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Abstract—An information escrow (IE) service allows its users
to encrypt a message such that the message is unlocked only when
a user-specified condition is satisfied. Its instantiations include
timed-release encryption and allegation escrows with applications
ranging from e-auctions to the #metoo movement. The proposed
IE systems typically employ threshold cryptography towards
mitigating the single-point-of-failure problem. Here, a set of
escrow agents securely realize the IE functionality as long as
a threshold or more agents behave honestly. Nevertheless, these
threshold information escrow (TIE) protocols are vulnerable
to premature and undetectable unlocking of messages through
collusion among rational agents offering the IE service.

This work presents a provably secure TIE scheme in the
mixed-behavior model consisting of rational and malicious escrow
agents.; any collusion attempt among the agents towards prema-
ture decryption results in penalization through a loss of (crypto-
)currency and getting banned from the system. The proposed
collusion-deterrent escrow (CDE) scheme introduces a novel
incentive-penalty mechanism among the agents to stay honest
until the user-specified decryption condition is met. In particular,
each agent makes a cryptocurrency deposit before the start of
the protocol instance such that the deposit amount is returned
to the agent when the user-specified condition is met or can be
transferred by anyone who holds a secret key corresponding to a
public key associated with the instance. Using a novel combination
of oblivious transfer, robust bit watermarking, and secure multi-
party computation, CDE ensures that whenever the agents collude
to decrypt the user data prematurely, one or more whistle-blower
agents can withdraw/transfer the deposits of all other agents,
thereby penalizing them. We model collusion as a game induced
among rational agents offering the CDE service and show that
the agents do not collude at equilibrium in game-theoretic terms.
We also present a prototype implementation of the CDE protocol
and demonstrate its efficiency towards use in practice.

While this work does not aim to solve the collusion problem
fully, it significantly raises the bar for collusion. It offers an
important step towards weakening the strong non-collusion as-
sumption pervasive across multi-party computation applications.

I. INTRODUCTION

An information escrow (IE) service [10] allows a user
to encrypt her sensitive message to some condition, such that
the message can only be revealed after the condition is met.
This condition can be anything the user chooses and can be
checked by a program (or smart contract). For example, these
escrows can include checking for share value of some company
hitting a particular value, temperatures rising to a certain
level to release funds for environmental programs, allegation
escrows [9], [63], [81] or timed-release encryption [29], [37],
[73], [82] where users send messages to the future. The most
popular among them is timed-release encryption (TRE) [29],
[37], [73], [82], which involves encrypting a message for a
specific time period such that it cannot be decrypted before

the period ends. Applications for TRE include e-voting [27],
sealed-bid auctions [26] and client puzzles in the challenge-
response systems [44].

Offering information escrows, especially for software, is
also prevalent in the industry. Companies like Escrowtech [2]
and Iron Mountain [3] provide software escrow services to
technology companies that routinely appear in the Fortune 500
list. However, firms offering the service act as trusted third
parties. Towards avoiding this single-point-of-failure, many
systems [9], [16], [28], [29], [37], [63], [80]–[82], [91] realize
IE using threshold cryptography [17], [36], [38] and making
a non-collusion assumption among a group of agents.

In a distributed/threshold information escrow (TIE) ser-
vice, the input message gets shared among a group of agents
through a suitable distributed cryptographic primitive. Here,
on the one hand, a threshold number of agents are expected to
combine their shares to open the message when the opening
condition is met. On the other hand, the message remains secret
as long as only a lower than the threshold number of agents
get compromised. While this threshold-bounded adversary as-
sumption looks reasonable for many applications of distributed
cryptography (such as threshold signatures wallets), it is indeed
a stronger assumption for IE applications; these applications
at times require significant longevity of usage.

If the escrow agents running a TIE service decide to
collude and open a message before the attached condition is
satisfied, they can do it passively in an undetectable manner. As
the agents may collude among themselves in an undetectable
manner, it is difficult to prevent such collusion over a long
time; unless the protocol design itself makes collusion non-
profitable. This work aims to design such a TIE protocol where
the best strategy for any rational agent will be not to collude.

Contributions. In the form of collusion deterrent escrow
(CDE), this work offers a novel solution direction and a
provably secure protocol to address the longitudinal trust
issue with threshold information escrows. If more than a
threshold number of escrow agents collude to open some
particular locked message from a user (say Alice), the proposed
distributed protocol ensures that the locked deposits of the
agents get released to an anonymous subset of agents (among
the colluding agents) prescribed by Alice. Thus, the protocol
disincentivizes collusion; the agents will not attempt to collude
to open any user message for fear of losing their deposits
and getting banned from offering any future services. Non-
collusion assumption is highly prevalent in the distributed
cryptographic literature, [16], [28], [45], [46], [79], [91] and
overcoming it has been a significant barrier for the com-
munity for a long time. In this work, we address collusion
among the multi-party (MPC) computation agents through dis-
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incentivizing the agents instead of just binding them with the
non-collusion assumption

It is typically assumed that out of n agents, a maximum
of t agents can be corrupted who can act maliciously while
the other n − t are honest and follow the protocol without
collusion. However, we let all the agents be rational rather
than honest in this work, allowing collusions. They act only
to maximize their utilities. The t corrupted parties can deviate
arbitrarily from the protocol.

Through game-theoretic analysis, we show that with the
proposed mechanism, offering the encryption service in a non-
collusive manner is the best response strategy of the agents.

We define our collusion deterrent escrow concept as an
ideal functionality FCDE ; towards realizing it, we formally
define and use a cryptographic primitive called distributed
receiver oblivious transfer (DROT). DROT is a natural dis-
tributed version of the oblivious transfer [38] protocol, where
multiple receivers share the choice bit in a threshold manner.
Our CDE protocol employs a novel combination of DROT,
robust bit watermarking, distributed key generation [45], [79],
and secure bit decomposition [24], [86], [89] to securely realize
FCDE in the mixed-behavior model [71] where the agents
are either rational or malicious. The protocol supports any
condition that can be checked through a blockchain smart
contract (even through interaction with the real world) as a
condition of data release.

We implement the CDE protocol using SCALE-
MAMBA [33] and HoneybadgerMPC [69] libraries. Our pro-
totype implementation (see Appendix B) shows that the system
realizing the CDE takes less than a minute to set up and ∼ 120
milliseconds of interaction to transfer key shares to the service
agents.

Organization of the paper. Section II describes the system
setup, problem definition and gives an overview of the solution.
Section III introduces the required multi-party computation
modules, robust watermarking, and a claim-or-refund smart
contract required to realize the collusion deterrent escrow
(CDE) protocol. Section IV describes the different steps and al-
gorithms of the proposed CDE protocol, and Section V models
the CDE protocol as a mechanism inducing a game among the
agents to show that the agents do not collude while playing
their best response strategies. Section VI offers the security
definition, Sections VII, discuss the related work. Appendix B
provides the implementation details and the various times taken
for different steps of the protocol.

II. TECHNICAL OVERVIEW

A. System Model

The system consists of n agents who offer a threshold
information escrow (TIE) service and a user engaging with
the service in a multi-party computation (MPC) setting. The
agents are associated with fixed identities (typically connected
with real-world identities); the user verifies the identities of
the agents before engaging the service.

We consider the mixed-behavior model [71] where the
agents are either rational or malicious. Rational agents aim
to maximize their utility at any given point in time, and the

malicious ones can deviate from the protocol arbitrarily. Any
number of agents among the n agents can collude to increase
their utility. A malicious adversary can make the corrupted
parties deviate arbitrarily from the protocol. We consider a
t−bounded adversary under a static corruption setting:1 Up to
t of n parties can be corrupted before the start of the protocol
execution and those parties remain corrupted throughout the
execution. The adversary can corrupt a maximum of t parties
such that n ≥ 2t+ 1.

Communication Model: All the parties are connected
through secure and authenticated point-to-point links and have
access to reliable broadcast channel [45], [60]. We assume
the network to be bounded synchronous [9], [47] and the
execution occurs in discrete rounds. Any message generated
in round i is delivered at the beginning of round i + 1. In
practice this is achieved by setting a maximum publicly known
time bound on message transmission. The message is set to ⊥
if no message is delivered by beginning of the next round
Refer [21], [56] for the corresponding ideal functionality. The
adversary is informed whenever communication takes place
between any two parties and the attacker can arbitrarily delay
the delivery of the messages between honest parties within the
round boundaries.

The list of all banned agents in the system is available to
all the parties (for example, through a blockchain). The users
verify that the agents offering the service are not banned before
the start of the protocol.

Problem Definition. The user has a private message that she
wishes to encrypt to a certain condition and n agents offer the
information escrow service. Each agent makes a cryptocur-
rency deposit to the public key pk of the protocol instance,
with an embedded condition in the smart contract such that
the funds can be transferred when the user-specified condition
is met or with the associated secret key sk. The user requires
that her secret information would not be revealed before the
condition is met. The agents can collaborate to selectively open
the user message at any point of time; however, if the agents
open the message, the system should ensure that all the agents’
deposits are available to a subset of agents. The user chooses
this subset at the time of using the service. In this setting, we
wish to achieve the following security goals:

Correctness: Any secret message can be retrieved if more than
a threshold number of agents collaborate (even before the
user-specified condition is met).

Privacy: No secret information can be retrieved from the
system unless more than a threshold number of agents
collaborate.

Revealing: If the data of a user is decrypted, all other secret
information of the protocol will be available to the user-
chosen subset of agents.

B. Key Idea

The escrow agents offer the information escrow service. A
public-secret key pair (pkτ , skτ ) is associated with a condition
τ , corresponding to which the user’s document is encrypted.

1The employed protocols secure against the static adversary can be made
secure against an adaptive adversary using standard techniques [22], [54].

2



Agents perform DKG to
generate shares of 

Agents make conditional
deposit to

User transfers encrypted document
watermarked with         using DROT 

 

User forwards watermarking
key to subset of agents

 

Agent with watermark
key reads       and

transfers whole deposit

Agents perform
selective open 

 

Step1: Deposit Step2: Document Transfer
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Fig. 1: Steps involved in the collusion deterrent escrow mecha-
nism. Agents use a Distributed key generation (DKG) protocol
to generate shares of secret key sk corresponding to public key
pk. The user employs a Distributed receiver oblivious transfer
(DROT) protocol to transfer a copy of the document to the
agents such that it contains the secret key sk as the watermark.

Each secret key sk2 is (n, t+1) secret-shared among the agents
using Shamir secret sharing (SSS) [84], where at-least t +
2 agents are needed to reconstruct the secret. The key idea
involves MPC among the agents and the user such that the user
transfers a copy of the document watermarked with the secret
key sk to the agents. Unless at least t+ 2 agents collaborate,
none of the agents or the user can determine the transferred,
watermarked document. When they collaborate to decrypt the
watermarked document, it can reveal the watermark (i.e., the
secret key sk). The watermark detection key is provided to all
the agents.

Before interacting with the user, all the agents make a
claim-or-refund cryptocurrency deposit to an address associ-
ated with pk with the user-defined condition τ ; here, the funds
can be claimed before the condition is met using sk or the
respective agents get the refund after the condition is met. If the
agents collude to reveal the watermarked document, any agent
with access to the watermarking detection key can compute the
watermark sk and claim all the deposits of all agents, including
his own. If the deposits are claimed (visible publicly on the
blockchain) before the condition is met, all the agents except
the transferring agent are banned from offering the future IE
service. If the deposit is not transferred to a known public
address of an agent i.e., if the identity of the transferring agent
is not known, all the agents are banned. No agent attempts
to collude for fear of losing the deposit and getting banned
from the system. We prove that the best response strategy of
the agents is to not collude (refer Section V for a detailed
analysis). Fig. 1 depicts the three steps of making a conditional
deposit, document transfer from the user, and agents attempting
to collude with one of the agents with watermarking key
transferring the deposits of all agents to himself.

2for ease of exposition, we drop the index τ further.

The agents are typically firms (like Escrowtech [2])
offering their servers and participating in the protocol. Before
the start of the protocol, the agents provide their physical
identities which can be verified by the users. The users should
be able to verify the identity of the agent before engaging
in the protocol. In case of collusion, these identities will be
banned from offering the services further. Here, note that the
banning is not just for the current instance of the protocol but
any future service. Since the identities are public and known,
the agent can not offer any other service late – the agent is
banned for life.

Trivially, at any point of time before the expiry of the
escrow condition, the agents can collude and construct the
secret key sk and transfer and distribute the deposits among
themselves. However the banning policy ensures that the cost
incurred by getting banned (and losing all the payments from
any future service offerings), is higher than any payoff obtained
from collusion and decryption of any single document. For
simplicity, in the analysis of the protocol, we assume that
all the agents are similar i.e., how they value the document,
the probability with which they succeed when transferring the
deposit, the costs they incur are all similar. Any differences
in these parameters will only deter the agents further from
collusion. We discuss these assumptions further in V. With a
(encrypted) document of value d, pay-off v for offering the
escrow service for the document and assuming a future pay-
off of all the services F for each agent, the expected pay-off
obtained by each agent upon collusion in a two agent scenario
is v+ d

2−
F
2 . Since F � d, v, the pay-off is strictly less than v,

the pay-off obtained without any collusion deterring collusion.

In summary: with public rational agents offering the
escrow service, when the user employs robust bit watermarking
to watermark the data and assuming the agents incur net pay-
off loss from banning, our CDE protocol ensures that no
rational agent attempts to collude. Non-collusion is the best
response strategy of the rational agents in the CDE protocol.

C. Protocol Steps

At the beginning of the protocol, the agents run a dis-
tributed key generation (DKG) scheme [45] to generate a
public key pk and a (n, t+1) SSS of the corresponding secret
key sk, with each agent Aj for j ∈ [1, n] receiving the jth
share JskKj . Here, an (n, t+1) threshold secret sharing requires
at least t+ 2 agents to reconstruct the secret.

The agents run a secure bit decomposition protocol [24],
[86], [89] on the shared key sk to obtain the SSS shares of the
secret key sk bits; i.e., each agent Aj now have a SSS share of
the bit ski, i ∈ [0, λ− 1] (ski is the ith bit of the λ-bit secret
key sk), denoted by JskiKj . A public bulletin board server
is available to all the users and agents where they publish
non-secret information and encrypted data whenever needed.
The public key pk is stored on the server, each agent Aj
makes a crypto-currency claim-or-refund deposit using a smart
contract to the address associated with pk with the condition
τ embedded in it such that the deposit can be transferred if
the condition is met or by anyone with the key sk.

Document transfer. When the user wants to use the TIE
service for the message m, she splits the message/document
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Fig. 2: Watermarking the document blocks and transferring
them to the agents. Two versions of each block are obtained
by watermarking 0, 1. The secret key bits are shared among the
agents. Depending on the bit of the secret key, the transferred
document block consists of the corresponding bit as the
watermark. Thus final transferred encrypted document contains
the whole secret key as the watermark.

into λ parts (λ is the bit length of secret key sk) and water-
marks each part with robust bit watermarking to generate two
versions of each part; i.e., for each part mi for i ∈ [0, λ−1], she
computes two watermarked parts (mi,0,mi,1) with watermarks
corresponding to bit 0 and 1. She symmetric-key encrypts each
part mi,b for i ∈ [0, λ − 1] and b ∈ {0, 1} using randomly
sampled keys ki,b to obtain the ciphertexts ci,b.

She then performs 2−party computation with each of
the servers such that each agent obtain SSS shares of key
ki,ski = ki,0 + (ki,1 − ki,0)ski (Refer Section IV-B for
details), where the above equation is a representation of the
standard oblivious transfer (OT) functionality. We realize this
functionality by running a version of OT protocol where the
input of agent Aj is share JskiKj of the secret key bit ski and
the input of the user is the key pair (ki,0, ki,1). The user runs λ
such computations with each server such that the servers obtain
key shares for λ document parts. All 2λ ciphertexts ci,b are
published. When the agents collaborate, they can reconstruct
the keys ki,ski and decrypt the corresponding ciphertexts ci,ski .
However, even through collaboration, they will not be able to
decrypt the ciphertexts ci,1−ski . See Fig. 2 for an illustration
of a transfer of the document from the user to the agents.

The aim of the user is to transfer an encrypted version
of each document part such that the transferred part is water-
marked with a secret key bit that is shared among all the agents.
If the encrypted document part is decrypted, the decrypted
part would reveal a secret key bit to whoever can read the
watermark. At a later point of time, when the agents decrypt
the encryption ci,ski of the watermarked message mi,ski , the
detection key would be necessary to detect the watermark.
The user forwards this detection key to all the agents as soon
as she watermarks the message parts. Once the transfer of the
keys and the two-party computation with each of the servers is
performed, the interactive part of the user is complete. During
the transfer, the agents prove in zero-knowledge to the user
that the input share of each agent is indeed the share obtained
by bit-wise sharing of the secret key.

When the condition is met (e.g.: time period expires), the
agents can come together and reconstruct the keys ki,ski , i ∈
[0, λ − 1] by combining the shares Jki,skiK. The cipher texts

ci,ski are decrypted using the reconstructed keys to reveal
the message parts mi,ski . All the revealed message parts are
combined to form a watermarked version m′ of the message/-
document m.

Collusion and Key revelation. The agents may decide to
collude and decrypt the message m by reconstructing the keys
k(·,·) even before the user condition is met. However, the
decrypted message version m′ would contain the secret key
sk as a watermark. The two-party computation of oblivious
transfer functionality ensures that each version of the message
part that the agents can decrypt contains the secret key bit
ski as a watermark. The secret key is revealed when all the
watermarked bits are read from the message parts. Any agent
who has access to the watermark detection key can read the
secret key sk (and any information encrypted to the public key
pk) and transfer all the deposits to an address of his choice.
This is the revealing and penalizing property of the protocol.
When the funds are publicly transferred on the blockchain
before the user condition is met, all the agents except the agent
who performed the transfer are banned from the system.

The agents may also collude to reconstruct the secret key
from the shares and transfer to an address different from any
of the agents’ addresses. In this case, the transfer is publicly
visible and all the agents are banned from the system. Any
evidence of collusion, including signature generated through
the embedded key by multi party computation can result in
banning of all the agents – if the deposit is not transferred by a
single agent to his/her address. In case the agents try to attack
by removing the watermark in the received documents, the
robustness of the watermarking ensures that when the agents
try to remove the watermark, the data itself is damaged or
rendered useless. Thus robustness of the watermarking is
critical to our protocol. If the watermarking scheme is not
robust, the agents would decrypt the document blocks, remove
the watermarks and reconstruct the whole document. With
the watermark is removed, no single agent would be able to
transfer the deposit and hence the penalizing property of the
protocol is lost. However, it may be noted that, in practice a
weaker version of ‘robustness’ is sufficient for our protocol,
which states that the watermarking scheme should have no
known attacks. See Section III-B for further details.

With the penalizing and banning policy of the protocol,
no rational agent would attempt to collude for fear of loss
of deposit and future service offering. As we will prove in
Section V, in the game induced by the protocol, the equilibrium
strategy of rational agents is not to collude. The threshold
requirement of t + 1 where t + 2 agents are needed from
reconstruction follows from the game-theoretic analysis in
Section V. The threshold of t + 1 prevents the adversary
from publishing t shares and influencing the equilibrium in
the game. In the event of collusion among the agents, even if
the agents agree not to transfer the deposit after collusion, any
of the agents can unilaterally deviate from such an agreement
and increase his pay-off by trying to transfer the deposit.
Thus agents inevitably transfer the deposit (and act as whistle-
blowers) after collusion.

We further elaborate few implicit assumptions made in
the analysis in Section V.
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III. BUILDING BLOCKS

Here, we describe the basic building blocks employed by
the proposed Collusion Deterrent Escrow protocol.

A. MPC Primitives

Multi-party computation (MPC) [11], [33], [69], [77] is
an approach allowing mutually distrusting parties to com-
pute some functions with their private input collaboratively.
We use MPC modules for distributed key-generation, bit-
decomposition, and two-party computation between the user
and each agent. We follow the standard online/offline MPC
paradigm such that an offline phase can be leveraged to gen-
erate input-independent pre-processed values. These values are
used in the online phase to speed up the computations where
the actual input is involved. For instance, Beaver triples [12]
are used to multiply two secret shares.

Distributed key generation—DKG. A (n, t+ 1) DKG [45],
[79] mechanism allows n parties to generate a public key and
shares of the corresponding secret key in a distributed manner.
At the end of the generation phase, each node has a share
of the secret key sk and at least t + 2 parties are needed to
reconstruct the key. No subset of parties with a size less than
t+2 has any knowledge of it. A DKG mechanism is defined by
two phases, the sharing phase at the end of which every party
holds a share JskKj of the key sk, and the reconstruction phase
involving every node broadcasting their share and running
the reconstruction algorithm on the collected shares. The two
algorithms for share generation and reconstruction are:

• dkg.share(n, t + 1, λ) takes in the total number of parties
n, the threshold t+ 1, the security parameter λ and returns
to each party Aj , a share JskKj of the secret key sk and the
corresponding public key pk.

• dkg.recon(JskK) takes in the vector of shares with at least
t+ 2 verified shares and returns the reconstructed value sk.

Bit decomposition. A bit decomposition protocol [24], [86],
[89] takes a secret share as input and transforms the share into
bit-wise shared values i.e., for a value sk, upon input of all
the shares JskK, the protocol outputs the shares JskiK, where
ski, i ∈ [0, λ− 1] are the bits of the value sk. It is defined by
two algorithms:

• bit.decomp(λ, JskK) takes in the total number of users and
the shares of the secret key sk and returns to every agent
Aj a vector JskiKj of shares of the bits of the secret key.

• bit.recon(JskiK) takes in the vector of shares of a particular
bit and returns the reconstructed bit ski.

Oblivious linear function evaluation—OLE. OLE is a
two-party computation protocol where the sender has inputs
a, b ∈ Zp and the receiver has the input x ∈ Zp. After running
the protocol, the receiver obtains the value a+(b−a) ·x ∈ Zp
and the sender obtains > if the protocol run is successful
(refer Fig. 3). The sender does not have any information
about x or the value obtained by the receiver. There are
several constructions of OLE [32], [39], [40], [48], [58]; in this
work we consider OLE as a UC-secure blackbox. The ideal
functionality of OLE is provided in Fig. 8 in the Appendix.

OLE

Fig. 3: Oblivious linear function evaluation (OLE) [39]. The
sender has two inputs a, b ∈ Zp, the reciever has input x ∈ Zp,
the receiver obtains the value a+ (b− a) · x ∈ Zp obliviously.

B. Robust Bit Watermarking

A robust watermarking scheme is defined by the property
that the watermark can not be removed without loss of infor-
mation from the watermarked data. The watermarking scheme
is defined by three algorithms, for key generation, embedding
the watermark and detection of the watermark. M is the set
of all possible documents, W ∈ {0, 1} the set of all possible
watermarks, K is the set of all keys, and η is the security
parameter. The three algorithms define the scheme:

• wm.gen(η): Given η, outputs keys kemd, kdet ∈ K proba-
bilistically.
• wm.embed(M,w, kemd): Takes the document M , water-

mark w ∈ W and embedding key kemd as inputs and
generates a watermarked document M ′.
• wm.detect(M ′, kdet, w): Takes the watermarked document
M ′, the detection key kdet and the watermark w as input and
outputs > if the watermark in M ′ matches w, else outputs
⊥.

The watermarking scheme is expected to satisfy the properties
of imperceptibility and robustness [4], [52], [68], [85]. We
assume a given similarity function sim(M,M ′) which returns
⊥ if the two documents M and M ′ are not similar and > if
they are.

• Imperceptibility: The watermarked and the original versions
of the document should be similar i.e., ∀M ∈M,∀kemd ∈
K and ∀w ∈ W ,
if wm.embed(M,w, kemd)→M ′, then sim(M,M ′) = >.
• Robustness: No known algorithm should be able to effec-

tively change or remove the watermark in the watermarked
document without leaving the document itself unusable,
even with the detection key.

Watermarking can be viewed as a mechanism to create
a communication channel that is multiplexed into original
document data [25], [55]. Here, robustness requires that the
capacity of the watermark channel degrades as a smooth
function of the degradation of the marked content. Since our
watermark message is only one bit of data, when the watermark
channel is fully utilized, corruption of the watermarked bit
(by distorting full watermark-channel capacity) corrupts the
whole document data rendering it unusable. Cayre et al. [25]
provide a security analysis of watermarking schemes and show
that schemes like substitutive watermarking provide perfect
covering where no watermarking information is leaked or the
attacker can not modify the watermarking signal when he has
access to only watermarked copies of the data. In our work, the
user forwards only watermarked copies of data to the agents
during the transfer of the document.

The CDE protocol uses a robust watermarking scheme
to watermark just either the bit 0 or the bit 1. The actual
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watermarking scheme varies depending on the type of the
data being watermarked. Our robustness definition is a weaker
notion of traditional notion of robustness [25] which states
that the any attempt to remove the watermark should result
is destruction of watermarked data. In terms of real-world
applicability, not all watermarking schemes that are currently
used in practice for different kinds of data [70], [76], [78] have
a theoretical proof of robustness. However, for our protocol to
be applicable we do need such a proof as long as there is no
known attack (till the end of expiration of escrow condition) on
the watermarking scheme being employed. This is reflected in
the robustness definition provided above. While theoretically,
an algorithm may exist which can remove the watermark from
the data, we just require that such an algorithm should not be
available or known to humans; Rogaway [83] formalized this
approach. We also need the watermarking to be imperceptible
and the watermarked data to be ‘similar’ to un-watermarked
data implying no loss of information from the original data. We
do not need cryptographic indistinguishability of watermarked
and un-watermarked data because the agent is aware that the
data is watermarked, they do not (and should not) know what
the bit that is watermarked in the data.

C. Claim-or-refund deposit

A claim-or-refund escrow deposit involves a deposit that
can be claimed when possession of certain information like
secret keys is proven or is returned to the creator upon
the embedded condition being satisfied. In a timed-release
scenario with a time-lock deposit, any party which produces
the valid signature will be able to transfer the funds before the
time period specified in the contract expires, else the funds
are returned to the party creating the deposit. We depict below
in Algorithm 1, the claim-or-refund contract logic used in the
CDE protocol.

Before the start of the CDE protocol, every agent makes
a deposit locking the funds to the contract, which requires
the signature using the secret key sk of the protocol instance.
The condition specified by the user and agreed on by all the
agents is embedded into the contract such that as soon as the
condition is met (like the expiry of a time period), the funds are
transferred back to the agents. Depending on the complexity
of the condition and the user’s choice, different cryptocurrency
systems can be used for contract creation.

The cryptocurrency script or smart contract implements
the required claim-or-refund functionality with the embedded
condition.

Algorithm 1 Claim-or-refund contract
1: if Escrow Condition == True then
2: Direct the locked funds back to the contract creator
3: else
4: if signature corresponding to public key pk of protocol

instance is valid then
5: Direct the funds to the mentioned recipient
6: else
7: Transaction is invalid

Oracles. Based on the condition specified by the user, the
smart contract can indeed interact with the parameters outside
the cryptocurrency system. Systems like Ethereum support

Oracles [1] which interact with the outside world with different
APIs for information like weather parameters etc. Depending
on the trust imposed on the oracles by the user and the agents,
they can agree on the oracles and the deposit value before
starting the protocol.

IV. CRYPTOGRAPHIC CONSTRUCTION

The Collusion Deterrent Escrow (CDE) protocol consists
of algorithms for generating the shares of the secret key sk,
setting up the message blocks by the user, the distributed
receiver oblivious transfer (DROT) to transfer the message
blocks to the agents and to open the message by the agents. The
CDE protocol with a user/sender U and n agents Aj , j ∈ [1, n]
constitutes the following algorithms:

• KeySetup(n, t, λ) generates a bit-wise shared secret key sk
for the n participating agents with threshold t + 1. It also
generates the corresponding public key pk and the other
public components.
• MessageSetup(m,λ, pk) outputs λ pairs of encryptions of

binary-watermarked parts of the message m encrypted to the
public key pk.
• DROT

(
(ki,0, ki,1), JskiK

)
The DROT protocol takes the

keys ki,0, ki,1 from the sender and the shares of the bit ski
from the receivers and transfers sharing Jki,skiK correspond-
ing to the bit ski to the receivers for i ∈ [0, λ− 1].
• Open

(
JskiK, Jki,skiK, ci,b, b ∈ {0, 1}i ∈ [0, λ − 1]

)
takes

the shares of secret key bits along with the cipher texts,
decrypts the ciphertexts forming the message blocks and
outputs the final combined message.

A. Cryptographic Setup

KeySetup(n, t, λ, η). It provides the bit-wise shared secret
key sk using (n, t + 1)-secret sharing and the corresponding
public key to the n agents. The algorithm first generates the
public parameters using grp.gen(·) which takes the security
parameter λ as input. It generates the cyclic group G of prime
order p and two generators g, h. The two generators are used
for Pedersen commitments. The agents run the distributed key
generation (DKG) algorithm dkg.gen(·) to generate the public
key pk and the vector of secret key shares JskK, with each
agent Aj , j ∈ [1, n] obtaining the share JskKj . The agents
run a bit decomposition algorithm bit.decomp(·) with the
shares to obtain the bit-wise threshold-shares JskiKj of the
bits ski, i ∈ [0, λ − 1] for each agent. Here, η is the security
parameter and λ = poly(η). Algorithm 2 describes KeySetup.

MessageSetup(m,λ, kemd). It is run by the sender who
takes the message m and uses an algorithm split(m,λ) to
divide it into λ parts (m0, . . . ,mλ−1) where λ is the bit-length
of the secret key sk. The sender forms the robust binary water-
marked versions of the message parts (using wm.embed(·))
with the watermark embedding key kemd, watermarked with
{0, 1} to obtain {(m0,0,m0,1), · · · , (mλ−1,0,mλ−1,1)} and
encrypts them using the randomly chosen symmetric keys ki,b
to produce ci,b, i ∈ [0, λ − 1], b ∈ {0, 1}. The split(·) is a
simple split/chopping of the message into parts. It is not a
cryptographic secret sharing of the message. This is because,
reconstruction of the data from watermarked secret shares may
not result in the same or meaningful reconstruction of the data.

6



Algorithm 2 KeySetup (n, t, λ, η)

1: G, g, h, p← grp.gen(λ)
2:

(
JskK, pk

)
← dkg.share(n, t, λ)

3:
(
Jsk0K, · · · , Jskλ−1K

)
← bit.decomp

(
λ, JskK

)
4: kemd, kdet ← wm.gen(η)

Algorithm 3 MessageSetup(m,λ, kemd)

1: (m0, . . . ,mλ−1)← split(m,λ)
2: for i = 0 . . . λ− 1 do
3: mi,0 ← wm.embed(mi, 0, kemd)
4: mi,1 ← wm.embed(mi, 1, kemd)

5: ki,0, ki,1
$←− K; K− key space

6: ci,0 ← enc(ki,0,mi,0)
7: ci,1 ← enc(ki,1,mi,1)

Fig. 4: KeySetup and MessageSetup algorithms

The watermark may also be affected upon such a reconstruc-
tion. Algorithm 3 depicts algorithm MessageSetup.

B. Distributed Receiver Oblivious Transfer—DROT

Oblivious transfer is a 2-party computation protocol, in
which the sender has two messages m0,m1 and the receiver
has the bit c; at the end of the protocol, the receiver receives
the message mc. The protocol ensures that the sender has no
information of c and the receiver has no information about
m1−c. We developed a multi-party version of oblivious transfer
called the Distributed Receiver Oblivious Transfer protocol
(DROT) used in the Collusion Deterrent Escrow protocol
to transfer the document to the agents. The DROT protocol
involves n + 1 parties with one sender and n receivers. The
sender has the messages k0, k1 and the receivers have the
shares JsK for the bit s. At the end of the computation,
each of the receivers receives the shares JksK. The receivers
can reconstruct ks by collaboration, however, they cannot
reconstruct k1−s. This is similar to the standard oblivious
transfer protocol in which the other value m1−c cannot be
computed by the receiver.

Ideal functionality of DROT. The functionality (see Figure
5) interacts with the sender S and the n receivers Aj , j ∈ [1, n].
S has the messages k0, k1 and each receiver Aj has the share
JsK of the bit s. The adversary A can corrupt a total of
t parties in the system — the sender or upto t receivers
or sender and t − 1 receivers. The sender initiates by for-
warding the input by sending the inputS message with the
two messages k0, k1 and the session id sid to FDROT. The
functionality stores them and informs the adversary by sending
the (input, sid) message. It also informs the receivers that
the protocol has been initiated by sending the (intd, sid)
messages. The receivers forward their shares JsKj using the
message inputR to FDROT , whose id j is stored in the
set I. After receiving at least t + 2 shares, the functionality
computes the bit s by combining the shares JsKj . When A
sends the (deliverS, sid) message, the functionality checks
if the inputs from the sender and at least t+ 2 receivers have
been received. If not, the message is ignored. The sender is
informed by forwarding the (delivered, sid) message to S.
A sends the (deliverR, sid) message to release the output

The functionality FDROT interacts with the sender S and n
receivers Aj , j ∈ [1, n]. Each receiver Aj has share JsKj of
a random, unknown secret bit s and the sender S has two
messages k0, k1. A maximum of t parties in the system can
be corrupted by the adversary A.
• Upon receiving the message (inputS, k0, k1, sid) from

sender S, record 〈k0, k1, sid〉, forward the message
(intd, sid) to the receivers Aj and (input, sid) to A.

• Upon receiving the message (inputR, JsKj , j, sid) from
receiver Aj , add 〈j, [s]j〉 to the set I, forward the message
(input, sid) to A. When |I| ≥ t + 2, compute the secret
bit s from the shares JsKj .

• Upon receiving the message (deliverS, sid) from A,
check if 〈k0, k1, sid〉 is stored and |I| ≥ t+ 2, else ignore
the message. Send (delivered, sid) to S.

• Upon receiving the message (deliverR, sid) from A,
check if 〈k0, k1, sid〉 is stored and |I| ≥ t+ 2, else ignore
the message. Generate shares JksKj of the value ks. Forward
(output, JksKj , sid) to Aj , j ∈ I.

Functionality FDROT

Fig. 5: Ideal Functionality Of DROT

to the receivers. On receiving the deliverR message, the
functionality checks if |I| ≥ t + 2, if at least t + 2 receivers
have forwarded to release the output. If yes, it generates shares
of the value ks and forwards the share JksKj to the receivers
Aj , j ∈ I.

Protocol. We realize DROT using multiple instances of
two-party computation, realizing an oblivious linear function
evaluation (OLE) [39] between the sender and the receivers.
In DROT, the OLE computation is run by the sender with
all the n receivers Aj , j ∈ [1, n]. The input of the sender is
messages (k0, k1) and the input of each receiver is share JsKj
of the bit s. JsKj are (n, t + 1) shared values of the value s.
After the DROT protocol run, the receivers obtain the value
k0 + (k1 − k0) · JsKj . These are the shares JksKj , j ∈ [1, n] of
the value ks, such that any t+2 or more parties can reconstruct
the value ks. The receivers prove in zero-knowledge that the
input shares indeed correspond to a bit s.

The Collusion Deterrent Escrow (CDE) uses the DROT
protocol to transfer the encrypted message blocks and the
corresponding keys’ shares to the agents. The user encrypts
the message blocks mi,b, using keys ki,b to obtain ci,b for
i ∈ [0, λ − 1] and b ∈ {0, 1} and broadcasts the ciphertexts
to all the agents. User transfers shares of keys ki,ski to the
agents using DROT. As a part of DROT the user runs λ
instances of OLE— for each instance i, the input of the user
is (ki,0, ki,1) where the inputs of the agents would be shares
JskiKj of the bit ski of the signing key sk. At the end of
the runs, each agent Aj has the values Jki,skiKj which are
shares of the values ki,ski = ki,0 − (ki,1 − ki,0) · ski. While
running DROT for CDE, the agents prove to the user that the
input bit shares indeed correspond to bits of the secret key sk
by forwarding a zero knowledge proof πsk; this is a NIZK
proof [20] of a discrete log statement. This way of directly
computing the shares of the keys ki,ski prevents the agents
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Algorithm 4 Open (JskiK, Jki,skiK, ci,b, b ∈ {0, 1}i ∈ [0, λ−
1])

1: for i = 0 . . . λ− 1 do
2: ski ← bit.recon(JskiK)
3: ki,ski ← dkg.recon(Jki,skiK)
4: mi,ski ← dec(ci,ski , ki,ski)
5: m′ ← combine(m0,sk0 , . . . ,mλ−1,skλ−1)
6: return m′

from learning the other key corresponding to ki,1−ski . The
oblivious transfer functionality can be realized using standard
oblivious transfer primitives, however, they involve computing
hash functions in a distributed manner which is computation-
ally intensive. Realizing the oblivious transfer functionality as
oblivious linear function evaluation using secret sharing based
2-party computation avoids the computational bottlenecks.

The security analysis of DROT is discussed in Section VI.
For security, DROT employs multiple instances of secure two
party OLE protocol.

C. Post-processing

Open. The algorithm open decrypts a message with the
collaboration of t+2 or more agents. The agents combine their
shares for every key bit Jki,skiK, i ∈ [0, λ−1] for each i and the
corresponding ciphertext ci,ski is decrypted to mi,ski . After all
parts of the messages mi,ski are recovered, they are combined
to form the final message m′ which is a watermarked version
of m. m′ contains the whole of the secret key sk as watermark
embedded in it. Algorithm 4 presents algorithm Open.

D. Escrow deposits

Before starting the protocol, the user and the agents agree
on the deposit value D. The agents deploy smart contracts
embedding the condition τ specified by the user to the address
corresponding to the public key pk. Each agent Aj creates a
deposit transaction TXj for the value D and the user verifies
that the agreed-on values of funds have been held in the
deposit. When the condition τ is met, the deposits can be
immediately transferred back to the agents. Any agent with sk
can claim/transfer all the deposits to the address of his choice
before the condition τ is met. If the deposit is ever transferred
before τ , all the agents except the agent that transferred the
deposit are banned from offering any future service thereby
penalizing them. This ban can be either permanent or for a
specified period.

In the non-colluding scenario, after the condition τ is
met, we expect the agents to take a non-zero time to compute
the secret key sk. Indeed, we expect that the deposits are
transferred back instantaneously to all the agents by the smart
contracts before the sk is computed by the agents once τ
is met. Once τ is met, there is no secret information in the
protocol instance anymore.

Before the transfer of the document by the user, she
includes partial payment in the cryptocurrency deposit smart
contract which will be paid to the agents when the condition is
met and if the agent deposits are not transferred by then. This

payment can be in addition to partial initial payment made by
the client to the agents for the service.

As the agents provide strong identities linked to their
physical identities, they cannot launch any Sybil attack to
target and ban other agents.

V. GAME-THEORETIC MODELLING AND ANALYSIS

We model and analyze the collusion deterrent escrow
(CDE) protocol as a mechanism through which the user
induces a game between the agents offering the service. Two
collusion scenarios are possible: (i) collude and reconstruct the
keys such that the document can be decrypted (ii) reconstruct
the secret key sk from the shares. These two scenarios are
modeled as collusion strategies played by the agents. For
simplicity, we initially analyze the scenario with one regulator
(user) and two agents A1,A2.

A. Considerations and assumptions

Before we analyze the system, we mention some of the
assumptions under which the proposed protocol is applicable
and practical:

• When multiple agents try to transfer the deposit after
collusion, each agent transfers (wins the race) with equal
probability. We make this assumption for ease of analysis.
However, if the probabilities are different, it deters the agents
further to collude since they do not know if they have a
higher/lower probability of success.

• The agents provide verifiable physical identities before
offering the service such that banning is effective. This pre-
vents the banned agents from offering the service again under
a different pseudonym.

• All the agents are similar. No agent(s) can impose
negative pay-offs on any other agent outside the protocol, for
example, using blackmail etc. However, they may offer positive
pay-offs like bribes to encourage a certain strategy.

• At any point in time, the expected reward for offering
the service in the future for the agents is F . The expected
reward of all future receivable payments (F ) for the services
to be offered is greater than the value v and d of individual
documents encrypted for any time period. F is not just the
receivable payments from future payments of the current
service offering but any other future business offering by the
agents. It is because the identities are physically verifiable, and
any banning is public. Also, any deviation from the protocol
by early deposit transfer is publicly recorded on the blockchain
and serves as verifiable evidence in the future.

B. Games and Pay-offs

When the user engages the agents for the escrow service,
she induces a trivial game between the agents. They have a
choice of either accepting to offer the service or rejecting,
indicated by accept or reject in Table I. If both the agents
accept, the user offers a transfer of value v to each of the
agents. This results in a trivial pay-off matrix as shown in Table
I with only the accept and reject strategies. accept indicates
the strategy of offering the service without collusion. Each
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TABLE I: (Trivial) Pay-off matrix for the two-agent threshold
escrow without collusion-deterrence. v is the fee offered by
the user, and d is the value of the escrowed document to the
agents.

A2

A1 reject accept (not
collude)

accept and
collude

reject (0,0) (0,0) (0,0)
accept (not collude) (0,0) (v, v) (v, v)
accept and collude (0,0) (v, v) (v+ d

2
, v+ d

2
)

agent makes a deposit of value D before the user interacts
with them.

The agents are free to interact; they can collude to open
the user’s escrow message and share the value of the document
among themselves. We assume the agents are symmetrical and
value the document equally. If d is the value of the document
and if agents are assumed to share the value equally under
collusion, the pay-off of each of the agents is α = v+ d

2 . This
extends the pay-off matrix in Table I to include the collude
strategy. If only one of the agents wishes to collude and the
other does not, collusion does not occur and the pay-off of each
is still v. Since the agents accrue a pay-off strictly greater than
v, colluding is a dominant strategy equilibrium of the game
[75], and hence both the agents play the accept and collude
strategy at equilibrium.

To prevent such a collusion attack and to prevent
accept and collude as the equilibrium strategy, the user who
acts as a principal/regulator designs a mechanism implemented
by offering the grand contract. In our protocol, the agents
collude to attack the system either by decrypting the document
or by reconstructing the secret key. A collusion game is
induced among the agents in either of these scenarios.

In the implementation of the game as a protocol, D > 0
is the value of each agent’s conditional deposit, and F is
the approximate sum of future payments to be received if
the agent/node is not banned from the system. In the CDE
protocol, when the deposits are transferred before the condition
is met, whoever transfers the deposits can gain the value
D (deposit of the other agent apart from getting back own
deposit). However, every agent except the agent that performs
the transfer is banned from the system. Getting banned would
make the agents lose all future payments/pay-offs that they can
receive from other clients/users whose total is approximated to
a value F � 0.

C. Collusion-game

A Collusion game is induced when the agents collude
and decrypt the document either by threshold decryption or
secret key reconstruction. The following parameters define the
game.

• The set of agents N = {A1,A2}
• The strategy space of each agent j is Sj = {wait, transfer}
• The utilities corresponding to the strategies of the agent
uj(sj , s−j), sj ∈ Sj . s−j indicates the strategy(ies) of
player(s) other than player j.

When the agents collude and decrypt the document, the
colluding agent can detect the watermark and can transfer the
deposit. However, he can choose not to transfer the deposit and
wait. These two actions are indicated by transfer and wait.

Pay-offs. The expected pay-offs of the agents under Collusion
is captured by the pay-off matrices in Table II. When the
agents decrypt the user document and decide not to trans-
fer the deposit (play wait), they both can accrue a pay-
off of α = v + d

2 . If one of the agents transfers (plays
transfer) the deposit, he gets a pay-off of α + D where as,
the other agent loses his deposit and gets banned thereby
accruing a pay-off of α − (F + D). When the agents at-
tempt to transfer the deposit simultaneously, since only one
agent can succeed in the transfer, it creates a race condi-
tion and we assume that each will succeed in the transfer
with equal probability 3; hence in expectation they accrue
a pay-off 0.5(α + D) + 0.5(α − F − D) = α − F

2 . Here,
uj(transfer, s−j) > uj(wait, s−j)∀s−j ∈ {transfer,wait} (see
Table II). For an agent transfer is a strictly dominant strategy,
he always plays transfer. The dominant strategies have been
indicated in grey in Table II; one can observe that the pay-offs
are similar to the pay-offs in well-known prisoners’ dilemma
[62]. The agents playing their dominant strategy indeed forms
the Nash Equilibrium as defined below.

Definition 1 (Nash Equilibrium [61]). Given a strategic
form game Γ = (N, (Si), (ui)), the strategy profile s∗ =
(s∗1, s

∗
2, · · · , s∗n) is called pure strategy Nash equilibrium of

Γ if ui(s∗i , s
∗
−i) ≥ ui(si, s−i)∀si ∈ Si∀i. In words, no single

player, by changing his own part of strategy profile can obtain
higher utility if the others stick to theirs.

Both the agents play transfer as their dominant strategy,
accruing a pay-off of β = α− F

2 = v+ d
2−

F
2 . As F is the sum

of all future payments from many users, we have, F � D, d, v.
The pay-off from the collusion game β is strictly less than v
making collusion unviable.

n agents. Similar to the two agent scenario in Collusion it
is a dominant strategy for the agents to play transfer. If one
agent plays transfer, he obtains a pay-off of α + (n − 1)D 4

and every other agent obtains α− (F +D). When more than
one agent plays transfer, each agent obtains α+(n−1)D with
equal probability. With t + 1 other agents in the system each
playing their dominant strategy transfer, each agent obtains a
positive pay-off of α+(n−1)D with a probability of 1

t+2 and
obtains a pay-off of α − F −D with probability t+1

t+2 . Hence
the expected pay-off of an agent playing his dominant strategy
with t+ 1 other agents is:

β =
1

t+ 2
(α+ (n− 1)D) +

t+ 1

t+ 2
(α− F −D)

=
(t+ 2)α+ (n− (t+ 2))D − (t+ 1)F

t+ 2

Similar to the two agent scenario, with F � d, v,D, we have
β < v.

3If we assume different probabilities, the agent succeeding with lesser
probability has lesser pay-off and is further dis-incentivzed from collusion

4Pay-off of (n− 1)D is equivalent to the agent transferring deposit D of
all other agents to self.
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TABLE II: Pay-offs of rational agents under different strategies
under Collusion scenarios - threshold decryption and secret
key reconstruction. The agents always play the dominant
strategies shown in grey with F � D,α.

A2

A1 wait transfer

wait (α, α) (α+D,α− F −D)
transfer (α− F −D,α+D) (α− F

2
, α− F

2
)

Bargaining: Apart from the collusion scenario defined,
each agent may indulge in bargaining/bribing by offering a
positive payment through the side contract to other agents
to prevent them from playing transfer. The other agents can
not impose a negative pay-off on the whistle blower (playing
transfer); hence the agent will always play his dominant
strategy of transfer to improve his pay-off even after accepting
a payment from the other agent. From the strictly dominant
strategies, it is clear that whenever the agents decide to collude,
they always attempt to transfer the deposit and act as whistle-
blowers in the protocol irrespective of the actions of other
agents.

Theorem 1. In CDE protocol under Nash equilibrium (ref
Definition 1) with n = 2 , the agents do not collude; for
n > 2, no more than threshold t+ 1 agents collude when the
secret key is shared in a (n, t+1) threshold structure (at least
t+ 2 agents are required to obtain secret information) under
the assumptions listed in Section V-A and F � D, d, v.

Proof: For n = 2 when the agents collude, the pay-off of
each agent from dominant strategies is β = (α − F

2 ). Since
F � d, v, α = v+ d

2 , we have β � v. The maximum expected
pay-offs when the agents play accept and collude are (β, β).
Thus the trivial pay-off matrix of Table I, under the CDE
protocol mechanism changes to Table III. Since β < v, it
is evident from Table III that accept and collude is not an
equilibrium as agents can deviate unilaterally and improve their
pay-offs. Thus at equilibrium the agents do not collude. When
the number of agents is n and the secret is shared with (n, t+1)
threshold secret sharing, collusion occurs only when at least
t+ 2 agents collude with each other. When t agents play the
collusion strategy, no rational t+ 2nd agent plays accept and
collude as his expected pay-off will drop from v to β. Thus
irrespective of the t + 1 agents, no rational agent attempts
to collude and collusion is not an equilibrium in the pay-off
matrix. The equilibrium pay-off of the agents is v.

This is also evident from the extensive-form game depic-
tion of the overall game played by the agents (see Fig. 6).
‘Collude’ indicates the two collusion scenarios and the pay-
off is the maximum obtained from either of the two scenarios
when the agents play the collusion strategy. The leaf nodes
are associated with the pay-offs of the agents for a run of
the game. As evident from the last decision node of the tree,
player 2 never chooses to collude when agent 1 plays accept
and collude as accept, not collude offers strictly higher pay-
off. Similarly, when the game tree is formed for n agents, at
a node where t+ 1 agents collude, the t+ 2nd agent chooses
not to collude as the equilibrium strategy. It can be seen that
‘accept and not collude’ of every agent is the strategy that
survives the iterated deletion of weakly dominated strategies

TABLE III: Pay-off matrix of the two agents under CDE. v, β
are the pay-off when agents do not collude and collude. The
agents do not collude since β � v

A2

A1 reject accept (not
collude)

accept and
collude

reject (0,0) (0,0) (0,0)
accept (not collude) (0,0) (v, v) (v, v)
accept and collude (0,0) (v, v) (β, β)

accept,not
collude

reject

Agent 1

Agent 2

reject reject

accept and
collude

accept,not
collude

accept and
collude

accept and
collude

accept,not
collude

Fig. 6: Extensive form game induced by the user in CDE
between two agents. v is the pay-off when agents do not
collude and β � v is the pay-off when the agents collude

and hence the unique equilibrium strategy profile of the game
consists of each player playing ‘accept and not collude’.

In the current protocol design, the user forwards the
watermark detection key to all the users after participating
in the transfer protocol. We arrive at this setup from game-
theoretic analysis of a setup where the user forwards the
detection key to a random subset of agents. Here the user
chooses to send the detection key to each agent with the
probability p. This divides the agents, the players of the
collusion game, into two types: players with the detection
key called efficient agents and agents without called inefficient
agents. The corresponding collusion games analyzing the two
attacks scenarios and their corresponding pay-offs in this setup
are provided Appendix C.

After collusion. Table II shows that during collusion irrespec-
tive of what the other agents’ strategy is, the dominant strategy
of any rational agent is to attempt to transfer the deposit to
himself. Thus whenever collusion occurs (with > t+2 parties)
irrespective of which set of agents collude during the collusion
phase, every colluding rational agent attempts to transfer to
himself leading to an expected pay-off strictly lower than
obtained without collusion. The adversary controlling t agents
can approach any rational agent to reveal all the secret shares
with the adversary, however, since the threshold of secret
information is t+1, at least 2 rational agents need to participate
in collusion along with the adversary to transfer all the deposit.
If more than t+1 agents participate in collusion, the expected
pay-off is strictly less than without collusion. Thus no rational
agent participates in the collusion.

In works involving rational secret sharing [49], [50], the
authors show with the utility structure where the parties do
not prefer others to know the secret information, the parties
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do not reconstruct the shared secret in equilibrium. In CDE
protocol, we have a similar utility function structure, however
in this protocol, not sharing the information (non-collusion)
survives the iterated deletion of weakly dominant strategies
and hence an equilibrium. What is a road-block in works like
[49], [50], [57] is actually made use of as an advantage in the
CDE protocol. After the condition set by the user is met, the
utilities of the agents change such that other agents learning the
secret information does not affect the agent and the equilibrium
strategy would be to decrypt and obtain the pay-off.

D. Practical Issues

Multiple-rounds. The analysis considered only one round of
play of the game. However, since collusion and corresponding
banning of agents occurs only once for a set of agents, the same
analysis can be used to depict multiple-rounds by appropriately
modifying the values of d, v, β, F . As ‘future’ always exists
and the longer the system runs the longer can be the future
service offering (because of higher reputation), the value of F
is still higher even if values of d, v, β are considered cumula-
tively for multiple rounds and multiple documents. Once the
whistle-blower transfers the deposit, all other colluding parties
are banned from the system and the whistle-blower can join
another set of agents to continue offering the service without
any damage/change to his reputation.

Partial Decryption. Since the message blocks are segments
of the message, the receivers may try to decrypt the document
partially (only few message blocks and not the full document).
This reveals only few bits of secret key instead of the full secret
key to the agents. For example, when the document is divided
into λ = 256 parts, the agents can collude and decrypt, say 26
parts or ∼ 10%, of the message. This will reveal 26 bits of the
secret key. Thus when the key is embedded once, decryption
of any ` < 256 parts reveals only ` bits to the agents with
the detection key. To prevent such a decryption, the user does
the following: she divides the document in multiples γ of λ.
Say for γ = 64, this would imply embedding 64 copies of
the secret key into the document. Now the user divides the
document into 64 ∗ 256 = 16384 parts, randomizes their order
and inputs them into the protocol. Now if the agents decrypt
10% = 1638 parts randomly, in expectation they reveal 255
bits.

The user can divide the document among multiple in-
stances of the protocol rather than one. When an agent with
the detection key obtains the key partially, he can brute force
the remaining bits of the key whenever possible. For valid
decryption after the escrow condition is met, an index is ap-
pended to the the randomized message parts before encryption.
The exact number of copies of the secret key to be embedded
depends on the entropy of the data, the useful information it
contains and the watermark channel capacity of the data – the
analysis of which is beyond the scope of this document.

Choosing D, d, v. The agents agree on the value of D, d
before the start of the protocol. One simpler practical approach
would be to fix the values of D, v for any instance. This would
put a limit on the maximum document value d that the user
wishes to deposit. If the document it too valuable, the user may
divide it among multiple runs of the protocol. Also, since the
user is anonymous, the agents would not know how the user

The functionality FCDE interacts with a user U and n agents
with identities Aj , j ∈ [1, n]. U has a message mU to be
locked and selects the subset of agents SU = {Au1 , · · · ,Auq}
where U = {u1, · · · , uq} is the set of indices of agents chosen.
The user and a maximum of t agents can be corrupted by the
adversary A.
Init Session and user input:
• Upon receiving the message (inputU,SU ,mU, sid) from

user U, record and store 〈U,SU ,mU, sid〉, forward the
message (intd,U, sid) to each agent Aj and forward
(input, sid) to A.

Open message:
• Upon receiving the message (openR, j, sid,U) from the

agent Aj and store j in the setQsid and forward (open, sid)
to A.

Release message:
• Upon receiving the message (releaseR, j, sid,U) from

the agent Aj , store j in the set Rsid and forward
(release, sid) to A.

Delivery:
• Upon receiving the message (deliverU, sid) from A,

check if 〈U,SU ,mU, sid〉 is stored, else ignore the message.
Send (delivered) to U.

• Upon receiving the message (openA, sid) from A, check
if 〈U,SU ,mU, sid〉 is stored and |Qsid| ≥ t + 2, otherwise
ignore the message. Send (openoutput,mU, sid) to all
the agents Ak for k ∈ Qsid and forward the message “key”
to agents Ad for d ∈ Qsid ∩ U .

• Upon receiving the message (releaseA, sid)
from A, check if 〈U,SU ,mU, sid〉 is stored and
|Rsid| ≥ t + 2, otherwise ignore the message. Send
(releaseoutput,mU, sid) to all the agents Ak for
k ∈ Rsid.

Functionality FCDE

Fig. 7: Collusion Deterrent Escrow Ideal Functionality: FCDE

data is distributed across different instances of the protocol
run. The service fee v can be paid in parts over the period
of the escrow starting with an initial partial payment at the
beginning of the escrow instance.

Further issues. It may appear that some rational parties are at
a risk of losing their deposit if other parties collude. However,
for the collusion to occur at least two rational parties should
participate in the collusion. Since the expected pay-off with
collusion is less than pay-off without collusion, no rational
party attempts to collude. Hence such scenario does not occur.

VI. SECURITY ANALYSIS

A. Security Definition

The system consists of n agents Aj , j ∈ [1, n] and a user
U with an input mU. The agents and the user are interactive
Turing machines that communicate with an ideal functionality
FCDE . The adversary is a PPT machine with access to a
corrupt interface that takes an agent/user identifier and returns
the internal state of the agent to the adversary. All subsequent
incoming and outgoing communication of the agent is then
routed through the adversary. The adversary is t-bounded, and
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can corrupt up to t agents and the user. For formal security,
as discussed earlier, we consider the static corruption model
i.e., the adversary commits to the identifiers of the agents it
wishes to corrupt ahead of time. The adversary is also informed
whenever some communication happens between two agents
and it can arbitrarily delay the delivery of the message between
honest parties; however, it cannot drop messages between two
honest agents or between the honest user and the honest agent.

Ideal Functionality. In our ideal functionality FCDE
(See Figure 7), the user chooses a set of agents SU =
{Au1 , · · · ,Auq} where U = {u1, · · · , uq} is the set of in-
dices. The user initiates the document transfer using the
inputU message and forwards the data mU and the set SU
to FCDE with the session id sid. FCDE receives and stores
〈U,SU ,mU, sid〉. The intd message is sent to all the agents
indicating that the session has been initiated by the user. U
is the set of indices of all agents to whom detection key is
forwarded in the protocol implementation.

Each agent Aj can wish to open the user message, they
forward the message (openR, j, sid,U) to indicate they wish
to open the message of the user U. The functionality stores
the index in the set Qsid. Similarly, the users may wish to
release the user message and forward (releaseR, j, sid,U)
to the functionality. Opening the message indicates the selec-
tive opening of the message, using threshold decryption in
the protocol implementation. Releasing the message implies
reconstructing the secret key using the shares of secret key
bits among the agents and decrypting the user message. When
the agents forward openR and releaseR messages from
agents, the functionality informs the adversary by forwarding
open and release messages respectively.

When the adversary A sends the message deliverU to the
functionality, it checks if the input from the user is received and
informs the user by forwarding the message delivered to the
user. When A forwards the message openA, the functionality
checks if at least t + 2 agents have forwarded an openR
message, if yes, it forwards the user message to all such
agents. Apart from that it forwards the key to those agents
in the set Qsid ∩ U . The key message models the release
of secret key sk to agents in the real world protocol. The
watermarked secret key is revealed to the agents to whom
the detection key has been forwarded by the user, indicated
by the set U . On receiving the releaseA message from A,
the functionality checks if at least t+ 2 agents forwarded the
releaseR message, if yes, it forwards the user message to
those agents. This models the release of the user message by
collaboration from at least t+ 2 agents.

From the different steps of the CDE protocol described
in Section IV it can be seen that, when the agents decide to
decrypt the secret message, they reconstruct the keys ki,ski
and the decrypted message consists the secret key embedded
as the watermark. A subset of agents who have the correct
detection key will be able to detect the watermarked secret
key, this corresponds to receiving the ‘key’ message in the
open phase of the ideal functionality.

Towards analyzing the security of our protocols under
the mixed-behaviour model [71], we offer theorem statements
and proof sketches for ideal-real world security paradigm.
We employ all our functional blocks in a black-box manner;

we first consider the security of the DROT protocol from
Section IV-B, which is the key cryptographic construction
of CDE. DROT uses multiple instances of UC-Secure OLE
protocol for forwarding the key shares to the agents. We
present the simulator SDROT of the DROT functionality in
Fig. 9 in Appendix.

Theorem 2. Assuming a secure two-party computation of the
OLE protocol, the DROT protocol (Section IV-B) securely
implements the ideal functionality FDROT (in Fig. 5) under
the mixed-behaviour model.

Theorem 3. Let dkg, bit-decomp be secure MPC protocols,
wm(·) is a robust bit watermarking algorithm, and DROT is
secure (as in Theorem 2). The CDE protocol πCDE securely re-
alizes the ideal functionality FCDE under the mixed-behaviour
model.

The theorem proofs are postponed to Appendix A.

We provide the implementation details with experimental
results in Appendix B.

VII. RELATED WORK

Timed-release encryption (TRE) was first introduced by
May [73]. Several applications and approaches using TRE have
been proposed including sealed bids [26] electronic voting
systems [27], spam and denial of service preventions [41]
and proof-of-work systems [53]. For time-lock puzzles, a well
known puzzle was created by Rivest et al. in 1996 [82] based
on the RSA assumption which required non-parallelizable
repeated squaring. Many other primitives based on their idea
for time-lock-puzzles have been proposed including commit-
ments [19], signatures [43], [44] and key escrow [13], [14].
Besides the RSA-based construction of a time-lock puzzles
recent results from Bitansky et al. show constructions based
on random encodings [8], [15]. Their security is based on the
existence of non-parallelizing languages. The inherent problem
with time-lock puzzles is that the time needed for solving the
puzzle is dependent on the computing speed which can not be
accurately predicted into the future.

In the category of schemes using trusted party, one of the
first was presented by Rivest et al. [82] where a trusted party
creates public keys for encryptions of messages and publishes
the corresponding secret keys for different time-periods reg-
ularly. This idea was employed by Rabin and Thorpe with
multiple trusted agents, using a distributed key generation
[80] to distribute the secret key used for encryptions among
different parties. There are other schemes based on different
approaches, like the timed-release encryption scheme from
Crescenzo et al. [37] which uses a trusted time-server and a
newly created primitive called ‘Conditional oblivious transfer’.
They create an efficient protocol based on the quadratic resid-
uosity assumption which in addition offers sender anonymity.
Watanabe et al. used secret sharing where the dealer can
choose a time. The shareholders can not reconstruct the secret
shared before the time specified is over [90]. Many schemes
based on identity based encryption were proposed, where
the trusted key distribution center is also used for ensuring
the correct time [18], [28], [29], [74]. In these models, any
criterion which can be verified by the trusted party can be
used as a reason to open a capsule.
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For watermarking schemes, depending on the data type
and application, many robust watermarking schemes have been
proposed in the literature. Works such as [65], [67], [42]
present different audio watermarking schemes while works
like [64], [92] deal with robust video watermarking. For
software watermarking, schemes suggested in [88], [59] can
be considered. The proposed IE protocol admits any robust
watermarking scheme with no known attacks [83].

Halpern and Teague [50] introduce rational secret sharing
where the agents sharing a secret are rational rather than honest
or malicious. They show that at equilibrium, the agents do not
contribute shares for reconstruction and propose a randomized
protocol for performing the reconstruction. Gordon et al. [49]
improve on the randomized protocol of [50] by overcoming
the impossibility result. Lysyanskaya et al. [71] introduces the
mixed behaviour model where the parties are either rational or
adversarial, the authors provide a framework for multi-party
computation in the proposed model. We adopt the mixed-
behaviour model in this work.

Collusion in a multi-party setting to achieve collusion
free MPC has been considered in works like [6], [7], [66],
however, these works have stringent assumptions including the
parties being co-located and communication only through a
mediator. Recently, Ciampi et al. [30] define collusion proof-
ness for multi-party functionalities, they assume availability of
stateful trusted hardware tokens with each of the agents and
parties communicate through authenticated broadcast channels.
However, none of these works can be used for information
escrows as agents can communicate over external channels and
reconstruct the stored documents. In this work, we make no
assumptions on communication or existence of envelopes and
hardware tokens; we allow the agents to communicate freely
on external channels and design the mechanism such that non-
collusion is a Bayesian Nash Equilibrium for the system.

VIII. CONCLUSION AND FUTURE WORK

We propose a novel Collusion Deterrent Escrow (CDE)
mechanism to realize a distributed approach for information
escrows that disincentivizes collusion. In the CDE mechanism,
the escrow is offered as a service and the user availing it
transfers an encrypted version of her data to be decrypted
only when the user-defined condition is met. The proposed
mechanism disincentivizes any collusion among the agents
offering the service to decrypt the user’s data selectively. The
agents make a conditional deposit on a cryptocurrency system
before the data transfer. If they collude to decrypt the data,
the mechanism ensures that at least one agent will be able to
transfer all the deposits while the rest of the agents are banned
from the system. This penalty mechanism eliminates the risk of
selective opening encountered in such protocols proposed until
now. We analyze the protocol as a game-theoretic mechanism
inducing a Bayesian game among the agents and show that
it is the best response strategy of the agents not to collude.
The cryptographic construction of CDE protocol employs
robust watermarking, a claim-or-refund smart contract, and a
proposed multi-party extension of oblivious transfer primitive
called the distributed-receiver oblivious transfer. The prototype
implementation shows the ease of setup and the feasibility of
the protocol. The proposed mechanism significantly raises the

bar from state of the art by deterring collusion in the threshold
escrow service.

While this work focuses on realizing secure information
escrow using MPC, we find that our work can be extended
to other MPC applications especially those using MPC-as-a-
service for several users such as allegation escrow [9], [63],
private information retrieval, and distributed setups for identity
and attribute-based cryptography. In general, this work can
offer a key step towards developing a comprehensive strategy
to deal with passive collusions in the MPC applications in the
near future.
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The functionality FOLE interacts with the sender S, receiver
R and adversary A. The sender S has two messages a, b and
the receiver has a random value x ∈ Zp.
• Upon receiving the message (inputS, a, b) from S, verify

that there is no tuple stored, else ignore the message. Store
a, b, forward the message (input) to A.

• Upon receiving the message (inputR, x) from R, verify
that there is no stored tuple, else ignore the message. Store
x, forward the message (input) to A.

• Upon receiving the message (deliver, S) from A, check
if both a, b and x are stored, else ignore the message. Send
(delivered) to S.

• Upon receiving the message (deliver, R) from A, check
if both a, b and x are stored, else ignore the message. Set
y = a+ (b− a) · x and send (output, y) to R.

Functionality FOLE

Fig. 8: Ideal Functionality of the OLE protocol [39], [48]
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APPENDIX A
SECURITY ANALYSIS

Theorem 2. Assuming a secure two-party computation of the
OLE protocol, the DROT protocol (Section IV-B) securely
implements the ideal functionality FDROT (in Fig. 5) under
the mixed-behaviour model.

Proof: The simulator SDROT in Fig. 9 interacts with
the user U and n agents Aj , j ∈ [1, n], the adversary A
corrupts a maximum of t parties. The simulator presents an
indistinguishable view to the adversary in the real-world ideal-
world paradigm. In the DROT protocol, the user inputs pair of
of keys k0, k1 where as the agents input shares [s] of a secret
key bit s which is (n, t+1) threshold shared among the agents.

The transfer of secret key shares from user to the agents
is realized using the secure 2-party computation of oblivious
linear function evaluation (OLE) between the user and each
of the agents. The simulator SDROT invokes SOLE [48] with
corresponding inputs while generating the view for the adver-
sary. The simulator for the OLE protocol SOLE provided by
Ghosh et al. [48] is a generalization where the inputs are t
element vectors. This can be used in a straightforward manner
for t = 1. SDROT uses SOLE in a black box manner while
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The Simulator SDROT interacts with the sender S and receivers
Aj , j ∈ [1, n].
The sender S has two messages k0, k1 and the receivers have
shares JsKj of a random bit s. No more than t parties are
corrupted by the adversary A.
SDROT invokes the simulator SOLE wherever necessary.
SOLE extracts the inputs of the parties to the OLE protocol
while simulating an indistinguishable view in the real world -
ideal world paradigm.
Corrupt Sender
The simulator simulates n agents to the sender.
• Invoke corrupted sender version of SOLE while interacting

with the sender as each of the agents. The sender input for
each of the instances is (k0, k1). SOLE extracts the inputs
k0, k1.

• Forward the message (inputS, k0, k1) to the functionality
FDROT .

Corrupt Receivers:
The simulator simulates the sender to t corrupted receivers.
For a bit s, the honest receivers forward their shares to the
functionality using (inputR, sid, JsKj , j) for j ∈ [1, n−t−1].
Assume wlog. that agents Aj , j ∈ [n−t, n] to be the corrupted
receivers.
• For each of the corrupted receivers, invoke corrupted re-

ceiver side of SOLE . The input of the receiver Aj is JsKj .
SOLE extracts the inputs JsKj , j ∈ [n− t, n].

• Forward the message (inputR, sid, JsKj , j) for j ∈ [n −
t, n] to the functionality.

• The functionality forwards the value (output, JksKj) to all
the agents, input the value JksKj to SOLE instances which
using the value, set the corresponding inputs and interact
with the corrupted receivers.

Corrupt Sender and t− 1 corrupt receivers
The simulator just forwards messages between the corrupted
sender and t− 1 corrupted receivers.
• Invoke corrupted sender version of SOLE while interacting

with the sender as each of the remaining n− t+1 receivers.
SOLE extracts the inputs k0, k1.

• Forward the message (inputS, k0, k1) to the functionality
FDROT .

Simulator SDROT

Fig. 9: DROT simulator

interacting with corrupt parties, invoking the corresponding
side (corrupt sender or corrupt receiver) of it.

While interacting with corrupt S, SDROT invokes n in-
stances of SOLE each simulating one agent. SOLE extracts the
sender inputs k0, k1 which are forwarded to the functionality
using the message (inputS, k0, k1).

Up to t receivers can be corrupted by the adversary.
While interacting with corrupted receivers, SDROT invokes t
instances of SOLE which interact with the corrupted receivers.
Each instance of SOLE extracts the receiver input JsKj , j ∈
[n − t, n]. The values JsKj are forwarded to FDROT using
the message (inputR, sid, JsKj , j). After receiving all the
shares, the funcationality computes the value ks and forwards
the shares JksKj , t of which are received by SDROT . These
values are input the t instances of SOLE , which take the values

JksKj , set the two inputs while interacting with the corrupted
receivers.

When the sender and t−1 receivers are corrupted, SDROT
simulates n − t + 1 receivers to the sender and forwards all
the messages between the corrupted sender and the receivers
without any modifications. SDROT invokes n− t+1 instances
of SOLE which simulate the receivers. SOLE extracts the
sender inputs k0, k1 which are forwarded to FDROT using
the message (inputS, sid, k0, k1).

The indistinguishability of the view follows from the
UC-security of FOLE . In the case when the sender and
t − 1 receivers are corrupted, all the messages are forwarded
between them without modification.

From Theorem 1, we know that any collusion during
or after the document transfer with secret information being
revealed to the agents, results in a lower expected pay-off as
computed in Section V-C and Table III. No rational agent
deviates from the protocol as participating in the protocol
without abort results in a positive non-zero pay-off. Hence the
agents neither collude nor deviate from the protocol realizing
the functionality securely.

Next, we analyze the security of the CDE protocol
assuming that we have access to secure protocols for dkg,
bit-decomp, robust bit watermarking and DROT.

Theorem 3. Let dkg, bit-decomp be secure MPC protocols,
wm(·) is a robust bit watermarking algorithm, and DROT is
secure (as in Theorem 2). The CDE protocol πCDE securely re-
alizes the ideal functionality FCDE under the mixed-behaviour
model.

Proof Sketch: The system consists of user U and n
agents Aj , j ∈ [1, n]; at any instance of time a maximum
of t parties can be corrupted by the adversary A. The CDE
protocol involves distributed key generation, bit-decomposition
and DROT protocols, where DKG and bit-decomposition
are performed among the agents and DROT protocol is run
between the user and the agents. We use these three protocols
in a black-box manner with their corresponding simulators.
We refer the reader to the works [45] and [31], [87] for the
simulators for DKG and bit-decomposition algorithms. We
refer to them as SDKG and SBitDec.

The simulator SCDE generates an indistinguishable view
for the adversary in the real-world ideal-world paradigm. It
invokes the three simulators SDKG, SBitDec and SDROT for each
of the phases of the protocol run. The DKG protocol [45] is
based on polynomial evaluation and Pedersen commitments for
generating verifiable secret shares for the parties. Each of the
parties generates shares of a random value and locally compute
the secret share value from the shares of the qualified set
of parties. The bit-decomposition algorithm takes the shares
values and generates bit-wise shares of each of the bits of
the secret key shared among the users. The simulator SCDE
invokes SDKG, SBitDec during these phases of the protocol
simulation. Any deviation from the protocol is detected and the
instance is aborted in-case of such deviation. However, before
the next two party computation phase commences between the
user and the agents, the simulator answers all oracle queries of
the user and stores the query values qi. These queries are used
by the user to sample keys to encrypt the different message
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TABLE IV: Time taken and data transferred for DKG and bit-
decomposition phases for number of parties n = 5, 8. DROT
involves two-party computation with n = 2

n Phase Time Data

5 DKG 2.155sec 3.6 KB
BitDec 34.1sec 92MB

8 DKG 2.165sec 6.3 KB
BitDec 34.2sec 108MB

2 DROT 124.6msec -

blocks. The simulator SCDE invokes λ instances of SDROT
once for each of the bits of the secret key. In cases with
corrupted sender, the simulator computes the keys used for
encryption ki by checking over all the stored queries qi and
inputs those keys.

Since the rational parties have an incentive to obtain the
correct key shares for the protocol to proceed, they have an
incentive to not deviate from the protocol during the setup.
After obtaining the watermarked and encrypted user data and
the corresponding key shares through DROT, the agents do
not collude at equilibrium as was proved by From Theorem 1.
If the watermark can be removed without destruction of the
data, the agents would collude and decrypt the user data.
Thus, robust watermarking ensures that collusion is not an
equilibrium of the collusion-game. The agents neither deviate
nor collude at any point of the protocol there by securely
realizing the functionality.

APPENDIX B
IMPLEMENTATION

We implement the CDE protocol using HoneybadgerMPC
[69], SCALE-MAMBA [33], and Charm cryptographic library
[5]. Our implementation includes realizing the DROT protocol
to transfer encrypted watermarked images and their corre-
sponding key shares. Each run of the protocol involves splitting
the data into blocks, watermarking the blocks, and transferring
them. The DKG and bit-decomposition protocols are run by
the agents as setup before the user enters the system.

Distributed Key Generation—DKG. The DKG protocol
is realized using HoneybadgerMPC [69], a secret sharing
based python MPC framework supporting malicious security.
HoneybadgerMPC supports the robust reconstruction of secret
shared values and requires the adversary to control up to
t < n/3 parties. Honeybadger using a partial synchronous
network model requires n ≥ 3t + 1, however, assuming
bounded synchrony this reduces to n ≥ 2t + 1. All test
cases we run on honeybadgerMPC satisfy this threshold. We
implement the DKG protocol proposed by Gennaro et al. [45],
we realize Pedersen verifiable secret sharing (VSS) leveraging
the communication layer of HoneybadgerMPC. The DKG is
realized by letting each agent perform VSS of random values,
sum them up to get the shared private key, and compute
the public key from the commitments obtained. The agents
generate shares of the 256−bit secret key with the key pair
on the curve secp256k1. The DKG protocol has a message
complexity of O(n3) for n parties. When adversary can corrupt
t agents, the threshold of secret sharing is t+ 1 (at-least t+ 2
agents are needed for reconstruction), requiring n ≥ 3t+1 for

safety and liveness of the DKG protocol. Refer Mangipudi et
al. [72] for benchmarks on DKG protocol timings for higher
number of nodes.

Bit-Decomposition. The bit-decomposition protocol is imple-
mented through HoneybadgerMPC framework and the protocol
realized is based on the one proposed by Catrina et al. [24].
The round complexity of protocol is O(log(κ)) where κ is
the number of bits that we want to extract. We implement its
variant with constant round complexity by using an alternative
sub-protocol for bit-wise addition [87]. Moreover, we use the
prefix multiplication protocol introduced in [23] to replace the
prefix AND sub-protocol in [87]. Finally, we achieve a bit de-
composition protocol with O(κ2) communication complexity.
The protocol requires O(κ2) beaver triples and O(κ2) random
shares as the offline cost. The field size for bit-decomposition
is the same as the curve sect571k1 to support decomposing
256-bit values with a sufficiently large security parameter. With
a large number of multiplications involved, this is the most
expensive operation in our protocol.

Two-party computations. Two party computation is required
for the DROT protocol (Refer Section IV-B) and we implement
it using SCALE-MAMBA [33] since HoneybadgerMPC does
not support a full threshold protocol. In SCALE-MAMBA,
fully homomorphic encryption is used in the offline phase and
SPDZ-style secret sharing [33] is leveraged in the online phase.
The whole two-party computation involves one multiplication
and one reconstruction. The computation is performed by the
user with each agent so the total communication complexity
is O(n) for n agents.

Watermarking. The user splits the data into blocks and
generates two versions of each block by watermarking with
bits 0, 1. For a 256-bit secret key of the agents, the user divides
his data into 256 blocks. While the data can be of any form
including multi-media and document data, we use bit map
images for the prototype. For image watermarking we use
the combined DWT-DCT watermarking algorithm proposed
by Ali Al-Haj [35] and the implementation based on [34].
The DWT-DCT algorithm works by altering the wavelets of
the Discrete Wavelet Transform (DWT) sub-bands and applies
Discrete Cosine Transform (DCT) on few sub-bands.

A. Experimental results

To evaluate the performance of our building blocks, we
deploy our prototype on AWS clusters and run the protocols
on the c5.2xlarge instances (8 cores and 16GB RAM). The
instances are allocated in 5 regions across 4 continents. The
benchmark data has been averaged over 10 runs of the protocol
each for n = 5, 8.

Table IV presents the times taken and the data trans-
ferred by each node for the DKG and the bit-decomposition
(BitDec) phases. The DKG and the bit-decomposition take
around 40 seconds, which would be the time for setup of
the protocol before the users interact. We observe that the
running times for n = 5, 8 are almost the same. The reason
is that when n increases, the number of instances in each
region also increases, thus parties can receive shares from
geometrically closer parties, and this advantage cancels the
workload caused by a larger threshold. DROT realized through
SCALE-MAMBA, involves two-party computation (n = 2)
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TABLE V: Time (mean ± standard deviation) taken in seconds for different steps of watermarking for different images

Image Size(KB) Splitting Watermarking Extraction
Cameraman.bmp 66 0.00710 ± 1.2e-05 0.0542 ± 2.2e-04 0.023 ± 1.6e-04

Bridge.bmp 263 0.04176 ± 4.8e-08 0.1241 ± 6.7e-04 0.046 ± 3.2e-04
Sailboat.bmp 769 0.0713 ± 2.8 e-06 0.1827 ± 17.8e-04 0.065 ± 7.6e-04
Airplane.bmp 769 0.0785 ± 1.09e-06 0.1811 ± 3.69e-04 0.062 ± 5.4e-04

between the user and an agent. The interaction takes around
120 milliseconds, which is dominated by network latency (the
local computation takes only around 0.1 milliseconds).

Table V shows the times taken for image watermarking
including splitting the image, watermarking each block, and
extracting the watermark from the whole reconstructed image
after the revelation. The mean and variance have been reported
when each step is run 100 times. The user performs the
watermarking offline before interaction with the agents.

APPENDIX C
PROVIDING DETECTION KEY TO A SUBSET OF AGENTS

After transferring the document data to the agents using
the cryptographic protocol, the user transfers auxiliary infor-
mation to the agents. The information provided to the agents
induces a typeset among the agents. With the typeset induced
among the agents, the two collusion scenarios of threshold
decryption and secret key reconstruction should be analyzed
separately because in secret key reconstruction attack, the
auxiliary information is not used. The collusion games arising
from the two attack scenarios are named Collusion-1 and
Collusion-2.

The auxiliary information provided to the agents is mod-
elled as belonging to the information types {I,D}. The agent
with information I is considered the efficient agent and the
agent with D, the inefficient agent. The typeset Θ = {e, ie}
indicates efficient and inefficient agents. The user forwards the
information I (resp. D) with probability p (resp. 1−p) to each
of the agents.

In the implementation of the protocol, the information
I would correspond to the correct detection key and D, an
incorrect detection key. D > 0 is the value of conditional
deposit made by each agent and F is the approximate sum of
future payments to be received if the agent/node is not banned
from the system. The two collusion scenarios Collusion-1,
Collusion-2 would be collusion scenarios using document
decryption and secret key (sk) reconstruction respectively. In
the CDE protocol, when the deposits are transferred before
the condition is met, whoever transfers the deposits can gain
the value D (deposit of the other agent apart from getting
back own deposit). However, every agent except the agent
that performs the transfer is banned from the system. Getting
banned would make the agents lose all future payments/pay-
offs that they can receive from other clients/users whose total
is approximated to a value F � 0.

A. Collusion-game-1

When the agents decide to collude and threshold-decrypt
the document, we call it Collusion-1 game. The following
parameters define the game.

• The set of agents N = {A1,A2}
• The typeset of the agents Θ = {e, ie}
• The strategy space of each agent j is Sj = {wait1, transfer1}
• The utilities corresponding to the strategy and the type of

the agent uj(θj , sj , s−j), θj ∈ Θ, sj ∈ Sj . s−j indicates the
strategy(ies) of player(s) other than player j.

When the agents/nodes collude and decrypt the document
version (Collusion-1), the agent that has access to the water-
mark detection key can ‘transfer’ the deposit, however, he can
choose not to transfer the deposit and ‘wait’. These two actions
are indicated by transfer1 and wait1. The agent that does not
have the detection key can not transfer the deposit and hence
can only wait after collusion.

Payoffs. The expected pay-offs of the agents under Collusion-
1 is captured by the pay-off matrices in Table VI. An effi-
cient agent (e) has the correct detection key and inefficient
agent (ie) does not. When both agents are efficient and
decrypt the user document and not transfer the deposit (play
wait1), they both can accrue a pay-off of α = v + d

2 . If
one of the agents transfers (plays transfer1) the deposit, he
gets a pay-off of α + D where as, the other agent loses
his deposit and gets banned thereby accruing a pay-off of
α − (F + D). In the case when both the efficient agents
attempt to transfer the deposit simultaneously, since only one
agent can succeed in the transfer, it creates a race condition
and we assume that each will succeed in the transfer with
equal probability 5; hence in expectation they accrue a pay-off
0.5(α+D)+0.5(α−F−D) = α− F

2 . uj(e, transfer1, s−j) >
uj(e,wait1, s−j)∀s−j ∈ {transfer1,wait1} (from Table VI).
For an efficient agent transfer1 is a strictly dominant strategy,
he always plays transfer1. For the inefficient agent, wait1is
the only strategy available to play in Collusion-1, trivially,
it is the dominant strategy. The dominant strategies have been
indicated in grey in Table VI, the pay-off submatrix of Table VI
when both the agents are efficient are similar to the pay-offs
in well known prisoners’ dilemma [62]. The agents playing
their dominant strategy for the given type according to the
payoff matrix of Table VI indeed forms the Bayesian Nash
Equilibrium as defined below.

Definition 2 (Bayesian Nash Equilibrium [51]). A strat-
egy profile s(·) is a Bayesian Nash equilibrium if
Euj(sj |s−j , θj) ≥ Euj(s

′
j |s−j , θj) for all θj ∈ Θj , for all

s′j(θj) ∈ Sj where the expected utility Euj(sj |s−j , θj) =∑
θ−j∈Θ−j

uj(sj , s−j(θ−j), θj , θ−j)p(θ−j |θj).

Expected payoff. The regulator chooses each agent and trans-
fers information I with probability p independently. Hence the

5If we assume different probabilities, the agent succeeding with lesser
probability has lesser pay-off and is further dis-incentivzed from collusion
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TABLE VI: Pay-offs of rational agents under different strategies in Collusion-1- document decryption (strictly dominant strategies
indicated in grey)

A2

A1 Efficient(e) Inefficient(ie)
wait1 transfer1 wait1

Efficient
(e)

wait1 (α, α) (α+D,α− F −D) (α, α)
transfer1 (α− F −D,α+D) (α− F

2
, α− F

2
) (α− F −D,α+D)

Inefficient
(ie)

wait1 (α, α) (α+D,α− F −D) (α, α)

TABLE VII: Pay-offs of rational agents under different strate-
gies in Collusion-2- secret key reconstruction

A2

A1 wait2 transfer2

wait2 (α, α) (α+D,α− F −D)
transfer2 (α− F −D,α+D) (α− F

2
, α− F

2
)

expected payoff of each agent playing their dominant strategies
(Table VI) is:

â

= p2(α−F
2

)+p(1−p)(α+D)+(1−p)p(α−F−D)+(1−p)2α

= α(p2+2p(1−p)+(1−p)2)−p
2F

2
−(p−p2)F = α−F (p−p

2

2
)

(1)

B. Collusion-game-2

In the collusion scenario where the agents reconstruct the
secret key (Collusion-2), the game induced is Collusion-game-
2. The agents can either choose to transfer the deposit – play
transfer2 or wait without transferring – play wait2. The actions
do not depend on the availability of the detection key and
hence do not depend on the type of the agent. The following
parameters define the game.

• The set of agents N = {A1,A2}
• The strategy space of each agent j is Sj = {wait2, transfer2}
• The utilities corresponding to the strategy.

The obtained pay-offs of different actions in Collusion-
game-2 are presented in Table II. After the reconstruction of

the secret key, if both the agents wait and do not attempt to
transfer the deposit (play wait2), both the agents obtain a pay-
off of α, however, if one of the agents transfers the deposit
(plays transfer2), he obtains α + D whereas the other agent
obtains a payoff of α − (F + D). In the case when both the
agents attempt to transfer the deposit, they obtain an expected
payoff of α− F

2 . Again, playing transfer2 is a strictly dominant
strategy of every agent in this collusion scenario, and hence the
agents always play transfer2. Both the agents play transfer2 as
their dominant strategy, accruing a pay-off of b as shown in
Table II where,

b̂ = α− F

2
(2)

Maximum pay-off from collusion. It can be seen from
Eq. (1), Eq. (2) the maximum expected pay-off that can be
obtained by each agent through either collusion scenarios is

β = max(â, b̂) = max
(

(α− F (p− p2

2
)), (α− F

2
)
)

(3)

As F is the sum of all future payments from many users, we
have, F � D,F � d, v. The regulator or the user sets the
value of p such that β < v.

The value of p is lower bounded such that any subset
of t + 1 agents has at least one agent with the detection
key. However, since the pay-off from collusion Collusion-1
is minimum when p = 1, the user provides the detection key
to all the agents. This further results in all the agents being
efficient agents and simplifies the game theoretic analysis for
the Collusion-1 game. With all the agents being efficient, the
pay-off matrix of Collusion-1 is similar to Collusion-2. We
present the resulting pay-off matrix as Table II along with the
corresponding analysis in Section V.
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