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Abstract. Logic access control enforces who can read and write data;
the enforcement is typically performed by a fully trusted entity. At
TCC 2016, Damg̊ard et al. proposed Access Control Encryption (ACE)
schemes where a predicate function decides whether or not users can read
(decrypt) and write (encrypt) data, while the message secrecy and the
users’ anonymity are preserved against malicious parties. Subsequently,
several ACE constructions with an arbitrary identity-based access policy
have been proposed, but they have huge ciphertext and key sizes and/or
rely on indistinguishability obfuscation. At IEEE S&P 2021, Wang and
Chow proposed a Cross-Domain ACE scheme with constant-size cipher-
text and arbitrary identity-based policy; the key generators are separated
into two distinct parties, called Sender Authority and Receiver Author-
ity. In this paper, we improve over their work with a novel construction
that provides a more expressive access control policy based on attributes
rather than on identities, the security of which relies on standard as-
sumptions. Our generic construction combines Structure-Preserving Sig-
natures, Non-Interactive Zero-Knowledge proofs, and Re-randomizable
Ciphertext-Policy Attribute-Based Encryption schemes. Moreover, we
propose an efficient scheme in which the sizes of ciphertexts and en-
cryption and decryption keys are constant and thus independent of the
number of receivers and their attributes. Our experiments demonstrate
that not only is our system more flexible, but it also is more efficient and
results in shorter decryption keys (reduced from about 100 to 47 bytes)
and ciphertexts (reduced from about 1400 to 1047 bytes).
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1 Introduction

Information Flow Control (IFC) systems enforce which parts of the com-
munication amongst the users are allowed to pass over the network [32,30].
As introduced in the seminal work of Bell and LaPadula [7], restrictions
have to be imposed on who can receive a message (enforce the No-Read
rule) and who can send a message (enforce the No-Write rule). Al-
though encryption guarantees users’ privacy by limiting the set of recip-
ients, we need more functionality to control who can write and transfer
a ciphertext. Broadcasting of sensitive data by malicious senders is a
serious threat for companies that handle highly sensitive data such as
cryptocurrency wallets with access to signing keys [13]. Although some
advanced cryptographical tools such as Functional Encryptions provide
fine-grained access to encrypted data, they do not allow to enforce the
No-Write rule, hence additional functionalities beyond these crypto-
graphic primitives are required to protect against data leakage.

To achieve this aim, Damg̊ard et al. [15] introduced a novel scheme
called Access Control Encryption (ACE) to impose information flow con-
trol systems using cryptographic tools. They have defined two security
notions for an ACE scheme: the No-Read rule and the No-Write rule.
Unauthorized receivers cannot decrypt the ciphertext and unauthorized
senders are not able to transmit data over the network. The model as-
sumes that all the communications are transmitted through an honest-
but-curious third party, called Sanitizer. The Sanitizer follows the
protocol honestly but it is curious to find out more about the encrypted
message and the identities of the users. The Sanitizer performs some
operations on the received messages before transmitting them to the in-
tended recipients without learning any information about the message
itself or the identity of the users. More precisely, with a set of senders S
and receivers R, an ACE scheme determines via a hidden Boolean Predi-
cate function Pf : S ×R → {0, 1} which group of senders (like i ∈ S) are
allowed to communicate with a certain group of receivers (like j ∈ R):
communication is allowed iff Pf(i, j) = 1, else the request will be rejected.

Damg̊ard et al. proposed two ACE constructions that support arbi-
trary policies. Their first construction takes a brute-force approach that
is based on standard number-theoretic assumptions, while the size of the
ciphertext grows exponentially in the number of receivers. The second
scheme is more efficient: ciphertext length is poly-logarithmic in the num-
ber of the receivers, but it relies on the strong assumption of indistin-
guishability obfuscation (iO) [20]. In a subsequent work, Fuchsbauer et
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al. [19] proposed an ACE scheme for restricted classes of predicates in-
cluding equality, comparisons, and interval membership. Although their
scheme is secure under standard assumptions in groups with bilinear maps
and asymptotically efficient (i.e., the length of the ciphertext is linear in
the number of the receivers), the functionalities of their construction are
restricted to a limited class of predicates. Tan et al. [37] proposed an ACE
scheme based on the Learning With Error (LWE) assumption [31]. Since
their construction follows the Damg̊ard et al. approach, the ciphertexts in
their construction also grow exponentially with the number of receivers.
On the positive side, their construction is secure against post-quantum
adversaries. Recently, Wang et al. [40], proposed an efficient LWE-based
ACE construction from group encryptions. Kim and Wu [27] proposed
a generic ACE construction based on standard assumptions such that
the ciphertext shrinks to poly-logarithmic size in the number of receivers
and with arbitrary policies. Their construction requires Digital Signature,
Predicate Encryption, and Functional Encryption schemes to obtain an
ACE construction based on standard assumptions. Recently, Wang and
Chow [39] proposed a new notion called Cross-Domain ACE in which the
keys are generated by two distinct entities, the Receiver-Authority and the
Sender-Authority. Structure Preserving Signatures, Non-Interactive Zero-
Knowledge proofs, and Sanitizable Identity-Based Encryption schemes
constitute the main ingredients in their construction. In [39], the length
of the ciphertext is constant, but it fails to preserve the identity of the
receivers and also the decryption key size grows linearly.

Our Contributions: In this paper, we propose a generic Cross-Domain
Attribute-Based Access Control Encryption (CD-ABACE) scheme and
then propose an efficient CD-ABACE scheme with a constant ciphertext
size and constant key length. Next we explain our results in more detail.

This paper re-defines the way to conceive the predicate function in
ACE constructions by considering users’ attributes instead of their iden-
tities. Based on an Attribute-Based predicate function, Pf : Σk × Σc →
{0, 1}, the senders with a certain ciphertext index value in Σc are limited
to transmit data only to restricted recipients with a key index Σk. In a
nutshell, for an attribute space U, s.t. Σk, Σc ⊆ U, the sender who owns
a secret encryption key for ciphertext index P ∈ Σc can transmit data to
those receivers with private decryption key corresponding to key index
B ∈ Σk, iff Pf(B,P) = 1, otherwise, the Sanitizer bans the communica-
tion between them. One of the main differences between this approach and
the identity-based one is that the anonymity of the receivers corresponds
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to the level of attribute hiding applied to the underlying Attribute-Based
Encryption (ABE) scheme.

ABE schemes provide a powerful tool to enforce fine-grained access
control over encrypted data; they have been used in several applica-
tions [33]. Goyal et al. in [23], proposed two complementary types of
ABE schemes: Key-Policy Attribute-Based Encryption (KP-ABE) and
Ciphertext-Policy Attribute-Based Encryption (CP-ABE) schemes. In CP-
ABE, the sender embeds a (policy) function f(·) into ciphertext to de-
scribe which group of receivers can learn the encrypted message. In this
approach, the ciphertext is labeled by an arbitrary function f(·), and
secret keys are associated with attributes in the domain of f(·). The de-
cryption algorithm yields the plaintext iff the receivers’ attribute set A
satisfies f(·), i.e., f(A) = 1. Conversely, in KP-ABE the secret keys are
labeled by the function f(·); this label is set in the setup phase and a
ciphertext can only be decrypted with a key whose access structure is
satisfied by the set of attributes. In KP-ABE, the access policy cannot be
altered after setup phase, while in CP-ABE data owners can control the
data access.

Hence, we utilize CP-ABE schemes to limit senders to transmit data
to a specific ciphertext index P. While CP-ABE schemes only enable fine-
grained access to the encrypted data, they are not equipped to enforce
policies for writing a message as well; thus we need additional function-
alities to cover the latter by defining secret encryption keys. We utilize
a Structure-Preserving Signature to guarantee the given encryption key
is valid and one can only get access with a valid signature. A signature
of this type allows selective re-randomization of a valid signature, and
therefore efficiently proves the validity of this operation. Additionally,
the CP-ABE scheme must also be re-randomizable in order to achieve
the key-less sanitizability.

Based on realistic application scenarios for ACE constructions, the
proposed scheme follows the Cross-Domain key generation method, pro-
posed by Wang and Chow in [39]. In an ACE scheme, the users might
belong to two distinct companies with different security levels, so one of
them may not be able to grant access rights to the other. In this con-
text, two entities referred to as Sender Authority and Receiver Authority
locally generate secret keys for senders and receivers, respectively. More-
over, since users, including senders and receivers, may need to be added
to the system later on, the setup phase will be carried out independently
of the predicate function. Hence, our approach follows this setup method
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and we provide a generic construction of a Cross-Domain Access Control
Encryption scheme based on Attribute-Based Encryption constructions.

We finally propose an efficient CD-ABACE construction with con-
stant key and ciphertext sizes. To obtain a CD-ABACE scheme that
is efficient both in the length of the parameters and the computational
overhead, we propose a novel CP-ABE scheme with AND-gate circuits.
More specifically, we say a Boolean AND-gate circuit is satisfied (i.e, the
output is true) iff all the input gates are true. In particular, we say the set
of attributes B ⊂ U satisfies the AND-gate circuit with the set of input
constraints P ⊆ U iff P is a subset of B, i.e., P ⊆ B. As a simple example,
let U = {U1, U2, U3, U4}, then the set of input wires B = {U1, U3, U4} sat-
isfies the circuit P = {U1, U4}, because P ⊆ B. Identity-based encryptions
are special cases of AND-gate ABE schemes with an attribute universe
consisting of the users’ identity and also |B| = 1. Moreover, in this con-
struction the Sanitizer only requires public parameters, but no secret
or public keys. Our CD-ABACE scheme has the following properties:

- Predicate function takes as inputs user attributes instead of their iden-
tities.

- The length of the ciphertext remains constant regardless of the num-
ber of receivers and the number of attributes in the access policy.

- All users’ secret keys for encryption and decryption consist of only one
group element, regardless of the number of attributes of the users.

- As an additional result, we present an efficient CP-ABE scheme with
constant size ciphertexts and keys.

Table 1 compares the efficiency of the proposed construction with
related works. As illustrated, in our scheme the lengths of the ciphertext
and the key are improved to a constant size. The computational overhead
for decryption grows linearly with the number of attributes that a receiver
owns, while the encryption cost is constant and completely independent
of the number of intended recipients. Our experiments show that the time
required to run the encryption and decryption algorithm is only ∼ 15 ms
and ∼ 45 ms, respectively.

Road-map: The rest of the paper is organized as follows. In Sect. 2, we
review the preliminaries and definitions and describe the system archi-
tecture. The formal definition of the CD-ABACE scheme and its security
definitions are described in Sect. 3. In Sect. 4, we propose the generic
construction of CD-ABACE schemes and discuss their security features.
In Sect. 5 we present an efficient CD-ABACE construction based on a
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Table 1. Comparison of Efficiency and Functionality. n is the number of receivers and
the total number of attributes in the system. r � n indicates the maximum number
of receivers that any sender is allowed to communicate with, and s � n denotes the
maximum number of senders that any receiver can receive a message from. t � n
indicates the maximum number of attributes that a sender can transmit data to. The
maximum number of legitimate attributes that any recipients possesses to decrypt a
ciphertext is denoted by w � n. SS, CD, PF, PE, IB, AB are short for Selectively
Secure, Cross-Domain, Predicate Function, Predicate Function, Identity-Based and
Attribute-Based, respectively.

Scheme
Ciph.

size

Enc. key

size

Dec. key

size

San. key

size

Enc.

cost

Dec.

cost
CD PF Assump.

[15, ‡ 3] O(2n) O(r) O(1) O(1) O(n) O(n) X IB DDH/DCR

[15, ‡ 4] poly(n) O(1) O(1) O(1) O(1) O(1) 7 IB iO

[19] O(n) O(1) O(1) O(1) O(1) O(1) 7 IB SXDH

[27] poly(n) O(1) O(1) O(1) O(n) O(n) 7 PE DDH/LWE

[39] (SS) O(1) O(1) O(s) 0 O(1) O(s) X IB GBDP

Ours (SS) O(1) O(1) O(1) 0 O(1) O(w) X AB MSE-DDH

novel CP-ABE scheme. The performance of the proposed construction is
compared in Sect. 6.

2 Preliminaries and Definitions

To detail the CD-ABACE schemes we need to review some preliminar-
ies. Throu-ghout, we suppose the security parameter of the scheme is λ
and negl(λ) denotes a negligible function. Let U = {U1, . . . , Un} ∈ Znp be

a set and for each subset A ⊂ U we denote the ith component scalar of
this subset by Ai. We use Y ←$F (X) to denote a probabilistic function F
that on input X is uniformly sampled resulting in the output Y. Also, [n]
denotes the set of integers between 1 and n. The algorithms are random-
ized unless expressly stated. “PPT” refers to “Probabilistic Polynomial
Time”. Two computationally indistinguishable distributions A and B are
shown with A ≈c B. We assumed a prime order field F and denote by
F<d[X] the set of univariate polynomials with degree smaller than d. The
ith coefficient of the univariate polynomial f(x) ∈ F<d[X] is denoted by
fi and a polynomial with degree d has at most d+ 1 coefficients. The set
{1, X,X2, . . . , Xd} forms the standard basis: it is trivial to show that the
representation of the coefficients for a polynomial with degree d as the
coefficients of powers X is unique. The vector of A is denoted by ~A.
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Definition 2.1 (Access Structure [6]). For a given set of parties P =
{p1, . . . , pn}, we say a collection U ⊆ 2P is monotone if, for all A,B, if
A ∈ U and A ⊆ B then B ∈ U. Also, a(n) (monotonic) access structure
is a (monotone) collection U ⊆ 2P \ {∅}. We call the sets in U authorized
sets and the sets that do not belong to U are called unauthorized.

Definition 2.2 (Binary Representation of a subset). For a given
universe set U of size n, we can represent each subset A as a binary string
of length n. Particularly, the ith the element of the binary string for the
subset A ⊆ U is equal to 1 (i.e., a[i] = 1) if Ai = Ui. We show a binary
representation set as binary tuple (a[1], . . . , a[n]) ∈ Zn2 .

Definition 2.3 (Zero-polynomial). For a finite set U = {k1, . . . , kn},
we define the zero-polynomial ZA(X) for a nonempty subset of A ⊂ U as

ZA(X) :=
∏n
i=1 (X − ki)a[i], where a[i] is the binary representation of the

complement set A. In other words, this univariate polynomial vanishes on
all the elements of the set U for which the binary representation of the
subset A is zero.

The Zero-polynomial corresponding to subset A ⊂ U is divisible by
the Zero-polynomial of subset B ⊂ U iff A ⊆ B. The result of this division
is equal to the Zero-polynomial for the complement set of (B \ A) (i.
e., (B \ A)). As a simple example, let U = {1, 2, 3, 4}, A = {2, 3} and
B = {1, 2, 3}. Then we have ZA(x) = (x− 1)(x− 4) and ZB(x) = (x− 4).
Obviously, the zero-polynomial ZA(x) is divisible by ZB(x) and the result
of this division is Z

(B\A)(x) = (x − 1). Conversely, the inverse of this

division is rational and we cannot represent it in the standard basis.

Definition 2.4 (Bilinear Groups [12]). A Type-III 1 bilinear group
generator BG(λ) returns a tuple (G1,G2,GT , p, ê), such that G1, G2 and
GT are cyclic groups of the same prime order p, and ê : G1 × G2 → GT

such that ê(G,H) 6= 1 is an efficiently computable bilinear map with the
following properties;

- ∀ a, b ∈ Zp, ê(Ga, Hb) = ê(G,H)ab = ê(Gb, Ha),
- ∀ a, b ∈ Zp, ê(Ga+b, H) = ê(Ga, H)ê(Gb, H) .

We use the bracket notation: for randomly selected generators G ∈ G1

and H ∈ G2 we denote x · G ∈ G1 with [x]1, and we write ê
(
Ga, Hb

)
=

[a]1 • [b]2.

1 For the two distinct cyclic groups G1 6= G2, there is neither efficient algorithm to
compute a nontrivial homomorphism in both directions.
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2.1 System Architecture

The proposed scheme’s architecture is based on the Cross-Domain ACE
technique described in [39]. In a Cross-Domain ACE setting, two distinct
entities generate the keys to determine which group of senders can send
data to a certain group of receivers and control which group of receivers
can read this data. There are five entities in this system as follows:
Receiver Authority (RA) as a trusted third party generates and dis-
tributes system parameters and the secret decryption keys for the Re-
ceivers. For this aim, based on a certified predicate function Pf(., .), it
authorizes the claimed attributes by the receivers and returns the corre-
sponding secret decryption keys.
Sender Authority (SA) as a semi-trusted entity generates the pair of
SA’s public parameters and master secret keys; it publishes the former,
while it keeps the latter secret. Moreover, it generates the secret encryp-
tion keys for the Senders based on a predicate function Pf(., .) and SA’s
master secret keys.
Sanitizer is an honest-but-curious party in the network that checks the
validity of the communication links and acts based on the predicate func-
tion Pf(., .). If the sender does not allow to transmit a message to the
recipients, then the Sanitizer bans the request, else it broadcasts the
received ciphertexts. The Sanitizer is semi-honest which means that it
follows the protocol honestly but tries to infer some sensitive information
including the identities of the users (Senders and Receivers) or compro-
mise the secrecy of a message.
Senders: to share a secret message among a group of receivers, they
encrypt data and send the resulting ciphertext to the Sanitizer along
with a proof to ensure that they possess a valid encryption key generated
by the SA.
Receivers: by having access to the ciphertexts, they can recover the
plaintexts using their own attributes and the corresponding secret key for
decryption. Conversely, if the receiver does not satisfy the access policy
then the ciphertext never reveals any meaningful information about the
encrypted message.

In a nutshell, RA sets up the global public parameters of the net-
work and publishes them, while it securely stores its master secret key.
After authorizing the receivers’ attribute set, RA computes the decryp-
tion secret keys corresponding to their attribute sets. From the public
parameters issued by RA, SA generates the rest of parameters required
for the authorization of the senders. Also, SA uses its master secret key to
create the authorized secret encryption keys for the senders based on the

8



predicate function Pf(., .). Since RA is generating the main parameters
of the system, it can compromise the security requirements, so we assume
this entity is fully-trusted. The sender who wants to share a message se-
curely among a group of receivers re-randomizes the signature (to ensure
sender anonymity), then encrypts the plaintext and proves the validity of
the claimed hidden witness. The Sanitizer receives the sender’s request,
and checks the validity of the proof and the signature to decide on reject-
ing the unauthorized senders without learning their identities. Otherwise,
if the sender – based on the predicate function – is authorized to commu-
nicate with the selected group of receivers, the Sanitizer re-randomizes
the received ciphertext and then passes the sanitized ciphertext on the
recipients. Finally, the receivers who are allowed to decrypt a ciphertext
can run the decryption algorithm and retrieve the message, else they learn
nothing about it. It is assumed the Sanitizer is honest-but-curious: while
it follows the protocol honestly, it is unable to compromise the message
secrecy and anonymity of the users.

3 Cross-Domain Attribute-Based ACE scheme

Next we introduce the notion of Cross-Domain Attribute-Based Access
Control Encryption (CD-ABACE) schemes. The high-level idea behind
the definition of a CD-ABACE is that we can generalize the concept of
Boolean relations in the plain CP-ABE schemes (see App. B.3) to the
predicate function in an ACE construction. In this scenario, the encryp-
tion key generator allows the sender to talk to a restricted group of re-
ceivers based on a given predicate function. By contrast with the original
approach of specifying the ciphertext access rights during the encryption
phase, in the present approach, the Sender Authority declares the access
right during the encryption key generation phase. Moreover, the gener-
ated encryption keys are signed by the SA, and no one can convincingly
assert ownership unless they have a correct signature.

Definition 3.1 (CD-ABACE schemes). A CD-ABACE scheme,
ΨCD-ABACE, over the message spaceM, the ciphertext space C and a pred-
icate function Pf : Σk ×Σc → {0, 1} has the following PPT algorithms:

- (ppra,mskra)← RAgen(U, λ): This randomized algorithm takes as in-
puts the security parameter λ and the universe attribute set U, and
outputs the public parameters ppra and master secret key mskra.

- (ppsa,msksa) ← SAgen(λ, ppra): This randomized algorithm takes the
security parameter λ and RA’s public parameters ppra as inputs and
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generates the pair of SA’s public parameters ppsa and SA’s master
secret key msksa.

- (dkB) ← DecKGen(mskra,B): This randomized algorithm takes RA’s
master secret key mskra and the authorized set of attributes B ∈ Σk
as inputs and outputs the corresponding private decryption key dkB.

- (ekP, σ,W )← EncKGen(ppra, ppsa,msksa,P,Pf): This algorithm takes
the public parameters ppra and ppsa, the SA’s master secret key msksa,
authorized ciphertext index P ∈ Σc, and predicate function Pf(., .) as
inputs. It returns the secret encryption key ekP that enforces that only
the sender can send a message to those receivers who satisfy P along
with the signature σ and its underlying re-randomizing token W .

- (π, x) ← Enc(ppra, ppsa,m, ekP, σ,W ): This algorithm takes as inputs
the public parameters, a message m ∈ M, the encryption key corre-
sponding to the attribute set of P, a valid signature σ and the token
W . It returns a request including a proof π along with its underlying
public instance x.

-
(
C̃t,⊥

)
← San(ppra, ppsa, π, x,Pf): This algorithm takes as inputs the

public parameters ppra and ppsa, a ciphertext along with a proof π
and its corresponding instance x. Afterwards, the algorithm either re-
randomizes the ciphertext to C̃t or rejects the request. To this end, it
checks the validity of the proof and, if it allows this flow based on the
predicate function Pf(., .), it transfers the ciphertext C̃t ∈ C to the
receivers, else it returns ⊥.

- (m′,⊥)← Dec(ppra, ppsa, C̃t, dkB): The decryption algorithm takes as
inputs the public parameters ppra and ppsa, a re-randomized cipher-
text C̃t and the decryption key dkB. If Pf(B,P) = 1, then it returns
a message m′ ∈ M, otherwise it responds by ⊥. In other words, a
recipient with a wrong decryption key learns nothing from the output
of this algorithm.

3.1 Security Definitions

Next we present the required security properties for a CD-ABACE scheme
under only CPA-based definitions, where A has access to encryption,
encryption-key generation, and decryption-key generation oracles. Noted
that the following security games are motivated by the notion of co-
selective CPA security in [5], such that A has to declare q decryption
key queries before the Initialization phase, while it can select the target
challenge ciphertext, adaptively. We slightly modify the extended secu-
rity notions introduced in [39] to adapt them to the CD-ABACE system
model.
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Definition 3.2 (Correctness). For a given attribute universe U and
predicate function Pf : Σk × Σc → {0, 1}, we say that ΨCD-ABACE over
message space M and ciphertext space C is correct if we have,

Pr
[
Dec (dkB,San(Enc(m, ekP,P))) = m : Pf(B,P) = 1

]
≈c 1

Correctness captures the feature that a sender with an encryption key
ekP is able to deliver a message to those receivers for which the attribute
set B satisfies Pf(B,P) = 1 with a high probability. In this case, the San-
itizer should pass the information on and a receiver with decryption key
dkB should be able to retrieve the message correctly from a re-randomized
ciphertext.

Definition 3.3 (No-Read Rule). Consider ΨCD-ABACE over the at-
tribute universe U, message space M, a ciphertext space C and a pred-
icate function Pf : Σk × Σc → {0, 1}. For a security parameter λ, we
say that a PPT adversary A wins the defined No-Read rule security
game described in Fig. 1 with access to the oracles in the same table,
if she guesses the random bit b better than by chance. It is assumed
that for a challenge access structure P∗, A would not request the de-
cryption key for attribute set Bj, such that Pf(Bj ,P∗) = 1. ΨCD-ABACE

satisfies the No-Read rule if for all PPT adversaries A with advantage
AdvNo-Read

ΨCD-ABACE,A(1λ, b) = (Pr[A wins the No-Read game]−1/2) we have,∣∣∣∣AdvNo-Read
ΨCD-ABACE,A(1λ, b = 0)−AdvNo-Read

ΨCD-ABACE,A(1λ, b = 1)

∣∣∣∣ ≈c 0, where we call

A wins the defined security game, iff b′ == b.

Similar to the ID-based ACE constructions, the No-Read rule in an
attribute-based model enforces that only eligible recipients who satisfy a
certain access structure, should learn the message while the other par-
ticipants learn nothing. In particular, not only should an unauthorized
receiver be unable to read the messages, combining the decryption secret
keys of a group of unauthorized receivers should not reveal any infor-
mation about the message. Also, this property has to hold even if the
recipients collude with the Sanitizer.

Definition 3.4 (Parameterized No-Write Rule). Consider ΨCD-ABACE

over U, a message space M, ciphertext space C and a predicate func-
tion Pf : Σk × Σc → {0, 1}. We say a ΨCD-ABACE scheme satisfies
the Parameterized No-Write rule, if no PPT adversary A with ac-
cess to the oracles in Fig. 1 has a non-negligible advantage in winning
the No-Write game, i.e, under the advantage AdvNo-Write

ΨCD-ABACE,A(1λ, b) =
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(Pr[A wins No-Write]− 1/2) we have,∣∣∣∣AdvNo-Write
ΨCD-ABACE,A(1λ, b = 0)−AdvNo-Write

ΨCD-ABACE,A(1λ, b = 1)

∣∣∣∣ ≈c 0.

We say A wins the defined No-Write game iff b′ == b under the
condition that for all queried secret encryption keys Pi ∈ QE ∪ {P∗} and
all requested private decryption keys Bj ∈ QD, along with the challenge
access structure P∗, we have Pf(Bj ,Pi) = 0. The function fix(.) accepts
a ciphertext Ct as input and generates auxiliary information aux of Ct

that is not sanitizable [39]. By seeding an encryption algorithm with this
auxiliary information, the resulting ciphertext has also the same auxiliary
information.

No-ReadACD-ABACE(1λ,U)

1 : (ppra,mskra)← RAgen(1λ,U)

2 : (ppsa,msksa)← SAgen(ppra,RL)

3 : P∗ ← A(ppra, ppsa)

4 : (m0,m1)← AO(ppra, ppsa)

5 : (ekP∗ , σ
∗,W ∗)← EncKGen(P∗)

6 : b←$ {0, 1}
7 : (πb, xb)←$Enc(ppra, ppsa, ekP∗ ,mb)

8 : b′ ←$AO(πb, xb)

No-WriteACD-ABACE(1λ,U)

1 : (ppra,mskra)← RAgen(1λ,U)

2 : (ppsa,msksa)← SAgen(ppra,RL)

3 : (π∗, x∗,P∗)← AO(ppra, ppsa)

4 : (π0, x0) := (π∗, x∗)

5 : (ekP∗ , σ
∗,W ∗)← EncKGen(P∗)

6 : m∗ ←$M, aux← fix(Ct0)

7 : (π1, x1)← Enc(ekP∗ ,m
∗, aux)

8 : b←$ {0, 1}, ˜Ctb ← San(πb, xb)

9 : b′ ←$AO( ˜Ctb)

Oracle ODecKGen(Bj)

1 : Initialize QD = {∅}
2 : if Bj 6∈ QD :

3 : dkBj ← DecKGen(Bj)
4 : return (dkBj ) ∧QD = QD ∪ {Bj}
5 : else : return (dkBj )

Oracle OEnc(m,Pi)

1 : (ekPi , σi,Wi)← EncKGen(Pi,Pf)

2 : (π, x)← Enc(ekPi ,m)

3 : return (π, x)

Oracle OEncKGen(Pi)

1 : Initialize QE = {∅}
2 : if Pi 6∈ QE :

3 : (ekPi , σi,Wi)← EncKGen(Pi,Pf)

4 : return (ekPi , σi,Wi) ∧QE = QE ∪ {Pi}
5 : else : return (ekPi , σi,Wi)

Fig. 1. No-Read and No-Write Security Games

12



Remark 3.1. With regard to the security definitions, the anonymity of the
sender is guaranteed and the Sanitizer cannot deduce the identity of the
sender while the receivers’ anonymity relies on the CP-ABE construction.
Note that the same type of property is known as weak attribute hiding in
the context of ABE constructions [29]. Although an IND-CPA-secure CP-
ABE satisfies the payload hiding property, a stronger security concept,
called attribute-hiding CP-ABE, ensures that the set of attributes asso-
ciated with each ciphertext is also obscured [26]. The latter increases the
ciphertext size incrementally and the identity-based encryptions reveal
the receivers’ identity in plain.

4 Generic Construction

Our generic construction for a general predicate function and universal
CP-ABE is built from following constructions:

1. An EUF-CMA-secure SPS construction, SPS.(Pgen,KG, Sign,Randz,
Vf) (see App. B.1).

2. A computational Knowledge-Sound NIZK proof, ZK.(K ~crs,P,V, Sim)
(see App. B.2).

3. A publicly re-randomizable CP-ABE scheme, rABE .(Pgen,KGen,Col,
Enc,Randz,Dec) (see App. B.3).

For a given predicate function Pf : Σk × Σc → {0, 1}, and message
space M and ciphertext space C, the generic construction consists of the
following PPT algorithms:

- RA setup (RAgen(U, λ)): Takes as inputs the security parameter λ
and an attribute universe U, and runs the rABE .Pgen(λ,U) algorithm
to generate the global and CP-ABE parameters. It outputs RA’s mas-
ter secret key set mskra = (mskrABE) and RA’s public parameters
ppra = (pprABE).

- SA setup (SAgen(ppra,RL)): Takes as inputs RA’s public parameters
ppra and relation RL and runs the ZK.K ~crs(RL), SPS.Pgen(λ) and
SPS.KG(pp) algorithms and returns ppsa = (pp, vk, ~crs) and msksa =
(~ts, sk) as outputs. The underlying relation RL is defined correspond-
ing to the NP-language L for the statement x = (σ′, vk′, ek′, Ct) and
witness w = (σ, ek,m, r, t). We say the relation is satisfied, i.e. RL(x,w)
= 1, if the following conditions hold:

ekP ← rABE .Col(pp,P) ∧ SPS.Vf(vk, ekP, σ) = 1 ∧
(σ′, vk′)← SPS.Randz(σ,W ; t) ∧ Ct← rABE .Enc(ekP,m; r) .
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- Decryption KGen (DecKGen(mskra,B)): Takes as inputs RA’s mas-
ter secret key mskra and a key index B ∈ Σk. It generates the private
decryption key dkB by executing the algorithm rABE .KGen(mskra,B).

- Encryption KGen (EncKGen(ppra,msksa,P,Pf)): Takes as inputs
ppra, msksa and a ciphertext index P ∈ Σc that indicates to whom
the sender is allowed to talk based on predicate function Pf(., .).
It executes the collector algorithm rABE .Col(ppra,P) to obtain the
aggregated value ekP and then signs it by running the algorithm
SPS.Sign(sk, ekP). It returns both the encryption key and the un-
derlying signature to the sender.

- Encryption (Enc (ppsa, ppra,m, ekP, σ,W )): Takes as inouts the se-
cret encryption key ekP and the underlying signature σ, the public
parameters and a message m ∈ M. It re-randomizes σ under an ini-
tial random string µ by running SPS.Randz(ppsa, ekP, σ,W ;µ). Next
it runs the re-randomizable CP-ABE encryption algorithm
rABE .Enc(ppra,m, ekP) and proves knowledge of hidden values by ex-
ecuting the ZK.P(RL, ~crs,w, x) algorithm. It returns the instance and
underlying proof (π, x) as outputs.

- Sanitization (San(ppsa, ppra, π, x)): Takes as inputs the proof π and
the instance x: if SPS.Vf(pp, vk′, σ′, ek′) = 1 and ZK.V(RL, ~crs, π, x) =
1, it runs the algorithm rABE .Randz(ppra, Ct) and returns the sani-
tized ciphertext C̃t as output; otherwise it rejects the link and returns
⊥.

- Decryption (Dec(ppsa, ppra, C̃t, dkB)): Takes as inputs the public pa-
rameters, a sanitized ciphertext C̃t and the decryption key dkB. It
returns the plaintext m ∈ M by executing rABE .Dec(ppra, C̃t, dkB)
algorithm if and only if Pf(B,P) = 1; otherwise this algorithm returns
⊥.

Theorem 4.1. The proposed generic CD-ABACE construction is cor-
rect.

Proof. The proof can be found in App. C.1.

Theorem 4.2. The proposed generic CD-ABACE scheme satisfies the
No-Read rule of Definition 3.3.

Proof. The proof can be found in App. C.2.

Theorem 4.3. No PPT adversary A can win the No-Write security
game of Definition 3.4 for the proposed CD-ABACE scheme under a
fixed predicate function Pf(., .).

Proof. The proof can be found in App. C.3.
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5 An Efficient CD-ABACE Scheme

In this section, we propose a CD-ABACE scheme such that the key and
ciphertext sizes are constant. It primarily comes from a novel CP-ABE
scheme; we believe that this is a result that is valuable by itself. Following
on from Sect. 4, there are three main cryptographic primitives that are
listed below;

Structure-Preserving Signature (SPS): In this paper, we use a vari-
ant of the selectively re-randomizable SPS scheme of Abe et al. [2] (see
App. B.1) as an efficient, unified and selectively re-randomizable SPS.
Since in the proposed CD-ABACE construction the generator of the first
cyclic group is hidden and the message is a second group element over
the Type-III bilinear groups, we need to slightly modify this scheme with
the following PPT algorithms:

- (pp) ← SPS.Pgen(λ): This algorithm takes as input the security pa-
rameter λ and picks a random integer α←$Z∗p and a group generator
Y ←$G2. It returns the public parameters pp by running a Type-
III bilinear group generator BG(λ) = (G1,G2,GT , p, ê) and publishes
pp = (G1,G2,GT , p, ê,

[
α2
]
1
, Y ), while it keeps α secret.

- (sk, vk) ← SPS.KG(pp): Samples v←$Zp and publishes the public
verification key vk =

[
vα2

]
1

while it securely stores the secret signing
key sk = v.

- (σ,W ) ← SPS.Sign(pp, sk,m): This algorithm takes as inputs the
public parameters pp, the secret key sk and a message m ∈ G2. It sam-
ples r←$Z∗p, computes σ = (R,S, T ) =

([
rα2
]
1
,mv/rY 1/r, Sv/r [1/r]2

)
,

and outputs (σ,W = [1/r]2).

- (σ′,W ′)← SPS.Randz(pp, σ,W ): The re-randomizing algorithm takes
as inputs the public parameters pp, a signature σ ∈ S along with token
W, picks a random integer t←$Z∗p and computes the re-randomized

signature as σ′ = (R′, S′, T ′) = (R1/t, St, T t
2
W t(1−t)) and returns it

along with a new token W ′ = W t.

- (0, 1) ← SPS.Vf(pp, vk, σ′,m): The verification algorithm takes as
inputs pp, either a plain signature σ or a re-randomized signature σ′,
a message m and the verification key vk. It first checks m,S′, T ′ ∈ G2,
R′ ∈ G1 and then checks the pairing equations R′•S′ = (vk•m)(

[
α2
]
1
•

Y ) and R′ • T ′ = (vk • S′)(
[
α2
]
1
• [1]2). If both conditions hold, then

it returns 1, otherwise it responds with 0 (rejecting the signature).

The proof of correctness is identical to that of Abe et al.’s SPS con-
struction, where a message is part of the second rather than the first
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group. As the first group generator is hidden in the proposed CD-ABACE
scheme, we need to take

[
α2
]
1

instead of [1]1 to generate and verify sig-
natures.

Non-Interactive Zero-Knowledge (NIZK) proofs: As discussed in
App. B.2, Zero-Knowledge proofs [22] allow a prover to convince the ver-
ifier about the validity of a statement without revealing any other infor-
mation. We use a standard Schnorr proof [34] to prove the knowledge of
exponents in the random oracle model. To convert an interactive protocol
to a non-interactive framework, we utilize the Fiat-Shamir heuristic [18].
More precisely, the prover has access to a hash function, modeled as a
random function (O), to generate the challenges instead of receiving them
from the verifier. For a given cyclic group Gi of order p with generator
gi, we denote by PoK{(w) : RL(x,w) = 1}, the proof of knowledge of a
hidden witness w that satisfies a given relation RL. Fig. 2 formalizes a
NIZK in ROM for proof of exponentiation.

K ~crs(RL, λ)

1 : Instance(x) : y ∈ Gi
2 : Witness(w) : x ∈ Zp

3 : Statement:

4 : Knwl of x := loggi y

5 : return (x,w)

Prove(RL, x,w)

1 : Parse (RL, x,w)

2 : r←$Zp

3 : t := gri

4 : c := O(y, t)

5 : z := cx+ r mod p

6 : return π = (t, z)

Verifier(RL, π, x)

1 : Parse (RL, π, x)

2 : Computes c = O(y, t)

3 : if {y, t ∈ Gi ∧ z ∈ Zp

4 : ∧ yct == gzi } :

5 : return (Accept)

6 : else : (Reject)

Fig. 2. Proof of Knowledge of Exponents

An efficient Re-randomizable CP-ABE: In what follows, we define a
new IND-CPA-secure CP-ABE scheme with a constant key and ciphertext
size. The Boolean function of this scheme is applied in AND-gate circuits.
Although Guo et al. in [24] took a similar approach and presented a
constant-key size CP-ABE scheme, the ciphertext size in their scheme
increases linearly with the total number of attributes. Our construction
consists of the following algorithms:

- (pp,msk) ← ABE .Pgen(U, λ): Takes as inputs an attribute space U
with size n along with the security parameter λ, and runs a Type-III
bilinear group generator BG(λ) = (G1,G2,GT , p, ê). It also selects a
standard collision-resistant hash function H←$H that is modeled as a
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random oracle in the security proofs. For a randomly selected integer
α←$Z∗p, it computes hi =

[
αi
]
2

as the set of monomials in G2 and

g2 =
[
α2
]
1
. It returns the master secret key msk = ([1]1 , α) and the

system’s public parameters pp = (G1,G2,GT , p, ê, g2, {hi}ni=0, [α]T ,H).
- (dkB) ← ABE .KGen(msk,B): Takes as inputs msk and generates a

secret decryption key corresponding to attribute set B ∈ Σk, such
that |B| < n − 1. It first computes the Zero-Polynomial ZB(x) =∏n
i=1 (x− ki)b[i] such that ki = {H(Ui)}Ui∈U. It returns the secret

decryption key dkB = [1/ZB(α)]1.
- (Ct) ← ABE .Enc (pp,m,P): Takes as inputs the message m ∈ M,

the public parameters pp and an access structure P ∈ Σc. It first
samples r←$Z∗p, calculates ZP(x) =

∑n
j=0 zjx

j and returns the ci-

phertext as a tuple Ct = (P, C, C1, C2) = (P,m [rα]T , (
∏n
j=0 h

zj
j+1)

r =

[rαZP(α)]2 , g
−r
2 =

[
−rα2

]
1
). We define the collector algorithm as

Col(pp,P) = [αZP(α)]2.
- (m′,⊥) ← ABE .Dec (pp, Ct, dkB): This algorithm takes as input the

public parameters pp, a ciphertext Ct and a secret decryption key dkB.
If P ⊆ B, it computes, FB,P(x) =

∏n
i=1 (x− ki)c[i] =

∑n
j=0 fjx

j for

c[i] = b[i]−p[i] and returnsm′ = C·
((
C2 •

∏n
i=1 (hi−1)

fi
)
· (dkB • C1)

)−1
f0 ;

otherwise it responds with ⊥.

Theorem 5.1. Based on Definition B.9, the proposed CP-ABE scheme
is correct.

Proof. The proof can be found in App. C.4.

Theorem 5.2. Under the (l,m, t)−MSE-DDH assumption, defined in Def-
inition A.1, a PPT adversary A cannot win the IND-CPA-security game
from Definition B.10 for the proposed CP-ABE scheme in the random
oracle model.

Proof. The proof can be found in App. C.5.

Next we modify the re-randomizing phase of our CP-ABE scheme;
the other algorithms are the same, except that the decryption algorithm
can take either C̃t or Ct as input.

- (C̃t) ← rABE .Randz(pp, Ct): Takes as inputs pp and a ciphertext Ct

under access structure P ∈ Σc. To re-randomize the ciphertext Ct ∈ C,
it samples an initial random integer s←$Z∗p and computes the Zero-

polynomial ZP(x). Then it outputs C̃t = (C̃, C̃1, C̃2) = (C · [sα]T , C1 ·
[sZP(α)]2 , C2 · g−s2 ).
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Remark 5.1. The proposed construction guarantees that no PPT adver-
sary can obtain the receiver’s identity, deterministically. This is the same
as the notion of “weak attribute-hiding” in the context of Attribute-Based
Signatures [36]. Indeed, the access policy corresponding to a ciphertext
only reveals the list of receivers who satisfy a specific set of attributes,
even though it never leaks any information about the identity of the
receivers. Under the assumption that there is more than one user who
satisfies a set of certain attributes, the adversary is unable to deduce for
which specific receiver the challenge ciphertext is intended.

Related Works: The first CP-ABE scheme, which allows the data own-
ers to implement an arbitrary and fine-grained access policy in terms of
any monotonic formula for each message was proposed by Bethencourt et
al. at IEEE S&P 2007 in [8]; its security was proven in the Generic Group
Model (GGM). In a subsequent work, Cheung et al. [14] constructed a
CP-ABE scheme in the standard model, which is however restricted to a
single AND-gate. Waters [41] introduced an asymptotically efficient CP-
ABE scheme in the standard model, which is based on a Linear Secret
Sharing Scheme (LSSS) to establish an arbitrary access policy. Lewko
and Waters [28] introduced a secure construction based on LSSS in which
the length of the ciphertext, the size of users’ secret keys, and the number
of required pairings to decrypt a ciphertext correspond to the size of the
Monotone Span Program (MSP) that defines the access structure. Some
recent works have extended the functionality of these schemes for vari-
ous applications [35,25]. While these CP-ABE schemes allow to define in
an effective way the right to access data, either the key or the cipher-
text size grows linearly in the number of attributes. Therefore, CP-ABE
schemes based on AND-gate circuits are considered promising candidates
to address this downside. In this approach the sender defines a specific
Boolean AND-gate circuit such that a recipient can learn the encrypted
data iff they satisfy all the attributes, otherwise the decryption algorithm
returns nothing. Considering AND-gate circuits provides a constant ci-
phertext length; several CP-ABE schemes are proposed based on this
approach [17,38,24,3].

The proposed CD-ABACE scheme: At this point, we can wrap
up the construction described in Fig. 3 by taking a family of collision-
resistant hash functions H : {0, 1}∗ → Z∗p. Our CD-ABACE scheme
is built under a CP-ABE scheme based on AND-gate circuits with con-
stant key and ciphertext sizes. The primary motivation behind this circuit
choice is to construct a fully constant ACE within the context of CD-
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(ppra,mskra)← RAgen(U, λ)

1 : Run BG(λ) = (G1,G2,GT , p, ê)
2 : H←$H, α←$Z∗p

3 : hi =
[
αi
]
2

4 : g2 =
[
α2]

1

5 : mskra = ([1]1 , α)

6 : ppra = (g2, {hi}ni=0, [α]T ,H)

7 : return (mskra, ppra)

(ppsa,msksa)← SAgen(λ, ppra,RL)

1 : Parse (BG(λ), ppra)

2 : Y ←$G2

3 : sk := v←$Zp

4 : vk = gv2 =
[
α2v

]
1

5 : ( ~crs, ~ts)←$ZK.K ~crs(λ,RL)

6 : msksa = (sk, ~ts)

7 : ppsa = (RL, ~crs, Y, vk)

8 : return (msksa, ppsa)

(dkB)← DecKGen(mskra,B)

1 : Parse (BG(λ),mskra)

2 : ZB(x) =

n∏
i=1

(x− ki)b[i]

3 : dkB = [1/ZB(α)]1

4 : return (dkB)

(ekP, σ,W )← EncKGen(ppra, ppsa,msksa,P,Pf)

1 : Parse (BG(λ), ppra,msksa)

2 : ZP(x) =

n∏
i=1

(x− ki)p[i] =

n∑
j=0

zix
i

3 : ekP = Col(pp,P) =

n∏
i=0

hzii+1 = [αZP(α)]2

4 : tu ←$Z∗p,W = [1/tu]2

5 : (R,S, T ) = (gtu2 , ek
sk/tu
P Y 1/tu , Ssk/tu [1/tu]2)

6 : return (ekP, σ = (R,S, T ),W )

(π, x)← Enc (ppsa, ppra,m, ekP, σ,W )

1 : Parse (BG(λ), ppra, ppsa)

2 : r, t←$Z∗p
3 : (C,C1, C2) = (m [rα]T , ekrP, g

−r
2 )

4 : R′ = R1/t, S′ = St, T ′ = T t
2

W t(1−t)

5 : σ′ = (R′, S′, T ′)

6 : vk′ = vk1/t, ek′P = ektP

7 : x = (σ′, vk′, ek′P, Ct = (P, C, C1, C2))

8 : w = (ekP, σ,m, r, t)

9 : π ← PoK{(w) : RL(x,w) = 1}
10 : return (π, x)

(C̃t,⊥)← San(ppsa, ppra, π, x)

1 : Parse (BG(λ), ppra, ppsa)

2 : if {R′ ∈ G1 ∧ ek′P, S
′, T ′ ∈ G2∧

3 : R′ • S′ = (vk′ • ek′P)(g2 • Y ) ∧
4 : R′ • T ′ = (vk • S′)(g2 • [1]2) ∧
5 : ZK.V(RL, ~crs, π, x) = 1} :

6 : s←$Z∗p , C̃ = C · [sα]T

7 : C̃1 = C1 · [sαZP(α)]2

8 : C̃2 = C2 · g−s2

9 : return C̃t = (P, C̃, C̃1, C̃2)

10 : else : abort

(m′,⊥)← Dec
(
ppsa, ppra, C̃t, dkB

)
1 : Parse (BG(λ), ppra, ppsa)

2 : if P ⊆ B :

3 : c[i] = b[i]− p[i], FB,P(x) =

n∏
i=1

(x− ki)c[i] =

n∑
j=0

fjx
j

4 : return m′ = C

((
C2 •

n∏
i=1

(hi−1)fi

)
· (dkB • C1)

)−1/f0

5 : else : abort

Fig. 3. The proposed CD-ABACE scheme
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ABACE schemes. Note that we can build more universal circuit levels
using the generic model discussed in Sect. 4.

Remark 5.2. However, while the proposed CD-ABACE scheme achieves
a weak notion of receiver anonymity, it improves Wang and Chow’s weak
point where recipients’ identities are public. In order to resolve this issue
we can use the existing CP-ABE schemes with a more universal circuit
level, but this compromises the efficiency. For instance, according to Garg
et al. [21], we can fully anonymize the receiver using our generic construc-
tion based on multilinear maps and iO assumptions. In App. D we specify
a CD-ABACE scheme using Waters’s CP-ABE [41], which is defined un-
der Linear Secret Sharing Schemes; we compare it with our proposed
CD-ABACE scheme in Sect. 6.

6 Performance Analysis

In this section, we examine how the performance of our proposed fully-
constant CD-ABACE scheme and a CD-ABACE variant of Waters’s CP-
ABE [41] (see App. D) compares to the selectively-secure scheme of Wang
and Chow [39], which is the only implemented ACE construction to date.

We obtained the benchmarks for our proposed CD-ABACE scheme
on Ubuntu 20.04.2 LTS with an Intel Core i7-9850H CPU @ 2.60 GHz
with 16 GB of memory. We applied the Barreto-Naehrig (BN) curve,
type F, y2 = x3 + b over the field Fq of order p with embedding curve
degree k = 12 and 1920-bit DLog security. For simplicity the bit-lengths of
expressions of access policies and computations over Zp are not taken into
account. We implemented the proposed construction using the Charm-
Crypto framework [4], a Python library for Pairing-based Cryptography2.
Fig. 4 consists of six graphs depicting the following relationships:

- Total number of Attributes/Users versus RA Setup time: The top
left graph displays the relationship between the total number of at-
tributes/users and time required to generate the parameter of the
Receiver Authority. As can be seen, in our scheme and [39] scheme
the time required to run this algorithm grows linearly with the total
number of attributes/users, and for a generous consideration of 1000
attributes, it only requires ∼ 200 milliseconds (ms) and ∼ 300 ms,
respectively. However, for an ACE variation of Waters’ CP-ABE [41]
construction (see App. D) this time is constant and less than 30 ms.

2 https://github.com/CDABACE
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Fig. 4. Running time of attribute size dependence algorithms

- Maximum number of Attributes/Receivers versus Encryption key size:
The top centre graph of Fig. 4 shows the relationship between the to-
tal number of attributes/receivers that a sender can send to them
and the size of the stored encryption key. As can be seen, this re-
lationship in Fig. 5 construction is linear, however the our proposed
construction and [39] require a constant storage. Assuming 1000 at-
tributes/receivers to be the highest number used by a sender, the
required memory for storing this key for [39], Fig. 5 and our scheme
is ∼ 300, ∼ 1200 and ∼ 400 bytes, respectively.

- Maximum number of Attributes/Senders versus Decryption key size:
The top right graph of Fig. 4 shows the relationship between maximum
the number of attributes/senders for each receiver and the size of the
decryption key. As can be seen, in Fig. 5 scheme this relationship
grows linearly with number of attributes while in both our scheme
and [39] the requires storage is constant independent of the number
of attributes/senders; for instance, this size for a user having 1000
attributes/senders is equal to ∼ 50, ∼ 100 bytes, while Fig. 5 scheme
is equal to ∼ 1.2 KB.

- Number of Attributes/Receivers versus ciphertext size: The bottom
left graph of Fig. 4 depicts the relationship between the total number
of attributes/receivers in the policy and the length of ciphertext. As
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can be seen, in Waters’ ACE scheme this relationship is linear while
our scheme and [39] achieve a constant ciphertext size. For instance, a
ciphertext with 100 embedded attributes/receivers in the policy has a
ciphertext of size ∼ 1, ∼ 1.4, ∼ 7 KB in our scheme, [39] and Waters’
ACE scheme.

- Number of Attributes/Receivers versus Encryption time: The bottom
centre graph of Fig. 4 shows the relationship between the total number
of attributes/receivers of in the embedded policy and the encryption
time. As can be seen, the time required to encrypt a ciphertext in our
scheme and [39] is constant, while in Waters’s ACE variation it grows
linearly with the total number of attributes. For example, a sender in
Waters’ ACE, [39] and our scheme requires ∼ 2000, ∼ 18, ∼ 15 ms to
encrypt a message with 1000 embedded attributes/receivers.

- Number of Attributes/Senders versus Decryption time: The bottom
right graph of Fig. 4 shows the relationship between the maximum
number of attributes/senders of each receiver and the decryption time.
As can be seen, the time required to decrypt a ciphertext in Fig. 5’s
ACE grows linearly with the maximum number of attributes, while
this overhead in our scheme and [39] is constant. For instance, a re-
ceiver in [41], [39] and our proposed construction requires ∼ 8000,
∼ 60, ∼ 45 ms to decrypt a ciphertext with 1000 attributes in the
policy.

Overall, our scheme has improved the receivers’ key length and privacy
level from identity-based to attribute-based. The ciphertext size has also
been reduced, along with the number of public parameters. Since the
second group generator is hidden in [39], the SA has to choose a new
generator to create the SPS parameters. In contrast, the proposed variant
of Abe et al.’s SPS [2] requires no new generator for the second cyclic
group, and the intended NIZK proof cuts out the need for a target group
proof of exponentiation.

7 Conclusion

In this work, we proposed a generic and efficient Cross-Domain Attribute-
Based Access Control Encryption scheme based on attribute-based pred-
icate functions. In comparison with earlier works, the length of the secret
decryption keys and the ciphertext size has been substantially reduced
to less than ∼ 50 and ∼ 1000 bytes as compared to Wang and Chow
scheme where the size was ∼ 100 and ∼ 1400 bytes, respectively. More-
over, the computational overhead of encryption and decryption is linear in
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the number of the policy attributes and user attributes, respectively. Also,
it is formally proved that the proposed scheme satisfies the No-Read and
the No-Write rules based on standard assumptions. We leave the con-
struction of a CD-ABACE scheme based on a Boolean circuit instead
of AND-gate circuits with the same performance as an interesting open
problem. As we discussed, the main downside for AND-gate circuits is
that the attribute sets in plain may reveal some meaningful information
about the intended constraints and consequently, applying a Boolean cir-
cuit can result in stronger anonymity guarantees for the receivers.
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A Omitted Definitions

A.1 Multi-Sequence of Exponents Diffie-Hellman

The following definition is proposed by [16] as a general Diffie-Hellman
exponent theorem [11] for an asymmetric bilinear group. This definition
is non-interactive and falsifiable. It is also demonstrated to hold for the
generic group model similar to the BDH, q-BDHI and (l,m, t)− MSE-DDH

assumptions.

Definition A.1 (Multi-Sequence of Exponents Diffie-Hellman
((l,m, t)− MSE-DDH) assumption [16]). For security parameter λ, con-
sider an asymmetric bilinear group generator BG(λ) = (G1,G2,GT , p, ê).
For three given integers l,m, t, consider two univariate composite polyno-
mials f and h of degree l and m that vanish on pairwise distinct points
~x = (x1, . . . , xl) and ~y = (y1, . . . , ym), respectively. For randomly chosen
integers α, δ, k←$Z∗p, the (l,m, t) − MSE-DDH assumption states that no
PPT adversary A can distinguish between Γ = [kf(α)]T and a random
element Γ ←$GT with a non-negligible advantage, when given:

~v1 =
(

[1]1 , [α]1 ,
[
α2
]
1
, . . . ,

[
αl+t−2

]
1
, [kαf(α)]1

)
~v2 =

(
[δ]1 , [δα]1 ,

[
δα2
]
1
, . . . ,

[
δαl+t

]
1

)
~v3 =

(
[1]2 , [α]2 ,

[
α2
]
2
, . . . ,

[
αm−2

]
2

)
~v4 =

(
[δ]2 , [δα]2 ,

[
δα2
]
2
, . . . ,

[
δα2m−1]

2
, [kh(α)]2

)
.

The adversary A can solve the (l,m, t) − MSE-DDH assumption with the
advantage of:
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∣∣∣∣∣Pr

[
AMSE-DDH (~x, ~y,~v1−4, Γ = [kf(α)]T ) = 1

]
−

Pr

[
AMSE-DDH (~x, ~y,~v1−4, Γ ←$GT ) = 1

]∣∣∣∣∣ ≤ negl(λ) ,

where ~v1−4 denotes the four vectors ~v1, ~v2, ~v3, ~v4.

B Main Building Blocks

In this section, we formally define the cryptographical primitives needed
for the proposed construction and their security requirements.

B.1 Structure-Preserving Signatures

In a Structure-Preserving Signature (SPS) [1], the signature and signed
message are both group elements; the verification requires a pairing-
product process.

Definition B.1 (Structure-Preserving Signatures [1]). A Structure-
Preserving Signature (SPS) scheme ΨSPS in a type-III bilinear group,
over message space M and signature space S consists of five PPT algo-
rithms (Pgen,KG, Sign,Randz,Vf), defined as follows:

- (pp) ← SPS.Pgen(λ): This algorithm takes the security parameter λ
as input, and generates the public parameters pp.

- (sk, vk) ← SPS.KG(pp): Key generation is a probabilistic algorithm
which takes the public parameters pp as input. It returns a key-pair
(sk, vk) composed of the secret signing key and the public verification
key.

- (σ,W )← SPS.Sign(pp, sk,m): The signing algorithm takes the public
parameters pp, the secret signing key sk and a message m ∈ M as
inputs and outputs a signature σ ∈ S along with a re-randomizing
token W .

- (σ′,W ′) ← SPS.Randz(pp, σ): The re-randomizing algorithm takes
the public parameters pp, a signature σ and a token W as inputs,
returns a re-randomized signature σ′ ∈ S and generates a new token
W ′.
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- (0, 1) ← SPS.Vf(pp, vk, σ,m): The deterministic verification algo-
rithm takes the public parameters pp, a signature σ, the message
m ∈ M and a public verification key vk as inputs. It responds by
either 0 (reject) or 1 (accept).

The primary security requirements for an SPS scheme are Correctness
and Existential Unforgeability under Chosen Message Attack (EUF-CMA)
that are defined as follows:

Definition B.2 (Correctness). An SPS scheme ΨSPS is called correct
if,

Pr

[
(sk, vk)← KG(pp), ∀ m ∈M,

Vf (pp, vk,m,Sign(pp, sk,m)) = 1

]
≈c 1 .

Definition B.3 (Existential Unforgeability under Chosen Mes-
sage Attack (EUF-CMA)). An SPS scheme ΨSPS is called an EUF-CMA-
secure scheme if for all PPT adversaries A, AdvEUF-CMA

A,SPS (1λ), we have
the following advantage function,

Pr

[
(sk, vk)← KGen(pp), (σ∗,m∗)←$AOSign(pp) :

m∗ 6∈ Qmsg ∧ Vf(vk, σ∗,m∗) = 1

]
.

The signature oracle OSign takes a message m ∈ M and returns the
corresponding signature by running the Sign(pp, sk,m) algorithm. All the
queried messages are kept track of via a query set Qmsg. An SPS is called
an EUF-CMA-secure if for all PPT adversaries we have, AdvEUF-CMA

A,SPS (1λ)
≈c 0.

In the following, the Abe et al. [2] SPS construction is outlined, as
a selectively re-randomizable SPS. This SPS behaves as a unified type,
which means that it can be instantiated under either type of bilinear
group. This scheme has been proven to be EUF-CMA-secure. A valid
re-randomization token enables one to re-randomize the signature with-
out needing to know the secret signing key. The scheme consists of the
following algorithms:

- (pp) ← SPS.Pgen(λ): This algorithm takes as input the security pa-
rameter λ, picks X←$G1, and runs a Type-III bilinear group gener-
ator BG(λ) = (G1,G2,GT , p, ê). It returns the public parameters of
the system pp = (G1,G2,GT , p, ê, X).

- (sk, vk) ← SPS.KG(pp): The key generation algorithm takes as in-
put pp, picks v←$Zp and computes V = [v]2. It returns the public
verification key vk = V and the secret signing key sk = v.
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- (σ,W ) ← SPS.Sign(pp, sk,m): The signing algorithm takes as in-
puts the public parameters pp, the secret signing key sk and a mes-
sage m ∈ G1. It samples r←$Z∗p and computes σ = (R,S, T ) =(
[r]2 ,m

v/rX1/r, Sv/r [1/r]1
)
. It outputs the pair of (σ,W = [1/r]1),

where W is a token for re-randomizing the signature.

- (σ′,W ′)← SPS.Randz(pp, σ,W ): The re-randomizing algorithm takes
as inputs pp, signature σ ∈ S along with a token W , picks a ran-
dom integer t←$Z∗p and computes a re-randomized signature as σ′ =

(R′, S′, T ′) = (R1/t, St, T t
2
W t(1−t)). It returns σ′ along with a new

token W ′ = W t as the outputs.

- (0, 1) ← SPS.Vf(pp, vk, σ′,m): The verification algorithm takes as
inputs the public parameters pp, a re-randomized signature σ′, the
message m ∈M and the verification key vk. It first checks m,S′, T ′ ∈
G1, R

′ ∈ G2 and whether the pairing equations S′ •R′ = (m •V )(X •
[1]2), T

′ •R′ = (S′ •V )([1]1 • [1]2) hold or not. If both conditions hold
then it returns 1, otherwise it responds with 0.

The correctness of the scheme is trivial and the re-randomized signa-
ture is perfectly indistinguishable from the original signature.

B.2 Non-Interactive Zero-Knowledge proofs

A Zero-Knowledge proof as a two-party protocol is a fundamental and
powerful cryptographic tool. It allows a prover to convince a verifier
about the validity of a statement without revealing any other informa-
tion. Non-Interactive Zero-Knowledge (NIZK) proofs remove the interac-
tion between the parties in two settings: either the Random Oracle Model
(ROM) [18] or the Common Reference String (CRS) model [9]. Since the
construction of NIZK proofs in the CRS model requires a trusted setup
phase that outputs some public parameters, known as the CRS, that are
shared with the prover and verifier to respectively generate and verify the
proof in a single communication round we use them in ROM.

For a security parameter λ, let R be a relation generator, such that
R(1λ) returns an efficiently computable binary relation RL = {(x,w)},
where x is the instance and w is the corresponding witness. Let L = {x :
∃w | (x,w) ∈ R} be the NP-language consisting of the statements in the
relation RL. Formally, a NIZK proof ΨNIZK under the relation generator
R consists of the following PPT algorithms:

- ( ~crs, ~ts) ← ZK.K ~crs(RL): The CRS generator is a probabilistic algo-
rithm that, given relation (RL), first samples the simulation trapdoor
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~ts, and generates ~crs. It securely stores the former while publishing
the latter.

- (π,⊥) ← ZK.P(RL, ~crs, x,w): Prove is a probabilistic algorithm that
takes as input (RL, ~crs, x,w) and if (x,w) ∈ RL, outputs a proof π,
otherwise, it returns ⊥.

- (0, 1)← ZK.V(RL, ~crs, x, π): The verification algorithm is a determin-
istic process that returns 1 if the given proof is correct ((x,w) ∈ RL)
and 0 if it is incorrect ((x,w) 6∈ RL).

- (π′) ← ZK.Sim(RL, ~crs, ~ts, x): The simulator is an algorithm, that
given the tuple (RL, ~crs, ~ts, x), outputs a simulated proof π′ without
knowing the witness. It is computationally infeasible for a PPT ad-
versary to distinguish between π and π′.

Next we recall the security requirements for a NIZK proof.

Definition B.4 (Completeness). A NIZK proof ΨNIZK is called com-
plete, if for all λ, and (x,w) ∈ RL we have,

Pr

[
(RL)← R(1λ), ( ~crs, ~ts)← K ~crs(RL) :

V(RL, ~crs, x,P(RL, ~crs, x,w)) = 1

]
≈c 1 .

Definition B.5 (Soundness). A NIZK proof ΨNIZK is called Sound, if
for all adversaries A, we have,

Pr

[
(RL)← R(1λ), ( ~crs, ~ts)← K ~crs(RL),

(x, π)← A(RL, ~crs) : V(RL, ~crs, x, π) = 1 ∧ x 6∈ L

]
≈c 0 .

Definition B.6 (Statistically Zero-Knowledge). A NIZK proof ΨNIZK
is called statistically Zero-Knowledge, if for all adversary A, εunb0 ≈c εunb1 ,
where,

εunbb = Pr
[
( ~crs ‖ ~ts)← K ~crs(RL) : AOb(·,·)(RL, ~crs) = 1

]
.

Here, the oracle O0(x,w) returns ⊥ (reject) if (x,w) 6∈ RL, and else it
returns P(RL, ~crs, x,w). Similarly, O1(x,w) returns ⊥ (reject) if (x,w) 6∈
RL, else it returns Sim(RL, ~crs, x, ~ts).

Intuitively, a NIZK proof ΨNIZK is zero-knowledge if it does not leak
extra information beyond the validity of the statement. Now we recall the
definitions of Knowledge Soundness as a stronger notion of Soundness.
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Definition B.7 (Computational Knowledge-Soundness). A NIZK
proof ΨNIZK is computationally (adaptively) knowledge-sound, if for every
PPT adversary A, there exists an extraction trapdoor ~te and an extractor
ExtA, s.t. for all λ we have,

Pr

[
(RL)← R(1λ), ( ~crs ‖ ~te)← K ~crs(RL), (x, π)← A(RL, ~crs),

(w)← ExtA(RL, ~crs, ~te, π) : (x,w) 6∈ RL ∧ V(RL, ~crs, x, π) = 1

]
≈c 0 .

B.3 Re-randomizable CP-ABE schemes

Next, we capture a unified definition of Ciphertext-Policy Attribute-Based
Encryption (CP-ABE) schemes and their security requirements. Then,
we recall a re-Randomizable CP-ABE scheme, in which one party can
re-randomize a ciphertext without needing the secret key.

Definition B.8. (Ciphertext-Policy Attribute-Based Encryption schemes
[8]): For a given attribute universe U with size n, let Σc and Σk = 2U

be any collection of access structures and key indices over the attribute
space U, respectively. A CP-ABE scheme for a Boolean function Bf :
Σk ×Σc → {0, 1} over message space M and ciphertext space C consists
of the following algorithms:

- (pp,msk) ← ABE .Pgen(λ,U): The parameter generation algorithm
takes the security parameter λ and attribute space U as inputs and
outputs the public parameters pp and the master secret key msk.

- (dkB) ← ABE .KGen(msk,B): The key generation algorithm takes the
master secret key msk and an authorized key index B ∈ Σk as inputs
and returns dkB.

- (Ct)← ABE .Enc(pp,m,P): The Encryption algorithm takes the public
parameters pp, a message m ∈ M and a ciphertext index P ∈ Σc as
inputs. It returns a ciphertext Ct ∈ C along with the access structure
P.

- (m′,⊥)← ABE .Dec(pp, Ct, dkB,B,P): The decryption algorithm takes
the public parameters pp, a ciphertext Ct ∈ C and its corresponding
collection P ∈ Σc along with a private decryption key dkB for the key
index B ∈ Σk as inputs. It responds with m′ ∈ M iff Bf(B,P) = 1,
otherwise ⊥.

We give a standard definition of the security properties for CP-ABE
schemes namely, Correctness and Indistinguishability under Chosen Plain-
text Attack (IND-CPA) as follows:
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Definition B.9 (Correctness [23]). A CP-ABE scheme ΨCP−ABE,
over message space M and ciphertext space C is called correct iff for
all m ∈M and Ct ∈ C we have:

Pr

[
(pp,msk)← Pgen(λ), (dkB)← KGen(msk,B),

Dec (dkB,Enc(pp,m,P),P) = m : Bf(B,P) = 1

]
≈c 1 .

Definition B.10 (Indistinguishability under Chosen Plaintext At-
tack (IND-CPA) [23]). Let ΨCP−ABE be defined for the attribute uni-
verse U, message space M and a Boolean relation Bf : 2U × Σc →
{0, 1}. For a security parameter λ and a PPT adversary A, we define
IND-CPA as follows:

Initialization: The Challenger samples the pair of public parame-
ters and the master secret key by running the algorithm (pp,msk) ←
Pgen(λ,U) and gives pp to A, while keeping msk secure.

1st Query Phase: On a polynomially bounded number of requests, the
adversary A chooses a key index B ∈ Σk and queries the key generation
oracle. The challenger executes KGen(msk,B) and returns dkB.

Challenge: A selects two messages of the same length (m0,m1)←$M×
M and a challenge ciphertext index P∗ such that Bf(B,P∗) = 0 for all
queried key indices in the first query phase. Then B flips a fair coin, pro-
duces a random bit b←$ {0, 1}, runs Enc(pp,mb,P∗) and sends Ct∗ back
to A.

2nd Query Phase: After receiving the challenge ciphertext, A still
is allowed to request more decryption keys for key indices B with the
limitation Bf(B,P∗) = 0.

Guess. A returns a bit b′ to B. The advantage of A is
AdvIND-CPA

A,ΨCP−ABE (1λ, b) = 2
∣∣Pr [b = b′]− 1

2

∣∣, where the probability is taken
over all coin flips. We say ΨCP−ABE is IND-CPA if for all PPT adver-
saries A we have,∣∣∣∣AdvIND-CPA

A,ΨCP−ABE (1λ, b = 0)−AdvIND-CPA
A,ΨCP−ABE (1λ, b = 1)

∣∣∣∣ ≈c 0 .

Remark B.1. To be more concrete, we say a CP-ABE scheme is adaptively
secure if, for each request, the adversary A can query the key generation
algorithm such that its queries may depend on the information it gath-
ered in its previous requests. In a selective secure CP-ABE as a weaker
security notion [10], A should select the challenge access policy P∗ be-
fore the initialization phase, while the decryption key queries can be still
adaptive. We call a CP-ABE scheme co-selective IND-CPA secure [5], if
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A declares q decryption key queries before the initialization phase, but
she can adaptively select the challenge index P∗ afterward. In this paper,
we prove the security of the proposed CP-ABE construction based on the
co-selective notion.

For a given CP-ABE scheme, we can define an optional sub-algorithm
driven by the Encryption algorithm as follows:

- (ekP) ← ABE .Col(pp,P): The Collector algorithm takes the public
parameters pp and a ciphertext index P ∈ Σc as inputs. It returns a
public aggregated value ekP for the ciphertext index P.

Definition B.11 (Re-randomizable CP-ABE (rCP-ABE)). For a
given attribute universe U with size n, let Σc be any collection of access
structures over the attribute space U and Σk be the key index set. A
re-randomizable CP-ABE scheme, ΨrABE , for a Boolean relation Bf :
Σk×Σc → {0, 1}, over message spaceM and ciphertext space C, coincides
with the algorithms from Definition B.8; the following algorithm supports
this expansion:

- (C̃t)← rABE .Randz(pp, Ct,P): The Re-randomization algorithm takes
the public parameters pp and a valid ciphertext Ct under the access
structure P ∈ Σc as inputs. It returns a re-randomized ciphertext
C̃t ∈ C based on internal randomness without requiring any secret
information.

The Correctness and IND-CPA security of a Re-randomizable CP-
ABE derives naturally from the initial CP-ABE, specified in Definitions
B.9 and B.10. The decryption functions in the former can thus accept
either a ciphertext Ct or a re-randomized ciphertext C̃t ∈ C, but they both
yield the same output parameters. A re-randomizable CP-ABE scheme
also guarantees that no PPT adversary A can distinguish between C̃t and
Ct.

C Proofs

C.1 Proof of Theorem 4.1

Proof. Our evaluation of the correctness of the scheme occurs in two
phases. We claim that Sanitizer confirms a sender with a valid and
signed secret encryption key for attribute set P to transmit data to a group
of receivers with attribute set B so that they satisfy it if Pf(B,P) = 1.
Moreover, a target recipient with a private decryption key dkB can decrypt
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the message entirely. The former relies on two properties including the
correctness of the SPS construction of Definition B.2 as well as the com-
pleteness of the NIZK proof of Definition B.4. The latter also comes from
the consistency of the CP-ABE scheme and consequently, the correctness
of its re-randomizable variant. Thus we can conclude the proposed generic
CD-ABACE scheme is correct.

C.2 Proof of Theorem 4.2

Proof. We wish to prove that for all PPT adversaries A, no player can dis-
tinguish between two possible scenarios in the No-Read security game:
the case b = 0 constitutes one scenario denoted by H0, and the case that
b is fixed to 1, called H1, i.e., (π0, x0) ≈c (π1, x1). We do so by defining
several hybrid experiments and by demonstrating that each of them is
computationally indistinguishable from the previous one.

- H1
0 : In this game, we modify H0 by creating the challenge NIZK proof

π0 and running π′0 ← Sim( ~crs, ~ts, x0).

The Zero-Knowledge property of the NIZK proofs (cf. Definition B.6)
guarantees that this experiment is indistinguishable from the one for H0.

- H1
1 : In this game, we modify H1 by simulating the proof π1 by running

the simulator π′1 ← Sim( ~crs, ~ts, x1).

According to the Zero-Knowledge property of the NIZK proofs, this
experiment is indistinguishable from H1.

- H: In this game, we modify H1
b by assuming the challenger runs the

encryption algorithm under m1−b instead of mb.

According to the IND-CPA security property of the proposed CP-ABE
scheme, this experiment is indistinguishable from H1

b . To be more con-
crete, A cannot distinguish between Ctb and Ct1−b even if the proofs are
simulated. Thereby we can conclude, H0 ≈c H1

0 ≈c H ≈c H1
1 ≈c H1.

C.3 Proof of Theorem 4.3

Proof. The proof technique is inspired by the No-Write proof strategies
of [27,39]. The following experiments rely on the security properties of the
cryptographic primitives, namely the knowledge soundness of the NIZK,
the existential unforgeability of the SPS and the IND-CPA security of the
rCP-ABE. By playing a sequence of indistinguishable games between a
PPT adversary A and the challengers BKS, BEUF-CMA and BIND-CPA, we
gradually turn the No-Write rule game into the security features of the
underlying primitives.
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- G0: The first security game is the No-Write game of Definition 3.4,
thus we can write, AdvNo-Write

ΨCD-ABACE,A(1λ, b) = Pr[A Wins G0].
- G1: In this game, we modify G0 such that the existence of an extraction

trapdoor is assumed. In this case, there exists an extractor that takes ~te
and the received tuple (π0, x0), and returns the corresponding witness
(w0)← Ext(~te, x0, π0) such that w0 = (ekP∗ , σ

∗,m0, r0, t0). The indistin-
guishability of G0 and G1 can be proven via the Knowledge Extraction
property of NIZK proofs, specified in Definition B.7. This property
guarantees the existence of an efficient extractor under non-falsifiable
assumptions and we can write, Pr[AWins G0] ≈c Pr[AWins G1]. This
advantage consequently depends on two possible cases:

Pr[A Wins G1] =

Pr[A Wins G1 : (w0, x0) ∈ RL] + Pr[A Wins G1 : (w0, x0) 6∈ RL] .

The probability of an adversary in the latter case can be bounded by
the advantage a soundness attacker faces under the NIZK proof, i.e.,

AdvNo-Write
ΨCD-ABACE,A(1λ, b) ≤

Pr[A Wins G1 : (w0, x0) ∈ RL] +AdvksNIZK(Bks) .

Hence the game is won by the adversary when the former is the case.
- G2: This is the game G1, except for a valid pair of witness and state-

ment in RL; one can reduce it to a forgery attack for the underlying
SPS scheme, if the extracted signature is created under a fresh attribute
set. More specifically, if A does not query the encryption key for the at-
tribute set P∗, i.e. P∗ 6∈ QE , then BEUF-CMA returns the pair (ekP∗ ,P∗)
as a forgery for the EUF-CMA security game of Definition B.3. We
can write,

AdvNo-Write
ΨCD-ABACE,A(1λ, b) ≤

AdvksNIZK(Bks) + Pr[A Wins G1 : (w0, x0) ∈ RL ∧ P∗ 6∈ QE ]
+ Pr[A Wins G1 : (w0, x0) ∈ RL ∧ P∗ ∈ QE ] ≤ AdvksNIZK(Bks)+
AdvEUF-CMA

sps (BEUF-CMA) + Pr[A Wins G1 : (w0, x0) ∈ RL ∧ P∗ ∈ QE ] .

- G3: This game is the same as the previous game G2, except for a ran-
dom message m∗←$M and the random bit b←$ {0, 1}. The challenger
executes the sanitization algorithm under Ct1−b. Then, the difference
between the views in G2 and G3 is bounded by AdvIND-CPA

rCP−ABE(BIND-CPA)
and we can write:

AdvNo-Write
ΨCD-ABACE,A(1λ, b) ≤ AdvksNIZK(Bks)+

AdvEUF-CMA
sps (BEUF-CMA) +AdvIND-CPA

rCP−ABE(BIND-CPA) .

35



Thereby we can conclude, AdvNo-Write
ΨCD-ABACE,A(1λ, b) ≤ negl(λ) .

C.4 Proof of Theorem 5.1

Proof. We demonstrate that a receiver who owns the set of attributes
B ⊂ U can correctly decrypyt the ciphertext if and only if the attribute
set B satisfies the access structure P (i.e., P ⊆ B). In the decryption phase
we have:

V1 =

(
C2 •

n∏
i=1

(hi−1)
fi

)
=

([
−rα2

]
1
•

[(
n∑
i=1

fiα
i−1

)
+ f0/α− f0/α

]
2

)
([
−rα2

]
1
• [(FB,P(α)− f0)/α]2

)
= [rα(f0 − FB,P(α))]T .

V2 = (dkB • C1) = [1/ZB(α)]1 • [rαZP(α)]2 = [rαZP(α)/ZB(α)]T =

[rαFB,P(α)]T .

m′ = C · (V1 · V2)−1/f0 = C
(
[rαf0]T · [−rFB,P(α)]T · [rFB,P(α)]T

)−1/f0
= m · [rα]T · [−rα]T = m .

More precisely, the univariate polynomial ZB(x) vanishes in the point
ki = H(Ui) for those attributes that are not in the set B, i.e., this polyno-
mial has n− |B| roots. In a similar way, the polynomial ZP(x) has degree
n−|P| with factors (x−kj) for those attributes that are in P. The Boolean
relation Bf in the proposed CP-ABE enforces that to decrypt a cipher-
text the subset P has to be a subset of B and we have |n− B| ≤ |n− P|.
Since all the attributes which are out of the set B are equal to all the at-
tributes out of the set P, all the factors of the polynomial ZB(x) simplify
by the polynomial ZP(x). Since |P| ≤ |B| and the result of the division
ZP(x)/ZB(x) is not rational and equal to FB,P(x), we can evaluate this
polynomial from the second group, [FB,P(α)]2, by knowing the monomial
set {

[
αi
]
2
}i∈[0,n]. Moreover, the univariate polynomial FB,P(x) vanishes on

those ki for which B and P are disjoint. Conversely, if P 6⊆ B then there
exists at least one root for the polynomial ZB(x) that does not cancel
out by the numerator ZP(x). Hence the result of the division is rational
and the receiver cannot compute the evaluated polynomial based on the
defined standard basis in the point of α from the second group.

Moreover, as in a traditional security evaluation of ABE schemes,
we evaluate the possibility of multiple users colluding. More precisely,
in a collusion-resistance ABE scheme, malicious users cannot acquire an
encrypted message for which access is denied by the access right embedded
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in the ciphertext, implying that they cannot retrieve the original plaintext
by pooling their secret decryption keys. The proposed construction is
secure against this attack because the secret value α is hidden and for an
attribute universe size n, the size of key indices is assumed to be strictly
smaller than n − 1, i.e. |B| < n − 1. It follows naturally that since the
degree of underlying zero-polynomial is at least 2 and the key indices are
disjoint on at least one element, a term of α will appear in the nominator
and a malicious user would need to guess α correctly to cancel out this
term.

C.5 Proof of Theorem 5.2

Proof. We prove this theorem by reduction. Assume there exists a Proba-
bilistic Polynomial Time (PPT) adversary,A, who can break the proposed
scheme in the introduced security game in Definition B.10 with a non-
negligible advantage ε. Then we will show how a PPT adversary, B, can
solve the (l,m, t)− MSE-DDH problem with a non-negligible advantage of
at least ε

2 . In fact, B takes on the role of the challenger and utilizes the
adversary A in order to solve the mentioned hard problem.

Let the challenger C of the Decisional (l,m, t)−MSE-DDH hard assump-
tion run the asymmetric bilinear group generator BG(λ) for the security
parameter λ and take (G1,G2,GT , p, ê) such that [1]1, [1]2 and [1]T are
the generators of the defined cyclic groups. The challenger C first chooses
three integers l,m, t, along with two univariate coprime polynomials f
and h of degree l and m with pairwise distinct roots ~x = (x1, . . . , xl) and
~y = (y1, . . . , ym). It samples integers α, δ, k←$Z∗p uniformly at random
and then flips a fair coin, β←$ {0, 1}, outside B’s view. If β = 0, C sets
Γ = [kf(α)]T , otherwise, it sets Γ = R, where R is a random element
of the target cyclic group GT . The challenger C sends Γ and the pair of
vectors ~x and ~y along with the vectors:

~v1 =
(

[1]1 , [α]1 ,
[
α2
]
1
, . . . ,

[
αl+t−2

]
1
, [kαf(α)]1

)
~v2 =

(
[δ]1 , [δα]1 ,

[
δα2
]
1
, . . . ,

[
δαl+t

]
1

)
~v3 =

(
[1]2 , [α]2 ,

[
α2
]
2
, . . . ,

[
αm−2

]
2

)
~v4 =

(
[δ]2 , [δα]2 ,

[
δα2
]
2
, . . . ,

[
δα2m−1]

2
, [kh(α)]2

)
(1)

Initialization: In this phase, the simulator B sets the universe at-
tribute set of U as all the possible attributes in the defined network and a
collision-resistant Hash function H←$H that is modelled as a ROM. We
just program this random oracle to give us structured attribute indices,
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enabling us to form the challenge ciphertext. B publishes U and she re-
ceives back the challenge access policy P∗ along with the query set Q as
a group of attribute sets Bi ⊆ U for i ∈ [s], such that |Bi| ≤ e from A
and also P∗ 6⊆ Bi (i.e., Bf(Bi,P∗) = 0). In order to publish the public pa-
rameters, B computes the public parameters and computes the following
polynomial that is the multiplication of zero-polynomials corresponding
to the chosen subsets Bi in the query set Q:

YQ(x) =

s∏
i=1

ZBi(x) =

s∏
i=1

n−e∏
j=1

(x− kj)bi[j]
 .

Here bi[j] represents the jth binary representation of subset Bi. The de-
gree of the univariate polynomial YQ(x) is upper bounded by s(n − e).
Moreover, since we know h(x) =

∏m
i=0 (x− yi), it is assumed ZP∗(x) =

YQ(x)h(x) such that |P∗| = n − (s(n − e) + m). This can be feasible by
modelling the hash function H as a Random Oracle. Then she assumes
G = [f(α)YQ(α)]1 as a new generators for the first cyclic group G1. In this

case, the Challenger B calculates f(x)YQ(x) =
∑l+s(n−e)

j=0 pjx
j to compute

g2 based on the newly defined generator as follows:

G2 =

l+s(n−e)∏
j=0

[
αj+2

]pj
1

= [f(α)YQ(α)]α
2

1 = Gα
2
.

We emphasize that the generator of the first cyclic group is not pub-
lic. Based on the knowledge of the vector ~v1, B can compute the above
equation if t ≥ s(n − e) + 4. Consequently, the challenger defines hi =[
αi
]
2
. Finally, the public parameters based on the new generator are

pp =
{
G2, {hi}ni=0, [αf(α)YQ(α)]T ,H

}
. Next she securely stores the mas-

ter secret key msk = {G}.
1st Query phase. After receiving the public parameters, the adver-

sary A has access to the following oracles for a polynomially bounded
number of queries:

– Simulating the ODecKGen(Bi) oracle. The adversary A has access to
this oracle which is provided by B, to receive the secret decryption key
corresponding to the attribute set Bi ∈ Q. In this end, in order to sim-
ulate the secret decryption key, B calculates the univariate polynomial
Λi(x), such that f(x)YQ(x) = Λi(x) · ZBi(x). Based on the definition
of the polynomial YQ(x) we know it is divisible by ZBi(x), and we
can rewrite the above equation as Λi(x) = (f(x)YQ(x))/ZBi(x). Since
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the polynomial Λi(x) is not rational, we can take the coefficients in
the standard basis as Λi(x) =

∑q
j=0 λjx

j . Finally, the challenger re-
turns the following equation as the simulated secret decryption key
corresponding to Bi.

dkBi =
∏
j

[
αj
]λj
1

= [Λi(α)]1 = [f(α)YQ(α)]

1
ZBi (α)

1 = G
1

ZBi (α) .

– Simulating the OEnc(m,P) oracle. The adversary A can adaptively
request to encrypt arbitrary messages from the message space M
under a certain access structure P. The challenger B samples a random
integer r←$Z∗p, uniformly and computes:

C = m

s(n−e)+l∏
i=0

(
[
αi
]
1
• [α]2)

pi

r

= m [rαf(α)YQ(α)]T

C1 =

(
n∏
i=0

[
αi+1zi

]
2

)r
= [rαZP(α)]2

C2 = G−r2 .

It sends back the tuple Ct = (P, C, C1, C2) to A. The only condition
is that (m− 2) ≥ n− |P|+ 1, i.e., |P| ≥ n−m+ 3.

– Simulating the ODec(Ct,Bj) oracle. The adversary A has access to
this oracle to receive the decryption of ciphertext Ct by providing an
attribute set Bj ∈ Q. To this end, B executes dkBj ← DecKGen(msk,Bj)
and takes the set P, defines c[i] = bj [i]−p[i] and calculates, FBj ,P(x) =∏n
i=1 (x− ki)c[i] =

∑
i fix

i. Whence she returns the decrypted mes-
sage m′ as follows:

m′ = C ·

(
C2 • (

n∏
i=1

hi−1)
fi · (dkB • C1)

)−1/f0
.

Challenge: The adversary A chooses two plaintexts with the same length
{m0,m1}←$M×M and sends them to B. Then B flips a fair coin to
generate the bit b←$ {0, 1}, and computes the challenge ciphertext Ct∗ =
(P∗, C∗, C∗1 , C∗2 ) as follows:

C∗ = mbΓ,C
∗
1 = [kh(α)]2 , C

∗
2 = [−kαf(α)]1 .

The randomness of the challenge ciphertext is assumed to be r∗ =
k/(αYQ(α)). In a nutshell, based on the (l,m, t) − MSE-DDH assumption,
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there are two cases for the received challenge Γ with the same probability
1/2. If Γ = [kf(α)]T then we have:

C∗ = mb [kf(α)]T = mb [r∗αf(α)YQ(α)]T
C∗1 = [kh(α)]2 = [r∗αYQ(α)h(α)]2 = [r∗αZP∗(α)]2

C∗2 = [−kαf(α)]1 =
[
−r∗α2YQ(α)f(α)

]
1

= G−r
∗

2 .

While in the case of an independent and random element in the group
GT , the computed C∗ is a random element out of the construction and
the adversary cannot do better than guessing with success probability
1/2.

2nd Query phase. After receiving the challenge ciphertext Ct∗, the
adversary A has access to the queries defined in the first query phase on
the condition that she cannot query the key generation oracle for those
attribute sets that are sufficient for the challenge access policy P∗.

Guess. Afterwards, A returns either 1 or 0. Let b′ and β′ be the values
that are guessed respectively by A for b and by B for β. If b′ == b, the
adversary B outputs β′ = 0, otherwise she returns β′ = 1, which indicates
that she receives a random element in the target group as the challenge.
When β = 1, the adversary A obtains no information about b. So she
can guess it and we have Pr[b′ == b | β = 1] = 1/2. On the other hand,
when b′ 6= b, B returns β′ = 1, hence we have Pr[β′ == β | β = 1] = 1/2.
Particularly, if β = 0, A can distinguish with a non-negligible advantage ε
because she has received the true format of the ciphertext for the challenge
message mb. Thus, we have Pr[b′ == b | β = 0] ≥ ε+ 1/2. As B correctly
guesses β, when β = 0, we have Pr[β′ == β | β = 0] ≥ ε+1/2. Therefore,
the overall advantage of the adversary B in solving the (l,m, t)−MSE-DDH
problem is:

AdvMSE-DDHB (1λ) =
(

Pr[β = 0] Pr[β
′

== β | β = 0]+

Pr[β = 1] Pr
[
β
′

== β | β = 1
] )
− 1/2 ≥

1/2 (ε+ 1/2) + (1/2 · 1/2)− 1/2 ≥ ε

2
.

Therefore, the adversary B can play the (l,m, t) − MSE-DDH game with
a non-negligible advantage ε

2 . By contradiction, since we know there is
no PPT adversary B to break the (l,m, t) − MSE-DDH assumption with
a non-negligible advantage, the proposed CP-ABE scheme in Sect. 5 is
secure in the IND-CPA game of Definition B.10.
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D A CD-ABACE with LSSS

In Fig. 5, we propose an ACE variation of Waters’s CP-ABE scheme
[41]. This scheme is built under the original Abe et al.’s SPS scheme [2],
Waters’s CP-ABE [41] and NIZK proofs in the ROM. We provide an
overview of the LSSS in the following definition and refer readers to [41]
for more details.

Definition D.1 (Linear Secret Sharing Scheme (LSSS) [6]). A
secret-sharing scheme ΨA for the access structure A over a set of attributes
P is called linear (over Z∗p) if:

– The shares of a secret s ∈ Z∗p for the set of attributes form a vector
over Z∗p.

– There exists a matrix M, with dimension ` × d, called the share-
generating matrix for ΨA. The ith row of M, Mi, is labeled by ρ(i)
where ρ(.) is a function from {1, 2, . . . , `} to P. We consider the col-
umn vector ~v = {s, r2, . . . , rd}, where s ∈ Z∗p is the secret to be

shared and {r2, . . . , rd} ∈ Z∗p are randomly chosen. So Ml×d × ~v>
is the vector of ` shares of the secret s according to ΨA. The share
λi = (M`×d × ~v>)i corresponds to the attribute ρ(i).

Let S ∈ A be any authorized set, and let I ⊂ {1, . . . , `} be defined
as I = {i | ρ(i) ∈ S}. Then, there exist constant values {ωi ∈ Zp}i∈I
such that, if λi∈I are valid shares of the secret s according to ΨA, then∑

i∈I ωi · λi = s. Let Mi denotes the ith row of M`×d, then∑
i∈I ωiMi = (1, 0, . . . , 0)1×d. The constants {ωi} can be found with poly-

nomial time complexity in term of the size of the share-generation matrix
M`×d, where ` is the number of attributes and d is the level of the access
structure. We refer to [41] for more details about the access structure and
the LSSS technique.
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(ppra,mskra)← RAgen(U, λ)

1 : Run BG(λ) = (G,G,GT , p, ê)
2 : H←$H, α←$Z∗p, β←$Z∗p
3 : {hi ← G}i∈[|U|]
4 : mskra = ([α]1)

5 : ppra = (g, {hi}|U|i=1, [α]T , g
β ,H)

6 : return (mskra, ppra)

(ppsa,msksa)← SAgen(λ, ppra,RL)

1 : Parse (BG(λ), ppra)

2 : X ←$G
3 : sk := v←$Zp

4 : vk = [v]1

5 : ( ~crs, ~ts)←$ZK.KG ~crs(λ,RL)

6 : msksa = (sk, ~ts)

7 : ppsa = (RL, ~crs, X, vk)

8 : return (msksa, ppsa)

(dkS)← DecKGen(mskra, S)

1 : Parse (BG(λ),mskra)

2 : t←$Z∗p
3 : K = [α+ βt]1

4 : L = [t]1

5 : ∀ x ∈ S Kx = htx

6 : return dkS = (K,L, {Kx}x∈S)

(ekP, σ,W )← EncKGen(ppra,msksa, (M, ρ),Pf)

1 : Parse (BG(λ), ppra,msksa)

2 : Col(pp, (M, ρ)) = {eki = hρ(i)}`i=1

3 : tu ←$Z∗p,W = [1/tu]2

4 : R = gtu2

5 : {Si = ek
sk/tu
i X1/tu}i∈`

6 : {Ti = Ssk/tu [1/tu]2}i∈[`]
7 : return (ekP, σ = (R, {Si, Ti}i∈[`]),W )

(π, x)← Enc (ppsa, ppra,m, ekS, σ,W )

1 : Parse (BG(λ), ppra, ppsa)

2 : ti ←$Z∗p, ri ←$Z∗p, s←$Z∗p
3 : ~v = (s, y2, . . . , yn) ∈ Znp , λi = ~v · Mi

4 : (C,C′) = (m [sα]T , [s]1)

5 : {(Ci, Di) = ([βλi]1 ek−rii , [ri]1)}i∈[`]
6 : R′i = R

1/ti
i , S′i = Stii ,

7 : T ′i = T
t2i
i W

ti(1−ti)

8 : σ′ = {(R′i, S′i, T ′i )}i∈[`]
9 : x = (σ′, Ct = ((M, ρ), C, C′, {Ci}i∈`))

10 : w = (σ,m, {ri, ti}i∈`)
11 : π ← PoK{(w) : RL(x,w) = 1}
12 : return (π, x)

(C̃t,⊥)← San(ppsa, ppra, π, x)

1 : Parse (BG(λ), ppra, ppsa)

2 : if {R′i, ekS, S
′
i, T
′
i ∈ G ∧

3 : R′i • S′i = (vk • eki)(X • [1]1) ∧
4 : R′i • T ′i = (vk • S′i) [1]T ∧
5 : ZK.V(RL, ~crs, π, x) = 1} :

6 : µi ←$Z∗p
7 : C̃i = Ci · ek−µi

i

8 : D̃i = Di · [µi]1
9 : return

10 : C̃t = ((M, ρ), C, C′, {C̃i, D̃i}i∈`)
11 : else : abort

(m′,⊥)← Dec
(
ppsa, ppra, C̃t, dkS

)
1 : Parse (BG(λ), ppra, ppsa)

2 : if S Satisfies (M, ρ) :

3 : I = {i : ρ(i) ∈ S} ⊂ {1, . . . , `}, Let {ωi ∈ Zp}i∈I then
∑
i∈I

ωiλi = s

4 : return m′ =
C(

(C′ •K) /
(∏

i∈I ((Ci • L)(Di •Kρ(i)))ωi
))

5 : else : abort

Fig. 5. A CD-ABACE based on Waters’s CP-ABE scheme
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