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Abstract. We consider the problem of a client querying an encrypted binary tree
structure, outsourced to an untrusted server. While the server must not learn the
contents of the binary tree, we also prevent the client from maliciously crafting
a query that traverses the tree out-of-order. That is, the client should not be able
to retrieve nodes outside one contiguous path from the root to a leaf. Finally, the
server should not learn which path the client accesses, but is guaranteed that the
access corresponds to one valid path in the tree. This is an extension of protocols
such as structured encryption, where it is only guaranteed that the tree’s encrypted
data remains hidden from the server.

To this end, we initiate the study of Iterative Oblivious Pseudorandom Functions
(1OPRFs), new primitives providing two-sided, fully malicious security for these
types of applications. We present a first, efficient iOPRF construction secure
against both malicious clients and servers in the standard model, based on the
DDH assumption. We demonstrate that iOPRFs are useful to implement different
interesting applications, including an RFID authentication protocol and a proto-
col for private evaluation of outsourced decision trees. Finally, we implement and
evaluate our full iOPRF construction and show that it is efficient in practice.

1 Introduction

Structured encryption allows a data owner to encrypt data arranged in a data structure
and store it on an untrusted server [10]]. A crucial property of structured encryption is
that the data owner can later compute a special decryption key for the server which
permits the server to decrypt and parse a well defined component of the data struc-
ture, saving the owner from having to individually download and traverse each element
themselves. A typical example for structured encryption is data arranged in a graph
encrypted and outsourced to a server, and the owner computing keys for decryption of
sub-graphs [35]]. Computation of decryption keys is possible despite the owner retaining
only a constant-sized master key. Keyword-searchable encryption can be implemented
as a special-case of structured encryption where the graph is composed of many linked
lists, one for each keyword, containing all the documents that match that keyword.



1.1 New Applications

In this paper, we introduce a twist to the standard application scenario of structured en-
cryption. A third party, separate from the data owner and server, which we call the client,
can ask the data owner for permission to retrieve a specific component of the owner’s
data structure. The owner is said to delegate access to this portion of their data to the
client. However, the data owner and client do not trust each other, and the client does
not want to reveal to the owner which part of the data structure they are interested in.
At the same time, the owner wants to restrict the client’s access to a specific component
of their data structure and might even put constraints on that component, e.g., where
it begins, how many elements it contains, etc. This new setting of mutually untrusted
data owner, server, and client has several interesting applications. One can imagine a
data owner outsourcing a medical database with patient records to an untrusted cloud.
A researcher (client) conducting a study gets access to a specific set of patient records
(the component) without leaking which set of patients is affected to the owner or the
database. At the same time, the researcher is confined within one component of data
structure and cannot arbitrarily browse patient records.

In this work, we focus on tree data structures, but in return offer more powerful
confinement control for the data owner than standard structured encryption. In addition
to decryption keys enabling decryption of a sub-tree for the client, the data owner can
also compute keys which enable the client to access only one path, from the root of the
tree to a leaf. Moreover, the client can ask to decrypt a path in an iterative, adaptive
fashion instead of querying the owner for the whole path at once. Adaptive queries are
necessary to support iterative scenarios where the client will parse the tree node by
node, obliviously asking the owner to decrypt a single child node in the tree only after
fetching and decrypting the parent node. For example, after decrypting one node of a
binary tree, the client can obliviously query the owner for the decryption key of either
the left or right child, depending on the current node’s data content. At the same time,
the data owner wants to ensure that the client can only ask to decrypt one single node
which is a child of the current node, so that the client is confined to decrypting exactly
one path and cannot arbitrarily “jump around” in the data structure.

While we later present details on two specific applications for tree data structures,
one for RFID authentication and one for privacy-preserving decision tree evaluation,
we stress that techniques in this paper are general and useful in other scenarios, too.
As soon as data is tree-structured (XML data, databases using B+ trees or hash maps,
hash trees, search trees, heaps, ...) and should be adaptively parsed, our techniques
will be required. We also note that our techniques can be used to realize maliciously
secure, adaptive k-out-of-n oblivious transfer [8] and oblivious keyword search [235].
We discuss applications in more detail in Section [§]

1.2 Technical Challenges

A straightforward approach to providing adaptive queries might be for the data owner
to apply an Oblivious Pseudo-Random Function (OPRF) as the PRF to encrypt nodes.
For a tree of height ¢, owner and client run ¢ instances of the OPRF such that the
client always learns the key for the next node on the path they are interested in, and the



owner learns nothing. To actually fetch a node from the server in an oblivious fashion,
the client could employ standard PIR or OT protocols. However, this approach is only
secure against semi-honest clients that stick to the rule of asking for the decryption
key of one child node of the current node. The difficulty lies in making parsing the
tree structure secure against a fully-malicious client without reverting to general, yet
expensive techniques like maliciously secure two-party computation and general Zero-
Knowledge (ZK) proofs.

1.3 Our contributions

Consequently, we introduce the notion of iterative Oblivious Pseudo-Random Functions
(iIOPRFs) and the first candidate constructions. An iOPRF is an £ round two party pro-
tocol between a sender and a receiver. The intuition behind iOPRFs is that the receiver
adaptively queries ¢ input bits z; in ¢ rounds such that in the end they learn outputs
PRFg(x1),...,PRFg (27 ...2/) for key K chosen by the sender, and the sender learns
nothing. If such an iOPRF is used to encrypt the nodes, then fetching a wrong node is
useless for the client, as they cannot decrypt it anyways.

Our new candidate iOPRF construction is based on a careful adaptation of the PRF
by Naor and Reingold [39]]. We first augment the Naor and Reingold/ PRF to become an
iterative Pseudo-Random Function (iPRF) which has the property that, for input strings
with the same prefix, its generated output also shares the same prefix. We then present
our main construction, an iOPRF which is secure against malicious sender and mali-
cious receiver. We achieve malicious security by using efficient ZK proofs for DH-based
statements over elliptic curves and avoid costly maliciously secure oblivious transfer
(OT). We implement and benchmark our new iOPRF construction to show its practical-
ity and efficiency.

In summary, the technical highlights of this paper are:

— The definition of the new cryptographic primitives of iPRF and iOPRF which ex-
tends repeated OPRF constructions with security constraints on the client’s input.

— A candidate construction which is efficient and provably secure under the Deci-
sional Diffie-Hellman assumption in the standard model.

— To show its practicality, we implement our construction and evaluate its perfor-
mance. The implementation is available for download [2].

— The integration of our primitive into several example applications, such as RFID
authentication and privacy-preserving decision tree evaluation.

2 Background and Related Work

Before introducing iPRFs, iOPRFs, and their constructions, we briefly revisit seminal
PRF and OPRF schemes and some useful security definitions. They will be helpful in
understanding the intuition behind iPRFs and iOPRFs.

While there exist many different PRFs [3] [12] [17, 20} 36l 39] and OPRFs [4] [11}
18, 26} 28, |34]], we present the DH-based techniques by Naor and Reingold [39] and
Freedman et al. [18]], as our constructions are build on their main idea.



Let G be a group of prime order p where the DDH assumption holds, and ¢ is a
random generator of G. For a security parameter A\, we set [p| = poly(\).

Construction 1 (Naor and Reingold/Function). For any ¢ € N, consider function family
(ensemble) Fr(z) : (Z,)" ! x {0,1}* — G, where key K is defined as sequence K =
(g, ..., ap) of £ + 1 random elements «; from Z,. For any ¢ bit input x = x1 ...z,
function F'x is defined by

Fic(w) = (g°0) it

Function F}, holds the following important randomness property. We will come back
to it later in the proof of our own construction.

Definition 1 (Naor and Reingold Pseudo-Randomness). For any ¢ € N, function
family Fr(z) : (Z,)! x {0,1}* — G has pseudo-random output, iff for every PPT
distinguisher D, there exists a negligible function € such that for sufficiently large A

[PrDPEOY) = 1] = PrDRO (1) = 1) = €[,

where K & (Zp)”l, and R is a randomly chosen function from the set of functions
with domain {0,1}" and image G.

Theorem 1 (Theorem 4.1 of [39]). If the DDH-Assumption holds, then Fy from Con-
struction|l| has pseudo-random output.

Observe that Fi from Construction [I]is not a pseudo-random function. The standard
PRF textbook definition (which we omit here) requires indistinguishability of PRF out-
put from output of a random function which Fx does not provide. However, Fix can
trivially be converted into a PRF. If H) is a family of pairwise independent hash func-

tions, and h & Hy, then F(-) = h(Fk(-)) is a PRF by a standard argument of the
leftover hash lemma [21]]. We will use the same argument later for our techniques and
thus concentrate only on the pseudo-randomness property of Definition [T}

Definition 2 (OPRF). Let F be a pseudo-random function family. An OPRF is a
2-party protocol between a sender and a receiver realizing the following ideal func-
tionality. A trusted third party receives a key K € {0,1} from the sender and input
x € {0, 1} from the receiver and sends Fy () to the receiver.

Construction 2 (OPRF (x) from [18])). During initialization, sender S chooses key

K = («ap,...,ap) by randomly sampling ¢ + 1 scalars «; & Z,. To evaluate receiver
R’sinput x = (z7 . ..xy), parties perform the following steps.

1. S randomly selects (r1,...,7¢),7; & Zy,.

2. S and R engage in ¢ rounds of (f)-OT. In round ¢, the server’s input to OT is (7,
r; - ;), and the receiver’s input is z;. So, depending on x;, the receiver gets either
Z; =T; Or 2; =17 - (.
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3. Ssends § = g'li=1"i to R, and R outputs OPRF () = anzl i,

Freedman et al. [18]] present a proof sketch for Construction [2| Effectively, this
OPRF assembles the [Naor and Reingold function Fx on input x in ¢ rounds. If the
DDH assumptions holds, and the underlying OT is secure and does not simultaneously
leak 7; and r; - «v;, Construction [2]is an OPRF (semi-honest model).

3 iPRF and iOPRF Definition

In this paper we introduce the notion of iterative pseudo-random functions (iPRF) and
iterated oblivious pseudo-random functions (iOPRF).

Informally, an iPRF is a keyed function with bit strings = (z7 ...x¢) of length
¢ as input. It outputs ¢ bit strings v;, each of length A. Besides that each v; is indistin-
guishable from a randomly chosen bit string, the crucial property which we target is
that, for two bit strings = and x’ sharing the same length k bit prefix, the first k& outputs
(v1,...,v;) of iPRF will be the same.

Similar to OPRFs, an iOPRF is a two party protocol, where a receiver gets iPRF i ()
for their input x, and the sender with input key K does not learn x. However, unlike
standard OPRFs, iOPRFs run in ¢ rounds as required by the application scenarios we
consider. In round ¢, the receiver adaptively inputs x; such that eventually they receive
all £ outputs from iPRF x (z), where = (27 ... x¢) is as specified during the £ rounds.

3.1 iPRF

Definition 3 (iPRF). For inputs x = (1 ...x,) € {0,1}* and randomly chosen keys
K = (Ky,...,K;) € {0,1}**, an iterative pseudo-random function family iPRF k()
is a sequence of mutually independent function families

iPRFg(x) = (f}ﬁ(xl)w..,ffﬁw’m(xl ...xy)),

where each fic 4 (z1...x) 0 {0,1}* x {0,1}" — {0,1}* is a pseudo-random
Sfunction family with key (K1, ..., K;) from K and input (x1 ... x;) from x. Concate-
nated output Vy = vq||. .. ||ve,v; = f}'ﬁ’m,m (1 ...x;) is a family of mutually inde-
pendent random variables (a probability ensemble) of bit strings of length £ - \.

Definition[3|implies that each probability ensemble v; = {(v;)x}rew of length A bit
strings is computationally indistinguishable from an ensemble u; describing uniformly
random bit strings of length A\. However, probability ensemble V), = v1]| ... ||v, is not
indistinguishable from an ensemble of uniformly random bit strings of length X - £.
Instead, if any two inputs = and x’ share the same prefix of length 4, then the first ¢
outputs (vy,...,v;) of iPRF g (x) will equal those of iPRF(z"). Mutual independence
means that v; does not depend on (combinations of) other v;;.

Besides being PRFs, we do not require anything else from underlying functions f?.
Note that, in general, PRFs do not need to be length-preserving [19].



// Let iPRF be an iterative pseudo-random function family
1 fori=1to/¢do
2 R—TTP: z;;
3 | S TTP: K /) K= (Ki,... K
4 TTP — R : v; suchthat (vy,...,v,) = iPRFg(x1...2¢);
s end

Fig. 1. Ideal Functionality Fioprr

Simple Constructions Observe that the hashed Naor and Reingold PRF Ef from
Construction [I] is not an iPRF and cannot easily be converted into an iPRF. First, to
support A - £ outputs, A for each input bit z;, one might try and create an iPRF out of

(ﬁ‘K1 1)y, Fry, g, (x1.. ), where K1 = oy, ..., K, = ap. However, this
is in fact not an iPRF, as exemplified by inputs like z = (10...0). There, we have
Fig,(1) = Fk, k,(10) = ... = Fk, ... k,(10...0), so the output repeats starting from

the 2" invocation of F. In general, for any input x = PREFIX]|0...0 ending with a
sequence of zeros, F () will be equal to Fix (PREFIX) violating mutual independence
of the v; in Definition

Many simple construction from symmetric key PRFs for an iPRF could be based on
variable input length PRFs such as HMAC and a collision resistant hash function H. For
example, consider iPRF g () = (HMAC (k) (21), ..., HMACy (k,||...| k) (T1 - - - 2¢)).
While this and other variations and adoptions of standard symmetric key PRF-based se-
tups (also PRG-based PRFs [20]) might result in valid iPRFs, we dismiss them in favor
of our new Construction(Section , as it offers several advantages. First, it builds on
the Naor and Reingold pseudo-randomness, so we can prove malicious security by an
elegant, formal reduction from DDH to the iPRF property. More importantly, its key ad-
vantage is that you can use it as a building block to construct an efficient iOPRF which
also supports delegation and verifiability. As we will see, the iIOPRF offers malicious
security with highly efficient, practical ZK proofs, i.e., without reverting to reductions
of expensive general ZK proofs.

3.2 iOPRF

Definition 4 (mioprr). Let iPRF i be an iterative pseudo-random function family. An
iterative oblivious pseudo-random function is an £-round probabilistic protocol Tiopre
between a sender S with input key K € {0,1}** and receiver R with input bit string
x = (x1...20) € {0, 1} with the following properties.

1. Protocol mopgr realizes the ideal functionality Fioprr shown in Figure@] This is a
reactive functionality allowing queries from R in a total of ¢ rounds. After ¢ rounds,
R has received (v1, . ..,v¢) = iPRFg (), |v;| = A from a trusted third party TTP.
Sender S sends K; in round i, but receives nothing from F,opre. We denote receiver
R’s output (vy, ..., vp) by iOPRF g ().

2. For all adversaries A in the real world, there exists a simulator Simpg in the ideal
world such that R’s view REAL oo A, R (2, K) in the real world is computationally
indistinguishable from R’s view IDEAL r. Sim s (z) (T, K) in the ideal world.



3. For all adversaries A in the real world, there exists a simulator Simg in the ideal
world such that S’s view REALpe. 4,5 (K) in the real world is computationally
indistinguishable from S’s view IDEAL £ simg (K) in the ideal world.

The crucial difference of iIOPRFs in contrast to regular OPRFs [4}[11},[18} 126, 28], [34]]
is that at the end of the protocol execution, R has received not one but £ PRF values
v; with (vq,...,v¢) = iIPRFg (). For two inputs = and x’ with the same length 4 bit
prefix, values vy, ..., v; will be the same. Note that receiver R can specify their input
adaptively during ¢ rounds. Before sending z;, R has learned v;_; from Fiopge. Still, R
receives output strings matching an iPRF, so they cannot combine outputs from differ-
ent iOPRF executions with different input. For example, knowledge of iOPRF (10 . .)
and iOPRF(01...) should not allow R to learn anything about iOPRF(11...).
Against a fully-malicious R, this cannot be accomplished easily with regular OPRFs.
One might try and run ¢ instances of the OPREF, but the challenge is that one would have
to force R to link their input during the 7" instance of the OPRF to the (i — 1) instance.
Our iOPRF in Section §5]offers a solution to this challenge.

Verifiability An important aspect of OPRFs which we also require for iOPRFs is that
of verifiablity, see Jarecki et al. [28]] for technical details. Essentially, verifiablity implies
that S proves to R that R’s output (vy, . ..,v,) has been computed correctly. Towards
providing malicious security, verifiability is especially important when the iOPRF is
run multiple times, as S could cheat by using different keys for different protocol runs.
We refer to [28]] for a treatment with more formal definitions in the context of OPRFs
which also hold for iOPRFs. For our constructions, we will prove that R’s output has
been correctly computed by using a key which S has been committed to before.

Observe that the original Freedman et al. [[18] OPRF (Construction [2)) is not mali-
ciously secure and thus does not offer verifiablity. Even if OT as a building block would
be secure against a malicious adversary, it is unclear how to verify that the sender has
used the same key K for different OPRF protocol runs.

Efficiency The last crucial property we require is that iOPRFs are efficient with re-
spect to their communication and computational complexity. Efficiency is important
in practice, as a client can perform ¢ > 1 queries to decrypt ¢ paths in the owner’s
data structure. For each query, after all ¢ rounds, an iOPRF has output ¢ bit strings
of length security parameter, so the data exchanged between .S and R and the number
of computations involved to realize the iOPRF should be linear in /. Communication
and computational complexities of an iOPRF are asymptotically optimal if, after any
q queries, they are both in O(q - £). Our main contribution (Construction has
optimal communication and computational complexities.

3.3 Delegation for iPRFs and iOPRFs

Informally, a PRF F' with domain D is delegatable, if for some subset D’ C D you can
(efficiently) compute a sub-key K’ from key K and another PRF F” from F, such that
Fy., equals Fx onall z € D', but is random everywhere else. There exists a rich theory
on delegatable PRFs, see Kiayias et al. [31] for details.

In the context of iPRFs, we are particularly interested in delegating iterative PRF
computation for strings x = (1 . .. x,) sharing the same fixed prefix. That is, a party P;



knowing key K specifies a prefix * = (x} ... z}), computes K’ and iPRF’, and gives
(iPRF’, K') to party P,. Party P, is then capable of computing iPRF g () for all bit
strings x having the same prefix z*. At the same time, for all bit strings = with a different
prefix than z*, K’ does not help P» in distinguishing the first ¢ outputs of iPRF x(z)
from the output of random bit strings. We formalize this intuition in Definition [5

Definition 5. Let iPRF be an iterative pseudo-random function on length £ bit input
strings with random key K. We call an iPRF delegatable, iff

*

1. There exists a PPT transformation algorithm T, which on input (iPRF, K, x5 ... x})
outputs (iPRF', K'), where iPRF" : {0, 1}~ x {0,1}*~% — {0,131} and
Vo' = (2} ...2)_;) : iPRFy (2') = SUFFIX,—;(iPRF g (5 ... z}2) ... 2)_,)).
Here, SUFFIXy_;(- - - ) denotes the last { — i PRF outputs, each of length X bit, of
iPRFg(---).

2. Forall PPT distinguishers D and randomly chosen K, there exists a negligible func-
tion € such that for sufficiently large A we have

Va* = (a7 ...x]),Ve = (z1...2¢),T1...2; X7 ...T; :
|Pr((v1,...,v) = iPRFg(z) : D(1*,iPRF, K’ 2, v1, ..., v;) = 1]—
Pri(ri,...,r)) & Uy : DAY iPRF, K 2,1, ... 1) = 1]| = €(V),

where U is the probability ensemble of random bit strings of length \, K is a ran-
domly chosen key for iPRF, and (iPRF', K') are output by T(iPRF, K, z% ... x}).

A delegatable iOPRF is an iOPRF where the underlying iPRF supports delegation.

Discussion Note that knowledge of K’ and the first ¢ values of the output (vy, ...,
v;) of iPRF i (x) does permit P, to enumerate all suffixes of strings 2 which share the
same length ¢ prefix as x. At first, this property might look like a severe restriction to the
value of this type of delegation, but we will show in Section|8]that it has very interesting
real-world applications.

We implicitly require delegation non-triviality (bandwidth efficiency [31])). For ex-
ample, P, could delegate the capability to evaluate strings with prefix z* by computing
iPRF g () for all strings = with prefix z* and sending the output to P». Tuple (iPRF’,
K') should be smaller in size than the concatenation of all strings with prefix z*.

Finally, we point out that delegation can be extended from iPRFs to iOPRFs in the
natural way. If P; gives (iPRF’, K') to P», then P is also able to run a 2-party protocol
with another party Ps, where Ps correctly receives iOPRF', (') = iPRF, (z') for
input 2’ with prefix z* while P, learns nothing about z’.

4 New iPRF Construction

We present our new constructions for both iPRF and iOPRF (Section [5). To ease read-
ability, we omit an important technicality in the description and proofs: our iPRF and
iOPRF constructions do not output sequences of pseudo-random bit strings of length A,
but pseudo-random elements of DDH group G. Yet, converting elements to bit strings



follows from a standard application of the leftover hash lemma [21]]. As |p| > A, we
have |G| > 2%, and we silently assume in the following that each party implicitly hashes
the output of iPRF and iOPRF using any pairwise independent family of hash functions.

Construction 3 (Our iPRF). For any ¢ € N, choose a random generator g and a key

K = (Ki,...,K;) by sampling ¢ pairs of random scalars K; = («, ;) & (Zp)?.

For any ¢ bit input = 7 ...z, we define function family iPRFx (z1,...,2/) =

z; l-a

? ) &ef gnmizl i lla;=0 s Mooy’ 8 7

f(Oély,Bl)ww,(Oéi’Bi)(xl Ty =9

i z: 1—x; i
We can rewrite expression glli=1 "% 7 ag glli=i(es@i+8i(1=25) Thig repre-
sentation of f* will be very useful during the presentation of our new techniques later.

4.1 iPRF Analysis

To show that Construction 3]is actually an iPRF according to Definition[3] it is sufficient
to show that each f? is still a pseudo-random function. Mutual independence follows
directly from the construction and the random choice of each («;, ;).

Theorem 2. If the DDH-Assumption holds, then for every i < { and for every PPT
distinguisher D, there exists a negligible function e such that for sufficiently large A

‘Pr[Df(ial‘/31),___,(01-,['&)(') — 1] _ PT‘[’DR’L(.) — 1]| — 6()\),

where the (a1, ...,01),. .., (ay, Bi) are chosen randomly as in Construction@ and R
is a randomly chosen function from the set of functions with domain {0, 1}" and image

G.

Proof. This follows because f° is essentially taking the output from the PRF in Con-
struction [I|and adding additionally adding extra random exponents, which maintains its
character as a PRF. We can show this via reduction.

First, fix any 7 < £ and consider f?. We prove the claim by reduction, showing that
if D exists which can distinguish between f* and a random function R, then we can
build D’ which can distinguish between Fx from Construction [1| (on 4 bit inputs and
1 element keys) and a random function R (on ¢ bit inputs). This would violate Fx’s
pseudo-random output property of Definition

Assume that D exists that can violate the inequality from Theorem 2} We create D’
as follows. First, D’ creates and stores a uniformly random sequence (51, ..., 3¢) as in
Construction [3] Additionally, it queries its oracle for ¢’ = PRF'(0) which is g*° if it
is interacting with the real instance. This will be given to D as the generator so that D’
can use results from its oracle, which will always include oy, to satisfy queries from D.

D’ then runs D as a subroutine. Each time D queries the oracle for an evaluation on
input y € {0,1}%, D’ does the following:



1. Query their own oracle on input y and receive back z.
2. Calculate 2’ = zlui=0 5,

3. Return 2’ to D.

Eventually, D’ outputs the same as D. If D’ is interacting with PRF F'g, then the 2’
values D’ gives to D will be identical to function f*, due to D’ being able to multiply
in the extra 8 components. If D’ is interacting with a real random function, then the
responses they give to D will be distributed identically to a random function, since z is
the result of a random function and D’ is raising it to fixed powers. Therefore, if D has a
distinguishing advantage, so will D’. D’ has the same advantage that D does, rendering
the reduction tight.

4.2 Delegation

We achieve delegation for Construction [3|using the following transformation algorithm
T.

*

On input: (g, (a1, 51), .-, (ag, Be)), 27 ... x}),

T outputs: (¢, ((iy1,Bit1),-- -, (g, Be))), where g’ = gnj':l a;’8;

Observe that ¢’ is effectively a precomputed partial-iPRF for input (z7 ... z}). So,
if party Py sends (¢', ((i+1, Bi+1),-- -, (ae, Be))) to Pa, Ps can then compute iPRF
outputs (v;41,...,ve) for any input string © = (21 ...2,) which has (z7---z}) as a

k zj 1—z;
/]._.[j=i+1 a; ‘/8]

prefix by computing vy = g
Lemma 1. Construction[3|with transformation T is a delegatable iPRF.

Proof. We prove this by straightforward reduction. Let iPRF 5 be Construction [3| for
inputs x of length ¢ + 1 bits, and let iPRF 7 be Constructionfor inputs x of length ¢
bits. Let prefix * be any length ¢ bit string, and K and K are randomly chosen keys.

Assume there exists distinguisher D which can distinguish the first £ outputs from
iPRF i with a prefix different from «* with non-negligible probability from ¢ random
bit strings.

We build distinguisher D’ who will be able to distinguish the £ outputs from iPRF 2
from ¢ randomly chosen bit strings.

1. If D queries for delegation of length ¢ prefix x*, D’ will query their challenger for
2™ and will get back z which is either (v1,...,v¢) = iPRFg(2*) or £ random bit
strings (71, ...,7¢).

2. D' generates a random pair (41, Be+1) & (Z)*. It computes transformation
(¢’ = 2, (agy1, Bey1)) and sends it to D.

3. When D queries for x with a different prefix than z*, D forwards z to their chal-
lenger, forwards the response to D and outputs whatever D outputs.



If D’ is receiving the output of a iPRF - then the values it gives to D will be identi-
fically distributed to correct outputs of a delegated iPRF, with the effective key of K
concatenated with the random (a1, Be+1). If D’ is receiving random strings (71, . . .
r¢), then D is also getting random strings. Therefore, D’s view is distributed identically
to its distinguishing game. If D has a non-negligible advantage in distinguishing, then
D’ will have the same advantage in distinguishing iPRF output from random strings.

4.3 Warm-up: simple iOPRF with One-Sided Security

Our iPRF from Construction [3| can be computed as an iOPRF with only one-sided
security, i.e., malicious receiver or semi-honest (or malicious, but only focusing on
violating privacy [22]) sender, using a similar approach as the OPRF by Freedman et al.
(Construction . Let OT(b, yo, y1) denote any @) oblivious transfer protocol which is
one-sided simulatable [22] or even maliciously secure [11 [6]. Sender .S holds y, and
y1 from Z,, receiver R holds b € {0,1}, and R obliviously retrieves y, from S. Let
x = (x1,...,27) be R’s input. Our first OT-based construction for a moprg protocol
gives an iOPRF with one-sided security and works as follows.

Construction 4 (One-Sided Secure iOPRF).

S generates ¢ random scalars 7; & L.
Foreach 1 <i </, R and S execute OT (x;, 7;5;, 7;v;), R stores the result as z;.

S sends to R the sequence C' = (C4,...,Cy) where C; = gH§:1 i,
Hi':l 25
c .

i

R recovers iPRF output sequence (v1, . .., v,) by calculating v; =

Correctness: For all 1 < ¢ < ¢, we have

, . . e
Mimaz _ iy Him iy Thea(eom) ™ (8m)

nea =g T M
=g gm0y B

To prove security for Construction ] we could make a similar argument as Freed-
man et al. [[18], but rely on a one-sided simulatable OT. However, we refrain from
presenting more details, as this iIOPRF anyways provides only one-sided security and
conversion to malicious security would be difficult. One would need to prove correct
computation of the C; and expensive maliciously secure OT with ZK proofs that the
sender’s input (r;0;, r;;) matches previous commitments to «; and ;. This is very
different from standard committed or verifiable OT [[15] 27, 32].

5 Construction 5t DH-based iOPRF

We now present a new mioprr protocol which realizes the ideal iOPRF functionality
Fioprr from Figure [T}



5.1 Preliminaries

Let there be two generators g1, g2 of prime order p group G where the DDH assumption
holds. Neither party should know the discrete log of one generator g; to the basis of the
other generator g;-;, which is true with high probability if they are chosen at random.

Elgamal Encryption We will use additive Elgamal encryption with private keys sk €
Z,, and public keys pk = g;*. Ciphertext c to encrypt m € Z, is ¢ = (c[0], c[1]) = (g7,

pk” - g5") < Enc,i(m), where r & Zy.

Pedersen Commitments A Pedersen commitment com(m) € G to message m € Z,, is

defined as com(m) = g7 - g5*, where r & Zy,. To open com(m), reveal tuple (m, ).
Pedersen commitments are perfectly hiding and computationally binding.

5.2 High-Level Intuition

In round ¢ of ¢ rounds, sender S will receive two ciphertexts V; and D; from receiver
R. During the course of the protocol, one of these ciphertexts will contain the iOPRF
output and one acts as a “dummy”’, to keep .S from learning input bits z; of R. They are
interchanged between rounds depending on the input bits.

For each round, using the i™ round’s keys (s, 3;), S will then “apply” a; to V;
and 3; to D;, and send the results back to R. In preparation for the next round (i +
1), if ¢;41 # x;, R will swap V; and D; for the next round. After £ rounds, V; will
have the keys applied which correspond to the input bits of R, and D, will have the
complementary combination of keys applied. V is initialized as an encryption of 1, so
V& will contain the correct iOPRF output, whereas Dy is initialized as an encryption of
0 so it will not contain any information.

5.3 Technical Details

For some input string = (1 . .. x,), we define the output of mopgre for the receiver as

(v1,...,v¢) = iIOPRF k() with v; = gyizl(aj“:J*fBj(l*zj)) and K = {(ay, B;) e,
We now describe details of ConstructionE]by its formal 7;oprr interface (Definition ,

i.e., first its initialization and then its iterative processing.

miopre Initialization Sender S randomly chooses secret key K = ((a1, 1), - . ., (ay,
$
Bf))’ (aiﬂﬁi) «— (ZP)Q'
S also commits to K by computing 2¢ Pedersen commitments (com(c;), com(/3;)).
S sends them to R and proves knowledge of plaintexts in ZK (see §6.3).

Receiver R computes a random Elgamal private key sk & Z,, and public key pk =
g5*, and sends pk to S. Receiver R proves knowledge of sk using a standard Schnorr
ZK proof of knowledge (see §6.3).

Receiver R computes Vy < Encp,(1) and Dy  Encyy(0), sends them to S and
proves that these are encryptions of 1 and 0 (see §6.3|below).



miopre Iterative Processing in £ Rounds Inroundi € {1,..., ¢}, for S” input bit x;:

1. Receiver shuffles:
(a) For input bit ;, R computes Pedersen commitment com(x;) and proves that
z; € {0,1} (see §6.3). Similarly, R computes com(1 — z;) and proves that
(1—=;) € {0,1} (see §6.3). Finally, R proves that the sum of plaintexts behind
com(z;) and com(1 — z;) equals 1 (see §6.3).

n

(b) Receiver R chooses r, /', r" r & Z,, and computes Elgamal ciphertexts

c¢i = (g1 - Viea[0]"*, pk" - Viea [1]"7)

¢, = (g} - Viea[0]' ™, pk" 'W—l[l}lﬂi)
di = (g - Diea 0], pk™" - Dia[1]7)

d; = (g7 - Diea [0, pk™" - Dy [1]' %)

and sends (¢;, ¢}, d;, d}) to S.

(c) Receiver R proves correctness of the above computations in ZK. Specifically,
(¢i, ¢, d;, d}) result from correct exponentiation with x; (or 1—x;) from com(z;)
(or com(1 — z;)), and multiplication with a random power of g; and pk, i.e.,
re-randomization (homomorphic addition of encryption of 0). See §6.3| below
for details. Both parties compute

d
In the first round, after this step, 71 is an encryption of 1 and U; is an encryption
of 0if xy = 1. If z; = 0, then T is an encryption of 0 and U is an encryption of

1. However, sender S does not know which of the two is the case.
2. Sender computes PRF: For r, 1’ & Zy, S computes the two Elgamal ciphertexts

X = (g1 - T:[0]™, pk" - T3[1]*7)
Y; = (g} - U0, pk™ - U;[1]7),

sends (X;,Y;) to R, and proves correct exponentiation (scalar multiplication of
plaintexts) with a; and 3; coming from previous commitments com(«;), com(S;)

and re-randomization of ciphertexts (see §6.3).

"

. 3$
3. Receiver shuffles back: For r, v, r" r""" < Z,, R computes

131' (gI Xz[o]L?ka X[ ]IL)
Pl = (g7 - Xi[0]' ™ pk"'“Xi[l]l‘“)
Qi = (g7 - Vi[0]™, pk™" - Y;[1]7)
QL= (g7 - Vi[O e pk™ - Yy [1) )

and sends (P;, P!, Q;,Q}) together with ZK proofs of correct computation (see

§6.3) to S.



Both S and R compute V; = (F[0] - Q;[0], P;[1] - Q5[1]) and D; = (F[0] - Q4[0],
P/[1] - Qil1)).

In round 4, after this step, V; is an encryption of iPRF (21, ..., z;), and U; is an
encryption of 0. When computing 75 and U, 1, these values will be used instead
of the encryptions of 0 and 1 and the iterative computation of the PRF continues.
Since both parties compute V; and U;, R cannot cheat and substitute for a value of
his choice.

4. Receiver R computes and outputs one iPRF value v; = V; [15]

TAURE

Discussion Observe that, in the last step, R can never decrypt additively homomor-
phic Elgamal ciphertext (V;[0], V;[1]) and thus compute an o; or 3;. As «; or (3; are
in the exponent and due to the hardness DLOG, R can only compute v; = g5 **" or
v; = gé’ﬂ “.If R wants to run several execution of Construction |5| and wants that
S uses the same key, then R will verify that commitments sent by S during initial-
ization do not change between executions. This leads to verifiability. Also note that
communication complexity and computational complexity are both in O(¢) per query,
i.e., asymptotically optimal.

6 Security Analysis

We prove security of Construction [5using simulation in the standard model. The simu-
lation uses several efficient Zero-Knowledge Proofs of Knowledge hybrids introduced
first. To ease readability, we actually present Honest-Verifier Zero-Knowledge (HVZK)
versions of the proofs, but one can convert these to maliciously verifier Zero-Knowledge
proofs of knowledge using the following two general transformations [23]]. We stress
that we have evaluated and benchmarked the full malicious verifier ZK proofs of knowl-
edge in Section|[/} i.e., including the two transformations.

6.1 Zero Knowledge (instead of HVZK)

All our efficient ZK proofs below are three-move (“Sigma”) ZK proofs. Recall that a
three-move ZK proof comprises messages (¢, e, s), where first message ¢ is a commit-
ment from P sent to V, e is Vs challenge sent to P, and s is the final message sent
from Pto V.

To make these proofs zero-knowledge instead of only HVZK, we send an additional
message before first message ¢ of the regular three-move proof. In this new first mes-
sage, V sends a Pedersen commitment com(e) = g7 - g5 to their random challenge e
to V. The proof continues with V' sending their regular commitment ¢ of the regular
three-move proof and V' opening com(e) by sending (e, r). If com(e) matches (e, ),
P finally sends last message s of the regular proof. Verifier V' accepts, if ¢ and s of the
regular proof match e.

This technique allows a simulator Sim simulating P to cheat in the ZK proof. More
specifically, after receiving com(e), Sim internally computes a valid ZK proof (¢, ¢/,
s'), assuming a random challenge ¢’. Sim sends ¢’ to V' and receives (e,r). If (e,r)
matches com(e), Sim rewinds V' to the point after V' has sent com(e). Knowing e, Sim



computes a ¢t and s, such that (¢, e, s) will be accepted by V. How exactly ¢ and s are
chosen depends on the statement we want to prove, but are typically straightforward for
the Schnorr-style proofs we use below. We show an example in §6.3]

6.2 Witness Extraction for Pedersen Commitments

To transform our ZK proofs to ZK proofs of knowledge, we rely on the extractability
of commitments. Pedersen commitments are trapdoor commitments which means that
a party knowing a trapdoor p can open a commitment com(-) to any plaintext they want
(equivocable). We use this property for witness extraction in three-move ZK proofs as
follows.

Before starting the actual ZK proof by the first message ¢ from the prover to the
verifier, we send the following two messages.

1. Prover P sends to verifier V: § = ¢{ for random p & ZLy.

2. Verifier V' will use this ¢ instead of gy for the computation of the commitment to
challenge e. That is, V' computes and sends back commitment com(e) = g7 - ¢ for
their random challenge e € Z,, as in the previous section.

The ZK proof then continues as usual with P sending ¢ and V' opening com(e) by
sending (e, 7). If (e, 7) match com(e), P sends final message s and p to V. Only if both
is correct, the last ZK proof message s matches P’s commitment ¢ and challenge e, and
p matches g = g7, V accepts.

This setup enables a simulator Sim simulating V' to extract the witness from P.
After receiving trapdoor p from P, Sim rewinds P until after the point were P sends ¢
to V. Knowing trapdoor p, Sim can open com(e) to any e’ # e they want by solving
r+p-e=1"+p-¢ forr,ie., they compute v’ = r + p - (e — €’). Running two
executions of the ZK proof with the same input and messages from P but different
challenges extracts the witness of the ZK proof. Details on which e to send in each
execution again depend on the exact three-move ZK proof, but are typically obvious.
We refer to Hazay and Lindell [23]] for more details.

In conclusion, these two transformation will render our three-move ZK proofs be-
low into (fully-maliciously secure) ZK proofs of knowledge. We name each proof below
with a hybrid which we will use in the main proof later. So, for example, the hybrid for
the proof of encryption is called f3°.

6.3 ZK Building Blocks

Before presenting our main proof of Construction [5} we introduce the following ZK
proofs that we use as building blocks.

: Proof of Encryption/Commitment to m To prove that an encryption ¢ = (c[0],

c[1]) = (gf,pk") < Ency(0) is an encryption of m = 0, P proves that (g1, 0],
pk, c[1]) is a DDH tuple. You can prove that tuple (u; = gi,us = g},uz = g;*,
u4 = g;*7) is a DDH tuple using the Chaum and Pedersen [13] protocol as follows.



P sends (t; = uf,to = uf) for p & Zpto V.

V sends e & Zy to P.
Psendss=p+e-rtoV.
V accepts if uf = u$ - t1 and u3 = ug - to.

L =

This proof has an important property. Instead of showing that some ciphertext en-
crypts m = 0, we can easily generalize it to show encryption of arbitrary m. Specif-

ically, we set ¢'[1] = % and run the proof with m = 0 for new Elgamal ciphertext

(c[0], ¢'[1]).

Finally, observe that Pedersen commitments are similarly structured as the right-
hand side ¢[1] of an Elgamal ciphertext, just without the secret key. Thus, to prove a
Pedersen commitment com(m) to m, parties divide com(m) by g5* and run a Schnorr

proof for r used in the commitment (P sends t = gf ,Vsendse, Psendss =p+e-r,
com(m 1)

and V accepts if gli

F52P: Proof for Knowledge of Plaintext For com(m) = g/ - g5", prover P can prove
that they know m.

1. Psendst = g{* - gb? for py, pa & ZptoV.

2. Vsendse iZP to P.
3. Psend551:p1+e~rand52:p2+e~mtov.

4. V checks whether g7* gs2zcom( )e - t.

fzbkit: Proof of Plaintext Bit For a commitment com(x;), prover P can prove that z; is
abit, i.e., z; € {0, 1}. This is an application of the one-out-of-two (OR) technique [24].
Essentially, P proves that either ; = 1 which implies proving that com(x;) equals
91" - g2 for some ry, or z; = 0 which implies proving that com(z;) equals g1 for some
ro. Proving that com(z;) equals g7 - g is equivalent to proving that Com(zl)

com(w

equals g;*

P will prove that they know (I) an r such that g] = or (II) an r such that
g7 = com(x;). These are essentially two standard Schnorr proofs The trick is that P
chooses e; and es such that, for the verifier’s challenge e, we have e = e; + e5. Prover
P proves knowledge of r; for (I) using challenge e; and knowledge of 75 for (II) using
challenge es. Thus, P can choose either e; or es before sending their first message of
the ZK proof and cheat in one proof. Without loss of generality, let x; = 1, so P will
cheat in proof (II). This works as follows.

1. P sendst; = g)" and t; = com(z;) "¢ - g;2, where p, so & Zp, 0 V.
2. V sends e & 7, to P.
3. P calculates ey = e — eo, sends ey, e2,51 = p1 +e1-r,and so to V.

el
4. V checks e;el + es, gfli (“%iz)) -t; and ng;com(xi)ez < to.



“™: Proof of Sum of Plaintexts equals 1 For commitments com(z) = g} - g5 and
com(1 —z) = g} - gi~*, P shows that the sum of plaintexts equals 1.

1. Pand V compute com(1) = com(z) - com(1 — z) = g{”/ - ga.

2. P proves that com(1) is a commitment to 1 (see §6.3).

ZEkXR: Proof of Exponentiation and Re-Encryption One can efficiently prove cor-

rectness of combinations of linear operations in one step. We present the example for the
correctness of exponentiation of two elements (A, B) from group G with a committed
value z and then multiplying A* by g{/ and B” by pk” from our protocol. So, this can
be used to prove correct exponentiation (homomorphic scalar multiplication) of an El-
gamal ciphertext by a previously committed scalar « and subsequent re-randomization
of the result (homomorphic addition of Elgamal encryption of 0).

Specifically, given two group elements (A, B) and commitment com(x) = ¢7 - ¢35,
prove correctness that (C' = g{' - A* D = pk"" - B?) are the result of exponentiation

with  and multiplying with g{' and pk™, r’ & Z, known to P.

1. Psendst; = gi' - AP, ty = pkP* - BP2 t3 = g/* - g5> to V.

2. V sends e & Zy to P.

3. Psends sy =p1+e-1,80=ps+e-x,andsg=p3+e-rtoV.

4. V checks whether g;* A2 Lce. t1, pkst .Bs2Lpe. to, and g7° ~g§2;com(33)E -t3.

Proof of Construction |S| We now turn to our main proof, showing that Construction E]
is a secure iOPRF. We prove in the hybrid model, using ZK hybrids with their abbreva-
tions as introduced in the previous section. Recall that, in the hybrid model, ZK hybrids
are run by separate trusted third parties. Yet, during simulation, it is the simulator who
takes the role of the TTP and thus automatically gets the adversary’s inputs and can also
cheat, see Lindell [|37] for details.

Theorem 3. Assume that Construction5|is an iterative pseudo-random function family

iPRF i (). Then, Construction |5| is an iOPRF, realizing functionality Fiopre in the
op  rbi ExR ;

(f30S, 3P, J25 3, £ hybrid-model.

Proof. First, observe that Construction [3]is correct. Let « be the receiver’s input, and
K the key chosen by the sender. If both sender and receiver are honest, then the sender
outputs nothing, and the receiver outputs (v1, . .., v¢) = iPRF g (x). Thus, we focus on
proving security and build simulators for two cases: one where S is compromised, and
one where R is compromised.

We will show that a simulator Sim can be constructed from both the perspective of
S and R such that the adversary A’s view is indistinguishable from real executions of
the protocol. Thus we show that neither a compromised S nor a compromised R learn
anything from the real execution of Construction[5|beyond what is specified by the ideal
functionality in Figure[I]

In our presentation below, we will use the term “Sim aborts” as a shorthand for
Sim sending abort to the TTP, simulating its party aborting to .4, and then outputting
whatever A outputs.



In both cases below, the simulator will faithfully act as a verifier for ZKPs when
interacting with A as necessary, aborting if the proof does not verify correctly. We omit
these messages for readability since they require no special knowledge or behavior from
the simulator. Our strategy will broadly be to:

— Replace Elgamal ciphertexts sent by R with encryptions of zero (arbitrarily chosen).
Due to Elgamal’s IND-CPA property, these ciphertexts will be indistinguishable from
the real protocol for A. Since S reveives no output from the real execution of the
protocol, ciphertexts do not have to conform to any expectations.

— Replace computation of X; and Y; by S in the real protocol with an encryption of the
output of the iOPRF received from the TTP. Sim does not know K; = («;, ;) and so
cannot faithfully compute X; or Y;, but it knows from the TTP what output v; should.
Consequently, Sim crafts these values accordingly to simulate the real protocol and
“cheat” in ZKPs where Sim acts as the prover (see, e.g., § [6.1).

Together, this will allow the simulator to generate a view which is indistinguish-
able from a real execution, thus proving that our construction is secure according to
Definition

Note that also for all ZKPs with Sim as a prover, Sim acts as the TTP and “cheats”
to convince 4. In many instances, Sim could honestly prove to A4, so “cheating” is not
really. Yet, for ease of exposition, we assume that all proofs are simulated this way.

Case 1: We assume that .4 has compromised .S and build simulator Sim taking the role
of S in the ideal world, internally simulating a receiver to .A which it only has black
box access to.

Sim starts A and receives 2¢ commitments (com(a;),com(3;)) from A. Sim also
receives corresponding («;, 3;) together with random coins from f5°° sent from A to
S5O, If these do not match the commitments, Sim aborts.

Sim also generates an Elgamal key pair (sk,pk), sends pk to A, and simulates

enc. Also, Sim generates Vo = Enc,i(0) and Dy = Enc,(0), sends them to A, and
simulates f5°.
During the i round,

1. Sim sends two independent commitments of zero and simulates f5 and f5'™.

2. Sim also computes and sends (¢;, ¢}, d;, d}), all encryptions of zero, to A and simu-
lates fZEkXR.

3. Sim receives (X;,Y;) from A as well as (o}, ) and random coins from f5R. If
a; # af or B8; # B. or if random coins do not match computations specified in
Construction then Sim aborts. If they match, Sim forwards K; = («;, 3;) to the
TTP.

4. Sim sends P;, P/, Q;, Q', encryptions of zero, to A and simulates fER.

Sim outputs what A outputs. During simulation, whenever A aborts, Sim also aborts.

Indistinguishable views In the protocol, there are three types of messages that Sim
sends to .A: Pedersen commitments, Elgamal ciphertexts, and ZKP messages. All of the
Elgamal ciphertexts are freshly encrypted (or re-encrypted) using fresh randomness.
They are thus indistinguishable from any other Elgamal encryption, regardless of any a



priori knowledge that .4 might have. As stated above, the ZKPs are simulated and are
thus also indistinguishable from a real execution. Finally, the commitments are perfectly
hiding and are never revealed during the protocol, so they are also indistinguishable
from the commitments of a real execution.

Case 2: We assume that A has compromised R and build simulator Sim as follows.

Sim starts .A. Sim randomly selects ¢ pairs (c, 37) & (Z,,)?, commits to them,
sends commitments to .4, and proves knowledge of («, 8]) using f57°.

Sim receives pk from A and (sk/, pk’) from f5' which A has sent. If pk # pk’
or g5¥' £ pk, Sim aborts. Also, Sim receives (Vy, Do) from A and A’s random coins
from f57¢. If random coins do not match encryptions of 1 (V) or 0 (Dy), Sim aborts.

During the i round,

1. Sim receives (com(z;), com(1—x;)) from A and (2}, 1 —y;) with the commitments’
random coins from f5. If 2, or 1 —y/ and random coins do not match commitments,
Sim aborts. In the same way, Sim receives z and a random coin for the commitment
from sum hybrid f5'™. If z # 1 or z # 2 + 1 — y, or the random coin does not
match the commitment, Sim aborts. If everything matches, Sim knows .A’s input
(wi, 1-— J]l)

Sim receives (c;, ¢}, d;, d;) from A and random coins and (z;, 1 — y/!) from fER_If
(24, 1—y}) do not match the ones from the previous step or if any of the computations
do not match (¢;, ¢, d;, df), Sim aborts.

Sim computes (7}, U;) as in Construction [3}

2. Sim queries the TTP for z} and gets back v;. If x; = 1, Sim sets X; < Enc,y(v;)
and Y; < Ency(0). If z; = 0, Sim sets X; < Enc,,(0) and Y; < Enc,i(v;). Sim
sends (X;,Y;) to A and cheats in fR, convincing A that (X;,Y;) are the result of
raising 7; and U; to o and (3, and then re-encrypting.

3. Finally, Sim receives (F;, P/, Q;, Q}) from A and random coins and (2, 1 —y/) from
fER Again, Sim verifies correct computation of (P;, P!, Q;, Q%) and whether (z,
1 — y}) match previously received values. If anything does not match, Sim aborts.
Sim computes (V;, D;) as in Construction

Sim outputs what .4 outputs. During simulation, whenever .4 aborts, also Sim aborts.

Indistinguishable views As before, the commitments are perfectly hiding and are not
revealed and so are indistinguishable from commitments of a real protocol execution.
ZKPs are also simulated as before and are indistinguishable for the same reason.

The only part that is different in this case is the returned values of X; and Y;, which
have to decrypt to the correct output of the iOPRF in order to match the real protocol.
Fortunately, Sim can query the TTP for the correct output and generate encryptions that
match that output. In the real protocol, S reencrypts X; and Y; before returning them to
R, and so they are indistinguishable from the fresh encryptions generated by Sim.

As R verifies whether S sends the same commitments to («;, ;) during multiple exe-
cutions of Construction[5] we trivially achieve verifiability.
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Fig. 2. Total runtime of Construction|[3]

7 Implementation

To show practicality of Construction [5|including its ZK proofs, we have implemented
and benchmarked its performance in several realistic network settings. We stress that
our implementation is a full implementation of Construction[5} with all Zero-Knowledge
Proofs of Knowledge of Appendix [f] i.e., including witness extractability and security
against fully malicious verifiers. Sender and receiver instances communicate via stan-
dard TCP sockets.

Table 1. Cost breakdown

CPU (ms) |Communication (kB)|Total runtime (ms)

¢ Sender Receiver|Sender Receiver |LAN1 WANI
5| 44 41 11.7 26.1 171 2425
10| 88 81 23.2 514 325 4571
15| 126 123 34.6 76.6 512 6707

20 174 162 46.1 101.9 679 8873
25| 218 202 57.5 127.1 836 10987
30| 267 248 69.0 152.4 968 13128




Our implementation is done in C' and uses OpenSSL for elliptic curve operations on
NIST curve secp224rl. The source code is available for download [2]. We bench-
mark our implementation on a 4.1 GHz Core i5-10600k. As network latency is typically
the bottleneck in multi-round secure two-party computation protocols, we benchmark
Construction [5in different settings with different network latencies. To precisely con-
trol network latency between sender and receiver instances, we use Linux’ standard
tc—netem tool. Figure [2| shows benchmark results averaged over 50 executions, and
Table [T| presents the cost breakdown.

We measure total run time for values of ¢ ranging from 1 to 32. Note that ¢/ = 32
would support binary tree data structures with 232 different paths and 232 — 1 (8.6 bil-
lion) nodes. We vary latency assuming LAN scenarios with standard Gigabit Ethernet
(0.5 ms RTT) or WiFi (2 ms RTT) and WAN scenarios for intra-continental communi-
cation (30 ms RTT) and inter-continental communication (70 ms RTT) [40]. We also
show an evaluation with 0 ms RTT, however even this number is still dominated by the
TCP communication overhead. We found that the computation alone in our protocol,
including all EC computation and ZKPs, is approximately 3 ms per iOPRF iteration.

Each iOPRF evaluation for a tree data structure with 22° nodes needs about 170 ms
of CPU time per party with our (unoptimized) implementation. As soon as we introduce
higher latency, CPU time contributes little to total runtime, and communication latency
becomes the main performance obstacle. For example, in the WANI1 scenario with intra-
continental communication between sender and receiver, total runtime is about 9 s of
which less than 4% is spent with computation, and the remainder is consumed by net-
work latency.

We conclude from Figure 2] that even for large values of ¢ and for high latency net-
work connections, Construction [5has only a few seconds of runtime which is practical
for many scenarios.

In Appendix [C] we discuss why alternative approaches to realize the iOPRF func-
tionality perform worse than Construction 5]

8 Applications

OPREF applications Before presenting applications specific to iOPRFs, we briefly high-
light that iOPRFs are maliciously-secure OPRFs and can consequently also be used to
realize maliciously-secure adaptive k-out-of-n OT and oblivious keyword search [8}
25]]. There, a sender encrypts each document ¢ with a key K; that is derived from the
document’s keyword W, i.e., k; = iPRF i (W;). The sender sends resulting ciphertexts
to the receiver. Now, sender and receiver evaluate the iOPRF such that the receivers gets
k = IOPRF g (W) for a any keyword W the receiver is interested in. Using k, the re-
ceiver can decrypt all documents matching 1. For more details, we refer to Jarecki and
Liu [25]. Note that if we “structure” keywords along the paths of a binary tree, we can
allow some party to derive, for example, all keywords that start with the same prefix.

iOPRF specific applications An immediate application specific to our iOPRF (but not
OPREFs!) is to force correct compliance of clients in structured encryption by allowing
them to only query a contiguous path in the graph data. This can be accomplished by



adding a layer of encryption inside of existing structured encryption solutions such that
each data element is also encrypted with a key derived from one iteration of the iOPRF.
After the structured encryption protocol is complete, an iOPRF protocol is executed
which will allow for final decryption of the results only if they are on a contiguous
path.

To hide from the server which path is queried, the client can fetch each node using
Private Information Retrieval or maliciously secure OT. Also in scenarios with struc-
tured encryption, the iOPRF’s delegation feature can be used to delegate control over
well-specified sub-trees of the original data to other parties. The delegate can then act
as a data owner on their sub-tree, serving requests from clients with the same security
property as the original data owner.

To understand the usefulness of iOPRFs, we now consider a specific implementa-
tion of RFID tag authentication which uses a limited form of structured encryption.

8.1 RFID

Radio Frequency IDentification (RFID) applications comprise a large quantity of RFID
tags attached to precious goods and RFID readers which are connected to a central
backend database. The goal is that readers can properly identify tags using wireless
communication in the presence of adversaries.

An adversary observing wireless tag-reader interaction or being able to interact with
tags themselves should not be able to identify or trace tags or even fabricate new tags
or clone tags to counterfeit goods. The main technical challenge is that RFID tags are
extremely resource restricted and can merely compute a cryptographic hash function.
While readers can perform more powerful operations, they typically feature low storage
(no state), but have network connectivity, e.g., to connect to a central database. RFID
security has been a very active area of research, see Juels [29] for an overview.

In a typical scenario, the reader wants to know whether a tag and therewith the good
it is attached to is valid, by interacting first with the tag and then with the database.
Typically, the tag stores a unique key, and the reader performs a challenge-response type
of authentication, using the database which knows all tags’ keys. However, previous
work has assumed that database and readers are within the same trust domain, as the
database learns which tag the reader is querying for. This is an unnecessary strong and
often unrealistic requirement. To protect tag privacy and internal details of supply or
distribution chains, the database should not learn which tag the reader is querying for.
For example, if several readers successively query for the same tag, the database knows
that a specific tag has traveled between these readers. At the same time, the database
does not want to give unrestricted access to the reader or allow queries which leak more
information than necessary for the identification of a single tag per query. If the reader
would receive more information, the danger would be that a reader fabricates tags.
To mitigate these problems, we show how we can extend a prominent RFID security
protocol from the literature, the one by Molnar et al. [38], by a simple application of
our iOPRF.

High-Level Idea In the original work by Molnar et al., the database prepares a binary
key tree of height ¢ storing random keys in nodes. Leaves in the tree are enumerated



by their path from the root to the leaf. For example, the left most leaf is represented
by the bit string of ¢ zero bits. A tag is uniquely identified by its ID, a bit string x =
(21 ...xy). During initialization, a tag with ID z receives all keys from the root to the
leaf represented by x. During tag identification, the tag chooses a random r, “encrypts”
r with each of their keys, and sends the resulting sequence of ciphertexts to the reader.
The reader can access the database and query keys. The reader checks which path in
the tree decrypts and ends up with a specific ID (leaf). As you can see, this protocol
does not protect the tag from a prying database. A simple solution of just sending the
whole key tree to the reader might overburden the reader’s storage capabilities and also
impose a security risk: having access to all keys, the reader could fabricate an arbitrary
number of tags.

Our modification to the Molnar et al.| protocol simply consists of exchanging the
way keys in the tree are computed. In our case, the keys are outputs of the iOPRF
which will allow the reader to query the database for exactly one contiguous path. As a
result, we hide from the database which tag the reader is querying for, and the database
knows that the reader only gets one path of secrets from the tree and will be able to
identify exactly one tag with it.

Technical Details Let N = 2° be the total number of tags in the system. Each tag
uniquely corresponds to a leaf of a height ¢ binary key tree. To identify a tag, a reader
can communicate with the database which stores all keys of the key tree.

Preliminaries The database knows a secret key K and populates binary key tree T" as
follows. First, nodes in this key tree are indexed by bit strings following the intuitive
notation that the left child (“0”) of some node indexed by bit string ; . . . y; is index by
71 .. .70, and the right child (“1”) is indexed by ; . . .~;1. By convention, the root is
indexed by empty bit string €.

Database Initialization Root node e stores random key K. & {0, 1}*. The left child of
the root stores key Ky = iOPRF i (0), and the right child stores key K; = iOPRFx(1).
For a node 7 ..., the left child stores key K, .. ,0 = iOPRFg (71 ...7;0), and its
right child stores key K., ;1 = iOPRFg (v ...7v:1).

During authentication of tag x, the database will run iOPRF  (-) as the sender, and
the reader will be the receiver with input bit strings x = (27 . .. x¢) as follows.

Tag Initialization During initialization of a new tag z, the database stores a sequence
of (¢ + 1) keys K on the tag: one for each node on the path from the root K, of tree T’
to leaf K, = K, . ., The tag also stores its own ID z.

Secure Tag Identification Each tag identifies itself to a reader using a variation of the
Molnar et al.| protocol:

— Tag x chooses r & {0,1}* and sends 7 together with a hash of r and each of their
(£ + 1) keys and the next bit, respectively. More formally, the tag sends Trace = (r,
TO = H(T, KE7 .131), o 7T€ = H(Ta K$1---$£—1 5 $€)7 H(T, leu.wz))-



The difference to the original protocol is that we also include next bit x; into each
hash. This allows the reader to check which node to query for during the next itera-
tion. Otherwise, the reader would have to retrieve both children of the current node,
revealing “one more key” per level of the tree to the reader.

— The reader uses the iOPRF as the receiver and the database as the sender to identify
the tag as follows.

o The database begins by sending K to the reader.

e The reader checks whether either H (r, K., 0) or H(r, K, 1) matches Tp.

e Depending on the outcome, the reader iteratively continues and queries either the
left child (H (r, K., 0) matches) or the right child (H(r, K, 1) matches) of the
root with the iOPRF, compute keys, checks which matches etc.

As you can see, the security we are aiming for asks only for a (delegatable) OPRF.
Our iOPRF supports delegation, but can do more. We could also ask as an additional
security requirement that the reader should only learn “one path”, i.e., one tag per in-
teraction with the database.

Due to space limitations, we have moved the security analysis to Appendix

Delegation AsiOPRFs are delegatable, we also support scenarios where a main database
delegates the information to identify tags of, e.g., different countries or regions to dif-
ferent sub-databases. We abstain from presenting lengthy details, but delegation [14]
with iOPRFs would bring the advantage that if keys from one regional sub-database are
stolen and thus tags in that region can be fabricated, tags and their identification in other
sub-databases are still secure.

8.2 Private Decision Tree Evaluation

Another application where we can apply an iOPRF is in the area of private evaluation
of decision trees. There, the goal is to allow a client holding a feature vector to query an
outsourced decision tree held by a server, resulting in the client receiving the machine
learning classification of their feature vector without the owner of the decision tree
learning what their input was. We refer to Kiss et al. [33] for an overview.

The protocol by Wu et al. [42] accomplishes this with two main techniques:

1. Each node of the decision tree stores one value which will be compared against
one feature of the client’s feature vector. To enable this, the client encrypts their
feature vector with additively homomorphic encryption using the client’s public key
and sends ciphertexts to the server. For each node of the tree, the server computes
homomorphic DGK [16] comparisons “<” of one of the client’s encrypted features
with the specific node’s value and sends encrypted comparison outcomes back to
the client. Therewith, the client can identify the path in the tree and the leaf node
corresponding to their input.

2. Once the correct leaf node is identified, the client uses oblivious transfer to retrieve
it and compute the final classification.



This protocol works for semi-honest clients, but it does not prevent a malicious
client from retrieving leaf nodes which do not actually correspond to the result of their
classification. This is because the server is not able to verify that the client traverses
a contiguous path in the tree or that the OT they perform corresponds to that path if
they did. Consequently, [Wu et al.|suggest an augmented version of the protocol that can
handle malicious clients using a new conditional oblivious transfer, but a maliciously-
secure version could also be constructed simply by replacing OT with our iOPRF.

Each node in the tree could be encrypted using keys derived from the iOPRF eval-
uation of their index, meaning that the client would have to traverse a path in the tree
all the way to the leaf in order to decrypt it. The only necessary modification for this
approach to work is a small number of additional ZKPs to “bind” the results of the
homomorphic evaluation to the input of the iOPRF. When constructed this way, the
client can use much more efficient (maliciously secure) private information retrieval [9]
instead of the expensive conditional OT designed by Wu et al. [42]]. For space reasons,
we list only the main technical modifications necessary (in Appendix [A).

9 Conclusion

In this paper, we have introduced the concept of an iteratable oblivious pseudo-random
function and presented a construction which is provably secure in the standard model
under the DDH assumption. We have fully implemented and evaluated this construction
and shown that it is efficient in practice, comparable to similar protocols. We have also
presented several applications for iOPRF protocols that demonstrate their usefulness,
particularly in applications where (two-sided) malicious security is necessary.
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A Decision Trees

As an alternative to their paper, we summarize here the changes necessary to convert the
semi-honest secure protocol from Wu et al.| to a fully-malicious-secure version using
iOPRF. We will reference our modifications in contrast with their protocol (Figure 1
in [42]).

1. In step 1, the client proves that their input encryptions are bits. This also happens
in the maliciously-secure version from the original paper.

2. In step 2, the negation of the intended DGK comparisons [[16] are also computed.
This way the client has a “successful” comparison one way or the other to use in
their proof to the server that they are behaving correctly.
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3. In step 4, the server additionally encrypts each node of the tree with a symmet-
ric key derived from an iOPRF. The keys are chosen such that each node can be
decrypted by an iOPRF evaluation that corresponds to that node’s location in the bi-
nary tree, adjusted for the randomly flipped comparisons. The goal here is to restrict
the client to only being able to decrypt the nodes corresponding to the contiguous
path in the tree resulting from its comparisons.

4. Instep 5, the client uses PIR [9] to retrieve the target leaf node instead of conditional
OT. The client additionally runs an iOPRF protocol to retrieve the symmetric key
necessary to decrypt their chosen leaf node. In execution of this protocol, they also
prove in ZK that the input to the iOPRF corresponds to the correct results of the
comparison protocol (see Appendix [A.T).

A.1 Binding Homomorphic Comparisons to iOPRF Input

Since the client now executes two DGK comparisons per level of the tree, the original
intended one and its negation, they now always have a “successful” comparison at every
level, which tells them which direction to go in the tree. The main idea behind the proofs
that will bind the client to the correct path is that they can use the encryption of zero
that results from a successful comparison as evidence to the server that they are going
in the direction they are supposed to.

At each level of the tree k € [d], the client creates a ciphertext ¢ <— Encp(0) and
generates a commitment com to z; = 1 if the comparison at that node was true and
x, = 0 if its negation was true. This corresponds to the direction their comparison at
level k in the shuffled tree tells them to go on the next level. They then must prove
that there exists an ¢ such that c (the encryption of zero) is plaintext-equivalent to either
cty,; or ct;m (the result of the negated comparison), and that if it is ct ; then com is
1, orif it is ct; ; then com is 0. Then, comm is used as the commitment in the iOPRF
protocol. This binds the output of the comparison to the input of the iOPRF, completing
the proof.

Let a = b signify that @ and b are encryptions of the same value and ¢ = 0,1
signify that a is an encryption of 0 or 1. The statement being proven can then be writen
as follows

(c=cty1V...Vec=ct) Acom =1

\

(c=ctp,V...Vc=cty,) Acom =0

We do not produce a full ZK proof for this statement, as it can be efficiently designed
in the same way we design ZK proofs in Section [] (plaintext equivalence is equivalent
to a proof of DDH tuple, one-out-of two technique for the V, parallel proofs for A etc.).
For more details on efficient composition of ZK proofs, see also Camenisch and Stadler

[7].



B RFID Security Analysis

To summarize security requirements, we briefly describe a reactive, ideal functionality
F. The database sends their input, keys K, Ko, K1, ..., K. 1, all (2N — 1) keys of
the key tree, to a TTP, and the reader sends an empty bit string. Then, the TTP sends K
to the reader, and nothing to the database. The internal state s of TTP is initialized to
the empty bit string. Then, the RFID reader and TTP additionally interact in a total of ¢
rounds. In round 1, let the internal state be bit string s = 7 ... y;—1. The reader sends
bit 7;, and TTP responds with K, ., and updates its state to s = 7y ...";.

Lemma 2. In the random oracle model, the modified IMolnar et al.| protocol securely
realizes ideal functionality F.

As the proof of Lemma2)is straightforward, we only summarize it in a draft.

Proof (Sketch). We build a simulator for the case of a compromised reader. The simu-
lator for the case of a compromised database works accordingly.

1. Simulator Sim begins by preparing an initially empty key-value table RO to imple-
ment a standard random oracle functionality H (). During simulation, whenever
any party calls H (k) for some input k, this functionality will check whether pair
(k,v) is already in table RO and responds with v in that case. Otherwise, H gener-
ates a random string v of length A, sends v back to the caller, and places (k, v) in
RO.

2. Also, Sim generates a random key K = ((aq, 1), ..., (g, B¢)) for iOPRF. Sim
sends € to TTP and receives K, which it forwards to A.

3. Sim and A run Construction 3] with Sim as the sender and A as the receiver.
During the i iteration of Construction
(a) Sim extracts A’s input x; from the Pedersen commitment, forwards it to TTP,

and receives back K, . ;-

. N N

(b) Sim adds key-value pair (g5 *~" 7 7, K, . ) to table RO.

k3

Observe that A’s view in the simulation is indistinguishable from their view in a real
protocol execution. a

Note that A can perform an input-substitution attack, i.e., query for some path which
does not match the tag they are currently interacting with. Without the ability to perform
public key cryptography on the tag, the strongest security for the database one can
guarantee is that the reader can get one path, identifying one tag and thus can fabricate
or clone at most one tag per interaction.

C Discussion: Performance of Related Approaches

iOPRFs must be interactive, requiring an interaction per iteration, and interactivity turns
out to be the runtime bottleneck. Yet, we argue that such interaction is still more efficient
than alternatives.



For example, we could construct a single round iOPRF protocol using fully ho-
momorphic encryption (FHE). However, we would then have to evaluate ¢ one-way
functions inside the FHE circuit and prove their correct computation. We expect such
computations would be too long to be practical even on very powerful hardware. An-
other alternative would be general cryptographic primitives which allow iterative one-
way functions. Recent Multi-Linear Maps could be used for this purpose. However,
there exist no secure multi-linear map for generic constructions, let alone efficient ones.
Lastly, the sender could compute the iPRF for all possible inputs by the receiver and
the receiver could select one using oblivious transfer. Another example of obliviously
evaluating such a function are distributed point functions [5] which would avoid obliv-
ious transfer. However, in both cases the server would need to evaluate 2¢ functions
rendering this approach quickly infeasible. In conclusion, our iOPRF avoids the pitfalls
of non-interactive design alternatives providing practical performance.

Finally, one could envision realizing an iOPRF using general maliciously MPC
frameworks such as MP-SPDZ [30] or efficient maliciously secure 2PC [41]. However,
it is sender-receiver interactivity which turns out to be the main challenge. Evaluation of
an arithmetic (SPDZ) or Boolean (2PC) circuit cannot be stopped, its output revealed,
and then continued with new input. Instead, sender and receiver would need to securely
evaluate /¢ different circuits. After evaluating circuit ¢, the receiver learns the ith output,
and specifies the (i + 1)* input, and both parties evaluate another circuit. Inside the
circuit, the sender and receiver would need to somehow prove to each other that they
continue the evaluation with correct data which is not trivial. For example, the circuit
would need to output an (encrypted) state to the sender after each iteration which the
circuit then verifies in the next round based on additional information output to the re-
ceiver. The sender would also need to prove that they are using the same key as one
they have committed to, previously. Recall that evaluation of cryptographic primitives
inside a circuit is very expensive, even using fast maliciously secure 2PC. For example,
Wang et al. [41] report 85 ms for the evaluation of a single SHA2 circuit (amortized
over 1024 circuits) in a scenario with latency comparable to LAN1. This is already
more expensive than one full round of Construction 5]
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