it also does not take
vsuff as an input, instead re-computing this from Cgg. The
slight simplification in Section 5 makes the protocol easier
to explain; ultimately, our analysis will show the difference
between the two is unimportant. We define a binding security
experiment TLS-BINngC in Figure 12. It is mostly similar
to the experiment TLS-BINDp., with a few important differ-
ences.

Theorem 2 Let A be an adversary in game TLS-BINDg¢c
as described in Figure 12, where the compression func-
tion f: {0,1}" x {0,1}** — {0,1}" is an ideal compression
function and the block cipher E: {0,1}"/% x {0,1}"/* —
{0,1}"/2 is an ideal cipher. Let qo be the number of queries
A makes to its oracle O, gy be the total number of queries

made to f by A and in O, and g the total number of queries
to E made by A and in O. Then
2
Pr[TLS-BINDZ. = 1] < & | &, 44
SC = on ' on/2 on

Proof: We use a game-hopping argument to bound the adver-
sary’s success probability. We assume wlog that 4 queries
the f and E oracles on all inputs that will be used in SKV to
derive keys. The first game, Gy, is depicted in Figure 12. It
is a rewriting of TLS-BINDgc, with some syntactic changes:
we have surfaced the oracle f as a parameter everywhere it is
used in H, hkdf, or HMAC. We also changed how the hashes
h7 and h3 are computed; rather than computing them with two
calls to H, we instead explicitly compute the iteration of f
on their common 64-byte block prefix, resulting in a chaining
variable LCCV. This is the last chaining value in common be-
tween H[f](CH||SH||SC) and H[f](CH||SH||SC||SF). With
this, we then compute both /7 and /3 by padding and hashing
the respective suffixes of their inputs. Finally, we introduce
another table, W (for “witnesses’), which keeps track of the
HS and chaining value LCCV derived in O.

TLS-BINDgL:

HS,LCCV,CH,SH,Cgg, <5 A°

If T[(CH,SH,Cgg)] = L then Return 0

(CATK, CATN) + T[(CH,SH,Cgg)]
(CATK',CATN') + SKV(CH, SH,Cgg ; HS,LCCV)
Return (CATK, CATN) # (CATK', CATN')

SKV(CH, SH,Cgg ; HS,LCCV):

hy « H(CH||SH)

SHTS < hkdf.exp(HS, Ibls, hy)

(SHTK,SHTN) < Derive TK(SHTS)

FKg <+ hkdf.exp(SHTS, Iblg,€)

EEE — Ien(CEE)

L7ty < len(CH||SH) + (¢gg — 32) // length of k7 input

Ly < L7, mod 64 // length of suffix of EEP in last f call
SF GCM—CTR[E} (SHTK,SHTN,CEE,KEE — 3]>€EE)
suff «— GCM-CTRIE|(SHTK,SHTN,Cgg,lgg — 31 — {1, g — 31)
// suff is the suffix of EEP in last f call

h7 < H[f](LCCV,PadLB(suff))

h3 < H[f](LCCV, PadLB(suff||SF))

SF' HMAC(FK_S*,/’W)

dHS < hkdf.exp(HS, Ibls, he)

MS « hkdf .ext(dHS, 0)

CATS + hkdf.exp(MS, Ibl7, h3)

CATK, CATN < Derive TK(CATS)

Return (SF = SF') ? (CATK,CATN) : L

O(CH):

A < GetDH(CH)

Ng +5{0,1}2%
b<s{l,...,p}:B+gb

SH < MakeServerHello(Ng, B)

HS < hkdf.ext(dES,A")

hy < H(CH||SH)

SHTS < hkdf.exp(HS, Ibls, hy)
(SHTK,SHTN) «+ Derive TK(SHTS)
FKg <+ hkdf.exp(SHTS, Iblg,€)

h7 < H(CH||SH||SC)

SF + HMAC(FKg, hy)

EEP + SC||SF

Cgg + GCM-CTRIE|(SHTK, SHTN, EEP)
hs < H(CH||SH||EEP)

dHS + hkdf.exp(HS, Ibls, he)

MS + hkdf.ext(dHS,0)

CATS « hkdf.exp(MsS, Ibly, h3)
T[(CH,SH,Cgg)] < DeriveTK(CATS)
Return (SH, CgE)

The second game, G, is the same as Gy except collisions
in the output of f (for distinct inputs) are disallowed. By a
standard argument (q.v. [7]) the difference in the adversary’s
probability of success in Gy and G is

2
’Pr[Gfél}—Pr[Gf‘él”ﬁ%.

Game G, is the same as G, except all wins where HSqy =
HS o are disallowed. The only winning outputs possible in G
that are impossible in G, are those where HS,,; = HS(but
LCCVqyt # LCCV . However, in G these wins are already
impossible: since collisions in f are disallowed, LCCVyy #
LCCV implies the /7 obtained when running SKV on the
adversary’s output must be different than the one obtained in
the oracle call that inserted (CH, SH, Cgg) into the table. This
implies the value SF’ must be different than SF as well. (Note
that since SF is computed by decrypting Cgg, its value is the
same in SKV and the corresponding O call.) Thus,

‘Pr[G?ﬁl}fPr{Gfﬁlﬂzo.

Figure 12: Security experiment for binding security of SCO in Section 5. The string SC is an arbitrary fixed string. Derive TK is defined in
Appendix A.

In G, the adversary cannot win unless HSoy 7 HSo. To finish
the proof, we only need to upper-bound the probability of such
wins. First, we transition to a game Gs3, which is identical
to G, except the ideal cipher E is replaced with a (keyed)
random function on the same domain and range. We apply
a standard bound on the difference in probability between a
random permutation and a random function to get that

2
‘Pr[Gfl:n] —Pr[G?:HH:;fz.

In G3, HSou # HSo and collisions in the output of f are
disallowed. These two facts imply that in SKV, the handshake
traffic key and nonce SHTK and SHTN used to decrypt the
last 32 bytes of Cgg to SF must be different than the ones that
were used in the oracle call that inserted (CH, SH, Cgg) into
the table. This is because the inputs to the first hkdf[f].exp
call must be different in SKV and that oracle call; since f’s
output cannot collide for distinct inputs, the handshake traffic

Giﬂz

HSout, LCCV oy, CH, SH, Cgpg < A9 £

If T[(CH,SH,Cgg)] = L then Return 0

(CATK o, CATN,) < T|(CH, SH,Cgg)|

HS0,LCCV o < W((CH, SH, Cg)]

(CATKout, CATNoyt) < SKV(CH,SH,CgEg ; HSout, LCCVoyt)
Return (CATK o, CATN9) # (CATKout, CATNoyt)

SKV(CH,SH,Cgg ; HS,LCCV):

s < HIf)(CHI|SH)

SHTS < hkdf[f].exp(HS, Ibls, i)

SHTK « hkdf[f].exp(SHTS, Iblyey, he, 16)

SHTN < hkdf[f].exp(SHTS, Iblyy, he, 12)

FKg < hkdf[f].exp(SHTS, Iblg,€)

gEE — Ien(CEE)

£h7tr — Ien(CH\ |SH) + ([EE - 32)

élb — E;ﬂrr mod 64

SF + GCM—CTR[E] (SHTK,SHTN,Cgg,gg — 31,0EE)

suff «— GCM-CTR(E]|(SHTK,SHTN,Cgg,leg — 31 — {1, g — 31)

hy < H[f](LCCV, PadLB(suff))

hy < H[f](LCCV, PadLB(suff||SF))

SF' HMAC[f}(FKst)

dHS + hkdf[f].exp(HS, Ibls, he)

MS « hkdf[f].ext(dHS,0)

CATS + hkdf[f].exp(MS, Ibl7, h3)
CATK - hkdf{[f].exp(CATS, Ibliey, he, 16)
CATN ¢ hkdf[f].exp(CATS, Iblyy. /e, 12)
Return (SF = SF') ? (CATK = CATN) : L

O(CH):
A < GetDH(CH)
Ng <s{0,1}2%
b«s{l,...,p};B« g’
SH <+ MakeServerHello(Ns, B)
HS + hkdf[f].ext(dES,A?)
ha + HIf)(CHI|SH)
SHTS + hkdf[f].exp(HS, Ibls, 1)
SHTK hkdf[f].exp(SHTS, Ibliey, he, 16)
SHTN « hkdf[f].exp(SHTS, Iblyy, he, 12)
FKg < hkdf[f].exp(SHTS, Iblg,€)
try7 < CH||SH||SC
Lp < len(try7) mod 64
fbs < (len(tryy) — £1p,) /64 // #full 64-byte blocks in try
suff «— try7[fbs*64 : len(try;)] d 1CVp,
For i<« 1to fbs:

d<+ fd,trp7[(i—1) %64 :ix64])
LCCV «+d
hy < H[f](LCCV, PadLB(suff))
SF HMAC[f](FKs,l’W)
hy < H[f)(LCCV, PadLB(suff||SF))
EEP « SC||SF
Cgg GCM-CTR[E|(SHTK,SHTN, EEP)
dHS + hkdf[f].exp(HS, Ibl3, he)
MS « hkdf[f].ext(dHS,0)
CATS < hkdf[f].exp(MS, Ibly, h3)
CATK + hkdf[f].exp(CATS, Iblyey, he, 16)
CATN + hkdf[f].exp(CATS, Iblry, /e, 12)
T[(CH,SH,Cgg)] « (CATK, CATN)
W|[(CH,SH,Cgg)] + (HS,LCCV)
Return (SH,Cgk)

Figure 13: Game Gy of the proof of Theorem 2.

keys must be different.

In Gs, each call to E on distinct inputs outputs a uni-
formly random string. This implies the pad derived in
GCM-CTR[E] (SHTK, SHTN, CEE; éEE — 31,555) is also uni-
formly random, and the SF output is as well. For the adversary
to win, this random SF value must have been previously out-
put by some call to f — since the derived SF’ is output by f,
the check SF = SF’ can’t be true unless SF was output by f.
Since there are at most gy such outputs, the probability of any
SF hitting one is g/2". By a union bound over the g ideal
cipher queries made by 4, we get that

pr[Gf 1] <L

Applying the triangle inequality and summing the right-hand
sides of each bound completes the proof. |

This analysis of SCO in Section 5 favored simplicity over
tightness; as a result, there are several ways it could be im-
proved. One is the step which swaps block cipher outputs
for random strings. This incurs a birthday-bound loss in the
output size of the block cipher and prevents us from proving
more than 64 bits of security when the block cipher is instan-
tiated with AES. This level of security is generally considered
too low for practical applications; however, we strongly sus-
pect this loss in tightness is not inherent, and a more complex
analysis could remove this term from the bound. Using the
ChaCha20 function for encryption instead of AES would al-
low this term to be easily removed from the bound, provided
the ChaCha20 function can be suitably modeled as an ideal
random function.

Also significant is that our proof ignores one constraint
on the adversary’s winning probability. Namely, in the final
upper bound on the win probability in Gz, we said that SF’
can hit any f output, but this is not exactly true: the value
SF’' depends both on the finished key FKs and h7, and 77
depends on the string suff decrypted from Cgr. We suspect
the bound could be tightened if this constraint were used in
the analysis. An alternate interpretation of our analysis not
needing the constraint implies that the suffix suff could be
given as witness, instead of recomputed by decrypting Cgg
in the circuit. Concretely, this would save roughly 60,000
multiplication gates by avoiding four AES computations. We
leave this and other optimizations to future work.

Finally, we chose to use an idealized model of the under-
lying symmetric primitives in this analysis. This lessens its
complexity somewhat, but limits its direct relevance to prac-
tical uses of our protocol, which would instantiate the ideal
primitives using concrete algorithms like AES and SHA-256.
A standard-model analysis would be somewhat more infor-
mative, but also more complex; we therefore leave it to future
work.

C.2 Other Results and Discussion

In this appendix, we analyzed the security of our BCO and
SCO channel opening circuits. We omit analyses of our ECO
circuit for early data, and our amortized ACO circuit. The
latter is nearly trivial — collision-resistance of the hash pre-
vents lying about the key. The former is more complex, but
is substantially similar to our SCO analysis above. (In fact,
the analysis is strictly easier, since the PSK binder is sent in
plaintext instead of encrypted, as the SF value is in the full
handshake.)

Our security experiment in this section models quite closely
the practical threat of a malicious client equivocating the
session key: we give the adversary oracle access to, essentially,
an honest server that completes as many handshakes as the
adversary wants. However, it would be useful to prove security
in a stronger model if possible: for example, one where the
adversary can influence the server implementation, or the
random values it chooses in the SH. Since these adversaries
are outside our threat model, we leave this to future work.

D Artifact Appendix

D.1 Abstract

The purpose of this artifact is to allow reproduction of the
performance results in Section 8, specifically the channel
opening microbenchmark table (Figure 6) and the full proof
generation benchmark for the case studies (Figure 7). All
runtime estimates in this abstract are for a Linux system with
an 8-core 2.2 GHz AMD EPYC 7571 CPU and 32 GB of
RAM. All of our code is available on GitHub.

After installing dependencies, which should take roughly
ten minutes, reproducing these results has two steps: (1) cir-
cuit generation and (2) proof generation. Circuit generation
takes as input a (roughly) human-readable programmatic de-
scription of our circuits written in an extension of Java, and
outputs a gate-level description of the corresponding arith-
metic circuit. This programmatic circuit description is an
intermediate representation obtained by partially compiling
the original handwritten xJsnark source code. We do not re-
quire the original xJsnark source for the artifact evaluation—
reading it requires installing a specific version of a large and
unwieldy IDE called MPS—but our GitHub repository in-
cludes instructions on viewing the xJsnark source.

Circuit generation involves heavily optimizing the circuit
description, and so is computationally quite expensive, and
will take up to twenty minutes (to generate the nine example
circuits in this artifact). The purpose of re-running the circuit
generation as part of the artifact is to allow users to reproduce
the claimed gate counts for our circuits. We provide a single
script to automatically perform all of circuit generation.

After the circuits’ descriptions have been generated, the
last step is proof generation. Proof generation takes as input

the circuit descriptions as well as sample circuit inputs (e.g.,
TLS handshake transcripts and ciphertexts), generates public
parameters, produces proofs, and verifies them. The provided
proof generation script outputs information about the time
taken to generate and verify proofs, as well as the sizes of the
public parameters. We estimate this will take in total up to
twenty minutes (to complete all nine circuits in the artifact).

D.2 Artifact check-list (meta-information)

e Algorithm: zkSNARKSs, Groth16

e Program: xJsnark, libsnark

e Compilation: Java, cmake

e Data set: Manually generated test data. Included.

¢ Run-time environment: Ubuntu 20.04, OpenJDK 11.0.13
o Hardware: 32 GB RAM, 8 cores

e Metrics: Circuit size, proving time, verification time, parame-
ter size

e Experiments: Bash scripts
e How much disk space required (approximately)?: 3 GB

¢ How much time is needed to prepare workflow (approxi-
mately)?: 10 min

e How much time is needed to complete experiments (ap-
proximately)?: 40 min

e Publicly available: GitHub: https://github.com/

pag-crypto/zkmbs/

e Archived (stable URL):
github.com/pag-crypto/zkmbs/tree/
096ed18772d8e63f4a03e7f4d16e118aa3923135

https://

D.3 Description
D.3.1 How to access

Our artifact’s code is publicly available on GitHub here:
https://github.com/pag-crypto/zkmbs
This appendix contains all the instructions specific to in-
stallation and reproducing the paper’s benchmarks.

D.3.2 Hardware dependencies

We recommend using a machine with 8 cores and at least 32
GB RAM.

D.3.3 Software dependencies

The only major dependency is Java. We recommend using
a GNU/Linux system and have provided installation scripts
compatible with the Ubuntu 20.04 Linux distribution.

D.4 Installation

1. Clone the git repository and change to the root directory
(time required: < 1 minute):

$ git clone https://github.com/pag-crypto/zkmbs.git
$ cd zkmbs/

2. Install jsnark (a library used by xJsnark) and its depen-
dencies by running this script inside zkmbs/ (time re-
quired: 5-10 minutes): $./install_deps_jsnark

e If you can’t use the script, follow the “jsnark instal-
lation instructions” here: https://github.com/
akosba/jsnark#prerequisites

e On some systems, this step may fail when
trying to install the dependencies of lib-
snark as specified in this file: https:
//github.com/akosba/libsnark/blob/

213547311d16644bde7ef806b77dfae25c7£734c/

.gitmodules. Please edit all URLs
in your local version of the file at
zkmbs/jsnark/libsnark/.gitmodules
(which should be cloned by this point) to use
https (and not git) and try again.

3. Enter gen/ and compile xJsnark: $ cd gen/ and

$./compile_circuits . The exact output will de-
pend on the system but it should finish without any errors.
On Ubuntu, our output looks like this:

Note: Some input files use ...
Note: Recompile with -Xlint:unchecked ...
compilation SUCCESS

D.S Experiment workflow

After installation, the structure of the main directories should
look like this:

zkmbs
+-- gen
| +-- circuits
| +-- logs
| +-- Src

+-- jsnark

The experiment scripts will be run inside gen/. The Java
source code describing the circuits is located in gen/src/.

Experiment 1 will generate full circuits from these descrip-
tions and store them in gen/circuits/. Experiment 2 will
use these circuit descriptions to generate public parameters
and measure proving and verification times using sample
input files located in gen/.

https://github.com/pag-crypto/zkmbs/
https://github.com/pag-crypto/zkmbs/
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs/tree/096ed18772d8e63f4a03e7f4d16e118aa3923135
https://github.com/pag-crypto/zkmbs
https://github.com/akosba/jsnark#prerequisites
https://github.com/akosba/jsnark#prerequisites
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules
https://github.com/akosba/libsnark/blob/213547311d16644bde7ef806b77dfae25c7f734c/.gitmodules

D.6 Evaluation and expected results

The main performance claims in our paper are stated in Fig-
ures 6 and 7. There are nine circuits involved in our experi-
ments (the five entries of Figure 6 and the four entries of Fig-
ure 7). The first experiment reproduces the “Total” columns of
the two tables. The second experiment reproduces the “Time”
and “SRS” columns while ensuring that verification time is
under 5 ms. We recommend using a system with at least 32
GB RAM as generating proofs for the largest of our circuits
(ChannelBaseline) requires a lot of heap space, and in fact
causes errors on systems with just 16 GB memory.

Note that both Figures 6 and 7 list per-subcircuit gate counts
that sum to the “Total” count. Our code only allows verify-
ing the gate counts of the entire circuit, as the per-subcircuit
counts were approximated by manually inspecting the func-
tions used to build each circuit.

Experiment 1: Reproduce Gate Counts: The aim is to
generate circuits from our descriptions and reproduce the
total gate counts of each circuit (the Total columns of the
two tables). This experiment can be repeated by running
the script . /reproduce_total_counts (time required: 20
minutes) in the gen/ directory. The script outputs into file
column_total. txt, which should look like this after the
script finishes:

ChannelBaseline 747 .9 # BCO
ChannelShortcut 111.1 # SCO
Channel®RTT 60.7 # ECO
ChannelAmortized 19.1 # ACO7AES
ChannelAmortized_ChaCha 8.7 # ACOACha
Firewall_HS 150.1 # Firewall
DNS_Amortized_ChaCha 17.6 # DoT
DNS_Amortized_doh_get 48.1 # DoH GET
ODOH_Amortized 48.1 # ODoH

Note that the “# ...” are added here to map to the abbrevia-
tions used in Figures 6 and 7. The numbers obtained should
be very close to the ones above with perhaps slight variation
coming from the performance of xJsnark’s optimizer on dif-
ferent systems. Some of the values shown here are different
than that of the “Total” columns in Figures 6 and 7 as those
were rounded for presentation.

Experiment 2: Reproduce Times and SRS: The aim is to
reproduce the structured reference string sizes (SRS columns),
proving (Time columns) and verification time (always under
5 ms) for each circuit. This experiment can be repeated by run-
ning the script ./reproduce_times_srs (time required:
20 minutes) inside the gen/ directory.

The script outputs into file
columns_ptime_srs_vtime.txt, the contents of which
after a sample execution are as follows:

ChannelBaseline 92.7 s 1179 MB 2.6 ms
ChannelShortcut 15.6 s 148 MB 1.6 ms
ChannelORTT 8.4 s 79 MB 1.6 ms
ChannelAmortized 2.9 s 26 MB 1.7 ms
ChannelAmortized_ChaCha 1.4 s 13 MB 1.6 ms
Firewall_HS 21.2 s 206 MB 1.6 ms
DNS_Amortized_ChaCha 3.1 s 29 MB 2.1 ms
DNS_Amortized_doh_get 6.8 s 72 MB 2.6 ms
ODOH_Amortized 7.9 s 76 MB 2.6 ms

Proof generation is a randomized algorithm; the results
reported in the paper are the median of five runs. We have
observed variations of up to 15% for proving time and 2 ms
for verifier time, in either direction. The script above performs
just one run per circuit.

D.7 Experiment customization

We provide two additional scripts to reproduce
the above benchmarks for an individual circuit:
./generate_circuit DNS_Amortized_ChaCha and

./prove_and_verify DNS_Amortized_ChaCha , where
“DNS_Amortized_ChaCha” can be replaced with any of the
nine circuits.

D.8 Notes

Custom Inputs. As the circuit metrics we evaluate (gate
counts, parameters sizes and running times) are indepen-
dent of the actual input used to generate the proofs, input
customization isn’t required to reproduce our results. The
experiments generate valid proofs using fixed input files
(test.txt, test_doh.txt, test_wildcard.txt) pro-
vided in the gen/ directory. These files contain sample data
extracted from a real TLS 1.3 connection and a Merkle tree
blocklist of two million entries. We provide instructions in
our GitHub repository on generating sample data from new
DNS requests and custom Merkle trees.

Editing Circuit Descriptions. Our experiments generate
circuits using the Java files in the gen/src/ directory.
These are in turn generated from xJsnark’s custom lan-
guage files that are editable only with an IDE called MPS.
To inspect and edit our circuits, we recommend installing
the MPS IDE by following the instructions here in our
GitHub repository: https://github.com/pag-crypto/
zkmbs#installation-instructions-mps.

https://github.com/pag-crypto/zkmbs#installation-instructions-mps
https://github.com/pag-crypto/zkmbs#installation-instructions-mps

	1 Introduction and Motivation
	2 Overview, Model, and (Non)-Objectives
	3 Background on Zero-Knowledge Proofs
	4 ZKMB Protocol
	5 Channel Opening for Simplified TLS 1.3
	6 HTTP Firewalling
	7 ZKMBs for Encrypted DNS
	7.1 Background: Encrypting DNS Queries
	7.2 Parse-And-Extract for DoT
	7.3 Parse-and-Extract for DoH
	7.4 Policy Check for Domain Blocklisting
	7.5 Keeping the Blocklist Private
	7.6 Oblivious DoH

	8 Empirical Evaluation
	8.1 Microbenchmarks for Channel Opening
	8.2 Full benchmarks for case studies

	9 Related Work
	10 Summary, Discussion, and Future Work
	A Additional Preliminaries
	B Channel Opening for TLS 1.3
	B.1 Baseline Channel Opening Circuit
	B.2 Optimizing the Baseline
	B.3 Opening Early Data
	B.4 Security and Discussion

	C Security Analyses
	C.1 Analyzing SCO
	C.2 Other Results and Discussion

	D Artifact Appendix
	D.1 Abstract
	D.2 Artifact check-list (meta-information)
	D.3 Description
	D.3.1 How to access
	D.3.2 Hardware dependencies
	D.3.3 Software dependencies

	D.4 Installation
	D.5 Experiment workflow
	D.6 Evaluation and expected results
	D.7 Experiment customization
	D.8 Notes

