
Obfustopia Built on Secret-Key Functional Encryption∗

Fuyuki Kitagawa 1 Ryo Nishimaki 1 Keisuke Tanaka 2

1 NTT Corporation, Japan
{fuyuki.kitagawa.yh,ryo.nishimaki.zk}@hco.ntt.co.jp

2 Tokyo Institute of Technology, Japan
keisuke@is.titech.ac.jp

Abstract

We show that indistinguishability obfuscation (IO) for all circuits can be constructed solely
from secret-key functional encryption (SKFE). In the construction, SKFE need to be secure against
an unbounded number of functional key queries, that is, collusion-resistant. Our strategy is to
replace public-key functional encryption (PKFE) in the construction of IO proposed by Bitansky and
Vaikuntanathan (FOCS 2015) with puncturable SKFE. Bitansky and Vaikuntanathan introduced the
notion of puncturable SKFE and observed that the strategy works. However, it has not been clear
whether we can construct puncturable SKFE without assuming PKFE. In particular, it has not been
known whether puncturable SKFE is constructed from standard SKFE. In this work, we show that a
relaxed variant of puncturable SKFE can be constructed from collusion-resistant SKFE. Moreover,
we show that the relaxed variant of puncturable SKFE is sufficient for constructing IO.

In addition, we also study the relation of collusion-resistance and succinctness for SKFE. Functional
encryption is said to be weakly succinct if the size of its encryption circuit is sub-linear in the size of
functions. We show that collusion-resistant SKFE can be constructed from weakly succinct SKFE
supporting only one functional key.

By combining the above two results, we show that IO for all circuits can be constructed from
weakly succinct SKFE supporting only one functional key.

Keywords: Indistinguishability obfuscation, secret-key functional encryption, puncturable secret-
key functional encryption, succinctness, collusion-resistance

∗An extended abstract of this paper appears in the proceedings of Eurocrypto 2018 as “Obfustopia Built on Secret-Key
Functional Encryption [KNT18]”.

Contents

1 Introduction 2
1.1 Backgrounds . 2
1.2 Our Results . 3
1.3 More on Related Works . 6
1.4 Organization . 6

2 Overview of Our Technique 7
2.1 Construction of IO based on PKFE . 7
2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE 9
2.3 Puncturable SKFE from SKFE . 9
2.4 IO from Puncturable SKFE . 14
2.5 Technical Overview for Achieving Collusion-Resistance 17

3 Preliminaries 19
3.1 Standard Cryptographic Tools . 20
3.2 Secret-Key Functional Encryption . 23
3.3 Indistinguishability Obfuscation . 27

4 Puncturable Secret-Key Functional Encryption 28
4.1 Syntax . 28
4.2 Security . 29
4.3 Difference from Definition of Bitansky and Vaikuntanathan 30

5 Single-Key Non-Succinct Puncturable SKFE 31

6 From Non-Succinct to Weakly Succinct Puncturable SKFE 34
6.1 From Non-Succinct to Collusion-Succinct by Using SXIO 34
6.2 From Collusion-Succinct to Weakly Succinct . 40

7 Indistinguishability Obfuscation from Puncturable SKFE 43
7.1 Construction . 44
7.2 Security Analysis . 46
7.3 Efficiency Analysis . 55

8 Basic Tools for Transformation from Succinctness to Collusion-Resistance 57
8.1 Parallel Construction . 57
8.2 Single-Ciphertext Collusion-Resistant Fully Succinct SKFE 59
8.3 Hybrid Encryption Construction . 62

9 New PRODUCT Construction for iSKFE 67

10 Collusion-Resistant SKFE via Size-Shifting 74
10.1 Intuition of Size-Shifting . 75
10.2 Construction of Collusion-Resistant iSKFE . 76
10.3 Analysis of Our Collusion-Resistant iSKFE . 77
10.4 Converting iSKFE into SKFE . 80
10.5 From Single-Key SKFE to Collusion-Resistant SKFE 81

0

11 Upgrading Succinctness and Security of SKFE 82
11.1 Transforming Weakly Succinct SKFE into Succinct One 82
11.2 Transforming Selective-message-function secure SKFE into Selective-secure One 83

1 Introduction

1.1 Backgrounds

Program obfuscation is now one of the central topics in cryptography. Program obfuscation aims to
turn programs “unintelligible” while preserving their functionality. The theoretical study of program
obfuscation was initiated by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [BGI+12].
They introduced virtual-black-box obfuscation as a formal definition of obfuscation. The definition of
virtual black-box obfuscation is intuitive and naturally captures the requirement that obfuscators hide
information about programs. However, Barak et al. showed that it is impossible to achieve virtual
black-box obfuscation for all circuits. In order to avoid the impossibility result, they also defined a weaker
variant of obfuscation called indistinguishability obfuscation (IO). Impossibility of IO for all circuits is
not known.

Garg, Gentry, Halevi, Raykova, Sahai, andWaters [GGH+16] proposed the first candidate construction
of IO for all circuits. Subsequently, many works have shown that IO is powerful enough in the sense that
we can achieve a wide variety of cryptographic primitives based on IO and one-way functions though it
is weaker than virtual-black-box obfuscation [GGH+16, SW14, HSW14, BGMS15, KLW15, BCG+18,
BPW16, CHN+18, HJK+16].

While we know the usefulness of IO well, we know very little about how to achieve IO. Many candidate
constructions had been proposed. At the earlier stage, most IO constructions are based on little-studied
cryptographic tools such as multi-linear maps [GGH+16, BGK+14, BR14, AGIS14, PST14, Zim15,
GGH15, AB15, BMSZ16, GMM+16, Lin16, LV16, AS17, Lin17, FRS17, MZ18, CVW18, BGMZ18,
CHVW19]. In most of them, security flaws were discovered [CGH+15, MSZ16, ADGM17, CLLT17,
CGH17, CVW18] and none of them are proven to be secure from standard assumptions. Later, several
candidates that do not rely on multilinear maps have been proposed. However, they still rely on some non-
standard cryptographic tools such as perturbation-resilient generators [AJL+19, AJS18, JLMS19, JLS19],
pseudo flawed-smudging generators [LM18, AJL+19], or correlated noise generators [Agr19]. Some
candidates are based on non-standard lattice-based assumptions [BDGM20a, WW21, GP21, BDGM20b],
but those assumptions were found to be false [HJL21]. In 2021, Jain, Lin, and Sahai finally propose an IO
construction fromwell-founded assumptions [JLS21]. More specifically, they achieve pertubation-resilient
generators from well-founded assumptions. In the IO constructions that do not rely multilinear maps,
functional encryption, which is a seemingly weaker primitive than IO, plays a crucial role.

Functional encryption is one of the most advanced cryptographic primitives which enable a system
having flexibility in controlling encrypted data [SW05, BSW11, O’N10]. In functional encryption, an
owner of a master secret key MSK can generate a functional decryption key skf for a function f belonging
to a function family F . By decrypting a ciphertext of a messagem using skf , a holder of skf can learn
only a value f(m). No information about m except f(m) is revealed from the ciphertext of m. This
feature enables us to construct a cryptographic system with fine-grained access control. In addition, it
is known that public-key functional encryption (PKFE) is a versatile building block to construct other
cryptographic primitives. In particular, we can construct IO for all circuits by using functional encryption
that satisfies certain security notions and efficiency requirements [AJ15, BV18, AJS15, BNPW20].

Bitansky and Vaikuntanathan [BV18] and Ananth and Jain [AJ15] independently showed that we can
construct IO based on PKFE which supports a single functional key and whose encryption circuit size is
sub-linear in the size of functions. A functional encryption scheme that supports a single key is called a
single-key scheme. A functional encryption scheme that satisfies the efficiency property above is said
to be weakly succinct. Bitansky and Vaikuntanathan [BV18] and Ananth, Jain, and Sahai [AJS15] also
showed that we can construct IO based on (non-succinct) collusion-resistant PKFE. Collusion-resistant
functional encryption is functional encryption that can support a-priori unbounded number of functional
keys.

Lin, Pass, Seth, and Telang [LPST16] showed that we can achieve single-key weakly succinct PKFE

2

from the LWE assumption and exponentially-efficient (XIO). XIO is a relaxed variant of IO such that the
size of obfuscated circuits is sub-linear in the size of the input space. Bitansky, Nishimaki, Passelègue,
and Wichs [BNPW20] subsequently showed that collusion-resistant secret-key functional encryption
(SKFE) is powerful enough to yield IO if we additionally assume plain public key encryption.

From these results, we see that the combination of functional encryption with some property and
a public-key cryptographic primitive is sufficient for achieving IO. This fact is a great progress as a
stepping-stone for achieving IO based on a standard assumption.

However, one natural question arises for this situation. The question is whether we really need
public-key primitives to construct IO or not. In other words, we have the following fundamental question:

Is it possible to achieve IO for all circuits based solely on secret-key primitives?

SKFE is the best possible candidate for a secret-key cryptographic primitive that gives an affirmative
answer to this question. However, Asharov and Segev [AS16] gave a somewhat negative answer to the
question. Their result can be seen as a substantial evidence that SKFE is somewhat unlikely to imply IO
as long as we use black-box techniques.1 Although Brakerski, Komargodski, and Segev [BKS18] and
Komargodski and Segev [KS20] already showed that we can construct IO for somewhat restricted class of
circuits based on SKFE via non-black-box constructions, it is still open whether we can construct IO for all
circuits from SKFE bypassing the barrier with a non-black-box technique. Here, a non-black-box technique
means the description of encryption algorithms is used in functional decryption keys. See Section 1.2 for
more details.

1.2 Our Results

We give an affirmative answer to the question above. More precisely, we prove the following theorem.

Theorem 1.1 (Informal). Assuming that there exists sub-exponentially secure collusion-resistant SKFE
for all circuits, then there exists IO for all circuits.

Since our construction of IO is non-black-box, we can circumvent the impossibility result shown by
Asharov and Segev [AS16].

The security loss of our construction of IO is exponential in the input length of circuits, but is
independent of the size of circuits. Thus, if the input length of circuits is poly-logarithmic in the security
parameter, our construction of IO incurs only quasi-polynomial security loss regardless of the size of
circuits. Therefore, we can obtain IO for circuits of polynomial size with input of poly-logarithmic
length from quasi-polynomially secure collusion-resistant SKFE for all circuits. This is an improvement
over the IO construction by Komargodski and Segev [KS20]. They showed that IO for circuits of
sub-polynomial size with input of poly-logarithmic length is constructed from quasi-polynomially secure
collusion-resistant SKFE for all circuits.

We show Theorem 1.1 by using puncturable SKFE. The notion of puncturable SKFE was introduced
by Bitansky and Vaikuntanathan [BV15] (See Section 1.3 for the difference between preliminary and
updated versions [BV15, BV18]). They showed that in their construction of IO, the building block PKFE
can be replaced with puncturable SKFE. However, it has been an open issue whether we can achieve
puncturable SKFE without assuming the existence of PKFE.

We show how to construct puncturable SKFE that is sufficient for constructing IO, based solely on
SKFE. More precisely, we show the following theorem.

Theorem 1.2 (Informal). Assuming that there exists collusion-resistant SKFE for all circuits, then there
exists single-key weakly succinct puncturable SKFE for all circuits.

1More precisely, Asharov and Segev [AS16] introduced an extended model for black-box reductions to include a limited
class of non-black-box reductions into their impossibility results. We will explain more on this impossibility result later.

3

Note that our definition of puncturable SKFE is a relaxed version of that proposed by Bitansky and
Vaikuntanathan [BV15]. Our requirement for puncturable SKFE looks weaker than that of Bitansky
and Vaikuntanathan. However, they are actually incomparable. In fact, we show that our puncturable
SKFE defined in this paper is also sufficient as a building block of IO. See Section 2 for the details
of the notion of puncturable SKFE and the difference between our definition and that of Bitansky and
Vaikuntanathan [BV15].

Impacts on the hierarchy of cryptographic primitives Our result makes a progress on the study of
IO and functional encryption as explained below. We have been classifying cryptographic primitives into
two hierarchies Minicrypt and Cryptomania since the beautiful work of Impagliazzo and Rudich [IR89]
showed that public-key encryption is not implied by one-way functions via black-box reductions. The
terminologies, Minicrypt and Cryptomania, were introduced by Impagliazzo [Imp95]. In Minicrypt,
one-way functions exist, but public-key encryption does not. In Cryptomania, public-key encryption
also exists.

We started to consider a new hierarchy called Obfustopia after we found that many advanced crypto-
graphic primitives can be constructed from IO. AlthoughGarg, Pandey, Srinivasan, and Zhandry [GPSZ17]
introduced the term Obfustopia, they did not give a formal definition of Obfustopia. In this paper,
we explicitly define Obfustopia as the “world” where there exists efficient IO for all circuits and
one-way functions.2 We can construct almost all existing cryptographic primitives which are stronger
than public-key encryption by using IO. This is the reason why we consider the new hierarchy beyond
Cryptomania.3

The landscape of Obfustopia is less clear than those of Minicrypt and Cryptomania are. There has
been significant effort to find out cryptographic primitives that are in Obfustopia. That is, we have been
asking what kinds of cryptographic primitives imply the existence of IO. We know that sub-exponentially
secure succinct PKFE exists in Obfustopia [BV18, AJ15]. We also know that sub-exponentially secure
collusion-resistant SKFE is a bridge between Cryptomania and Obfustopia [BNPW20].

It is natural to ask whether SKFE is also in Obfustopia or not since SKFE seems to be a strong
primitive as PKFE. Asharov and Segev [AS16] gave a somewhat negative answer to this question. They
showed that SKFE is unlikely to imply IO as long as we use black-box reductions. Although their
impossibility result also holds for a limited class of non-black-box reductions, it does not exclude the
possibility by using some non-black-box reduction outside the class. In particular, their impossibility result
does not take self-feeding [GMM17] into account. Self-feeding means that an algorithm of a cryptographic
primitive takes code descriptions of another algorithm of the cryptographic primitive as an input.4 Asharov
and Segev also showed that SKFE does not imply any primitive outside Minicrypt via the limited class
of non-black-box reductions. Moreover, it was not known whether SKFE implies any primitive outside
Minicrypt even if we use it in a non-black-box manner before the work of Bitansky et al. [BNPW20].

Bitansky et al. [BNPW20] showed that the combination of sub-exponentially secure collusion-
resistant SKFE and exponentially secure one-way functions implies quasi-polynomially secure public-key
encryption. This also implies that the above combination yields quasi-polynomially secure succinct
PKFE from their main result showing that the combination of collusion-resistant SKFE and public-key
encryption implies succinct PKFE. They circumvent the impossibility result by Asharov and Segev since
they use the self-feeding technique.

2 Komargodski, Moran, Naor, Pass, Rosen, and Yogev [KMN+14] proved that IO implies one-way functions under a mild
complexity theoretic assumption. See the reference for the detail.

3Strictly speaking, it was known that there are stronger primitives (such as identity-based encryption) than public-key
encryption before the candidate of obfuscation appeared [BPR+08, KY09]. Moreover, it is not clear whether public-key
encryption implies fully homomorphic encryption or not so far.

4For example, in some works [AJ15, BV18, BKS18, BNPW20, KS20, GS16, LM16, KNT17a], we use a functional
encryption scheme and generate a functional decryption key for a circuit that computes the encryption circuit of the functional
encryption scheme.

4

Komargodski and Segev [KS20] showed that quasi-polynomially secure IO for circuits of sub-
polynomial size with input of poly-logarithmic length can be constructed from quasi-polynomially secure
collusion-resistant SKFE for all circuits. In addition, they showed that by combining quasi-polynomially
secure collusion-resistant SKFE and sub-exponentially secure one-way functions, we can construct
quasi-polynomially secure succinct PKFE. However, in this construction, the resulting PKFE supports
only circuits of sub-polynomial size with input of poly-logarithmic length though the building block
SKFE supports all polynomial size circuits.

These two results surely demonstrated that SKFE is stronger than we thought. Nevertheless, we see
that both two results involves degradation of security level or functionality. Thus, it is still open whether
SKFE implies a cryptographic primitive other than those in Minicrypt without such degradation, and
especially SKFE is in Obfustopia or not.

We gives an affirmative answer to this question. More concretely, we can construct sub-exponentially
secure IO for all circuits from sub-exponentially secure collusion-resistant SKFE for all circuits through
our transformation. This result means that sub-exponentially secure collusion-resistant SKFE exists in
Obfustopia. In addition, by combining this result and the result by Garg et al. [GGH+16], we see that
the existence of sub-exponentially secure collusion-resistant PKFE for all circuits is equivalent to that of
sub-exponentially secure collusion-resistant SKFE for all circuits.

Collusion-resistance versus succinctness for SKFE We also study the relation of collusion-resistance
and succinctness for SKFE in this study.

Collusion-resistance and succinctness are seemingly incomparable notions and implications between
them are non-trivial. Therefore, it is also a major concern whether we can transform a scheme satisfying
one of the two properties into a collusion-resistant and succinct one.

Such a transformation is already known for PKFE. Ananth, Jain, and Sahai [AJS15] showed how to
construct collusion-resistant and succinct PKFE from a collusion-resistant and non-succinct one.5 In
addition, Garg and Srinivasan [GS16] and Li and Micciancio [LM16] showed a transformation from
single-key weakly succinct PKFE to collusion-resistant one with polynomial security loss.6 The resulting
scheme of the transformation proposed by Garg and Srinivasan is succinct even if the building block
scheme is only weakly succinct. The transformation proposed by Li andMicciancio preserves succinctness
of the building block scheme. From these results, collusion-resistance and succinctness are equivalent in
PKFE.

On the other hand, the situation is different in SKFE. While we know how to construct collusion-
resistant and succinct schemes from collusion-resistant and non-succinct ones [AJS15] similarly to PKFE,
we do not know how to construct such schemes from succinct ones even if sub-exponential security loss is
permitted.

There is a long line of research on collusion-resistant SKFE/PKFE for circuits, but all schemes based on
standard assumptions are bounded collusion-resistant [SS10, GVW12, GKP+13, AR17, Agr17, AV19].

As stated above, previous results including Theorem 1.1 show that SKFE is a strong cryptographic
primitive beyond Minicrypt if we consider non-black-box reductions. However, one natural question
arises for this situation. All of the above results assume collusion-resistant SKFE as a building block.
Thus, while we see that collusion-resistant SKFE is outside Minicrypt, it is still open whether succinct
SKFE is also a strong cryptographic primitive beyond Minicrypt since we do not know how to construct
collusion-resistant SKFE from succinct one.

Succinctness seems to be as powerful as collusion-resistance from the equivalence of them in the
PKFE setting. Therefore, it is natural to ask whether succinct SKFE is also outside Minicrypt. If

5Bitansky and Vaikuntanathan showed how to construct single-key succinct PKFE from a bounded collusion-resistant and
weakly succinct PKFE [BV18].

6 Before their results, it was known that a single-key weakly succinct PKFE scheme implies a collusion-resistant and succinct
one via IO [GGH+16, Wat15, BV15] though it incurs sub-exponential security loss.

5

we have a transformation from succinct SKFE to collusion-resistant one without assuming public-key
primitives, we can solve the question affirmatively. Solving the question is an advancement to understand
the complexity of SKFE. We solve the question by showing the following result.

Theorem 1.3 (Informal). Assume that there exists quasi-polynomially (resp. sub-exponentially) secure
single-key weakly succinct SKFE for all circuits. Then, there also exists quasi-polynomially (resp.
sub-exponentially) secure collusion-resistant SKFE for all circuits.

We note that our transformation incurs quasi-polynomial security loss. However, we can transform
any quasi-polynomially secure single-key weakly succinct SKFE into quasi-polynomially secure collusion-
resistant one, if we know the security bound of the underlying single-key SKFE. In addition, if the
underlying single-key scheme is sub-exponentially secure, then so does the resulting collusion-resistant
one.7

Our transformation preserves the succinctness of the underlying scheme. In other words, if the
building block single-key scheme is succinct (resp. weakly succinct), the resulting collusion-resistant
scheme is also succinct (resp. weakly succinct).

Analogous to PKFE, we can transform collusion-resistant SKFE into collusion-resistant and succinct
one [AJS15]. From this fact and Theorem 1.3, we discover that the existence of collusion-resistant SKFE
and that of succinct one are actually equivalent if we allow quasi-polynomial security loss. Due to this
equivalence, we see that succinct SKFE is also a strong cryptographic primitive beyond Minicrypt
similarly to collusion-resistant SKFE. In particular, we obtain the following corollary from Theorem 1.1
and 1.3.

Corollary 1.4 (Informal). Assume that there exists sub-exponentially secure single-key weakly succinct
SKFE for all circuits. Then, there exists IO for all circuits.

1.3 More on Related Works

We explain the differences between the preliminary and journal versions of Bitansky and Vaikun-
tanathan [BV15, BV18].

In the preliminary version [BV15], they introduced puncturable SKFE (though they called symmetric-
key instead of secret-key). They gave a proof sketch for IO from puncturable SKFE since their main IO
construction is directly constructed from PKFE. Their puncturable SKFE is a natural functional encryption
analog of puncturable pseudo random function (PRF) [SW14]. We denote their results by BV15.

In the journal version [BV18], they significantly revised the definition and called the new definition
puncturable functional encryption (dropped “symmetric-key”). They showed how to construct puncturable
functional encryption from PKFE and IO from puncturable functional encryption. The revised definition
reflects the properties that their construction based on PKFE has. It is more complex than the original
one. We denote their results by BV18.

We follow and relax the original definition of puncturable SKFE in this paper since it is simpler and
fits to our constructions.

1.4 Organization

In Section 2, we provide the overview of our constructions. That is, IO based on collusion-resistant
SKFE via puncturable SKFE and collusion-resistant SKFE based on single-key weakly succinct SKFE.
In Section 3, we provide notations and definitions of cryptographic primitives. In Section 4, we formally
define puncturable SKFE, and introduce security and efficiency notions for it. We also discuss the
difference among our definition of puncturable SKFE, that of BV15 [BV15], and puncturable functional

7When transforming a sub-exponentially secure scheme, our transformation incurs sub-exponentially security loss. However,
we can transform any sub-exponentially secure single-key scheme into a sub-exponentially secure collusion-resistant one.

6

encryption by BV18 [BV18] in Section 4. In Section 5, we show the construction of single-key non-
succinct puncturable SKFE. In Section 6, we show how to transform single-key non-succinct puncturable
SKFE into single-key weakly succinct one. In Section 7, we then show how to construct IO based on
SKFE.

Next, in Section 8, we introduce some basic constructions and transformations for achieving collusion-
resistant SKFE from single-key weakly succinct SKFE. In Section 9, we show a transformation from
two SKFE schemes that support q1 and q2 functional key queries respectively to an SKFE scheme that
supports q1 · q2 functional key queries. Then, in Section 10, we show how to transform single-key weakly
succinct SKFE into collusion resistant one by using constructions in Sections 8 and 9. That is, we prove
Theorem 1.3. In Section 11, we show the additional feature of our transformation for SKFE.

2 Overview of Our Technique

Before we introduce formal definitions and constructions, we give a technical overview of our constructions
in this section. This section has two parts. One is how to construct IO from SKFE. The other one is how
to construct collusion-resistant SKFE from single-key weakly succinct SKFE.

IO from SKFE Our basic strategy is to replace PKFE in the construction of BV15 [BV15] with
puncturable SKFE. Bitansky and Vaikuntanathan observed that this strategy works. However, it is not
known whether puncturable SKFE is constructed from cryptographic primitives other than PKFE or IO.

In this work, we show that we can construct a relaxed variant of puncturable SKFE that is a single-key
scheme and weakly succinct from collusion-resistant SKFE. In addition, we show that such a relaxed
variant of puncturable SKFE is sufficient for constructing IO. We follow the style of BV15 [BV15] since
it fits to our puncturable SKFE.

We give an overview of the BV15 construction [BV15] in Section 2.1 and explain why SKFE must
be “puncturable” when we replace PKFE with SKFE in their construction in Section 2.2. Next, we give
an overview of how to construct our puncturable SKFE scheme and IO in Section 2.3 and Section 2.4,
respectively.

Collusion-resistant SKFE from single-key weak succinctness Our basic strategy is using the transfor-
mation from single-key weakly succinct PKFE to collusion-resistant PKFE by Li and Micciancio [LM16].
However, the transformation does not work in the SKFE setting. Thus, we modify the transformation and
combine it with single-ciphertext succinct and collusion-resistant SKFE, which can be instantiated with
OWFs, via the hybrid encryption technique. We give an overview of this construction in Section 2.5.

2.1 Construction of IO based on PKFE

The main idea of Bitansky and Vaikuntanathan is to design an obfuscator iOi for circuits with i-bit
input from an obfuscator iOi−1 for circuits with (i− 1)-bit input. If we can design such a bit extension
construction, for any polynomial n, we can construct an obfuscator iOn for circuits with n-bit input since
we can easily achieve iO1 for circuits with 1-bit input by outputting an entire truth table of a circuit with
1-bit input. Readers that are familiar with the BV15 construction [BV15] can skip this section.

Although Ananth and Jain [AJ15] also constructed IO from PKFE, it is not trivial whether our
technique is applicable in the construction by Ananth and Jain since their IO construction is obtained
via multi input functional encryption [GGG+14]. Their technique is significantly different from that of
Bitansky and Vaikuntanathan [BV15, BV18].

When we construct IO based on the bit extension construction above, it is important to avoid a
circuit-size blow-up of circuits to be obfuscated at each recursive step. In fact, if we allow a circuit-size

7

blow-up, we can obtain the bit extension construction by defining

iOi(C(x1 · · ·xi)) := iOi−1(C(x1 · · ·xi−1‖0))‖iOi−1(C(x1 · · ·xi−1‖1)) .

However, this construction obviously incurs an exponential blow-up and thus we cannot rely on this
solution. Bitansky and Vaikuntanathan showed how to achieve the bit extension construction without an
exponential blow-up using weakly succinct PKFE.

In their construction, a functional key of PKFE should hide information about the corresponding
circuit. Such security notion is called function privacy. However, it is not known how to achieve function
private PKFE. Then, Bitansky and Vaikuntanathan explicitly accommodated the technique for function
private SKFE used by Brakerski and Segev [BS18] to their IO construction based on PKFE.

We review their construction based on PKFE. For simplicity, we ignore the issue of the randomness
for encryption algorithms. It is generated by puncturable PRF in the actual construction.

The construction of iOi based on iOi−1 and PKFE works as follows. The construction additionally
uses plain secret key encryption (SKE) to implement the technique used by Brakerski and Segev [BS18].
To obfuscate a circuit C with i-bit input, it first generates a key pair (PKi,MSKi) of PKFE. Then,
using MSKi, it generates a functional key skC∗ tied to the following circuit C∗. C∗ has hardwired
two SKE ciphertexts CTske

0 and CTske
1 of plaintext C under independent keys K0 and K1, respectively.

C∗ expects as an input not only an i-bit string xi but also an SKE key Kb. On those inputs, C∗ first
obtains C by decrypting CTske

b by Kb and outputs U(C,xi) = C(xi), where U(·, ·) is a universal
circuit. Finally, the construction obfuscates the following encryption circuit Ei−1 by iOi−1. Ei−1 has
hardwired PKi andKb. On input (i− 1)-bit string xi−1, it outputs ciphertexts Enc(PKi, (xi−1‖0,Kb))
and Enc(PKi, (xi−1‖1,Kb)), where Enc is the encryption algorithm of PKFE. The resulting obfuscation
of C is a tuple (skC∗ , iOi−1(Ei−1)). Note that we always set the value of b as 0 in the actual construction.
We set b as 1 only in the security proof.

// Description of (simplified) C∗
Hard-Coded Constants: CTske

0 , CTske
1 .

Input: xi,Kb

1. Compute C = D(Kb,CTske
b).

2. Return U(C,xi).

// Description of (simplified) Ei−1
Hard-Coded Constants: PKi,Kb.
Input: xi−1 ∈ {0, 1}i−1

1. Compute CTi,xi

r←−
Enc(PKi, (xi−1‖xi,Kb)).

2. Output CTi,0 and CTi,1.

Figure 1: Descriptions of (simplified) C∗ and Ei−1.

When evaluating the obfuscated C on input xi = x1 · · ·xi−1xi ∈ {0, 1}i, we first invoke iO(Ei−1)
on input xi−1 = x1 · · ·xi−1 and obtain Enc(PKi, (xi−1‖0,Kb)) and Enc(PKi, (xi−1‖1,Kb)). Then, by
decrypting Enc(PKi, (xi−1‖xi,Kb)) using skC∗ , we obtain C(xi).

Consequently, by using this bit extension construction, the obfuscation of a circuit C with n-bit
input consists of n functional keys sk1, · · · , skn each of which is generated under a different master
secret key MSKi, and pair of ciphertexts of 0 and 1 under PK1 corresponding to MSK1. For any
xn = x1 · · ·xn ∈ {0, 1}n, we can first compute a ciphertext of xn by repeatedly decrypting a ciphertext
of xi−1 = x1 · · ·xi−1 by ski−1 and obtaining a ciphertext of xi = x1 · · ·xi for every i ∈ {2, · · · , n}.
We can finally obtain C(xn) by decrypting the ciphertext of xn by skn.

In this construction, each instance of PKFE needs to issue only one functional key. This is a minimum
requirement for functional encryption. However, for efficiency, PKFE in the construction above should
satisfy a somewhat strong requirement, that is, weak succinctness to avoid a circuit-size blow-up of
circuits to be obfuscated at each recursive step. Therefore, we need to use a single-key weakly succinct
PKFE scheme in the IO construction above.

8

We can prove the security of the construction recursively. More precisely, we can prove the security
of iOi based on those of iOi−1, PKFE, and SKE. Note that it is sufficient that PKFE satisfies a mild
selective-security to complete the proof. Their security proof relies on the argument of probabilistic
IO formalized by Canetti, Lin, Tessaro, and Vaikuntanathan [CLTV15], and thus the security loss of
each recursive step is exponential in i, that is 2i. This is the reason their building block PKFE must be
sub-exponentially secure. See Section 2.4 for the concrete security loss.

2.2 Replacing PKFE with SKFE: Need of Puncturable SKFE

The security proof of Bitansky and Vaikuntanathan relies on the fact that we can use the security of
PKFE even when its encryption circuit is publicly available. Concretely, PKi is hardwired into obfuscated
encryption circuit iOi−1(Ei−1) and this encryption circuit is public when we use the security of PKFE
under the key pair (PKi,MSKi).

The above security argument might not work if ordinary SKFE is used instead of PKFE. This intuition
comes from the impossibility result shown by Barak et al. [BGI+12]. In fact, we do not know how to
prove the security of the IO based on SKFE because we cannot hardwire a secret encryption key into
obfuscated encryption circuit in security reductions. This is why they adopted PKFE as their building
block. In order to replace PKFE with SKFE in the construction above, we need SKFE whose security
holds even when its encryption circuit is publicly available. As one of such primitives, Bitansky and
Vaikuntanathan proposed puncturable SKFE [BV15].

In puncturable SKFE defined by Bitansky and Vaikuntanathan [BV15], there are a puncturing
algorithm Punc and a punctured encryption algorithm PEnc in addition to algorithms of standard SKFE.
We can generate a punctured master secret key MSK∗{m0,m1} at two messagesm0 andm1 from a master
secret key MSK by using Punc. Puncturable SKFE satisfies the following two properties: functionality
preserving under puncturing and semantic security at punctured point. Functionality preserving under
puncturing requires that

Enc(MSK,m; r) = PEnc(MSK∗{m0,m1},m; r)

holds for any messagem other thanm0 andm1 and for any randomness r. Semantic security at punctured
point requires that

(MSK∗{m0,m1},Enc(MSK,m0) c≈ (MSK∗{m0,m1},Enc(MSK,m1))

holds for all adversaries, where
c≈ denotes computational indistinguishability.

Bitansky and Vaikuntanathan informally proved that single-key weakly succinct puncturable SKFE
is also a sufficient building block for their IO construction [BV15]. Note that weak-succinctness of
puncturable SKFE requires that not only the encryption circuit but also the punctured encryption circuit
should be weakly succinct. However, as stated earlier, there was no instantiation of puncturable SKFE
other than regarding PKFE as puncturable SKFE at that point. In particular, it was not clear whether we
can construct puncturable SKFE based on ordinary SKFE.

2.3 Puncturable SKFE from SKFE

In this work, we show how to construct single-key weakly succinct puncturable SKFE from collusion-
resistant SKFE. More specifically, we show the following two results. First, we show how to construct
single-key non-succinct puncturable SKFE based only on one-way functions. In addition, we show that
we can transform it into single-key weakly succinct one using collusion-resistant SKFE. Our formalization
of puncturable SKFE is different from that of BV15 [BV15] in several aspects. Nevertheless, we show
that our puncturable SKFE is also sufficient for constructing IO.

Below, we give the overview of these two constructions.

9

Single-Key Non-Succinct Puncturable SKFE based on One-Way Functions

Our starting point is the SKFE variant of the single-key non-succinct PKFE scheme proposed by Sahai
and Seyalioglu [SS10]. It is constructed from garbled circuit and SKE, which are implied by one-way
functions. Their construction is as follows.

Setup: A master secret key consists of 2s secret keys {Kj,α}j∈[s],α∈{0,1} of SKE, where s is the length
of a binary representation of functions supported by the resulting SKFE scheme.

Enc: Whenwe encrypt amessagem, we first generates a garbled circuit Ũm with labels {Lj,α}j∈[s],α∈{0,1}
by garbling a universal circuit U(·,m) into whichm is hardwired. Then, we encrypt Lj,α under
Kj,α and obtain an SKE ciphertext cj,α for every j ∈ [s] and α ∈ {0, 1}. The resulting ciphertext
of the scheme is (Ũm, {cj,α}j∈[s],α∈{0,1}).

KeyGen: A functional key skf for a function f consists of {Kj,f [j]}j∈[s], where f [1] · · · f [s] is the binary
representation of f and each f [j] is a single bit.

Dec: A decryptor who has a ciphertext (Ũm, {cj,α}j∈[s],α∈{0,1}) and a functional key {Kj,f [j]}j∈[s]
can compute {Lj,f [j]}j∈[s] by decrypting each cj,f [j] by Kj,f [j] and obtain Ũm({Lj,f [j]}j∈[s]) =
U(f,m) = f(m).

In the construction above, we observe that if we use puncturable PRF instead of SKE, the resulting
scheme is puncturable in some sense. More specifically, a master secret key now consists of 2s puncturable
PRF keys {Sj,α}j∈[s],α∈{0,1}. When we encrypt a messagem, we first generate (Ũm, {Lj,α}j∈[s],α∈{0,1})
and encrypt each label by using a puncturable PRF value. That is, cj,α ← Lj,α ⊕ FSj,α(tag), where F is
puncturable PRF and tag is a public tag chosen in some way.

Hereafter, we switch the standard syntax of functional encryption to a tag-based one since our actual
construction is tag-based. In this case, we can generate a punctured master secret key MSK∗{tag} at
a tag tag. Thus, we define an encryption algorithm in a tag-based manner. The encryption algorithm
Enc, given MSK, tag, andm, outputs a ciphertext ofm under the tag tag. That is, Enc(MSK, tag,m) =
(Ũm, {Lj,α ⊕ FSj,α(tag)}j∈[s],α∈{0,1}). A punctured master secret key MSK∗{tag} consists of 2s
puncturable PRF keys {S∗j,α{tag}}j∈[s],α∈{0,1} all of which are punctured at tag.

By using MSK∗{tag}, we can generate a ciphertext of any messagem under a tag tag′ different from
tag, that is, PEnc(MSK∗{tag}, tag′,m) = (Ũm, {Lj,α ⊕ FS∗j,α{tag}(tag′)}j∈[s],α∈{0,1}). Then, we have

Enc(MSK, tag′,m; r) = PEnc(MSK∗{tag}, tag′,m; r)

for any tag tag and tag′ such that tag 6= tag′, message m, and randomness r due to the functionality
preserving property of puncturable PRF. Namely, this scheme satisfies functionality preserving under
puncturing.

In addition, we can prove that Enc(MSK, tag,m0) and Enc(MSK, tag,m1) are indistinguishable for
adversaries that have MSK∗{tag} based on the security of puncturable PRF. In other words, it satisfies
semantic security at punctured tag.

This formalization is a slightly different from that proposed by BV15 [BV15] in the sense that we allow
the use of tags. Nevertheless, our formalization of puncturable SKFE is also sufficient for constructing
IO. In fact, when we construct IO, we set the tag same as the message to be encrypted itself. Then, our
formalization is conceptually the same as that of BV15. Our tag-based definition is well-suited for our
constructions.

10

Achieving Weak-Succinctness via Collusion-Succinctness

We cannot directly use the puncturable SKFE scheme above as a building block of IO since it is
non-succinct. We need to transform it into a weakly succinct scheme while preserving security and
functionality.

We extend the work by Kitagawa, Nishimaki, and Tanaka [KNT21] that showed how to transform
non-succinct PKFE into weakly succinct one using collusion-resistant SKFE. They accomplished the
transformation via a collusion-succinct scheme. We try to accommodate their transformation techniques
into the context of puncturable SKFE.

Collusion-succinctness requires that the size of the encryption circuit and puncturable encryption
circuit is sub-linear in the number of functional keys that the scheme can issue. Note that when we
consider collusion-succinctness, the size of these circuits can be polynomial in the size of the largest
function in a function class.

We first show that we can construct collusion-succinct puncturable SKFE based on single-key
non-succinct puncturable SKFE and collusion-resistant SKFE. Then, we transform the collusion-succinct
scheme into a weakly succinct scheme via a transformation based on decomposable randomized encoding.
The latter transformation based on decomposable randomized encoding is similar to that proposed by
Bitansky and Vaikuntanathan [BV18] and that proposed by Ananth, Jain, and Sahai [AJS15]. We give an
illustration of our construction path in Figure 2.

The general picture is similar to that of Kitagawa et al. [KNT21] and we can accomplish the latter
transformation based on a known technique, but there is a technical hurdle in the former transformation.
The biggest issue is how to define punctured master secret keys and the punctured encryption algorithm.
We show the overview of the former transformation and explain the technical hurdle below.

SXIO

OWF

SKFE

non-succinct
1-key pSKFE

collusion-succinct
q-key pSKFE

weakly succinct
1-key pSKFE

IO

+
[BNPW20]

Section 5

Section 6.1
Section 6.2

Section 7sub-exp. sec. loss

Trivial

Figure 2: Illustration of our construction path. pSKFE denotes tag-based puncturable SKFE. Dashed lines denote
known or trivial implications. White boxes denote our ingredients or goal. Checker board background boxes denote
our core schemes. A transformation from an object in a rectangle to one in a rectangle incurs only polynomial
security loss. A transformation from an object in a rectangle to one in a circle incurs sub-exponential security loss
(denoted by sub-exp. sec. loss).

Construction of collusion-succinct scheme Our goal of this step is to construct a collusion-succinct
scheme, that is, a scheme which supports q functional keys and the size of whose encryption and punctured
encryption circuits are sub-linear in q, where q is an a-priori fixed polynomial. The key tool for achieving
this goal is strong exponentially-efficient IO (SXIO) proposed by Bitansky et al. [BNPW20].

11

SXIO is a relaxed variant of IO. SXIO is required that, given a circuit C with n-bit input, it runs
in 2γn · poly(λ, |C|)-time, where γ is a constant smaller than 1, poly is some polynomial, and λ is the
security parameter. We call γ the compression factor since it represents how SXIO can compress the
truth table of the circuit to be obfuscated. SXIO with arbitrarily small constant compression factor can be
constructed from collusion-resistant SKFE [BNPW20, BKS18].

We show how to construct collusion-succinct puncturable SKFE from single-key non-succinct one
and SXIO. To achieve a collusion-succinct scheme, we need to increase the number of functional keys to
some polynomial q while compressing the size of its encryption circuits into sub-linear in q.

The most naive way to increase the number of functional keys is to run multiple instances of the
single-key scheme if we allow stateful constructions. If we have q master secret keys MSK1, · · · ,MSKq,
we can generate q functional keys since we can generate one functional key under each master secret key.
In this case, to ensure that we can decrypt a ciphertext using every functional key under different master
secret keys MSKi for every i ∈ [q], a ciphertext should be composed of q ciphertexts each of which is
generated under MSKi for every i ∈ [q]. In addition, when we generate a punctured master secret key
punctured at tag, we generate q punctured master secret keys MSK∗i {tag} for every i ∈ [q] all of which
are punctured at tag.

In the naive construction above, we see that if the single-key scheme satisfies functionality preserving
under puncturing and semantic security at punctured tag, then so does the resulting scheme since a
ciphertext of the resulting scheme consists of only those of the single-key scheme. However, if a ciphertext
of the resulting scheme consists of q ciphertexts of the single-key scheme, the encryption time is obviously
at least linear in q. Therefore, we cannot construct a collusion-succinct scheme based on this naive idea.

We then consider to compress the encryption time by using SXIO. We extend the technique used in
some previous results [LPST16, BNPW20, KNT21]. Let sxiO be SXIO. We set a ciphertext as a circuit
computing q ciphertexts obfuscated by sxiO instead of setting it as q ciphertexts themselves. Concretely,
we obfuscate the following circuit E1Key using sxiO. E1Key has hardwired message m, tag tag, and
puncturable PRF key S, and on input i ∈ [q], it first generates MSKi pseudorandomly from S and i, and
then outputs a ciphertext ofm under MSKi and tag. Note that the master secret key of this scheme is now

Hard-Coded Constants: S, tag,m. // Description of (simplified) E1Key
Input: i ∈ [q]

1. Compute riSetup ← FS(i).
2. Compute MSKi ← Setup(1λ; riSetup).
3. Return CTi ← Enc(MSKi, tag,m).

Figure 3: Description of (simplified) E1Key.

one puncturable PRF key S. In other words, the scheme generates q master secret keys of the single-key
scheme from one puncturable PRF key. For the formal description of E1Key, see Figure 7 in Section 6.1.

The size of E1Key is independent of q since E1Key consists of one PRF evaluation and setup and
encryption procedure of the single-key scheme.8 Therefore, the time needed to compute sxiO(E1Key) is
bounded by 2γ log q · poly(λ, |m|) = qγ · poly(λ, |m|) for some constant γ < 1 and polynomial poly, that
is, sub-linear in q. Namely, we succeeds in reducing the encryption time from linear to sub-linear in q.

However, we need more complicated structure to compress the running-time of a punctured encryption
algorithm into sub-linear in q. The main reason is that we cannot give master secret key S in the clear in
the punctured encryption circuit to reduce the security to that of the building block single-key scheme.

We first argue how to set a punctured master secret key. We cannot rely on the trivial way that sets q

8Strictly speaking, the domain of PRF is [q], and thus the size of E1Key depends on q in logarithmic. However, it does not
matter since logarithmic factor is absorbed by sub-linear factor. We ignore this issue here for simplicity.

12

punctured master secret keys of the single-key scheme as a punctured master secret key since the size of
the punctured encryption circuit becomes linear in q in this trivial way.

Our solution is to set a punctured master secret key as also an obfuscated circuit under SXIO. More
precisely, we obfuscate the following circuit P1Key. P1Key has hardwired tag tag and puncturable PRF
key S. Note that S is the master secret key thus is the same puncturable PRF key as that hardwired into
E1Key. On input i ∈ [q], P1Key first generates MSKi pseudorandomly from S and i, and then outputs a
punctured master secret key MSK∗i {tag} of the single-key scheme. For the formal description of P1Key,
see Figure 8 in Section 6.1.

// Description of (simplified) P1Key
Hard-Coded Constants: S, tag.
Input: i ∈ [q]

1. Compute riSetup ← FS(i).
2. Compute

MSKi ← Setup(1λ; riSetup).
3. Return

MSK∗i {tag} ← Punc(MSKi, tag).

// Description of (simplified) PE1Key
Hard-Coded Constants: MSK∗{tag}, tag′,m.
Input: i ∈ [q]

1. Parse sxiO(P1Key)← MSK∗{tag}.
2. Compute

MSK∗i {tag} ← sxiO(P1Key)(i).
3. Return

CTi ← PEnc(MSK∗i {tag}, tag′,m).

Figure 4: Descriptions of (simplified) P1Key and PE1Key.

In addition, we define the punctured encryption algorithm as follows. On input MSK∗{tag} that
is sxiO(P1Key), tag tag′, and messagem, the punctured encryption algorithm obfuscates the following
circuit PE1Key using sxiO and outputs the obfuscated circuit. PE1Key has hardwired MSK∗{tag}, tag′,
and m, and on input i ∈ [q], it first generates the i-th punctured key MSK∗i {tag} by feeding i into
MSK∗{tag} = sxiO(PE1Key), and then outputs a ciphertext ofm under MSK∗i {tag} and tag′ using the
punctured encryption algorithm of the single-key scheme. If the compression factor of sxiO is sufficiently
small, we ensure that the running time of this punctured encryption algorithm is sub-linear in q. For the
formal description of PE1Key, see Figure 9 in Section 6.1.

We can prove the semantic security at punctured tag by the punctured programming technique
proposed by Sahai and Waters [SW14]. However, the construction above does not satisfy functionality
preserving under puncturing. This is because ciphertexts output by the encryption and punctured
encryption algorithms are different. The ciphertexts are obfuscation of different circuits E1Key and PE1Key,
respectively.

In fact, it seems difficult to avoid this problem as long as we use SXIO to gain succinctness. To the
best of our knowledge, how to achieve succinctness in a generic way without using SXIO is not known.

Indistinguishability of functionality under puncturing To overcome the problem above, we introduce
a relaxed variant functionality preserving property that is compatible with the construction based on
SXIO. We call it indistinguishability of functionality under puncturing. Informally speaking, the property
requires that

(MSK,MSK∗{tag},Enc(MSK, tag′,m)) c≈ (MSK,MSK∗{tag},PEnc(MSK∗{tag}, tag′,m))

holds for any tag tag and tag′ such that tag 6= tag′, and message m, where
c≈ denotes computational

indistinguishability. In other words, it requires that no distinguisher can distinguish ciphertexts output by
Enc and PEnc even given both the master secret key and punctured master secret key.

We see that the collusion-succinct construction based on SXIO above satisfies indistinguishability of
functionality under puncturing. This comes from the security guarantee of SXIO and the fact that E1Key
and PE1Key are functionally equivalent as long as the above tag and tag′ are different.

13

Overall, we can construct collusion-succinct puncturable SKFE with indistinguishability of function-
ality under puncturing from a single-key non-succinct scheme and SXIO.

Transforming into a weakly succinct scheme As stated earlier, we can in turn transform a collusion-
succinct scheme into aweakly succinct one using decomposable randomized encoding. This transformation
is based on those proposed by Bitansky and Vaikuntanathan [BV18] and Ananth et al. [AJS15].

In this transformation, a ciphertext of the weakly succinct scheme is a ciphertext of the collusion-
succinct scheme itself. Thus, if the collusion-succinct scheme satisfies semantic security at punctured
tag and indistinguishability of functionality under puncturing, then so does the weakly succinct scheme.
Therefore, we can construct a single-key weakly succinct puncturable SKFE with indistinguishability of
functionality under puncturing.

Indistinguishability of functionality under puncturing looks to be insufficient for constructing IO.
Nevertheless, we show that we can replace PKFE in the construction of IO proposed by Bitansky and
Vaikuntanathan with our puncturable SKFE that satisfies only indistinguishability of functionality under
puncturing if we allow more but asymptotically the same security loss.

2.4 IO from Puncturable SKFE

Finally, we give an overview of our IO construction below.
The construction of IO based on puncturable SKFE is almost the same as that based on PKFE by

BV15 [BV15]. It does not depend on which functionality preserving property puncturable SKFE satisfies.
Recall that, in their construction, a key pair (PKi,MSKi) of PKFE is generated and the circuit Ei−1
that has hardwired PKi is obfuscated at every recursive step. In our construction based on puncturable
SKFE, a master secret key MSKi of puncturable SKFE is generated and Ei−1 that has hardwired MSKi is
obfuscated at each recursive step. Concretely, we construct Ei−1 as a circuit that has hardwired MSKi
and an SKE keyK, and on (i− 1)-bit input xi−1, it outputs a ciphertext of (xi−1‖xi,K) for xi ∈ {0, 1}
under MSKi and a tag xi−1, that is, Enc (MSKi,xi−1, (xi−1‖xi,K)) for xi ∈ {0, 1}. In the proof, we
replace MSKi hardwired into Ei−1 with the tuple of a punctured master secret key MSK∗i {j} punctured
at j ∈ {0, 1}i−1 and a ciphertext of (j‖xi,K) for xi ∈ {0, 1}, where j is a string in {0, 1}i−1 that we
focus on at that time.

Outline of Security Proof

We give an overview of the security proof of IO based on puncturable SKFE. If the building block
puncturable SKFE satisfies functionality preserving under puncturing, the security proof is almost the same
as that of Bitansky and Vaikuntanathan. However, our puncturable SKFE satisfies only indistinguishability
of functionality under puncturing, and thus we need more complicated arguments. The first half of the
following overview is similar to that of Bitansky and Vaikuntanathan. The rest is an overview of proofs
that we additionally need due to indistinguishability of functionality under puncturing.

Analogous to IO based on PKFE, we can accomplish this proof recursively. More precisely, we can
prove the security of iOi based on those of iOi−1, puncturable SKFE, and plain SKE. We proceed the
proof as follows. Note again that, we ignore the issue of the randomness for the encryption algorithm
and punctured encryption algorithm for simplicity. It is generated by puncturable PRF in the actual
construction.

Suppose that we have two functionally equivalent circuits C0 and C1 both of which expect an i-bit
input. We show that no efficient distinguisher D can distinguish iOi(C0) and iOi(C1). We consider the
following sequence of hybrid experiments. Below, for two hybridsH andH′, we writeH ∼ H′ to denote
that the behavior of D does not change betweenH andH′.

14

In the first hybrid H0, D is given iOi(C0). Recall that iOi(C0) consists of skC∗ and iOi−1(Ei−1).
C∗ has hardwired two SKE ciphertexts CTske

0 and CTske
1 of C0 under independent keysK0 andK1. On

i-bit input xi and SKE keyKb, C∗ first obtains C by decrypting CTske
b byKb and outputs C(xi).

In the next hybridH1, we change how CTske
1 hardwired in C∗ is generated. Concretely, we generate

CTske
1 as a ciphertext of C1 under the keyK1. It holds thatH0 ∼ H1 due to the security of SKE. Then, in

the next hybridH2, we change the circuit Ei−1 so that, on (i− 1)-bit input xi−1, it outputs a ciphertext of
(xi−1‖xi,K1) instead of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

If we prove H1 ∼ H2, we also prove H0 ∼ H2 and almost complete the security proof. This is
because we can argue that the behavior of D does not change between H2 and the hybrid where D is
given iOi(C1) by a similar argument forH0 ∼ H2.

Therefore, the main part of the proof is how we change the circuit Ei−1 from encryptingK0 in H1
to encrypting K1 in H2. As mentioned earlier, we accomplish this task by relying on the argument of
probabilistic IO formalized by Canetti et al. [CLTV15].

Concretely, we consider 2i−1 + 1 intermediate hybrid experiments H1,j for j ∈ {0, . . . , 2i−1}
betweenH1 andH2. BetweenH1,j andH1,j+1, we change Ei−1 so that on input j ∈ {0, 1}i−1, it outputs
ciphertexts of (j‖xi,K1) instead of (j‖xi,K0) for xi ∈ {0, 1}, where j is the binary representation of
j. More precisely, we construct Ei−1 in H1,j as follows. Ei−1 has hardwired MSKi, K0, and K1. On
(i− 1)-bit input xi−1,

• if xi−1 < j, it outputs a ciphertext of (xi−1‖xi,K1) for xi ∈ {0, 1} under MSKi and a tag xi−1.

• Otherwise, it outputs a ciphertext of (xi−1‖xi,K0) for xi ∈ {0, 1} under MSKi and a tag xi−1.

We see that Ei−1 inH1 has the same functionality as Ei−1 inH1,0. In addition, Ei−1 inH2 has the same
functionality as Ei−1 in H1,2i−1 . Therefore, we have H1 ∼ H1,0 and H2 ∼ H1,2i−1 from the security
guarantee of iOi−1.

We show how to proveH1,j ∼ H1,j+1. For simplicity, we first assume that puncturable SKFE satisfies
functionality preserving under puncturing. In this case, we showH1,j ∼ H1,j+1 by the following three
steps.

(1) In the first step, we hardwire ciphertexts of (j‖xi,K0) under MSKi and a tag j for xi ∈ {0, 1} in
Ei−1. In addition, we replace hardwired MSKi in Ei−1 with MSK∗i {j} that is a master secret key
punctured at a tag j. On (i− 1)-bit input xi−1,

• if xi−1 = j, Ei−1 outputs hardwired ciphertexts of (j‖xi,K0) for xi ∈ {0, 1}.
• if xi−1 6= j, it generates ciphertexts of (xi−1‖xi,Kβ) under MSK∗i {j} and a tag xi−1 and
outputs them, where β = 1 if xi−1 < j and β = 0 otherwise.

We see that this change does not affect the functionality of Ei−1 if puncturable SKFE satisfies
functionality preserving under puncturing. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to ciphertexts of (j‖xi,K1) for xi ∈ {0, 1}.
This is done by the semantic security at punctured tag of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired ciphertexts of (j‖xi,K1) for
xi ∈ {0, 1}. Moreover, we change Ei−1 so that Ei−1 has hardwired MSKi and use it to generate
the output ciphertexts. This change also does not affect the functionality of Ei−1, and thus we can
accomplish this step by relying on the security of iOi−1 again.

From the above, if puncturable SKFE satisfies functionality preserving under puncturing, we have
H1,j ∼ H1,j+1 for every j ∈ {0, · · · , 2i−1 − 1}. By combining H1 ∼ H1,0 and H1,2i−1 ∼ H2, we
obtainH1 ∼ H2.

Therefore, we complete the entire proof. In fact, in this case, the proof is essentially the same as that
for the case where PKFE is used as a building block shown by BV15.

15

Additional hybrids for the case of indistinguishability of functionality under puncturing Recall
that our puncturable SKFE satisfies only indistinguishability of functionality under puncturing. Thus,
the above argument for steps 1 and 3 do not work straightforwardly. This is because if puncturable
SKFE satisfies only indistinguishability of functionality under puncturing, the functionality of Ei−1 might
change at each step of 1 and 3. Therefore, we cannot directly use the security of iOi−1.

Nevertheless, even if puncturable SKFE satisfies only indistinguishability of functionality under
puncturing, we can proceed steps 1 and 3 by introducing more additional hybrids. Since steps 1 and 3
are symmetric, we focus on proceeding the step 1. We can apply the following argument for the step 3.
Below, we letH0

1,j denote the hybrid experiment after applying the step 1 toH1,j .
To accomplish the step 1, we introduce the additional intermediate hybrids H1,j,k for every k ∈

{0, · · · , 2i−1} \ {j} between H1,j and H0
1,j . Between H1,j,k and H1,j,k+1, we change Ei−1 so that, on

input k ∈ {0, 1}i−1, it outputs ciphertexts under MSK∗i {j} instead of ciphertexts under MSKi, where
k is the binary representation of k. More precisely, we construct Ei−1 in H1,j,k as follows. Ei−1 has
hardwired MSK∗i {j} in addition to MSKi,K0, andK1. On (i− 1)-bit input xi−1, it runs as follows.

• If xi−1 < j, it sets β = 1 and β = 0 otherwise.

• If xi−1 < k and xi−1 6= j, it outputs a ciphertext of (xi−1‖xi,Kβ) under MSK∗i {j} and a tag
xi−1, that is, PEnc (MSK∗i {j},xi−1, (xi−1‖xi,Kβ)) for xi ∈ {0, 1}.

• Otherwise (xi−1 ≥ k or xi−1 = j), it outputs a ciphertext of (xi−1‖xi,Kβ) under MSKi and a
tag xi−1, that is, Enc (MSKi,xi−1, (xi−1‖xi,Kβ)) for xi ∈ {0, 1}.

We see that Ei−1 inH1,j andH0
1,j have the same functionality as that inH1,j,0 andH1,j,2i−1 , respectively.

In addition, Ei−1 inH1,j,j has the same functionality as that inH1,j,j+1. Therefore, we haveH1,j ∼ H1,j,0,
H0

1,j ∼ H1,j,2i−1 , andH1,j,j ∼ H1,j,j+1 from the security guarantee of iOi−1.
We can prove H1,j,k ∼ H1,j,k+1 for every k ∈ {0, · · · , 2i−1} \ {j} by three steps again based on

indistinguishability of functionality under puncturing.

(1) We hardwire ciphertexts of (k‖xi,Kβ) under MSKi and a tag k, that is, Enc(MSKi,k, (k‖xi,Kβ))
for xi ∈ {0, 1} in Ei−1 in the first step. In addition, we change Ei−1 so that it outputs the hardwired
ciphertext of (k‖xi,K0) for xi ∈ {0, 1} if the input is k. We see that this change does not affect
the functionality of Ei−1. Thus, this step is done by the security of iOi−1.

(2) In the second step, we change the hardwired ciphertexts to a ciphertext of (k‖xi,Kβ) underMSK∗i {j},
that is PEnc(MSK∗i {j},k, (k‖xi,Kβ)) for xi ∈ {0, 1}. This is done by the indistinguishability of
functionality under puncturing of puncturable SKFE.

(3) In the final step, we change Ei−1 so that it does not have hardwired ciphertexts of (k‖xi,K1) for
xi ∈ {0, 1}. Namely, we change Ei−1 so that on input k, Ei−1 generates ciphertexts of k under
MSK∗i {j} and outputs them. This change does not affect the functionality of Ei−1, and thus we can
accomplish this step by relying on the security of iOi−1 again.

From these,H1,j,k ∼ H1,j,k+1 holds for every k ∈ {0, · · · , 2i−1}\{j}. By combiningH1,j ∼ H1,j,0,
H0

1,j ∼ H1,j,2i−1 , andH1,j,j ∼ H1,j,j+1, we obtainH1,j ∼ H0
1,j .

Therefore, we obtain H1,j ∼ H0
1,j even if puncturable SKFE satisfies only indistinguishability of

functionality under puncturing. Overall, we can complete the entire security proof.
We note that our security proof incurs more security loss than those of Bitansky and Vaikuntanathan

[BV15, BV18] and the case where puncturable SKFE satisfies functionality preserving under puncturing.
Our security proof incurs roughly 22·i security loss while the latter proofs incurs 2i security loss when
we prove the security of iOi based on that of iOi−1. Nevertheless, this difference is not an issue in the

16

sense that if the building block primitives are roughly 2Ω(n2)-secure, we can prove the security of our
indistinguishability obfuscator, where n is the input length of circuits to be obfuscated. This requirement
is the same as that of Bitansky and Vaikuntanathan [BV15, BV18].

2.5 Technical Overview for Achieving Collusion-Resistance

In this section, we give a high-level overview of our technique for increasing the number of functional
decryption keys that an SKFE scheme supports. The basic idea behind our proposed construction is that
we combine multiple instances of a functional encryption scheme and use functional decryption keys tied
to a function that outputs a re-encrypted ciphertext under a different encryption key. Several re-encryption
techniques have been studied in the context of functional encryption [AJ15, BV15, BKS18, GS16, LM16],
but we cannot directly use such techniques as we see below.

Known techniques and their limitations It was shown that single-key weakly succinct PKFE implies
collusion-resistant PKFE by Garg and Srinivasan [GS16] and Li and Micciancio [LM16]. Our starting
point is the technique by Li and Micciancio. It is unclear whether the technique by Garg and Srinivasan is
applicable in the secret-key setting since it seems that they use plain public-key encryption in an essential
way.

The main technical tool of Li and Micciancio is the PRODUCT construction. Given two PKFE
schemes, the PRODUCT construction combines them into a new PKFE scheme. The most notable feature
of the PRODUCT construction is that the number of functional decryption keys of the resulting scheme
is the product of those of the building block schemes. That is, we can obtain q1 · q2-key PKFE scheme
from q1-key and q2-key PKFE schemes via the PRODUCT construction. By applying the PRODUCT
construction k times iteratively, we can construct a λk-key PKFE scheme from a λ-key PKFE scheme,
where λ is the security parameter. Note that we can in turn construct a λ-key PKFE scheme by simply
running λ instances of a single-key PKFE scheme in parallel. Moreover, if the underlying single-key
scheme is weakly succinct, the running time of the λk-key scheme is sublinear in the size of functions
and a polynomial of k, λ, and the message length (does not incur exponential blow-up). Thus, by setting
k = ω(1), we can construct a λω(1)-key PKFE scheme and achieve collusion-resistance from a single-key
weakly succinct one.9

The PRODUCT construction involves the chaining of re-encryption by functional decryption keys
used in many previous works [AJ15, BV15, BKS18, GS16]. We saw an example in Section 2.1. This
technique causes several difficulties when we adopt the PRODUCT construction in the SKFE setting.
This is also the reason why the building block single-key PKFE scheme must satisfy (weak) succinctness
property. The main cause of the difficulty is the fact that we have to generate a functional key implementing
the encryption circuit in which a master secret key of an SKFE scheme is hardwired to achieve the
re-encryption by functional decryption keys. The fact seems to be a crucial problem for the security
proof since skf might leak information about f . In the PKFE setting, this issue does not arise since an
encryption key is publicly available.

Brakerski, Komargodski, and Segev [BKS18] introduced a new re-encryption technique by functional
decryption keys in the context of multi-input SKFE [GGG+14]. They showed that we can overcome the
difficulty above by using the security notion of function privacy [BS18].

By function privacy, we can hide the information about a master-secret key embedded in a re-encryption
circuit E [MSK∗]. In the normal mode, E [MSK∗] outputs a ciphertext of an input under MSK∗. We embed
a post-re-encrypted ciphertext ctpost (inner encryption) as a trapdoor into a pre-re-encrypted ciphertext

9Li and Micciancio proceeded with the above series of transformations via a index-based variant of PKFE , where each
functional key is indexed by a number, and thus the resulting collusion-resistant scheme is also a index-based scheme. Therefore,
after achieving collusion-resistance, they converted the index-based PKFE scheme into a standard PKFE scheme. For simplicity,
we ignore the issue of index-based constructions in this overview.

17

ctpre (outer encryption) in advance in the simulation for the security proof. We can switch the normal
mode to the trapdoor mode by using the security of outer encryption. Embedding ctpost is crucial to
preserve the output equivalence of E . In the trapdoor mode, E directly outputs the embedded ctpost and
we can remove MSK∗ from the re-encryption circuit E . Thus, we can reduce the security of the resulting
scheme to that of the inner encryption scheme (corresponding to MSK∗).

Their technique is useful, but it incurs a polynomial blow-up of the running time of the encryption circuit
for each application of a construction with the re-encryption procedure by a functional decryption key.
This is because it embeds a ciphertext into another ciphertext (we call this nested-ciphertext-embedding).

Such a nest does not occur with the technique of Li and Micciancio in the PKFE setting since a
post-re-encrypted ciphertext as a trapdoor is embedded in a functional decryption key. Even if we embed
ciphertexts in a functional key, we cannot avoid the issue of nested-ciphertext embedding because the
number of ciphertext queries is not a-priori bounded in the secret-key setting.

In fact, we obtain a new PRODUCT construction by accommodating the function privacy and
nested-ciphertext-embedding technique to the PRODUCT construction of Li and Micciancio. However,
if we use our new PRODUCT construction in a naive way, each application of the new PRODUCT
construction incurs a polynomial blow-up of the encryption time. In general, k applications of our new
PRODUCT construction with nested-ciphertext-embedding incur a double exponential blow-up λ2O(k) .
Thus, in a naive way, we can apply our new PRODUCT construction iteratively only a constant number of
times. This is not sufficient for our goal since we must apply our new PRODUCT construction ω(1) times
to achieve collusion-resistant SKFE.

Our solution: Sandwiched size-shifting To solve the difficulty of size blow-up, we propose a new
construction technique called “sandwiched size-shifting”. In this new technique, we use a hybrid
encryption methodology to reduce the exponential blow-up of the encryption time caused by our new
PRODUCT construction with nested-ciphertext-embedding.

A hybrid encryption methodology is used in many encryption schemes. In particular, Ananth,
Brakerski, Segev, and Vaikuntanathan [ABSV15] showed that a hybrid encryption construction is useful
in designing adaptively secure functional encryption from selectively secure one without any additional
assumption. Brakerski et al. [BKS16] also used a hybrid encryption construction to achieve multi-input
SKFE.

In this study, we propose a new hybrid encryption construction for functional encryption to reduce the
encryption time of a functional encryption scheme without any additional assumption. Our key tool is a
single-ciphertext collusion-resistant SKFE scheme called 1CT, which is constructed only from one-way
functions. The notable features of 1CT are as follows.

1. The size of a master secret key of 1CT is independent of the length of a message to be encrypted.
2. The encryption is fully succinct.
3. The size of a functional decryption key is only linear in the size of a function.

The drawback of 1CT is that we can generate only one ciphertext. However, this is not an issue for our
purpose since a master secret key of 1CT is freshly chosen at each ciphertext generation in our hybrid
construction.

1CT is based on a garbled circuit [Yao86]. A functional decryption key is a garbled circuit of f
with encrypted labels by a standard secret-key encryption scheme.10 A ciphertext consists of a randomly
masked message and keys of the secret-key encryption scheme that corresponds to the randomly masked
message. Thus, we can generate only one ciphertext since if two ciphertexts are generated, then labels
for both bits are revealed and the security of the garbled circuit is completely broken. Note that 1CT

10Each pair of labels is shuffled by a random masking.

18

is selectively secure. In fact, this construction is a flipped variant of the single-key SKFE by Sahai and
Seyalioglu [SS10].

We then modify the SKFE variant of the hybrid construction proposed by Ananth et al. [ABSV15].11
We use 1CT as data encapsulation mechanism and a q-key weakly succinct SKFE scheme SKFE as key
encapsulation mechanism. In our hybrid construction, the encryption algorithm of SKFE encrypts only
short values (concretely, a one-time master secret-key of 1CT), which are independent of the length of a
message to be encrypted. A one-time encryption key (short and fixed length) of 1CT is encrypted by
SKFE.

That is, by this hybrid construction, a real message part is shifted onto 1CT, whose ciphertext has the
full succinctness property. In other words, we can separate the blow-up due to recursion from nested-
ciphertext-embedding part. Therefore, we call our new hybrid construction technique “size-shifting”. See
Section 10.1 for more detailed intuition.

The third property of 1CT is also important. The size of a functional key of 1CT affects the encryption
time of the hybrid construction. This is because a functional key for f of the hybrid construction consists
of a functional key of SKFE for a functionG, which generates a functional key of 1CT for f . A simplified
description of G is below.12 Due to the third property of 1CT, the hybrid construction preserves weak

Hard-Coded Constants: f . // Description of (simplified) G
Input: 1CT.MSK

1. Return 1CT.skf ← 1CT.KG(1CT.MSK, f).

succinctness.
Moreover, from the above construction of the key generation algorithm, the number of issuable

functional keys of the resulting scheme is the minimum of those of building block SKFE and 1CT.
Therefore, since 1CT is collusion-resistant, if SKFE supports q functional keys, then so does the resulting
scheme, where q is any fixed polynomial of λ.

Thus, we can apply the hybrid construction after each application of our new PRODUCT construction,
preserving the weak succinctness and the number of functional keys that can be released.

The size-shifting procedure is “sandwiched” by each our new PRODUCT construction. As a result,
we can reduce the blow-up of the encryption time after k iterations to k ·λO(1) if the underlying single-key
scheme is weakly succinct while the naive k iterated applications of our new PRODUCT construction
incurs λ2O(k) size blow-up. Therefore, we can iterate our new PRODUCT construction ω(1) times via
the size-shifting and construct a collusion-resistant SKFE scheme based only on a single-key (weakly)
succinct SKFE scheme.13

Figure 5 illustrates how to construct our building blocks. An illustration of our sandwiched size-shifting
procedure is described in Figure 6.

3 Preliminaries

We define some notations and cryptographic primitives.

Notations We write x r←− X to denote that an element x is chosen from a finite set X uniformly at
random and y ← A(x; r) to denote that the output of an algorithm A on an input x and a randomness r is

11Their goal is to construct an adaptively secure scheme. They used adaptively secure single-ciphertext functional encryption
that is non-succinct as data encapsulation mechanism.

12We ignore the issue of the randomness for the key generation. We use a PRF to solve this issue in the actual scheme.
13 While we can reduce the blow-up of the encryption time, we cannot reduce the security loss caused by each iteration step.

As a result, λω(1) security loss occurs after ω(1) times iterations. This is the reason our transformation incurs quasi-polynomial
security loss.

19

1-key weakly
succinct SKFE

λ-key weakly
succinct SKFE

OWFGC

1-ct collusion-resistant
fully succinct SKFE

+
Sec. 8.2 Parallelization ([LM16]) in Sec. 8.1

Trivial[Yao86]

Figure 5: An illustration of our building blocks. Gray boxes denote our core schemes used in our iterated
conctruction in Figure 6.

λ-key weakly
succinct SKFE

1-ct collusion-resistant
fully succinct SKFE

λk−1-key weakly
succinct SKFE

λk−1-key weakly
succinct SKFE
w/ expanded ct

λk−1 ·λ-key weakly
succinct SKFE
w/ expanded ct

+ +· · · · · ·

Transformation in Sec 8.3
(Size-shifting)

Transformation in Sec 9
(Our new PRODUCT)

Figure 6: An illustration of our iteration technique, in which our size-shifting procedure is sandwiched. For k-th
iteration, first, we apply the size-shifting procedure to a λk−1-key weakly succinct SKFE scheme with expanded
ciphertexts incurred by nested-ciphertext-embedding (the result of (k − 1)-th iteration). Second, we apply our new
PRODUCT construction to increase the number of issuable keys.

assigned to y. When there is no need to write the randomness explicitly, we omit it and simply write
y ← A(x). Let y := z denote that y is set, defined, or substituted by z. For strings x and y, x‖y denotes
the concatenation of x and y. Throughout this paper, λ denotes a security parameter and poly denotes
an unspecified polynomial. A function f(λ) is a negligible function if f(λ) tends to 0 faster than 1

λc

for every constant c > 0. We write f(λ) = negl(λ) to denote that f(λ) is a negligible function. PPT
stands for probabilistic polynomial time. Let [n] and [x, y] denote the set of integers {1, . . . , n} and
{x, x+ 1, . . . , y}, respectively.

3.1 Standard Cryptographic Tools

In this section, we review standard cryptographic tools, pseudorandom function (PRF), puncturable PRF,
secret-key encryption (SKE), garbling scheme, and decomposable randomized encoding.

Definition 3.1 (Pseudo-Random Function). Let {FK : {0, 1}`1 → {0, 1}`2 | K ∈ {0, 1}λ} be a family
of polynomially computable functions, where `1 and `2 are some polynomials of λ. We say that F is a
pseudo-random function (PRF) family if for any PPT distinguisher A, there exists negl(·) such that for
every λ ∈ N, it holds that

Advprf
A (λ) :=

∣∣∣Pr
[
AFK(·)(1λ) = 1 | K r←− {0, 1}λ

]
− Pr

[
AR(·)(1λ) = 1 | R r←− U

]∣∣∣ = negl(λ),

where U is the set of all functions from {0, 1}`1 to {0, 1}`2 . We further say that F is ε-secure, for some
concrete negligible function ε(·), if for any PPT A the above advantage is smaller than ε(λ)Ω(1).

20

Theorem 3.2 ([GGM86]). If one-way functions exist, then for all efficiently computable functions n(λ)
andm(λ), there exists a pseudorandom function that maps n(λ) bits tom(λ) bits.

Definition 3.3 (Puncturable PRF). A puncturable PRF consists of a tuple of algorithms PPRF =
(F,Punc) where {FK : {0, 1}`1 → {0, 1}`2 | K ∈ {0, 1}λ} is a PRF family and satisfies the following
two conditions. Note that `1 and `2 are polynomials of λ.

Functionality preserving under puncturing: For any polynomial-size set S ⊆ {0, 1}`1 and any x ∈
{0, 1}`1 \ S, it holds that

Pr
[
FK(x) = FK{S}(x) | K r←− {0, 1}λ,K{S} ← Punc(K,S)

]
= 1.

Pseudorandom at punctured points: For any polynomial-size set S ⊆ {0, 1}`1 and any PPT distin-
guisher A, there exists negl(·) such that for every λ ∈ N, it holds that

|Pr
[
A(FK{S}, {FK(xi)}xi∈S) = 1

]
− Pr

[
A(FK{S}, Uk) = 1

]
| = negl(λ),

whereK r←− {0, 1}λ,K{S} ← Punc(K,S) and U denotes the uniform distribution over {0, 1}`2 .
We further say that PPRF is ε-secure, for some concrete negligible function ε(·), if for any PPT A
the above indistinguishability gap is smaller than ε(λ)Ω(1).

Theorem 3.4 ([GGM86, BW13, BGI14, KPTZ13]). If one-way function exist, then for any polynomials
`1(λ) and `2(λ), there exists a puncturable PRF that maps `1-bits to `2-bits.

Definition 3.5 (Secret key encryption). An SKE scheme SKE is a two tuple (E,D) of PPT algorithms.

• The encryption algorithm E, given a keyK ∈ {0, 1}λ and a messagem ∈M, outputs a ciphertext
c, whereM is the plaintext space of SKE.

• The decryption algorithm D, given a keyK and a ciphertext c, outputs a message m̃ ∈ {⊥} ∪M.
This algorithm is deterministic.

Correctness: We require D(K,E(K,m)) = m for everym ∈M and keyK ∈ {0, 1}λ.

CPA security: We define the security game between a challenger and an adversary A as follows.

1. The challenger generatesK r←− {0, 1}λ and chooses the challenge bit b r←− {0, 1}. Then, the
challenger sends 1λ to A.

2. Amay make polynomially many encryption queries adaptively. A sends (m0,m1) ∈M×M
to the challenger. Then, the challenger returns c← E(K,mb).

3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advcpa
SKE,A(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
| .

For a negligible function ε(·), We say that SKE is ε-secure if for any PPTA, we haveAdvcpa
SKE,A(λ) <

ε(λ)Ω(1).

Theorem 3.6 ([LR88]). If there exist one-way functions, there exists CPA-secure SKE.

Definition 3.7 (Garbling scheme). Let {Cn}n∈N be a family of circuits where each circuit in Cn takes an
n-bit input. A circuit garbling scheme GC is a two tuple (Grbl,Eval) of PPT algorithms.

21

• The garbling algorithm Grbl, given a security parameter 1λ and a circuit C ∈ Cn, outputs a garbled
circuit C̃, together with 2n labels {Lj,α}j∈[n],α∈{0,1}.

• The evaluation algorithm, given a garbled circuit C̃ and n labels {Lj}j∈[n], outputs y.

Correctness: We require Eval(C̃, {Lj,xj}j∈[n]) = C(x) for every n ∈ N, C ∈ Cn, and x ∈ {0, 1}n,
where (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, C) and xj is the j-th bit of x for every j ∈ [n].

Security: Let Sim be a PPT simulator. We define the following game between a challenger and an
adversary A as follows.

1. The challenger chooses the challenge bit b r←− {0, 1} and sends security parameter 1λ to A.
2. A sends a circuit C ∈ Cn and an input x ∈ {0, 1}n for the challenger.
3. If b = 0, the challenger computes (C̃, {Lj,α}j∈[n],α∈{0,1}) ← Grbl(1λ, C) and returns

(C̃, {Lj,xj}j∈[n]) toA. Otherwise, the challenger returns (C̃, {Lj}j∈[n])← Sim(1λ, |C|, C(x)).
4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advgc
GC,A,Sim(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
| .

For a concrete negligible function ε(·), We say that GC is ε-secure if there exists a PPT Sim such
that for any PPT A, we have Advgc

GC,A,Sim(λ) < ε(λ)Ω(1).

Theorem 3.8 ([Yao86, BHR12, LP09]). If there exist one-way functions, there exists secure garbling
scheme for any polynomial size circuits.

Definition 3.9 (Decomposable Randomized Encoding). A decomposable randomized encoding scheme
RE for a function f : {0, 1}n → {0, 1}m consists of two polynomial-time algorithms (RE.E,RE.D).

RE.E(1λ, f) takes as inputs the security parameter 1λ and a function f , and outputs a new function f̂
where f̂ : {0, 1}n × {0, 1}ρ → {0, 1}µ and ρ is the length of randomness used to compute f̂ .

RE.D(ŷ) takes as an input ŷ and outputs y.

A randomized encoding scheme satisfies the following properties. Let s
f̂
(resp. sf) denote the size of

the circuit computing f̂ (resp. f).

Correctness: For anyλ, f , andx, it holds thatPr
[
f(x) = RE.D(f̂(x; r)) | r r←− {0, 1}ρ, f̂ ← RE.E(1λ, f)

]
=

1.

Decomposability: Computation of f̂ can be decomposed into computation of µ functions. That is,
f̂(x; r) = (f̂1(x; r), · · · , f̂µ(x; r)), where each f̂i depends on x ∈ {0, 1}n and r ∈ {0, 1}ρ. We
write f̂(x; r) = (f̂1(x; r), · · · , f̂µ(x; r)). Parameters ρ and µ are bounded by sf · poly(λ, n).

Security: Let RE.Sim be a PPT simulator. We define the following game between a challenger and an
adversary A as follows.

1. The challenger chooses a bit b r←− {0, 1} and sends the security parameter 1λ to A.
2. A sends a function f and input x ∈ {0, 1}n to the challenger.

22

3. If b = 0, the challenger computes {f̂i}µi=1 ← RE.E(1λ, f) and {f̂i(x; r)}µi=1 by choosing
r

r←− {0, 1}ρ, and returns {f̂i(x; r)}µi=1 to A. Otherwise, the challenger returns {ŷ}µi=1 ←
RE.Sim(1λ, 1|f |, f(x)).

4. A outputs a guess b′ ∈ {0, 1}.

In this game, we define the advantage of A as

Advdre
RE,A,RE.Sim(λ) :=

∣∣Pr
[
b′ = b | b = 0

]
− Pr

[
b′ = 1 | b = 1

]∣∣.
For a concrete negligible function ε(·), we say that RE is ε-secure if there exists a PPT RE.Sim
such that for any PPT A, we have Advdre

RE,A,RE.Sim(λ) < ε(λ)Ω(1).

Theorem 3.10 ([Yao86, AIK06]). If there exist one-way function, there exists secure decomposable
randomized encoding for all polynomial size functions.

3.2 Secret-Key Functional Encryption

We review the definition of standard secret-key functional encryption (SKFE) and its variant in this
section.

Definition 3.11 (Secret-key functional encryption). An SKFE scheme SKFE is a tuple of four PPT
algorithms (Setup,KG,Enc,Dec). Below, letM and F be the message space and function space of
SKFE, respectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK and a function f ∈ F , outputs a
functional decryption key skf .

• The encryption algorithm Enc, given a master secret key MSK and a messagem ∈M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

Correctness: We require Dec(KG(MSK, f),Enc(MSK,m)) = f(m) for every m ∈ M, f ∈ F , and
MSK← Setup(1λ).

Next, we introduce selective-message message privacy for SKFE schemes.

Definition 3.12 (Selective-message message privacy). Let SKFE be an SKFE scheme whose message
space and function space are M and F , respectively. Let q be a polynomial of λ. We define the
selective-message message privacy game between a challenger and an adversary A as follows.

Initialization First, the challenger sends security parameter 1λ to A. Then, A sends {(m`
0,m

`
1)}`∈[p] to

the challenger, where p is an a-priori unbounded polynomial of λ. Next, the challenger generates
a master secret key MSK ← Setup(1λ) and chooses the challenge bit b r←− {0, 1}. Finally, the
challenger generates ciphertexts CT(`) ← Enc(MSK,m`

b)(` ∈ [p]) and sends them to A.

Key queries A may adaptively make key queries q times at most. For a key query f ∈ F from A,
the challenger generates skf ← KG(MSK, f), and returns skf to A. Here, f needs to satisfy
f(m`

0) = f(m`
1) for all ` ∈ [p].

Final phase A outputs b′ ∈ {0, 1}.

23

In this game, we define the advantage of A as

Advsm-mp
SKFE,A(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
| .

A is said to be valid if each function query f made by A satisfies that f(m`
0) = f(m`

1) for all ` ∈ [p] in
the above game. For a negligible function ε(·), We say that SKFE is (q, ε)-selective-message message
private if for any valid PPT A, we have Advsm-mp

SKFE,A(λ) < ε(λ)Ω(1).

We further say that an SKFE scheme is (poly, ε)-selective-message message private if it is (q, ε)-
selective-message function private for any polynomial q. Note that a (poly, ε)-selective-message function
private SKFE scheme is also said to be ε-secure collusion-resistant.

Next, we introduce selective-message function privacy for SKFE schemes.

Definition 3.13 (Selective-message function privacy). Let SKFE be an SKFE scheme whose message
space and function space areM and F , respectively. Let q be a fixed polynomial of λ. We define the
selective-message function privacy game between a challenger and an adversary A as follows.

Initialization First, the challenger sends security parameter 1λ to A. Then, A sends {(m`
0,m

`
1)}`∈[p] to

the challenger, where p is an a-priori unbounded polynomial of λ. Next, the challenger generates
a master secret key MSK ← Setup(1λ) and chooses a challenge bit b r←− {0, 1}. Finally, the
challenger generates ciphertexts CT(`) ← Enc(MSK,m`

b)(` ∈ [p]) and sends them to A.
A may adaptively make key queries q times at most.

Key queries For a key query (f0, f1) ∈ F × F from A, the challenger generates skf ← KG(MSK, fb),
and returns skf to A. Here, f0 and f1 need to be the same size and satisfy f0(m`

0) = f1(m`
1) for

all ` ∈ [p].

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advsm-fp
SKFE,A(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
|.

For a negligible function ε(·), We say that SKFE is (q, ε)-selective-message function private if for any
PPT A, we have Advsm-fp

SKFE,A(λ) < ε(λ)Ω(1).

We say that an SKFE scheme is (poly, ε)-selective-message function private if it is (q, ε)-selective-
message function private for any polynomial q. Note that a (poly, ε)-selective-message function private
SKFE scheme is also said to be ε-secure collusion-resistant.14

From message privacy to function privacy If A is allowed to send only a function f (not a pair of
functions) that satisfies f(m`

0) = f(m`
1) for all ` at each key query in Definition 3.13, then we call the

security selective-message message privacy. A transformation from message private to function private
SKFE is known.

Theorem 3.14 ([BS18]). If there exists a (q, δ)-selective-message message private SKFE scheme where q
is any fixed polynomial, there exists a (q, δ)-selective-message function private SKFE scheme.

14 Collusion-resistance generally does not require function privacy. Not only function private schemes but also message
private schemes are referred to as collusion-resistant if they are secure against a-priori unbounded polynomial number of
functional key queries.

24

From selective security to adaptive security If A can send the target messages {(m`
0,m

`
1)}`∈[p]

adaptively in Definitions 3.12 and 3.13, then we call the security adaptive-message message/function
privacy. There is a transformation from selective security to adaptive security.

Theorem 3.15 ([ABSV15, BS18]). If there exists a (q, δ)-selective-message message private SKFE
scheme where q is any fixed polynomial, there exists a (q, δ)-adaptive-message function private SKFE
scheme.

Variants of Security We can consider an weaker security notion called selective-message-function
function privacy.

Definition 3.16 (Selective-message-function Function Privacy). The selective-message-function func-
tion privacy game is the same as the selective-message function privacy game except that A must submit
not only messages (m1

0,m
1
1), · · · , (mp

0,m
p
1) but also functions (f1

0 , f
1
1), . . . , (f q0 , f

q
1) to the challenger

at the beginning of the game. For an SKFE scheme SKFE and adversary A, the modified advantage
Advsmf-fp

SKFE,A(λ) is similarly defined as Advsm-fp
SKFE,A(λ). Then, SKFE is said to be selective-message-function

function private if Advsmf-fp
SKFE,A(λ) is negligible for any PPT A.

Index Based Secret-Key Functional Encryption In this paper, we increase the number of functional
keys an SKFE scheme supports through the index based variant SKFE scheme introduced by Li and
Micciancio [LM16]. They showed how to increase the number of functional keys a public-key functional
encryption scheme supports through the index based variant syntax. We introduce the syntax of index
based variant SKFE here. We call it index based secret-key functional encryption (iSKFE). Index based
means that in order to generate the i-th functional key, we need to feed an index i to the key generation
algorithm. The index based definition is required to use the strategy similar to that of Li and Micciancio.
More precisely, we need an index since we use bounded collusion-resistant schemes as building blocks
and need to control how many functional keys are generated under a master secret key.

In fact, for a single-key scheme, an iSKFE scheme is also an standard SKFE scheme where the key
generation algorithm does not take an index as an input by assuming that the index is always fixed to 1.
In addition, if an iSKFE scheme supports super-polynomially many number of functional keys, we can
easily transform it into an ordinary SKFE scheme. See Remark 3.19 for more details.

Definition 3.17 (Index based secret-key functional encryption). An iSKFE scheme iSKFE is a four
tuple (Setup, iKG,Enc,Dec) of PPT algorithms. Below, letM, F , and I be the message space, function
space, and index space of iSKFE, respectively.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The index based key generation algorithm iKG, given a master secret key MSK, a function f ∈ F ,
and an index i ∈ I, outputs a functional decryption key skf .

• The encryption algorithm Enc, given a master secret key MSK and a messagem ∈M, outputs a
ciphertext CT.

• The decryption algorithm Dec, given a functional decryption key skf and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

Correctness We require Dec(iKG(MSK, f, i),Enc(MSK,m)) = f(m) for everym ∈M, f ∈ F , i ∈ I ,
and MSK← Setup(1λ).

25

Next, we introduce selective-message function privacy for iSKFE. Selective-message security is
known to be sufficient for constructing IO from functional encryption. As we see in Theorem 3.14,
we can obtain function privacy in general. Therefore, in this paper, we start the transformation from
selective-message function private single-key SKFE, and use selective-message function privacy as a
standard security notion for SKFE and iSKFE.

Definition 3.18 (Selective-message function privacy). Let iSKFE be an iSKFE scheme whose message
space, function space, and index space areM, F , and I, respectively. We let |I| = q. We define the
selective-message function privacy game between a challenger and an adversary A as follows.

Initialization First, the challenger sends security parameter 1λ to A. Then, A sends {(m`
0,m

`
1)}`∈[p] to

the challenger, where p is an a-priori unbounded polynomial of λ. Next, the challenger generates
a master secret key MSK ← Setup(1λ) and chooses a challenge bit b r←− {0, 1}. Finally, the
challenger generates ciphertexts CT(`) ← Enc(MSK,m`

b)(` ∈ [p]) and sends them to A.
A may adaptively make key queries q times at most.

Key queries For a key query (i, f0, f1) ∈ I × F × F from A, the challenger generates skf ←
KG(MSK, fb, i), and returns skf to A. Here, f0 and f1 need to be the same size and satisfy
f0(m`

0) = f1(m`
1) for all ` ∈ [p]. Moreover, A is not allowed to make key queries for the same

index i twice.

Final phase A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advsm-fp
iSKFE,A(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
|.

For a negligible function ε(·), We say that iSKFE is (q, ε)-selective-message function private if for any
PPT A, we have Advsm-fp

iSKFE,A(λ) < ε(λ)Ω(1).

Below, we say that an iSKFE scheme is (poly, ε)-selective-message function private if the size of its
index space q is super-polynomial.

Remark 3.19 (Transforming iSKFE into SKFE). One of the goals in this paper is to construct (poly, ε)-
selective-message function private SKFE based only on (1, ε′)-selective-message function private SKFE
for some negligible functions ε and ε′. To achieve this task, we first construct (poly, δ)-selective-message
function private iSKFE for some negligible function δ.

Note that if the size of the index space is super-polynomial, we can transform it into SKFE without
compromising the security. This is done by slightly changing the key generation algorithm so that it first
picks a random index from the index space then generates a functional key using the randomly chosen
index in every invocation. Let S be the size of the index space of iSKFE. Then, the probability that
the same index is used in different invocations of the key generation algorithm is bounded by O(q

2

S).
Therefore, the resulting SKFE is (poly, 1

S + δ)-selective-message function private. In Section 10.4, we
formally show that this transformation works.

Succinctness for Functional Encryption. Next, we define the succinctness for SKFE and iSKFE.

Definition 3.20 (Succinctness). Let s and n be the maximum size and input length of functions contained
in F , respectively.

Succinct: We say that SKFE (or iSKFE) is succinct if the size of the encryption circuit is bounded by
poly(λ, n, log s).

26

Weakly succinct: We say that SKFE (or iSKFE) is weakly succinct if the size of the encryption circuit is
bounded by sγ · poly(λ, n), where γ < 1 is a fixed constant. We sometimes call γ the compression
factor.

Collusion-succinct: We say that SKFE (or iSKFE) is collusion succinct if the size of the encryption
circuit is bounded by poly(n, λ, s, log q), where q is the upper bound of the number of functional
decryption keys that adversaries receive in bounded-key schemes.

Weakly collusion-succinct: We say that SKFE (or iSKFE) is weakly collusion-succinct if the size of the
encryption circuit is bounded by qγ · poly(n, λ, s), where q is the upper bound of the number of
functional decryption keys that adversaries receive and γ < 1 is a fixed constant.

In this paper, we focus on iSKFE for P/poly. Below, unless stated otherwise, let the function space of
iSKFE be P/poly.

3.3 Indistinguishability Obfuscation

We review the definition of indistinguishability obfuscation (IO) and its variant.

Definition 3.21 (Indistinguishability obfuscation). A PPT algorithm iO is an indistinguishability
obfuscator (IO) for a circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(1λ, C)

]
= 1 .

Indistinguishability: for any poly-size distinguisher D, there exists a negligible function negl(·) such
that the following holds: for all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of
the same size and such that C0(x) = C1(x) for all inputs x, then∣∣∣Pr

[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]∣∣∣ = negl(λ) .

We further say that iO is ε-secure, for some concrete negligible function ε(·), if for any PPT
distinguisher the above advantage is smaller than ε(λ)Ω(1).

We next define strong exponentially-efficient IO (SXIO).

Definition 3.22 (Strong exponentially-efficient indistinguishability obfuscation). Let γ < 1 be a
constant. A PPT algorithm sxiO is a γ-compressing strong exponentially-efficient indistinguishability
obfuscator (SXIO) for a circuit class {C}λ∈N if it satisfies the functionality and indistinguishability in
Definition 3.21 and the following efficiency requirement:

Non-trivial time efficiency: We require that the running time of sxiO on input (1λ, C) is at most
2nγ · poly(λ, |C|) for every λ ∈ N and circuit C ∈ {Cλ}λ∈N with input length n.

We have the following theorem.

Theorem 3.23 ([BNPW20]). Assuming there exists (poly, ε)-selective-message function private (i.e.,
collusion-resistant) SKFE for all circuits, where ε(·) is a negligible function. Then, for any constant
γ < 1, there exists ε-secure γ-compressing SXIO for polynomial-size circuits with logarithmic size input.

27

4 Puncturable Secret-Key Functional Encryption

We introduce puncturable secret-key functional encryption (puncturable SKFE).
The notion of puncturable SKFE was introduced by Bitansky and Vaikuntanathan [BV15]. They

showed that in their construction of IO, the building block PKFE can be replaced with puncturable SKFE.
However, it has been open whether we can achieve puncturable SKFE without assuming PKFE.

In this work, we answer the question affirmatively. We show how to construct a relaxed variant
of puncturable SKFE scheme that is single-key weakly succinct. Our relaxed variant is sufficient for
constructing IO. Our construction consists of two steps.

1. We prove that a single-key non-succinct puncturable SKFE scheme is constructed only from
one-way functions.

2. We prove that we can transform the non-succinct scheme into a weakly succinct one by using SXIO.

We can construct SXIO based on standard (i.e., not puncturable) SKFE by Theorem 3.23. Thus, we
can construct our puncturable SKFE from standard SKFE.

4.1 Syntax

Our definition of puncturable SKFE introduced below is slightly different from that proposed by Bitansky
and Vaikuntanathan [BV15]. However, we show that puncturable SKFE defined in this paper is also a
sufficient building block of IO. We state differences between our definition and theirs after describing the
syntax and security of our puncturable SKFE.

In the journal version, Bitansky and Vaikuntanathan [BV18] also proposed a notion of puncturable
functional encryption, which can be seen as an abstraction of the PKFE scheme used in their construction
of IO. We also briefly explain the notion of puncturable functional encryption after introducing our
definition.

Definition 4.1 (Puncturable secret-key functional encryption). A puncturable SKFE scheme pSKFE
is a tuple (Setup,KG,Enc,Dec,Punc,PEnc) of six PPT algorithms. Below, letM, F , and T be the
message space, function space, and tag space of pSKFE, respectively. In addition, let q be a polynomial
denoting the upper bound of the number of functional keys given to adversaries.

• The setup algorithm Setup, given a security parameter 1λ, outputs a master secret key MSK.

• The key generation algorithm KG, given a master secret key MSK, function f ∈ F , and an index
i ∈ [q], outputs a functional key skf .

• The encryption algorithm Enc, given a master secret key MSK, a tag tag, and a messagem ∈M,
outputs a ciphertext CT.

• The decryption algorithm Dec, given a functional key skf , a tag tag, and a ciphertext CT, outputs
a message m̃ ∈ {⊥} ∪M.

• The puncturing algorithm Punc, given a master secret key MSK and a tag tag, outputs a punctured
master secret key MSK∗{tag}

• The punctured encryption algorithm PEnc, given a punctured master secret key MSK∗, a tag tag′,
and a messagem, outputs a ciphertext CT.

Correctness: For everym ∈M, f ∈ F , i ∈ [q], tag ∈ T , and MSK← Setup(1λ), we require that

Dec(KG(MSK, f, i), tag,Enc(MSK, tag,m)) = f(m) .

28

4.2 Security

In this section, we introduce two variants of security. Their difference is the functionality of punctured
encryption algorithms.

Definition 4.2 (Secure puncturable SKFE). Let pSKFE = (Setup,KG,Enc,Dec,Punc,PEnc) be punc-
turable SKFE. Below, letM, F , and T be the message space, function space, and tag space of pSKFE,
respectively. In addition, let q be a polynomial denoting the upper bound of the number of functional
keys given to adversaries. We say that pSKFE is secure puncturable SKFE if it satisfies the following
properties.

Functionality preserving under puncturing: For every m ∈ M, (tag, tag′) ∈ T × T such that
tag 6= tag′, randomness r, MSK ← Setup(1λ), and MSK∗{tag} ← Punc(MSK, tag), it holds
that

PEnc(MSK∗{tag}, tag′,m; r) = Enc(MSK, tag′,m; r) .

Semantic security at punctured tag: We define punctured semantic security game between a challenger
and an adversary A as follows.

1. The challenger generates a master secret key MSK← Setup(1λ) and chooses a challenge bit
b

r←− {0, 1}. The challenger sends security parameter 1λ to A.
2. A sends (m0,m1) ∈ M×M, tag ∈ T , and {fi}i∈[q] ∈ Fq to the challenger. We require

that for every i ∈ [q] it holds that fi(m0) = fi(m1).
3. The challenger computes CT ← Enc(MSK, tag,mb), skfi ← KG(MSK, fi, i) for every
i ∈ [q], and MSK∗{tag} ← Punc(MSK, tag).
Then, the challenger returns (MSK∗{tag},CT, {skfi}i∈[q]) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advss
pSKFE,A(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
| .

A is said to be valid if fi(m0) = fi(m1) holds for every i ∈ [q] in the above game.
We say that pSKFE satisfies semantic security at punctured tag if for any valid PPT A, we have
Advss

pSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ε-semantic security at punctured tag, for some concrete
negligible function ε(·), if for any valid PPTA the above advantage Advss

pSKFE,A(λ) is smaller than
ε(λ)Ω(1).

In addition, we say that pSKFE is ε-secure puncturable SKFE if it satisfies functionality preserving under
puncturing and ε-semantic security at punctured tag.

Instead of functionality preserving under puncturing, we can consider a relaxed variant which we call
indistinguishability of functionality under puncturing. This property requires that any PPT distinguisher
cannot distinguish ciphertexts output by Enc and PEnc even given both master secret key and punctured
master secret key. The formal definition is as follows.

Definition 4.3 (Indistinguishability of functionality underpuncturing). LetpSKFE = (Setup,KG,Enc,
Dec,Punc,PEnc) be puncturable SKFE whose message space and tag space areM and T , respectively.
We define indistinguishability of functionality game between a challenger and an adversary A as follows.

29

1. The challenger generates a master secret key MSK ← Setup(1λ) and chooses a challenge bit
b

r←− {0, 1}. The challenger sends security parameter 1λ to A.

2. A sendsm ∈M and (tag, tag′) ∈ T × T such that tag 6= tag′ to the challenger.

3. The challenger first computes MSK∗{tag} ← Punc(MSK, tag). Then, the challenger computes
CT← Enc(MSK, tag′,m) if b = 0, and otherwise CT← PEnc(MSK∗{tag}, tag′,m).
Then, the challenger returns (MSK,MSK∗{tag},CT) to A.

4. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as

Advif
pSKFE,A(λ) := 2|Pr

[
b = b′

]
− 1

2 | = |Pr
[
b′ = 1 | b = 0

]
− Pr

[
b′ = 1 | b = 1

]
| .

We say that pSKFE satisfies indistinguishability of functionality under puncturing if for any PPT A,
there exists negl(·) such that for every λ ∈ N, we have Advif

pSKFE,A(λ) = negl(λ).
We further say that pSKFE satisfies ε-indistinguishability of functionality under puncturing, for some

concrete negligible function ε(·), if for any PPT A the above advantage Advif
pSKFE,A(λ) is smaller than

ε(λ)Ω(1).

Definition 4.4 (Secure puncturable SKFE with indistinguishability of functionality). Let pSKFE be
puncturable SKFE. Let ε1(·) and ε2(·) be some negligible functions. If pSKFE satisfies ε1-semantic
security at punctured tag and ε2-indistinguishability of functionality under puncturing, then we say that
pSKFE is (ε1, ε2)-secure puncturable SKFE with indistinguishability of functionality.

Efficiency. We can consider the same notions of succinctness for puncturable SKFE as those for
SKFE Definition 3.20.

Definition 4.5. We say that puncturable SKFE is succinct (resp., weakly succinct, collusion-succinct, or
weakly collusion-succinct) if the size of the encryption circuit and puncturable encryption circuit is succinct
(resp., weakly succinct, collusion-succinct, or weakly collusion-succinct) in the sense of Definition 3.20.

4.3 Difference from Definition of Bitansky and Vaikuntanathan

There are three main differences between our definition of puncturable SKFE and that of Bitansky and
Vaikuntanathan [BV15]. Two are about syntax. The other is about security.

Syntactical differences are as follows.

Tag-based encryption and decryption: In the definition of Bitansky and Vaikuntanathan, a master
secret key is punctured at two messages. Their semantic security requires that no PPT adversary
can distinguish ciphertexts of these two messages given the punctured master secret key.
We adopt the tag based syntax for the encryption and decryption algorithms while Bitansky and
Vaikuntanathan do not. A tag-based definition is well-suited for our non-succinct puncturable
SKFE scheme. When our non-succinct scheme encrypts a message, it generates a garbled circuit of
a universal circuit into which the message is hardwired, and then masks labels of the garbled circuit
by a string generated by puncturable PRF. A tag fed to the encryption algorithm is used as an input
to puncturable PRF. See Section 5 for details.
In our construction of IO in Section 7, we use an input to an obfuscated circuit as a tag for ciphertexts
of puncturable SKFE. Therefore, our IO construction is not significantly different from the IO
construction based on puncturable SKFE by Bitansky and Vaikuntanathan from the syntactical
point of view though ours is based on tag-based puncturable SKFE.

30

Index based key generation: We define the key generation algorithm as a stateful algorithm. In other
words, for the i-th invocation, we need to feed an index i to the key generation algorithm in addition
to a master secret key and a function. This is because we transform a non-succinct scheme into a
weakly succinct one via a collusion-succinct scheme whose key generation algorithm is stateful in
Section 6.

We note that our stateful collusion-succinct scheme is just an intermediate scheme to achieve IO.
We also emphasize the fact that the index-based key generation is not an issue to construct IO
because our main building block is a single-key weakly succinct puncturable SKFE scheme. For a
single-key scheme, we do not need any state for key generation because it can issue only a single
functional key.

Below, we omit the index of single-key schemes in the syntax for simplicity.

Functionality under puncturing In addition to the syntactic differences above, there is a difference
about security. We defined indistinguishability of functionality under puncturing in Definition 4.3. The
reason why we introduce the relaxed notion of functionality preserving property is that our weakly succinct
scheme does not satisfy functionality preserving under puncturing in Definition 4.2 but the relaxed one.
Our non-succinct scheme satisfies functionality preserving under puncturing.

We show that indistinguishability of functionality under puncturing suffices for constructing IO and
our weakly succinct scheme satisfies the property.

Puncturable functional encryption [BV18] In the journal version, Bitansky and Vaikuntanathan also
proposed a notion of puncturable functional encryption, and described their construction of IO using
puncturable functional encryption.

The definition of puncturable functional encryption is significantly different from that of puncturable
SKFE. Puncturable functional encryption is designed so that it also captures the mechanism based on the
function-hiding technique by Brakerski and Segev [BS18] used inside their IO construction. On the
other hand, the definition of puncturable SKFE does not capture the function-hiding mechanism. Our
IO construction in Section 7 directly implements the function-hiding mechanism on top of puncturable
SKFE similarly to the IO construction based on PKFE by BV15 [BV15].

5 Single-Key Non-Succinct Puncturable SKFE

We show we can construct a single-key (non-succinct) puncturable SKFE scheme assuming only one-way
functions. This construction is similar to that of single-key non-succinct PKFE proposed by Sahai and
Seyalioglu [SS10]. Their construction is based on garbling scheme and public-key encryption. In our
construction, we use puncturable PRF instead of public-key encryption, and, as a result, achieve the
puncturable property. We recall that we can realize both garbling scheme and puncturable PRF assuming
only one-way functions. We give the construction below.

Let GC = (Grbl,Eval) be garbling scheme, and PPRF = (F,PuncF) be puncturable PRF. Us-
ing GC and PPRF, we construct puncturable SKFE OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc,
1Key.Dec, 1Key.Punc, 1Key.PEnc) supporting only one functional key as follows. Note that the tag
space of OneKey is the same as the domain of PPRF. In addition, the index space of OneKey is [1], and
thus we omit the index from the description by assuming the index is always fixed to 1. Below, we assume
that we can represent every function f by an s-bit string (f [1], · · · , f [s]).

Construction The scheme consists of the following algorithms.

1Key.Setup(1λ) :

31

• Generate Sj,α
r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}.

• Return MSK := {Sj,α}j∈[s],α∈{0,1}.

1Key.KG(MSK, f) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK and (f [1], · · · , f [s])← f .
• Return skf := (f, {Sj,f [j]}j∈[s]).

1Key.Enc(MSK, tag,m) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.

• Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·,m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← FSj,α(tag) and cj,α := Lj,α ⊕Rj,α.

• Return CT := (Ũ , {cj,α}j∈[s],α∈{0,1}).

1Key.Dec(skf , tag,CT) :

• Parse (f, {Sj}j∈[s])← skf and (Ũ , {cj,α}j∈[s],α∈{0,1})← CT.
• For every j ∈ [s], compute Rj ← FSj (tag) and Lj := cj,f [j] ⊕Rj .

• Return y ← Eval(Ũ , {Lj}j∈[s]).

1Key.Punc(MSK, tag) :

• Parse {Sj,α}j∈[s],α∈{0,1} ← MSK.
• For every j ∈ [s] and α ∈ {0, 1}, compute S∗j,α{tag} ← PuncF(Sj,α, tag).
• Return MSK∗{tag} := {S∗j,α{tag}}j∈[s],α∈{0,1}.

1Key.PEnc(MSK∗, tag′,m)

• Parse {S∗j,α}j∈[s],α∈{0,1} ← MSK∗.

• Compute (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·,m)).
• For every j ∈ [s] and α ∈ {0, 1}, compute Rj,α ← FS∗j,α(tag′) and cj,α := Lj,α ⊕Rj,α.

• Return CT := (Ũ , {cj,α}j∈[s],α∈{0,1}).

Then, we have the following theorem.

Theorem 5.1. Let GC be δ-secure garbling scheme, and PPRF δ-secure puncturable PRF, where δ(·) is
some negligible function. Then, OneKey is δ-secure single-key puncturable SKFE.

Proof of Theorem 5.1 The correctness follows from those of GC and PPRF. We first prove the
functionality preserving under puncturing of OneKey. Then, we show that OneKey satisfies semantic
security at punctured tag.

Functionality preserving under puncturing We have 1Key.PEnc(MSK∗{tag}, tag′,m; r) =
1Key.Enc(MSK, tag′,m; r) for everym ∈M, (tag, tag′) ∈ T × T such that tag 6= tag′, randomness r,
MSK← 1Key.Setup(1λ), and MSK∗{tag} ← 1Key.Punc(MSK, tag), since the underlying PPRF satis-
fies functionality preserving under puncturing property. This implies that OneKey satisfies functionality
preserving under puncturing property.

32

Semantic security at punctured tag LetA be a valid adversary that attacks the semantic security at
punctured tag ofOneKey. We proceed the proof via a sequence of games. Below, for every ` ∈ {0, 1, 2, 3},
let SUC` be the event that A succeeds in guessing the challenge bit b in Game `.

Game 0: This is the original security game regarding OneKey. Then, we have Advss
pSKFE,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generates Sj,α
r←− {0, 1}λ for every j ∈ [s] and α ∈ {0, 1}, and sets

MSK ← {Sj,α}j∈[s],α∈{0,1}. The challenger also chooses a challenge bit b r←− {0, 1}. The
challenger sends security parameter 1λ to A.

2. A sends (m0,m1) ∈M×M, tag ∈ T , and a function f to the challenger.
3. The challenger computes (Ũ , {Lj,α}j∈[s],α∈{0,1})← Grbl(1λ, U(·,mb)) andRj,α ← FSj,α(tag)

and cj,α := Lj,α⊕Rj,α for every j ∈ [s] andα ∈ {0, 1}, and setsCT := (Ũ , {cj,α}j∈[s],α∈{0,1}).
Next, the challenger sets skf ← (f, {Sj,f [j]}j∈[s]).
Then, the challenger computes S∗j,α{tag} ← PuncF(Sj,α, tag) for every j ∈ [s] and α ∈
{0, 1}, and sets MSK∗{tag} ← {S∗j,α{tag}}j∈[s],α∈{0,1}.
The challenger returns (MSK∗{tag},CT, skf) to A.

4. A outputs b′ ∈ {0, 1}.

Game 1: Same as Game 1 except that the challenger generates {Rj,1−f [j]}j∈[n] as truly random strings.

From the pseudorandomness of punctured point of PPRF, we see that |Pr[SUC0]− Pr[SUC1]| ≤
δΩ(1).

Game 2: Same as Game 2 except that for every j ∈ [n], the challenger generates cj,1−f [j] ← Rj,f [j].

In Game 1, cj,1−j[j] is generated as cj,1−f [j] := Lj,1−f [j]⊕Rj,1−f [j] for every j ∈ [n]. However, in
Game 1, Rj,1−f [j] is generated as a truly random string for every j ∈ [n], and thus the distribution
of cj,1−f [j] is uniformly random. Therefore, In Game 1 and 2, the distribution of cj,1−f [j] for every
j ∈ [n] is the same and we have |Pr[SUC1]− Pr[SUC2]| = 0.

Game 3: Same as Game 2 except that the challenger computes (Ũ , {Lj}j∈[n])← Sim(1λ, |U(·,mb)|, y)
and cj,f [j] := Rj,f [j] ⊕ Lj , where y = f(m0) = f(m1).
In both Game 2 and 3, A is not given any information of labels {Lj,1−f [j}j∈[n]. Therefore, we can
use the security guarantee of GC, and obtain |Pr[SUC2]− Pr[SUC3]| ≤ δΩ(1).

In Game 3, the choice of the challenge bit b is information theoretically hidden from the view of A,
and thus we have

∣∣∣Pr[SUC3]− 1
2

∣∣∣ = 0. Then, we can estimate the advantage of A as

1
2Advss

OneKey,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC3]|

≤
2∑
`=0
|Pr[SUC`]− Pr[SUC`+1]| . (1)

From the above argument, each term of the right side of inequality 1 is bounded by δΩ(1). Therefore,
we see that Advss

OneKey,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, OneKey satisfies δ-semantic
security at punctured tag. � (Theorem 5.1)

33

6 From Non-Succinct to Weakly Succinct Puncturable SKFE

In this section, we show how to transform single-key non-succinct puncturable SKFE into single-key
weakly succinct one using SXIO. Note that the resulting scheme satisfies only indistinguishability of
functionality under puncturing property even if we start the transformation with a non-succinct scheme
satisfying functionality preserving under puncturing property.

The transformation consists of 2 steps. First, we show how to construct collusion-succinct puncturable
SKFE from single-key non-succinct puncturable SKFE and SXIO. Then, we give the transformation from
collusion-succinct puncturable SKFE to weakly succinct one.

In fact, the intermediate collusion-succinct scheme satisfies only indistinguishability of functionality
under puncturing property. This is because we adopt a construction technique similar to that proposed
by Lin et al. [LPST16] (and extended by Bitansky et al. [BNPW20] and Kitagawa et al. [KNT21]), and
thus we use an obfuscated encryption circuit of the building block scheme by SXIO as a ciphertext
of the resulting scheme. This fact is the reason the resulting weakly succinct scheme satisfies only
indistinguishability of functionality under puncturing property.

Below, we start with the first step.

6.1 From Non-Succinct to Collusion-Succinct by Using SXIO

For any q which is a fixed polynomial of λ, we show how to construct a puncturable SKFE scheme
whose index space is [q] based on a single-key puncturable SKFE scheme. The resulting scheme is
collusion-succinct, that is, the running time of both the encryption algorithm and the punctured encryption
algorithm are sub-linear in q. We show the construction below.

Let OneKey = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec, 1Key.Punc, 1Key.PEnc) be punc-
turable SKFE that we constructed in Section 5. Let sxiO be SXIO and PPRF = (F,PuncF) puncturable
PRF. Using OneKey, sxiO, and PPRF, we construct puncturable SKFE CollSuc = (CS.Setup,CS.KG,
CS.Enc,CS.Dec,CS.Punc,CS.PEnc) as follows. We again note that q is a fixed polynomial of λ. Let
the tag space of CollSuc be T . Then, the tag space of OneKey is also T .

Construction The scheme consists of the following algorithms.

CS.Setup(1λ) :

• Generate S r←− {0, 1}λ and return MSK := S.

CS.KG(MSK, f, i) :

• Parse S ← MSK.
• Compute riSetup ← FS(i) and MSKi ← 1Key.Setup(1λ; riSetup).
• Compute 1Key.skf ← 1Key.KG(MSKi, f) and return skf := (i, 1Key.skf).

CS.Enc(MSK, tag,m) :

• Parse S ← MSK.
• Generate SEnc

r←− {0, 1}λ and return CT← sxiO(E1Key[S, SEnc, tag,m]). The circuit E1Key
is defined in Figure 7.

CS.Dec(skf , tag,CT) :

• Parse (i, 1Key.skf)← skf .
• Compute CTi ← CT(i) and return y ← 1Key.Dec(1Key.skf , tag,CTi).

34

Encryption circuit E1Key[S, SEnc, tag,m](i) :
Hardwired: Two PRF keys S and SEnc, a tag tag, and a messagem.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. Compute riSetup ← FS(i) and rEnc ← FSEnc (i).

2. Compute MSKi ← 1Key.Setup(1λ; riSetup).
3. Return CTi ← 1Key.Enc(MSKi, tag,m; rEnc).

Figure 7: The description of E1Key.

Punctured key generation circuit P1Key[S, SPunc, tag](i) :
Hardwired: Two PRF keys S and SPunc, and a tag tag.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padP := padP(λ, n, s), which is determined in analysis.

1. Compute riSetup ← FS(i) and rPunc ← FSPunc (i).

2. Compute MSKi ← 1Key.Setup(1λ; riSetup).
3. Return MSK∗i {tag} ← 1Key.Punc(MSKi, tag; rPunc).

Figure 8: The description of P1Key.

Punctured encryption circuit PE1Key[P̃, SEnc, tag,m](i) :

Hardwired: A circuit P̃, a PRF key SEnc, a tag tag, and a messagem.
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. Compute MSK∗i ← P̃(i) and rEnc ← FSEnc (i).
2. Return CTi ← 1Key.PEnc(MSK∗i , tag,m; rEnc).

Figure 9: The description of PE1Key.

CS.Punc(MSK, tag) :

• Parse S ← MSK.
• Generate SPunc

r←− {0, 1}λ and compute P̃← sxiO(P1Key[S, SPunc, tag]). The circuit P1Key
is defined in Figure 8.

• Return MSK∗{tag} := P̃.

CS.PEnc(MSK∗, tag′,m) :

• Parse P̃← MSK∗.
• Generate SEnc

r←− {0, 1}λ and return CT ← sxiO(PE1Key[P̃, SEnc, tag′,m]). The circuit
PE1Key is defined in Figure 9.

Then, we have the following theorem.

Theorem 6.1. Let δ(·) be some negligible function. Let OneKey be δ-secure single-key puncturable SKFE
constructed in Section 5. Let sxiO be δ-secure γ-compressing SXIO, where γ is a sufficiently small constant

35

Encryption circuit Ei
∗

1Key[S∗, S∗Enc, tag,m0,m1,CTi∗](i) :
Hardwired: Two punctured PRF keys S∗ and S∗Enc, a tag tag, two messagesm0 andm1, and a ciphertext CTi∗ .
Input: An index i ∈ [q].
Padding: This circuit is padded to size padE := padE(λ, n, s), which is determined in analysis.

1. If i = i∗ and CTi∗ 6= ⊥, return CTi∗ .
2. Else, compute as follows:

• Compute riSetup ← FS∗ (i) and rEnc ← FS∗
Enc

(i).

• Compute MSKi ← 1Key.Setup(1λ; riSetup).
• If i ≤ i∗, compute CTi ← 1Key.Enc(MSKi, tag,m1; rEnc), and otherwise compute CTi ←

1Key.Enc(MSKi, tag,m0; rEnc).
• Return CTi.

Figure 10: The description of Ei∗1Key. The circuit is defined for every i∗ ∈ [q].

Punctured key generation circuit Pi
∗

1Key[S∗, S∗Punc, tag,MSK∗i∗](i) :
Hardwired: Two PRF keys S and SPunc, a tag tag, and a punctured master secret key MSK∗i∗ .
Input: An index i ∈ [q].
Padding: This circuit is padded to size padP := padP(λ, n, s), which is determined in analysis.

1. If i = i∗, return MSK∗i∗ .
2. Else, compute as follows:

• Compute riSetup ← FS∗ (i) and rPunc ← FS∗
Punc

(i).

• Compute MSKi ← 1Key.Setup(1λ; riSetup).
• Return MSK∗i {tag} ← 1Key.Punc(MSKi, tag; rPunc).

Figure 11: The description of Pi∗1Key. The circuit is defined for every i∗ ∈ [q].

such that γ < 1. Let PPRF be δ-secure puncturable PRF. Then, CollSuc is (δ, δ)-secure puncturable
SKFE with indistinguishability of functionality that is weakly collusion-succinct with compression factor
γ̂, which is a constant smaller than 1.

The concrete value of γ̂ is determined in the efficiency analysis in the following proof of Theorem 6.1.
As we will see, we can make γ̂ smaller than 1 by using SXIO with sufficiently small compression factor
as a the building block. Such SXIO is constructed from collusion-resistant SKFE [BNPW20].

Proof of Theorem 6.1 We first determine the size of padding parameters. Then, we analyze the
efficiency. Finally, we complete the security proof.

Below, let s and n be the upper bound of size and input length of functions supported by CollSuc.

Padding Parameter In order to complete this proof, we ensure that the encryption circuits E1Key,
PE1Key, and Ei∗1Key for every i

∗ ∈ [q] are indistinguishable when we obfuscate them by SXIO. Moreover,
the obfuscated P1Key and Pi∗1Key also need to be indistinguishable. For this reason, we need appropriate
size padding for these circuits. Below, we first analyze the size of padding for P1Key and Pi∗1Key because
the description of PE1Key includes obfuscated P1Key.

36

To guarantee the indistinguishability of P1Key and Pi∗1Key when we obfuscate them, we need to set

padP := max(|P1Key|,
∣∣∣Pi∗1Key

∣∣∣) .

Both P1Key and Pi∗1Key includes two PRF evaluation over the domain [q], and the key generation and
puncturing procedure ofOneKey. SinceOneKey is a single-key scheme, and q is determined independently
of OneKey, the running time of each algorithm of OneKey is independent of q. Therefore, we have

padP ≤ poly(λ, log q) + poly(λ, n, s)
≤ polyP(λ, n, s, log q) ,

where polyP is some fixed polynomial.
Then, we move on to the analysis of the padding parameter for encryption algorithms.
We need to set padE as

padE := max(|E1Key|, |PE1Key|,
∣∣∣Ei∗1Key

∣∣∣) .

E1Key and Ei∗1Key for every i
∗ ∈ [q] consists of two PRF evaluation over the domain [q], and the key

generation and encryption procedure of OneKey. Therefore, we have

max(|E1Key|,
∣∣∣Ei∗1Key

∣∣∣) ≤ poly(λ, n, s, log q) . (2)

In addition, PE1Key includes one PRF evaluation over the domain [q], the execution of P̃ that is
obfuscated P by sxiO, and the punctured encryption procedure of OneKey. Then, since the non-trivial
efficiency of sxiO, when we obfuscate a circuit C with input space [N] by sxiO, we can bound the size of
obfuscated C by Nγ · |C|c · polysxiO(λ), where γ < 1 and c are constants. Thus, we have∣∣∣P̃∣∣∣ ≤ qγ · |P|c · polysxiO(λ)

= qγ · |polyP(λ, n, s, log q)|c · polysxiO(λ)
≤ qγ1 · poly(λ, n, s) ,

where γ1 is an arbitrary constant such that γ < γ1 < 1. Hence, we obtain

|PE1Key| ≤ poly(λ, log q) + qγ1 · poly(λ, n, s) + poly(λ, n, s)
≤ qγ1 · poly(λ, n, s) . (3)

Therefore, from inequalities 2 and 3, we have

padE ≤ qγ1 · polyE(λ, n, s) , (4)

where polyE is some fixed polynomial.

Efficiency To simplify the efficiency analysis, we assume that we use two different SXIO sxiO and
sxiO′. We use sxiO to obfuscate P1Key. We use sxiO′ to obfuscate E1Key and PE1Key.

We assume that when we obfuscate a circuit C with input space [N] by sxiO and sxiO′, we can bound
the size of sxiO(C) and sxiO′(C) by

Nγ · |C|c · polysxiO(λ) and Nγ′ · |C|c
′
· polysxiO′(λ) ,

respectively, where γ and γ′ are constants strictly smaller than 1, and c and c′ are constants.

37

Then, from inequality 4, we can bound the running time of both CS.Enc and CS.PEnc by

qγ
′ · (padE)c

′
· polysxiO(λ) ≤ qγ′ · (qγ1 · polyE(λ, n, s))c

′
· polysxiO(λ)

≤ qγ′+c′γ1 · poly(λ, n, s) ,

where γ1 is an arbitrary constant such that γ < γ1 < 1.
Therefore, if we have γ′+ c′γ1 < 1, we can conclude that CollSuc is weakly collusion-succinct. From

Theorem 3.23, using a collusion-resistant SKFE scheme, we can construct SXIO with arbitrary constant
compression factor. Thus, we can use SXIO with compression factor smaller than 1−γ′

c′ as sxiO, and
ensure that γ̂ := γ′ + c′γ1 < 1 in our construction by assuming a collusion-resistant SKFE scheme.

This completes the efficiency analysis.

Indistinguishability of functionality under puncturing A ciphertext output by the standard
encryption algorithm is an obfuscated circuit of E1Key. A ciphertext output by the punctured encryption
algorithm is an obfuscated circuit of PE1Key. Thus, if we prove that E1Key and PE1Key are functionally
equivalent, δ-indistinguishability of functionality under puncturing of CollSuc holds due to the δ-security
of sxiO.

Note that P̃ in PE1Key has the exactly same functionality as P1Key due to the functionality preserving
property of sxiO. Thus, on input i ∈ [q], E1Key and PE1Key basically compute the followings:

1. Compute riSetup ← FS(i) and rEnc ← FSEnc(i).

2. Compute MSKi ← 1Key.Setup(1λ; riSetup).

3. E1Key and PE1Key respectively computes CTi as follows:

• E1Key computes CTi ← 1Key.Enc(MSKi, tag′,m; rEnc)
• PE1Key computes CTi ← 1Key.PEnc(MSK∗i {tag}, tag′,m; rEnc) by using

MSK∗i {tag} ← 1Key.Punc(MSKi, tag; rPunc) and rPunc ← FSPunc(i).

4. Return CTi.

Recall that OneKey satisfies functionality preserving under puncturing property defined in Definition 4.2.
Thus, both E1Key and PE1Key compute the same CTi as long as tag′ 6= tag holds and the same SEnc is
used in both circuits.

Thus, we can conclude that CollSuc satisfies δ-indistinguishability of functionality under puncturing
by the δ-security of sxiO.

Semantic security at punctured tag Let A be a valid adversary that attacks the semantic security
at punctured tag of CollSuc. We proof it via a sequence of games. Let SUCj denote the event that A
succeeds in guessing the challenge bit b in Game j.

Game 0 This is the punctured semantic security game regardingCollSuc. Then, we haveAdvss
CollSuc,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generates S r←− {0, 1}λ and sets MSK := S. The challenger also chooses a
challenge bit b r←− {0, 1}. The challenger sends security parameter 1λ to A.

2. A sends (m0,m1) ∈M×M, tag ∈ T , and {fi}i∈[q] to the challenger.

38

3. The challenger generates SEnc
r←− {0, 1}λ and computes CT← sxiO(E1Key[S, SEnc, tag,m]).

Next, for every i ∈ [q], the challenger computes as follows. The challenger computes
riSetup ← FS(i), MSKi ← 1Key.Setup(1λ; riSetup), and 1Key.skfi ← 1Key.KG(MSKi, fi).
The challenger sets skfi ← (i, 1Key.skfi).
Then, the challenger generatesSPunc

r←− {0, 1}λ and computes P̃← sxiO(P1Key[S, SPunc, tag]).
Then, the challenger sets MSK∗{tag} := P̃.
The challenger returns (MSK∗{tag},CT, {skfi}i∈[q]) to A.

4. A outputs b′ ∈ {0, 1}.

Then, for every i∗ ∈ [q], we define the following games. Let SUC(`,i∗) denote the event that A
succeeds in guessing the challenge bit b in Game (`, i∗) for every ` ∈ {1, · · · , 6} and i∗ ∈ [q].

Game (6, 0) We define Game (6, 0) as the same game as Game 0.

Game (1, i∗) Same as Game (6, i∗ − 1) except the followings. The challenger generates CT ←
sxiO(Ei∗1Key[S∗{i∗}, S∗Enc{i∗}, tag,mb,m1,CTi∗]), whereCTi∗ ← 1Key.Enc(MSKi∗ , tag,mb; ri

∗
Enc),

MSKi∗ ← 1Key.Setup(1λ; ri∗Setup), ri∗Setup ← FS(i∗), and ri∗Enc ← FSEnc(i∗).
The only difference between Game (6, i∗ − 1) and (1, i∗) is how CT is generated. In Game
(6, i∗ − 1), CT is generated by CT ← sxiO(Ei∗−1

1Key[S, SEnc, tag,mb,m1,⊥]). However, we
see that Ei∗−1

1Key[S, SEnc, tag,mb,m1,⊥] and Ei∗1Key[S∗{i∗}, S∗Enc{i∗}, tag,mb,m1,CTi∗] have ex-
actly the same functionality. Therefore, by the indistinguishability guarantee of sxiO, we have∣∣∣Pr
[
SUC(6,i∗−1)

]
− Pr

[
SUC(1,i∗)

]∣∣∣ ≤ δΩ(1) for every i∗ ∈ [q].

Game (2, i∗) Same asGame (1, i∗) except the followings. The challenger generates P̃← sxiO(Pi∗1Key[S∗{i∗},
S∗Punc{i∗}, tag,MSK∗i∗{tag}]), where MSK∗i∗{tag} ← 1Key.Punc(MSKi∗ , tag; ri∗Punc).
Similarly to the analysis between Game (6, i∗−1) and (1, i∗), due to the indistinguishability guaran-
tee of sxiO and the fact that P1Key[S, SPunc, tag] and Pi∗1Key[S∗{i∗}, S∗Punc{i∗}, tag,MSK∗i∗{tag}]
have the same functionality, we have

∣∣∣Pr
[
SUC(1,i∗)

]
− Pr

[
SUC(2,i∗)

]∣∣∣ ≤ δΩ(1) for every i∗ ∈ [q].

Game (3, i∗) Same as Game (2, i∗) except that the challenger generates ri∗Setup, r
i∗
Enc, and r

i∗
Punc as truly

random strings.

From the pseudorandomness of PPRF,
∣∣∣Pr
[
SUC(2,i∗)

]
− Pr

[
SUC(3,i∗)

]∣∣∣ ≤ δΩ(1) holds for every
i∗ ∈ [q].

Game (4, i∗) Same asGame (3, i∗) except that the challenger generatesCTi∗ ← 1Key.Enc(MSKi∗ , tag,m1).
In both Game (3, i∗) and (4, i∗), all of MSKi∗ , MSK∗i∗{tag}, and CTi∗ are generated under truly
random strings. In addition, sinceA is a valid adversary, it holds that fi∗(m0) = fi∗(m1). Therefore,
from the semantic security at punctured tag ofOneKey, we obtain

∣∣∣Pr
[
SUC(3,i∗)

]
− Pr

[
SUC(4,i∗)

]∣∣∣ ≤
δΩ(1) for every i∗ ∈ [q].

Game (5, i∗) Same as Game (4, i∗) except that the challenger generates ri∗Setup, r
i∗
Enc, and r

i∗
Punc using

PPRF.
From the pseudorandomness of PPRF,

∣∣∣Pr
[
SUC(4,i∗)

]
− Pr

[
SUC(5,i∗)

]∣∣∣ ≤ δΩ(1) holds for every
i∗ ∈ [q].

Game (6, i∗) Same asGame (5, i∗) except that the challenger generatesCT← sxiO(Ei∗1Key[S, SEnc, tag,mb,

m1,⊥]) and P̃← sxiO(P1Key[S, SPunc, tag]).

39

Similarly to the analysis between Game (6, i∗−1) and (1, i∗), due to the indistinguishability guaran-
tee of sxiO and the fact thatEi∗1Key[S∗{i∗}, S∗Enc{i∗}, tag,mb,m1,CTi∗] andEi∗1Key[S, SEnc, tag,mb,

m1,⊥] have exactly the same functionality, we have
∣∣∣Pr
[
SUC(5,i∗)

]
− Pr

[
SUC(6,i∗)

]∣∣∣ ≤ δΩ(1) for
every i∗ ∈ [q].
We define one additional game.

Game 7 Same as Game (6, q) except the followings. The challenger generates CT ← sxiO(E1Key[S,
SEnc, tag,m1]).
InGame (6, q),CT is generated byCT← sxiO(Eq1Key[S, SEnc, tag,mb,m1,⊥]). Eq1Key[S, SEnc, tag,
mb,m1,⊥] always ignoresmb and outputs a ciphertext ofm1. Therefore,Eq1Key[S, SEnc, tag,mb,m1,⊥]
and E1Key[S, SEnc, tag,m1] have the same functionality. Therefore, from the indistinguishability
guarantee of sxiO, we have

∣∣∣Pr
[
SUC(6,q)

]
− Pr[SUC7]

∣∣∣ ≤ δΩ(1).

In Game 7, the choice of the challenge bit b is information theoretically hidden from the view of A,
and thus we have

∣∣∣Pr[SUC7]− 1
2

∣∣∣ = 0. Then, we can estimate the advantage of A as

1
2Advss

CollSuc,A(λ)

=|Pr[SUC0]− 1
2 |

≤|Pr[SUC0]− Pr[SUC7]|

≤
∣∣∣Pr[SUC0]− Pr

[
SUC(1,1)

]∣∣∣+ ∑
i∗∈[q]

5∑
`=1

∣∣∣Pr
[
SUC(`,i∗)

]
− Pr

[
SUC(`+1,i∗)

]∣∣∣
+
∣∣∣Pr
[
SUC(6,q)

]
− Pr[SUC7]

∣∣∣ . (5)

From the above argument, each term of the right side of inequality 5 is bounded by δΩ(1). Therefore,
we see that Advss

CollSuc,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, CollSuc satisfies δ-semantic
security at punctured tag. � (Theorem 6.1)

6.2 From Collusion-Succinct to Weakly Succinct

In this section, we show how to construct a single-key weakly succinct puncturable SKFE scheme from a
weakly collusion-succinct one.

This transformation is based on those proposed by Bitansky and Vaikuntanathan [BV15] and
Ananth et al. [AJS15], and thus utilizes a decomposable randomized encoding. The difference is that
we must consider puncturing and punctured encryption algorithms since we construct a puncturable
SKFE scheme. In fact, we show their construction works for puncturable SKFE schemes. In addition,
we consider semantic security defined in the weakly selective security manner while they considered
selective security. Below, we give the construction.

We construct single-key puncturable SKFE WeakSuc = (WS.Setup,WS.KG,WS.Enc,WS.Dec,
WS.Punc,WS.PEnc). Let s and n be the maximum size and input length of functions supported
by WeakSuc. Let RE = RE.(E,D) be decomposable randomized encoding. We suppose that the
number of decomposed encodings of RE for a function of size s is µ. Then, µ is a polynomial
bounded by s · polyRE(λ, n), where polyRE(λ, n) is a fixed polynomial. We also suppose that the
randomness space of RE is {0, 1}ρ, where ρ is a polynomial bounded by s · polyRE(λ, n). Let
CollSuc = (CS.Setup,CS.KG,CS.Enc,CS.Dec,CS.Punc,CS.PEnc) be puncturable SKFE whose index
space and tag space are [µ] and T , respectively. Let SKE = (E,D) be SKE and PRF PRF. In the scheme,

40

Decomposable Randomized Encoding Circuit Endre[f̂i, t,CTske
i](b,m, Sencd,K)

Hardwired: A decomposed function f̂i, a string t, and a ciphertext CTske
i .

Input: A bit b, a messagem, a PRF key Sencd, and an SKE secret keyK.

1. If b = 1, return ei ← D(K,CTske
i).

2. Else, compute r ← PRFSencd (t).
3. Return ei ← f̂i(m; r).

Figure 12: The description of Endre.

we use PRF : {0, 1}λ × {0, 1}λ → {0, 1}ρ. Using CollSuc, RE, SKE, and PRF, we construct WeakSuc
as follows. The tag space of WeakSuc is T .

WS.Setup(1λ) :

• Return MSK← CS.Setup(1λ).

WS.KG(MSK, f) :

• GenerateK r←− {0, 1}λ and t r←− {0, 1}λ.
• Compute (f̂1, · · · f̂µ)← RE.E(1λ, f).

• Generate CTske
i ← E(K, 0|f̂i(·,·)|), and compute skEni ← CS.KG(MSK,Endre[f̂i, t,CTske

i], i)
for every i ∈ [µ]. Endre defined in Figure 12.

• Return skf := (skEn1 , · · · , skEnµ).

WS.Enc(MSK, tag,m) :

• Generate Sencd
r←− {0, 1}λ.

• Return CT← CS.Enc(MSK, tag, (0,m, Sencd,⊥)).

WS.Dec(skf , tag,CT) :

• Parse (skEn1 , · · · , skEnµ)← skf .
• For every i ∈ [µ], compute ei ← CS.Dec(skEni , tag,CT).
• Decode the encoding, that is, compute y ← RE.D(e1, · · · , eµ).
• Return y.

WS.Punc(MSK, tag) :

• Return MSK∗{tag} ← CS.Punc(MSK, tag).

WS.PEnc(MSK∗, tag′,m) :

• Generate Sencd
r←− {0, 1}λ.

• Return CT← CS.PEnc(MSK∗, tag′, (0,m, Sencd,⊥)).

Theorem 6.2. Let δ(·) be negligible function. Let CollSuc be (δ, δ)-secure puncturable SKFE with
indistinguishability of functionality that supports µ functional keys and is weakly collusion-succinct with
compression factor γ, where γ < 1 is a constant. Let RE, SKE, and PRF be δ-secure decomposable
randomized encoding, SKE, and PRF, respectively. Then,WeakSuc be (δ, δ)-secure single-key puncturable
SKFE with indistinguishability of functionality that is weakly succinct with compression factor γ′, where
γ′ is a constant such that γ < γ′ < 1.

41

Proof of Theorem 6.2 We start with analyzing the weak succinctness of WeakSuc, and then move on
to the security proof.

Efficiency Let Enidre denote the circuit Endre[f̂i, t,CTske
i]. In order to issue one functional key, the

construction needs to issue 1 · µ keys of CollSuc and it holds µ ≤ s · polyRE(λ, n) since we consider
functions of size s and n-bit input. Thus, we choose µ as the number of functional keys of CollSuc given
to adversaries. The size of Enidre is bounded by polyEn(λ, n, log s) since the size of f̂i and CTske

i are
independent of s from the decomposability of RE, t is a λ-bit string, and the running time of the PRF
evaluation in Enidre is logarithmic in s, where polyEn is a polynomial. Since CollSuc is collusion-succinct,
the encryption time of WeakSuc is bounded by

µγ · poly(λ, n,
∣∣∣Enidre

∣∣∣) ≤ (s · polyRE(λ, n))γ · poly(λ, n,polyEn(λ, n, log s))

≤ sγ′ · poly(λ, n) ,

where γ and γ′ are constants such that 0 < γ < γ′ < 1. This implies that WeakSuc is weakly succinct.

Indistinguishability of functionality under puncturing WS.Enc and WS.PEnc just outputs a
ciphertext output by CS.Enc and CS.PEnc, respectively. Therefore, we can see that if CollSuc satisfies
δ-indistinguishability of functionality under puncturing, then so does WeakSuc.

Semantic security at punctured tag Let A be an adversary that attacks the semantic security at
punctured tag of WeakSuc. We prove it via sequence of games. Below, for every ` ∈ {0, · · · , 4}, let SUC`
be the event that A succeeds in guessing the challenge bit b in Game `.

Game 0: This is the punctured semantic security game regardingWeakSuc. Then, we haveAdvss
WeakSuc,A(λ) =

2|Pr[SUC0]− 1
2 |. The detailed description is as follows.

1. The challenger generates MSK← CS.Setup(1λ). The challenger also chooses a challenge
bit b r←− {0, 1}. The challenger sends security parameter 1λ to A.

2. A sends (m0,m1) ∈M×M, tag ∈ T , and a function f to the challenger.
3. The challenger generateSencd

r←− {0, 1}λ and computesCT← CS.Enc(MSK, tag, (0,mb, Sencd,⊥)).
Next, the challenger generatesK r←− {0, 1}λ and t r←− {0, 1}λ, and computes f̂ ← RE.E(1λ, f)
and decomposed encodings f̂1 · · · f̂µ. Then, the challenger generates CTske

i ← E(K, 0|f̂i(·,·)|),
and computes skEni ← CS.KG(MSK,Endre[f̂i, t,CTske

i], i) for every i ∈ [µ]. Moreover, the
challenger sets skf ← (skEn1 , · · · , skEnµ).
Then, the challenger computes MSK∗{tag} ← CS.Punc(MSK, tag).
The challenger returns (MSK∗{tag},CT, skf) to A.

4. A outputs b′ ∈ {0, 1}.

Game 1 Same as Game 0 except that the challenger generates CTske
i ← E(K, ei) for every i ∈ [µ], where

ei ← f̂i(mb; r).
In Game 0 and 1, A is not given any information of secret key K of SKE. Therefore, from the
security guarantee of SKE, we have |Pr[SUC0]− Pr[SUC1]| ≤ δΩ(1).

Game 2 Same as Game 1 except that the challenger generates CT← CS.Enc(MSK, tag, (1,⊥,⊥,K)).

42

We can see that for every i ∈ [µ], we have

Endre[f̂i, t,CTske
i](0,mb, Sencd,⊥) = f̂i(mb; r)

= Endre[f̂i, t,CTske
i](1,⊥,⊥,K).

Therefore, from the semantic security at punctured tag ofCollSuc, it holds that |Pr[SUC1]− Pr[SUC2]| ≤
δΩ(1).

Game 3 Same as Game 2 except that the challenger generates r as a truly random string.

From the pseudorandomness of PRF, we have |Pr[SUC2]− Pr[SUC3]| ≤ δΩ(1).

Game 4 Same as Game 3 except that the challenger generates {ei}i∈[µ] ← RE.Sim(1λ, s, y), where
RE.Sim is a simulator for RE and y = f(m0) = f(m1).
In Game 3 and 4, for every i ∈ [µ], ei hardwired into Endre after encrypted is generated with a truly
random string. Therefore, from the security guarantee of RE, we have |Pr[SUC3]− Pr[SUC4]| ≤
δΩ(1).

In Game 4, the choice of the challenge bit b is information theoretically hidden from the view of A,
and thus we have

∣∣∣Pr[SUC4]− 1
2

∣∣∣ = 0. Then, we can estimate the advantage of A as

1
2Advss

WeakSuc,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC4]|

≤
3∑
`=0
|Pr[SUC`]− Pr[SUC`+1]| . (6)

From the above argument, each term of the right side of inequality 6 is bounded by δΩ(1). Therefore,
we see that Advss

WeakSuc,A(λ) ≤ δΩ(1). Since the choice of A is arbitrary, WeakSuc satisfies δ-semantic
security at punctured tag. � (Theorem 6.2)

7 Indistinguishability Obfuscation from Puncturable SKFE

We show how to construct IO from puncturable SKFE satisfying only indistinguishability of functionality
under puncturing. Formally, we have the following theorem.

Theorem 7.1. Let δ(λ) = 2−λε , where ε < 1 is a constant. Assuming there exists (δ, δ)-secure single-key
weakly succinct puncturable SKFE with indistinguishability of functionality for all circuits. Then, there
exists secure IO for all circuits.

In addition, by combining Theorems 3.23, 5.1, 6.1 and 6.2, we also obtain the following theorem.

Theorem 7.2. Assuming there exists δ-secure collusion-resistant SKFE for all circuits, where δ(·) is a
negligible function. Then, there exists (δ, δ)-secure single-key weakly succinct puncturable SKFE with
indistinguishability of functionality for all circuits.

In order to obtain Theorem 7.2, we also use δ-secure PRF, puncturable PRF, plain SKE, garbling
scheme, and decomposable randomized encoding as building blocks. From Theorems 3.2, 3.4, 3.6, 3.8
and 3.10, all of these primitives are implied by δ-secure one-way functions thus implied by δ-secure
collusion-resistant SKFE for all circuits.

By combining Theorems 7.1 and 7.2, we obtain the following main theorem.

43

Theorem 7.3. Let δ(λ) = 2−λε , where ε < 1 is a constant. Assuming there exists δ-secure collusion-
resistant SKFE for all circuits. Then, there exists secure IO for all circuits.

Remark 7.4 (IO for circuits with input of poly-logarithmic length). The security loss of our IO construction
is exponential in the input length of circuits, but is independent of the size of circuits. Thus, if the
input length of circuits is poly-logarithmic in the security parameter, our IO construction incurs only
quasi-polynomial security loss regardless of the size of circuits. Therefore, we can obtain IO for circuits of
polynomial size with input of poly-logarithmic length from quasi-polynomially secure collusion-resistant
SKFE for all circuits. This is an improvement over the IO construction by Komargodski and Segev [KS20].
They showed that IO for circuits of sub-polynomial sizewith input of poly-logarithmic length is constructed
from quasi-polynomially secure collusion-resistant SKFE for all circuits.

Komargodski and Segev also showed that the combination of their IO and sub-exponentially secure
one-way functions yields succinct and collusion-resistant PKFE for circuits of sub-polynomial size with
input of poly-logarithmic length. We observe that our IO for circuits of polynomial size with input of
poly-logarithmic length leads to succinct and collusion-resistant PKFE for circuits of polynomial size
with input of poly-logarithmic length by combining sub-exponentially secure one-way functions from the
result of Komargodski and Segev.

To prove Theorem 7.1, we first give the construction of IO based on puncturable SKFE. Then, we
analyze its security and efficiency.

7.1 Construction

Our construction of IO is almost the same as that of Bitansky and Vaikuntanathan [BV15]. The notable
difference is that we use the relaxed variant of puncturable SKFE in Definition 4.4 instead of PKFE or
their puncturable SKFE. Thus, the security analysis of our IO is different from and more complex than
that of Bitansky and Vaikuntanathan.

Let pSKFE = (Setup,KG,Enc,Dec,Punc,PEnc) be a single-key weakly succinct puncturable SKFE
scheme. Let SKE = (E,D) be an SKE scheme and PPRF = (F,PuncF) a puncturable PRF. Below, let
λ̃ denote the security parameter given to these building block schemes. Let δ(λ̃) = 2−λ̃ε , where ε < 1
is a constant. We assume that pSKFE is a (δ, δ)-secure puncturable SKFE with indistinguishability of
functionality under puncturing. In addition, we assume that SKE and PPRF are δ-secure. Note that the
existence of such SKE and PPRF are implied by that of pSKFE. Using pSKFE, SKE, and PPRF, we
construct an indistinguishability obfuscation iO as follows.

Given a circuit C : {0, 1}n → {0, 1}m and a security parameter λ, the obfuscator iO first sets the
security parameter λ̃ for building block schemes as λ̃ = ω((n2 + log λ)1/ε). iO uses pSKFE whose tag
space and message space is {0, 1}n and {0, 1}n × {0, 1}λ̃ × {0, 1}, respectively. iO also uses PPRF
whose domain is {0, 1}n. When a shorter string than expected is used as an input to these schemes, we
always consider that it is fed after padded to the appropriate length. iO invokes the following recursive
obfuscation procedure riO(1λ̃, n, C) in order to obfuscate C.

riO(1λ̃, i, Ci) :

• If i = 1, return C̃i ← (Ci(0), Ci(1)). Note that the input domain of Ci is {0, 1}i.
• Else, runs as follows:

– Generate Ki,0,Ki,1
r←− {0, 1}λ̃ and compute CTske

i,0 ← E(Ki,0, Ci) and CTske
i,1 ←

E(Ki,1, Ci).
– Generate MSKi ← Setup(1λ̃) and compute skEvi ← KG(MSKi,Evi[CTske

i,0 ,CTske
i,1]).

The circuit Evi is defined in Figure 13.

44

Evaluation Circuit Evi[CTske
i,0,CTske

i,1](xi,K, α)
Hardwired: Two ciphertexts CTske

i,0 and CTske
i,1.

Input: A string xi ∈ {0, 1}i, a SKE keyK, and a bit α ∈ {0, 1}.

1. Compute Ci ← D(K,CTske
i,α).

2. Return U(Ci,xi).

Figure 13: The description of Evi for every i ∈ {2, · · · , n}. In the description, U(·, ·) is a universal circuit.

Encryption Circuit Ei−1,α[MSKi,Ki, Si](xi−1)
Hardwired: A master secret key MSKi, a SKE keyKi, and a PRF key Si.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. For xi ∈ {0, 1}, compute as follows:

• Compute rxi−1‖xi

Enc ← FSi (xi−1‖xi).

• Compute CTi,xi ← Enc(MSKi,xi−1, (xi−1‖xi,Ki, α); rxi−1‖xi

Enc).

2. Return (CTi,0,CTi,1).

Figure 14: The description of Ei−1,α for every i ∈ {3, · · · , n} and α ∈ {0, 1}.

– Generate Si
r←− {0, 1}λ̃ and compute Ẽi−1 ← riO(1λ̃, i − 1,Ei−1,0[MSKi,Ki,0, Si]).

The circuit Ei−1,0 is defined in Figure 21.
– Return C̃i := (skEvi , Ẽi−1).

The corresponding recursive evaluation procedure is as follows.

rEval(i, C̃i,xi) :

• If i = 1, parse (CT1,0,CT1,1)← C̃i and return CT1,xi .
• Else, runs as follows:

– Parse (skEvi , Ẽi−1)← C̃i and xi−1‖xi ← xi.
– Compute (CTi,0,CTi,1)← rEval(i− 1, Ẽi−1,xi−1).
– Return y ← Dec(skEvi ,xi−1,CTi,xi).

By using these recursive procedures, our obfuscator and its evaluation algorithm are described as
follows.

iO(1λ, C) : To obfuscate C : {0, 1}n → {0, 1}m, it does the following.

• Set λ̃ = ω((n2 + log λ)1/ε).

• Output riO(1λ̃, n, C).

Eval(C̃,x) : To compute C̃(x) = iO(1λ, C)(x) where x ∈ {0, 1}n, it does the following.

• Output rEval(n, C̃,x).

45

Correctness We prove that our obfuscator satisfies correctness by induction on i ∈ [n] (input length).
Our goal is to prove that for any Ci and Ẽi ← riO(1λ̃, i, Ci), it holds that

∀xi ∈ {0, 1}i rEval(i, Ẽi,xi) = Ci(xi). (7)

For the base case i = 1, it holds Ẽ1 = riO(1λ̃, 1, C1) = (C1(0), C1(1)) since i = 1. Thus,
Equation (7) holds for i = 1 since rEval(1, Ẽ1,x1) = C1(x1) by the description of rEval.

We assume that Equation (7) holds for i− 1. By the description of Ẽ, we obtain

Ẽi = riO(1λ̃, i, Ci) = (skEvi , Ẽi−1)

= (skEvi , riO(1λ̃, i− 1,Ei−1,0[MSKi,Ki,0, Si])),

where skEvi ← KG(MSKi,Evi[CTske
i,0 ,CTske

i,1]). The circuit Ei−1,0(xi−1) computes CTi,b ← Enc(MSKi,
xi−1, (xi−1‖b,Ki, 0)) for both b = 0, 1. Thus, by the assumption that Equation (7) holds for i − 1, it
holds that

rEval(i− 1, Ẽi−1,xi−1)
=(Enc(MSKi,xi−1, (xi−1‖0,Ki, 0)),Enc(MSKi,xi−1, (xi−1‖1,Ki, 0))).

Therefore, we obtain

rEval(i, Ẽi,xi) = Dec(skEvi ,xi−1,Enc(MSKi,xi−1, (xi−1‖xi,Ki, 0)))
= Evi[CTske

i,0 ,CTske
i,1](xi−1‖xi,Ki, 0)

= Ci(xi)

by the correctness of pSKFE and the description of Evi. This completes the proof of correctness.

Remark 7.5 (On the parameter setting of λ̃). In the construction we set the security parameter λ̃ for
building blocks as λ̃ = ω

(
(n2 + log λ)1/ε

)
. In fact, this setting is the same as that of Bitansky and

Vaikuntanathan [BV15]. However, the security loss is different between this work and the work by
Bitansky and Vaikuntanathan. In our construction, 2O(n2) security loss occurs while the construction of
Bitansky and Vaikuntanathan incurs 2O(n2/2) loss. The difference occurs due to our additional exponential
hybrids that we need to complete the security proof while the building block puncturable SKFE scheme
satisfies only indistinguishability of functionality under puncturing property. For the detailed security
analysis, see Section 7.2.

Note that the size of padding for the encryption circuit Ei−1,α is determined in the security analysis
of our indistinguishability obfuscator iO. We need to know the size of padding in order to analyze the
efficiency of iO. Therefore, we first analyze the security of iO in Section 7.2. Then, we analyze the
efficiency of iO in Section 7.3. We complete the proof of Theorem 7.1 by completing the analysis of
security and efficiency.

7.2 Security Analysis

Our goal is to prove that for any PPT distinguisher D and circuits C0 and C1 of the same functionality, we
have ∣∣∣Pr

[
D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]∣∣∣
=
∣∣∣Pr

[
D(riO(1λ̃, n, C0)) = 1

]
− Pr

[
D(riO(1λ̃, n, C1)) = 1

]∣∣∣ = negl(λ) .

46

In order to prove this, for every i ∈ [n], we define

δi := max
Ci,0,Ci,1

∣∣∣Pr
[
Di(riO(1λ̃, i, Ci,0)) = 1

]
− Pr

[
Di(riO(1λ̃, i, Ci,1)) = 1

]∣∣∣ ,
where Di is a PPT distinguisher and Ci,0 and Ci,1 are pair of any circuits with i-bit input that are the
same functionality. Then, our goal is restated to show that δn ≤ 2−ω(log λ) holds.

Note that we have δ1 = 0. This is because circuits with 1-bit input C1,0 and C1,1 of the same
functionality are both obfuscated to the same truth table. Our goal is to prove the following lemma.

Lemma 7.6. Let δ(λ̃) = 2−λ̃ε . Assuming that SKE and PPRF are δ-secure and pSKFE is a (δ, δ)-secure
puncturable SKFE with indistinguishability of functionality. It holds that

δi ≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ε)) (8)

for every i ∈ {2, · · · , n}.
By this lemma, we can estimate δn as

δn ≤ 22(n−1) ·O(δn−1 + 2−Ω(λ̃ε))

≤ 22(n−1) ·O(δn−1) + 22(n−1) ·O(2−Ω(λ̃ε))

≤ · · · ≤

 n∑
i=1

i∏
j=1

22(n−j)

 ·O(2−Ω(λ̃ε)) ≤ n · 2n2 ·O(2−ω(n2+log λ)) ≤ 2−ω(log λ) .

This inequality shows that we complete the proof of Theorem 7.3.
Therefore, if we prove that inequality 8 holds for every i ∈ {2, · · · , n}, that is Lemma 7.6, we can

conclude that our iO is a secure indistinguishability obfuscator. In the rest of this section, we prove that
inequality 8 holds for every i ∈ {2, · · · , n}.

Let i ∈ {2, · · · , n}. Let Di be any PPT distinguisher again. In addition, let Ci,0 and Ci,1 be circuits
with i-bit input of the same functionality that maximize the value of δi. First, we consider the following
sequence of hybrid experiments.

H0 : In this experiment, Di is given an obfuscation of the circuit Ci,0, that is riO(1λ̃, i, Ci,0).

H1 : Same as H0 except that CTske
i,1 is generated as CTske

i,1 ← E(Ki,1, Ci,1). Note that in H0, CTske
i,1 is

generated as CTske
i,1 ← E(Ki,1, Ci,0).

H2 : Same asH1 except that Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,1[MSKi,Ki,1, Si]). Note
that inH1, Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,0[MSKi,Ki,0, Si]).

H3 : Same as H2 except that CTske
i,0 is generated as CTske

i,0 ← E(Ki,0, Ci,1). Note that in H2, CTske
i,0 is

generated as CTske
i,0 ← E(Ki,1, Ci,0).

H4 : Same asH3 except that Ẽi−1 is generated as Ẽi−1 ← riO(1λ̃, i− 1,Ei−1,0[MSKi,Ki,0, Si]). Note
that in this experiment, the distribution of the input to Di is exactly the same as an obfuscation of
the circuit Ci,1, that is riO(1λ̃, i, Ci,1).

For an experimentH, we let Di(H) denote the event that Di outputs 1 inH. Then, we can estimate δi
as

δi ≤
3∑
`=0

∣∣Pr[Di(H`)]− Pr
[
Di(H`+1)

]∣∣ . (9)

In the following, by estimating each term of the right hand side of inequality 9, we prove that inequality
8 holds for every i ∈ {2, · · · , n}. We give relations of hybrid experiments in Figure 15 and 19 in order to
see easily the dependence of hybrid experiments.

47

H0
∼

Lemma 7.7

H1 H2
∼

Lemma 7.7

H3 H4

Reverse ofH1 toH2

∼

H1,0 H1,2i−1

∼

Lemma 7.8

∼

Lemma 7.8

H1,j H1,j+1
∼∼ · · · · · · ∼∼

H0
1,j H1

1,j
Lemma 7.9

∼

∼ Lemma 7.10 ∼ Reverse ofH1,j toH0
1,j

Figure 15: Relations of the hybrid experiments fromH0 toH4 for the security of riO. Solid lines denote that the
indistinguihability is proven by one step. Dashed lines denote that we use a few hybrid experiments to prove the
indistinguishability. Dotted lines denote that we use many hybrid experiments to prove the indistinguishability
(Figure 19 illustrates those of hybrid experiments for Lemma 7.10).

FromH0 toH1 and FromH2 toH3

First, we estimate |Pr[Di(H0)]− Pr[Di(H1)]| and |Pr[Di(H2)]− Pr[Di(H3)]|. In fact, we can easily
bound these values by the security of SKE. Formally, we have the following lemma.

Lemma 7.7. Let SKE be δ-secure, where δ(λ̃) = 2−λ̃ε . Then, it holds that |Pr[Di(H0)]− Pr[Di(H1)]|
≤ 2−Ω(λ̃ε) and |Pr[Di(H2)]− Pr[Di(H3)]| ≤ 2−Ω(λ̃ε).

The proof of this lemma is straightforward and thus we omit it.

FromH1 toH2 and FromH3 toH4

Next, we estimate |Pr[Di(H1)]− Pr[Di(H2)]| and |Pr[Di(H3)]− Pr[Di(H4)]|. Since the differ-
ence between H1 and H2, and that of H3 and H4 are almost symmetric, we focus on estimat-
ing |Pr[Di(H1)]− Pr[Di(H2)]| here. We can apply the following arguments for the estimation of
|Pr[Di(H3)]− Pr[Di(H4)]|.

In order to accomplish the estimation of |Pr[Di(H1)]− Pr[Di(H2)]|, we first introduce intermediate
hybrid experiments H1,j between H1 and H2, where j ∈ {0, · · · , 2i−1}. In the following, let j ∈
{0, 1}i−1 ∪ {1‖0i−1} be the binary representation of j.

H1,j : In this experiment, Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i− 1,Eji−1[MSKi,Ki,0,Ki,1, Si]). The
circuit Eji−1 is defined in Figure 16.

48

Encryption Circuit Eji−1[MSKi,Ki,0,Ki,1, Si](xi−1)
Hardwired: A master secret key MSKi, two SKE keysKi,0 andKi,1, and a PRF key Si.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If xi−1 < j, set α← 1, and otherwise, set α← 0.
2. For xi ∈ {0, 1}, compute as follows:

• Compute rxi−1‖xi

Enc ← FSi (xi−1‖xi).

• Compute CTi,xi ← Enc(MSK,xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi

Enc).

3. Return (CTi,0,CTi,1).

Figure 16: The description of Eji−1. The red underline is the difference from Ei−1,α.

Then, we have

|Pr[Di(H1)]− Pr[Di(H2)]| ≤
∣∣∣Pr[Di(H1)]− Pr

[
Di(H1,0)

]∣∣∣
+

2i−1−1∑
j=1

∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H1,j+1)

]∣∣∣
+
∣∣∣Pr
[
Di(H1,2i−1)

]
− Pr[Di(H2)]

∣∣∣ .
If we use a PKFE scheme instead of our puncturable SKFE scheme, we can directly prove the indistin-
guishability betweenH1,j andH1,j+1. However, to estimate each term of the right hand size of the above
inequality, we need introduce the following additional hybrid experiments for every j ∈ {1, · · · , 2i−1}
since we use a puncturable SKFE scheme.

H0
1,j : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i−1,PEji−1[MSK∗i {j},Ki,0,Ki,1, Si{j‖0, j‖1}, ui,0, ui,1])

in this experiment, where ui,b ← Enc(MSKi, j, (j‖b,Ki,0, 0); rj‖b
Enc) and r

j‖b
Enc ← FSi(j‖b) for every

b ∈ {0, 1}. The circuit PEji−1 is defined in Figure 17. The other part of this experiment is same as
H1,j .

H1
1,j : Same as H0

1,j except that ui,b is computed by ui,b ← Enc(MSK, j, (j‖b,Ki,1, 1); rj‖b
Enc) and

r
j‖b
Enc ← FSi(j‖b) for every b ∈ {0, 1}.

Then, we can estimate |Pr[Di(H1)]− Pr[Di(H2)]| in more detail and obtain

|Pr[Di(H1)]− Pr[Di(H2)]| ≤
∣∣∣Pr[Di(H1)]− Pr

[
Di(H1,0)

]∣∣∣
+

2i−1−1∑
j=0

∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣

+
2i−1−1∑
j=0

∣∣∣Pr
[
Di(H0

1,j)
]
− Pr

[
Di(H1

1,j)
]∣∣∣

+
2i−1−1∑
j=0

∣∣∣Pr
[
Di(H1

1,j)
]
− Pr

[
Di(H1,j+1)

]∣∣∣
+
∣∣∣Pr
[
Di(H1,2i−1)

]
− Pr[Di(H2)]

∣∣∣ . (10)

In the rest of this section, we estimate each term of the right side of inequality 10 by Lemma 7.8, 7.9,
and 7.10.

49

Punctured Encryption Circuit PEji−1[MSK∗i {j},Ki,0,Ki,1, S
∗
i {j‖0, j‖1|}, ui,0, ui,1](xi−1)

Hardwired: A punctured master secret key MSK∗i {j}, two SKE keys Ki,0 and Ki,1, a punctured PRF key
S∗i {j‖0, j‖1}, and two ciphertexts ui,0 and ui,1.

Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If xi−1 = j, return (ui,0, ui,1).
2. Else, set α := 1 if xi−1 < j and α := 0 otherwise.
3. For xi ∈ {0, 1}, compute as follows:

• Compute rxi−1‖xi

Enc ← FS∗
i
{j‖0,j‖1|}(xi−1‖xi).

• Compute CTi,xi ← PEnc(MSK∗i {j},xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi

Enc).

4. Return (CTi,0,CTi,1).

Figure 17: The description of PEji−1. Red underlines are differences from Eji−1.

FromH1 toH1,0 and fromH1,2i−1 toH2 We have the following lemma.

Lemma 7.8.
∣∣∣Pr[Di(H1)]− Pr

[
Di(H1,0)

]∣∣∣ ≤ δi−1 and
∣∣∣Pr
[
Di(H1,2i−1)

]
− Pr[Di(H2)]

∣∣∣ ≤ δi−1 hold.

Proof of Lemma 7.8 We focus on proving
∣∣∣Pr[Di(H1)]− Pr

[
Di(H1,0)

]∣∣∣ ≤ δi−1 here.
The only difference between H1 and H1,0 is how Ẽi−1 is generated. In H1, Ẽi−1 is generated

by Ẽi−1 ← riO(1λ̃, i − 1,Ei−1,0[MSKi,Ki,0, Si]). On the other hand, in H1,0, Ẽi−1 is generated
by Ẽi−1 ← riO(1λ̃, i − 1,E0

i−1[MSKi,Ki,0,Ki,1, Si]). We can see that circuits obfuscated in each
experiment have the same functionality. Moreover, both circuits are padded to the same size padi−1

E .
Therefore, we have

∣∣∣Pr[Di(H1)]− Pr
[
Di(H1,0)

]∣∣∣ ≤ δi−1.

By analyzing similarly, we also obtain
∣∣∣Pr
[
Di(H1,2i−1)

]
− Pr[Di(H2)]

∣∣∣ ≤ δi−1. � (Lemma 7.8)

FromH0
1,j toH1

1,j Next, we estimate
∣∣∣Pr
[
Di(H0

1,j)
]
− Pr

[
Di(H1

1,j)
]∣∣∣ for every j ∈ {0, · · · , 2i−1−1}.

We can estimate
∣∣∣Pr
[
Di(H0

1,j)
]
− Pr

[
Di(H1

1,j)
]∣∣∣ by the semantic security at punctured tag of pSKFE

and the security of PPRF. Formally, we have the following lemma.

Lemma 7.9. Let δ(λ̃) = 2−λ̃ε . Let pSKFE satisfy δ-semantic security at punctured tag. Let PPRF be
δ-secure. Then,

∣∣∣Pr
[
Di(H0

1,j)
]
− Pr

[
Di(H1

1,j)
]∣∣∣ ≤ 2−Ω(λ̃ε) holds for every i ∈ {0, · · · , 2i−1 − 1}.

Proof of Lemma 7.9 In order to use the semantic security at punctured tag of pSKFE, we change the
randomness rj‖b

Enc used in ui,b into truly random for every b ∈ {0, 1}. Thus, we introduce the following
intermediate hybrid experimentsH0,rnd

1,j andH1,rnd
1,j betweenH0

1,j andH1
1,j .

H0,rnd
1,j : Same asH0

1,j except that r
j‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

By the pseudorandomness of PPRF, we have
∣∣∣Pr
[
Di(H0

1,j)
]
− Pr

[
Di(H0,rnd

1,j)
]∣∣∣ ≤ 2−λ̃ε .

H1,rnd
1,j : Same asH1

1,j except that r
j‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

Note that the only difference betweenH0,rnd
1,j andH1,rnd

1,j is how ui,b is generated for every b ∈ {0, 1}.
InH0,rnd

1,j , ui,b is generated by ui,b ← Enc(MSKi, j, (j‖b,Ki,0, 0)). On the other hand, inH1,rnd
1,j ,

50

ui,b is generated by ui,b ← Enc(MSKi, j, (j‖b,Ki,1, 1)). Now, in both experiments, the ciphertext
ui,b is generated using a truly random string for every b ∈ {0, 1}. In addition, in both experiments,
CTske

i,α is a ciphertext of Ci,α under the SKE keyKi,α for every α ∈ {0, 1}. Hence, we have

Evi[CTske
i,0 ,CTske

i,1](j‖b,Ki,0, 0) = Ci,0(j‖b)
= Ci,1(j‖b) = Evi[CTske

i,0 ,CTske
i,1](j‖b,Ki,1, 1),

since Ci,0 and Ci,1 are functionally equivalent.
Therefore, from the semantic security at punctured tag of pSKFE, we obtain∣∣∣Pr

[
Di(H0,rnd

1,j)
]
− Pr

[
Di(H1,rnd

1,j)
]∣∣∣ ≤ 2−λ̃ε .

By the pseudorandomness of PPRF, we have
∣∣∣Pr
[
Di(H1,rnd

1,j)
]
− Pr

[
Di(H1

1,j)
]∣∣∣ ≤ 2−λ̃ε .

From these, we see that
∣∣∣Pr
[
Di(H0

1,j)
]
− Pr

[
Di(H1

1,j)
]∣∣∣ ≤ 2−Ω(λ̃ε). � (Lemma 7.9)

FromH1,j toH0
1,j and fromH1

1,j toH1,j+1 In the rest of this proof, we estimate
∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣

and
∣∣∣Pr
[
Di(H1

1,j)
]
− Pr

[
Di(H1,j+1)

]∣∣∣ for every j ∈ {0, . . . , 2i−1 − 1}. Since the difference be-
tween H1,j and H0

1,j , and that of H1
1,j and H1,j+1 are almost symmetric, we focus on evaluating∣∣∣Pr

[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ here. More precisely, we prove the following lemma.

Lemma7.10. Let δ(λ̃) = 2−λ̃ε . Let pSKFE satisfy δ-indistinguishability of functionality under puncturing.
Let PPRF be δ-secure. Then, for every {0, · · · , 2i−1 − 1}, we have∣∣∣Pr

[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) .

We can apply the following arguments for the evaluation of
∣∣∣Pr
[
Di(H1

1,j)
]
− Pr

[
Di(H1,j+1)

]∣∣∣.
Proof of Lemma 7.10 If the underlying puncturable SKFE satisfies functionality preserving under punc-
turing property, we can directly estimate

∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ for every j ∈ {0, · · · , 2i−1−1}

by using the property. However, our pSKFE satisfies only indistinguishability of functionality under
puncturing property. Thus, we need more hybrid experiments betweenH1,j andH0

1,j defined for every
k ∈ {0, · · · , 2i−1} as follows. Below, let k ∈ {0, 1}i−1 ∪ {1‖0i−1} be the binary representation of k.

H1,j,k : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i− 1,HEj,ki−1[MSKi,MSK∗i {j},Ki,0,Ki,1, Si,⊥,⊥]) in
this experiment. The circuit HEj,ki−1 is defined in Figure 18.

Figure 19 illustrates an overview of hybrid experiments fromH1,j−1 toH0
1,j .

Then, we have∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ ≤ ∣∣∣Pr

[
Di(H1,j)

]
− Pr

[
Di(H1,j,0)

]∣∣∣
+

2i−1−1∑
k=0

∣∣∣Pr
[
Di(H1,j,k)

]
− Pr

[
Di(H1,j,k+1)

]∣∣∣
+
∣∣∣Pr
[
Di(H1,j,2i−1)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ .

To estimate each term of the right hand size of the above inequality, we introduce the following hybrid
experiments for k ∈ {0, · · · , 2i−1 − 1} \ {j}.

51

Hybrid Encryption Circuit HEj,ki−1[MSKi,MSK∗i {j},Ki,0,Ki,1, Si, vk,0, vk,1](xi−1)
Hardwired: A master secret key MSKi, punctured master secret key MSK∗i {j}, two SKE keysKi,0 andKi,1, PRF

key Si, and two ciphertexts vk,0 and vk,1.
Input: A string xi−1 ∈ {0, 1}i−1.
Padding: This circuit is padded to size padi−1

E := padi−1
E (λ, n, s), which is determined in analysis.

1. If (vi,0, vi,1) 6= (⊥,⊥) and xi−1 = k, return (vk,0, vk,1).
2. Else, compute as follows:

• If xi−1 < j, set α := 1, and otherwise, set α := 0.
• For xi ∈ {0, 1}, compute as follows:

– Compute rxi−1‖xi

Enc ← FSi (xi−1‖xi).
– If xi−1 < k and xi−1 6= j,

then compute

CTi,xi ← PEnc(MSK∗i {j},xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi

Enc).
Otherwise, compute
CTi,xi ← Enc(MSKi,xi−1, (xi−1‖xi,Ki,α, α); rxi−1‖xi

Enc).
• Return (CTi,0,CTi,1).

Figure 18: The description of HEj,ki−1. Red underlines are differences from Eji−1.

H1,j H0
1,j

∼ Lemma 7.11 ∼Lemma 7.11

H1,j,0 H1,j,2i−1H1,j,k H1,j,k+1

Lemma 7.11
only for k = j

∼∼ · · · · · · ∼∼

Henc
1,j,k Hpenc

1,j,k
∼

Lemma 7.13
(k 6= j)

∼ Lemma 7.12
(k 6= j)

∼ Lemma 7.12
(k 6= j)

Figure 19: Relations of the hybrid experiments fromH1,j−1 toH0
1,j for Lemma 7.10. Solid lines denote that the

indistinguihability is proven by one step. Dashed lines denote that we use for loop with variable k. Note that, only
for k = j, we do not needHenc

1,j,k andH
penc
1,j,k (H

penc
1,j,j is not well-defined).

Henc
1,j,k : Ẽi−1 is computed as Ẽi−1 ← riO(1λ̃, i−1,HEj,ki−1[MSKi,MSK∗i {j},Ki,0,Ki,1, S

∗
i {k‖0,k‖1}, vk,0, vk,1])

in this experiment, where vk,b ← Enc(MSKi,k, (k‖b,Ki,α, α); rk‖b
Enc) for every b ∈ {0, 1}.

Hpenc
1,j,k : In this experiment, vk,b is computed by vk,b ← PEnc(MSK∗i {j},k, (k‖b,Ki,α, α); rk‖b

Enc) for
every b ∈ {0, 1}.

52

Then, we can estimate
∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ in more detail and obtain∣∣∣Pr

[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ ≤ ∣∣∣Pr

[
Di(H1,j)

]
− Pr

[
Di(H1,j,0)

]∣∣∣
+

∑
k∈{0,··· ,2i−1−1}\{j}

∣∣∣Pr
[
Di(H1,j,k)

]
− Pr

[
Di(Henc

1,j,k)
]∣∣∣

+
∑

k∈{0,··· ,2i−1−1}\{j}

∣∣∣Pr
[
Di(Henc

1,j,k)
]
− Pr

[
Di(Hpenc

1,j,k)
]∣∣∣

+
∑

k∈{0,··· ,2i−1−1}\{j}

∣∣∣Pr
[
Di(Hpenc

1,j,k)
]
− Pr

[
Di(H1,j,k+1)

]∣∣∣
+
∣∣∣Pr
[
Di(H1,j,j)

]
− Pr

[
Di(H1,j,j+1)

]∣∣∣
+
∣∣∣Pr
[
Di(H1,j,2i−1)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ . (11)

To bound the right hand side of inequality 11, we prove Lemma 7.11, 7.12, and 7.13.

Lemma 7.11. It holds that ∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H1,j,0)

]∣∣∣ ≤ δi−1 ,∣∣∣Pr
[
Di(H1,j,j)

]
− Pr

[
Di(H1,j,j+1)

]∣∣∣ ≤ δi−1 ,∣∣∣Pr
[
Di(H1,j,2i−1)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ ≤ δi−1 .

Lemma 7.12. For k ∈ {0, · · · , 2i−1 − 1} \ {j}, it holds that∣∣∣Pr
[
Di(H1,j,k)

]
− Pr

[
Di(Henc

1,j,k)
]∣∣∣ ≤ δi−1 ,∣∣∣Pr

[
Di(Hpenc

1,j,k)
]
− Pr

[
Di(H1,j,k+1)

]∣∣∣ ≤ δi−1 .

Proof of Lemma 7.11 The only difference between two experiments in each inequality is how Ẽi−1 is
generated. Thus, we verify that circuits of the same functionality are obfuscated to generate Ẽi−1 in those
two experiments related to each inequality.

For the first inequality, it is easy to verify that Eji−1 in H1,j is equivalent to HEj,0i−1 in H1,j,0 since
HEj,0i−1 does not compute PEnc. Thus, the first inequality holds due to the security of riO.

We next show the second inequality. For xi−1 ≤ j − 1 and xi−1 ≥ j + 1, the behavior of HEj,ji−1 and
HEj,j+1

i−1 are the same. On input xi−1 = j, HEj,ki−1 always computes output ciphertexts by using Enc with
MSKi regardless of the value of k, and thus HEj,ji−1 and HEj,j+1

i−1 behave in exactly the same way on input
xi−1 = j. Thus, HEj,ji−1 and HEj,j+1

i−1 are functionally equivalent and the second inequality holds due to
the security of riO.

We finally show the third inequality. On input xi−1, if xi−1 = j, PEji−1 inH0
1,j outputs hardwired ui,0

and ui,1 that are ciphertexts of j generated by using Enc with MSKi. Otherwise, it generates ciphertexts
of xi−1 using PEnc and MSK∗i {j}, and outputs them. On input xi−1, HEj,2

i−1

i−1 in H0
1,j,2i−1 computes

output ciphertexts by using Enc with MSKi if xi−1 = j, and by using PEnc with MSK∗i {j} otherwise.
From this fact, we see that HEj,2

i−1

i−1 in H1,j,2i−1 is functionally equivalent to PEji−1 in H0
1,j . Thus, the

third inequality holds due to the security of riO. � (Lemma 7.11)

53

Proof of Lemma 7.12 We first show the first inequality. On input xi−1 6= k, HEj,ki−1 inH1,j,k runs in
exactly the same way as HEj,ki−1 inHenc

1,j,k. On input xi−1 = k, HEj,ki−1 inH1,j,k generate ciphertexts of k
by using Enc with MSKi, and outputs them. On input xi−1 = k, HEj,ki−1 inHenc

1,j,k outputs hardwired vk,0
and vk,1 that are ciphertexts of k generated by using Enc with MSKi. Thus, these circuits are functionally
equivalent and the inequality holds due to the security of riO.

We next show the second inequality. In Hpenc
1,j,k, Ẽi−1 is generated by obfuscating HEj,ki−1 that has

hardwired ciphertexts of k, that is vk,0 and vk,1 generated by using PEnc with MSK∗i {j}. In H1,j,k+1,
Ẽi−1 is generated by obfuscating HEj,k+1

i−1 that does not have hardwired ciphertexts. On input xi−1 6= k,
these two circuits runs in exactly the same way. On input xi−1 = k, HEj,ki−1 inHpenc

1,j,k outputs hardwired
vk,0 and vk,1. On input xi−1 = k, HEj,k+1

i−1 in H1,j,k+1 generates ciphertexts of k by using PEnc with
MSK∗i {j}, and outputs them. Thus, two circuits are functionally equivalent and the second inequality
holds due to the security of riO. � (Lemma 7.12)

Finally, we estimate the term
∣∣∣Pr
[
Di(Henc

1,j,k)
]
− Pr

[
Di(Hpenc

1,j,k)
]∣∣∣ for every k ∈ {0, . . . , 2i−1−1}\{j}.

We can bound this term by using the indistinguishability of functionality under puncturing of pSKFE.
Formally, we have the following lemma.

Lemma7.13. Let δ(λ̃) = 2−λ̃ε . Let pSKFE satisfy δ-indistinguishability of functionality under puncturing.
Let PPRF be δ-secure. Then, we have

∣∣∣Pr
[
Di(Henc

1,j,k)
]
− Pr

[
Di(Hpenc

1,j,k)
]∣∣∣ ≤ 2−Ω(λ̃ε) for every j ∈

{0, · · · , 2i−1 − 1} \ {j}.

Proof of Lemma 7.13 Let k be any integer in {0, · · · , 2i−1 − 1} \ {j}. In order to use the indistin-
guishability of functionality under puncturing of pSKFE, we change the randomness rk‖b

Enc used in vk,b
into truly random for every b ∈ {0, 1}. Thus, we introduce the following intermediate hybrid experiments
Henc,rnd

1,j,k andHpenc,rnd
1,j,k betweenHenc

1,j,k andH
penc
1,j,k.

Henc,rnd
1,j,k : Same asHenc

1,j,k except that r
k‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

By the pseudorandomness of PPRF, we have
∣∣∣Pr
[
Di(Henc

1,j,k)
]
− Pr

[
Di(Henc,rnd

1,j,k)
]∣∣∣ ≤ 2−λ̃ε .

Hpenc,rnd
1,j,k : Same asHpenc

1,j,k except that r
k‖b
Enc is generated as a truly random string for every b ∈ {0, 1}.

Note that the only difference between Henc,rnd
1,j,k and Hpenc,rnd

1,j,k is how vk,b is generated for every
b ∈ {0, 1}. In Henc,rnd

1,j,k , vk,b is generated by vk,b ← Enc(MSKi,k, (k‖b,Ki,α, α)). On the other
hand, inHpenc,rnd

1,j,k , vk,b is generated by vk,b ← PEnc(MSK∗i {j},k, (k‖b,Ki,α, α)). Now, in both
experiments, the ciphertext vk,b is generated using a truly random string for every b ∈ {0, 1}.
Therefore, from the indistinguishability of functionality under puncturing of pSKFE, we obtain∣∣∣Pr
[
Di(Henc,rnd

1,j,k)
]
− Pr

[
Di(Hpenc,rnd

1,j,k)
]∣∣∣ ≤ 2−λ̃ε .

We have
∣∣∣Pr
[
Di(Hpenc,rnd

1,j,k)
]
− Pr

[
Di(Hpenc

1,j,k)
]∣∣∣ ≤ 2−λ̃ε by the pseudorandomness of PPRF.

From these, we obtain
∣∣∣Pr
[
Di(Henc

1,j,k)
]
− Pr

[
Di(Hpenc

1,j,k)
]∣∣∣ ≤ 2−Ω(λ̃ε) for every k ∈ {0, · · · , 2i−1 −

1} \ {j}. � (Lemma 7.13)

From inequality 11, and Lemma 7.11, 7.12, and 7.13, it holds that∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ ≤ 3 · δi−1 + 2(2i−1 − 1) · δi−1 + (2i−1 − 1) · 2−Ω(λ̃ε)

≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) . (12)

54

This completes the estimation of
∣∣∣Pr
[
Di(H1,j)

]
− Pr

[
Di(H0

1,j)
]∣∣∣ for every j ∈ {0, . . . , 2i−1 − 1},

that is, completes the proof of Lemma 7.10. � (Lemma 7.10)
From the symmetry of the difference of H1,j and H0

1,j , and that of H1
1,j and H1,j+1, by analyzing

similarly, we obtain∣∣∣Pr
[
Di(H1

1,j)
]
− Pr

[
Di(H1,j+1)

]∣∣∣ ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) (13)

for every j ∈ {0, · · · , 2i−1 − 1}.

From inequality 12 and 13, inequality 10, and Lemma 7.8 and 7.9, we have

|Pr[Di(H1)]− Pr[Di(H2)]|

≤2 · δi−1 + 2 · 2i−1 · 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) + 2i−1 · 2−Ω(λ̃ε)

≤22(i−1) ·O(δi−1 + 2−Ω(λ̃ε)) . (14)

From the symmetry of the difference ofH1 andH2, and that ofH3 andH4, by analyzing similarly,
we also have

|Pr[Di(H3)]− Pr[Di(H4)]| ≤ 22(i−1) ·O(δi−1 + 2−Ω(λ̃ε)) . (15)

This completes the estimation of |Pr[Di(H1)]− Pr[Di(H2)]| and |Pr[Di(H3)]− Pr[Di(H4)]|.

By combining inequality 14 and 15, Lemma 7.7, and inequality 9, we obtain inequality 8 in Lemma 7.6.
This completes the security analysis for iO(1λ, C) = riO(1λ̃, n, C) in Section 7.1.

7.3 Efficiency Analysis

In this section, we prove that iO(1λ, C) = riO(1λ̃, n, C) runs in polynomial time. In this analysis,
let s and n be the upper bound of the size and input length of circuits supported by iO. When we
invoke riO(1λ̃, n, C) for some circuit C with n-bit input, iO generates total n − 1 master secret keys
MSK2, · · · ,MSKn. In other words, iO includes n− 1 instances of pSKFE. If all of these n− 1 instances
runs in polynomial of λ̃, n and s, then so does iO. Below, we show it.

In order to accomplish the above task, we clearly distinguish each of these instances. Below, let
pSKFEi denote the instance of pSKFE with respect to MSKi. Especially, let Enci denote the encryption
circuit Enc corresponding to MSKi, that is Enc(MSKi, ·). Moreover, let PEnci denote the punctured
encryption circuit PEnc with respect to MSK∗i , that is PEnc(MSK∗i , ·), where MSK∗i is the punctured
master secret key generated by puncturing MSKi. Note that which tag is punctured does not affect the
running time of PEnc, and thus we omit to write the tag.

We start with the estimation of the size of padding padi−1
E of encryption circuits for every i ∈

{3, · · · , n}. Then, using the bound of padi−1
E , we complete the efficiency analysis of iO.

In the above security analysis, in addition to the encryption circuits Ei−1,α, we introduce encryption
circuits PEji−1, Eji−1, and HEj,ki−1, where j, k ∈ {0, · · · , 2i−1}. We need to ensure that all of them have
the same size, and thus we set

padi−1
E := max(|Ei−1,α|,

∣∣∣PEji−1

∣∣∣, ∣∣∣Eji−1

∣∣∣, ∣∣∣HEj,ki−1

∣∣∣) .

All of above circuits evaluates a puncturable PRF over the domain {0, 1}n, and then computes either
Enci or PEnci. Without loss of generality, we assume that Enci and PEnci have the same size for every

55

i ∈ {2, · · · , n}. This can be done by appropriate size padding. In this case, for every i ∈ {3, · · · , n}, we
can bound padi−1

E as

padi−1
E ≤ |Enci| · polypad(λ̃, n) , (16)

where polypad is a fixed polynomial.
We move on to the analysis of the running time of iO. Especially, as stated earlier, we show that

|Enci| is polynomial of λ̃, n and s for every i ∈ {2, · · · , n}.
First, for every i ∈ {2, · · · , n}, we specify the upper bound of the size si of circuits that pSKFEi has

to support.
Before analysis, we introduce some notations. For every i ∈ {2, · · · , n} and circuit Ci with i-bit

input, let Evi[Ci] denote the evaluation circuit Evi defined in Figure 13 into which Ci is hardwired
after encrypted by SKE. In addition, for every i ∈ {2, · · · , n}, let Ei−1 denote the encryption circuit
Ei−1,0[MSKi,Ki, Si] defined in Figure 21.

Using this notation, we see that pSKFEi has to support Evi[Ei] for every i ∈ {2, · · · , n − 1}. In
addition, pSKFEn has to support Evn[C]. Below, we bound the size of these circuits.

From inequality 16, for every i ∈ {3, · · · , n}, we have

|Ei−1| ≤ |Enci| · polypad(λ̃, n) . (17)

In addition, we can analyze the size of Evi[Ci] as follows. Evi[Ci] includes a decryption procedure of
encrypted Ci by SKE, and evaluation of a universal circuit U(Ci,xi), where xi ∈ {0, 1}i. Decryption
procedure of SKE is done in linear time in |Ci|. In addition, we can perform the evaluation of a universal
circuit in quasi-linear time in |Ci| [Val76]. Thus, for every i ∈ {2, · · · , n}, we have

|Evi[Ci]| ≤ |Ci| · log |Ci| · polyEv(λ̃, n) ≤ |Ci|1+γ1 · polyEv(λ̃, n) , (18)

where polyEv is a fixed polynomial and γ1 < 1 is an arbitrary constant. By combining inequalities 17 and
18, for every i ∈ {3, · · · , n}, we obtain

|Evi−1[Ei−1]| ≤ |Ei−1|1+γ1 · polyEv(λ̃, n)

≤
(
|Enci| · polypad(λ̃, n)

)1+γ1 · polyEv(λ̃, n)

≤ |Enci|1+γ1 · poly1(λ̃, n) , (19)

where poly1 is some fixed polynomial.
Therefore, for every i ∈ {3, · · · , n}, we have

si−1 ≤ |Enci|1+γ1 · poly1(λ̃, n) . (20)

Moreover, from inequality 18, we have

sn ≤ |C|1+γ1 · polyEv(λ̃, n) = s1+γ1 · polyEv(λ̃, n) . (21)

Using the bound of si, we complete the efficiency analysis by estimating |Enci| for every i ∈
{2, · · · , n}.

Recall that the building block pSKFE is weakly succinct, and for every i ∈ {2, · · · , n}, pSKFEi
encrypts n+ λ̃+ 1 bit plaintexts in the construction. Therefore, for every i ∈ {2, · · · , n}, we have

|Enci| ≤ sγi · poly(λ̃, n+ λ̃+ 1)
≤ sγi · polyE(λ̃, n) , (22)

56

where γ < 1 is some constant and polyE denotes some fixed polynomial. By substituting inequality 20
into 22, for every i ∈ {3, · · · , n}, we obtain

|Enci−1| ≤
(
|Enci|1+γ1 · poly1(λ̃, n)

)γ
· polyE(λ̃, n)

≤ |Enci|γ2 · poly2(λ̃, n) , (23)

where γ is a constant such that (1 + γ1)γ < γ2 < 1 and poly2 is some fixed polynomial. Note that since
we can choose γ1 as an arbitrary small constant and γ < 1, by setting γ1 <

1−γ
γ , γ2 satisfying the above

condition exists. In addition, from inequality 21, we also have

|Encn| ≤
(
s1+γ1 · polyEv(λ̃, n)

)γ
· polyE(λ̃, n)

≤ sγ2 · poly3(λ̃, n) , (24)

where poly3 is some fixed polynomial.
Then, from inequalities 23 and 24, for every i ∈ {2, · · · , n}, it holds that

|Enci| ≤ |Encn|γ
n−i
2 ·

n−i∏
j=1

poly2(λ̃, n)γ
j−1
2

≤
(
sγ2 · poly3(λ̃, n)

)γn−i2 ·
n−i∏
j=1

poly2(λ̃, n)γ
j−1
2

≤ sγ2 · poly3(λ̃, n) · poly2(λ̃, n)
1

1−γ2 .

The third inequality follows from the fact that γ2 < 1. The above inequality means that the encryption
algorithm of pSKFEi runs in polynomial time of λ̃, n and s for every i ∈ {2, · · · , n}.

In that case, all of the algorithms of pSKFEi runs in polynomial of λ̃, n and s for every i ∈ {2, · · · , n}.
Thus, we conclude that iO runs in polynomial of λ̃, n and s.

We completed the analysis of security and efficiency. Thus, we completed the proof of Theorem 7.1
and proved that we can construct IO for all circuits solely from SKFE for all circuits.

8 BasicTools forTransformation fromSuccinctness toCollusion-Resistance

In this section, we introduce some basic constructions that we use to achieve a transformation from weakly
succinct single-key SKFE to collusion-resistant SKFE.

8.1 Parallel Construction

For any q which is a polynomial of λ, we show how to construct an iSKFE scheme whose index space
is [q] based on a single-key SKFE scheme. The construction is very simple. The construction just
runs q instances of the single-key scheme in parallel. Although this construction is essentially the
same as the SUM construction by Li and Micciancio [LM16], we recall it to describe and analyze our
collusion-resistant scheme in Sections 10.2 and 10.3. The construction is as follows.

Let 1Key = (1Key.Setup, 1Key.KG, 1Key.Enc, 1Key.Dec) be a single-key SKFE scheme. We
construct an iSKFE scheme Parallelq = (Paraq.Setup,Paraq.iKG,Paraq.Enc,Paraq.Dec) as follows.
Note again that q is a fixed polynomial of λ. Let the function space of 1Key be F . The function space of
Parallelq is also F .

57

Construction. The scheme consists of the following algorithms.

Paraq.Setup(1λ) :

• For every k ∈ [q], generate MSKk ← 1Key.Setup(1λ).
• Return MSK := {MSKk}k∈[q].

Paraq.iKG(MSK, f, i) :

• Parse {MSKk}k∈[q] ← MSK.
• Compute 1Key.skf ← 1Key.KG(MSKi, f).
• Return skf := (i, 1Key.skf).

Paraq.Enc(MSK,m) :

• Parse {MSKk}k∈[q] ← MSK.
• For every k ∈ [q], compute CTk ← 1Key.Enc(MSKk,m).
• Return CT := {CTk}k∈[q].

Paraq.Dec(skf ,CT) :

• Parse (i, 1Key.skf)← skf and {CTk}k∈[q] ← CT.
• Return y ← 1Key.Dec(1Key.skf ,CTi).

The correctness of this construction directly follows from that of 1Key.

Efficiency. Let 1Key.tEnc and 1Key.tKG be bounds of the running time of 1Key.Enc and 1Key.KG.
In addition, let Paraq.tEnc and Paraq.tiKG be bounds of the running time of Paraq.Enc and Paraq.iKG.
See Definition 3.20 for s and n. Then, we have

Paraq.tEnc(λ, n, s) = q · 1Key.tEnc(λ, n, s) ,

Paraq.tiKG(λ, n, s) = 1Key.tiKG(λ, n, s).

Especially, if 1Key is (weakly) succinct and we set q := λ , then Parallelq is also (weakly) succinct and
we have

Paraq.tEnc(λ, n, s) = λ · 1Key.tEnc(λ, n, s) = sγ · polyPara(λ, n), (25)

where γ < 1 is a constant and polyPara is a fixed polynomial. Note that the encryption algorithm of
Parallelλ runs that of 1Key λ times. Therefore, Para.tEnc is λ times bigger than the encryption time of
1Key, but the factor λ is absorbed in polyPara(λ, n), and thus we can bound Para.t(k)

Enc by inequality (25).
At the concrete instantiation in Section 10, we set q := λ and use this bound.

Security. We have the following theorem.

Theorem 8.1 ([LM16, Adapted]). Let 1Key be (1, δ)-selective-message function private SKFE. Then,
Parallelq is (q, δ)-selective-message function private iSKFE.

We omit the proof of Theorem 8.1 since the proof is essentially the same as the proof for the SUM
construction by Li and Micciancio [LM16]. See the unpublished manuscript by Kitagawaet al. [KNT17a]
for the full proof.

58

8.2 Single-Ciphertext Collusion-Resistant Fully Succinct SKFE

Next, we show how to construct a succinct SKFE scheme 1CT based solely on one-way functions. The
scheme is single-ciphertext collusion-resistant, that is, it is secure against adversaries who make only one
encryption query and unbounded many key queries. In addition, the length of a master secret key of 1CT
is λ bit, regardless of the length of a message to be encrypted. The construction uses a garbling scheme,
an SKE scheme, and a PRF all of which can be constructed from one-way functions. The construction
can be essentially seen as a flipped variant of the construction proposed by Sahai and Seyalioglu [SS10].

Recall that n is the size of the message. So, we let n := |m| where m is a message. Let
GC = (Grbl,Eval) be a garbling scheme, SKE = (E,D) an SKE scheme, and {FS : {0, · · · , n}×{0, 1} →
{0, 1}n | S ∈ {0, 1}λ} a PRF. UsingGC ,SKE, and F, we construct an SKFE scheme 1CT = (1CT.Setup,
1CT.KG, 1CT.Enc, 1CT.Dec) as follows.

Construction. The scheme consists of the following algorithms.

1CT.Setup(1λ) :

• Generate S r←− {0, 1}λ and return MSK := S.

1CT.KG(MSK, f) :

• Parse S ← MSK.
• ComputeKj,α ← FS(j‖α) for every j ∈ [n] and α ∈ {0, 1}, and R← FS(0‖0)15.
• Compute (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, Cf), where Cf is a circuit computing f .
• For every j ∈ [n], compute cj,0 ← E(Kj,0, Lj,R[j]) and cj,1 ← E(Kj,1, Lj,1−R[j]).

• Return skf := (C̃, {cj,α}j∈[n],α∈{0,1}).

1CT.Enc(MSK,m) :

• Parse S ← MSK.
• ComputeKj,α ← FS(j‖α) for every j ∈ [n] and α ∈ {0, 1}.
• Compute R← FS(0‖0) and x := m⊕R.
• Return CT := (x, {Kj,x[j]}j∈[n]).

1CT.Dec(skf ,CT) :

• Parse (C̃, {cj,α}j∈[n],α∈{0,1})← skf and (x, {Kj}j∈[n])← CT.
• For every j ∈ [n], compute Lj ← D(Kj , cj,x[j]).

• Return y ← Eval(C̃, {Lj}j∈[n]).

Correctness. If R[j] = 0, the SKE ciphertext cj,α is an encryption of Lj,α, and x[j] = m[j] holds
for every j ∈ [n] and α ∈ {0, 1}. If R[j] = 1, the SKE ciphertext cj,α is an encryption of Lj,1−α, and
x[j] = 1−m[j] holds for every j ∈ [n] and α ∈ {0, 1}. Then, We see that for every j ∈ [n], cj,x[j] is an
encryption of Lj,m[j]. Therefore, the correctness of 1CT directly follows from those of building blocks.

15 We assume that n ≥ λ andKj,α is the first λ bit of FS(j‖α) for every j ∈ [n] and α ∈ {0, 1}.

59

Efficiency. We use Yao’s garbled circuit for GC [Yao86, BHR12]. We observe that the running time
of Grbl, GC.tGrbl(λ, |f |) = |f | · poly(λ) (linear in |f |) from Yao’s construction. Other computations
included in the description of 1CT is just computing XOR, PRF over domain [2n], and encryption of SKE.
Let 1CT.tEnc, 1CT.`Enc, and 1CT.tKG be bounds of the running time and output length of 1CT.Enc and
the running time of 1CT.KG. In addition, tF, tGrbl, and tE are bounds of the running time of F, Grbl, and
E, respectively. Then, we have

|MSK| = λ, 1CT.`Enc(λ, n) = (λ+ 1)n,
1CT.tEnc(λ, n) = n · poly1CT(λ, logn), (26)

1CT.tKG(λ, n, s) = tF + tGrbl(λ, |f |) + 2 · n · tE
≤ poly(λ, logn) + |f | · poly(λ) + n · poly(λ)
≤ (|f |+ n) · poly(λ), (27)

where poly1CT is a fixed polynomial.
The master secret-key length is |MSK| = λ thus is independent of n. The encryption time is

independent of the size of f , i.e., this scheme is fully succinct. Moreover, we stress that the running time
of the key generation is linear in |f |.

Security. We have the following theorem.

Theorem 8.2. Let GC be δ-secure garbling scheme, SKE δ-secure SKE, and F δ-secure PRF. Then, 1CT
is single-ciphertext (poly, δ)-selective-message function private SKFE.

Proof of Theorem 8.2. We assume that the advantage of any adversary attacking GC, SKE, and F is
bounded by εGC, εSKE, and εPRF, respectively. Let A be an adversary that attacks the selective-message
function privacy of 1CT. Moreover, we assume that A makes q key queries at most, where q is a
polynomial of λ. Then, it holds that

Advsm-fp
1CT,A(λ) ≤ 2(q · εGC + εSKE + εPRF). (28)

This means that if all of GC, SKE, and F are δ-secure, then so is 1CT. Below, we prove this via a
sequence of games. First, consider the following sequence of games.

Game 0 This is the selective-message function privacy game regarding 1CT.

Initialization First, the challenger sends security parameter 1λ to A. Then, A sends (m0,m1)
to the challenger. Next, the challenger generates S r←− {0, 1}λ and chooses a challenge bit
b

r←− {0, 1}. Then, the challenger computesKj,α ← FS(j‖α) for every j ∈ [n] andα ∈ {0, 1},
R← FS(0‖0), and x := mb ⊕R. Finally, the challenger returns (x, {Kj,x[j]}j∈[n]) to A.

key queries For a key query (f0, f1) ∈ F × F from A, the challenger first computes Kj,α ←
FS(j‖α) for every j ∈ [n] and α ∈ {0, 1}, andR← FS(0‖0). Then, the challenger computes
(C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, Cfb), where Cfb is a circuit computing fb. Finally, the
challenger compute cj,0 ← E(Kj,0, Lj,R[j]) and cj,1 ← E(Kj,1, Lj,1−R[j]) for every j ∈ [n],
and returns (C̃, {cj,α}j∈[n],α∈{0,1}) to A.

Final phase A outputs b′ ∈ {0, 1}.

Game 1 Same as Game 0 except that the challenger generates {Kj,α}j∈[n],α∈{0,1} and R as truly random
strings.

60

Game 2 Same as Game 1 except that for every j ∈ [n], the challenger generates cj,1−x[j] ←
E(Kj,1−x[j], 0λ).

Game 3 Same as Game 2 except that when A makes a key query (f0, f1), the challenger computes
(C̃, {Lj}j∈[n])← Sim(1λ, s, y), where s = |f0| = |f1| and y = f0(m0) = f1(m1). Here, Sim is
a simulator for GC. In addition, the challenger computes cj,x[j] ← E(Kj,x[j], Lj) for every j ∈ [n].

Game 4 Same as Game 3 except that the challenger generates x r←− {0, 1}n.

For h = 0, · · · , 4, let SUCi be the event that A succeeds in guessing the challenge bit, that is, b = b′

occurs in Game i. In Game 4, the challenge bit b is information theoretically hidden from the view of A
thus |Pr[SUC4]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2 · Advsm-fp

1CT,A(λ) = |Pr[SUC0]− 1
2 | ≤

3∑
h=0
|Pr[SUCh]− Pr[SUCh+1]|. (29)

Below, we estimate that each term on the right side of inequality (29) is negligible.

Lemma 8.3. |Pr[SUC0]− Pr[SUC1]| ≤ εPRF.

The proof is straightforward thus omitted.

Lemma 8.4. |Pr[SUC1]− Pr[SUC2]| ≤ εSKE.

Proof of Lemma 8.4. Using the adversary A, we construct the following adversary B that attacks SKE.

Initialization On input security parameter 1λ, B sends it to A. Then, B generates R r←− {0, 1}λ,
b

r←− {0, 1}. When,A sends (m0,m1), B computes x := mb⊕R, and generatesKj,x[j]
r←− {0, 1}λ

for every j ∈ [n]. Finally, B sends CT := {Kj,x[j]}j∈[n] to A.

Key queries When A makes a key query (f0, f1) ∈ F × F , B first computes (C̃, {Lj,α}j∈[n],α∈{0,1})
← Grbl(1λ, Cfb). Then, for every j ∈ [n], B makes an encryption query (j, Lj,1−x[j], 0λ), and
obtains the answer cj,1−x[j]. Next, for every j ∈ [n], B computes cj,x[j] ← E(Kj,x[j], Lj,x[j]).
Finally, B returns skf := (C̃, {cj,α}j∈[n],α∈[n]) to A.

Final phase WhenA terminates with output b′, B outputs β′ = 1 if b = b′. Otherwise, B outputs β′ = 0.

Let β be the challenge bit between the challenger and B. Then, the advantage of B is estimated as
AdvSKE,B(λ) = |Pr[β′ = 1 | β = 1]− Pr[β′ = 1 | β = 0]|. When β = 0, B perfectly simulates Game
0 for A. On the other hand, when β = 1, B perfectly simulates Game 1 for A. In addition, B outputs
1 if and only if b = b′ occurs. Therefore, we have Advcpa

SKE,n,B(λ) = |Pr[SUC1] − Pr[SUC2]|, and thus
|Pr[SUC1]− Pr[SUC2]| ≤ εSKE holds. � (Lemma 8.4)

Lemma 8.5. |Pr[SUC2]− Pr[SUC3]| ≤ q · εGC.

Proof of Lemma 8.5. Using the adversary A, we construct the following adversary B that attacks GC.

Initialization On input security parameter 1λ, B sends it to A. Then, B generates R r←− {0, 1}λ,
k∗

r←− [Q], and b r←− {0, 1}. When, A sends (m0,m1), B computes x := mb ⊕ R, and generates
Kj,x[j]

r←− {0, 1}λ for every j ∈ [n]. Finally, B sends CT← (x, {Kj,x[j]}j∈[n]) to A.

Key queries For the k-th key query (f0, f1) ∈ F × F made by A, B first computes responds as follows.

61

• If i < k∗, B first computes (C̃, {Lj,α}j∈[n],α∈{0,1})← Grbl(1λ, Cfb), where Cfb is a circuit
computing f .

• If i = k∗, B first sends Cfb andmb to the challenger, and obtains the answer (C̃, {Lj}j∈[n]).

• If i > k∗, B first computes (C̃, {Lj}j∈[n]) ← Sim(1λ, s, y), where s = |Cf0 | = |Cf1 | and
y = f0(m0) = f1(m1).

Then, for every j ∈ [n], B computes cj,x[j] ← E(Kj,x[j], Lj,x[j]) and cj,1−x[j] ← E(Kj,1−x[j], 0λ).
Finally, B returns skf := (C̃, {cj,α}j∈[n],α∈{0,1}) to A.

Final phase WhenA terminates with output b′, B outputs β′ = 1 if b = b′. Otherwise, B outputs β′ = 0.

Let β be the challenge bit between the challenger and B. Then, we have

Advgc
GC,Sim,B(λ) = |Pr

[
β′ = 1 | β = 0

]
− Pr

[
β′ = 1 | β = 1

]
|

= |
q∑

Q=1
Pr
[
β′ = 1 ∧ k∗ = Q | β = 0

]
−

q∑
Q=1

Pr
[
β′ = 1 ∧ k∗ = Q | β = 1

]
|

= 1
q
|

q∑
Q=1

Pr
[
b′ = 1 | k∗ = Q ∧ β = 0

]
−

q∑
Q=1

Pr
[
b′ = 1 | k∗ = Q ∧ β = 1

]
|.

Wenote that for everyQ ∈ [q−1], the view ofAwhen k∗ = Q andβ = 0 is exactly the same as that of when
k∗ = Q+1 and β = 1. Thus, we havePr[b′ = 1 | k∗ = Q ∧ β = 0] = Pr[b′ = 1 | k∗ = Q+ 1 ∧ β = 1]
for every Q ∈ [q − 1]. Therefore, we also have

Advgc
GC,Sim,B(λ) = 1

q
|Pr

[
b′ = 1 | k∗ = 1 ∧ β = 1

]
− Pr

[
b′ = 1 | k∗ = q ∧ β = 0

]
|.

When k∗ = 1 and β = 1, B perfectly simulates Game 2 for A. On the other hand, when k∗ = q
and β = 0, B perfectly simulates Game 3 for A. Therefore, we have |Pr[SUC2] − Pr[SUC3]| =
|Pr[b′ = 1 | k∗ = 1 ∧ β = 1]−Pr[b′ = 1 | k∗ = q ∧ β = 0]|, and thuswe obtain |Pr[SUC2]−Pr[SUC3]| =
q · Advgc

GC,Sim,B(λ) ≤ q · εGC. � (Lemma 8.5)

Lemma 8.6. |Pr[SUC3]− Pr[SUC4]| = 0.

Proof of Lemma 8.6. The difference between Game 3 and 4 is how the challenger generates x. However,
x is uniformly distributed in both of games thus |Pr[SUC3]− Pr[SUC4]| = 0. � (Lemma 8.6)

From inequality (29) and Lemmas 8.4 to 8.6, we see that inequality (28) holds. � (Theorem 8.2)

8.3 Hybrid Encryption Construction

We next introduce a construction based on the hybrid encryption methodology. The construction combines
an iSKFE scheme and 1CT we constructed in Section 8.2, and leads to a new iSKFE scheme. The
construction is similar to the SKFE variant of the construction proposed by Ananth et al. [ABSV15]
except the following. First, our construction works even if one of the building block is an iSKFE scheme.
Second, in our construction, if both building block schemes satisfy function privacy, then so does the
resulting scheme.

Let iSKFE = (Setup, iKG,Enc,Dec) be an iSKFE scheme whose index space is I. Let 1CT =
(1CT.Setup, 1CT.KG, 1CT.Enc, 1CT.Dec) be an SKFE scheme. Let {FS : I → R | S ∈ {0, 1}λ}
be a PRF, where R is the randomness space of 1CT.KG. We construct an iSKFE scheme HYBRD =
(Hyb.Setup,Hyb.iKG,Hyb.Enc,Hyb.Dec) as follows. The index space of HYBRD is the same as

62

Key generation circuit G[f0, f1, u, i](1CT.MSK, S, α)
Hardwired: functions f0 and f1, functional key u, and index i.
Input: master secret key 1CT.MSK, PRF key S, and bit α ∈ {0, 1}.

1. If 1CT.MSK = ⊥, return u.
2. Else compute ri ← FS(i) and return 1CT.skf ← 1CT.KG(1CT.MSK, fα; ri).

Figure 20: Construction of a key generation circuit G.

iSKFE, that is, I. Moreover, if the function space of 1CT is F , then that of HYBRD is also F . We
assume that iSKFE supports a sufficiently large function class that particularly includes the key generation
circuit G described in Figure 20.

The features of HYBRD are as follows.

• HYBRD preserves q-bounded collusion-resistance, weak-succinctness, and many-ciphertext of
iSKFE.

• Even if the messagem is large, the encryption time of HYBRD does not increase too much sincem
is encrypted by 1CT, which is fully succinct. iSKFE encrypts the master secret key of 1CT, whose
length depends only on the security parameter.

Construction. The scheme consists of the following algorithms.

Hyb.Setup(1λ) :

• Return MSK← Setup(1λ).

Hyb.iKG(MSK, f, i) :

• Compute skG ← iKG(MSK, G[f,⊥,⊥, i], i). The circuit G is defined in Figure 20.
• Return skf := skG.

Hyb.Enc(MSK,m) :

• Generate 1CT.MSK← 1CT.Setup(1λ) and S r←− {0, 1}λ.
• Compute CT← Enc(MSK, (1CT.MSK, S, 0)) and 1CT.CT← 1CT.Enc(1CT.MSK,m).
• Return Hyb.CT := (CT, 1CT.CT).

Hyb.Dec(skf ,Hyb.CT) :

• Parse skG ← skf and (CT, 1CT.CT)← Hyb.CT.
• Compute 1CT.skf ← Dec(skG,CT).
• Return y ← 1CT.Dec(1CT.skf , 1CT.CT).

The correctness of HYBRD follows from those of building blocks.

63

Efficiency. We estimate the size ofG since we need it in the efficiency analysis of our main construction
in Section 10.

Let |1CT.KG| and |F| denote the size of the circuits computing 1CT.KG and F, respectively. Then,
the size of G is

|G| = 2|f |+ |1CT.skf |+ |i|+ |1CT.KG|+ |F|
≤ 2|f |+ (|f |+ |m|) · poly(λ) + log q + (|f |+ |m|) · poly(λ) + poly(λ, log q)
≤ (|f |+ |m|) · polyG(λ, log q) , (30)

where polyG is some fixed polynomial. The first inequality holds due to the efficiency of 1CT in
Section 8.2. More specifically, the running time of 1CT.KG (Equation (27)) yields the first inequality.
Note that 1CT.skf is output by 1CT.KG thus |1CT.skf | is bounded by |1CT.KG|.

Security. We have the following theorem.

Theorem 8.7. Let iSKFE be (q, δ)-selective-message function private iSKFE, where q is a fixed function
of λ. Let 1CT be single-ciphertext (poly, δ)-selective-message function private SKFE. Let F be a δ-secure
PRF. Then, HYBRD is (q, δ)-selective-message function private iSKFE.

Note that the above theorem holds even if q is not polynomial of λ. In fact, in the concrete instantiation
in Section 10, we set q as a super-polynomial of λ. To prove Theorem 8.7, we use the following lemma.

Lemma 8.8. We assume that the advantage of any adversary attacking iSKFE, 1CT, and PRF is bounded
by εiSKFE, ε1CT, and εPRF, respectively. LetA be an adversary that attacks the selective-message function
privacy of HYBRD. We assume thatA sends p message pairs at most to the challenger at the initialization
step. Then, it holds that

Advsm-fp
HYBRD,A(λ) ≤ 2 ((2p+ 1) · εiSKFE + p · ε1CT + p · εPRF) .

This lemma immediately implies Theorem 8.7 since if all of iSKFE, 1CT, and F are δ-secure, then so
is HYBRD. Below, we prove Lemma 8.8.

Proof of Lemma 8.8. We define a sequence of games.

Game 0 This is the selective-message function privacy game regarding HYBRD.

Initialization First, the challenger sends security parameter1λ toA. Then,A sends {(m`
0,m

`
1)}`∈[p]

to the challenger. Next, the challenger generates MSK ← Setup(1λ) and chooses a chal-
lenge bit b r←− {0, 1}. Then, for every ` ∈ [p], the challenger generates 1CT.MSK(`) ←
1CT.Setup(1λ), S(`) r←− {0, 1}λ, and CT(`) ← Enc(MSK, (1CT.MSK(`), S(`), 0)). Finally,
the challenger generates 1CT.CT(`) ← 1CT.Enc(1CT.MSK(`),m`

b) for every ` ∈ [p], and
returns {(CT(`), 1CT.CT(`))}`∈[p] to A.

Key queries When A makes a key query (i, f i0, f i1) ∈ I × F × F , the challenger returns
sk

(i)
G ← iKG(MSK, G[f ib ,⊥,⊥, i], i) to A.

Final phase A output b′.

For every `∗ ∈ [p], we define the following games. The goal is changing the ciphertext of m`
0

into that ofm`
1. The issue is that we need to erase 1CT.MSK(`) from CT(`) to use the security of

1CT. To do so, we directly embed 1CT.skf ← 1CT.KG(1CT.MSK, f) into function G, and use
the function hiding property of iSKFE to hide 1CT.skf .

64

Game (5, 0) We define Game (5, 0) as the same game as Game 0.

Game (1, `∗) Same as Game (5, `∗ − 1) except the following. The challenger generates CT(`) ←
Enc(MSK, (1CT.MSK(`), S(`), 1)) for every ` ∈ [`∗ − 1], and CT(`∗) ← Enc(MSK, (⊥,⊥, 0)).

In addition, when A makes a key query (i, f i0, f i1) ∈ I × F × F , the challenger computes r(`∗)
i ←

FS(`∗)(i) andui ← 1CT.KG(1CT.MSK(`∗), f ib ; r
(`∗)
i), and returns sk(i)

G ← iKG(MSK, G[f ib , f i1, ui, i], i).

Game (2, `∗) Same as Game (1, `∗) except that the challenger generates r(`∗)
i as a truly random string

when A makes a key query (i, f i0, f i1).

Game (3, `∗) Same as Game (2, `∗) except the following. The challenger generates 1CT.CT(`∗) ←
1CT.Enc(1CT.MSK(`∗),m`∗

1). In addition, the challenger generatesui ← 1CT.KG(1CT.MSK(`∗), f i1; r(`∗)
i)

when A makes a key query (i, f i0, f i1) ∈ I × F × F .

Game (4, `∗) Same as Game (3, `∗) except that the challenger generates r(`∗)
i ← FS(`∗)(i) when A

makes a key query (i, f i0, f i1).

Game (5, `∗) Same as Game (4, `∗) except the following. The challenger generates CT(`∗) ← Enc(MSK,
(1CT.MSK(`∗), S(`∗), 1)). In addition, when A makes a key query (i, f i0, f i1) ∈ I × F × F , the
challenger responds with sk(i)

G ← iKG(MSK, G[f ib , f i1,⊥, i], i).
We define one additional game.

Game 6 Same as Game (5, p) except that when A makes a key query (i, f i0, f i1), the challenger
generates sk(i)

G ← iKG(MSK, G[⊥, f i1,⊥, i], i). In this game, the challenger generates CT(`) ←
Enc(MSK, (1CT.MSK(`), S(`), 1)) for every ` ∈ [p].

Let SUC0 and SUC6 be the event that A succeeds in guessing the challenge bit b in Game 0 and 6,
respectively. Similarly, for every h ∈ {1, · · · , 5} and `∗ ∈ [p], let SUC(h,`∗) be the event that A succeeds
in guessing b in Game (h, `∗). In Game 6, the challenge bit b is information theoretically hidden from the
view of A, and thus |Pr[SUC6]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2 · Advsm-fp

HYBRD,A(λ) = |Pr[SUC0]− 1
2 |

≤
∑
`∗∈[p]

|Pr
[
SUC(5,`∗−1)

]
− Pr

[
SUC(1,`∗)

]
|

+
∑
`∗∈[p]

4∑
h=1
|Pr

[
SUC(h,`∗)

]
− Pr

[
SUC(h+1,`∗)

]
|

+ |Pr
[
SUC(5,p)

]
− Pr[SUC6]| (31)

Below, we estimate each term on the right side of inequality (31).

Lemma 8.9. For every `∗ ∈ [p], |Pr
[
SUC(5,`∗−1)

]
− Pr

[
SUC(1,`∗)

]
| ≤ εiSKFE.

Proof of Lemma 8.9. Using the adversary A, we construct the following adversary B that attacks
iSKFE.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b r←− {0, 1}. When, A
sends {(m`

0,m
`
1)}`∈[q], B sets {(M `

0 ,M
`
1)}`∈[p] as follows.

65

• For every ` < `∗, B setsM `
0 = M `

1 = (1CT.MSK(`), S(`), 1).
• B setsM `∗

0 = (1CT.MSK(`∗), S(`∗), 0) andM `∗
1 = (⊥,⊥, 0).

• For every ` > `∗, B setsM `
0 = M `

1 = (1CT.MSK(`), S(`), 0).

Then, B sends {(M `
0 ,M

`
1)}`∈[p] to the challenger and gets the answer {CT(`)}`∈[p]. Next, B

computes 1CT.CT(`) ← 1CT.Enc(1CT.MSK(`),m`
1) for every ` < `∗, and 1CT.CT(`) ←

1CT.Enc(1CT.MSK(`),m`
b) for every ` ≥ `∗. Finally, B sets Hyb.CT(`) ← (CT(`), 1CT.CT(`))

for every ` ∈ [p], and sends {Hyb.CT(`)}`∈[p] to A.

Key queries WhenAmakes a key query (i, f i0, f i1) ∈ I×F×F ,B first computesui ← 1CT.KG(MSK(`∗),

f ib ; r
(`∗)
i), where r(`∗)

i ← FS(`∗)(i). Then, B queries (i, G[f ib , f i1,⊥, i], G[f ib , f i1, ui, i]) to the chal-
lenger and returns the answer to A.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger and B. For every ` 6= `∗ and key query (i, f i0, f i1)
made by A, G[f ib , f i1,⊥, i](M `

0) = G[f ib , f i1, ui, i](M `
1) holds if f i0(m`

0) = f i1(m`
0) holds. Moreover, we

have

G[f ib , f i1,⊥, i](1CT.MSK(`∗), S(`∗), 0) = ui = G[f ib , f i1, ui, i](⊥,⊥, 0).

If A makes only one key query under every index i ∈ [q], then so does B. Therefore, since A is a
valid adversary for HYBRD, B is a valid adversary for iSKFE, and thus we have Advsm-fp

iSKFE,B(λ) =
|Pr[β′ = 1 | β = 0] − Pr[β′ = 1 | β = 1]|. B perfectly simulates Game (5, `∗ − 1) if β = 0. On the
other hand, B perfectly simulates Game (1, `∗) if β = 1. Moreover, B outputs 1 if and only if A succeeds
in guessing the value of b. Therefore, we have Advsm-fp

iSKFE,B(λ) = |Pr
[
SUC(5,`∗−1)

]
− Pr

[
SUC(1,`∗)

]
| thus

|Pr
[
SUC(5,`∗−1)

]
− Pr

[
SUC(1,`∗)

]
| ≤ εiSKFE holds. � (Lemma 8.9)

Lemma 8.10. For every `∗ ∈ [p], |Pr
[
SUC(1,`∗)

]
− Pr

[
SUC(2,`∗)

]
| ≤ εPRF.

The proof is straightforward thus omitted.

Lemma 8.11. For every `∗ ∈ [p], |Pr
[
SUC(2,`∗)

]
− Pr

[
SUC(3,`∗)

]
| ≤ ε1CT.

Proof of Lemma 8.11. Using the adversary A, we construct the following adversary B that attacks
1CT.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b r←− {0, 1}. When, A
sends {(m`

0,m
`
1)}`∈[q], B first computes {CT(`)}`∈[p] and {1CT.CT(`)}`∈[p] as follows.

• For every ` < `∗,B computesCT(`) ← Enc(MSK, (1CT.MSK(`), S(`), 1)) and1CT.CT(`) ←
1CT.Enc(1CT.MSK(`),m`

1).
• B computes CT(`∗) ← Enc(MSK, (⊥,⊥, 0)). In addition, B sends (m`∗

b ,m
`∗
1) to the

challenger and gets the answer 1CT.CT(`∗).
• For every ` > `∗,B computesCT(`) ← Enc(MSK, (1CT.MSK(`), S(`), 0)) and1CT.CT(`) ←

1CT.Enc(1CT.MSK(`),m`
b).

Finally, B sets Hyb.CT(`) ← (CT(`), 1CT.CT(`)) for every ` ∈ [p], and sends {Hyb.CT(`)}`∈[p] to
A.

66

Key queries When A makes a key query (i, f i0, f i1) ∈ I × F × F , B first queries (f ib , f i1) to
the challenger as a key query and gets the answer 1CT.skif . Then, B generates skiG ←
iKG(MSK, G[f ib , f i1, 1CT.skif], i) and returns it to A.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger and B. For every key query (i, f i0, f i1) made
by A, f i0(m`∗

0) = f i1(m`∗
0) holds since A is a valid adversary for HYBRD. In addition, B sends

only one message tuple in the initialization step. Therefore, B is a valid adversary for 1CT, and
thus we have Advsm-fp

1CT,B(λ) = |Pr[β′ = 1 | β = 0] − Pr[β′ = 1 | β = 1]|. We see that B perfectly
simulates Game (2, `∗) if β = 0. On the other hand, B perfectly simulates Game (3, `∗) if β = 1.
Moreover, B outputs 1 if and only if A succeeds in guessing the value of b. Therefore, we have
Advsm-fp

1CT,B(λ) = |Pr
[
SUC(2,`∗)

]
− Pr

[
SUC(3,`∗)

]
| thus |Pr

[
SUC(2,`∗)

]
− Pr

[
SUC(3,`∗)

]
| ≤ ε1CT holds. �

(Lemma 8.11)

Lemma 8.12. For every `∗ ∈ [p], |Pr
[
SUC(3,`∗)

]
− Pr

[
SUC(4,`∗)

]
| ≤ εPRF.

The proof is straightforward thus omitted.

Lemma 8.13. For every `∗ ∈ [p], |Pr
[
SUC(4,`∗)

]
− Pr

[
SUC(5,`∗)

]
| ≤ εiSKFE.

The proof is almost the same as that of Lemma 8.9 thus is omitted.

Lemma 8.14. |Pr
[
SUC(5,p)

]
− Pr[SUC6]| ≤ εiSKFE.

Proof of Lemma 8.14. The only difference between Game (5, p) and 6 is how sk
(i)
G is generated for

every i ∈ [q]. In Game (5, p), it is generated as sk(i)
G ← iKG(MSK, G[f ib , f i1,⊥, i], i). On the other hand,

in Game 6, it is generated as sk(i)
G ← iKG(MSK, G[⊥, f i1,⊥, i], i). Here, in both games, for every ` ∈ [p],

CT(`) is generated as CT(`) ← Enc(MSK, (1CT.MSK(`), S(`), 1)). Then, for every i ∈ [q] and ` ∈ [p],
we have

G[f ib , f i1,⊥, i](1CT.MSK(`), S(`), 1) = G[⊥, f i1,⊥, i](1CT.MSK(`), S(`), 1).

This is because f ib is ignored in the left hand side. Therefore, we can construct an adversary attacking
iSKFE whose advantage is |Pr

[
SUC(5,p)

]
− Pr[SUC6]| thus |Pr

[
SUC(5,p)

]
− Pr[SUC6]| ≤ εiSKFE holds.

� (Lemma 8.14)

From inequality (31) and Lemmas 8.9 to 8.14, we see that inequality (8.8) holds. � (Theorem 8.7)

9 New PRODUCT Construction for iSKFE

We now introduce our main tool for increasing the number of functional decryption keys of an iSKFE
scheme. By using two iSKFE schemes as building blocks, the construction produces a new iSKFE scheme
whose index space is the product of those of the building block schemes. Our PRODUCT construction
is based on the PRODUCT construction for PKFE schemes proposed by Li and Micciancio [LM16].
However, as mentioned in Section 2, in order to accomplish the security proof, we cannot use their
construction in the secret-key setting straightforwardly. Then, we adopt a ciphertext-embedding strategy
used by Brakerski et al. [BKS18] in the context of multi-input SKFE.

LetOuter = (Out.Setup,Out.iKG,Out.Enc,Out.Dec) and Inner = (In.Setup, In.iKG, In.Enc, In.Dec)
be iSKFE schemes. We assume that the index spaces of Outer and Inner are IOut and IIn, re-
spectively. Let {FS : IOut × [0, 2] → {0, 1}λ | S ∈ {0, 1}λ} and {F′S : {0, 1}λ → {0, 1}λ |

67

Encryption circuit e[In.MSKi, Si, α](m0,m1, t, u) :
Hardwired: master secret key In.MSKi, PRF key Si, and bit α ∈ {0, 1}.
Input: messagesm0 andm1, tag t, and ciphertext u.

1. If In.MSKi = ⊥, return u.
2. Else, compute rEnc ← F′Si

(t).
3. Return In.CTi ← In.Enc(In.MSKi,mα; rEnc).

Figure 21: Construction of an encryption circuit e.

S ∈ {0, 1}λ} be PRFs. Then, using Outer, Inner, F, and F′, we construct an iSKFE scheme
PRDCT = (Prd.Setup,Prd.iKG,Prd.Enc,Prd.Dec) as follows. Note that the index space of PRDCT is
IOut × IIn. Moreover, if the function space of Inner is F , then that of PRDCT is also F . We assume
that Outer supports sufficiently large function class that particularly includes the encryption circuit e
described in Figure 21. In addition, we assume that all of randomness spaces of In.Setup, In.iKG, and
In.Enc are {0, 1}λ.

Construction. The scheme consists of the following algorithms.

Prd.Setup(1λ) :

• Generate Out.MSK← Out.Setup(1λ) and S r←− {0, 1}λ.
• Return MSK := (Out.MSK, S).

Prd.iKG(MSK, f, (i, j)) :

• Parse (Out.MSK, S)← MSK.
• Compute riSetup ← FS(i‖0), Si ← FS(i‖1), and riiKG ← FS(i‖2).

• Generate In.MSKi ← In.Setup(1λ; riSetup).

• ComputeOut.skei ← Out.iKG(Out.MSK, e[In.MSKi, Si, 0], i; riiKG) and In.ski,jf ← In.iKG(In.MSKi,
f, j).

• Return skf := (Out.skei , In.sk
i,j
f).

Prd.Enc(MSK,m) :

• Parse (Out.MSK, S)← MSK.
• Generate t r←− {0, 1}λ.
• Compute Out.CT← Out.Enc(Out.MSK, (m,⊥, t,⊥)).
• Return CT := Out.CT.

Prd.Dec(skf ,CT) :

• Parse (Out.skei , In.sk
i,j
f)← skf and Out.CT← CT.

• Compute In.CT← Out.Dec(Out.skei ,Out.CT).
• Return y ← In.Dec(In.ski,jf , In.CT).

68

Remark 9.1. In the key generation algorithm, we use a PRF value to generate Out.skei , but do not
to generate In.ski,jf . The reason is as follows. Suppose that the adversary already sent a key query
((i, j), f i,j0 , f i,j1) and the challenger generates (Out.skei , In.sk

i,j

f i,j
b

) where b ∈ {0, 1}. After that, if the

adversary sends a key query ((i, j′), f i,j
′

0 , f i,j
′

1) where j′ 6= j (this is allowed), the challenger must
generate (Out.skei , In.sk

i,j′

f i,j
′

b

). In other words, the functional key of the outer scheme must be the same

as that returned for the key query ((i, j), f i,j0 , f i,j1). Otherwise, we cannot complete the simulation when
we use the security of the outer scheme since Out.skei is given to the simulator from the challenger. On
the other hand, In.ski,jf is returned only once since the same index key query (i, j) is not allowed. Thus,
we need a PRF for generating Out.skei .

Correctness. Let |IOut| = qOut. In the construction, we use qOut instances of Inner and thus qOut
master secret keys are generated in Prd.iKG. In addition, we let Out.iKG release the same functional key
Out.skei for the same index i ∈ IOut since Outer can release only qOut functional keys. In order to ensure
that only qOut master secret keys {In.MSKi}i∈[qOut] and functional keys {Out.skei}i∈[qOut] are generated,
we manage them as one PRF key S. Then, if we decrypt Out.CT by Out.skei , it is re-encrypted to a
ciphertext under the master secret key In.MSKi. Thus, the correctness of PRDCT follows from those of
Outer and Inner.

Efficiency. Let |In.Enc| and |F′| denote the size of the circuits computing In.Enc and F′, respectively.
Then, the size of e is

|e| = |In.MSK|+ λ+ 1 + |In.Enc|+
∣∣F′∣∣ ≤ 2|In.Enc|+ poly(λ)
≤ |In.Enc| · polye(λ), (32)

where polye is a fixed polynomial.
Let Out.tEnc and Out.tiKG be bounds of the running time of Out.Enc and Out.iKG. Let In.tEnc and

In.tiKG be bounds of the running time of Out.Enc and Out.iKG. Let Prd.tEnc and Prd.tiKG be bounds
of the running time of Prd.Enc and Prd.iKG. Note that the length of a ciphertext output by In.Enc is
bounded by its running time In.tEnc. Then, we have

Prd.tEnc(λ, n, s) = Out.tEnc (λ, 2n+ λ+ In.tEnc(λ, n, s), |e|) ,
Prd.tiKG(λ, n, s) = Out.tiKG (λ, 2n+ λ+ In.tEnc(λ, n, s), |e|) + In.tiKG(λ, n, s).

Security. Let |IOut| = qOut and |IIn| = qIn. Then, we have the following theorem.

Theorem 9.2. Let Outer be (qOut, δ)-selective-message function private iSKFE, and Inner (qIn, δ)-
selective-message function private iSKFE. Let F and F′ be δ-secure PRF. Then, PRDCT is (qOut · qIn, δ)-
selective-message function private iSKFE.

To prove Theorem 9.2, we use the following lemma.

Lemma 9.3. We assume that the advantage of any adversary attacking Outer, Inner, F, and F′ is bounded
by εOut, εIn, εPRF, and εPRF, respectively. LetA be an adversary that attacks the selective message function
privacy of PRDCT. We assume that A makes key queries for at most q different indices {ik}k∈[q] ∈ I

q
Out.

Then, we have

Advsm-fp
PRDCT,A(λ) ≤ 2 ((2q + 2) · εOut + q · εIn + (2q + 1)εPRF) .

This lemma immediately implies Theorem 9.2 since if all of Outer, Inner, F, and F′ are δ-secure, then
so does PRDCT. Below, we prove Lemma 9.3.

69

Proof of Lemma 9.3. First, consider the following sequence of games. We assume that the number of
message tuples A queries as the challenge messages is p at most, where p is a polynomial of λ.

Game 0 This is the original selective-message function privacy game regarding PRDCT.

Initialization First, the challenger sends security parameter1λ toA. Then,A sends {(m`
0,m

`
1)}`∈[p]

to the challenger. Next, the challenger generates Out.MSK ← Out.Setup(1λ) and S r←−
{0, 1}λ, and chooses a challenge bit b r←− {0, 1}. Then, the challenger generates t(`) r←− {0, 1}λ
and Out.CT(`) ← Out.Enc(Out.MSK, (m`

b,⊥, t(`),⊥)) for every ` ∈ [p], and returns
{(Out.CT(`))}`∈[p] to A.

Key queries When A makes a key query (i, j, f i,j0 , f i,j1) ∈ IOut × IIn × F × F , the chal-
lenger first generates riSetup ← FS(i‖0), Si ← FS(i‖1), riiKG ← FS(i‖2), and In.MSKi ←
In.Setup(1λ; riSetup). Then the challenger computesOut.skei ← Out.iKG(Out.MSK, e[In.MSKi,
Si, 0], i; riiKG) and In.ski,jf ← In.iKG(In.MSKi, f i,jb , j), and return (Out.skei , In.sk

i,j
f) to A.

Final phase A output b′.

Game 1 Same as Game 0 except how the challenger responds to a key query made by A. At the
initialization step, the challenger prepares a list L which stores an index i ∈ I and corresponding
master secret key In.MSKi, a PRF key Si, and a functional key Out.skei . At the beginning of the
game, L is empty. Recall that the adversary sends not only two functions but also the index as a
key query in the index-based SKFE. When A makes a key query ((i, j), f i,j0 , f i,j1), the challenger
first checks whether there is an entry of the form (i, In.MSKi, Si,Out.skei) in L. If so, the
challenger responds to the key query using (In.MSKi, Si). Otherwise, the challenger generates
riSetup, Si, and r

i
iKG as truly random strings, and generates In.MSKi ← In.Setup(1λ; riSetup) and

Out.skei ← Out.iKG(MSK, e[In.MSKi, Si, 0], i). Then, the challenger responds to the key query,
and finally adds the entry (i, In.MSKi, Si,Out.skei) to L.

Game 2 Same asGame1 except that the challenger generatesOut.CT(`) ← Out.Enc(Out.MSK, (m`
b,m

`
1, t

(`),
⊥)) for every ` ∈ [p].
For every k∗ ∈ [q], we define the following games.

Game (7, 0) We define Game (7, 0) as the same game as Game 2.
The goal is changing the ciphertext ofm`

b into that ofm
`
1 regardless of the value of b. The issue is that

we need to erase In.MSKi fromOut.skei to use the security of Inner for every i. To do so, we perform
the following steps for every i. First, we directly embed In.Enc(In.MSKi,m`

b) into Out.CT(`) using
the security of Outer. After we change In.Enc(In.MSKi,mb) into In.Enc(In.MSKi,m1), we can
change encryption ofmb by Outer into encryption ofm1 by Outer.

Game (3, k∗) Same as Game (7, k∗− 1) except the manner the challenger generates challenge ciphertext
and responds to key queries.
In the initialization step, the challenger generates In.MSK∗ ← In.Setup(1λ) and S∗ r←− {0, 1}λ.
Then, for every ` ∈ [p], the challenger generatesOut.CT(`) ← Out.Enc(Out.MSK, (m`

b,m
`
1, t

(`), u∗(`))),
where u∗(`) ← In.Enc(In.MSK∗,m`

b; r
∗(`)
Enc) and r∗(`)Enc ← F′S∗(t(`)).

In addition, when A makes a key query ((i, j), f i,j0 , f i,j1), the challenger responds as follows.

• When |L| < k∗ − 1, if there is an entry of the form (i, In.MSKi, Si,Out.skei), the challenger
responds to the query by using them. Otherwise, the challenger first generates In.MSKi ←
In.Setup(1λ), Si

r←− {0, 1}λ, and Out.skei ← Out.iKG(MSK, e[In.MSKi, Si, 1], i). Then,
the challenger responds using them, and adds them to L.

70

• When |L| = k∗− 1 , if there is an entry of the form (i, In.MSKi, Si,Out.skei), the challenger
responds to the query by using them. Otherwise, the challenger first sets In.MSKi ← In.MSK∗,
Si ← S∗, andOut.skei ← Out.iKG(Out.MSKi, e[⊥,⊥, 0], i). Then, the challenger responds
using them, and adds them to L. We call this index i∗.

• When |L| > k∗ − 1, the challenger responds in the same way as Game (6, k∗ − 1).

Game (4, k∗) Same as Game (3, k∗) except that the challenger generates r(`)
Enc as a truly random string

for every ` ∈ [p].

Game (5, k∗) Same as Game (4, k∗) except that the challenger generates u∗(`) ← In.Enc(In.MSKi∗ ,m`
1)

for every ` ∈ [p]. In addition, the challenger generates In.sk(i∗,j)
f ← In.iKG(In.MSKi∗ , f (i∗,j)

1 , j)
for every j ∈ IIn.

Game (6, k∗) Same as Game (5, k∗) except that the challenger generates r(`)
Enc ← F′Si∗ (t

(`)) for every
` ∈ [p].

Game (7, k∗) Same as Game (6, k∗) except that for every ` ∈ [p], the challenger generates Out.CT(`) ←
Out.Enc(Out.MSK, (m`

b,m
`
1, t

(`),⊥)). In addition, the challenger generatesOut.skei∗ ← Out.iKG(MSK,
e[In.MSKi∗ , Si∗ , 1], i∗).
We define one additional game.

Game 8 Same as Game (7, q) except that the challenger generatesOut.CT(`) ← Out.Enc(Out.MSK, (⊥,
m`

1, t
(`),⊥)) for every ` ∈ [p].

For every h ∈ {0, 1, 2, 8}, let SUCh be the event that A succeeds in guessing the challenge bit b in
Game h. Similarly, for every h ∈ {3, · · · , 7} and k∗ ∈ [q], let SUC(h,k∗) be the event that A succeeds in
guessing b in Game (h, k∗). In Game 8, the challenge bit b is information theoretically hidden from the
view of A thus |Pr[SUC8]− 1

2 | = 0. Then, we can estimate the advantage of A as

1
2 · Advsm-fp

PRDCT,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC1]|+ |Pr[SUC1]− Pr[SUC2]|

+
∑
k∗∈[q]

|Pr
[
SUC(7,k∗−1)

]
− Pr

[
SUC(3,k∗)

]
|

+
∑
k∗∈[q]

6∑
h=3
|Pr

[
SUC(h,k∗)

]
− Pr

[
SUC(h+1,k∗)

]
|

+ |Pr
[
SUC(7,q)

]
− Pr[SUC8]| (33)

Below, we estimate each term on the right side of inequality (33).

Lemma 9.4. |Pr[SUC0]− Pr[SUC1]| ≤ εPRF.

The proof of it is straightforward thus omitted.

Lemma 9.5. |Pr[SUC1]− Pr[SUC2]| ≤ εOut.

71

Proof of Lemma 9.5. Using the adversary A, we construct the following adversary B that attacks
Outer.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b r←− {0, 1}. When
A sends {(m`

0,m
`
1)}`∈[q], B sends {(m`

b,⊥, t(`),⊥), (m`
b,m

`
1, t

(`),⊥)}`∈[p] to the challenger and
returns the answer {Out.CT(`)}`∈[p] to A.

Key queries When A makes a key query (i, j, f i,j0 , f i,j1) ∈ IOut × IIn ×F ×F , B first checks whether
there is an entry whose first component is i in L. If so, using the entry (i, In.MSKi, Si,Out.skei),
B responds to the key query. Otherwise, B first generates riSetup, Si, r

i
iKG

r←− {0, 1}λ, and com-
putes In.MSKi ← In.Setup(1λ; riSetup). Then, B queries (i, e[In.MSKi, Si, 0], e[In.MSKi, Si, 0])
to the challenger as a key query, and obtains the answer Out.skei . Next, B generates In.ski,jf ←
In.iKG(In.MSKi, f i,jb ; j) and returns (Out.skei , In.sk

i,j
f) toA. Finally,B adds (i, In.MSKi, Si,Out.skei)

to L.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger and B. Note that the encryption circuit
e[In.MSKi, Si, 0] ignores second component of the input, and thus for every ` ∈ [p] and every key
query i ∈ IOut, we have e[In.MSKi, Si, 0](m`

b,⊥, t(`),⊥) = e[In.MSKi, Si, 0](m`
b,m

`
1, t

(`),⊥). In
addition, B makes 1 key query under every index i ∈ I at most. Therefore, B is a valid adversary
for Outer, and thus we have Advsm-fp

Outer,B(λ) = |Pr[β′ = 1 | β = 0] − Pr[β′ = 1 | β = 1]|. We see that
B perfectly simulates Game 1 if β = 0. On the other hand, B perfectly simulates Game 2 if β = 1.
Moreover, B outputs 1 if and only if A succeeds in guessing the value of b. Therefore, we have
Advsm-fp

Outer,B(λ) = |Pr[SUC1]− Pr[SUC2]| thus |Pr[SUC1]− Pr[SUC2]| ≤ εOut holds. � (Lemma 9.5)

Lemma 9.6. For every k∗ ∈ [q], |Pr
[
SUC(7,k∗−1)

]
− Pr

[
SUC(3,k∗)

]
| ≤ εOut.

Proof of Lemma 9.6. Using the adversary A, we construct the following adversary B that attacks
Outer.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b r←− {0, 1}, and
generates In.MSK∗ ← In.Setup(1λ) and S∗ r←− {0, 1}λ. When A sends {(m`

0,m
`
1)}`∈[q], for

every ` ∈ [p], B first generates u∗(`) ← In.Enc(In.MSK∗,m`
b; r
∗(`)
Enc), where r∗(`)Enc ← FS∗(t(`)).

B sends {(m`
b,m

`
1, t

(`),⊥), (m`
b,m

`
1, t

(`), u∗(`))}`∈[p] to the challenger and returns the answer
{Out.CT(`)}`∈[p] to A.

Key queries When A makes a key query (i, j, f i,j0 , f i,j1) ∈ IOut × IIn ×F ×F , B responds as follows.

• In the case |L| < k∗−1, if there is an entry of the form (i, In.MSKi, Si,Out.skei), B responds
using them. Otherwise, B first generates In.MSKi ← In.Setup(1λ), Si

r←− {0, 1}λ. Then, B
makes a key query (i, e[In.MSKi, Si, 1], e[In.MSKi, Si, 1]) to the challenger and obtains the
answer Out.skei . Then, B responds using them, and adds them to L.

• In the case |L| = k∗−1, if there is an entry of the form (i, In.MSKi, Si,Out.skei), B responds
using them. Otherwise, B first sets In.MSKi := In.MSK∗, Si := S∗. Then, B makes a key
query (i, e[In.MSKi, Si, 0], e[⊥,⊥, 0]) to the challenger and obtains the answer Out.skei .
Then, B responds using them, and adds them to L.

• In the case |L| > k∗−1, if there is an entry of the form (i, In.MSKi, Si,Out.skei), B responds
using them. Otherwise, B first generates In.MSKi ← In.Setup(1λ), Si

r←− {0, 1}λ. Then, B
makes a key query (i, e[In.MSKi, Si, 0], e[In.MSKi, Si, 0]) to the challenger and obtains the
answer Out.skei . Then, B responds using them, and adds them to L.

72

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

Let β be the challenge bit between the challenger and B. We can easily see that

e[In.MSKi, Si, α](m`
b,m

`
1, t

(`),⊥) = e[In.MSKi, Si, α](m`
b,m

`
1, t

(`), u∗(`))

hold for every ` ∈ [p], i ∈ IOut, and α ∈ {0, 1} since u∗(`)is ignored. In addition, we have

e[In.MSK∗, S∗, 0](m`
b,m

`
1, t

(`),⊥) = In.Enc(In.MSK∗,m`
b; r
∗(`)
Enc) = u∗(`) = e[⊥,⊥, 0](m`

b,m
`
1, t

(`), u∗(`))

for every ` ∈ [p]. Therefore, B is a valid adversary for Outer, and thus we have Advsm-fp
Outer,B(λ) =

|Pr[β′ = 1 | β = 0]−Pr[β′ = 1 | β = 1]|. We see that B perfectly simulates Game (7, k∗− 1) if β = 0.
On the other hand, B perfectly simulates Game (3, k∗) if β = 1. Moreover, B outputs 1 if and only
if A succeeds in guessing the value of b. Therefore, we have Advsm-fp

Outer,B(λ) = |Pr
[
SUC(7,k∗−1)

]
−

Pr
[
SUC(3,k∗)

]
|, and thus |Pr

[
SUC(7,k∗−1)

]
− Pr

[
SUC(3,k∗)

]
| ≤ εOut holds. � (Lemma 9.6)

Lemma 9.7. For every k∗ ∈ [q], |Pr
[
SUC(3,k∗)

]
− Pr

[
SUC(4,k∗)

]
| ≤ εPRF.

The proof is straightforward thus omitted.

Lemma 9.8. For every k∗ ∈ [q], |Pr
[
SUC(4,k∗)

]
− Pr

[
SUC(5,k∗)

]
| ≤ εIn.

Proof of Lemma 9.8. Using the adversaryA, we construct the following adversary B that attacks Inner.

Initialization On input security parameter 1λ, B sends it to A. Then, B chooses b r←− {0, 1}, and gen-
erates Out.MSK∗ ← Out.Setup(1λ). When, A sends {(m`

0,m
`
1)}`∈[q], B sends {(m`

b,m
`
1)}`∈[p]

to the challenger and obtains the answer {In.CT(`)}`∈[p]. Finally, B compute Out.CT(`) ←
Out.Enc(Out.MSK, (m`

b,m
`
1, t

(`), In.CT(`))), and returns {Out.CT(`)}`∈[p] to A.

Key queries When A makes a key query (i, j, f i,j0 , f i,j1) ∈ IOut × IIn ×F ×F , B responds as follows.

• In the case |L| < k∗ − 1, if there is an entry of the form (i, In.MSKi, Si,Out.skei), B
responds using them. Otherwise, B first generates In.MSKi ← In.Setup(1λ), Si

r←− {0, 1}λ,
and Out.skei ← Out.iKG(Out.MSK, e[In.MSKi, Si, 1], i). Then, B responds using them,
and adds them to L.

• In the case |L| = k∗−1, if there is an entry of the form (i, In.MSKi, Si,Out.skei), B responds
using them. Otherwise, B first makes a key query (j, f i,jb , f i,j1) to the challenger and obtains
the answer In.ski,jf . Then, B generates Out.skei ← Out.iKG(Out.MSK, e[⊥,⊥, 0], i), and
returns (Out.skei , In.sk

i,j
f). Finally, B sets i∗ = i and adds (i∗,⊥,⊥,Out.skei) to L.

• In the case |L| > k∗ − 1, if there is an entry of the form (i, In.MSKi, Si,Out.skei) and
i 6= i∗, the challenger responds using them. If i = i∗, B makes a key query (j, f i,jb , f i,j1) to
the challenger, obtains the answer In.ski,jf , and returns (Out.skei , In.sk

i,j
f) to A. Oth-

erwise, B first generates In.MSKi ← In.Setup(1λ), Si
r←− {0, 1}λ, and Out.skei ←

Out.iKG(Out.MSK, e[In.MSKi, Si, 0], i). Then, B responds using them, and adds them
to L.

Final phase When A terminates with output b′, B outputs 1 if b = b′. Otherwise, B outputs 0.

73

Let β be the challenge bit between the challenger and B. Since A is a valid adversary for PRDCT,
for every ` and function query (i, j, f i,j0 , f i,j1), it holds that f i,j0 (m`

0) = f i,j1 (m`
1), and B makes 1

key query under every index j ∈ IIn at most. Therefore, B is a valid adversary for Inner, and
thus we have Advsm-fp

Inner,B(λ) = |Pr[β′ = 1 | β = 0] − Pr[β′ = 1 | β = 1]|. We see that B perfectly
simulates Game (4, k∗) if β = 0. On the other hand, B perfectly simulates Game (5, k∗) if β = 1.
Moreover, B outputs 1 if and only if A succeeds in guessing the value of b. Therefore, we have
Advsm-fp

Inner,B(λ) = |Pr
[
SUC(4,k∗)

]
−Pr

[
SUC(5,k∗)

]
|, and thus |Pr

[
SUC(4,k∗)

]
−Pr

[
SUC(5,k∗)

]
| ≤ εIn holds.

� (Lemma 9.8)

Lemma 9.9. For every k∗ ∈ [q], |Pr
[
SUC(5,k∗)

]
− Pr

[
SUC(6,k∗)

]
| ≤ εPRF.

The proof is straightforward thus omitted.

Lemma 9.10. For every k∗ ∈ [q], |Pr
[
SUC(6,k∗)

]
− Pr

[
SUC(7,k∗)

]
| ≤ εOut.

The proof is almost the same as that of Lemma 9.6 thus is omitted.

Lemma 9.11. |Pr
[
SUC(7,p)

]
− Pr[SUC8]| ≤ εOut.

Proof of Lemma 9.11. The only difference between Game (7, q) and 8 is howOut.CT(`) is generated for
every ` ∈ [p]. In Game (7, q), it is generated asOut.CT(`) ← Out.Enc(Out.MSK, (m`

b,m
`
1, t

(`),⊥)). On
the other hand, in Game 8, it is generated asOut.CT(`) ← Out.Enc(Out.MSK, (⊥,m`

1, t
(`),⊥)). Here, in

both games, for every i ∈ IOut,Out.skei is generated asOut.skei ← Out.iKG(MSK, e[In.MSKi, Si, 1], i),
or not generated. Then, for every i ∈ IOut and ` ∈ [p], we have

e[In.MSKi, Si, 1](m`
b,m

`
1, t

(`),⊥) = e[In.MSKi, Si, 1](⊥,m`
1, t

(`),⊥).

This is becausem`
b is ignored in the left hand side. Therefore, we can construct an adversary attacking

Outer whose advantage is |Pr
[
SUC(7,q)

]
− Pr[SUC8]|, and thus |Pr

[
SUC(7,q)

]
− Pr[SUC8]| ≤ ε holds. �

(Lemma 9.11)

From inequality (33) and Lemmas 9.4 to 9.11, inequality (9.3) holds. � (Theorem 9.2)

10 Collusion-Resistant SKFE via Size-Shifting

In this section, we show how to construct collusion-resistant SKFE using the constructions introduced in
the previous sections. More specifically, we show we can construct a collusion-resistant iSKFE scheme
whose index space size is λω(1) then transform the iSKFE scheme into a standard SKFE scheme (i.e.,
stateless scheme).

We basically increase the index space by using our new PRODUCT construction introduced in
Section 9 repeatedly. However, the encryption time blows up polynomially whenever we apply our new
PRODUCT construction, and thus we cannot directly repeat this construction ω(1) times. Therefore, we
sandwich the size-shifting procedure using 1CT introduced in Section 8.3 between each application of
our new PRODUCT construction to reduce the blow-up of the encryption time.

Below, we first give an intuition of our construction using size-shifting. Then, we show the actual
construction of collusion-resistant iSKFE and analyze the efficiency and security of it. Finally, we give
the transformation from iSKFE into SKFE.

74

10.1 Intuition of Size-Shifting

We give an intuition why we need size-shifting procedure in the construction. This intuition ignores many
details, but we think it is helpful to understand the essence of the size-shifting procedure.

We first construct a λ-key iSKFE scheme Parallelλ from the underlying single-key SKFE scheme.
This is done by simply running λ instances of the single-key scheme as in Section 8.1. For simplicity, we
assume that the underlying single-key scheme is fully succinct, and the encryption time of Parallelλ is
bounded by |m|c +O(λc),16 wherem is a message to be encrypted and c is a constant.

Then, we construct λ2-key scheme PRDCT2 by combining 2 instances of Parallelλ using our
PRODUCT construction in Section 9. The encryption time of PRDCT2 is roughly

(|m|c +O(λc))c +O(λc) = |m|c
2

+O
(
λc

2)
since a ciphertext is embedded into another ciphertext in the security proof of our PRODUCT construction.
We note that the size of a ciphertext is bounded by the encryption time.

Analogously, the straightforward iterated application of our PRODUCT construction results in double
exponential size blow-up in the number of iterations. Thus, we reduce the size blow-up by size-shifting.

Let 1CT be SKFE constructed in Section 8.2. For simplicity, we suppose that we can bound the
encryption time of 1CT by |m|c+O(λc), wherem is a message to be encrypted and c is the constant same
as above. We construct HYBRD2 by combining PRDCT2 whose encryption time is |m|c

2
+ O

(
λc

2
)

and a fresh instance of 1CT via the hybrid construction in Section 8.3.
Recall that the length of a master secret-key of 1CT is O(λ) and thus the length of a message to

be encrypted by PRDCT2 in the hybrid construction is also O(λ). Therefore, the encryption time of
HYBRD2 is roughly

(O(λ))c2 +O
(
λc

2)+ |m|c +O(λc) = |m|c +O
(
λc

2)
,

wherem is a message to be encrypted by HYBRD2. Thus, we can separate double exponential term from
the term related to the message length.

Then, we again increase the number of functional keys by our PRODUCT construction. We construct
PRDCT3 by using HYBRD2 as Outer and a fresh instance of Parallelλ as Inner. In this case, a ciphertext
of Parallelλ is embedded into a ciphertext of HYBRD2 in the security proof. Therefore, the encryption
time of PRDCT3 is roughly

(|m|c +O(λc))c +O
(
λc

2) = |m|c
2

+O
(
λc

2)
,

where m is a message to be encrypted by PRDCT3. The encryption time no longer blows up double
exponentially in the number of iterations.

Analogously, by applying the size-shifting between each application of our PRODUCT construction,
the encryption time stays |m|c

2
+ O

(
λc

2
)
no matter how many times we iterate the construction. Of

course, the termO
(
λc

2
)
includes coefficient depends on the number of iterations. However, we can easily

verify that the dependence is linear. Thus, we can iterate our PRODUCT construction with size-shifting
ω(1) times and achieve a collusion-resistant scheme.

Remark 10.1 (Iterated linear and iterated square composition). In our iterated construction, on the k-th
application of PRODUCT construction, we use λk-key scheme constructed so far as Outer and a fresh

16Precisely speaking, the time is bounded by λ|m|c+O(λc) due to the parallel construction. However, the factor λ (coefficient
of |m|c) is not a dominant factor, so we omit here. It is easy to see that the construction works even if we consider the factor.
See Section 10.3.

75

instance of Parallelλ as Inner. This iterated composition method is called iterated linear composition by
Li and Micciancio [LM16] in the context of PKFE.

They also proposed another composition method called iterated square composition. In the iterated
square composition, on the k-th application of PRODUCT construction, both Outer and Inner are the
resulting scheme of the previous k − 1 compositions. In this composition, we can construct λ2k -key
scheme by k times applications of PRODUCT construction.

One might think iterated square composition increases functional keys more efficiently than iterated
linear composition. This is true for PKFE. However, the situation is different in SKFE since we use the
nested-ciphertext-embedding technique in our PRODUCT construction for SKFE. We cannot iterate our
PRODUCT construction for SKFE ω(1) times if we adopt iterated square composition. We can see the
fact from the above intuition.

Suppose that we construct PRDCT3 by using HYBRD2 as both Outer and Inner in our PRODUCT
construction. In this case, a ciphertext of HYBRD2 is embedded into another ciphertext of HYBRD2 in
the security proof. Thus, the encryption time of PRDCT3 is roughly(

|m|c +O
(
λc

2))c +O
(
λc

2) = |m|c
2

+O
(
λc

3)
,

where m is a message to be encrypted by PRDCT3. We see that the additive term blows up double
exponentially in the number of iterations while the term related to the message length does not due to
size-shifting. This is the reason we adopt iterated linear composition in this work.

10.2 Construction of Collusion-Resistant iSKFE

To precisely define our collusion-resistant iSKFE, we introduce useful notations. We let

iSKFE = 〈iSKFEOut, iSKFEIn〉product

denote that an iSKFE scheme iSKFE is constructed from our new PRODUCT construction in Section 9
by using iSKFEOut as Outer and iSKFEIn as Inner. Moreover, we let

iSKFE′ = 〈iSKFE, 1CT〉hyb

denote that an SKFE scheme SKFE′ is constructed from our proposed hybrid encryption construction
introduced in Section 8.3 by using iSKFE as a building block iSKFE scheme together with 1CT.

Let 1Key be single-key weakly succinct SKFE. We show how to construct collusion-resistant iSKFE
based solely on 1Key.

First, we construct an iSKFE scheme Parallelλ by applying the parallel construction introduced in
Section 8.1 that the number of parallelization is λ. That is, we set q = λ and use 1Key in the construction
introduced in Section 8.1. We denote this construction by Parallelλ := λ · 1Key. Note that the index
space of Parallelλ is [λ].

We then recursively increase the number of functional keys as follows:

PRDCT1 := Parallelλ,
HYBRDk := 〈PRDCTk, 1CT〉hyb (k = 1, · · · , η),
PRDCTk := 〈HYBRDk−1,Parallelλ〉product (k = 2, · · · , η),

where η = ω(1) which is concretely determined by the efficiency and security analysis. The second
line is the size-shifting procedure by using our proposed hybrid construction. The third line is our new
PRODUCT construction. The correctness of HYBRDη follows from those of building block constructions.

Note that for every k ∈ [η], both HYBRDk and PRDCTk support λk functional keys. In particular,
the number of functional keys supported by HYBRDη is λη thus is super-polynomial since η = ω(1).

76

Our collusion-resistant iSKFE scheme. Based on the notion above, our collusion-resistant iSKFE
is HYBRDη where η = ω(1). HYBRDη is based solely on 1Key (recall that 1CT is constructed from
OWFs), and the following theorem holds.

Theorem 10.2. Assuming there exists (1, δ)-selective-message function private SKFE that is weakly
succinct, where δ(λ) = λ−ζ and ζ = ω(1). Then, for any polynomial poly, there exists (poly, δ)-
selective-message function private iSKFE the size of whose index space is λζ1/2 thus is super-polynomial
in λ.

10.3 Analysis of Our Collusion-Resistant iSKFE

In this section, we formally analyze the security and efficiency of HYBRDη and prove Theorem 10.2.

Proof of Theorem 10.2. We start with the security bound analysis then move to the security analysis.

Security bound analysis. We assume that the advantages of any adversary attacking Parallelλ, 1CT,
and PRF is bounded by εPara , ε1CT, and εPRF, respectively. For every k ∈ [η], let εHybk and εPrdk be the
upper bounds of the advantage of any adversary attacking HYBRDk and PRDCTk, respectively. Then,
by Lemmata 8.8 and 9.3, for every k ∈ [η − 1], we have

εHybk+1 ≤ 2
(
(2p+ 1)εPrdk+1 + p · ε1CT + p · εPRF

)
≤ 4(2p+ 1)

(
(2q + 2)εHybk + q · εPara + (2q + 1)εPRF + ε1CT + εPRF

)
≤ 8(2p+ 1)(q + 1) · εHybk + 8(2p+ 1)(q + 1) (εPara + ε1CT + εPRF) ,

where p is a polynomial of λ denoting the number of message pairs an adversary attacking HYBRDη

queries, and q is the number of key queries made by the adversary. Then, by settingQ := 8(2p+1)(q+1),
we get

εHybk+1 ≤ Q · εHybk +Q · (εPara + ε1CT + εPRF) .

Therefore, it holds that

εHybη ≤ Q
η−1 · εHyb1 +

η−2∑
k=0

Qk

 ·Q(εPara + ε1CT + εPRF)

≤ Qη−1 · 2 ((p+ 1) · εPara + p · ε1CT + p · εPRF)
+ (η − 2) ·Qη−2 · (εPara + ε1CT + εPRF)

≤ (η − 2) ·Qη−1 · 3(p+ 1) · (εPara + ε1CT + εPRF).

Since p and q are polynomials of λ, and Q = 8(2p+ 1)(q + 1), we get

εHybη ≤ λ
O(η) · (εPara + ε1CT + εPRF). (34)

Our assumption is that 1Key is a (1, δ)-selective-message function private SKFE scheme, where
δ(λ) = λ−ζ and ζ = ω(1). Then, from Theorem 8.1, Parallelλ is also δ-secure. If there exists
a (1, δ)-selective-message function private SKFE scheme, then there also exists a single-ciphertext
(poly, δ)-selective-message function private SKFE scheme 1CT since it can be constructed based only on
δ-secure one-way functions as we show in Section 8.2. In addition, we can construct a δ-secure PRF from

77

δ-secure one-way functions. Then, by using such δ-secure primitives as building blocks of HYBRDη and
setting η = ζ1/2, we obtain

εHybη ≤ λ
O(η) · δΩ(1) = λO(ζ1/2) · (λ−ζ)Ω(1) ≤ (λ−ζ)Ω(1) = δΩ(1).

One might think it is sufficient that we set η as slightly super-constant (e.g., log log λ) regardless of the
security bound of the building block scheme since we can ensure that HYBRDη supports super-polynomial
number of keys and is δ-secure if we do so. This is not the case. HYBRDη is an iSKFE scheme and thus
we finally need to transform it into an SKFE scheme. As stated in Remark 3.19, in this transformation,
the security bound of the resulting SKFE scheme is δ + λ−η. Therefore, we cannot make the resulting
collusion-resistant SKFE scheme quasi-polynomially (resp. sub-exponentially) secure if we set η as
slightly super-constant such as loglogλ when transforming quasi-polynomially (resp. sub-exponentially)
secure single-key SKFE scheme. See Section 10.4 for more details.

This completes the security bound analysis.

Efficiency analysis. We show that each algorithm of HYBRDη runs in polynomial time of λ, n and s,
where s and n are the maximum size and input length of functions supported by HYBRDη.

For every k ∈ [η], we use new instances of Parallelλ and 1CT when constructing PRDCTk and
HYBRDk, respectively. In the following, we denote these two schemes as Parallel(k)

λ and 1CT(k) to
emphasize that they are instances of Parallelλ and 1CT used when constructing PRDCTk and HYBRDk.
Note that this notation is useful for our efficiency analysis since the encryption time of each instance of
Parallelλ and 1CT is different for each k ∈ [η].

As stated in the security bound analysis, we set η = ζ1/2 to transform a λ−ζ-secure single-key SKFE
scheme. Thus, when transforming quasi-polynomially (resp. sub-exponentially) secure scheme, we set
η = O(polylog(λ)) (resp. η = O(λγ) for some positive constant γ < 1). To accomplish the analysis for
HYBRDη, it is sufficient to prove that each algorithm of Parallel(k)

λ and 1CT(k) for every k ∈ [η] used in
HYBRDη runs in polynomial time of λ, n and s. First, we estimate the running time of the encryption
algorithm of Parallel(k)

λ for every k ∈ [η].
Before analysis, we bound the size of the key generation circuit G and encryption circuit e defined in

Figure 20 and 21, respectively. Below, let G[f] denote the key generation circuit G[f,⊥,⊥, i], where f is
a function and i is an index. Note that which index is hardwired does not affect the size of G thus we
omit writing the index. In addition, let e[Enc] denote the encryption circuit computing Enc (and one PRF
evaluation). From the bounds (30) and (32) that we show in Section 8.3 and 9, we can bound the size of
G and e as,

|G[f]| ≤ (|f |+ nf) · polyG(λ, log q), (35)
|e[Enc]| ≤ |Enc| · polye(λ), (36)

where polyG and polye are fixed polynomials, nf is the input length of f , and q is the number of functional
keys supported by the resulting scheme of the hybrid construction.

For every k ∈ [η], let Para.t(k)
Enc be the bound of the running time of the encryption algorithm of

Parallel(k)
λ . Since 1Key is weakly succinct, from the bound (25) in Section 8.1, for every k ∈ [η], Para.t(k)

Enc
is bounded as

Para.t(k)
Enc ≤ |f |

γ · polyPara(λ, nf), (37)

where f is a function supported by Parallel(k)
λ , nf is the input length of f , γ < 1 is a constant, and

polyPara is a fixed polynomial. As mentioned above, for every k ∈ [η], Parallel(k)
λ denotes different

instances of the same scheme Parallelλ and thus polyPara is independent of k.

78

For every k ∈ {2, · · · , η}, Parallel(k−1)
λ has to generate a functional key tied to the circuit

G[e[Para.Enc(k)]]. Therefore, from (37), we have

Para.t(k−1)
Enc ≤ |G[e[Para.Enc(k)]]|γ · polyPara(λ, 2λ+ 1). (38)

Here, the input length of the circuit e[Para.Enc(k)] is bounded by 2(2λ+ 1) + λ+ |Para.Enc(k)| since
the length of a ciphertext output by Para.Enc(k) is bounded by the size of Para.Enc(k). Then, from (35)
and (36), for every k ∈ [η], we can estimate |G[e[Para.Enc(k)]]| as

|G[e[Para.Enc(k)]]| ≤
(
|e[Para.Enc(k)]|+ (2(2λ+ 1) + λ+ |Para.Enc(k)|)

)
· polyG(λ, log λk)

=
(
|Para.Enc(k)| · polye(λ) + ((2(2λ+ 1) + λ+ |Para.Enc(k)|)

)
·

polyG(λ, log λk)
≤ |Para.Enc(k)| · poly1(λ, k) ≤ |Para.Enc(k)| · poly1(λ, η), (39)

where poly1 is a fixed polynomial. Thus, from (38) and (39), for every k ∈ {2, · · · , η}, we have

Para.t(k−1)
Enc ≤

(
|Para.Enc(k)| · poly1(λ, η)

)γ
· polyPara(λ, 2λ+ 1)

≤ |Para.Enc(k)|γ · poly2(λ, η) = (Para.t(k)
Enc)

γ · poly2(λ, η), (40)

where poly2 is also a fixed polynomial. In the last equality, we consider |Para.Enc(k)| equals its running
time.

In addition, Parallel(η)
λ has to release a functional key tied to a circuitG in which a function supported

by HYBRDη is hardwired. Therefore, by using (35) and (37) again, we can bound Para.t(η)
Enc as

Para.t(η)
Enc ≤ ((s+ n) · polyG(λ, log λη))γ · polyPara(λ, 2λ+ 1)
≤ sγ · poly3(λ, n, η), (41)

where poly3 is also a fixed polynomial.
From (40) and (41), for every k ∈ [η], it holds that

Para.t(k)
Enc ≤ (sγ · poly3(λ, n, η))γ

η−k
·
η−k−1∏
j=0

poly2(λ, η)γj

≤ sγ · poly3(λ, n, η) · poly2(λ, η)
1

1−γ ≤ sγ · poly4(λ, n, η), (42)

where poly4 is a fixed polynomial. The second inequality comes from the fact γ < 1. Thus, we see that
the encryption algorithm of Parallel(k)

λ for every k ∈ [η] runs in polynomial of λ, n, η and s.
Next, we analyze the encryption time of 1CT(k) for every k ∈ [η]. For every k ∈ [η], let 1CT.t(k)

Enc
be the bound of the running time of the encryption algorithm of 1CT(k). For every k ∈ [η], 1CT(k)

generates a functional key tied to the circuit e[Para.Enc(k)]. From (42), the input length of e[Para.Enc(k)]
is bounded by

2(2λ+ 1) + λ+
∣∣∣Para.Enc(k)

∣∣∣ ≤ 2(2λ+ 1) + λ+ sγ · poly4(λ, n, η)

≤ sγ · poly5(λ, n, η),

where poly5 is a fixed polynomial. Then, from the quasi-linear efficiency of 1CT that we show as (26) in
Section 8.2, for every k ∈ [η], we have

1CT.t(k)
Enc ≤ (sγ · poly5(λ, n, η)) · poly1CT (λ, log (sγ · poly5(λ, n)))
≤ sγ′ · poly6(λ, n, η), (43)

79

where poly1CT and poly6 are fixed polynomials and γ′ is a constant such that γ < γ′ < 1. Therefore, for
k ∈ [η], we can see that the encryption algorithm of 1CT(k) runs in polynomial of λ, n, η, and s.

From (42) and (43), the encryption time of HYBRDη is bounded by

η ·
(
sγ · poly5(λ, n, η) + sγ

′ · poly6(λ, n, η)
)
≤ sγ′ · poly7(λ, n, η), (44)

where poly7 is a fixed polynomial.
As stated earlier, η is at most sub-linear in λ in the construction. Thus, (44) means that the encryption

algorithm of HYBRDη runs in polynomial time of λ, n and s. In this case, we can see that all of algorithms
of HYBRDη runs in polynomial of λ, n and s. Moreover, (44) means that HYBRDη is weakly succinct.17

From these analysis, HYBRDη is δ = λ−ζ-secure and supports λη = λζ
1/2 functional keys. More

formally, HYBRDη is (λζ1/2
, δ)-selective-message function private iSKFE. Since ζ = ω(1), λζ1/2 is super-

polynomial. Therefore, HYBRDη is (poly, δ)-selective-message function private. � (Theorem 10.2)

10.4 Converting iSKFE into SKFE

Finally, we show how to transform iSKFE into SKFE. We provide the overview of this transformation
in Remark 3.19 in Section 3.2. Here, we give the formal description of the transformation and prove
its security. Let iSKFE = (Setup, iKG,Enc,Dec) be an iSKFE scheme whose index space is I. We
construct an SKFE scheme SKFE = (Setup′,KG,Enc′,Dec′) as follows. Setup′, Enc′, and Dec′ are
exactly the same as Setup, Enc, and Dec, respectively. We define KG as follows.

KG(MSK, f) :

• Generate i r←− I and return skf ← iKG(MSK, f, i).

The message and function spaces of SKFE is the same as those of iSKFE. The correctness of SKFE
directly follows from that of iSKFE. Then, we have the following theorem.

Theorem 10.3. Let iSKFE be (poly, δ)-selective-message function private iSKFE the size of whose index
space is S. Then, SKFE is (poly, δ′)-selective-message function private SKFE, where δ′ = 1

S + δ.

Proof of Theorem 10.3. We assume that the advantage of any adversary attacking iSKFE is bounded
by ε. LetA be an adversary that attacks the selective-message function privacy of SKFE. We assume that
A makes q key queries at most, where q is a polynomial of λ and q ≤ S. Then, we have

Advsm-fp
SKFE,A(λ) ≤ 2

(
q(q − 1)

S
+ ε

2

)
. (45)

This means that if iSKFE is δ-secure, then SKFE is δ′ secure, where δ′ = 1
S + δ. Below, we prove the

above inequality (45). First, consider the following sequence of games.

Game 0 This is the original selective-message function privacy game regarding SKFE.

Game 1 Same as Game 0 except how the challenger responds to key queries made by A. At the
initialization step, the challenger prepares a list L. The challenger initializes L to the empty set at
the beginning. The list L will stores indices during the game. When A sends a function f as a key
query, the challenger first generates an index i r←− I, and checks whether the list L contains the
index i or not. If so, the challenger generates i′ r←− I \ L and returns skf ← iKG(MSK, f, i′) to A.
Otherwise, the challenger returns skf ← iKG(MSK, f, i) to A and adds i to L.

17 Analogously, we see that if the underlying single-key SKFE is succinct, then so does HYBRDη .

80

Let SUC0 (resp. SUC1) be the event that A succeeds in guessing the challenge bit b in Game 0 (resp.
Game 1). Then, we can estimate the advantage of A as

1
2 · Advsm-fp

PRDCT,A(λ) = |Pr[SUC0]− 1
2 |

≤ |Pr[SUC0]− Pr[SUC1]|+ |Pr[SUC1]− 1
2 |. (46)

Below, we estimate each term on the right side of the inequality (46).

Lemma 10.4. |Pr[SUC0]− Pr[SUC1]| ≤ q(q−1)
S .

Proof of Lemma 10.4. Let Collision be the event that the same index is generated by the challenger
in order to respond to key queries made by A. Note that Game 0 and 1 are exactly the same game
unless the event Collision occurs. Therefore, we have |Pr[SUC0]−Pr[SUC1]| ≤ Pr[Collision]. In addition,
Pr[Collision] is bounded by q(q−1)

S using the union bound. Thus, the lemma holds. � (Lemma 10.4)

Lemma 10.5. |Pr[SUC1]− 1
2 | ≤

ε
2 .

Proof of Lemma 10.5. In Game 1, every key query made by A is replied using a different index in I.
Therefore, we can construct an adversary that attacks iSKFE and whose advantage is the same as that of
A in Game 1, that is 2|Pr[SUC1]− 1

2 |. Thus, |Pr[SUC1]− 1
2 | ≤

ε
2 � (Lemma 10.5)

From the inequality (46) and Lemmas 10.4 and 10.5, inequality (45) holds. � (Theorem 10.3)

10.5 From Single-Key SKFE to Collusion-Resistant SKFE

We combine the results that we proved though Section 10 to give our main result. First, we combine
Theorem 10.2 and 10.3, and obtain the following main theorem.

Theorem 10.6. Assuming there exists (1, δ)-selective-message function private SKFE for P/poly that
is weakly succinct, where δ(λ) = λ−ζ and ζ = ω(1). Then, there exists (poly, δ′)-selective-message
function private SKFE for P/poly, where δ′(λ) = λ−ζ

1/2 .18

Theorem 10.6 states that if the underlying single-key scheme is sub-exponentially secure, then so is
the resulting scheme. Formally, we have the following theorem.

Theorem 10.7. Assuming there exists (1, δ)-selective-message function private SKFE for P/poly that is
weakly succinct, where δ(λ) = 2−λγ and γ < 1 is a constant. Then, there exists (poly, δ′)-selective-
message function private SKFE for P/poly, where δ′(λ) = 2−λγ/2 .

Therefore, by combining Theorem 10.7 with the result by Kitagawa et al. [KNT17b], we have the
following corollary.

Corollary 10.8. Assuming there exist sub-exponentially secure single-key weakly succinct SKFE for
P/poly. Then, there exists IO for P/poly.

18We can slightly generalize the result. By setting η = ζ1/c in the construction for any constant c > 1, we can achieve
δ′(λ) = λ−ζ

1/c

.

81

11 Upgrading Succinctness and Security of SKFE

We can upgrade succinctness and security of SKFE with polynomial security loss. More specifically,

1. We can transform weakly succinct SKFE into succinct one with polynomial security loss.

2. We can transform selective-message-function message private SKFE scheme into selective-message
function private one with polynomial security loss.

By accommodating these upgrades into our main results, that is Theorem 10.6 and 10.7, we obtain the
following corollary.

Corollary 11.1. If there exists quasi-polynomially (resp. sub-exponentially) secure single-key SKFE
that is selective-message-function message private and weakly succinct, there exists quasi-polynomially
(resp. sub-exponentially) secure collusion-resistant SKFE that is selective-message function private and
succinct.

We give details of the above upgrades in subsequent sections.

11.1 Transforming Weakly Succinct SKFE into Succinct One

Ananth et al. [AJS15] proved that we can transform a collusion-resistant SKFE scheme into a succinct
one. By using this result and Theorem 10.6, we can construct succinct SKFE based on weakly succinct
one. However, the construction incurs at least quasi-polynomial security loss due to the security loss of
our result.

Achieving succinctness with polynomial security loss. In fact, we can transform weakly succinct
SKFE into succinct one with only polynomial security loss by using our transformation in Section 10.2
for η = O(1).

By setting η = O(1) in the construction of HYBRDη, from the inequality (34), we can construct an
iSKFE scheme supporting λη functional keys with polynomial security loss. Let q = λη. Then, from the
inequality (44), the encryption time ofHYBRDη depends on q only in poly-logarithmic. Namely, HYBRDη

is collusion succinct. Formally, we obtain the following theorem from the analysis in Section 10.3.

Theorem 11.2. Assuming there exists a (1, δ)-selective-message function private SKFE scheme that is
weakly succinct. Then, there exists a (q, δ)-selective-message function private iSKFE scheme that is
collusion succinct, where q is a fixed polynomial of λ.

Such a collusion-succinct scheme can be transformed into a single-key succinct scheme by the
technique utilizing decomposable randomized encoding used by Bitansky and Vaikuntanathan [BV15,
Proposition IV.1]. This fact was observed by Kitagawa et al. [KNT21]. They proposed the transformation
for a PKFE scheme, but we can easily observe that it works even if the building block scheme is an iSKFE
scheme. That is, the following theorem is known.

Theorem 11.3 ([BV18, KNT21, Adapted]). Assuming there exists a (q, δ)-selective-message function
private SKFE scheme that is collusion succinct, where q is a fixed polynomial of λ. Then, there exists a
(1, δ)-selective-message function private iSKFE scheme that is succinct.

Note that the resulting scheme is a single-key iSKFE scheme and thus is also a single-key SKFE
scheme from the discussion in Remark 3.19. From Theorems 11.2 and 11.3, the following theorem holds.

Theorem 11.4. Assuming there exists a (1, δ)-selective-message function private SKFE scheme that is
weakly succinct. Then, there exists a (1, δ)-selective-message function private SKFE scheme that is
succinct.

82

11.2 Transforming Selective-message-function secure SKFE into Selective-secure One

We can transform a selective-message-unction message private SKFE scheme into a selective-message
function private one.

Theorem 11.5. If there exists a (1, δ)-selective-message-function message private SKFE scheme that is
weakly succinct, there exists a (1, δ)-selective-message function private SKFE scheme that is weakly
succinct.

In fact, this theorem is easily obtained by known facts. We introduce the following theorem stating
that we can transform selective-message-function message private SKFE into selective-message message
private one.

Theorem 11.6 ([KNT21]). If there exists a (1, δ)-selective-message-function message private SKFE
scheme that is weakly succinct, there exists a (1, δ)-selective-message message private SKFE scheme that
is weakly succinct.

We obtain Theorem 11.6 by the result of Kitagawa et al. Their construction does not directly use
underlying SKFE and first transform it into strong exponentially-efficient IO (SXIO). SXIO that is sufficient
for their construction can be based on single-key weakly succinct SKFE [BNPW20]. In the construction
of SXIO, we can observe that it is sufficient that the underlying SKFE satisfies selective-message-function
message privacy though this fact is not explicitly stated. Thus, we obtain Theorem 11.6.

In addition, by Theorem 3.14 shown by Brakerski and Segev [BS18], we can transform a selective-
message message private scheme into a selective-message function private one. They do not refer to
succinctness in their paper, but we observe that their transformation preserves (weak) succinctness.

These two transformations incur only polynomial security loss. Thus, we can transform single-key
selective-message-function message private SKFE into single-key selective-message function private one
with polynomial security loss.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded
encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 528–556. Springer, Heidelberg, March 2015. (Cited on page 2.)

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective
to adaptive security in functional encryption. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677. Springer,
Heidelberg, August 2015. (Cited on page 18, 19, 25, 62.)

[ADGM17] Daniel Apon, Nico Döttling, Sanjam Garg, and Pratyay Mukherjee. Cryptanalysis of
indistinguishability obfuscations of circuits over GGH13. In Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl, editors, ICALP 2017, volume 80 of LIPIcs, pages
38:1–38:16. Schloss Dagstuhl, July 2017. (Cited on page 2.)

[AGIS14] Prabhanjan Vijendra Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding Barrington’s theorem. In Gail-Joon Ahn, Moti Yung, and Ninghui
Li, editors, ACM CCS 2014, pages 646–658. ACM Press, November 2014. (Cited on
page 2.)

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions and
attacks. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 3–35. Springer, Heidelberg, August 2017. (Cited on page 5.)

83

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New methods
for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer, Heidelberg, May
2019. (Cited on page 2.)

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing
polynomials and their applications. Computational Complexity, 15(2):115–162, 2006.
(Cited on page 23.)

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg, August 2015. (Cited
on page 2, 4, 7, 17.)

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indis-
tinguishability obfuscation without multilinear maps: New paradigms via low degree
weak pseudorandomness and security amplification. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 284–332.
Springer, Heidelberg, August 2019. (Cited on page 2.)

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from
functional encryption for simple functions. Cryptology ePrint Archive, Report 2015/730,
2015. https://eprint.iacr.org/2015/730. (Cited on page 2, 5, 6, 11, 14, 40, 82.)

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation without
multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness. Cryptology
ePrint Archive, Report 2018/615, 2018. https://eprint.iacr.org/2018/615. (Cited
on page 2.)

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited.
In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages
173–205. Springer, Heidelberg, November 2017. (Cited on page 5.)

[AS16] Gilad Asharov and Gil Segev. Limits on the power of indistinguishability obfuscation and
functional encryption. SIAM Journal on Computing, 45(6):2117–2176, 2016. (Cited on
page 3, 4.)

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron
and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS,
pages 152–181. Springer, Heidelberg, April / May 2017. (Cited on page 2.)

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure func-
tional encryption. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I, volume
11891 of LNCS, pages 174–198. Springer, Heidelberg, December 2019. (Cited on page 5.)

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin,
Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability obfuscation
for RAM programs and succinct randomized encodings. SIAM Journal on Computing,
47(3):1123–1210, 2018. (Cited on page 2.)

[BDGM20a] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO
from homomorphic encryption schemes. In Anne Canteaut and Yuval Ishai, editors,

84

https://eprint.iacr.org/2015/730
https://eprint.iacr.org/2018/615

EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 79–109. Springer, Heidelberg,
May 2020. (Cited on page 2.)

[BDGM20b] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings
are not necessary for iO: Circular-secure LWE suffices. Cryptology ePrint Archive, Report
2020/1024, 2020. https://eprint.iacr.org/2020/1024. (Cited on page 2.)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6:1–6:48, 2012. (Cited on page 2, 9.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom
functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519.
Springer, Heidelberg, March 2014. (Cited on page 21.)

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer, Heidelberg, May
2014. (Cited on page 2.)

[BGMS15] Dan Boneh, Divya Gupta, Ilya Mironov, and Amit Sahai. Hosting services on an untrusted
cloud. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume
9057 of LNCS, pages 404–436. Springer, Heidelberg, April 2015. (Cited on page 2.)

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15: Provable
security against zeroizing attacks. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 544–574. Springer, Heidelberg, November
2018. (Cited on page 2.)

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784–796.
ACM Press, October 2012. (Cited on page 22, 60.)

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages
852–880. Springer, Heidelberg, May 2016. (Cited on page 18.)

[BKS18] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in
the private-key setting: Stronger security from weaker assumptions. Journal of Cryptology,
31(2):434–520, April 2018. (Cited on page 3, 4, 12, 17, 67.)

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-zeroizing
obfuscation: New mathematical tools, and the case of evasive circuits. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 764–791. Springer, Heidelberg, May 2016. (Cited on page 2.)

[BNPW20] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. Journal of Cryptology, 33(2):357–405,
April 2020. (Cited on page 2, 3, 4, 11, 12, 27, 34, 36, 83.)

[BPR+08] Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, and Brent
Waters. On the impossibility of basing identity based encryption on trapdoor permutations.

85

https://eprint.iacr.org/2020/1024

In 49th FOCS, pages 283–292. IEEE Computer Society Press, October 2008. (Cited on
page 4.)

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the edge of chaos -
trapdoor permutations from indistinguishability obfuscation. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 474–502. Springer,
Heidelberg, January 2016. (Cited on page 2.)

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 1–25. Springer, Heidelberg, February 2014. (Cited on page 2.)

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key
setting. Journal of Cryptology, 31(1):202–225, January 2018. (Cited on page 8, 17, 24, 25,
31, 83.)

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011. (Cited on page 2.)

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer
Society Press, October 2015. (Cited on page 3, 4, 5, 6, 7, 9, 10, 14, 16, 17, 28, 30, 31, 40,
44, 46, 82.)

[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. Journal of the ACM, 65(6):39:1–39:37, 2018. (Cited on page 2, 3, 4, 5, 6, 7,
11, 14, 16, 17, 28, 31, 82.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS,
pages 280–300. Springer, Heidelberg, December 2013. (Cited on page 21.)

[CGH+15] Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level
zeroes: New MMAP attacks and their limitations. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages 247–266. Springer,
Heidelberg, August 2015. (Cited on page 2.)

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching program
obfuscators. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part III, volume 10212 of LNCS, pages 278–307. Springer, Heidelberg, April / May 2017.
(Cited on page 2.)

[CHN+18] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel Wichs.
Watermarking cryptographic capabilities. SIAM Journal on Computing, 47(6):2157–2202,
2018. (Cited on page 2.)

[CHVW19] Yilei Chen, Minki Hhan, Vinod Vaikuntanathan, and Hoeteck Wee. Matrix PRFs:
Constructions, attacks, and applications to obfuscation. In Dennis Hofheinz and Alon
Rosen, editors, TCC2019, Part I, volume 11891 ofLNCS, pages 55–80. Springer, Heidelberg,
December 2019. (Cited on page 2.)

86

[CLLT17] Jean-Sébastien Coron, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Zeroizing
attacks on indistinguishability obfuscation over CLT13. In Serge Fehr, editor, PKC 2017,
Part I, volume 10174 of LNCS, pages 41–58. Springer, Heidelberg, March 2017. (Cited on
page 2.)

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, March
2015. (Cited on page 9, 15.)

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation
branching programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607.
Springer, Heidelberg, August 2018. (Cited on page 2.)

[FRS17] Rex Fernando, Peter M. R. Rasmussen, and Amit Sahai. Preventing CLT attacks on
obfuscation with linear overhead. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 242–271. Springer, Heidelberg,
December 2017. (Cited on page 2.)

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao
Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 578–602. Springer, Heidelberg, May 2014. (Cited on page 7, 17.)

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume
9015 of LNCS, pages 498–527. Springer, Heidelberg, March 2015. (Cited on page 2.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016. (Cited on page 2, 5.)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986. (Cited on page 21.)

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages 555–564. ACM
Press, June 2013. (Cited on page 5.)

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan, and
Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Martin Hirt and
Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 241–268.
Springer, Heidelberg, October / November 2016. (Cited on page 2.)

[GMM17] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds on
obfuscation from all-or-nothing encryption primitives. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 661–695. Springer,
Heidelberg, August 2017. (Cited on page 4.)

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM

87

SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages
736–749. ACM, 2021. (Cited on page 2.)

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking the
sub-exponential barrier in obfustopia. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 156–181. Springer,
Heidelberg, April / May 2017. (Cited on page 4.)

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryption
with polynomial loss. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II,
volume 9986 of LNCS, pages 419–442. Springer, Heidelberg, October / November 2016.
(Cited on page 4, 5, 17.)

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidelberg,
August 2012. (Cited on page 5.)

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry. How to generate and use universal samplers. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 715–744. Springer,
Heidelberg, December 2016. (Cited on page 2.)

[HJL21] Samuel B. Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to new circular security
assumptions underlying io. IACR Cryptol. ePrint Arch., 2021:889, 2021. CRYPTO 2021
(to appear). (Cited on page 2.)

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 201–220. Springer,
Heidelberg, May 2014. (Cited on page 2.)

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the
Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA,
June 19-22, 1995, pages 134–147. IEEE Computer Society, 1995. (Cited on page 4.)

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989. (Cited on page 4.)

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of
constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 251–281.
Springer, Heidelberg, May 2019. (Cited on page 2.)

[JLS19] Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assumptions for
iO. Cryptology ePrint Archive, Report 2019/1252, 2019. https://eprint.iacr.org/
2019/1252. (Cited on page 2.)

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 60–73. ACM, 2021. (Cited on page 2.)

88

https://eprint.iacr.org/2019/1252
https://eprint.iacr.org/2019/1252

[KLW15] Venkata Koppula, Allison Bishop Lewko, and BrentWaters. Indistinguishability obfuscation
for turing machines with unbounded memory. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 419–428. ACM Press, June 2015. (Cited on page 2.)

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In 55th FOCS, pages 374–383. IEEE
Computer Society Press, October 2014. (Cited on page 4.)

[KNT17a] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. From single-key to collusion-
resistant secret-key functional encryption by leveraging succinctness. Cryptology ePrint
Archive, Report 2017/638, 2017. https://eprint.iacr.org/2017/638. (Cited on
page 4, 58.)

[KNT17b] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability obfuscation
for all circuits from secret-key functional encryption. Cryptology ePrint Archive, Report
2017/361, 2017. https://eprint.iacr.org/2017/361. (Cited on page 81.)

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key func-
tional encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part II, volume 10821 of LNCS, pages 603–648. Springer, Heidelberg, April / May 2018.
(Cited on page 1.)

[KNT21] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Simple and generic constructions
of succinct functional encryption. J. Cryptol., 34(3):25, 2021. (Cited on page 11, 12, 34,
82, 83.)

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press, November
2013. (Cited on page 21.)

[KS20] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key functional
encryption. Journal of Cryptology, 33(2):406–458, April 2020. (Cited on page 3, 4, 5, 44.)

[KY09] Jonathan Katz and Arkady Yerukhimovich. On black-box constructions of predicate
encryption from trapdoor permutations. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 197–213. Springer, Heidelberg, December 2009. (Cited on
page 4.)

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016. (Cited on page 2.)

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 599–629. Springer, Heidelberg, August 2017. (Cited on page 2.)

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 443–468. Springer, Heidelberg, October / November 2016. (Cited on
page 4, 5, 7, 17, 20, 25, 57, 58, 67, 76.)

89

https://eprint.iacr.org/2017/638
https://eprint.iacr.org/2017/361

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their application
to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2018/646, 2018.
https://eprint.iacr.org/2018/646. (Cited on page 2.)

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009. (Cited on page 22.)

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of LNCS, pages 447–462. Springer,
Heidelberg, March 2016. (Cited on page 2, 12, 34.)

[LR88] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing, 17(2):373–386, 1988. (Cited on
page 21.)

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages
11–20. IEEE Computer Society Press, October 2016. (Cited on page 2.)

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 629–658.
Springer, Heidelberg, August 2016. (Cited on page 2.)

[MZ18] Fermi Ma and Mark Zhandry. The MMap strikes back: Obfuscation and new multilinear
maps immune to CLT13 zeroizing attacks. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018, Part II, volume 11240 of LNCS, pages 513–543. Springer, Heidelberg,
November 2018. (Cited on page 2.)

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. https://eprint.iacr.org/2010/556. (Cited on page 2.)

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer, Heidelberg, August
2014. (Cited on page 2.)

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM
CCS 2010, pages 463–472. ACM Press, October 2010. (Cited on page 5, 10, 19, 31, 59.)

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg,
May 2005. (Cited on page 2.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM
Press, May / June 2014. (Cited on page 2, 6, 13.)

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Ashok K. Chandra, Detlef
Wotschke, Emily P. Friedman, and Michael A. Harrison, editors, Proceedings of the 8th
Annual ACM Symposium on Theory of Computing, May 3-5, 1976, Hershey, Pennsylvania,
USA, pages 196–203. ACM, 1976. (Cited on page 56.)

90

https://eprint.iacr.org/2018/646
https://eprint.iacr.org/2010/556

[Wat15] Brent Waters. A punctured programming approach to adaptively secure functional encryp-
tion. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 678–697. Springer, Heidelberg, August 2015. (Cited on
page 5.)

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part
III, volume 12698 of Lecture Notes in Computer Science, pages 127–156. Springer, 2021.
(Cited on page 2.)

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986. (Cited on page 18,
20, 22, 23, 60.)

[Zim15] Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467.
Springer, Heidelberg, April 2015. (Cited on page 2.)

91

	Introduction
	Backgrounds
	Our Results
	More on Related Works
	Organization

	Overview of Our Technique
	Construction of IO based on PKFE
	Replacing PKFE with SKFE: Need of Puncturable SKFE
	Puncturable SKFE from SKFE
	IO from Puncturable SKFE
	Technical Overview for Achieving Collusion-Resistance

	Preliminaries
	Standard Cryptographic Tools
	Secret-Key Functional Encryption
	Indistinguishability Obfuscation

	Puncturable Secret-Key Functional Encryption
	Syntax
	Security
	Difference from Definition of Bitansky and Vaikuntanathan

	Single-Key Non-Succinct Puncturable SKFE
	From Non-Succinct to Weakly Succinct Puncturable SKFE
	From Non-Succinct to Collusion-Succinct by Using SXIO
	From Collusion-Succinct to Weakly Succinct

	Indistinguishability Obfuscation from Puncturable SKFE
	Construction
	Security Analysis
	Efficiency Analysis

	Basic Tools for Transformation from Succinctness to Collusion-Resistance
	Parallel Construction
	Single-Ciphertext Collusion-Resistant Fully Succinct SKFE
	Hybrid Encryption Construction

	New PRODUCT Construction for iSKFE
	Collusion-Resistant SKFE via Size-Shifting
	Intuition of Size-Shifting
	Construction of Collusion-Resistant iSKFE
	Analysis of Our Collusion-Resistant iSKFE
	Converting iSKFE into SKFE
	From Single-Key SKFE to Collusion-Resistant SKFE

	Upgrading Succinctness and Security of SKFE
	Transforming Weakly Succinct SKFE into Succinct One
	Transforming Selective-message-function secure SKFE into Selective-secure One

