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TÜBİTAK BİLGEM, Gebze 41470 Kocaeli, Turkey

kamil.otal@gmail.com

January 21, 2021

Abstract

The subfield construction is one of the most promising methods to
construct maximum distance separable (MDS) diffusion layers for block
ciphers and cryptographic hash functions. In this paper, we give a general-
ization of this method and investigate the efficiency of our generalization.
As a result, we provide several best MDS diffusions with respect to the
number of XORs that the diffusion needs. For instance, we give

• an involutory MDS diffusion F3
28 → F3

28 by 85 XORs and

• an involutory MDS diffusion F4
28 → F4

28 by 122 XORs,

and hence present new records to the literature. Furthermore, we interpret
the coding theoretical background of our generalization.

Keywords: Maximum distance separable (MDS) matrices, subfield
construction.

1 Introduction

Block ciphers are the oldest and most common way of secure communication.
In particular, The Advanced Encryption Standard (AES) [8] has been intensely
utilized and analyzed all over the world since the day it was standardized. In
the construction of a modern block cipher like AES, there are two main prin-
ciples taken into account: confusion and diffusion. The confusion property is
generally provided by S-boxes which are special nonlinear mappings on a finite
dimensional vector space over F2, whereas the diffusion is often provided by a
maximum distance separable (MDS) matrix which is the redundancy (check)
part of a generator matrix of an MDS code.

In general, if r-bit to r-bit S-boxes are used during the construction of a block
cipher, then an MDS matrix over F2r (or GL(r,F2) in general) is preferred for
the maximum diffusion (see the wide trail strategy approach for further detail in
[7]). Such a preference lets us easily count active S-boxes through rounds. Note
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that counting active S-boxes is an important process to show the resistance of
the cipher against linear and differential attacks.

The subfield construction, which is introduced in [1], applies an unconven-
tional usage of MDS matrices in case r = 8. In particular, a k× k MDS matrix
over F24 is multiplied by the semi-columns of the input column, instead of mul-
tiplying a k × k MDS matrix over F28 by the input column (see Proposition 2
below). This procedure gives quite efficient MDS diffusions with respect to the
number of XORs in some cases (see [12, Table 2] for example).

In this paper, we give a generalization of the subfield construction (The-
orem 1) relaxing most of the parameters. We then examine the efficiency of
our method with respect to the XOR counting procedure. As a result, we ob-
serve that our generalization gives the best MDS diffusions for many cases, see
Tables 1, 2, 3, and 4.

The rest of the paper is organized as follows. We firstly recall some pre-
liminary tools mostly from coding theory in Section 2. We state and prove
our generalization, and examine its efficiency in Section 3. Lastly we present
final remarks, containing the coding theoretical background, on our method in
Section 4.

2 Preliminaries

In this section, we briefly recall the fundamental notions mostly coming from
coding theory.

Let Fn
2r denote the set of vectors of length n and with entries from the

finite field F2r of size 2r. The function d : Fn
2r × Fn

2r → R given by d(u, v) :=
|{i : i ∈ {1, 2, . . . , n}, ui 6= vi}| satisfies the metric properties and is called the
Hamming distance. A subset C of Fn

2r endowed with the Hamming metric is
called a code. We define the minimum (Hamming) distance of a code C by
d(C) := min{d(u, v) : u, v ∈ C, u 6= v}. There is an upper bound on d(C) given
by d(C) ≤ n+ 1− log2r (|C|) and called the Singleton bound. A subset C of Fn

2r

satisfying the Singleton bound is called an MDS code.
The main parameters of a code C in Fn

2r is denoted by (n, |C|, d(C))2r . In
particular, if C is a k-dimensional subspace of Fn

2r over F2r , then we denote
the main parameters of C by [n, k, d(C)]2r . MDS codes exist for many but
not all parameters. In particular, the MDS Conjecture, which is stated below,
formulates the existence of linear MDS codes with respect to their parameters
(see also [19, Conjecture 11.16] for example).

Conjecture 1 (The MDS Conjecture). The parameters of a linear MDS code
[n, k, n−k+1]2r of length n and dimension k > 1 over F2r satisfy the following.

n ≤

 2r + 1 if k ∈ {2} ∪ {4, 5, . . . , 2r − 2},
2r + 2 if k ∈ {3, 2r − 1},
k + 1 if k ≥ 2r.

A linear code corresponds to a rowspace of a k × n matrix over F2r . Such a
matrix is called a generator matrix of the code. In particular, linear MDS codes
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can be uniquely represented by a k×n matrix [I : M ] which is a concatenation of
k×k identity matrix I and k×(n−k) matrix M over F2r . Here, the redundancy
(check) part M of the generator matrix is called an MDS matrix. The minimum
distance of a given linear MDS code equips the corresponding MDS matrix as
in the following well-known result.

Proposition 1. Let u be a nonzero k×1 matrix and M be a k×k MDS matrix
over F2r . Then the number of minimum total nonzero entries in both u and Mu
is at least k + 1.

Now we define a bijection between F28 and F23×F25 : Let F28 = F2(θ) where
θ is a root of x8 + x4 + x3 + x + 1 ∈ F2[x], F23 = F2(α) where α is a root of
x3 + x + 1 ∈ F2[x], and F25 = F2(β) where β is a root of x5 + x2 + 1 ∈ F2[x].
Then, for

u = u0,0 + u0,1θ + u0,2θ
2 + u0,3θ

3 + u0,4θ
4 + u0,5θ

5 + u0,6θ
6 + u0,7θ

7

where u0,i ∈ F2 for 0 ≤ i ≤ 7, we define

(u1, u2) = (u0,0 + u0,1α+ u0,2α
2, u0,3 + u0,4β + u0,5β

2 + u0,6β
3 + u0,7β

4).

and hence construct a bijection

u↔ (u1, u2).

(We sometimes use notation u1||u2 to denote (u1, u2).) This bijection idea can
be easily extended from F28 ↔ F23 × F25 to

F2r1+r2+···+rs ↔ F2r1 × F2r2 × · · · × F2rs

for arbitrary positive integers ri (1 ≤ i ≤ s), and to matrices directly.
We now give another method, first introduced in [1] and called the subfield

construction, to satisfy the maximum byte-wise branching like in Proposition 1.

Proposition 2. Let r be an even integer, u be a nonzero k×1 matrix over F2r ,
u1 and u2 be k × 1 matrices over F2r/2 such that u = u1||u2, and M be a k × k
MDS matrix over F2r/2 . Then the minimum total nonzero entries in both u and
Mu1||Mu2 is at least k + 1.

We omit the proof of Proposition 2 since Theorem 1 in Section 3 covers
Proposition 2, please see the proof of Theorem 1 for the verification of Propo-
sition 2.

The efficiency of an MDS mapping is generally measured by the number
of XORs that the mapping needs. In particular, we focus on the finite field
multiplication between a constant finite field element and a variable. The num-
ber of XORs that the multiplication needs is determined with respect to the
irreducible polynomial which defines the finite field. For example, consider the
finite field F23 = F(α) where α is a root of x3 +x+ 1 ∈ F2[x], the multiplication
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of α+α2 and the arbitrary element y = y0 + y1α+ y2α
2 (yi ∈ F2 for 0 ≤ i ≤ 2)

is given by

(α+α2)y = (α+α2)(y0 +y1α+y2α
2) = (y1 +y2)+(y0 +y1)α+(y0 +y1 +y2)α2

which corresponds to the vector (y1+y2, y0+y1, y0+y1+y2). Here, the addition
corresponds to the XOR operation and hence we need to apply 1 + 1 + 2 = 4
XORs to execute the multiplication. That is, the multiplication by α + α2

corresponds to the transformation

(y0, y1, y2) 7→ (y1 + y2, y0 + y1, y0 + y1 + y2)

which requires 4 XORs. This multiplication can be extended to matrices directly
as we multiply a constant k × k matrix and a variable column of size k.

An MDS matrix with less XORs is considered more efficient than the others.
There are also various optimization techniques in the literature to reduce the
number of XORs (see [3, 4, 5, 6, 14, 18, 23] for example). Note that the classical
XOR counting process that we mention above has a generic role and determines
an upper bound for the optimization techniques.

In the subfield construction, we multiply the number of XORs for the matrix
by 2 since the matrix is applied on two different semi-columns.

In many block ciphers, MDS mappings are used for encryption and their
inverses are used for decryption. Therefore, MDS mappings are considered
together with their inverses in many usage areas in cryptography. Therefore,
an MDS mapping whose inverse is itself, which is also called involutory, has a
special interest in cryptography.

3 A Generalization of the Subfield Construction
and Its Efficiency Analysis

In this section, we generalize Proposition 2 and then investigate the efficiency
of this generalization with respect to the XOR counting.

Firstly we would like to state our observations on Proposition 2 that moti-
vates our generalization:

• We do not have to use the same MDS matrix M to multiply with u1 and
u2 as in Proposition 2, we can use different MDS matrices M1 and M2 to
satisfy the MDS branching.

• Similarly, M as in Proposition 2 does not have to be over F2r/2 , it can be
over just a smaller field. That is, r does not have to be even (or a multiple
of a certain fixed number).

• Additionally, we do not have to split u into two as u1 and u2, we can split
it into more pieces.

We obtain the following theorem when we combine all these relaxations.
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Theorem 1. Let u be a nonzero k × 1 matrix over F2r1+r2+···+rs , ui be a k × 1
matrix over F2ri for 1 ≤ i ≤ s, and u = u1||u2|| . . . ||us. Let also Mi be a
k × k MDS matrix over F2ri for 1 ≤ i ≤ s and v := M1u1||M2u2|| . . . ||Msus
be the k× 1 matrix obtained by concatenating M1u1,M2u2, . . . ,Msus. Then the
number of total nonzero entries in u and v is at least k + 1.

Proof. Assume that u has j nonzero entries for some 1 ≤ j ≤ k. Then, there
exists at least one 1 ≤ i ≤ s such that ui has ji nonzero entries for some
1 ≤ ji ≤ j. This implies that Miui has at least k+ 1− ji nonzero entries, hence
the number of nonzero entries in v must be greater than or equal to k + 1− ji.
In other words, the number of nonzero entries in v is greater than or equal to
k+ 1− j since ji ≤ j. As a result, the number of nonzero entries in both u and
v is greater than or equal to k + 1.

The following example illustrates Theorem 1.

Example 1. Let k = 2, s = 3, r1 = 2, r2 = 3, r3 = 3, α ∈ F2r1 be a root of
x2 + x+ 1 ∈ F2[x] and β ∈ F2r2 = F2r3 be a root of x3 + x+ 1 ∈ F2[x]. Let also

M1 =

[
α 1
1 1

]
,M2 =

[
β β + 1
1 β

]
,M3 =

[
1 β
1 1

]
.

Note that M1, M2 and M3 are MDS matrices. Remark that we can separate each
nonzero u ∈ F2

28 by u = u1||u2||u3 for some u1 ∈ F2
22 , u2 ∈ F2

23 , and u3 ∈ F2
23 .

The transformation
u 7→ v = M1u1||M2u2||M3u3

is an MDS diffusion, i.e. the number of nonzero bytes in both u and v is at least
3.

We call the method in Theorem 1 generalized subfield construction. We
remark that the generalized subfield construction contains both the subfield
construction (where s = 2, M1 = M2, and r1 = r2) and classical MDS matrix
multiplication (where s = 1 and r1 = r).

The generalized subfield construction has also the following nice property
that we use in the rest of this section. We state it without proof since it is
straightforward.

Theorem 2. Consider the assumptions and notations of Theorem 1. Then, the
MDS mapping is involutory if and only if the MDS matrix Mi is involutory for
all 1 ≤ i ≤ s.

In the following subsections, we examine the efficiency of the generalized
subfield construction for MDS diffusions.

3.1 The k = 2 Case for Involutory MDS Diffusions

In this section, we focus on the involutory MDS diffusions F2
2r → F2

2r using
Theorem 1. We need the following generic result for this purpose.
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Theorem 3. Any 2× 2 involutory MDS matrix over F2r is in the form of[
1 + (bc)2

r−1

b

c 1 + (bc)2
r−1

]
for some nonzero b, c ∈ F2r .

Proof. Assume that

M =

[
a b
c d

]
is an involutory MDS matrix over F2r . Then, the property M2 = I implies the
equation system

a2 + bc = 1, (1)

ab+ bd = 0, (2)

ca+ dc = 0, (3)

cb+ d2 = 1. (4)

Here, equations (1) and (4) implies a = d since the characteristic of F2r is 2.
The equations (2) and (3) are then naturally satisfied. We obtain the required

form combining (1) by the fact that a = d and
√
bc = (bc)2

r−1

since (bc)2
r

= bc
in F2r .

Example 2. Let r = 8. We obtain the following results by a computer search
trying all possible b and c in Theorem 3.

• Let F28 = F2(α), α be a root of x8 + x4 + x3 + x + 1. The most efficient
involutory MDS matrix over this field with respect to the number of XORs
needs 35 XORs. One of such matrices is[

α7 + α3 + α2 + 1 1
α7 + α6 + α3 + α α7 + α3 + α2 + 1

]
.

• Let F24 = F2(α), α be a root of x4 + x+ 1. The most efficient involutory
MDS matrix over this field with respect to the number of XORs needs 13
XORs. One of such matrices is[

α2 1
α α2

]
.

Therefore, the classical subfield construction can be applied by 26 XORs.

• Let F23 = F2(α), α be a root of x3 + x + 1; F25 = F2(β), β be a root of
x5 + x2 + 1. The most efficient involutory MDS matrices over these fields
with respect to the number of XORs need 9 and 15 XORs, respectively.
Samples of such matrices are[

α α2 + 1
1 α

]
and

[
β4 + β 1
β3 β4 + β

]
.

Therefore, the generalized subfield construction can be applied by 24 XORs.
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This example shows that the generalized subfield construction provides better
results in case k = 2 and r = 8.

In general, Table 1 contains computational results for different r values. As
we observe from the table, Theorem 1 gives better results when r increases.

r Prop. 1 (r) Prop. 2 (r/2 + r/2) Thm. 1 (r1 + r2 + · · ·+ rs)

2 7 NA

3 9 NA

4 13 14

5 15 NA 16 (2+3)

6 19 18 20 (2+4)

7 21 NA 22 (3+4)

8 35 26 24 (3+5)

9 27 NA 27 (3+3+3)

10 33 30 30 (3+7)

Table 1: The least number of XORs for a 2 × 2 MDS diffusion over F2r . (NA
means “not applicable”. The bold font indicates the best value in the row. All
the fields are constructed over the most efficient irreducible polynomial (i.e. of
the lowest weight and highest gap), for example, F25 is constructed by F32 =
F2[x]/(x5 + x2 + 1) for r = 5.)

3.2 The k = 3 Case for Involutory MDS Diffusions

In this section, we focus on the involutory MDS diffusions F3
2r → F3

2r using
Theorem 1. We need the following main result presented by Güzel et al. in [9].
(See also [11] and [16] as other resources on such MDS diffusions.)

Theorem 4. [9] Any 3× 3 involutory MDS matrix over F2r is in the form of a1 (a1 + 1)b0 (a1 + 1)b1
(a2 + 1)b−1

0 a2 (a2 + 1)b−1
0 b1

(a1 + a2)b−1
1 (a1 + a2)b−1

1 b0 a1 + a2 + 1


for some nonzero a1, a2, b0, b1 ∈ F2r \{0} satisfying a1 6= a2, a1+a2 6= 1, a1 6= 1,
and a2 6= 1.

Example 3. Let r = 8. We obtain the following results by a computer search
trying all possible a1, a2, b0 and b1 in Theorem 4.

• Let F28 be constructed over x8 + x4 + x3 + x + 1. The most efficient
involutory MDS matrix over this field with respect to the number of XORs
needs 108 XORs (see [9]).

7



r Prop. 1 (r) Prop. 2 (r/2 + r/2) Thm. 1 (r1 + r2 + · · ·+ rs)

3 31 NA

4 43(ref. [9]) NA

5 54 NA

6 67 62

7 79 NA 74 (3+4)

8 108 (ref. [9]) 86 (ref. [9]) 85 (3+5)

Table 2: The least number of XORs for a 3 × 3 MDS diffusion over F2r . (NA
means “not applicable”. The bold font indicates the best value in the row. All
the fields are constructed over the most efficient irreducible polynomial.)

• Let F24 = F2(α), α be a root of x4 + x+ 1. The most efficient involutory
MDS matrix over this field with respect to the number of XORs needs 43
XORs (see [9] for example). Therefore, the classical subfield construction
can be applied by 86 XORs.

• Let F23 = F2(α), α be a root of x3 + x + 1; F25 = F2(β), β be a root of
x5 + x2 + 1. The most efficient involutory MDS matrices over these fields
with respect to the number of XORs need 31 and 54 XORs, respectively.
Samples of such matrices are α2 + 1 1 α+ 1

1 α2 + α α
α2 1 α

 and

 β2 1 β2

1 β4 + β2 + β β4 + β2 + β
β2 β4 + β2 + β β4 + β + 1

 .
Therefore, the generalized subfield construction can be applied by 85 XORs.

This example shows that the generalized subfield construction provides better
results in case k = 3 and r = 8.

In general, Table 2 contains computational results for different r values. As
we observe from the table, Theorem 1 gives better results when r increases.

3.3 The k = 4 Case for Involutory MDS Diffusions

In this section, we focus on the involutory MDS diffusions F4
2r → F4

2r using
Theorem 1. Note that such mappings are among the most intensely used MDS
diffusions in cryptography. We use the following form of matrices, which is
presented by Kurt Pehlivanoğlu et al. in [13], for our computer search: A 4× 4
involutory MDS matrix over F2r of the form

a0 a1b1 a2b2 a3b3
a1b

−1
1 a0 a3b

−1
1 b2 a2b

−1
1 b3

a2b
−1
2 a3b

−1
2 b1 a0 a1b

−1
2 b3

a3b
−1
3 a2b

−1
3 b1 a1b

−1
3 b2 a0

 (5)
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for some nonzero a0, a1, a2, a3, b1, b2, b3 ∈ F2r\{0} is called Generalized Hadamard.

Example 4. Let r = 8. We have the following results.

• The most efficient involutory MDS matrix over F28 with respect to the
number of XORs in the literature needs 144 XORs and such matrices were
given in [20].

• The most efficient involutory MDS matrix over F24 with respect to the
XOR count in the literature needs 64 XORs and such matrices were given
in [13, Example 5]. Therefore, the classical subfield construction can be
applied by 128 XORs.

• Let F23 = F2(α), α be a root of x3 + x + 1; F25 = F2(β), β be a root of
x5 + x2 + 1. The most efficient involutory MDS matrices over these fields
with respect to the number of XORs need 50 and 72 XORs, respectively,
according to our computer search on matrices of the form (5). Samples of
such matrices are

1 α α2 + α+ 1 1
α 1 1 α2 + α+ 1

α2 + 1 α 1 α
α α2 + 1 α 1


and 

1 β4 + β β2 1
1 1 β β2

β2 1 1 β4 + β
β β2 1 1

 .
Therefore, the generalized subfield construction can be applied by 122 XORs.

This example shows that the generalized subfield construction provides better
results in case k = 4 and r = 8.

r Prop. 1 (r) Prop. 2 (r/2 + r/2) Thm. 1 (r1 + r2 + · · ·+ rs)

3 50 NA

4 64 (ref. [13]) NA

5 72 NA

8 144 (ref. [20]) 128 122 (3+5)

Table 3: The least known number of XORs for a 4× 4 MDS diffusion over F2r

in the literature. (NA means “not applicable”. The bold font indicates the best
value in the row. All the fields are constructed over the most efficient irreducible
polynomial.)

In general, Table 3 contains computational results for different r values. As
we observe from the table, Theorem 1 gives better results when r increases.
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3.4 The k = 4 and k = 8 Cases for Involutory and Non-
Involutory MDS Diffusions

In this section, we focus on the involutory and non-involutory MDS diffusions
F4
28 → F4

28 and F8
28 → F8

28 using Theorem 1. In particular, we give an example
below and hence update some parts of a comprehensive table ([12, Table 2]) that
presents the efficiency of various methods for such MDS mappings in Table 4.
We remark that the generalized subfield construction produces quite good (and
sometimes best) MDS diffusions.

Example 5. Kranz et al. compared the number of XORs of 4 × 4 and 8 × 8
MDS and involutory MDS matrices over GL(4,F2) and GL(8,F2) in [12, Table
2]. We update this table as Table 4 considering the following results.

1. In [12, Table 2], we see that there are 4× 4 MDS matrices over GL(4,F2)
with 58 XORs [21]. If we apply these matrices for two semi-columns as
in Proposition 2 (or Theorem 1 in general), then we obtain a diffusion
F4
28 → F4

28 with 116 XORs.

2. As shown in Example 4, we can apply Theorem 1 and obtain an involutory
diffusion F4

28 → F4
28 with 122 XORs.

3. There are 8 × 8 MDS matrices over GL(4,F2) with 380 XORs [13]. If
we apply these matrices for two semi-columns as in Proposition 2 (or
Theorem 1 in general), then we obtain a diffusion F8

28 → F8
28 with 760

XORs.

4. There are 8× 8 involutory MDS matrices over GL(4,F2) with 407 XORs
[13]. If we apply these matrices on two semi-columns as in Proposition 2
(or Theorem 1 in general), then we obtain 814 XORs.

4 Concluding Remarks

We would like to state some of our observations on our generalization in this
section. The parameters r, ri, k, s mentioned below are from the notation of
Theorem 1.

1. Observe that the classical usage of MDS matrices corresponds to the us-
age of linear MDS codes. In the literature, there are also some differ-
ent diffusion layers that corresponds to the usage of nonlinear codes such
as Kerdock codes (see [15] for example). Our method is between these
two ideas: codes linear over F2 but nonlinear over F2r . Particularly, our
method uses codes which are linear over F2gcd(r1,...,rs) where gcd denotes
the greatest common divisor. In other words, our method is an application
of nonlinear but additive MDS codes in cryptography.
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Method Ref. #XORs

MDS Branching on a 4× 1 Column over GL(8,F2)
Matrix in GL(8,F2)4×4 (Subfield) [20] 136

Matrix in GL(8,F2)4×4 (Circulant) [16] 128
Matrix in GL(8,F2)4×4 [17] 106
Matrix in GL(8,F2)4×4 (Circulant) [2] 136
Matrix in GL(8,F2)4×4 (Toeplitz) [21] 123
Matrix in GL(8,F2)4×4 (Subfield) [10] 122
Example 5(1) This paper 116

Involutory MDS Branching on a 4× 1 Column over GL(8,F2)
Matrix in GL(8,F2)4×4 (Subfield) [20] 144

Matrix in GL(8,F2)4×4 (Hadamard) [17] 136
Matrix in GL(8,F2)4×4 (Circulant) [17] 132
Matrix in GL(8,F2)4×4 (Subfield) [10] 136
Example 5(2) This paper 122

MDS Branching on a 8× 1 Column over GL(8,F2)
Matrix in GL(8,F2)8×8 (Hadamard) [20] 768

Matrix in GL(8,F2)8×8 (Circulant) [16] 688
Matrix in GL(8,F2)8×8 (Circulant) [2] 784
Matrix in GL(8,F2)8×8 (Toeplitz) [22] 680
Example 5(3) This paper 760

Involutory MDS Branching on a 8× 1 Column over GL(8,F2)
Matrix in GL(8,F2)8×8 (Hadamard) [20] 816

Matrix in GL(8,F2)8×8 (Hadamard) [10] 1152
Example 5(4) This paper 814

Table 4: Comparison of MDS branchings with respect to XOR counts. This
table is indeed an updated version of the related parts of [12, Table 2] by adding
our results.
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2. The field F2r/2 is a subfield of F2r in Proposition 2. However, F2ri is not
a subfield of F2r in Theorem 1 if ri is not a divisor of r. Therefore, it may
not be suitable to name our method as “generalized subfield construction”
but we use such a term anyway since our method is the only generalization
of Proposition 2 to the best of our knowledge.

3. Consider the r = 8 case. The most efficient irreducible polynomial of
degree 8 over F2 is x8 +x4 +x3 +x+1 which needs 3 XORs for reduction.
On the other hand, the most efficient irreducible polynomial of degree 4
over F2 is x4 + x + 1 which needs 1 XOR for reduction. Therefore, it is
expected that Proposition 2 outperforms Proposition 1 since 2 × 1 < 3.
However, our computations show that the separation r1 = 3 and r2 = 5
is more efficient than the separation r1 = r2 = 4 for r = 8 in Theorem 1,
even if it sensually seems the opposite. There are also many other such
examples in our computations presented in Tables 1, 2, 3, and 4.

4. Our generalization gives better results when r increases especially for in-
volutory MDS diffusions as we observe in Tables 1, 2 and 3.

5. The proper form of our generalization (i.e. the form covered in Theorem 1
but not in Propositions 1 and 2) is not applicable as k increases because
of the MDS conjecture.

6. Our generalization seems promising when s increases as we observe in
Table 1 for r = 9.

7. Our generalization indicates that it is important to study the MDS dif-
fusions for not only r = 4 and r = 8 but also r = 2, 3, 5, 6 for daily life
applications.

8. Our generalization seems promising especially for involutory MDS diffu-
sions but we think that it is a powerful method for also non-involutory
MDS diffusions as we observe in Table 4.
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