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Abstract

Advanced Encryption Standard used with Galois Counter Mode, mode
of operation is one of the the most secure modes to use the AES. This paper
represents an overview of the AES modes focusing the AES-GCM mode and
its particularities. Moreover, after a detailed analysis of the possibility of
enhancement for the encryption and authentication phase, a method of gener-
ating custom encryption schemes based on GF(2®) irreducible polynomials
different from the standard polynomial used by the AES-GCM mode is pro-
vided. Besides the polynomial customization, the solution proposed in this
paper offers the possibility to determine, for each polynomial, the constants
that can be used in order to keep all the security properties of the algorithm.
Using this customization method, allows changing the encryption schemes
over a period of time without interfering with the process, bringing a major
improvement from the security point of view by avoiding pattern creation.
Furthermore, this paper sets the grounds for implementing authentication
enhancement using a similar method to determine the polynomials that can
be used instead of the default authentication polynomial, without changing
the algorithm strength at all.
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1 Introduction

High quality security represents an important concern in modern world, with so-
lutions being continuously developed and updated in order to satisfy the current
standards for protecting sensitive information. In this paper the Advanced Encryp-
tion Standard, competition winning, Rijndael Algorithm, selected by National
Institute of Standards and Technology (NIST)! is reviewed in addition to a general
presentation and definition of block ciphers and their modes of operation used to
encrypt and decrypt data in section 1.1, subsections 1.1.1 and 1.1.2. The vulner-
abilities identified for each mode of operation are further presented in subsection
1.1.3. In section 1.2 the Advanced Encryption Standard algorithm is presented,
the four main stages are detailed using a scheme of the flow of the algorithm.

Furthermore, in section 2, the report approaches the Galois/Counter Mode, which
is a mode of operation for the above mentioned Advanced Encryption Standard
algorithm, focusing on the main functions involved in data encryption/decryption.
The particular step of this mode of operation, represented by the authentication
process and elements included that provide an additional level of security for
the encryption/decryption operations is also studied in this paper. In section 3,
several design considerations while analyzing the improvement possibilities are
introduced and the implementation details for the proposed solution are further
described in section 4. The ideas for future work in this field of research and an
overview for the currently conducted work are finally presented in section 5.

In order to provide a clearer overview, in the following sections, the Rijndael
Algorithm will be simply referred as AES algorithm.

1.1 Block ciphers - Overview

Block ciphers represent a type of cryptographic scheme that operates on blocks
of data with previously fixed length. The initial, complete information or input
is split into groups of bits(blocks) that have the same size and will be further

thttps://www.nist.gov/
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transformed at each step of the applied algorithm. As a result, from a sequence of
plaintext provided as input, after applying a block cipher algorithm, a ciphertext
sequence is obtained. The block cipher consists of two main functions, first of
which, illustrated above, the encryption operation that applies a transformation on
the text provided in clear in order to obtain a text cryptographically secure, while
the second operation is represented by the decryption operation, which reverts the
first one.

1.1.1 Definition

Considering the following elements: a key (K) of length k, a transformation
function (E) and a plaintext P, the output of the algorithm is the result of applying
the function E, defined as invertible over [0, 1]” with n representing the size of the
plaintext provided, on the plaintext P using the key K (described as Ey(P)). The
second function, the decryption operation is the inverse of the encryption function
(D =FE ;1), obtaining the initial text in clear from the known ciphertext.

1.1.2 Modes of operation

The limitation when using a block cipher is caused by the fact that it computes only
one block of information of default size. When the plaintext size exceeds it, the
partitioning of the data must be prior handled in order to execute the encryption
step on each block. The method used to separate each block and manage their
interaction defines a mode of operation.

The simplest and, in consequence, the weakest mode of operation is represented
by ECB (Electronic Code Book) which is additionally not recommended as a stan-
dalone mode of operation when managing sensitive information.

In table 1,are presented the main modes of operation for the AES algorithm, in or-
der to provide an overview of their limitations, usability and the added complexity
to the block cipher.

Each mode of operation brings some advantages and a specific level of security,
with properties reaching from fast and easy implementation, support for parallel
computing at encryption or decryption stages, but additionally is prone to be the
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subject of different types of attack that can temper the information, breaking the

security. 2

TABLE 1: Modes of operation

Code | Mode of op

Steps

Elements

ECB
Code
Book

CBC |Cipher-
Block
Chain-
ing

CFB |Cipher
Feed-

Back

Electronic

Stepl. The plaintext is divided into fixed
size blocks (64, 128 bits, data bits +
padding).

Step2. Same key/algorithms is used for
each block

Stepl. Same as ECB stepl

Step2. Plaintext block is XORed with the
IV (initialization vector)

Step3. Next block is encrypted using the
ciphertext block resulting at step 2, that
is further XORed with the next plaintext
block.

- Each subsequent plaintext block is
firstly XORed with the previous cipher-
text block obtained before the encryption
step.

Stepl. Plaintext is divided in plaintext
blocks (no padding needed)

Step2. Similar to CBC but, the IV is
firstly encrypted.

Step3. The result is XORed with the first
plaintext block obtaining the first cipher-
text block.

Step4. The ciphertext block from the pre-
vious step is encrypted and then XORed
with the following plaintext block.

- Each subsequent plaintext block is
XORed with the result of applying en-
cryption on the previous ciphertext block.

Plaintext, ci-
phertext, key,
encryption
schema

Plaintext, ci-
phertext, key,
encryption
schema, IV

Plaintext, ci-
phertext, key,
encryption
schema, IV

2https://www.highgo.ca/2019/08/08/the-difference-in-five-modes-in-the-aes-encryption-

algorithm/
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Table 1 — continued from previous page

Code

Mode of op

Steps

Elements

OFB

CTR

GCM

Output
Feed-
Back

Counter

Galois/
Counter
Mode

Stepl. Plaintext is divided in plaintext
blocks (no padding needed)

Step2. IV is encrypted and the result of
encryption is XORed with the plaintext
block to obtain the ciphertext block
Step3. The result of previous encryption
is further encrypted and XORed with next
plaintext block — this step is continuously
applied for each block

Similar to OFB but the IV is replaced
or concatenated with values of a counter
(function that produces and guarantees
uniqueness of a resulted sequence for a
period of time)

Developed from the Counter mode of op-
eration - with similar steps. Step 1. The
hash subkey (H) is computed, alongside a
derivation of a pre-counter element from
the initialization vector. Step 2. Using
the pre-counter from previous step and
the plaintext, a function called GCTR 1is
applied returning a ciphertext. Step3.
The ciphertext and additional authenti-
cated data are provided as input to a func-
tion named GHASH, followed by the ap-
plication of the GCTR function on the
result, obtaining the necessary authenti-
cation tag

ci-
key,

Plaintext,
phertext,
encryption
schema, IV

ci-
key,

Plaintext,
phertext,
encryption
schema, IV +
Counter

ci-
key,

Plaintext,
phertext,
encryption
schema, v
+  Additional
authenticated
data, au-
thentication
tag

1.1.3 Vulnerabilities

In order to understand the choice of the GCM mode of operation for this paper, the
above mentioned modes of operation are presented considering their vulnerabilities
and their main causes. Each one of them is susceptible to several kind of attacks
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of different difficulty and approach[2]:

* ECB - the encryption step is considered deterministic, meaning that same
blocks in clear will result in same ciphertext blocks, that providing a recog-
nisable pattern under any given key. Additionally, the encrypted data can be
altered in term of arrangement without further warning. This is the simplest
mode of operation but it is not commonly used due to its limitations and
vulnerabilities when there are more than one plaintext blocks to be computed.

* CBC - the vulnerability of this mode is mainly represented by the random-
ness of the initialization vector. It is susceptible to attacks when the IV is
not only a not repeated number but, also, a random number. When these
conditions are not verified, attacks such as translation from specific plain-
texts (or ciphertexts) to expected ciphertexts (or plaintexts) are possible.

* CFB - Similar to the previous detailed mode of operation, if the initialization
vector is not random there are no guarantees of safety for the same attacks.
Furthermore, for the translation of a specific ciphertext in an expected plain-
text type of attack there are no guarantees at all.

* OFB - For this mode of operation, similar vulnerabilities are present. Fur-
thermore, the output feedback mode, which due to its operations transforms
the encryption scheme in a stream-like encryption flow, is susceptible to
attacks that imply in-place modifications of bits in the encrypted sequence.

* CTR - the counter mode of operation provide better security than the previous
detailed modes. The vulnerabilities are caused by the pseudo-randomness
of the initial value on which the counter is applied, value that is required
to be unique and random at the same time. There is a risk of collisions on
the counter values after a certain period of time (as illustrated before, the
counter function provides guarantees on the uniqueness of the values return
for a period of time, if the number of blocks is large enough this period can
be exceeded)
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* GCM - due to the fact that this mode of operation originates in the CTR
(counter) mode of operation, the risks of collision is inherited. Even more,
this type of collisions that happen between two messages may expose an
important parameter, the authentication key used (H). Revealing the key leads
to the complete loss of security in terms of authentication. Additionally,
another vulnerability is caused in the case in which the authentication tag
size differs keeping identical key. Consequently, a vulnerability is caused
by the fact that the length of the authentication tag direclty influence the
level of authentication security (for x-bit tag and 2¥ blocks the number of
authentication security bits is represented by their difference x - y) [5]

1.2 Advanced Encryption Standard

Advanced Encryption Standard represents the substitute for Data Encryption Stan-
dard (DES) previously used, being a more mathematically efficient specification of
a symmetric block cipher, a particular case or subset of Rijndael cipher algorithm
that can manage several key lengths and block sizes and is considered suitable for
protecting classified, sensitive information. Depending on the confidentiality level
of the data, the 128-bit key length, 196 and, respectively, 256-bit key length can
be chosen providing reliable resistance to attacks, especially brute-force attacks
that would require a considerable (and in particular cases unreachable) number of
resources. Consequently, the main concern remains the encryption key confiden-
tiality and security3.

1.2.1 Stages of the algorithm

The AES algorithm is based on four main functions that will be further described.
Additionally, depending on the key size, 10, 12 or 14 transformation rounds are
applied in each case on the initial plaintext. Moreover, for each round, a round key
is obtained by applying AES key scheduling algorithm that expands starting from
the initial encryption key to a series of new keys.

The algorithm processes the information in a byte-oriented approach, each block
of data being partitioned and represented as an array of bytes described as the

3https://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard
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state. The operations that convert the plaintext into the final cryptographic result,
the ciphertext, are [3]:

* AddRoundKey - the function returns the result of a bitwise XOR operation
between the state and the round key (both represented as same size matrices)

* SubBytes - the function performs a byte substitution that assures the non-
linearity in applying the cipher. Each byte from the initial state (matrix)
is substituted using a substitution box (or S-box) resulted as a combination
between a multiplicative inverse over GF(28) and affine transformation.

¢ ShiftRows — the function shifts to the left the rows of the state matrix, each
by an offset of zero, one, two and, respectively three bytes for each consec-
utive row.

* MixColumns — the function provides the diffusion in the cipher and repre-
sents for each column of four elements the multiplication in the Galois Field
of two four-term polynomials.

The schematic stages of the algorithm are presented in figure 1.
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FIGURE 1: Algorithm stages

In the following sections, a new mode of operation is introduced, AES-GCM,
that combines the encryption/decryption process previously described with an
additional step, authentication.

2 AES-GCM

The Galois/Counter Mode represents one of the modes of operation that can be
applied for the AES algorithm. Generally, it applies for block ciphers that use
symmetric-key transformations with a block size predefined to 128 bits, making
it suitable for the studied algorithm. This mode is widely used due to the fact
that it improves the overall performance in the encryption/decryption process with
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reduced number of necessary resources.

This mode of operation originates in one of the previous detailed modes of oper-
ation in table 1, Counter mode of operation. Using an alternative version of the
Counter mode and a particular incrementing function which results in uniqueness
for the obtained sequences during a large period of time, the GCM mode provides
guarantees about the confidentiality of the information to be encrypted. An addi-
tional security layer is represented by the authentication step.

The Galois/Counter Mode provides authenticated encryption/decryption with as-
sociated data using a particular hash function defined over a binary Galois field.
Consequently, the algorithm using this type of computation and mode of opera-
tion will act as a standard encryption and authentication algorithm for sensitive
information (considered in this case the message to be encrypted) and, at the same
time, will provide authentication for additional, associated data without apply-
ing encryption on it. The most common use is represented by the encryption of
a packet, which is authenticated, but only the inside information, skipping the
header, is encrypted [7].

One of the main advantages of using the Galois/Counter Mode is represented
by the fact that is can detect both data alteration and modifications as a result of
accidental phenomena and, respectively, deliberate and malicious, unauthorized
access[4]. In the next paragraphs, a detailed description of the functions involved
in the construction of the AES-GCM algorithm is provided in order to highlight the
standard process and understand the main components that are further susceptible
to improvements.

2.1 Authenticated Encryption/ Authenticated Decryption

Galois/Counter Mode has two main functions, authenticated encryption and au-
thenticated decryption. For each one of them there are several input parameters
needed and output elements provided listed in table 2 [7].

As illustrated in table 2, the authenticated encryption function focuses on
encrypting the sensitive, confidential information and computing the correlated

10
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Input Output
Authentication
Encryption * Plaintext P * Ciphertext C -
* Secret key K - customized same length as P
for chosen block cipher * Authentication tag
* Initialization vector IV - T - with length t <
arbitrary length, unique 128
value within the context
* Additional authenticated
data A
Authenticated
Decryption * Secret key K * Plaintext P or er-
* Initialization vector IV ror code (FAIL)
* Additional authenticated - FAIL indicates
data A that the input is
* Ciphertext C not authentic)
* Authentication tag T

TABLE 2: Input/Output elements for GCM functions

authentication tag based on both the encrypted data and the additional data. On

reverse, the authenticated decryption function decrypts the ciphertext only after
the authenticity (authentication tag provided) is verified.

In the Recommendation for BlockCipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC provided by NIST the scheme inserted below (figure 2)
illustrates the flow of the algorithm and the main operations applied in order to
obtain the encrypted result [4].

11
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FIGURE 2: Authenticated Encryption function for AES-GCM [4]

* Incremeting function : the function is defined as:
incg(X) = MSBien(x)-s(X)||[int(LSBs(X)) + 1mod?2*]

For the above scheme, the function increments the right-most 32 (s) bits of
the given bit string (defined as X in this case, a given integer represented in
binary encoding, modulo 2*)

* GHASH function - using this function and the encryption step the au-
thentication tag is constructed. The input for it includes the bit string X
and the hash subkey defined as block H. The hash key H is obtained using
"zero block", meaning H = E; (0!2%) ( string of zero bits encrypted with the
standard block cipher used). Briefly, this function computes :

X, Hy @Xo Hpy 1 ®...0 X, - H

where X1, X, ...X), is the sequence of blocks that form X (X = X1 || Xz]]...|| Xin
)

12
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* GCTR - this function applies for a given block cipher with key K, to the bit
string X of arbitrary length with an initial counter block (ICB). The input
string is firstly partitioned and the initial counter block is consecutively
transformed in subsequent counter blocks using the incrementing function
illustrated before,the sequence starting with the initial block itself(/CB,
CBj, CB,...CB;). Applying the chosen block cipher on the counter blocks
and the xor operation with the blocks from the bit string input(X;, X», ...
X,,) partial results are computed that will lead to the final output through
concatenation[4].

2.2 Authenticated Encryption/Decryption Algorithms

Using the previous operations, the flow of the authenticated encryption and au-
thenticated decryption algorithms is constructed. These algorithms can be applied
using various block ciphers, they are not AES-bound, but are used with this specific
cipher for this paper. The prerequisites of the authenticated encryption algorithm
include the choice of the block cipher, the key and the supported lengths for the
input and output. Additionally, an initialization vector, the plaintext and the au-
thenticated additional data is provided.

As shown in figure 2 the algorithm starts with the hash subkey (H) computa-
tion (illustrated above in the definition of the GHASH function). Secondly, a
pre-counter block defined as Jj is computed using the initialization vector (nonce)
with the following structure: Jo = IV||03!||1 when the size of the IV is 96 bits or
applying GHASH function on IV padded with a custom number of "0" to obtain a
result divisible with 128 and concatenated with 64 additional "0", and the length
of the initialization vector represented in 64-bit format.

Once the pre-counter is calculated, it is used as input for the incrementing function.
The result (initial counter block) and the plaintext are the parameters on which the

GCTR function is called in order to obtain the ciphertext for this stage.

For the authentication-specific part, the remained components are included: the
additional authenticated data and the ciphertext above obtained are each padded

13
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if necessary with zeros and, alongside the representation in 64-bit format of their
lengths, they are fed as input to the GHASHp function and then encrypted using
the GCTR function using Jy. The output is processes using MSB function (trun-
cates at the supported, initially defined length for the tag) resulting in the final
form of the authentication tag.

The authenticated decryption algorithm follows similar reverse steps. The ver-
ification of the authentication tag may or may not precede the translation of the
ciphertext back in plaintext, this step being the one that establishes if the data is
tampered (signaling this with a fail message) or the result of the decryption is the
expected, initial plaintext [4].

3 Improvement analysis

3.1 Design choices and considerations

Several improvements that have been identified during the analysis phase of AES-
GCM algorithm will be presented in this section. The main areas that, from our
perspective, leaves room for improvement without altering any of the algorithm
steps but in the same time maintaining at least the same security level and same
application flow, are both encryption and authentication stages.

3.1.1 Authentication process

During the authentication process, there are particular elements that can be changed
in order to discourage attacks and guarantee the information protection. First of
all, the authentication tag that results from applying the Galois/Counter Mode of
operation has a great impact from this point of view.

It is considered that the strength of the entire authentication process is defined
by the length of this particular authentication tag that is considered to be one of the
most important security parameters of the algorithm. Default sizes for the length
of this tag range from 128 to 96 bits, but there are cases when 64-bit or even 32-bit
tags are used. The length of the authentication tag correlated with the message
size are directly responsible for the number of calls on each of the encryption and

14



M. Chirita, A-M. Stroie, A-D. Safta, E.Simion January 2021

decryption subroutines; shorter tags leading to weakness from the security point
of view and are not recommended to be used.Moreover due to the advance in tech-
nology, the now standard length for the authentication tag can become insufficient
for the future computation power available, thus motivating the need for stronger
security parameters.

Another characteristic of the authentication process is represented by the poly-
nomial that defines the Galois field applied at this stage. The default polynomial
is x12 + x7 + x2 + x + 1. The choice of GF(2!?%) is motivated by the definition
for multiplication operation, defined as an operation on bit vectors, used during
authentication. The properties of this field and the simplification provided (for
example, translating addition of polynomials to bitwise xor operations) are further
described in this paper[6], but other polynomials can be chosen, each of them
having a certain impact on the application performance. However, for this paper,
the focus is on the encryption stage, on the particularities and elements involved,
prone to an advanced analysis and customization.

3.1.2 Encryption process

The objective of this section is to describe one of the elements that ensure a high
level of security for the AES algorithm. As previously illustrated in this paper,
there are several steps during encryption/decryption, each of them having specific
functions attached. One of the core attached functions is SubBytes, a function that
performs byte substitution in order to ensure non-linearity in applying the cipher.
Every byte from the initial state is substituted using a substitution box.

The strength of block ciphers comes from this substitution box, usually known
as S-Box, a 16X16 matrix where each row or column values are in [0, 15] ([0, F]
- hexadecismal) range. Each byte of S-Box is mapped to its multiplicative inverse
in GF(2%), 00 being mapped into itself. After this step, the affine transformation
over GF(2) is computed. The general ecuation for generating and S-Box matrix is:

Y =Ax & cmod M

where A represents an affine transformation, x is the multiplicative inverse vector
of the state matrix, c is the affine hexadecimal constant 63 and M is the default irre-

15



M. Chirita, A-M. Stroie, A-D. Safta, E.Simion January 2021

ducible polynomial used by AES, x3 + x* + x>

+x + 1. More information regarding
S-Box generation and its properties can be found in the "Analysis of development

of dynamic S-Box Generation" article. [1]

Taking into consideration all the above one can say that the improvements that
can be brought to the encryption process of the AES-GCM algorithm, reside in
the ability of changing the polynomial used and so generating a different S-Box
for encrypting the plain text bytes.

4 Implementation

4.1 Overview

As stated above, the main purpose of this paper is to analyze different methods
that can be used to enhance the AES-GCM. The principal idea proposed by us is
replacing the default values used by the algorithm with custom values, in order to
introduce a higher degree of randomness and so enhancing the algorithm security.
In the previous section, two areas were identified, one is the encryption process
and the other is the authentication process. However, in this paper only the cus-
tomization of the encryption process will be presented.

Since the polynomial used for encrypting the plain text is placed in GF(23) there
is a finite number of polynomials that are irreducible and can be used to generate
S-Boxes. All these polynomials can be found below represented as hexadecimal
numbers.

11B,11D,12B,12D,139,13F, 14D, 15F, 163,165,169, 171, 177,17B, 187,

18B,18D,19F,1A3,1A9,1B1,1BD,1C3,1CF,1D7,1DD,1E7,1F3,1F5,1F9

In addition to this, the algorithm uses an additive constant in order to ensure that
the S-Box has no "fixed points" (S-Box[a]=a) and no “opposite fixed points™ (S-
Box[a]=a~! - bitwise). These constants are specific to each of the polynomials
mentioned above and have values that range from 00 to F'F'.

16
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4.2 Detailed description

The proposal has been implemented using Python 3.6.9, the main reason being
that this programming language offered us enough flexibility regarding the Galois
Field specific operations (GF(2)) (such as multiplication, addition, division etc) in
order to implement more freely and more naturally all the steps needed in order
to generate S-boxes and Inverse S-boxes, that would later be used by the AES-
GCM algorithm. Adjacent Python modules* have been employed which already
offer support for calculating the inverse of a polynomial given another irreducible
polynomial, by employing the Extended Euclidean Algorithm over GF(2). These
modules are stated by the creator to be 10 times faster when it comes to the com-
putation of the inverse than the official scipy default counterpart.

In this implementation, every polynomial used is represented as a numpy array,
where the rightmost element represents the leading coefficient of the polynomial
(rule imposed in order to use the adjacent Python modules needed to compute the
modular inverses). In the following rows, a detailed description of each of the
functions used inside the implementation of our proposal will be offered.

- hex_to_binary_array(input) is the function that takes a int value offered in
a hexadecimal representation (for example instead of the value 15 the function
should be fed OxF) and returns the representation of the said value as an numpy
array. This function is mainly used in order to convert values encoding polynomi-
als to actual vectorial representations of the said polynomials.

- binary_array_to_hex(input) is the counterpart of the earlier mentioned func-
tion which does the reverse: it takes a numpy binary array value and converts it to
a hexadecimal representation of the said value. One thing to be noted is that the
representation that gets returned is of type string, in order to be on par with the
representation of the int fed in it’s counterpart.

4https://github.com/popcornell/pyGF2/tree/master/pyGF2

17
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- vector_xor(a, b) is the function that as the name implies, takes two numpy
binary vectors and applies the XOR operation between them (each element found
in vector a on position i gets XORed with the element found in vector b on position

1).

- compute_inverse(to_invert, modulus) if the function that receives as param-
eters the value to be inverted (which should be fed as an int in hexadecimal
representation) and the encoding of the irreducible polynomial in GF(2%) which
should also be an int in hexadecimal representation. The function then returns
the numpy binary vector of the modular inverse of to_invert, as well as a human
readable hexadecimal representation of the said modular inverse.

- multiply_rows(rowl, row2) is the function that takes two numpy binary vec-
tors and applies the multiplication operation on them. row! represents the actual
row of the circulant matrix used in order to compute the final value residing in an
S-box and row?2 represents the numpy binary vector representation of the modular
inverse. As such the multiplication rules are the ones present when it comes to
multiplying a row with a column when referring to matrix operations. The only
difference here is that every element of the two entities being multiplied are binary
in nature, as such bit wise operations are used for addition and multiplication.

- sbox_entrance(to_invert, modulus, constant) is the function that takes a value
to be inverted (which should be fed as an int in hexadecimal representation), an
encoding of the irreducible polynomial in GF(2®) which should also be an int in
hexadecimal representation as well as a constant used in order to compute the
S-box entry (which should also be fed as an int in hexadecimal representation).
The function then amasses the other functions described earlier in this article and
returns a hexadecimal representation of an element of the S-box, after computing
the modular inverse of the index in the S-box (between 0x00 and OxFF), multiply-
ing said modular inverse with the circulant matrix presented below (in figure 3)
and in the end adding the constant represented in numpy binary vector form.

18
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1 0 001 1 11
1 1 00 01 11
11 1 0 0011
11 1 1 0001
1 1 1 1 1 0 0 0
01 1 11 1 00
00 1 1 1 1 10
00 01 1111

FiGURE 3: Circulant matrix employed

- sbox_generator(modulus) is the function that takes an encoding of the irre-
ducible polynomial in GF(2®) which should be an int in hexadecimal representation,
and for each constant starting with 0x00 and ending with OXFF computes pairs
of S-boxes and Inverse S-boxes. The final result is a list of those pairs for which
the constant used enforces the rule stated in the Overview subsection, stating that
there should be no "fixed-points" in the resulting S-box and also no "opposite
fixed-points" in the resulting Inverse S-box.

- create_header_file(sboxes, modulus, f) is the function that takes a list with the
pairs of S-boxes and Inverse S-boxes generated using the shox_generator function
presented earlier, the encoding of the irreducible polynomial in GF(2%) used to
generate the pairs as well as a reference to a file with the name "sboxes.h" where the
pairs should be written. The function then writes every S-box and Inverse S-box
pair and encloses them in a #if defined, #else if defined preprocessor directive. As
such, when testing the resulting pairs, the only aspect that must be taken care of
is defining the following name: SBOX_modulus_constant, definition name which
can also be found throughout the whole header file.
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4.3 Evaluation

In order to evaluate and test the resulting S-box and Inverse S-box pairs, a modified
version of the AES-GCM open source implementation provided here3, was used. In
the initial version of the AES-GCM implementation used, the S-box and Inverse S-
box values were hard-coded to be 1 on 1 with the values obtained for the irreducible
polynomial 11B. Using our proposed implementation, we then generated the S-
box and Inverse S-box values for the following irreducible polynomials: 11D, 12B.
Then we replaced the S-box and Inverse S-box value with a few entries in the header
file, and tested the whole encryption - decryption process. We noted that the plain
text used for encryption was identical to the output of the decryption stage. In
Appendix A are a few examples of entries inside the header file, which can be
directly placed inside the AES-GCM implementation:

5 Conclusions and Future Work

In the previous sections, this paper introduced the idea of a more dynamic, cus-
tomizable approach for the AES-GCM algorithm that is able to add an extra layer
of security due to the fact that can change the default parameters at certain steps
and, as a result, making it less susceptible to attacks that search for similarities
between runs. We built this solution relying on the notion of increased randomness
that can directly affect the overall process, more than leaving the choice of the used
polynomials and constant parameters in encryption to the user. However, having
the adequate possible replacements, one can continuously choose to replace these
elements at a specific point in time, making it more difficult to identify parts of
matching cipher texts during multiple runs.

The project can be further developed by applying the same method and study-
ing the possibility of customization for the authentication tag related polynomials.
This way, every security feature of AES-GCM algorithm would be fully control-
lable from the outside, reducing even more the risk of pattern identification during
the encryption and authentication phases of the algorithm. In addition to this,
the actual tag length might become insufficient as the computational power of the

Shttps://github.com/openluopworld/aes_gcm
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machines is increasing continuously. This reason is providing another direction
for future project development and remains the object of future work.

To conclude, we presented the AES-GCM algorithm, detailing its implementa-
tion steps, parameters and particularities for both encryption and authentication
phases. We studied its vulnerabilities for different operation modes and provided
a solution for overcoming some of the limitations identified during this process,
that leaves an open path for future improvements in this area of interest.
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A Appendix

Modulus : 11D, Constant : 13

#if defined(SBOX_11d_13)

static uint8_t SBOX[256] = { 0x19, 0x6, 0x2c, 0x3f, 0x83, 0x28, Oxa, 0x42, Oxee,
Oxfc, 0x3b, 0x9f, 0x90, 0xb3, 0xb4, 0x25, 0x58, 0xf2, 0x51, 0xd7, 0xb2, Oxbl,
0x5a, 0x7f, 0x67, Ox1a, Oxdc, 0x96, 0x75, 0xb7, 0x7, 0x3c, 0xb9, 0x29, Oxec,
0x30, 0x3d, 0x6d, 0x7e, 0x50, Oxcc, 0xa0, 0x4d, 0x18, 0xb8, 0x4f, 0x2a, 0x87,
0x26, 0x71, 0x98, 0x40, 0x9, 0x70, Oxde, 0x95, 0x2f, Oxc4, 0xf4, 0x92, Oxac,
0x9d, 0x8b, Oxad, 0x49, 0x8a, 0xbb, 0xc3, 0x59, 0x64, 0x37, 0x65, 0xb, 0x6e,
0x23, 0x52, Oxaa, 0x60, Oxbd, 0x46, 0xf3, Oxdb, Oxc5, 0x12, 0x89, 0x2e, 0x99,
0x22, 0xc9, Ox4e, 0x88, Ox1c, 0x3a, Oxa3, 0x56, Oxcl, 0x86, 0x72, 0x97, 0xf6,
0x63, 0x2d, 0xb5, 0x45, 0x11, 0xd, 0x17, Oxa5, Oxfa, 0x36, 0x5f, 0x35, 0x2, Oxbf,
0xf7, 0x47, 0x55, 0x9a, 0x66, 0x2b, 0x79, 0x91, 0x5b, 0x5d, Oxea, Oxca, 0xf9,
0xc7, 0x31, 0x53, Ox6a, 0x73, 0x48, 0xd5, Oxce, 0x84, 0x39, 0x14, Oxa7, 0x61,
Oxe, Oxda, 0x27, 0x20, 0x10, 0x5, Oxa2, 0x7b, Oxbe, 0x0, Oxbc, Oxab, 0xc0, 0x24,
Ox1f, Ox1b, 0xf1, Oxfe, Oxc, 0x4b, 0x6¢c, O0xa8, 0xc2, 0x13, 0x77, 0x6f, 0x9c, 0x7a,
Oxeb, 0xd2, 0x82, 0x8f, Oxe3, Oxel, 0x3e, 0xd9, Oxcb, Oxdl, 0x8, Oxe4, 0x6b,
0x7d, 0x21, 0xdO, 0x32, 0x41, 0x44, 0x15, 0x4, Oxal, Oxcf, Oxc6, 0xd6, 0xc8,
0x16, 0x68, 0x5e, 0x7c, 0x54, 0xdd, 0x9e, Oxle, 0x3, 0xe9, 0xf5, 0x57, 0x8d,
Oxcd, Ox1d, 0xd3, Oxa9, Ox1, Oxa4, Oxff, Oxfd, Oxe2, Oxe8, Oxed, 0x8e, 0x34,
0x80, Oxdf, Oxf, 0x78, 0x94, Oxae, 0xf0, 0x43, 0xd4, 0x9b, 0x8c, 0x5c, 0x85,
0xb0, 0x62, 0xf8, Oxa6, 0xe5, Oxba, Oxfb, 0x93, Oxef, Oxe7, 0x74, 0x38, 0x33,
0x81, 0xb6, 0xe0, Oxdc, 0x4a, Oxaf, 0x69, 0xe6, 0x76, 0xd8 };

static uint8_t INV_SBOX][256] = { 0x95, 0xd3, 0x70, Oxca, Oxbc, 0x91, OxI,
Oxle, 0xb2, 0x34, 0x6, 0x48, 0x9e, 0x69, 0x8c, Oxde, 0x90, 0x68, 0x53, Oxa3,
0x89, Oxbb, 0xc2, 0x6a, 0x2b, 0x0, 0x19, 0x9b, 0x5b, 0xd0, 0xc9, 0x9a, 0x8f,
0xb6, 0x57, 0x4a, 0x99, 0xf, 0x30, 0x8e, 0x5, 0x21, 0x2e, 0x77, 0x2, 0x65, 0x55,
0x38, 0x23, 0x80, 0xb&, 0xf5, Oxdb, 0x6f, 0x6d, 0x46, 0xf4, 0x88, 0x5c, Oxa,
0Ox1f, 0x24, Oxae, 0x3, 0x33, 0xb9, 0x7, 0xe3, Oxba, 0x67, 0x4f, 0x73, 0x84, 0x40,
Oxfa, 0x9f, Ox1a, Ox2a, 0x59, 0x2d, 0x27, 0x12, Ox4b, 0x&81, 0xc6, 0x74, 0x5e,
Oxcd, 0x10, 0x44, 0x16, 0x7a, Oxe7, 0x7b, Oxc4, 0x6e, 0x4d, 0x8b, Oxea, 0x64,
0x45, 0x47, 0x76, 0x18, 0xc3, Oxfc, 0x82, Oxb4, 0xa0, 0x25, 0x49, Oxa5, 0x35,



0x31, 0x61, 0x83, 0xf3, Ox1c, Oxfe, Oxa4, Oxdf, 0x78, Oxa7, 0x93, 0xc5, 0xb35,
0x26, 0x17, Oxdc, 0xf6, Oxaa, 0x4, 0x87, 0xe8, 0x60, 0x2f, 0x5a, 0x54, 0x41,
0x3e, 0Oxe6, Oxce, Oxda, Oxab, Oxc, 0x79, 0x3b, 0xf0, 0xe0, 0x37, Ox1b, 0x62,
0x32, 0x56, 0x75, 0xe5, Oxa6, 0x3d, 0xc8, 0xb, 0x29, Oxbd, 0x92, 0x5d, 0xd4,
0x6b, Oxec, 0x8a, Oxal, 0xd2, Oxd4c, 0x97, 0x3c, 0x3f, Oxel, Oxfb, 0xe9, 0x15,
0x14, 0xd, Oxe, 0x66, 0xf7, Ox1d, Ox2c, 0x20, Oxee, 0x42, 0x96, Ox4e, 0x94,
0x71, 0x98, 0x5f, Oxa2, 0x43, 0x39, 0x52, Oxbf, 0x7f, Oxc1, 0x58, 0x7d, 0xbO0,
0x28, Oxcf, 0x86, Oxbe, 0xb7, Oxbl, 0xa9, Oxdl, Oxe4, 0x85, 0xcO, 0x13, OxfT,
Oxaf, 0x8d, 0x51, 0xf9, Oxc7, 0x36, Oxdd, 0xf8, Oxad, Oxd7, Oxac, Oxb3, Oxed,
Oxfd, 0xf2, 0xd8, Oxcb, 0x7c, 0xa8, 0x22, 0xd9, 0x&, 0xfl, Oxe2, 0x9c, Ox11,
0x50, 0x3a, Oxcc, 0x63, 0x72, Oxeb, 0x7e, 0x6¢, Oxef, 0x9, 0xd6, 0x9d, 0xd5 };

Modulus : 12B, Constant : 1

#if defined(SBOX_12b_1)

static uint8_t SBOX][256] = { Ox1, Oxle, Oxlc, Oxe8, Ox1d, 0x45, Oxf5, Ox11,
0x9d, Oxed, Oxbl, 0x54, Oxe9, 0xf3, 0x9, 0xc2, 0x4f, Oxbf, Oxe5, Oxa3, 0x59,
0xd0, 0x39, 0x4c, 0x75, 0x37, 0x78, 0xb9, 0x5, 0x32, 0x72, 0x87, 0xb4, 0x60,
Oxcc, 0x52, Oxel, 0xb5, 0x50, Oxef, 0x2d, 0x74, 0x7b, 0x13, 0x8f, 0x96, 0x35,
0x88, 0x3b, 0x64, Ox1la, 0x6b, 0x2f, 0x83, 0x5d, 0xb6, 0x91, Ox3a, Oxa, Oxf1,
0x2a, 0x47, 0x42, Ox4e, 0x49, 0x27, 0x23, Oxba, Oxe7, 0x3c, Oxa8, 0xdf, 0x71,
0x2b, 0xc9, 0xb, 0xa9, 0x51, Oxe4, 0x7e, 0x17, Ox6a, Oxbb, O0xdd, Oxae, 0xd8,
0x8, 0x28, 0x46, 0x93, Oxca, 0x15, 0x1b, 0x22, 0x57, 0x80, 0x&8e, 0xf4, 0xb3,
0x3d, 0x8c, Oxcf, 0xa6, 0x36, 0x16, Oxa4, 0xd2, 0x5f, Oxbd, Oxc5, 0x48, 0x92,
0Oxdb, 0x65, Oxe, 0x43, 0x84, 0xc0, 0x79, 0x90, 0x6, 0x94, 0xb0, 0x31, 0xa0,
0xf0, 0x34, 0x3e, 0x25, Oxeb, 0x12, 0x2e, 0x82, 0xe6, Oxdc, 0x4d, 0xe0, 0x77,
0x9f, 0x8d, 0xd5, Oxee, 0x6e, 0x21, Oxab, 0xfd, 0x86, Oxc1, 0xf7, 0x3f, 0x4, Oxac,
0x55, 0x6d, 0x29, 0x67, 0x61, 0x7c, Oxbe, Oxa2, 0x98, 0x4a, 0x26, Oxad, 0x5c,
Oxea, 0x6f, 0x9c, 0x44, 0xf, 0x7f, Oxe2, 0x85, Oxec, 0x7, Oxa7, 0x30, 0x70, Oxda,
Oxal, 0x76, 0x68, 0x99, 0x5e, Oxc, 0x24, 0x2, 0x62, 0xb8&, 0xd7, 0x53, 0xb2,
0xc6, 0x38, 0x69, 0xff, 0x58, 0x97, Ox1f, 0xd6, Oxc7, 0x4b, 0x66, 0x89, 0x40,
0Oxe3, 0x9a, 0xf6, 0x18, 0xc8, 0x41, Oxde, 0x7a, 0xd4, Oxbc, Oxce, Oxcd, Oxfc,
0x63, Oxfb, Oxa5, 0xf8, 0x5a, 0x7d, Oxfe, 0x81, 0x33, 0x19, 0x14, 0x0, 0x20, 0x3,
0xc3, 0xd3, 0x73, 0x6¢c, Oxaf, Oxd, 0x5b, 0x8a, 0x10, 0x95, Oxcb, Oxc4, 0xd9,



0x56, 0x8b, 0x2c, Oxd1, Oxfa, 0xf9, Oxf2, 0x9b, 0xb7, 0x9e, Oxaa };

static uint8_t INV_SBOX][256] = { Oxe5, 0x0, Oxba, Oxe7, 0x96, Oxlc, 0x78,
Oxae, 0x56, Oxe, 0x3a, Ox4b, 0xb8, Oxed, 0x72, 0xa9, 0xf0, 0x7, 0x82, 0x2b,
Oxe4, 0x5b, 0x68, 0x50, 0xdO, Oxe3, 0x32, 0x5c, 0x2, 0x4, 0x1, Oxc6, 0xeb,
0x8f, 0x5d, 0x42, 0xb9, 0x80, Oxa2, 0x41, 0x57, 0x9a, 0x3c, 0x49, 0xf7, 0x28,
0x83, 0x34, 0xb0, 0x7b, 0x1d, Oxe2, 0x7e, 0x2e, 0x67, 0x19, Oxcl, 0x16, 0x39,
0x30, 0x45, 0x63, 0x7f, 0x95, Oxcc, 0xd2, 0x3e, 0x73, 0xa8, 0x5, 0x58, 0x3d,
Ox6e, 0x40, Oxal, 0xc9, 0x17, 0x87, 0x3f, 0x10, 0x26, 0x4d, 0x23, Oxbe, Oxb,
0x98, 0xf5, 0x5e, Oxc4, 0x14, Oxde, Oxee, Oxad, 0x36, 0xb7, 0x6b, 0x21, 0x9c,
Oxbb, Oxda, 0x31, 0x71, Oxca, 0x9b, 0xb5, 0xc2, 0x51, 0x33, Oxeb, 0x99, 0x8e,
Oxa6, Oxbl1, 0x48, Oxle, Oxea, 0x29, 0x18, 0xb4, 0x89, Oxla, 0x76, 0xd4, 0x2a,
0x9d, Oxdf, Ox4f, Oxaa, 0x5f, Oxel, 0x84, 0x35, 0x74, Oxac, 0x92, Ox1f, 0x2f,
Oxcb, Oxef, 0xf6, 0x64, 0x8b, 0x60, 0x2c, 0x77, 0x38, 0x6f, 0x59, 0x79, 0xfl,
0x2d, 0Oxc5, 0xa0, 0xb6, Oxce, Oxfc, Oxa7, 0x8, Oxfe, 0x8a, 0x7c, 0xb3, 0x9f,
0x13, 0x69, Oxdc, 0x66, Oxaf, 0x46, Ox4c, Oxff, 0x90, 0x97, Oxa3, 0x54, Oxec,
0x7a, Oxa, Oxbf, 0x62, 0x20, 0x25, 0x37, Oxfd, Oxbc, Ox1b, 0x43, 0x52, 0xd6,
0x6¢c, 0x9e, 0x11, 0x75, 0x93, Oxf, Oxe8, 0xf3, 0x6d, 0xc0O, 0xc8, 0xd1, 0x4a,
0Ox5a, 0xf2, 0x22, 0xd8, 0xd7, 0x65, 0x15, 0xf8, 0x6a, 0xe9, 0xd5, 0x8c, 0xc7,
0Oxbd, 0x55, 0xf4, 0xb2, 0x70, 0x86, 0x53, 0xd3, 0x47, 0x88, 0x24, Oxab, Oxcd,
Ox4e, 0x12, 0x85, 0x44, 0x3, Oxc, Oxa5, 0x81, Oxad, 0x9, 0x8d, 0x27, 0x7d, 0x3b,
0xfb, 0xd, 0x61, 0x6, Oxcf, 0x94, Oxdd, Oxfa, 0xf9, Oxdb, 0xd9, 0x91, 0xe0, 0xc3 };
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