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Abstract. In many cases, machine learning and privacy are perceived to be at odds. Privacy concerns
are especially relevant when the involved data are sensitive. This paper deals with the privacy-preserving
inference of deep neural networks.
We report on first experiments with a new library implementing a variant of the TFHE fully homomorphic
encryption scheme. The underlying key technology is the programmable bootstrapping. It enables the
homomorphic evaluation of any function of a ciphertext, with a controlled level of noise. Our results
indicate for the first time that deep neural networks are now within the reach of fully homomorphic
encryption. Importantly, in contrast to prior works, our framework does not necessitate re-training the
model.
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1 Introduction

Machine learning algorithms are extremely useful in many areas but the type of data that they deal with
is often sensitive. Typical examples include algorithms for the detection of certain genetic diseases from
DNA samples or the ones used for face recognition or email classification, to name a few. The processed
data contain private information about users and could be used in many ways, from target advertising to
blackmail or even threat in some cases. This is why it is essential to protect the data being used in machine
learning applications. Privacy requirements are also pushed by recent regulations companies dealing with
user’s data must comply with, like the GDPR (General Data Protection Regulation) [14] in Europe or the
CCPA (California Consumer Privacy Act) [8] in the US.

Fully homomorphic encryption. Cryptographic techniques are methods of choice when it comes to the
protection of data. But traditional encryption algorithms merely protect data while it is in transit or at rest.
Indeed, one limitation and structural property of traditional encryption schemes is that data first needs to be
decrypted prior to being processed. As discussed earlier, this is not suited for machine learning applications.
With traditional encryption schemes, the privacy control lies in the hands of the recipient of the encrypted
data. A fundamentally different approach is to rely on fully homomorphic encryption (FHE), first posed
as a challenge in 1978 [26] and only solved in 2009 in a breakthrough result by Gentry [15]. In contrast to
traditional encryption schemes, fully homomorphic encryption schemes allow the recipient to directly operate
on encrypted data.

Controlling the noise. At the core of Gentry’s result resides the technique of bootstrapping. All known
instantiations of fully homomorphic encryption schemes produce noisy ciphertexts. Running homomorphic
operations on these ciphertexts in turn increases the noise level in the resulting ciphertext. At some point, the
noise present in a ciphertext may become too large and the ciphertext is no longer decryptable. A homomorphic
encryption scheme supporting a predetermined noise threshold is termed leveled. Bootstrapping is a generic
technique that allows refreshing ciphertexts. It therefore enables one to turn leveled homomorphic encryption
schemes into fully homomorphic encryption schemes, and so to make them evaluate any possible function on
ciphertexts. The key idea behind bootstrapping is to homomorphically evaluate the decryption circuit.

The works that followed Gentry’s publication were aimed at proposing new schemes or at improving the
bootstrapping in order to make FHE more efficient in practice. The most famous constructions are DGHV [11],
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BGV [5], GSW [16], and their variants. While the constructions that were successively proposed made the
bootstrapping more practical, it still constituted the bottleneck (each bootstrapping taking a few minutes). A
much faster bootstrapping, based on a GSW-type scheme, was later devised by Ducas and Micciancio [13],
reducing the bootstrapping time to a sub second. Their technique was further improved and refined, which
led to the development of the TFHE scheme [10].

Our techniques and contributions. This paper builds on the state-of-the-art TFHE scheme and extends the
TFHE techniques to homomorphically evaluate deep neural networks. TFHE can operate in two modes:
leveled and bootstrapped. The leveled mode supports linear combinations and a predetermined number of
(external) products. The operations evaluated in this mode make the noise always grow. The leveled mode
can be used to evaluate small-depth circuits. As for the bootstrapped mode, it enables a fine control of the
noise by reducing it to a given level whenever it exceeds a certain threshold. Further, as will be shown, the
bootstrapped mode is programmable and therefore enables the evaluation of more complex functions. For
problems involving circuits of large depth, only the bootstrapped mode is applicable. Deep neural networks
belong to that case.

Earlier works attempted to evaluate neural networks using fully homomorphic encryption. Cryptonets [12]
was the first initiative towards this goal. They were able to perform a homomorphic inference over 5 layers
against the MNIST dataset [21]. In order to limit the noise growth, the standard activation function was
replaced with the square function. A number of subsequent works have adopted a similar approach and
improved it in various directions. Among them, it is worth mentioning the results of the iDASH competition [17].
The winning solutions of the homomorphic encryption track of the last editions (namely, [19,2] for 2018 and
[18] for 2019) have all in common to rely on leveled homomorphic encryption.

Leveled solutions are however inherently limited in the type of tasks they can perform. In particular, in
the case of neural networks, they can only accommodate networks with a moderate number of layers. In
this paper, we want to emphasize that depth is not necessarily an issue and that deep neural networks can
actually be evaluated homomorphically. For a specialized type of networks, this was already pointed out in a
paper by Bourse et al. [4]; specifically, for discretized neural networks whose signals are restricted to the set
{−1, 1} and where the activation function is the sign function. Central to their scalable construction is an
adaptation of the TFHE scheme so as to enable the evaluation of the sign function during a bootstrapping
step. In a recent work, Boura et al. [3] investigated the applicability of fully homomorphic encryption for
classical deep neural networks. They simulated the effect of noise propagation by adding a noise value drawn
from a normal distribution to intermediate values, while evaluating the model in the clear. These experiments
were carried out with models making use of the standard ReLU activation function but also with models
making use of FHE-friendly variants thereof. Similar experiments were run by replacing max-pooling layers
with FHE-friendly average-pooling layers. As a conclusion of their study, the authors of [3] recommend to
favor FHE-friendly operations as they appear to be usually more resilient to noise perturbations.

This paper departs from previous works. We do not seek to design new operations or to modify the
topology in order to make a given neural network more amenable to an FHE-based implementation. On
the contrary, we stick to the original neural network model. This presents the tremendous advantage of
not requiring to re-train a new model. As the operations and topology are unchanged, the already trained
model can be used as is. The efforts to train a neural network should not be overlooked. This is a costly and
time-consuming operation. Furthermore, in many cases, producing a new model is not even possible as this
implies having access to the training dataset, which may demand the prior approval of the data owners or of
some regulatory authorities.

In our approach, the evaluation of complex functions is achieved thanks to a combination of programmable
bootstrapping techniques and leveled operations. Being programmable means that any function (including
non-linear functions) of an input ciphertext can be obtained as the output of the bootstrapping. Interestingly,
the resulting ciphertext features a controlled level of noise. The process can therefore be iterated over and
over. So, in the case of machine learning applications, the depth of neural networks can be arbitrarily large.
Our techniques are efficient and directly operate on words of a chosen size.
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2 Preliminaries

2.1 Torus and Torus Polynomials

The letter ‘T’ in TFHE refers to the real torus T = R/Z, that is, the set of real numbers modulo 1. Any two
elements of T can be added modulo 1: (T,+) forms an abelian group. But T is not a ring as the internal
product × of torus elements is not defined. The external product • between integers and torus elements is
however well defined. Given k ∈ Z and t ∈ T, the element k • t ∈ T is defined as k • t = t+ · · ·+ t (k times) if
k ≥ 0 and k • t = (−k) • (−t) if k < 0. Mathematically, T is endowed with a Z-module structure.

Polynomials can as well be defined over the torus. As will become apparent, they allow for cryptographic
operations otherwise not feasible. Let Φ := Φ(X) denote the M -th cyclotomic polynomial and let N denote
its degree. For performance reasons, M is chosen as a power of 2, in which case it turns out that N = M/2
and Φ(X) = XN + 1. Consider the polynomial rings RN [X] := R[X]/(XN + 1) and ZN [X] := Z[X]/(XN + 1).
This defines the ZN [X]-module TN [X] := RN [X]/ZN [X] = T[X]/(XN + 1). Elements of TN [X] can therefore
be seen as polynomials modulo XN + 1 with coefficients in T. Being a ZN [X]-module, elements in TN [X]
can be added together and (externally) multiplied by polynomials of ZN [X].

Vectors are viewed as row matrices and are denoted with bold letters. Elements in Z or T are denoted with
roman letters while polynomials are denoted with calligraphic letters. B is the integer subset {0, 1} and, for N
a power of 2, BN [X] is the subset of polynomials in ZN [X] with coefficients in B. For a vector z ∈ (Z/qZ)n, its
norm ‖z‖ is defined as the shortest norm among the equivalent classes of z ∈ (Z/qZ)n in Zn. A polynomial in
ZN [X] can be identified with a vector in ZN : to a polynomial p = p0 + p1X + · · ·+ pN−1X

N−1 is associated
the vector (p0, p1, . . . , pN−1). The norm of a polynomial is defined as the norm of its associated vector.

2.2 Probability Distributions

Two probability distributions will be used: the uniform distribution and the normal (a.k.a. Gaussian)
distribution. They are respectively denoted by U and N.

When the uniform distribution U is defined over an interval [a, b], it is written U([a, b]). Discrete intervals
are indicated by double brackets; e.g., Ja, bK. The normal distribution is parametrized by its mean µ and its
variance σ2 and is written as N(µ, σ2). A normal distribution over the real numbers induces a discretized
normal distribution over Z: to a real value X ∈ R corresponds an integer value Z = bX qe.

If D is a distribution over a space S then s← D(S) indicates that s is chosen at random in S according

to D; s
$← S is a shorthand for s← U(S).

3 Discretized TFHE

The LWE assumption over the torus (cf. Definition 1, Appendix A) essentially says that a torus element
r ∈ T constructed as r =

∑n
j=1 sj • aj + e cannot be distinguished from a random torus element r ∈ T, even if

the torus vector (a1, . . . , an) is given. Torus element r =
∑n
j=1 sj • aj + e can therefore be used as a random

mask to conceal a “plaintext message” µ ∈ T so as to form a ciphertext c = (a1, . . . , an, r+ µ) ∈ Tn+1, where
s = (s1, . . . , sn) ∈ Bn plays the role of the private encryption key. The noise e is sampled from a normal
error distribution χ = N(0, σ2). In the same way, the GLWE assumption (cf. Definition 2, Appendix A)
gives rise to an encryption mechanism for polynomials of TN [X]: the encryption of µ ∈ TN [X] under key

s = (s1, . . . , sk) ∈ BN [X]k being given by c = (a1, . . . ,ak, r + µ) ∈ TN [X]k+1 with r =
∑k
j=1 sj • aj + ℯ.

The noise ℯ is sampled from a normal error distribution χ = N(0, σ2) over RN [X]; namely, over polynomials
of RN [X] with coefficients drawn in N(0, σ2).

As already pointed out in [10], LWE-based ciphertexts can be viewed as a special instance of GLWE-based
ciphertexts for (k,N) = (n, 1). Indeed, when N = 1, it turns out that RN [X] = R, ZN [X] = Z, and
TN [X] = T. Hence, to keep the presentation as general as possible, we will stick to the GLWE setting;
LWE-based encryption being a particular case.

In the most generic setting, ciphertexts c = (a1, . . . ,ak, r + µ) are vectors of polynomials over TN [X].
These polynomials can in turn be regarded as vectors over T. In a practical implementation, torus elements
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are represented with a finite precision (typically, 32 or 64 bits). Let Ω denote the bit-precision—for example,
Ω = 32 if the ciphertext components are represented with a precision of 32 bits. In this case, torus elements
are restricted to elements of the form

∑Ω
i=1 ti • 2−i (mod 1) with ti ∈ {0, 1}. Essentially, the effect of working

with a finite precision boils down to replacing T with the submodule

T̂ := q−1Z/Z ⊂ T where q = 2Ω

and doing computations in T̂N [X] := T̂[X]/(XN + 1). Viewing 1
q as an element in T̂N [X], any polynomial

µ ∈ T̂N [X] can be written as

µ = µ • 1
q for some µ ∈ ẐN [X]

where ẐN [X] := (Z/qZ)[X]/(XN + 1).

3.1 Encoding/Decoding Messages

The input messages, prior to encryption, can be in any format. The role of the encoding/decoding process is
to make them compatible with the encryption scheme.

It is useful to introduce some terminology and notation. An element µ ∈ ẐN [X] entering the encryption
algorithm is referred to as the plaintext. It matches a cleartext m in a certain finite message space ℳ. The
correspondence between cleartexts and plaintexts is given by a message encoding function Encode; the
reverse operation is the decoding function Decode. It is required that, for any cleartext m ∈ℳ, the relation
Decode(Encode(m)) = m holds.

Let µ = µ0 + µ1X + · · ·+ µN−1X
N−1 ∈ ẐN [X] be a plaintext. Because ciphertexts are noisy and the

noise is added to the right (i.e., less significant position), only the upper bits of µi are used to encode cleartext
messages. In order to successfully complete, certain homomorphic operations demand some of the leading bits
of µi to be provisioned and set to 0. In the most general case, we let $ ≥ 0 denote the number of these bits
(called padding bits) and ω ≥ 1 the number of bits that are actually used to represent input cleartexts so
that $ + ω ≤ Ω. We define p = 2$+ω. Parameter ω is referred to as the message bit-precision and parameter
p as the message modulus. The coefficients µi of plaintext polynomial µ ∈ ẐN [X] are therefore of the form
µi = 2Ω−($+ω)(νi mod 2ω) for some νi, as shown in Fig. 1.

µi = 0 · · · 0 νi 0 · · · · · · 0

$ bits ω bits Ω − ($ + ω) bits

Fig. 1: Plaintext representation.

For an arbitrary element x = xH
q
p ± xL ∈ Z/qZ with 0 ≤ xL ≤ q

2p , we define the function Upper that

returns the value of xH
q
p . It is specified as Upper : Z/qZ→ Z/qZ, x 7→ Upper(x) with

Upperq,p(x) =
q

p

⌊
p lift(x)

q

⌉
(mod q)

where the function lift lifts elements of Z/qZ to Z. The function Upper naturally extends to polynomials of

ẐN [X] by applying it coefficient-wise.

In particular, for q = 2Ω and p = 2$+ω, the function reads as Upperq,p(x) = 2Ω−($+ω)
⌊ 2$+ω lift(x)

2Ω

⌉
(mod q). Note that if x = xH 2Ω−($+ω) ± xL ∈ Z/qZ with 0 ≤ xL ≤ 2Ω−($+ω)−1 then Upperq,p(x) =

xH 2Ω−($+ω).
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3.2 Description

We are now ready to present the implementation of TFHE encryption with a finite representation precision.
We write GLWE the corresponding encryption algorithm in the general case. The LWE encryption algorithm
coincides with the particular case (k,N) = (n, 1).

KeyGen(1λ) On input security parameter λ, define a pair of integers (k,N) with k ≥ 1 and N a power
of 2. Define also a normal error distribution χ = N(0, σ2) over RN [X]. Sample uniformly at random a

vector s = (s1, . . . , sk)
$← BN [X]k. The plaintext space is PN [X] = ( qpZ/qZ)[X]/(XN + 1) ⊂ ẐN [X] =

(Z/qZ)[X]/(XN + 1) where q = 2Ω and the message modulus is p = 2$+ω, with Ω ≥ $ + ω.
The public parameters are pp = {k,N, σ, p, q} and the private key is sk = s.

Encryptsk(µ) The encryption of a plaintext µ ∈ PN [X] is given by

c← GLWEs(µ) := (a1, . . . ,ak,b) ∈ ẐN [X]k+1

with {
µ∗ = µ + ℯ (mod (q,XN + 1))

b =
∑k
j=1 sj aj + µ∗ (mod (q,XN + 1))

for a random polynomial vector (a1, . . . ,ak)
$← ẐN [X]k and a discrete noise ℯ = bℯ qe for some ℯ← RN [X]

whose coefficients are sampled in N(0, σ2).

Decryptsk(c) To decrypt c = (a1, . . . ,ak,b), use private key s = (s1, . . . , sk), compute in ẐN [X]

µ∗ = b−
k∑
j=1

sj aj (mod (q,XN + 1)) ,

and output Upperq,p(µ∗).

Correctness. Let p = 2$+ω, q = 2Ω and µ = µ0 + · · ·+ µN−1X
N−1 with µi = q

p (νi mod 2ω) for some νi; see

Section 3.1. It can be verified that if c← Encrypts(µ) then Decrypts(c) = µ, provided that ‖ℯ‖∞ < q
2p =

2Ω−(−$+ω)−1. Note that the same holds true even if some of the $ leading bits of the µi’s are non-zero.
In certain applications, it is acceptable that the decryption algorithm does not recover the exact initial

plaintext but a close approximation thereof. In this case, the requirement becomes Decrypts(c) ≈ µ and the
condition on the bound of ‖ℯ‖∞ can be relaxed.

3.3 Leveled Operations

FHE enables directly performing operations on ciphertexts. Depending on the type of operation, the resulting
noise level increases more or less.

Addition. Clearly, GLWE ciphertexts are homomorphic with respect to the addition. Let c1 ← GLWEs(µ1)

and c2 ← GLWEs(µ2) with c1,c2 ∈ ẐN [X]k+1 be the respective encryptions of plaintexts µ1, µ2 ∈ PN [X];
i.e.,

ci =
(
a(i)

1 , . . . ,a
(i)

k ,bi
)

(i ∈ {1, 2})

with bi =
∑k
j=1 sj a

(i)

j + µi + ℯi. Then c3 = c1 + c2 =
(
a(1)

1 + a(2)

1 , . . . ,a(1)

k + a(2)

k ,b1 + b2

)
is a GLWE

encryption of (µ1 + µ2) ∈ PN [X], provided that the resulting noise ℯ3 = ℯ1 + ℯ2 keeps small.

Scalar multiplication. By extension, GLWE ciphertexts are homomorphic with respect to the multiplication
by a constant. Let K ∈ Z≥0 and c← GLWEs(µ) = (a1, . . . ,ak,b) with b =

∑k
j=1 sj aj + µ + ℯ. Then, for

K ≥ 0, K · c = c + · · ·+ c (K times) is an encryption of K · µ ∈ PN [X], provided that K · ℯ keeps small. If
K < 0 then K ·c = (−K) · (−c). More generally, if K ∈ ZN [X] then K ·c is an encryption of K · µ ∈ PN [X],
provided that K · ℯ keeps small.

5



External product. GLWE ciphertexts do not support a native internal multiplication which, in practice, means
that two GLWE ciphertexts cannot be directly multiplied. In order to perform a multiplication, a clever
matrix-based approach put forward in the GSW construction [16] can be used. By analogy, we write GGSW
the corresponding encryption algorithm in the general case; the particular case (k,N) = (n, 1) is denoted by
GSW.

With the previous GLWE notation, let parameters B = 2β and ` with β, ` ≥ 1 and such that `β ≤ Ω.
Define also the vector g = (2Ω−β , 2Ω−2β , . . . , 2Ω−`β). The GGSW encryption of a plaintext m ∈ ZN [X] with
respect to a GLWE encryption key s ∈ BN [X]k is defined as

CCC← GGSWs(m) := ZZZ + m ·GGGᵀ ∈ ẐN [X](k+1)`×(k+1)

where

ZZZ←

GLWEs(0)
...

GLWEs(0)


 (k + 1)` rows

is a matrix containing on each row a fresh GLWE encryption of 0 and where

GGG
ᵀ

= IIIk+1 ⊗ g
ᵀ

= diag(g
ᵀ
, . . . , g

ᵀ︸ ︷︷ ︸
k+1

) ∈ ZN [X](k+1)`×(k+1)

is the so-called gadget matrix [23], with IIIk+1 the identity matrix of size k + 1. It is worth noting that any
element d in Z/qZ, viewed as an integer in

q
− q2 ,

q
2

q
, can always be approximated by a signed-digit radix-B

expansion of size ` as

d ≈ q
∑̀
i=1

diB
−i =

∑̀
i=1

di 2Ω−iβ = g−1(d) g
ᵀ

where g−1(d) := (d1, . . . , d`) ∈ Z` with digits di ∈
q
−B2 ,

B
2

q
and with an approximation error that is bounded

by
∣∣g−1(d) g

ᵀ − d
∣∣ ≤ q/(2B`) = 2Ω−β`−1.

By extension, for a polynomial p = p0 + · · · + pN−1X
N−1 ∈ ẐN [X] whose coefficients are viewed as

integers in
q
− q2 ,

q
2

q
, the decomposition g−1(p) ∈ ZN [X]` is defined as g−1(p) =

∑N−1
j=0 g−1(pj)X

j . Clearly,

it holds that
∥∥g−1(p) g

ᵀ − p
∥∥
∞ ≤ 2Ω−β`−1. Finally, for a vector of k + 1 polynomials, p = (p1, . . . ,pk+1) ∈

ẐN [X]k+1, the decomposition GGG−1(p) ∈ ZN [X](k+1)` is defined as GGG−1(p) = (g−1(p1), . . . , g−1(pk+1)) and∥∥GGG−1(p)GGG
ᵀ − p

∥∥
∞ ≤ 2Ω−β`−1.

Interestingly, the gadget decomposition of GLWE ciphertexts gives rise to an external product [10] with
GGSW ciphertexts. Specifically, for plaintexts m1 ∈ ZN [X] and µ2 ∈ PN [X], if C1C1C1 ← GGSWs(m1) and
c2 ← GLWE(µ2) then their external product, denoted by �, is given by

c3 = C1C1C1 � c2 := GGG−1(c2)C1C1C1 .

A little algebra shows that

c3 = GGG−1(c2) (ZZZ + m1 ·GGG
ᵀ
) = GGG−1(c2)ZZZ︸ ︷︷ ︸

=GLWEs(0)

+m1 ·GGG−1(c2)GGG
ᵀ︸ ︷︷ ︸

≈m1 c2

is a GLWE encryption of m1 µ2 ∈ PN [X], provided that the resulting noise (including the approximation
error) keeps small.

The CMux gate. Starting from the external product, a new leveled operation can be defined: the ‘controlled’
multiplexer or CMux [10, § 3.4]. A CMux acts as a selector according to a bit—but over encrypted data. It
takes as input two GLWE ciphertexts c0 and c1, respectively encrypting plaintexts u0 and u1 ∈ PN [X],
and a GGSW ciphertext CCC encrypting a bit b. The result is a GLWE ciphertext c′ encrypting ub, provided
that the resulting noise keeps small. The CMux gate is given by:

c′ ← CMux(CCC,c0,c1) := CCC� (c1 − c0) + c0 .

It plays a central role in the performance of homomorphic computations and, especially, inside the
bootstrapping.
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4 Programmable Bootstrapping

The programmable bootstrapping is an extension of the bootstrapping technique that allows resetting the
noise to a fixed level while—at the same time—evaluating a function on the input ciphertext.

In this section, we first explain in detail how to perform the regular bootstrapping. We then proceed with
the programmable bootstrapping and show how to evaluate any function expressed as a look-up table. When
f is the identity function, that coincides with a regular bootstrapping.

4.1 Blind Rotation

As aforementioned, Gentry’s bootstrapping boils down to homomorphically decrypt a ciphertext using a
homomorphic encryption of its own decryption key, with the goal of reducing the noise the ciphertext contains.

Intuition. Consider an LWE ciphertext c← LWEs(µ) = (a1, . . . , an, b) ∈ (Z/qZ)n+1 where aj
$← Z/qZ and

b =
∑n
j=1 sj aj + µ∗ with µ∗ = µ+ e for some discrete noise e = be qe with e← N(0, σ2). Ciphertext c is an

encryption of plaintext µ ∈ P = q
pZ/qZ under the secret key s = (s1, . . . , sn) ∈ Bn. It can be decrypted using

s in two steps as µ∗ ← b−
∑n
j=1 sj aj and µ← Upperq,p(µ

∗).
In order to bootstrap, one way to look at the decryption (without the rounding) is to see that

−µ∗ = −b+
∑n
j=1 sj aj (mod q)

and to put this value at the exponent of X to get the monomial X−µ
∗
. Note that there are q possible

values for µ∗. The rough idea (more technical details are given later) is then to build a polynomial—that
we call test polynomial—such that each one of its coefficients encodes the noise-free value corresponding to
µ∗ (namely, µ = Upperq,p(µ

∗)), for all the possible µ∗ ’s. Specifically, if we suppose for a moment that the

test polynomial is the degree-q polynomial v = v0 + v1X + · · ·+ vq−1X
q−1 then its ith coefficient is set to

vi = Upperq,p(i mod q). By rotating the test polynomial of µ∗ positions, the value of µ moves to the constant
coefficient position. This is illustrated in Fig. 2. It then remains to extract it.

µ· · · · · · µ · · · · · ·X−µ
∗
• =

position corresponding to µ∗

test polynomial v

Fig. 2: Rotating the test polynomial.

Of course, this rotation is done homomorphically (hence the name blind rotation) and since X−µ
∗ · v is a

polynomial, this is where GLWE encryption comes into play.
Polynomials used in GLWE are defined modulo XN + 1. This means that X as a multiplicative element

of ZN [X] is of order 2N . However, as appearing in the LWE encryption, µ∗ is defined modulo q. It therefore
needs to be rescaled modulo 2N . As a consequence, instead of using the relation −µ∗ = −b +

∑n
j=1 sj aj

(mod q), we have to rely on the approximation

−µ̃∗ = −b̃+
∑n
j=1 sj ãj (mod 2N) ,

where b̃ =
⌊ 2N(b mod q)

q

⌉
and ãj =

⌊ 2N(aj mod q)
q

⌉
. This approximation may generate a small additional error

that adds to the noise. We call this additional error drift. It depends on both the size n of the input LWE and
the ring size N used in GLWE during the rotation. The impact of the drift on the result can be dealt with by
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a careful choice of the parameters. In particular, a smaller value for n or a larger value for N is expected to
decrease the resulting drift.

Also, because the test polynomial v lies in ẐN [X] and thus has N coefficients, at most N values for
µ̃∗ can be encoded. This is addressed by ensuring that the most significant bit of µ̃∗ is set to 0; that is,
parameter $ ≥ 1 (see Section 3.1). In this case, µ̃∗ can take at most N possible values and the test polynomial
is formed as v = v0 + · · ·+ vN−1X

N−1 with

vi = Upperq,p
(
q

2N i mod q
)
.

Implementation. It remains to explain how to compute the product between X−µ̃
∗

and the test polynomial v
under GLWE encryption. It turns out that such a computation can be computed as a succession of CMux
gates [10, § 4.3].

An accumulator ACC is initialized with a GLWE encryption of X−b̃ · v. It is then updated in a for-loop
where, at iteration i (for 1 ≤ i ≤ n) it is multiplied by Xsi ãi . The multiplication is performed thanks to
the CMux operation, ACC← CMux(bsk[i],ACC, X ãi ·ACC). Here, bsk[i]← GGSWs′(si) (for i = 1, . . . , n),
are the bootstrapping keys; i.e., a list of GGSW encryptions of the elements of the secret key s under some
encryption key s′ ∈ BN [X]k. The output of the blind rotation is ACC← GLWEs′(X

−µ̃∗ · v). More details
about this procedure are provided in Appendix B.1.

Sample extraction. The remaining step of the bootstrapping consists in extracting the constant coefficient
of u := X−µ̃

∗ · v as a LWE ciphertext of µ. This is an easy operation—called sample extraction—which is
performed by simply extracting some of the coefficients of the GLWE ciphertext. See Appendix B.2.

Key switching. The loop is almost closed. With the above procedure, input ciphertext c ← LWEs(µ) ∈
(Z/qZ)n+1 and resulting output ciphertext c′ ← LWEs′(µ) ∈ (Z/qZ)kN+1 both encrypt plaintext µ but make
use of different keys and have a different format.

In order to convert c′ back to the original setting, an operation called key switching can be performed.
The key-switching technique is classical in FHE. See Appendix B.3 for a detailed description.

4.2 Look-up Table Evaluation

In the previous section, the blind rotation is used to perform a bootstrapping. Surprisingly, the same technique
can be adapted so as to evaluate a function at the same time. The function is evaluated as a look-up table
that is encoded in the test polynomial.

Specifically, suppose we intend to evaluate—over encrypted data—an arbitrary function f with domain D
and image ℐ, f : D→ ℐ, x 7→ y = f(x). We assume we are given the encoding functions Encode: D→ Z/qZ
and Encode′ : ℐ → Z/qZ, and the matching decoding functions Decode and Decode′, as specified in Section 3.1.

We showed in the previous section that selecting for the test polynomial v = v0 + · · ·+ vN−1X
N−1 with

vi = Upperq,p
(
q

2N i mod q
)

transforms a ciphertext of µ into another ciphertext of µ with a lesser noise.
Consider now the following diagram

Z/qZ Z/qZ

D ℐ

Decode

f

Encode′

and suppose we define a look-up table as pairs (i, T [i]) for 0 ≤ i ≤ N − 1 with

T [i] = Encode′ ◦f ◦Decode ◦Upperq,p
(
q

2N i mod q
)
.

As the diagram suggests, we program the test polynomial as

v = v0 + · · ·+ vN−1X
N−1 with vi = T [i] ,
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the rest of the process described in Section 4.1 remains unchanged. Doing so, up to the drift, an input
ciphertext of µ (encoding some value x ∈ D) will be transformed into a ciphertext of a value encoding f(x).
Furthermore, being the output of a bootstrapping, the resulting ciphertext enjoys a low level of noise. The
whole process is what we call programmable bootstrapping.

Remark 1. As explained, the regular bootstrapping requires an encoding parameter $ ≥ 1 (cf. Section 4.1).
This condition can be lifted in the programmable bootstrapping when the entries of the look-up table are
negacyclic; i.e., when T [i+N ] ≡ −T [i] (mod 2N). In that case, 2N values are actually programmed.

5 Application to Neural Networks

All the tools that we need are now on the table. In this section, we apply them in order to evaluate
homomorphically neural networks.

Neural networks (NN) were originally built in computer science by analogy to the human brain in order
to solve complex problems that machines were not able to solve before. The neural networks can be trained
and then used to classify objects, detect diseases, do face recognition, and so on.

The different layers in a neural network are typically aimed at successively extracting discriminating
features or patterns from the input data. The number of layers and the type of operations that is performed
in each layer depend on the task the neural network is trying to achieve.

We review below a number of layers that are commonly used to build neural networks. The list is
non-exhaustive. Our techniques are generic and support all known types of layers. Each layer receives inputs
from the previous layer, performs some computations, and produces outputs. The outputs then flow to the
next layer as inputs. Two types of layers are distinguished when working over encrypted data:

– layers that can be evaluated homomorphically using leveled operations; and
– layers involving non-linear or more complex operations, in which case one or several programmable

bootstrappings (PBS) are required.

We note that the first type of layers may also resort to bootstrap operations on some intermediate values
whenever the noise exceeds a certain threshold.

5.1 Layers without PBS

Dense/linear layer. A (fully connected) dense layer computes the dot product between the inputs and a
matrix of weights. A bias vector can be added. An activation function is then applied component-wise to
produce the outputs. When there is no activation function, a dense layer is also called linear layer.

When evaluated homomorphically, the weights and the bias vector are provided in the clear. The evaluation
of a dense layer (the activation excepted) thus consists of a series of multiplications by constants and additions,
which are all leveled operations.

The activation functions are treated in the next section (see activation layer).

Convolution layer. A convolution layer convolves the input layer with a convolution kernel (a.k.a. filter) that
is composed of a tensor of weights so as to produce a tensor of outputs. Biases can be added to the outputs.
Moreover, an activation function can be applied to the outputs.

The filters are provided in the clear. Hence, as for the dense layer, the homomorphic evaluation of a
convolution layer (without activation) consists of a series of multiplications by constants and additions.

Addition layer. An addition layer performs component-wise additions. Over encrypted data, those are leveled
operations.

Flatten layer. A flatten layer reshapes its input into a lower-dimensional array so that it can for example be
fed into a subsequent dense layer.

Over encrypted data, the flattening function simply consists in rearranging the input ciphertexts. No
homomorphic operation is required.
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Global average pooling layer. A global average pooling layer computes the average of the components of its
inputs. Specifically, if n denotes the number of components and ai denotes the value of component i, the
global average pooling function computes

(∑n
i=1 ai

)
/n.

In a homomorphic evaluation, the global average pooling can be reduced to the computation of the sum∑n
i=1 ai. The division by n is then performed in the next programmable bootstrapping—e.g., in a dense layer

or a convolution layer—by dividing the weights by the same quantity. Hence, the sole homomorphic operation
required to evaluate a global average pooling layer is the addition of ciphertexts, which is a leveled operation.

5.2 Layers with PBS

Activation layer: ReLU. An activation layer is used to inject non-linearity in the neural networks. It is crucial
in the learning. There are many activation functions that can be used in an activation layer. One of the most
popular activation functions is the Rectified Linear Unit (ReLU) function. Other commonly used activations
include the sigmoid function or the hyperbolic tangent function.

As detailed in Section 4, the homomorphic evaluation of an activation function (as any function) can be
performed via a programmable bootstrapping (PBS), with the outputs of the function encoded inside the test
polynomial.

Max-pooling layer. A max-pooling layer extracts a fixed-size subset of components from the inputs and
computes their maximum.

At first sight, as the max function is multivariate (i.e., it takes multiple arguments on input), it is
unclear how it can be evaluated homomorphically. With two arguments, the max function can however be
expressed using the [univariate] ReLU function, max(x, y) = y + ReLU(x− y). Hence, from Encrypt(x) and
Encrypt(y), their maximum can be evaluated as Encrypt(max(x, y)) = Encrypt(y) + Encrypt(ReLU(z)) with
Encrypt(z) = Encrypt(x)− Encrypt(y). This requires a couple of addition/subtraction of ciphertexts plus
the homomorphic evaluation of a ReLU function, the cost of which is one PBS. When there are more than
two arguments, the basic relation max(x1, . . . , xk−1, xk) = max(yk, xk) with yk = max(x1, . . . , xk−1) can be
used. For a series of k components (x1, . . . , xk), the homomorphic evaluation of the max-pooling function
thus amounts to (k − 1) PBS.

6 Experimental Results & Benchmarks

We conducted a series of numerical experiments to assess the performance. We report below results against the
MNIST dataset [21], which contains 28×28 images of handwritten digits. For testing purposes, we designed
depth-20, 50, 100 neural networks, respectively noted NN-20, NN-50 and NN-100. These networks all include
dense and convolution layers with activation functions; every hidden layer possesses at least 92 active neurons.

Parameter sets. The overall targeted security levels are 80 bits and 128 bits. The selected cryptographic
parameters are defined by (k,N, σ) for GLWE encryption and (n, σ) for LWE encryption. The word-size is
Ω = 64 bits.

Table 1: Cryptographic parameters.

Security level
GLWE LWE

k N σ n σ

80 bits (I) 1 1024 2−40 542 2−21

(II) 1 2048 2−60 592 2−23

128 bits (III) 1 4096 2−62 938 2−23
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The different parameter sets I, II & III meet at least the claimed security level and were validated
using the lwe-estimator (https://bitbucket.org/malb/lwe-estimator/) [1]. They can be used for the
homomorphic inference of networks requiring a maximal precision of 8 bits up to 12 bits.

Performance analysis. Experiments were performed on three different types of machines, respectively referred
to as PC, AWS, and AWS2:

– a personal computer with 2.6 GHz 6-Core Intel® Core™ i7 processor,
– a 3.00 GHz Intel® Xeon® Platinum 8275CL processor with 96 vCPUs hosted on AWS, and
– as above but with 8 NVIDIA® A100 Tensor Core GPUs.

Table 2: Performance comparison (computed from 1000 runs).

(a) Results in the clear.

Run-time
Accuracy

PC AWS

NN-20 0.17 ms 0.19 ms 97.5 %
NN-50 0.20 ms 0.30 ms 95.4 %
NN-100 0.33 ms 0.46 ms 95.2 %

(b) Results over encrypted data.

Run-time
Accuracy

PC AWS AWS2

80-bit security :

NN-20 (I) 12.49 s 2.85 s 0.69 s 97.2 %
(II) 30.04 s 6.19 s 2.10 s 97.5%

NN-50 (I) 26.71 s 5.90 s 1.73 s 93.4 %
(II) 71.71 s 13.00 s 5.27 s 95.1%

NN-100 (I) 46.61 s 11.18 s 3.46 s 87.3 %
(II) 108.73 s 24.13 s 10.24 s 91.1%

128-bit security :

NN-20 (III) 115.52 s 21.17 s 7.53 s 97.1%
NN-50 (III) 233.55 s 43.91 s 18.89 s 94.7%
NN-100 (III) 481.61 s 81.47 s 37.65 s 83.0%

For reference, Table 2a lists the run-time and accuracy for an unencrypted inference. They were measured
using ONNX Runtime [24]. The run-time and accuracy over encrypted data for different settings are presented
in Table 2b. These clearly indicate the importance of the parameter choice and the different trade-offs that
can be obtained. In particular, for a given security level, a larger value for parameter N increases the accuracy
(at the expense of more processing). It is important to note that the given times correspond to the evaluation
of a single inference run independently; in particular, the times are not amortized over a batch of inferences.

7 Conclusion

We presented a general framework for the evaluation of deep neural networks using fully homomorphic
encryption. Our approach scales efficiently with the number of layers while providing good accuracy results.
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To do so we employ a versatile combination of encoding methods and of programmable bootstrapping
techniques. To the best of our knowledge, our results set new records in the homomorphic inference of deep
neural networks.

The practicality of our framework invites further works. First, it would be interesting to know the impact
of the use of specialized hardware in our framework. We believe that several orders of magnitude in the
processing times could be gained in that way. Another interesting work would be to investigate how to
extend our techniques to the homomorphic training of neural networks or, more generally, to other intensive
machine-learning tasks.

Availability. The library implementing our extended version of TFHE has been developed in Rust. It is
available as an open-source project on GitHub at URL https://github.com/zama-ai/concrete.

Acknowledgments. We are grateful to our colleagues at Zama for their help and support in running the
experiments.
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A Complexity Assumptions Over the Real Torus

In 2005, Regev [25] introduced the learning with errors (LWE) problem. Generalizations and extensions
to ring structures were subsequently proposed in [27,22]. The security of TFHE relies on the hardness of
torus-based problems [6,9]: the LWE assumption and the GLWE assumption [5,20] over the torus.

Definition 1 (LWE problem over the torus). Let n ∈ N and let s = (s1, . . . , sn)
$← Bn. Let also χ be

an error distribution over R. The learning with errors (LWE) over the torus problem is to distinguish the
following distributions:

– D0 =
{

(a, r) | a $← Tn, r $← T
}
;

– D1 =
{

(a, r) | a = (a1, . . . , an)
$← Tn, r =

∑n
j=1 sj • aj + e, e← χ

}
.

Definition 2 (GLWE problem over the torus). Let N, k ∈ N with N a power of 2 and let s =

(s1, . . . , sk)
$← BN [X]k. Let also χ be an error distribution over RN [X]. The general learning with errors

(GLWE) over the torus problem is to distinguish the following distributions:

– D0 =
{

(a, r) | a $← TN [X]k, r $← TN [X]
}
;

– D1 =
{

(a, r) | a = (a1, . . . ,ak)
$← TN [X]k, r =

∑k
j=1 sj • aj + ℯ, ℯ← χ

}
.

The decisional LWE assumption (resp. the decisional GLWE assumption) asserts that solving the LWE
problem (resp. GLWE problem) is infeasible for some security parameter λ, where n := n(λ) and χ := χ(λ)
(resp. N := N(λ), k = k(λ), and χ := χ(λ)).

B Algorithms

We use the notations of Section 4. The input of the (programmable) bootstrapping is an LWE ciphertext
c ← LWEs(µ) = (a1, . . . , an, b) ∈ (Z/qZ)n+1 that encrypts a plaintext µ ∈ Z/qZ under the secret key
s = (s1, . . . , sn) ∈ Bn.
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B.1 Blind Rotation

The secret key bits sj used to encrypt the input LWE ciphertext cannot be revealed. They are instead
provided as bootstrapping keys ; i.e., encrypted under some encryption key s′ ∈ BN [X]k: bsk[j]← GGSWs′(sj)
for all j = 1, . . . , n.

We then have:

Algorithm 1: Blind rotation.

ACC← (0, . . . , 0, X−b̃ · v)
for i = 1 to n do

ACC← CMux(bsk[i],ACC, X ãi ·ACC)
end for

return ACC

At the end of the loop, ACC contains a GLWE encryption of X−µ̃
∗ · v under key s′.

B.2 Sample Extraction

The sample extraction algorithm extracts the constant coefficient µ of polynomial u ∈ ẐN [X] in GLWE
ciphertext c′ as a LWE ciphertext of µ. In more detail, let s′ = (s′1, . . . , s

′
k) ∈ BN [X]k with s′j = s′j,0 +

· · · + s′j,N−1X
N−1 for 1 ≤ j ≤ k. Parsing c′ ← GLWEs′(u) ∈ ẐN [X]k as (a′1, . . . ,a

′
k,b
′) with a′j =

a′j,0 + · · ·+ a′j,N−1X
N−1 for 1 ≤ j ≤ k and b′ = b′0 + · · ·+ b′N−1X

N−1, it can be verified that c′ := (a′1,0,

−a′1,N−1, . . . ,−a′1,1, . . . , a′k,0,−a′k,N−1, . . . ,−a′k,1, b′0) ∈ (Z/qZ)kN+1 is a LWE encryption of µ under the key

s′ = (s′1, . . . , s
′
kN ) ∈ BkN where s′l+1+(j−1)N := s′j,l for 1 ≤ j ≤ k and 0 ≤ l ≤ N − 1.

B.3 Key Switching

The key switching technique can be used to switch encryption keys in different parameter sets [7, § 1.2]. Its
implementation requires key-switching keys, i.e., LWE encryptions of the key bits of s′ with respect to the
original key s. Assume we are given the key-switching keys ksk[i, j]← LWEs

(
s′i ·

q

BjKS

)
for all 1 ≤ i ≤ kN and

1 ≤ j ≤ `KS, for some parameters B := BKS and ` := `KS defining a gadget decomposition (see Section 3.3).
Adapting [10, § 4.1] teaches that, on input LWE ciphertext c′ ← LWEs′(µ) = (a′1, . . . , a

′
kN , b

′) ∈ (Z/qZ)kN+1

under the key s′ = (s1, . . . , skN ) ∈ BkN ,

c′′ := (0, . . . , 0, b′)−
kN∑
i=1

`KS∑
j=1

a′i,j ksk[i, j] ∈ (Z/qZ)n+1

where (a′i,1, . . . , a
′
i,`KS

) = g−1(a′i) is an LWE encryption of µ under key s, provided that the resulting noise
keeps small.
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