
Magnetic RSA

Rémi Géraud-Stewart1,2 and David Naccache2

1 QPSI, Qualcomm Technologies Incorporated, USA
rgerauds@qti.qualcomm.com

2 ÉNS (DI), Information Security Group
CNRS, PSL Research University, 75005, Paris, France

david.naccache@ens.fr

Abstract. In a recent paper Géraud-Stewart and Naccache [GSN21]
(GSN) described an non-interactive process allowing a prover P to con-
vince a verifier V that a modulus n is the product of two randomly
generated primes (p, q) of about the same size. A heuristic argument
conjectures that P cannot control p, q to make n easy to factor.
GSN’s protocol relies upon elementary number-theoretic properties and
can be implemented efficiently using very few operations. This contrasts
with state-of-the-art zero-knowledge protocols for RSA modulus proper
generation assessment.
This paper proposes an alternative process applicable in settings where
P co-generates a modulus n “ p1q1p2q2 with a certification authority V.
If P honestly cooperates with V, then V will only learn the sub-products
n1 “ p1q1 and n2 “ p2q2.
A heuristic argument conjectures that at least two of the factors of n
are beyond P’s control. This makes n appropriate for cryptographic use
provided that at least one party (of P and V) is honest. This heuristic
argument calls for further cryptanalysis.

1 Introduction

Several cryptographic protocols rely on the assumption that an integer n “ pq is
hard to factor. This includes for instance RSA [RSA78], Rabin [Rab79], Paillier
[Pai99] or Fiat–Shamir [FS86]. One way to ascertain that n is such a product is
to generate it oneself; however, this becomes a concern when n is provided by a
third-party. This scenario appears e.g. with Fiat–Shamir identification, or in the
context of certificate authentication: carelessly using an externally-provided n
may compromise security if n happens to be cryptographically weak. Naturally,
one cannot ask for the factors of n to check n.

The state of the art in the matter are the zero-knowledge procotols of Auerbach–
Poettering [AP18] and Camenisch–Michels [CM99], which prove that a given n is
the product of safe primes of prescribed size. While correct and very useful, these
protocols are difficult to implement and analyze, and have high computational
costs. This motivates the search for simpler and more efficient solutions.

In [GSN21], Géraud-Steward and Naccache (GSN) introduced an alternative
protocol that nearly achieves the same functionality with fewer operations and

rgerauds@qti.qualcomm.com
david.naccache@ens.fr

communication. GSN is also simpler to understand and thus to implement.
However, GSN relies on a number-theoretical conjecture that remains so see
further analysis.

This paper proposes an alternative protocol, applicable in settings where a
user P co-generates a modulus n “ p1q1p2q2 with a certification authority (CA,
denoted V). If P is honest then V will only learn the sub-products n1 “ p1q1 and
n2 “ p2q2. A new heuristic argument claims that at least two of the four prime
factors of n are beyond P’s control, thereby making n proper for cryptographic
use.

1.1 Difference with GSN

It is important to underline the difference between the construction proposed
in this paper and GSN. This paper’s reason to be is the following: In GSN it is
conjectured that when generating an Esther modulus, P cannot manipulate p
and P cannot manipulate q. What would happen if one day a method allowing to
manipulate only one of the factors is found? In such a case the method proposed
in this paper is conjectured to still survive provided that the CA still does its
job.

P can control GSN This paper
no factor resists resists
one factor broken resists
two factors broken broken

Table 1. Consequences of different cryptanalysis scenarios.

2 Preliminaries & Building Blocks

Notations. This paper uses the following notations: a|b denotes the concatenation
of the bitstrings a and b. If c is an integer, }c} “ rlog2 cs denotes the size of c, i.e.
the minimal number of bits needed to write c.

Certification. A certification authority (CA, here V) possesses a long-term signing
key allowing V to vouch for a third party’s public key. They do so by producing a
certificate, which contains identifying information and which is signed using the
V’s private key. Schematically, this is an algorithm Certifypnq that can only be
run by V, and which outputs a publicly-verifiable certificate. The corresponding
verification algorithm is denoted Verify.

2

GSN with prescribed MSBs. The protocol in [GSN21] proves that a modulus
n “ pq has exactly two factors of about the same size, and checks that the most
significant bits of n feature a given pattern NH .

We use the following notation: Estherpn,NHq returns True if n is accepted by
the GSN protocol with most significant bits NH .

Finally, using the techniques discussed in [GSN21], there is an randomized
modulus generation algorithm G taking as input NH with }NH} “ 2}n}{3 and
returning n such that Estherpn,NHq “ True.

Secure channel with shared randomness. We assume that all communications
between parties happen through secure channels; since our protocol requires a
shared session randomness, we can hit two birds with one stone as follows: P and
V run an authenticated Diffie–Hellman key exchange [DH76] to obtain a shared
value K. Then they use a secure key derivation algorithm to obtain symmetric
keys (ensuring the channel’s confidentiality and integrity). They further use this
key derivation algorithm to generate two numbers NH,1 and NH,2. These numbers
are under the complete and sole control of neither party and are kept secret. We
write generically NH,1|NH,2 :“ Exchange.

3 The New Modulus Co-Generation Process

The intuition behind the proposed protocol is illustrated (see Figures 1 and 2)
by an analogy consisting in attaching (multiplying) four “magnets” (primes
p1, q1, p2, q2) to form a larger “magnet” (n).

The magnet generator P may cheat and provide, instead of an elementary
magnet, a simple piece of iron. We assume that an iron-magnet link is too weak
and breakable but that a magnet-iron˚-magnet link is resistant. We hence ask P
to generate two magnet-magnet pieces. Should P cheat, we would still have two
magnets in n and hence have at least a part of n (sub-factor) which is hard to
factor.

An alternative analogy is the following: we are given a machine capable of
detecting that an alloy contains at least 50% of gold. The machine’s maximal
testing capacity is 1 kilogram. We are required to ascertain that a receiver gets
a bar containing at least 1 kilogram of gold. Trivially, the solution consists in
receiving two 1 kilogram bars, testing them sequentially using the machine and
melting them to obtain a 2 kilogram bar. This 2 kilogram bar is shipped to
the receiver who is thereby guaranteed to receive least 1 kilogram of gold. In
this analogy gold is properly generated primes and impurities are weak primes
generated on purpose.

3.1 Protocol

As mentioned in Section 2 we assume that all exchanges between P and V are
properly secured against passive attackers — this is standard and the precise
way in which this is achieved in practice is beyond the scope of our paper. The

3

S N S N

S N S N

prime p1 prime q1

modulus n1

S N S N

S N S N

prime p2 prime q2

modulus n2

Fig. 1. The magnet analogy: preparing n1 and n2.

S N S N S N S N

S N S N S N S N

modulus n1 modulus n2

Final modulus n

Fig. 2. The magnet analogy: forming n “ n1n2. Even if p1 and p2 are weak primes
(e.g., with pi ´ 1 smooth), the existence of q1 and q2 in n makes n cryptographically
useful.

protocol is then the following, where a failure of any “ ?
“” results in a failure of

the overall protocol.

Prover P Verifier V (CA)
NH,1|NH,2 :“ Exchange NH,1|NH,2 :“ Exchange
n1 :“ GpNH,1q

n1
ÝÝÝÝÝÝÑ Estherpn1, NH,1q

?
“ True

n2 :“ GpNH,2q

gcdpn1, n2q
?
“ 1

n2
ÝÝÝÝÝÝÑ Estherpn2, NH,2q

?
“ True

n :“ n1n2 n :“ n1n2

Verifypn, cq ?
“ True c

ÐÝÝÝÝÝ c :“ Certifypnq

3.2 Rationale

The rationale behind this procedure is the following:

– In case an attack on G allowing to generate vulnerable moduli is found, it is
likely that such an attack would not affect both factors but only one which
would remain controllable by the attacker. The process ascertains that at
least one “good” factor in n1 and one “good” factor in n2 would result in n
being partially factoring-resistant (except with respect to the CA V) with
respect to external attackers and hence cryptographically useful.

4

– We require the prescribed patterns NH,i to be secret3 and random to avoid
partially factoring n given the information that its factors n1 and n2 share
known bit patterns.

3.3 Security

Let us now discuss three different scenarios.

– P is honest: A third party receiving n gets no useful information on the
factors of n. V only learns the sub-factors ni which are insufficient for allowing
V to sign messages on P’s behalf nor decrypt ciphertexts sent to P.

– P is dishonest and V is honest: P attempts to generate a modulus which
is easy to factor. The exchange of commitments at the beginning of the
protocol reduces4 P’s control over the sub-moduli ni. It is conjectured that
this constraint prevents P from fixing the ni to some constant value while
passing the Esther test or prevents P from simultaneously increasing the
smoothness of both pi ´ 1 and qi ´ 1. P may however reveal his own random
tape of G or use a low-entropy random tape and thereby enable everybody
to re-generate the factors but this is tantamount to purposely revealing the
factors5, a misbehavior against which nothing can be done in general.

– P and V are both dishonest : This scenario does not make any practical sense,
e.g., P could just publish all his factors or V could certify any easy to factor
modulus.

P V (CA) V learns Externals learn n is:
honest any behavior n1, n2 no factors of n usable

dishonest honest all factors of n only weak factors of n usable
dishonest dishonest all factors of n all factors of n broken

Table 2. Consequences of different honesty settings. The table shows that is if at least
one party remains honest then n remains safe for cryptographic use with respect to the
external world.

3.4 Efficiency

The global computational cost of our protocol is dominated by two calls to G, as
other phases essentially have the cost of a few full-sized modular multiplications.
The cost of running G is typically cubic (up to logarithmic factors), and therefore

3 With respect to the external world.
4 Reduces but does not eliminate! Indeed, P must be given the possibility to inject
randomness into the random tape of G.

5 Rather than just weakening the key - the risk we want to defend against

5

our protocol’s complexity is Opk log3 n log log nq, where n is the modulus and k
is the number of primality testing rounds determining the primality probability.
The additional log log n factor is the density of primes among integers of size
log n.

3.5 Hierarchical Attestation

Note that the scheme can be made hierarchical: i.e. a PKI where CAs of level
i magnetically co-generate moduli with CAs of level i´ 1 and certify them. In
other words, the modulus ni (used by the father node to certify the son’s ni`1)
is magnetically co-generated with the grandparent node and certified using the
grandparent’s ni´1. Note that n0 must be attested using some other means, for
instance [GSN21] or [CM99].

4 Conclusion

This paper introduced an inexpensive interactive process allowing a CA to co-
generate a modulus n “ p1q1p2q2 with a user P . Under the conjecture formulated
in [GSN21], n contains at least two uncontrolled prime factors which makes it
appropriate for most factoring-based cryptographic applications. Because this
assumption is core to security, we encourage the community to carefully scrutinize
this protocol before considering its adoption.

References

AP18. Benedikt Auerbach and Bertram Poettering. Hashing solutions instead of
generating problems: On the interactive certification of RSA moduli. In Michel
Abdalla and Ricardo Dahab, editors, Public-Key Cryptography - PKC 2018
- 21st IACR International Conference on Practice and Theory of Public-Key
Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings, Part II,
volume 10770 of Lecture Notes in Computer Science, pages 403–430. Springer,
2018.

CM99. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number
is the product of two safe primes. In Jacques Stern, editor, Advances in
Cryptology - EUROCRYPT ’99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6,
1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages
107–122. Springer, 1999.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22(6):644–654, 1976.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Andrew M. Odlyzko, editor, Ad-
vances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer, 1986.

6

GSN21. Rémi Géraud-Stewart and David Naccache. Elementary attestation of crypto-
graphically useful composite moduli. In Diana Maimut, Andrei-George Oprina,
and Damien Sauveron, editors, Proceedings of the 13th International Confer-
ence on Security for Information Technology and Communications (SECITC
2020), November 19-20, Lecture Notes in Computer Science. Springer, 2021.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592
of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

Rab79. Michael O. Rabin. Digitalized signatures and public key functions as intractable
as intractable as factorization. MIT Laboratory of Computer Sciences, 21,
1979.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

7

	Magnetic RSA

