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Abstract

In this compilational work, we combine various techniques from classical cryptography and steganog-
raphy to construct ciphers that conceal multiple plaintexts in a single ciphertext. We name these “multi-
ciphers”. Most notably, we construct and analyze a Four-In-One-Cipher: the first cipher which conceals
four separate plaintexts in a single ciphertext.

Following a brief overview of classical cryptography and steganography, we consider strategies that
can be used to creatively combine these two fields to construct multi-ciphers. Finally, we analyze three
multi-ciphers which were constructed using the techniques described in this paper. This cryptanalysis
relies on both traditional algorithms that are used to decode classical ciphers and new algorithms which
we use to extract the additional plaintexts concealed by the multi-ciphers. We implement these algorithms
in Python, and provide code snippets.

The primary goal of this work is to inform others who might be otherwise unfamiliar with the fields of
classical cryptography and steganography from a new perspective which lies at the intersection of these
two fields. The ideas presented in this paper could prove useful in teaching cryptography, statistics,
mathematics, and computer science to future generations in a unique, interdisciplinary fashion. This work
might also serve as a source of creative inspiration for other cipher-making, code-breaking enthusiasts.

1 Background and Related Work

We briefly summarize relevant background information. Related work on the concept of a “multi-cipher”
is referenced in 1.4. Note that in the full version of the paper, which can be accessed here, we include
three full-length sections on background related to the field of classical cryptography, the cryptanalysis of
classical ciphers, and steganography. These sections are useful to a reader who is unaquainted with the field
of cryptography and would make this paper accessible to people outside of academic circles. However, since
the audience, in this case, is the research community, we assume that they have familiarity with the basics,
and only include summaries.

1.1 Classical Cryptography

Most of the encryption algorithms that we use to keep our information secure on the Internet today have been
proven secure through higher-level theoretical mathematical models. This is modern cryptography, concerned
with proving the security of existing algorithms and designing new algorithms that have applicability in the
real world. Classical cryptography, on the other hand, revolves around how ciphers were used in the past.
Today, classical cryptography is less concerned with designing new ciphers and more concerned with designing
algorithms to implement and break historical ciphers using modern computing methods. Secret codes and
ciphers have long been used to encrypt confidential information. But most historical ciphers have fallen into
disuse due to their weaknesses in our modern compututing world. Though historical ciphers aren’t used
often, they still serve a valuable role. They help us to learn from our mistakes, ensuring that we don’t
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design the same weaknesses into our modern cryptosystems as we once did in the past. And whether it
means providing an outlet for creativity by encouraging students to design their own ciphers or teaching
them critical programming skills through the implementation of ciphers in languages like Python and C++,
ciphers are also a great way to interest younger students in a broad range of subjects, from statistics to
computer science. Over time, it has been determined that classical ciphers generally fall into one of five or
six categories: substitution ciphers, transposition ciphers, polyalphabetic ciphers, fractionating ciphers, or
polygraphic substitution ciphers (like the Playfair cipher and the Hill cipher). Other categories of classical
ciphers combine the encryption methods from one or more of the above categories, such as transposed
substitution ciphers.

1.2 A Brief Survey on the Cryptanalysis of Classical Ciphers

We review algorithms that are commonly used to cryptanalyze classical ciphers today, and reference some of
these algorithms in our discussion of the cryptanalysis of multi-ciphers in 3. First, we consider substitution
ciphers, both monoalphabetic and homophonic. Recall that a homophonic substitution cipher uses an
expanded ciphertext alphabet which includes more than 26 characters. Most of the recent literature has
focused on improving the efficiency of attacks on homophonic substitution ciphers, while attacks on simple
substitution ciphers were considered in past literature. We discuss it below:

• Early literature focused on fast statistical analyses of simple substitution ciphers. This included [CM86],
[SS93], which used a simulated annealing algorithm, and [Jak95]. Jakobsen’s algorithm was thoroughly
discussed in a recent paper by Dhavare, Low, and Stamp [DLS13] which modified the algorithm and
used a nested hill-climbing technique in order to efficiently solve homophonic substitution ciphers.
Based on this work, we attempted an implementation of Jakobsen’s algorithm in the Python pro-
gramming language, and succeeeded. Since the algorithm is statistical, it does not work for shorter
ciphertexts, but is extremely efficient.

• Around the same time, genetic algorithms were given general consideration [Mat93], and applied to
simple substitution ciphers [SJNK93]. Dictionary attacks were being considered, too [Har94] [Luc88],
mainly for the purpose of solving cryptograms, short substitution ciphers that are often found in
newspapers. The issue with these methods was that they tended to overrely on the dictionary. When
ciphertext words either did not appear in the dictionary or decrypted to multiple possibilities, the
cipher could not be decrypted to a unique solution. Later, Hasinoff developed an automated solver
known as Quipster [Has03] that attempted to address some of these problems, but there was still one
main issue that needed to be addressed. All of these ciphers required word boundaries to be preserved;
that is, spaces needed to be present in the message. It wasn’t until a few years later that Olson
[Ols07] finally presented a dictionary attack which works on short ciphers, regardless of whether word
boundaries are preserved (his implementation is known as QuipQiup). Based on our research, this is,
to date, the most effective automated substitution cipher solver.

• The major recent works related to the cryptanalysis of homophonic substitution ciphers include [Ora08],
[DLS13], and [Kop19]. We note that the most recent work [Kop19] is compilational, and includes an
in-depth discussion of the related work in this field, including the two other major works which we
referenced here. We summarize their relevant findings below:

– [Ora08] uses a genetic algorithm combined with a dictionary attack to optimize the mapping of
dictionary words onto the homophonic ciphertext. The authors test their method on the Zodiac-
408 cipher – a 408 character long homophonic ciphertext with a 54 symbol ciphertext alphabet
which was encrypted by the infamous Zodiac killer and solved back in 1969 – and successfully
decrypt it with 100% accuracy using a dictionary with only 850 words and 600 generations.

– [DLS13] improved upon the state-of-the-art algorithm to solve homophonic substitution ciphers
by using a nested hill climbing approach derived from Jakobsen’s algorithm. This means that
they used two hill-climbing layers: an outer layer and an inner layer. We actually tried to
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implement this algorithm, but since the implementation was done in Python, it was far too slow
to break a single homophonic substitution cipher in any less than two hours, even when the
symbol set consisted of only 35 characters. For a time comparison, the authors of the paper used
C++, and with their implementation were able to solve a 35 character long homophonic cipher in
approximately 20 seconds for a comparable ciphertext size. Their data is quite impressive; in fact,
even for a homophonic ciphertext 9000 characters long with a 65 symbol ciphertext alphabet, the
decryption only took approximately 4.3 minutes. It was tested against the Zodiac-340 cipher, and
unfortunately, failed to solve it. Since the Z-340 cipher was recently solved, we now know that it
was a transposed homophonic cipher, so it makes sense that the authors were unable to solve it
as a simple homophonic cipher back in 2013.

– According to [Kop19], the best tool currently avaiable for solving homophonic ciphers is AZde-
crypt, the same software that was used to crack the Zodiac-340 cipher. The authors also present
an almost comparable analyzer which uses a simulated annealing algorithm and integrate it into
the open-source codebreaking software Cryp-Tool 2. Their software has a user-friendly interface
as shown by the various diagrams which they include in their paper, and may be a viable option
for hobbyists who are interested in using software to break this category of ciphers.

Next, we discuss works related to attacks on transposition ciphers, focusing mainly on transposition
ciphers that use permutations as encryption keys, such as columnar transposition. Many of the papers we
reference use algorithms which efficiently search through the keyspace of possible permutations that were
used to encrypt a transposition cipher:

• One of the earlier works [Dea81] proposed using an interactive solver to solve columnar transposition ci-
phers. The author implemented a manual solver in BASIC. We implemented an analagous tool to man-
ually solve all types of grid transposition ciphers, including columnar transposition ciphers. It can be
found at our implementation (link in Appendix) under transposition/manualTranspositionDecoder.py

• The automated cryptanalysis of transposition ciphers was originally conducted using a simulated an-
nealing algorithm [GS94]. The algorithm was effectively summarized in a compilational paper a few
years later [DG03], which noted that automated attacks on transposition ciphers used either a simu-
lated annealing algorithm, a genetic algorithm, or another type of attack known as the tabu search.
An analagous comparison of these three algorithmic approaches was included in Garg’s [Gar09], which
included graphs that showed that there was no significant performance difference between these three
approaches at the time. Around the same time, a simulated annealing genetic algorithm for transpo-
sition ciphers was proposed [BSJ08].

• More recent approaches to solving transposition ciphers have ranged from using broader evolutionary
algorithms [BD14] to a combination of hill-climbing and simulated annealing [MK14]. Quite recently,
Lasry, Kopal, and Wacker solved a double transposition cipher challenge using both a hill-climbing
attack and a dictionary attack. They described their “divide-and-conquer approach” in [LKW14]. The
latest work by the same authors [LKW16] proposes a method to solve columnar transposition ciphers
with incredibly large permutation sizes (up to 100).

Next, we look at polyalphabetic ciphers:

• The earliest work to discuss automated attacks on polyalphabetic ciphers was [CR87], which used
a computer program written in the artificial intelligence language Prolog. Genetic algorithms for
polyalphabetic ciphers were first considered in [CD97]. The basic idea was to run P genetic algorithms
in parallel, where P is the number of alphabets that were used for the polyalphabetic cipher.

• The application of genetic algorithms to polyalphabetic ciphers was further considered a few years
later in multiple compilational works [Ber07] [BSJ08]. [TA08] specifically considered using genetic
algorithms to search the keyspace of polyalphabetic ciphers. Another work [MW06] described a genetic
algorithm using evolving keys that could be used to solve a subcategory of polyalphabetic ciphers known
as Type II ciphers, or “Quagmire II”.
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• One of the most recent works [Kae20b] proposed a hill-climbing technique to solve any general periodic
polyalphabetic substitution cipher. The algorithm was thoroughly described, and we were able to
test an implementation in Python. Though our implementation was notably slower, it still solved the
periodic cipher to an extent where a cryptanalyst could easily make out the words which were expected
to appear in the plaintext after letting the program run through a couple of loops. Another recent
work [SA20] cryptanalyzes polyalphabetic ciphers using another category of evolutionary algorithms
known as “differential evolutionary algorithms”, and contains detailed data tables showing performance
results.

Finally, we consider the Playfair and Hill ciphers. Playfair ciphers have been shown to be most effectively
attacked using simulated annealing algorithms [Cow08]. The most recent approach [AIT18] uses an efficient
combination of data compression and simulated annealing to solve Playfair ciphers as short as 60 characters
long. Evolutionary approaches have also been considered [Rhe03] [Neg12], but the algorithm described
in [Rhe03] takes several hours to run, and [Neg12] only works for longer ciphertexts. On the other hand, the
ciphertext-only attacks that have been used on Hill ciphers rely on a completely different type of algorithm.
One category of algorithms is originally based on [BM07]. As described in [KA17], these algorithms reduce

the time complexity of the brute-force attack from O(n3 · 26n
2

) to O(n · 13n), where n is the key matrix
dimension, by brute-forcing the individual rows of the key rather than the entire matrix. We recommend that
interested readers look at Teseleanu’s recent work [Tes20], which thoroughly considers works related to the
cryptanalysis of Hill ciphers and explains how state-of-the-art techniques can be extended to programatically
attack a variant of the Hill cipher known as the affine Hill cipher (essentially a Hill cipher plus a Vigenere
cipher).

1.3 Steganography

First, we note that “steganography” is a broad term, but in the context of this study, which deals with the
creation and cryptanalysis of ciphers, we only consider pen-and-paper steganography. Outside of the context
of this study, digital steganography is sometimes used to hide messages in images and audio files.

Steganography refers to hiding a message in plain sight. Usually, the message is hidden in a way that
makes it relatively unobvious that the message is hidden at all, so that an attacker can not even detect the
presence of a hidden message. The following two examples of steganography will allow the reader to better
understand the discussions in the following sections:

• Letter patterns: given a steganographic text, reading each letter at a certain position in each word in
the text will reveal a hidden message. For example, reading the first letter of each word from left to
right might reveal a message.

• Indicators: Specific words or character groupings that appear in a text such that the positioning of
these elements conceals a message. This term is more broadly defined, and more difficult to understand
without an example, so we refer interested readers to the full version of the paper to see how indicators
can be used in practice.

Specific examples of each of these forms of steganography have been ommitted, and will instead be considered
in the context of multi-ciphers in 2.

1.4 Related Work

There are only two works that are directly relevant to the novel contribution that we present in this paper
– that is, the idea of a multi-cipher. As described in [Bau13], a two-in-one cipher system was first devised
nearly 100 years ago by Jack Levine, a teenager at the time. The cipher relied on matrices, and appeared in
a 1926 issue of a pulp magazine known as Flynn’s Detective Weekly. Though the specific details of the cipher
remain unclear, Levine’s encryption scheme could supposedly be extended to conceal a third plaintext.
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In a more recent work [Kae20a], Kaeding presents a single cipher which conceals two plaintexts in a
single ciphertext through enumeration of the permutations of the ciphertext symbols in the message. Though
creative, this cipher is limited in the sense that there is no way to conceal more than two plaintexts in a single
message. The techniques discussed in this paper are more flexible because the steganographic concealment
methods can be layered on top of one another to conceal anywhere between two to five separate plaintexts
in a single ciphertext.

2 Construction of Multi-Ciphers

A “multi-cipher” is any cipher which conceals more than one plaintext in a single ciphertext. The only
condition that must be satisfied for a cipher to technically be considered a multi-cipher is that there exists
a well-defined, implementable encryption algorithm that combines the individual plaintexts to create the
multi-ciphertext. However, there also exist some recommended conditions:

1. The purpose of a multi-cipher is to encrypt completely unrelated plaintexts into a single ciphertext,
and hence, the individual plaintexts which make up the cipher should ideally be separate and com-
pletely independent of each other before encryption. In other words, someone who is able to recover
one plaintext from the multi-cipher does not need to have recovered any of the other plaintexts to
understand its context. For example, assume that a cipher conceals two plaintexts. One plaintext
comes from the first half of a text, and the second plaintext comes from the second half of the same
text. Since the first half is required to understand the context of the second half, this is not an ideal
application of a multi-cipher. The first half and second half of the same text could just as well have
been spliced together and encrypted using any classical cipher. The multi-cipher operates according
to the fundamental principle that the plaintexts within it are marked as fundamentally different from
each other.

2. The degree of a multi-cipher is loosely defined as the number of different ways that one can look at a
multi-cipher according to the considerations which we designate in 2.1. A multi-cipher should ideally
have a degree greater than one. One example of a multi-cipher that has a degree equal to one is shown
in Table 1. Interlaced plaintexts are useful in the construction of multi-ciphers, but on their own,
they only provide one way of looking at a multi-cipher. According to this definition, we consider the
multi-cipher from [Kae20a] a second degree multi-cipher because the ciphertext can be viewed as either
the substitution of mixed-radix numbers for plaintext symbols or the enumeration of permutations of
ciphertext symbols.

T O I E I A T E E E I M S Y C E P I E K

R H S S S S R H R F D R A T B I P H N R

Table 1: An interlacing multi-cipher of first degree which we call the “shoelace cipher”. Together, en-
crypting the first plaintext “THISISTHEFIRSTCIPHER” and the second plaintext “ROSESAREREDMAY-
BEPINK” we read horizontally to get the multi-ciphertext “TOIEIATEEEIMSYCEPIEKRHSSSSRHRF-
DRATBIPHNR”.

2.1 Considerations

The following factors should all be given consideration when constructing a multi-cipher. The more con-
siderations that are taken into account, the greater the degree of the multi-cipher, and the more plaintexts
can be concealed. Below, we provide a simple list. We will show how each of these considerations can be
implemented in a multi-cipher in 3.
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• Arrangement of letters

• Spacing

• Capitalization

• Interlaced plaintexts

• Bolded, italicized, or underlined text

• Coloring

• Indicators in the multi-ciphertext

Take note that some of the considerations listed above overlap. Spacing and capitalization are both
possible examples of indicators in the multi-ciphertext, because they can indicate the presence of additional
concealed plaintexts. Additionally, the arrangement of letters can be influenced by interlacing the plaintexts.

Also, the indicators are only factored into the calculation of the degree of a multi-cipher if they ap-
pear in the larger ciphertext, not in any of the individual plaintexts. If one of the individual plaintexts
uses steganography with indicator keywords to conceal an additional hidden message, this would not be
considered.

2.2 Efficiency

Cipher Type Sometimes Uses Padding? Efficiency score range

Monoalphabetic/Homophonic Substitution No ES = 1

Transposition Yes ES ≤ 1

Polyalphabetic No ES = 1

Polygraph substitution (Playfair/Hill) Yes ES ≤ 1

Variable length substitution (Morse code) No ES < 1

Fractionating No ES < 1

RGB Cipher Yes ES > 1

Three-In-One Cipher Yes ES < 1

Four-In-One Cipher Yes ES > 1

Table 2: Efficiency score ranges for different classical ciphers and multi-ciphers.

We define the efficiency score of a multi-cipher as the sum of the lengths of all of the plaintexts that
are concealed by the multi-cipher divided by the length of the multi-ciphertext. Using notation, this can be
written as:

ES =

∑
LP
LC

Where LP is the length of an individual plaintext and LC is the length of the overall ciphertext. We say
that a multi-cipher is efficient if ES > 1. In other words, the sum of the lengths of all plaintexts that are
concealed by the cipher is greater than the length of the ciphertext.
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For most classical ciphers (which conceal one plaintext), the length of the plaintext is usually approxi-
mately equal to that of the ciphertext, so ES ≈ 1 . We say approximately because padding is considered
when calculating the efficiency score. Since padding can make the ciphertext slightly longer than the original
plaintext, this can cause the efficiency score to be slightly less than one. This is with the exception of frac-
tionating ciphers and variable length substitution ciphers, which frequently substitute multiple ciphertext
characters for individual plaintext characters, and therefore always have ES < 1 .

As we will see in the next section, multi-ciphers are useful because they can allow us to achieve ES > 1 .
Basically, this means that we are concealing more plaintext with smaller amounts of ciphertext. Observe
Table 2, which displays the efficiency score ranges of classical ciphers and provides a preview of the efficiency
score ranges that we will see for the multi-ciphers that we cryptanalyze in 3.

3 Cryptanalysis of Multi-Ciphers

In this section, we cryptanalyze three different multi-ciphers. The first, the RGB cipher, is the most efficient
and conceals two plaintexts. The second, the three-in-one cipher, conceals three plaintexts but is inefficient.
And finally, the four-in-one cipher is efficient, and can potentially be modified using techniques that were
used in constructing the first two multi-ciphers to include a fifth plaintext without changing the ciphertext
length, further improving its efficiency.

Throughout this section, we display screenshots of programs that were used to cryptanalyze the ciphers.
This programs come directly from our implementation, the link to which can be found in the Appendix.
Additionally, we calculate numeric values for the efficiency scores of each of the three multi-ciphers and
include Python code snippets that can be used to extract the various components of each of the ciphers.

3.1 The RGB cipher

Figure 1: The RGB cipher

Out of the three multi-ciphers that we present in the section, this one is by far the easiest to cryptanalyze.
Just looking at the cipher, there are two things that stand out:

1. The letters

2. The colors

Suppose we look at the letters first, and ignore the colors. Then we obtain the following ciphertext:
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ITHHOAOIOOOEETTSOFYEHOWIGATNANTEEESDMOIMETWSSEOMIDEHLTNOHMTI

SEHYFRNFOTEETEEFTAPEYSNTTTEINHDDHAEORTYIRFOOTOGUGTNOEDTMNGOG

DHTMDIURFNRSSHHOULSRERINHSHGITHDTMYFUDRAIONPNLUJNIESLIOEEICN

MOUUWWDHEOSTOEAIENHTDTERETMLADINITENHWFNTTLHWIEOGPTIFEDRTAGU

AMTGOFYETWHHRNTDSDEHTFNSILEOGINEDHNEEOAGHEOIATNIOAHTIXAPTTES

FSRRLAGALHOATYMTHXUDSETHHCINAEIIEIARKHODFOWEQNHSTADMRAHBTHNX

ROOKENTTLEFTHSAHATNIIVEEAARGNNDVMDRTYEUSALTMUGSTOTWETDEUHTFX

A frequency analysis reveals that the most common letters appearing in this message are T, E, H, O, I,
and N, with frequencies 12.62%, 11.67%, 8.33%, 8.33%, and 7.38%, respectively. We can compare this to
standard English frequencies from 4. The most frequent letters appearing in the message are also among the
most frequent letters that appear in the English language, and the numeric letter frequencies match closely.
This suggests that we might be dealing with a transposition cipher. To check, we can do a chi-squared test,

and we get a χ2 of 70. Dividing this by L, the length of the message, we find that χ2

L = 0.17. This is very

close to the χ2

L values of 0.03 and 0.05 we obtained when analyzing different parts of Shakespeare’s “Hamlet”
for a transposition cipher – note that this is a reference to data included in the full version of the paper –
and therefore we come to the conclusion that this has probably been encrypted with transposition.

The main clue that can be used to decrypt a transposition cipher are the factors of the length of the
message. The encryptor likely would have chosen a value for the key length that would go in evenly, simply
for ease of encryption. The length L of the message is 420. Factors include:

(1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420)

In this case, the factors do not provide much of a clue to the key length that was used, because there are
simply so many. From here, the best way to solve a transposition cipher is to brute-force through every
commonly used algorithm, setting the key length, or the permutation size, equal to the factor. If this were
a transposition cipher that used a permutation as the encryption key, we would recommend using a genetic
fitness algorithm if the permutation size is greater than 7. But for permutation sizes less than or equal to 7,
a brute-force strategy works effectively.

Since all of the numbers in the range of 2 to 7 are factors of the message length, we first try bruteforcing
through the permutations of size 2 to 6 using simple horizontal transposition. The output is shown in
Figure 2. Scoring is based on the count of common English words in the message using an efficient Trie data
structure. Unfortunately, this does not recover the plaintext. Next, we might try bruteforcing through the
same permutation sizes for a columnar transposition. We find that this does not recover the message, either.

Notice that one of the factors of the message length is 7. We repeat the brute-force process, testing all
permutations of size 7 alone, for both simple horizontal and columnar transposition. Finally, the cipher is
solved. It used a columnar transposition with the encryption permutation (3, 5, 4, 1, 2, 6, 7) as shown in
Figure 3.

The second plaintext uses the colors. Let’s convert the colors to letters. We’ll use “R” to denote a red
letter, “G” to denote a green letter, and “B” to denote a blue letter that appears in the RGB cipher. We
get the following:
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Figure 2: Best solutions from bruteforcing horizontal permutations from size 2 to 6.

Figure 3: Best solutions from bruteforcing vertical (columnar) permutations of size 7.

RGGBRGBBBRBGRBBBRRGGBGRBGGRGRRRBGBBBGGGRBGBRRRBBGGGRBGRGGBRGBBBRBGRRBGG

RRBRBGBBRRBGBRRBBGGRBBRBGBGGGRRBGBBBBRRBBBGRBRRBGRGGBRGBBBRBGRRBGGRRBRRG

GBRRGBRGBRBGBGGRRBGGGRGGBGGRGRRGRRGGRRGGRBGGGRGGBGGRGRRGRRGGRRGGRBGBR

GBGGRBBRBRGGGRGGBRRGBRGBRGRRBRRRBBBGGRBGBRGBGGGRRBGGBBBGRRBGGGGBBBBGGG

RRBRBGBRGBRRGGGBRBRBBRBGBRGBBBRBGRRBGGRRBRBBRBBBGGGRBGBBRBRGBBBGGGBRBBGG

RBBGGRBGRGGRBBRRBRRBBGGRGGGRGGBRGBBBRBGRRBGGRRBRBBRBBBGGGGRBBBBBGB

Notice that in this cipher there are 3 possible symbols for any given letter: R, G, and B. Let’s look at
the message in blocks. There are a total of 3 · 3 · 3 = 27 unique values that could potentially appear in any
individual block of three letters in the message.There are 26 letters in the English alphabet, so it is possible
that three-letter blocked groupings of these color letters could respresent individual letters in the English
language. A frequency analysis of trigrams using a blocks window reveals that there are only 20 unique
trigrams that appear in the message, and the most frequent trigrams are “RBG”, “GGR”, and “BBB”,
appearing with frequencies 12.14%, 10.71%, and 9.29%, respectively. This appears to be a fractionating
cipher. If the distribution was uniform we would expect to see closer to 27 distinct trigrams with a much
flatter frequency distribution. But the most frequent frequencies in this ciphertext match up pretty closely
with the frequencies of the letters “E”, “T”, and “A” from 4.

To solve this fractionating cipher, we need to map trigrams in the message to individual letters in the En-
glish A-Z alphabet, and then solve the result as a monoalphabetic substitution cipher. The mapping is arbi-
trary. In our implementation, we have a program that does this for us at “fractionation/ngramsToLetters.py”.
We simply set n = 3, input the RGB ciphertext above, and it uses a simple algorithm to map the trigrams
to letters by order of appearance, from left to right. The first distinct trigram appearing in the message is
mapped to “A”, the second to “B”, and so on. After this mapping, we get:

ABCDEFGHIJDCKDFEKDABCDLIMNFNLOEDOJNCLPMDABCDLIMAFQQNIDIGIJJIADIGIJJIAD

BOEMKAFQQJFEODBOJOCJOGCKLDBFKREDBCDLIMSCKDSBCKROEITISMEIKABCDLIMSCKHCN

This is a short 140 character long short substitution cipher without spaces. It is most effectively solved
using the powerful dictionary attack described in Olson’s [Ols07], source code for which can be found at
QuipQiup. Doing so reveals the second plaintext:
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WHATS IMPORTANT ISNT WHAT YOU DID YESTERDAY BUT WHAT YOU WILL DO TOMORROW

TOMORROW THE SUN WILL RISE THERE ARE MANY THINGS THAT YOU CANT CHANGE SO

FOCUS ON WHAT YOU CAN PAD

Now we calculate the efficiency score of this cipher. The length of the first plaintext, excluding mandatory
padding, was 418 characters, because there were two requisite “XX” characters for padding at the end. Note
that the plaintext contained filler text which included the words “I’M GOING TO PAD... WITH FILLER
TEXT...”, but this is technically a part of the message, so we consider it in the calculation. If a longer
plaintext had been chosen, then the filler text could have been replaced accordingly. Therefore, it is not
considered mandatory padding. The second plaintext had a length of 140 characters – the word “PAD” at
the end is filler text, not mandatory padding – so the sum of plaintext lengths is 418 + 140 = 558. The
ciphertext length is 420 characters. Hence, the efficiency score is

ES =
558

420
≈ 1.33 > 1

We were able to conceal roughly 33% more plaintext per character in the ciphertext compared to if this
was just a classical cipher with an efficiency score of 1 – namely, any classical cipher except a fractionating
cipher or a variable length substitution cipher – by using colors. This is an example of a second degree
multi-cipher because the ciphertext can be looked at as either a transposition cipher using the letters or as
a fractionating cipher using the colors.

One main issue with this cipher is that colored fonts are often not easily transferred across different
platforms, which is also part of the reason why we had to display the RGB cipher as an image. A simple
variation might be that instead of red, green, and blue letters, one could use bolded letters, italicized letters,
and normal (or underlined) letters to represent the three different RGB symbols.

3.2 Three-In-One Cipher

On a first glance at the Three-In-One-Cipher, shown in Figure 4, one can discern three distinguishing features
about this multi-cipher:

1. The letters

2. The colors

3. The spacing

Let’s look at each of these components individually. First we look at the letters, ignoring the colors and
the spacing:
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Figure 4: The Three-In-One cipher

DFFFDGFAFDDFDGFFAADDVDAFAAGGGFDFGGAGAFDGGAFAFDGFDGDFGAGAAFDAFFAADFGGGAFF

ADAGFDAAVAAFGDAGFAAAVAAGFFFDDAFADDADDGADDAVFADDGFGADFAGFFDDGFAADAGGAAAGG

GFFGADAFFFDDFDDAGAFDDAGGAVDGGFDAAFAGDGDFAADDDAAAFAFAFDADAGFDGAGGVFDDAGGA

DDADGGFDDGGAADFAVGDGGGVAAFAVDVVFFVAAGDFADVFDXFVADVAXDFDDDADFXXXFAGXFFDDF

VDAAFVFVDAVDVXDFXDVADXDFDDAAAAGFDDVDAFGVXGGFXDVAFADGGDAFXGXFXADADFXDVGDA

AFVDAFAFFGFFAAFVDFXAAVFDAVVAXDVVAAAFDAADFXAFXFFFDFVAVDFAGFFFAADFAVADDGVA

AXDDAAVDADFFGFAAXFAVXFVXDDDAVFFXDFGDAFVVXFDAVAXVFDFFDADAFFFXFDDGVFVAAXVG

VXGAAXFFGDADVAFDDVXVDDAADAFXAVDVVDFAXFAFXFXDDFFFVFGFAFAGAGVDAGAAFVVAAVAA

GDFXFVFAFFVXXDVFAFAFAFDADAADXVAXDFDFDVFFADAAGGDAFXXDVAGDDFDXFXAADVGFXXFG

VAFFAFFVVDFAXVDXDGADDVVFAVFVAFADVFDDAFDDAXADVFAAXAVFAFDFXFAAADXFADDVDGAA

XFDXVADXFDDVVAGAAFFFFFGAAXFFVDDFVFDDFFDAAFFVVAAVAFXDADAVXGDGAVAAADFVAFXD

DDGAFXFFAAVVDADVFAFXDADFAGFVAAFDDDAAADAAXVAXDDVFAXDVFXDVADAFFXVDDFFXGDFA

GGAFFXFDGFFGDXVDDVVAAAXVXAAFFXAXGXVFXFAAXVAAADDXDGDAVDAVAAAFDVFFFVAFAXFA

FDAGADADVXDDDGXDVDVVAFADFDFAAGGDFFFAAGDAGFDDFDDAGDFDGGGDADAGFDFGVFDGAAGA

ADDGAAGAFAGGVGGAVFDAAFDFFGAFDDADAGAAGAFAFGADGFGFGAFAGGGFFGDAVGAAFAGFFFAD

ADGAFFGAAFVAGFAGAFGFAADAFGGDDFDGAGFAGDAAGAAAVVDAFAGAFFGFAFAGDDGADAGAAAFF

AAGGAVGAAGDFGDFDFAGDVFAFDGFGVGVGAFGGGFAGGDAAGFFGFDGAGAADADDDAFDAFAFFAGDA

FAAFGFDGFGFFDAFDAFAADGGFGGFAFDGGGAGDADADDFAGFDDAGGAGAFADGFGGGFFAAAFDDDAG

GAFAADVAAAFGFADGFFFGAAGAADAGDAVFDFAFAGDGDDADAAGGGAAADFAAAVGGGAVGFDGADDFF

GDDAAAFGGFDGAVGAFADGGGAGADGDAGAGFGDAFDGGFGDGDFAFAFDDAFDDGAADFAAADDGGAAFA

Notice that there are only 6 letters that appear in the message – the letters “A”, “D”, “G”, “V”, and “X”,
– and with a little bit of background information, we can conclude that this message has been encrypted
using an ADFGVX cipher. We have not discussed this cipher yet in this paper, but it is a transposed
fractionating cipher. English letters are first substituted for bigrams which consist of the six letters (e.g. A
→ VG, B → XG, ... more arbitrary mappings ..., Z → AA). Then, they are transposed using a columnar
transposition.
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We can actually solve this using a common technique that is used for solving a transposed substitution
cipher. We determine the transposition first. Try all the possible transpositions, and score them based on
the amount of multi-letter repetition that they display in a sliding window. Since English is a language that
displays natural repetition, we expect the correct transposition to be the result which shows the highest
amount of repetition. For transposed substitution ciphers, we would normally score solutions based on the
count of the most frequent bigram (2-gram) or trigram (3-gram). Since this fractionating cipher uses two
characters to represent one letter, in this case, we want to score solutions based on the count of the most
frequent quadrigram (4-gram) or hexgram (6-gram).

Since we know that columnar transposition is used for ADFGVX ciphers, we can bruteforce through all
the columnar permutations from size 2 to 6. The results are shown in Figures 5 and 6. The message which
was permuted using the encryption key (3, 2, 4, 6, 5, 1) shows up in the top two solutions using both the
4-gram and 6-gram scoring method, so we can be fairly sure that this is the right permutation.

Figure 5: Bruteforcing through columnar permutations from size 2 to 6, scoring based on the count of the
most frequent 4-gram.

Figure 6: Bruteforcing through columnar permutations from size 2 to 6, scoring based on the count of the
most frequent 6-gram.

Now, we just have to solve a bigram fractionating cipher. Since we already walked through the process
of solving a fractionating cipher using the arbitrary mapping method while solving the RGB cipher in 3.1,
we spare the reader the details, and leave it to them to recover the plaintext if they wish to do so.

Next, let’s consider the colors. Again, we’ll represent the colored positions in the message as letters, with
“R” for red, “B” for blue, and “D” for black:
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BRRDBBBBDBRDRDBRDRBBDBRDRRDRBDBDRBBDBDBRRBDBBDRBRBDBBRDBRBDBDBRDRBDBRBDB

RDBBBDRBRBDBRDBRBBDBBDBBBDRDBBBBDBBDBBBDRRDRBRRDBBBBDBDBRDBRBDRDBBDBBBDB

RBDBDBRDRBBDRBRRDRDRRRDRBRBDBRBDBRDRBRBDRBRDBRRDBBDRDBBBBDBBDRRDBRRBDBRD

RDBBDBDRBDRBRBDBDBRRDBBBBDRRRDBBBDBRDRBRRDBBBDRDBBBBDBBDBBBDBBDBBBDBBDRR

DBRRBDBRBDRRRDBBBRDBBDRBBDBDRBDRDBRRRDBDBRDBRBBDRRRDBBRDBBBDRBRRDRRDRBRR

DBRRDBBDBBRBDBDBBBBDBRDRDBBBBDBBBDBDRBDRDRDRRRDBBBBDBBDRRDRDBBBBDBDBBBBD

RRRDBBRDBRBDBBDBBBDBBRBDBBDRBBRDBDRBBDRDBBBBDBDRRDBRDRDRBRBDBBBBDBBDBBBD

RRDBRDRBBDBDBRRDRRRDBBRDBRBBDRBBDBRDRBDRBRRDRRDBRDRBDBBBBDBRDBBBRDBDRDBB

BBDRRRDBBRDRRBDBBBBDRDRDBBBBDBBDBBBDBBBDBDBDRDBBBBDBDBBBBDBDBRBBDBRBBDRR

RDBBRBDBBBBDBRDBBBRDBBDRBDRRBDBRDBBRBDBRDBRBBDBBBDBDBRRDRRRDRRDBRDRBDRRD

RBRRDRBBBDBDRBBDBBBDBBBBDBRDBRBBDBRBBDRBBBDBDBRDRBBBDBBRDBBBDBDRBBDRRDRB

RRDRBRBDRRRDBBRBDBBRBDBDBRBDBBBDBRBDBRDRBDBBBDBRDRBRBDRBRDBDRBBDRRDRBRRD

BRBDBDBRRBDBBRDRDBRDRDBBDRRRDRBDRRBDRBDBRDBRRDRBDBRDRDBRDRBDRBBDBBDBBBDB

BBBDBRDBRBBDBRBBDRBDRRRDRDRRRDRBDBRBBDRBRRDBRBDBDRBRBDBDBBDBBBRDBDRDBBBB

DBBDBBBDBBBRDBBDBRBBDBRBBDBRDRBDRRRDBBRDBBBDBRRDBRBDRRRDRBDRRBDRBBBDBBRD

RDBBBDRDBRDRBDRBBDBBRDRBDRBBDBDBRBDRDBBBBDBDBRDRBBDRRRDBRRBDRDBBDRRRDRBD

RRRDBBRBDBRDRBBBDRRRDRRDBBDRBDBRDRBBBDBRBBDBDRDBDBRBDRRDBBBDBRDRBDRBBDRB

BBDRBRRDBBBBDBBDRRDRDBBBBDBRDRDRBBDRRRDBDBBBDRRDBDRDBBBBDBBDBBBDBRRDBRBD

RRRDRBDRRBDRDBDBRBDRRDBBBDRBDBRDRRDBDBBBDBRDRRDBRDBBDRRDRRRDRBDBBBDRRRDB

BRDRBDRBBDBBBDBRRDBDBRBBDBRBBDBRBBDBBRDRBRBDBBDBBRBDBDBRBDBRRDBDBRBBDBRB

The important thing to notice about this ciphertext is that the letter “D” never appears next to itself. In
fact, it almost seems to act as a separator character, because there appear to be many frequently repeating
sequences sandwiched between consecutive D’s. To verify this, let’s replace the letter “D” with the space
character. This can be achieved easily using a Python console as shown in the code snippet in Figure 7.

Figure 7: Demonstration of the incredibly helpful replace() function in a Python 3 console.

Take a look at the ciphertext without spaces, and it appears to be a variable length substitution cipher.
Sequences like “BRR”, “BBBB”, “BB”, and “R” are all repeating frequently throughout the message, but
they are all sequences of different lengths, and the separator is necessary to indicate where one sequence ends
and another begins. A variable length substitution can be solved by converting the distinct variable length
sequences to letters in the A-Z alphabet, and solving the result as a monoalphabetic substitution cipher.
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The algorithm for this concept is not incredibly complicated, but since we do not include a tool in our
implementation which allows for this conversion, we provide a Python code snippet below.

Figure 8: Code snippet to print out the components of a variable length substitution cipher “c” separated
by spaces as a monoalphabetic substitution cipher.

For this ciphertext in particular, notice that the variable length substitutions are binary in the sense
that there are only two distinct characters appearing anywhere in the substitutions. This might remind the
reader of another well-known variable length substitution cipher: Morse code. Indeed, for this message, we
can simply replace all occurences of “B” with “.” (dot) and “R” with “-” (dash), and we will obtain an
intermediate Morse ciphertext. The replacement can easily be done using the Python replace() function
as illustrated in Figure 7. Using an online Morse code decoder, the Morse code can then be converted to
plaintext.

Finally, consider the spacing of the Three-In-One cipher. The multi-cipher is separated into blocks for
a good reason. The lengths of these blocks actually indicate the components of the third ciphertext. If we
write out the lengths, we get:

7, 14, 26, 24, 9, 6, 3, 19, 26, 24, 17, 9, 9, 18, 8, 19, 23, 3, 4, 20, 24, 6, 20, 5, 3, 9, 18, 10, 4, 3, 26, 4, 7, 9, 24,

17, 19, 18, 21, 3, 4, 20, 26, 17, 4, 20, 5, 8, 17, 4, 11, 9, 24, 4, 18, 9, 25, 9, 6, 7, 14, 26, 24, 9, 6, 19, 24, 19, 24, 19,

26, 18, 24, 14, 22, 20, 9, 26, 24, 19, 4, 18, 4, 23, 24, 4, 12, 9, 4, 6, 18, 4, 24, 24, 4, 12, 9, 3, 4, 20, 14, 6, 9, 2, 8

To convert these numerical values to letters, we can use the A-Z ←→ 1-26 mapping (Table 5), since the
lengths of the blocks range from 2 to 26. Converting gives:

GNZXIFCSZXQIIRHSWCDTXFTECIRJDCZDGIXQSRUCDTZQDTEHQDKIX

DRIYIFGNZXIFSXSXSZRXNVTIZXSDRDWXDLIDFRDXXDLICDTNFIBH

Solving this as a general simple substitution cipher yields the final plaintext:

MASTERY IS THE END IF YOU TRULY ENJOY SOMETHING YOU SHOULD HOPE

TO NEVER MASTER IT IT ISNT A QUESTION OF TO BE OR NOT TO BE YOU ARE XD

Hence, this single cipher conceals three plaintexts. The length of the ADFGVX plaintext is 720, the
length of the variable length substitution cipher is 403 characters, and the length of the simple substitution
cipher from the lengths of the blocks of letters in the message is 133 characters. The overall multi-ciphertext
length is 1440 letters for the ADFGVX ciphertext plus 104 spaces to separate the message into 105 letter
blocks. The efficiency score, therefore, is:

ES =
720 + 403 + 105

1440 + 104
≈ 0.80 < 1

So the Three-In-One multi-cipher is inefficient based on the definition from 2.2. This makes sense because
the encryption algorithm for the ADFGVX cipher includes a fractionation step. Single letters in the plaintext
are replaced by pairs of letters during the encryption process, and therefore this classical cipher alone
possesses an efficiency score equal to 0.5, because the ADFGVX ciphertext always contain exactly twice as
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many characters as the plaintext. A better way to consider this multi-cipher rather than using the terms
“efficient” versus “inefficient” is to notice that the efficiency score increased from 0.5 for this fractionating
cipher to 0.8 using the multi-cipher. Therefore, we were able to conceal 60% more plaintext per ciphertext
character compared to an ordinary classical cipher which uses bigram fractionation.

Notice that the third cipher, which uses the lengths of the blocks, does not significantly impact the
efficiency score. For each block corresponding to a single letter in the message, a single space character has
to be appended in the ciphertext, except for the very last block. We will see that the Four-In-One cipher in
the next section uses block lengths less efficiently.

In summary, this is a third degree multi-cipher which can be thought of as a transposed fractionating
ADFGVX cipher using the text alone, a variable length substitution cipher using the colors, or a simple
substitution cipher using the lengths of the blocks of letters (which were indicated by the spaces).

3.3 Four-In-One Cipher

This multi-cipher does not use colors, unlike the multi-ciphers in 3.1 and 3.2. For this reason, we point out
that even though the cipher which we present in this section only conceals four messages, it could potentially
be modified to include a fifth plaintext. The cipher is shown below in Figure 9. Taking up an entire page,
the reader can verify that the total length of the multi-ciphertext, including spaces, is 3306 characters.

For this multi-cipher, the four intermediate ciphertexts for the four plaintexts can be recovered using
simple commands in a Python console, so we will provide various code snippets. First, though, let’s consider
the three distinguishing features about this multi-cipher:

1. The capitalization

2. The spacing

3. The arrangement of the capitalized letters

Let’s look at these features in order. First, notice that this message consists exclusively of capital and
lowercase letters in the A-Z alphabet. Suppose that we looked only at the capital letters appearing in the
message. Using a Python console, we can extract the capital letters from the ciphertext using a single-line
command. Assume that we defined:

Then the capital letters can be extracted using the following command:

A frequency analysis of the capital letters in Figure 10 reveals that the most common letters in the
ciphertext are I, M, and X, appearing 7.4%, 6.7%, and 5.92% of the time, respectively. These flattened
frequencies may possibly indicate a polyalphabetic cipher. To be sure, we calculate the index of coincidence
for this ciphertext and find that it is equal to 0.046. This is much lower than the IOC of English at 0.0667,
providing further evidence that this message was encrypted with a polyalphabetic cipher. The final piece of
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I Wh Ptr SZSES BEYe C gYPVA u Nobn VdUnF et ea u QWN WNBS hePs kpTE eJ s s u

FJrKR YX fM KLJs omOFH XI IInin XQ Ek K iNV dX gE t ue SLaN LoJp VnK LJOuF awHX A

nZrR dLrBF ol maSQo W fL eHr QcGKL JG hStl e Y WVKLJ Ep n a FVQa tLsK SoFr dAYuI

XQKnE QTsJX F u ekZKW Beu QKp LrsFb A aG EWS eKiLt Jh VRJQ gI nD ISM OXYe duPZ

Ro tLGF YPeth V eF raA YPlVe Ie SB ZVsJ ooEF VQfL yNMQ T SxIn LTFAg e NVXs ANBYa

XM yM a S b rpV Nuod tcOYX MM RpXof TN ZQoRQ h s tEon ISye t h iBU shsIt s F BYeW

TlUVX oNi nieU VtWY P hVrg nKoT uLnJ dN tZ AKPNS Vu rr X TAu tZ eX seGh pIsTO WM

eCECa Il sn EH BIKt u G brMB tYIB Wb IP IaJL VSEY Medk QMKsL w JoG u R VJPR ZN noVd

rd XJ eZ ao b VR eXFSR dV FW B its IS QX LYJ sh eL XB oP tP iHnN et LEnch X Yeva PVdW

e s eYe ZnF p ue drRrg LE uZ oR I A aGY Ynder cW L X YPri i VhJ hn NZ V p AsMM EoMYE

Ro phWXB Z Pu rns QIJTa mF ZBde MXQ iKTnT A JM aGrT tVlXM I KsX eMMN M Sh Lnsa JX

WM EKY ydrPV RsJu a fLKLo JceA tGEfW SEsSh el TiNt Te SZ nZe JIsSW o KYSab T t t VWs

X oPLQ mFVe J lHi eNLJp Sg R M Kn LNel V iXusX iTIn E Kd Jt Z sY bI UPRu IrXde BL ethoW

Mr Ms oNS ZTtU L FD fVOo JXeK XtMM WMWMh WVTe U WP rFo dwdUZ oRL W u Lsbr

XrTdN oY wE S LYe eIUn PpRuI XB LeWMI Jd rE XWrg uWXo Xsn XdaF XtKW I nLy ZU RR iX

JVaG F Cg JIh MM TSS A Zn c HJZ rJ XM M D AJo teI BLd JTG PtJoA ihJ e hr TeNB omiZJ Zt

TtTll V JI KeY WMhJP nwiN sSdtV oX fMMCE mR iw MXSI esPV SSKV AF e A G eIWhP pt me

R T X aHaw VYtX y PlRHi lh tX WD I Y reg uPZRo eL B F n H dpT EZxd l osXea M cBY rkMcn

sX a PsdVi p GTls tCCH dMaIn MIM h tC IoPe wJLRP lN OYrsX dSae Q woEkK G WCnX

YPiRw stXX i olX tRstV PM UE toKQ IIfGC Kh VeroJ XF VY sAcJ E DBeY fotEn aY rVFPN OY

uX h SeQ t EKBIr J e Wse UWiKX JtL slZRY iPVZ N lKiZ tRfNm BPSK BYIe roKQI f I IID ELlMi

te R ao VlJIF Vt Rs Ii PF aJs fQKA F A YIt hiQQF gst W MM rDML fPous iK LFrDV vJQW N

RaHvT g FWlJ aBFia XMM tVnsh E WB tYnM eSiPZ W XvC EeGM I IM aTiB Kt lb hSX KeFVH

PtKL rJeNs ei FtVJA sK li l GiM IE tG tmegJ AoR eViv i laJBY E Yfe dnt QK A F AYIt ok QQ Fat

WGeih MTcE Z ga nAV n ih SgSMM tMwH e B lZQT NKoro d sL JNZV J Ene oRtaW nKWLR

Iea E Zt XMmA BtMSK Ri RHMIH FieG J pEfKa B VbVG eMZRe Lblo Z tVeWs HsCV idoHG

nGtht We MeWM sW iM aLo PKIWs AnZ hXNAG tSgX A Z iFQ nM ht Kfen LFrB oteK Ls J Cd s

oeM m V FLil ZEYeQ s Fh RLbQ d aMI SWWJG yrGoz hrs Y IQ QFra lWXpJ bd IaMaQ TZEe S

sKdnV X rbuW QeXKn J ydbaZ r g V HvY P aVEn iigG V Ffe VRrIr Cs G a JT CKaW e WolNs

XoMn i Bt hY g nI KQ IIB ItJbu fHJi I laUf PD wQ KFopZ ZeEr I ulec IWkMf IdWm B rNSR osQa

CPNWk EunEH ZVs WidTN CESL ZsRSW eI XMeMI RH mo IadC iMKW I wR NIlR RsIZ V p

caW ZiTed aK n IvIlQ oEr I LZ eVKa NWLWs Fh QdInU hZIC M YGZst t RYPa VsFFi sGRmV

Joh e I WStn iigWE Vg Ii P vlA ngI fYRWI iWXI r Pef mXM o ad eI htt wa KX M M Wreg MWMiN

n E Xht lQE eXp JnV aKMT VhRtP tt QGaog JX rF swt ZKi n II ao eJt ri es PEtRI EiA MW Ts

EQ aT VHr MaQcD WfJ T WieX M MUIic fRoQi X Ss Ipir AFtt RT ama g NK EiW BnR VfZ AoL

Re Kt Wh I XiwZn Vld R tX aJTe uriwP Li tJMhE uHn Jtsi LL sT G i vlo tCIRN V XL emh NUJes

Io QotN peKw SIMR uXMA r Lfml TUae thWp JiyII T P sXaMQ JQFcV o Y EIBlf YIU c W NIWBr

FVFne Qo hJI t aeI MDSf e SAc CtEo AMfe JhrXT LF LeNaA SM Ih L tetZh eR kLJLX o B ywPV

drrf oRM MLWJ L h tcK LJisp UK S iGC rhe IerR Y tlaP V set Jt oTZV WYBih YIeL s WmUW

ssYCI RJ eLagY MX la XFn AsJ o to hZ JeFF tK BSpSe mert PZQMW NuZiJ aZtP noWF L

Figure 9: The Four-In-One cipher



IWPSZSESBEYCYPVANVUFQWNWNBSPTEJFJKRYXMKLJOFHXIIIXQEKNVXESLNLJVKLJOFHXAZR
LBFSQWLHQGKLJGSYWVKLJEFVQLKSFAYIXQKEQTJXFZKWBQKLFAGEWSKLJVRJQIDISMOXYPZR
LGFYPVFAYPVISBZVJEFVQLNMQTSILTFANVXANBYXMMSVNOYXMMRXTNZQRQEISBUIFBYWTUVX
NUVWYPVKTLJNZAKPNSVXTAZXGITOWMCECIEHBIKGMBYIBWIPIJLVSEYMQMKLJGRVJPRZNVXJ
ZVRXFSRVFWBISQXLYJLXBPPHNLEXYPVWYZFRLEZRIAGYYWLXYPVJNZVAMMEMYERWXBZPQIJT
FZBMXQKTTAJMGTVXMIKXMMNMSLJXWMEKYPVRJLKLJAGEWSESTNTSZZJISWKYSTVWXPLQFVJH
NLJSRMKLNVXXTIEKJZYIUPRIXBLWMMNSZTULFDVOJXKXMMWMWMWVTUWPFUZRLWLXTNYESLYI
UPRIXBLWMIJEXWWXXXFXKWILZURRXJVGFCJIMMTSSAZHJZJXMMDAJIBLJTGPJAJTNBZJZTTV
JIKYWMJPNSVXMMCERMXSIPVSSKVAFAGIWPRTXHVYXPRHXWDIYPZRLBFHTEZXMBYMXPVGTCCH
MIMIMCIPJLRPNOYXSQEKGWCXYPRXXXRVPMUEKQIIGCKVJXFVYAJEDBYEYVFPNOYXSQEKBIJW
UWKXJLZRYPVZNKZRNBPSKBYIKQIIIIDELMRVJIFVRIPFJQKAFAYIQQFWMMDMLPKLFDVJQWNR
HTFWJBFXMMVEWBYMSPZWXCEGMIIMTBKSXKFVHPKLJNFVJAKGMIEGJARVJBYEYQKAFAYIQQFW
GMTEZAVSSMMMHBZQTNKLJNZVJERWKWLRIEZXMABMSKRRHMIHFGJEKBVVGMZRLZVWHCVHGGWM
WMWMLPKIWAZXNAGSXAZFQMKLFBKLJCMVFLZEYQFRLQMISWWJGGYIQQFWXJIMQTZESKVXWQXK
JZVHYPVEGVFVRICGJTCKWWNXMBYIKQIIBIJHJIUPDQKFZZEIIWMIWBNSRQCPNWEEHZVWTNCE
SLZRSWIXMMIRHICMKWIRNIRRIZVWZTKIIQEILZVKNWLWFQIUZICMYGZRYPVFFGRVJIWSWEVI
PAIYRWIWXIPXMIKXMMWMWMNEXQEXJVKMTVRPQGJXFZKIIJPERIEAMWTEQTVHMQDWJTWXMMUI
RQXSIAFRTNKEWBRVZALRKWIXZVRXJTPLJMEHJLLTGCIRNVXLNUJIQNKSIMRXMALTUWJIITPX
MQJQFVYEIBYIUWNIWBFVFQJIIMDSSACEAMJXTLFLNASMILZRLJLXBPVRMMLWJLKLJUKSGCIR

YPVJTZVWYBYILWUWYCIRJLYMXXFAJZJFFKBSSPZQMWNZJZPWFL

Figure 10: The capital letters extracted from the Four-In-One cipher

evidence that is necessary to confirm that this was, indeed, encrypted using a polyalphabetic cipher versus a
polygraphic substitution cipher is the output from an IOC-based probable key lengths calculator. We expect
the average IOC corresponding to the “best” period to be fairly close to the IOC of English, and indeed, we
find that this is the case, as shown in Figure 11.

Based on the output, we guess that the number of alphabets used in this polyalphabetic cipher is equal
to 4. If it was instead a multiple of 4 like 8 or 12, then the average IOC for L = 4 would not be close to
the average IOC for English. In general, the average IOC from a probable key lengths output is close to the
IOC of English if and only if L is equal to or a multiple of the actual key length KL that was used. This is
due to the periodic nature of polyalphabetic ciphers.

We assume that this Vigenere cipher, and use an elementary statistical attack which relies on χ2 testing
while cycling through the possible shifts to solve the cipher with KL = 4. This solves the cipher, and reveals
that the Vigenere encryption keyword was “FIRE”.

Next, look at the lowercase letters. They can be extracted from the Four-In-One-Cipher using the
following command in a Python console:

The lowercase letters are shown in Figure 12. Analyzing the frequencies of these letters reveals that
the most common letters are “E”, “T”, and “S”, appearing with frequencies 12.34%, 10.08%, and 8.1%,
respectively. These closely match standard frequencies in the English language from 4, suggesting that this
is a transposition cipher. A chi-squared (χ2) analysis can be used to confirm that this was, indeed, encrypted
using a transposition cipher. Since we already walked through the process for decrypting a transposition
cipher during the cryptanalysis of the RGB cipher 3.1, we simply reveal the solution. The lowercase letters
were encrypted using a simple horizontal transposition cipher with the permutation (2, 1, 5, 3, 4), which also
corresponds to the keyword “EARTH”. The transposition is irregular because the size of the permutation is
not a factor of the length of the ciphertext.

Let us now consider the spacing in the message. Blocks of letters range from one to five letters long. We
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Figure 11: Output from the program probableKeyLengths.py (from the implementation) on the capital
letters cipher shown in Figure 10.

can extract the lengths of the blocks and store them in a list using the following command:

We obtain the list [1, 2, 3, 5, ..., 4, 4, 1]. There are five possible numbers that can appear at any
individual position in this list. But if we splice the numbers together, and look at the message in 2-letter
blocked groupings, then there are 5 · 5 = 25 possible bigrams that could appear. Recall that there are
26 letters in the standard English A-Z alphabet. This might be a fractionating cipher in which individual
letters have been replaced with bigrams. More specifically, look at Figure 13, which shows the numbers
spliced together. This may have been encrypted using a Polybius square, a specific fractionating cipher
which converts letters to coordinate pairs consisting of the digits 1 to 5.

Consider a frequency analysis of the pairs of digits in Figure 13 in a blocks window. The three most
frequent bigrams are “22”, “45”, and “41” which appear with frequencies 11.78%, 10.62%, and 9.47%,
respectively. These match up closely with the frequencies of “E”, “T”, and “A” in the English language,
suggesting that it is, indeed, a bigram fractionating cipher.

We can arbitrarily map bigrams to letters in the A-Z alphabet, and solve the result as a monoalphabetic

htreguobndneteauheskpessurfsomninkidgtueaopnuawnrdrolmaoferchtlepnaatsordunsuekeuprsbaeithgneduoteth
eraleesoofyxngesayabrpuodtcpofohstonyethishstseloiniethrgnoundturrutesehpsealsntubrtbaedkswounodrdea
obeditssheotinetnchevadeseenpuedrrguoandercriihhnpsoophurnsamdeinartlsehnsaydrsuafocetfshelitenesoab
ttsomeliepgneliusindtsburdeethorsotfoetherodwdousbrrdoweenpuedrrguosndatnyiaghncrotedtoihehreomittll
ehnwisdtofmiweseehptmeaawtylilhtreguoendpxdloseacrkcnsasdiplstdanhtoewlrsdaewokniwstioltsttofherosce
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bdayrozhrsralpbdaaesdnrbuenydbargvaniigferrsaaeolsonithgntbufilafwoperuleckfdmrosakunsidseemoadiwlsp
caiedanvloreashdnhsttasismohetniiggivlngfirefmoadehttwareginhtlepnahtttaogrswtinaoetriestisaracfieic

foispirttamaginfoethiwnldtaeuriwithuntsisivlotemhesootpewurfmlaethpiysacolfcrneohtaefectofehreahteth
ekoywdrrfohtcispirheertlasettoihesmsseaglansotohetpemertuiatno

Figure 12: The lowercase letters extracted from the Four-In-One cipher
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1235415145221344421115224525221322124435414525123524115211444555115335123524223442451235224444145145
2211134525251144113511453441444225221322452522241144224445131142422221252213223222224251441133125222
1135211413221145251235243512451341242235415455242235151113144135211241541221224525223412444541235311
4522134525224434413222412323121322113333531245251235452522444211152211144152221135211113415135215144
5312452541514541352245252241452522131511353541454451135212522223411353124525415145351245134124223545
2522132253415133211422354123125411451241355312452541514541545524223535411322444212131145124135531245
2541514515111314413521124154122122354142254145414455354525224412441135215312452541514553114522133541
3312232211451133334525223312232253222235314155124423123333222153124525342211351235244441444511551153

115523134134452522152511443411352133414132454145252233122425455441

Figure 13: The block lengths extracted from the Four-In-One cipher, spliced together.

substitution cipher. Just like for the RGB cipher, we use a program from our implementation that does this
for us at “fractionation/ngramsToLetters.py”. We simply set n = 2, input the Polybius square ciphertext
above, and it uses a simple algorithm to map the bigrams to letters by order of appearance, from left to
right. The first distinct bigram appearing in the message is mapped to “A”, the second to “B”, and so on.
After this mapping, we get:

ABCDEFGHIJKFELFGFAHBCELABMJNJHEOJPBABMFQIEABFHHRDEFJGELLJHJBJEQCHILFGFEL

FMJHFHEGJIIFSLFGFTFFIDHJUANFJBSRGFJELABMBAEGCMFBCVOMFBKJGRCBSACVASFELFQA

HECWPJEFGELFHQCTFCWWAGFJUUPAELABELFHIJKFJRCNFJBSJGCDBSDHPAELCDECBFELFCEL

FGKJBBCEHDGNANFWCGPAELCDEBAEGCMFBELFGFPCDUSRFBCWAVJEACBPAELCDECVOMFBBCGF

HIAGJEACBPAELCDEKJGRCBSACVASFBCILCECHOBELFHAHJBSPAELCDEPJEFGBCUAWFJEJUUE

LFUAWFPFFBXCOAHWAUUFSPAELQFJBABMHCHEJOJPJOWGCQELFKLJHQJBSUCCTECELFUAMLEVC

Solving this as a monoalphabetic substitution cipher yields the third plaintext. If one bothered to
determine the original encryption alphabet that was used in the the Polybius square, they would be able to
determine that the keyword used in the grid was “AIR”.

The fourth plaintext is determined by the arrangement of the capital letters in the message. The posi-
tioning is extremely specific for a reason: the capital and lowercase letters represent the components of a
binary cipher. Every capital letter represents a binary “0”, and every lowercase letter represents a binary
“1”. We can extract the binary ciphertext using the following command:

To determine the number of bits that represent a single English letter, perform a frequency analysis of
n-grams in a blocks window for all n within a certain range from five to some higher bound. Observe the
values of n for which the message has close to 26 distinct n-grams appearing in the message and numeric
frequencies that closely match the numeric frequencies of the English language. Five is the minimum number
of bits to represent an English letter because there are 25 = 32 possible values which can encompass the 26
letters in the English alphabet, but anything less than that would not work (24 = 16 < 26).

Applying this process, we determine that this is a 5-bit binary cipher. There are two ways that this can
be solved:

1. Use an arbitrary mapping to the English alphabet with the program “ngramToLetters.py” in the
implementation, setting n = 5. Solve the result as a monoalphabetic substitution cipher.

2. Use the highly specific binary to A-Z mapping equivalent to the A-Z←→ 0-25 mapping (Table 3). From
our implementation, this mapping can be done quickly using “fractionation/nBitBinary.py”, setting
n = 5 and using the decryption mode. Solve the output as a monoalphabetic substitution cipher.
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0010110000000010100001011101010111110000000110111001011100100001000011100000001110001010010101110010
0101010000101100010101010011110010101010100000101110000000111000110100101100100001000100011100001100
1011010100001010101000010100000001110001100000111010110001010100001011000010100000101000011000100001
0010101110011111000000101100001001110110011111001110110001001000101111001000101110101010101000000011
1000110101101101000010001011100000110110010000100010000000111000101010100000001101110010111001000010
0001110000000111000101010101100111001110010111010101111101100101000100011111000001110101100010100010
0001110000011110000110001100010010000101010100001010000010111000000011100010111000101101001000101110
1010100101001001000110110010100010010101100010100010011010110100100101010100001010110011110010110000
1000010010010010000001000100010111100100010111010101010000110010101000010000110001110010110110010001
0100001000100010010000000110001000000011100010000101011011101001110001010110000100010011101011010100
0010110000110000000010010010111100010110010101001111000001111000110001011000111110110100110111010110
1100111000101010001100101100001000110101101101000010001011100111010110000011000010001011100000101000
0101110110100000010101010000101011001000101100010000101010101000000011100010000001011101101000010101
0010110000000111000111000100010111100010010000010101001010011000101110001010101000010010000010100111
1000100001001010111010001011101000101111001010111110000011111000000011100011001110010011100111010001
0101010000011111000000011101101000001100100100100001000000110010101001001000101110101010100111001011
1010100101010100001010100001010001001011011100101110010011110100011000101010010110000000110111110000
0111001011010100001010110011100100101111011001001001111000110010101010000101011010101101101100000001
0111001011010010001100101011110010101010100011010000101100001011000000010001000100001101101000010001
0010001110010111010101010100010010000101010101000000011100010100110010011100011111000101011011010000
1000101110011110111110000011100010100111001010101000010101100111001011100110011101111100100010000100
1000101010010001100000111010100101110011001111000100100100100101010011010110101001111100110010101011
1001001111100000001110001101011011010000100010111001111010110000101000001010000110001000001000110110
0111000011001010100110110000010100001011101101000010110011111000000011100011100010011101100111001110

11000000110010101001100000101100011001010111100100100010111110000001010101011000

Figure 14: The binary ciphertext obtained from replacing capital letters with “0” and lowercase letters with
“1”.

The methods are not very different, but we will use the second method, because it will allows us to
recover the keyword that was used to encrypt this specific plaintext. We obtain the following intermediate
ciphertext:

FQBILVPQDOLSCDQDRJLSKQWFKPFKQLQDRUWIIRYMWUFKCQDRQOWFILBIFBRBFOPQFQTWPTWE

RPELVKQDRVWQROBWIIQDRKQDOLSCDQDRKWOOLVPWKEPQOWFCDQPBRREFKCQLQDROFUROVFER

WKEVRITLJFKCWPFQQSJAIRPELVKDFIIMOLMRIIREAYQDRBLOTRLBCOWUFQYASLYWKTYHRRMP

WTOWZYVDFQRVWQROOWBQROBILWQFKCWIWEFKQDRALWQVFQDRYRPCIFJJROFKCIFHRBFORORP

FPQPQDRTSOORKQPQDWQMSIIDFJELVKOLVFKCUFCLOLSPIYVFQDPQOLKCWOJPMSPDFKCWVWYB

OLJDFPFKRUFQWAIRBWQREOLVKREFKQDRJSOHYVWQROPPQOFHFKCWOLTHPSEERKIYHKLTHRES

KTLKPTFLSPQDRVWQROPLBIFBRARWODFJWBILWQWPQDRYTWOOYDFJQLDFPERPQFKY

Solving this gives the fourth, and final, plaintext. If we solve this as a simple substitution cipher, we
find that the encryption alphabet used was “WATERBCDFGHIJKLMNOPQSUVXYZ” – a Keyword cipher
with the key “WATER”. This matches with the theme of the cipher. The four encryption keys that were
used for the four plaintexts are the four elements: fire, earth, air, and water. Additionally, each plaintext
is related to the element that was used to encrypt it. We encourage interest readers to determine the four
plaintexts from the information provided in this paper to see how they are related to their encryption keys.
Perhaps the Four-In-One Cipher may also be referred to as the “Elemental Cipher”.

At the beginning of this section, we noted that the overall length of this multi-cipher is 3306 characters.
The plaintexts have lengths 1418 (capitals), 1062 (lowercase), 433 (lengths), and 496 (binary) characters.
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Therefore, the efficiency score is:

ES =
1418 + 1062 + 433 + 496

3306
= 1.03 > 1

In this case, there is no true baseline of comparison because the text cannot be read alone from left to
right to obtain one of the ciphers. This multi-cipher is borderline efficient, but if it were modified to include
colors and conceal a fifth plaintext, its efficiency score would increase dramatically, possibly even beating
the efficiency score of the RGB cipher. The following analysis explains the reasons for the efficiency score of
this cipher:

• Two of the ciphertexts – the capitals and the lowercase – were interlaced, so the 1418 + 1062 characters
present in both plaintexts were also present in the ciphertext.

• The positioning of the capital and lowercase characters did not affect the length of the ciphertext, but
it increased the cumulative length of the plaintexts by 496 characters through the binary cipher.

• The blocking system was the main cause for inefficiency. If a simple A-Z←→ 1-26 system had been used
to map the block lengths to letters in the alphabet like in the Three-In-One-Cipher, then the efficiency
score would have been much higher. However, with the spacing method, the ciphertext contained a
total of 865 spaces, and only 433 characters were added to the cumulative length of the plaintexts from
the Polybius square fractionating cipher, resulting in a net inefficiency. But the blocking system for
this cipher can be beneficial because most of the time, it allows a greater total number of plaintext
characters to be encrypted into the block-lengths ciphertext for an otherwise fixed due to the order in
which encryption occurs during the encryption algorithm. Consider this example:

A Four-In-One multi-cipher has been completely encrypted except for the spacing and it is 1000
characters long. If we use a blocks spacing method with A-Z←→ 1-26, the average number of ciphertext
symbols that will form a block to represent one plaintext letter is 13.5 symbols, assuming the mapping
is uniform (which it isn’t), so the expected number of plaintext characters that can be encrypted will
be about 74. But if we use a blocks spacing method with the Polybius square spacing strategy, then
the average number of ciphertext symbols to represent a single letter will be 1+5

2 · 2 blocks per letter
= 6 symbols, and the expected number of plaintext characters to be encrypted will be about 167.

Since the A-Z←→ 1-26 system isn’t uniform – more frequently appearing letters in the English language
are overrepresented among the block lengths – the mapping which would allow the largest possible
amount of plaintext to be concealed using this mapping would have the most frequent English letters
corresponding to smaller block lengths. If this is the case, it is possible that the total amount of
plaintext that can be concealed using this mapping is lower than that for the Polybius square blocking
strategy. But for any random mapping, it is much more probable that the Polybius square spacing
strategy allows a greater total amount of plaintext to be concealed using the cipher, despite the lower
efficiency score that it results in.

Overall, this is a multi-cipher of third degree. It can be interpreted either as a pair of interlaced cipher-
texts, a fractionating Polybius square cipher, or a fractionating binary cipher. Including colors to conceal a
fifth plaintext would make this a fourth degree multi-cipher.

A Appendix

Here is the link to our implementation of the ciphers which we discussed in this paper, and a few of the
cryptanalysis tools and algorithms that can be used to solve those ciphers.
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A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

Table 3: The standard A-Z ←→ 0-25 mapping, or the modulo-26 mapping.

A B C D E F G H I J K L M

8.55% 1.6% 3.16% 3.87% 12.10% 2.18% 2.09% 4.96% 7.33% 0.22% 0.81% 4.21% 2.53%

N O P Q R S T U V W X Y Z

7.17% 7.47% 2.07% 0.10% 6.33% 6.73% 8.94% 2.68% 1.06% 1.83% 0.19% 1.72% 0.11%

Table 4: Standard English frequencies
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