
1

Fast Privacy-Preserving Text Classification based on
Secure Multiparty Computation

Amanda Resende, Davis Railsback, Rafael Dowsley, Anderson C. A. Nascimento and Diego F. Aranha

Abstract—We propose a privacy-preserving Naive Bayes clas-
sifier and apply it to the problem of private text classification. In
this setting, a party (Alice) holds a text message, while another
party (Bob) holds a classifier. At the end of the protocol, Alice will
only learn the result of the classifier applied to her text input and
Bob learns nothing. Our solution is based on Secure Multiparty
Computation (SMC). Our Rust implementation provides a fast
and secure solution for the classification of unstructured text.
Applying our solution to the case of spam detection (the solution
is generic, and can be used in any other scenario in which the
Naive Bayes classifier can be employed), we can classify an SMS
as spam or ham in less than 340 ms in the case where the
dictionary size of Bob’s model includes all words (n = 5200)
and Alice’s SMS has at most m = 160 unigrams. In the case
with n = 369 and m = 8 (the average of a spam SMS in the
database), our solution takes only 21 ms.

Index Terms—Privacy-Preserving Classification, Secure Multi-
party Computation, Naive Bayes, Spam.

I. INTRODUCTION

Classification is a supervised learning technique in Machine
Learning (ML) that has the goal of constructing a classifier
given a set of training data with class labels. Decision Tree,
Naive Bayes, Random Forest, Logistic Regression and Support
Vector Machines (SVM) are some examples of classification
algorithms. These algorithms can be used to solve many
problems, such as: classifying an email/Short Message Ser-
vice (SMS) as spam or ham (not spam) [5]; diagnosis of
a medical condition (disease versus no disease) [63]; hate
speech detection [55]; face classification [45]; fingerprinting
identification [17]; and image categorization [29]. For the first
three examples above, classification is binary, where there are
only two class labels (yes or no); while the last three are multi-
class, that is, there are more than two classes.

We consider the scenario in which there are two parties:
one possesses the private data to be classified and the other
party holds a private model used to classify such data. In such
a scenario, the party holding the data (Alice) is interested
in obtaining the classification result of such data against a
model held by a second party (Bob) so that, at the end of
the classification protocol, Alice knows solely the input data
and the classification result, and Bob knows nothing beyond

A. Resende is with the Institute of Computing, University of Campinas,
Campinas, Brazil. E-mail: amanda.resende@ic.unicamp.br.

D. Railsback and A. C. A. Nascimento are with the School of Engineering
and Technology, University of Washington Tacoma, WA 98402, USA. E-mails:
{drail, andclay}@uw.edu.

R. Dowsley is with the Faculty of Information Technology, Monash
University, Australia. E-mail: rafael.dowsley@monash.edu.

D. F. Aranha is with the Department of Computer Science, Aarhus
University, Aarhus, Denmark. E-mail: dfaranha@cs.au.dk.

the model itself. This scenario is a very relevant one. There
are many situations where a data owner is not comfortable
sharing a piece of data that needs classification (think of
psychological or health related data). Also, a machine learning
model holder might not want to/cannot reveal the model in
the clear for intellectual property issues or because the model
reveals information about the data set used to train it. Thus,
both parties have proper incentives to participate in a protocol
providing the joint functionality of private classification.

Due to these concerns, mechanisms such as Secure Mul-
tiparty Computation (MPC) [20], Differential Privacy (DP)
and Homomorphic Encryption (HE) can be used to build
privacy-preserving solutions. MPC allows two or more parties
to jointly compute a function over their private inputs without
revealing any information to the other party, whereas HE is
an encryption scheme that allows performing computations
on encrypted data without having to decrypt it. And, DP is
a technique that adds random noise to queries, to prevent
an adversary from learning information about any particular
individual in the data set.

Our main goal is to propose protocols for privacy-preserving
text classification. By carefully selecting cryptographic engi-
neering optimizations, we improve upon previous results by
Reich et al. [55] by over one order of magnitude achieving, to
the best of our knowledge, the fastest text-classification results
in the available literature (21ms for an average sample of our
data set). More specifically, we propose a privacy-preserving
Naive Bayes classification (PPNBC) based on MPC where
given a trained model we classify/predict an example without
revealing any additional information to the parties other than
the classification result, which can be revealed to one specified
party or both parties. We then apply our solution to a text
classification problem: classifying SMSes as spam or ham.

A. Application to Private SMS Spam Detection

SMS is one of the most used telecommunication service
in the world. It allows mobile phone users to send and
receive a short text (which has 160 7-bit characters maximum).
Due to advantages such as reliability (since the message
reaches the mobile phone user), low cost to send an SMS
(especially if bought in bulk), the possibility of personalizing,
and immediate delivery, SMS is a widely used communication
medium for commercial purposes, and mobile phone users are
flooded with unsolicited advertising.

SMSes are also used in scams, where someone tries to steal
personal information, such as credit card details, bank account
information, or social security numbers. Usually, the scammer

2

sends an SMS with a link that invites a person to verify his/her
account details, make a payment, or that claims that he/she has
earned some amount of money and needs to use the link to
confirm. In all cases, such SMSes can be classified as spam.

Machine learning classifiers can be used to detect whether
an SMS is a spam or not (ham). During the training phase,
these algorithms learn a model from a data set of labeled exam-
ples, and later on, are used during the classification/prediction
phase to classify unseen SMSes. In a Naive Bayes classifier,
the model is based on the frequency that each word occurs
in the training data set. In the classification phase, based on
these frequencies, the model predicts whether an unseen SMS
is spam or not.

A concern with this approach is related to Alice’s privacy
since she needs to make her SMSes available to the spam
filtering service provider, Bob, which owns the model. SMSes
may contain sensitive information that the user would not
like to share with the service provider. Besides, the service
provider also does not want to reveal what parameters the
model uses (in Naive Bayes, the words and its frequencies)
to spammers and concurrent service providers. Our privacy-
preserving Naive Bayes classification based on MPC, provides
an extremely fast secure solution for both parties to clas-
sify SMSes as spam or ham without leaking any additional
information while maintaining essentially the same accuracy
as the original algorithm performed in the clear. While our
experimental treatment is focused on SMS messages, the
same approach can be naturally generalized to classify short
messages received over Twitter or instant messengers such as
WhatsApp or Signal.

B. Our Contributions

These are the main contributions of this work:
• A privacy-preserving Naive Bayes classification

(PPNBC) protocol: We propose the first privacy-
preserving Naive Bayes classifier with private feature
extraction. Previous works assumed the features to be
publicly known. It is based on secret sharing techniques
from MPC. In our solution, given a trained model it is
possible to classify/predict an example without revealing
any additional information to the parties other than the
classification result, which can be revealed to one or
both parties. We prove that our solution is secure using
the Universal Composability (UC) framework [14], the
gold standard framework for analyzing the security of
cryptographic protocols, thus proving that it enjoys very
strong security guarantees, and can be arbitrary composed
as well as used in realistic scenarios such as the Internet
without compromising the security of the solution.

• An efficient and optimized software implementation of
the protocol: The proposed protocol is implemented in
Rust using an up-to-date version of the RustLynx frame-
work available at https://bitbucket.org/uwtppml/rustlynx/
src/master/.

• Experimental results for the case of SMS classification
as spam/ham: The proposed protocol is evaluated in
a use case for SMS spam detection, using a data set

widely used in the literature. However, it is important
to note that the solution is generic, and can be used in
any other scenario in which the Naive Bayes classifier
can be employed.

While the necessary building blocks already exist in the
literature, the main novelty of our work is putting these
building blocks together, optimizing their implementations
using cryptographic engineering techniques and obtaining the
fastest protocol for private text classification to date.

C. Organization

This paper is organized as follows. In Section 2, we define
the notation used during this work, describe the necessary
cryptographic building blocks and briefly introduce the Naive
Bayes classifier. In Sections 3 and 4, we describe our privacy-
preserving Naive Bayes classification protocol and present its
security analysis. In Section 5, we describe the experimental
results, from the training phase until the classification using
our PPBNC, as well as the cryptographic engineering tech-
niques used in our implementation. Finally, in Sections 6 and
7, we present the related works and the conclusions.

II. PRELIMINARIES

As in most existing works on privacy-preserving machine
learning based on MPC, we consider an honest-but-curious
adversary (also known as semi-honest adversary). In this
model, each party follows the protocol specifications but, using
his view of the protocol execution, may try to learn additional
information other than his input and specified output.

A. Secure Computation Based on Additive Secret Sharing

Our solution is based on additive secret sharing over a ring
Zq = {0, 1, 2, · · · , q− 1}. A value x is secret shared between
Alice and Bob over Zq by picking xA, xB ∈ Zq uniformly
at random with the constraint that x = xA + xB mod q.
Alice receives the share xA while Bob receives the share
xB . We denote this pair of shares by JxKq . A secret shared
value x can be open towards one party by disclosing both
shares to that party. Let JxK

q
, JyK

q
be secret shared values

and c be a constant. Alice and Bob can perform locally and
straightforwardly the following operations:
• Addition (z = x + y): Each party locally adds its local

shares of x and y modulo q in order to obtain a share of
z. This operation will be denoted by JzKq ← JxKq+JyKq .

• Subtraction (z = x− y): Each party locally subtracts its
local share of x and y modulo q in order to obtain a
share of z. This operation will be denoted by JzK

q
←

JxK
q
− JyK

q
.

• Multiplication by a constant (z = cx): Each party multi-
plies its local share of x by c modulo q to obtain a share
of z. This operation will be denoted by JzKq ← cJxKq .

• Addition of a constant (z = x + c): Alice adds c to
her share xA of x to obtain zA, while Bob sets zB =
xB , keeping his original share. This will be denoted by
JzKq ← JxKq + c.

3

Unlike the above operations, secure multiplication of secret
shared values (i.e., z = xy) cannot be done locally and
requires interaction between Alice and Bob. To compute this
operation highly efficiently, we use Beaver’s multiplication
triple technique [9], which consumes a multiplication triple –
i.e., (JuK

q
, JvK

q
, JwK

q
) such that u and v are chosen uniformly

at random and w = uv – in order to compute the multiplication
of JxKq and JyKq without leaking any information. We use a
trusted initializer (TI) to generate multiplication triples and
secret share them to Alice and Bob. In the trusted initializer
model, the TI can pre-distribute correlated randomness to
Alice and Bob during a setup phase, which is run before the
protocol execution (possibly long before Alice and Bob get to
know their inputs). The TI is not involved in any other part
of the protocol execution and does not get to know the parties
inputs and outputs.1 This model was used in many previous
works, e.g., [58], [35], [34], [41], [60], [23], [24], [37], [2].
If a TI is not desirable or unavailable, Alice and Bob can
securely simulate a TI at the cost of introducing computational
assumptions in the protocol [25]. The TI is modeled by the
ideal functionality FDTI . In addition to the multiplication triples,
the TI also generates random values in Zq and delivers them
to Alice so that she can use them to secret share her inputs.
If Alice wants to secret share an input x, she picks an unused
random value r (note that Bob does not know r), and sends
c = x − r to Bob. Her share xA of x is then set to xA = r,
while Bob’s share xB is set to xB = c. The secret sharing of
Bob’s inputs is done similarly using random values that the
TI only delivers to him.

Functionality FDTI

FDTI is parametrized by an algorithm D. Upon initial-
ization run (DA, DB)

$← D and deliver DA to Alice
and DB to Bob.

The following straightforward extension of Beaver’s idea
performs the UC-secure multiplication of secret shared matri-
ces X ∈ Zi×jq and Y ∈ Zj×kq [31], [25]. The protocol will be
denoted by πDMM and works as follows:

1) The TI chooses uniformly random U and V in Zi×jq

and Zj×kq , respectively, computes W = UV and pre-
distributes secret sharings JUKq , JV Kq , JW Kq (the secret
sharings are done element-wise) to Alice and Bob.

2) Alice and Bob locally compute JDK
q
← JXK

q
− JUK

q

and JEK
q
← JY K

q
− JV K

q
, and then open D and E.

3) Alice and Bob locally compute JZK
q
← JW K

q
+

EJUKq +DJV Kq +DE.

B. Fixed Point Arithmetic
Many real-world applications of MPC require representing

and operating on continuous data. This poses a challenge

1It is a well-known fact that UC-secure MPC needs a setup assumption
[15], [16]. A TI is one of the setup assumptions that allows obtaining UC-
secure MPC. Other setup assumptions that enable UC-secure MPC include:
a common reference string [15], [16], [52], the availability of a public-key
infrastructure [6], signature cards [40], tamper-proof hardware [43], [30], [33]
or noisy channels between the parties [32], [36], and the random oracle model
[39], [8], [22].

because the security of additive secret sharing depends on the
fact that shares are uniformly random – a concept that only
exists for samples of finite sets. For compatibility with MPC,
continuous values need to be represented within a range of
possible values. We use the mapping

Q(x) =

{
2λ − b2a · |x|c if x < 0

b2a · xc if x ≥ 0

to represent real numbers in Zq , where q = 2λ, as fixed-point
precision two’s complement values. The parameter a is the
fractional accuracy – the number of bits used to represent
negative powers of 2. This mapping preserves addition in
Zq straightforwardly, but a multiplication of two fixed-point
values results in a fixed point value with 2a fractional bits. To
maintain the expected representation in Zq , all products need
to be truncated by a bit positions, requiring an additional MPC
protocol [51]. In this paper, fixed-point values are only added
together and multiplied by 0 or 1, so a truncation protocol is
not needed for our purposes.

C. Cryptographic Building Blocks

Next, we present the cryptographic building blocks that are
used in our PPNBC solution.
Secure Equality Test: To perform a secure equality test, we
use a straightforward folklore protocol πEQ. As input, Alice
and Bob have bitwise secret sharings in Z2 of the bitstrings
X = {x`, . . . , x1} and Y = {y`, . . . , y1}. The protocol
generates as output a secret sharing of 1 if X = Y and a secret
sharing of 0 otherwise. The protocol πEQ works as follows:

1) For i = 1, . . . , `, Alice and Bob locally compute
JriK2

← JxiK2
+ JyiK2

+ 1.
2) Alice and Bob use secure multiplication (πDMM) to

compute a secret sharing of z = r1 · . . . ·r`. They output
the secret sharing JzK2 . (Note that if x = y, then ri = 1
in all i positions, thus z = 1; otherwise some ri = 0
and so z = 0).

By performing the multiplications to compute z in a binary
tree style with the values r1, . . . , r` in the ` leaves, the protocol
πEQ requires dlog(`)e rounds of communication and a total of
4(`−1) bits of data transfer. For batched inputs {X1, ..., Xk},
{Y1, ..., Yk}, the number of communication rounds remains the
same and the data transfer per round is scaled by k.
Secure Feature Extraction: To perform the feature extraction
in a privacy-preserving way, we use the protocol πFE from
Reich et al. [55]. Alice has as input the set A = {a1, · · · , am}
of unigrams occurring in her message and Bob has as input the
set B = {b1, · · · , bn} of unigrams that occur in his ML model.
The elements of both sets are represented as bitstrings of size
`. The purpose of the protocol is to extract which words from
Alice’s message appear in Bob’s set. Thus, at the end of the
protocol, Alice and Bob have secret shares of a binary feature
vector Y which represents what words in Bob’s set appear in
Alice’s message. The binary feature vector Y = {y1, · · · , yn}
is defined as:

yj =

{
1, if bi ∈ A
0, otherwise

The protocol πFE works as follows:

4

1) Alice secret shares ap with Bob for p = 1, · · · ,m, while
Bob secret shares bi with Alice for i = 1, · · · , n. Both
use bitwise secret sharings in Z2. To secret share their
input ap and bi, Alice and Bob use the method described
in Section II-A.

2) For each ap and each bi, they execute the secure equality
protocol πEQ, which outputs a secret sharing of

y′ip =

{
1, if ap = bi
0, otherwise

3) Alice and Bob locally compute the secret share JyiK2
←∑m

p=1Jy
′
ipK2

The protocol requires dlog(`)e+1 rounds of communication,
4(` − 1) bits of data transfer for each call of the πEQ, and 1
bit for each input bit that is secret shared. πFE requires m · n
equality tests: the number of communication rounds remains
the same as a single execution, as all the tests can be done
in parallel; the data transfer however is scaled by m · n. The
total data transfer of πFE is therefore 4 ·m ·n · (`−1)+m+n
bits.
Secure Conversion: To perform a secure conversion from
a secret sharing in Z2 to a secret sharing in Zq , we use
the secure conversion protocol π2toQ presented by Reich et
al. [55]. Alice and Bob have as input a secret sharing JxK

2

and without learning any information about x, they must get
a secret sharing JxKq . The protocol π2toQ works as follows:

1) For the input JxK
2
, let xA ∈ {0, 1} denote Alice’s share

of x and xB ∈ {0, 1} denote Bob’s share.
2) Define JxAKq as the shares (xA, 0) and JxBKq as the

shares (0, xB).
3) Alice and Bob compute JyK

q
← JxAK

q
JxBK

q
.

4) They output JzK
q
← JxAK

q
+ JxBK

q
− 2JyK

q
.

The protocol π2toQ requires 1 round of communication and
a total of 4λ bits of data transfer, where λ is the bit length of q.
For batched inputs {x1, ..., xk}, the number of communication
rounds remains the same and the data transfer is scaled by k.
Secure Bit Extraction: The secure bit extraction protocol
πBTX takes a secret value JxKq and a publicly known bit
position α and returns a Z2-sharing of the α-th bit of x,
J(x >> (α− 1)) ∧ 1K

2
. The protocol is based on a reduction

of the protocol for full bit decomposition modeled after a
matrix representation of the carry look-ahead adder circuit that
was presented in [27]. πBTX [1] works as follows:

1) For the secret shared value JxK
q
= (xA, xB), Alice and

Bob locally create bitwise sharings of the propagate
signal

p(α) ← x
(α)
A ⊕ x(α)B , . . . , p(1) ← x

(1)
A ⊕ x

(1)
B ,

where x(i)A /x
(i)
B indicates the i-th bit of xA/xB .

2) Alice and Bob use the secure multiplication of secret
shared values to jointly compute the generate signal

g(α) ← x
(α)
A ∧ x(α)B , . . . , g(1) ← x

(1)
A ∧ x

(1)
B .

3) Alice and Bob jointly compute the (α− 1)-th carry bit
Jc(α−1)K

2
as the upper right entry of∏

1≤i≤α−1

[
Jp(i)K

2
Jg(i)K

2

0 1

]

.
4) Alice and Bob locally compute Jx(α)K2 ← Jp(α)K2 ⊕

Jc(α−1)K2 .
The protocol πBTX requires dlogα− 1)e rounds and 2(α−

1)+ 4 log (α− 1)− 4 bits of communication. Figure 1 shows
an example circuit to compute the matrix composition phase
for α = 17. For batched inputs {x1, . . . , xk}, the number of
communication rounds remains the same and the total data
transfer is scaled by k.
Secure Comparison: To perform a secure comparison of
secret shared integers, we use the protocol πGEQ of Adams
et al. [1]. As input, Alice and Bob hold secret shares in Zq
of integers x and y such that |x − y| < 2λ−1 (as integers).
Particularly, Alice and Bob can use this protocol with integers
x and y in the range [−2λ−2, 2λ−2− 1] (a negative value u is
represented as 2λ − |u|). The protocol returns a secret share
in Z2 of 1 if x ≥ y and of 0 otherwise. The protocol πGEQ
works as follows:

1) Alice and Bob locally compute the difference of x and
y as JdiffKq ← JxKq − JyKq . Note that if y > x, then diff
is negative.

2) Alice and Bob extract a Z2-sharing JMSBK
2

of the
most-significant bit (MSB) of diff using the protocol
πBTX.

3) Given that the most-significant bit of a secret shared
value in Zq is 1 if and only if it is negative, the negation
of the most-significant bit, JzK

2
← 1+ JMSBK

2
, is 1 if

and only if x ≥ y.
The protocol πGEQ has the same round and communication

complexity as the protocol πBTX for extracting the most-
significant bit, i.e., α = λ. They differ solely on the com-
putations done locally.

D. Naive Bayes Classifiers
Naive Bayes is a statistical classifier based on Bayes’

Theorem with an assumption of independence among fea-
tures/predictors. It assumes that the presence (or absence) of
a particular feature in a class is unrelated to the presence (or
absence) of any other feature. The Bayes’ theorem is used as
follows:

P (c|x) = P (x|c)P (c)
P (x)

,

where: (1) c is the class/category; (2) x is the feature vector of
test example; (3) P (c|x) is the posterior probability, i.e., given
test example x, what is its probability of belonging to class
c; (4) P (x|c) is known as the likelihood, i.e., given a class c,
what is the probability of example x belonging to class c; (5)
P (c) is the class prior probability; (6) P (x) is the predictor
prior probability.

The predictor prior probability P (x) is the normalizing
constant so that the P (c|x) does actually fall in the range
[0, 1]. In our solution we will be comparing the probabilities
of different classes to determine the most likely class of an
example. The probabilities are not important per se, only their
comparative values are relevant. As the denominator P (x)
remains the same, it will be omitted and we will use

P (c|x) = P (x|c)P (c).

5

M2 M14M1 M13M11M3 M4 M12M9 M10M5 M6 M7 M8 M15 M16

M1,2 M3,4 M5,6 M7,8 M9,10 M11,12 M13,14 M15,16

M1,4

M1,8

M9,12M5,8 M13,16

M9,16

M1,16

Fig. 1. A circuit to compute the (α− 1)-th matrix composition in dlog(α− 1)e layers. The notations Mi.j indicates the composition of all matrices from
Mi to Mj , inclusive.

As per assumption the features x = (x1, . . . , xd) are
independent, we get

P (c|x) = P (c)

d∏
k=1

P (xk|c).

Note that when executing Naive Bayes, since the probabili-
ties are often very small numbers, multiplying them will result
in even smaller numbers, which often results in underflows that
can cause the model to fail. To solve that problem and also
simplify operations (and consequently improve performance),
we will “convert” all multiplication operations into additions
by using logarithms. Applying the logarithm we get

log(P (c|x)) = log

(
P (c)

d∏
k=1

P (xk|c)

)

= log(P (c)) +

d∑
k=1

log(P (xk|c)).

To perform the classification, we then compute the argmax

ĉ = argmaxc

[
log(P (c)) +

d∑
k=1

log(P (xk|c))

]
,

where argmaxc returns the class c that has the highest value
for the test example x.

Naive Bayes classifiers differ mainly on the assumptions
they make regarding the distribution of P(x|c). In Gaussian
Naive Bayes, the assumption is that the continuous values
associated with each class are distributed according to a
Gaussian distribution. For discrete features, as we have in text
classification, we can use the Bernoulli Naive Bayes or the
multinomial Naive Bayes. In the Bernoulli Naive Bayes, the
features are Boolean variables, where 1 means that the word
occurred in the text and 0 if the word did not occur. And, in
the multinomial Naive Bayes, the features are the frequency
of the words present in the document. In this work, we use
the multinomial Naive Bayes and the frequencies of the words
are determined during the training phase.

III. PRIVACY-PRESERVING NAIVE BAYES CLASSIFICATION

For the construction of our Privacy-Preserving Naive
Bayes Classification (PPNBC) protocol πPPNBC, Alice con-
structs her set A = {a1, . . . , am} of unigrams occur-
ring in her message and Bob constructs his set B =
{b1, . . . , bn} of unigrams that occur in his ML model.
Bob also has log(P (cj)), that is the logarithm of the
probability for each class cj and a set of logarithms
of probabilities {log(P (b1|cj)), . . . , log(P (bn|cj)), log(1 −
P (b1|cj)), . . . , log(1 − P (bn|cj))}, that is the logarithm of
the probability of a word bi occurring or not in a class cj .
All ak and bi are represented as bit strings of length `. In
our current implementation, we focus on binary classification.
It is straightforward to generalize our protocols to the case
of classification into more than two classes by using a secure
argmax protocol. Our protocol πPPNBC follows the description
of the Naive Bayes presented in Section II-D (using logarithms
and not using the normalizing constant), and works as follows:

1) Alice and Bob execute the secure feature extraction
protocol πFE with inputs (a1, . . . , am) and (b1, . . . , bn),
respectively. The output consists of secret shared values
Jy1K2

, . . . , JynK2
in Z2, where yi = 1 if the word bi ∈ A

and 0 otherwise;
2) They use protocol π2toQ to convert Jy1K2

, . . . , JynK2
to

Jy1Kq , . . . , JynKq , containing secret sharings of the same
values in Zq;

3) For each class cj :
a) Using the method described in Section II-A,

Bob creates secret shares of his inputs
log(P (cj)), log(P (b1|cj)), . . . , log(P (bn|cj)),
log(1 − P (b1|cj)), . . . , log(1 − P (bn|cj)), which
contain the logarithm of the class probability
and the set of logarithms of the conditional
probabilities;

b) For i = 1, . . . , n, Alice and Bob
use the protocol πDMM to compute
JwiKq ← JyiKqJlog(P (bi|cj))Kq + (1 −
JyiKq)Jlog(1− P (bi|cj))Kq ;

6

c) Alice and Bob locally compute JujKq ←
Jlog(P (cj))Kq +

∑n
i=1JwiKq .

4) Alice and Bob use the protocol πGEQ to compare the
results of Step 3(c) for the two classes, getting as
output a secret sharing of the output class JcK

2
(the

secret sharing JcK
2

can afterwards be opened towards
the party/parties that should receive the result of the
classification).

IV. SECURITY

The concept of simulation is central in modern cryptogra-
phy. It is used, for instance, to define zero-knowledge proofs,
to appropriately analyze secure multi-party computation pro-
tocols, and is also behind the concept of semantic security for
encryption schemes.

At a high-level, in the simulation paradigm for security
definitions and proofs, a comparison is made between a “real
world” where the actual primitive being analyzed exists and
the adversary tries to attack it, and an “ideal world” where
there is an idealized primitive (also known as ideal function-
ality) that performs the desired functionality and is secure by
definition. If one can prove that for any possible action taken
by any adversary in the real world there is a corresponding
action that an ideal-world adversary (also known as the
simulator) interacting with the ideal world can take such that
the real and ideal worlds become indistinguishable, then the
actual primitive securely realizes what is specified by the ideal
functionality. In the case of semantic security for encryption
schemes, for instance, one compares what can be learned by an
adversary that receives a ciphertext in the real world with what
can be learned by a simulator who receives nothing in the ideal
world. An encryption scheme is semantically secure if the ad-
versary cannot learn more information than the simulator. For a
tutorial of the simulation proof technique, we refer to the work
of Lindell [47]. Simulation-based security proofs generally
offer stronger security guarantees than security proofs based
on list of properties (and multi-party cryptographic protocols
proved secure according to simulation-based definitions are
sequentially composable [12]).

The security model considered in this work is the Universal
Composability (UC) framework of Canetti [14]. The UC
framework is based on the simulation paradigm, and thus in the
UC framework the security is analyzed by comparing a real
world with an ideal world. However, instead of considering
the analyzed primitive isolated from the outside world (like
other simulation-based definitions), the outside world is taken
into account. By taking this additional factor into account,
cryptographic protocols that are proven to be UC-secure
offer much stronger security guarantees: any protocol that
is proven UC-secure can be arbitrarily composed with other
copies of itself and of other protocols (even with arbitrarily
concurrent executions) while preserving security. That is an
extremely useful property that allows the modular design of
cryptographic protocols: consider the case in which one has
previously proven that a protocol ρ UC-securely realizes an
ideal functionality G. Now, consider that one has designed a
new protocol π that uses ρ as a sub-protocol and wants to

prove that π securely realizes the ideal functionality F . Due
to the UC theorem [14], in the security proof that protocol π
realizes functionality F , one can consider π using instances of
the ideal functionality G (that is UC-realized by ρ) instead of
instances of ρ; and this makes the modular design and security
analysis of cryptographic protocols much easier. Moreover,
UC-security is a necessity for cryptographic protocols running
in complex environments such as the Internet. For these
reasons, the UC framework is the gold standard for formally
defining and analyzing the security of cryptographic protocols
(it has been used by thousands of scientific works); and
protocols that are UC-secure provide much stronger security
guarantees than protocols proven secure according to other
notions.

Here only a short overview of the UC framework for the
specific case of protocols with two participants is presented.
We refer interested readers to the full version of original work
of Canetti [13] and the book of Cramer et al. [20] for more
details.

As mentioned before, the UC framework considers a real
and an ideal worlds. In the real world Alice and Bob interact
between themselves and with an adversary A and an environ-
ment Z . The environment Z captures all external activities
to the protocol instance under consideration (i.e., it captures
the outside world, everything other than the single protocol
instance whose security is being analyzed), and is responsible
for giving the inputs and getting the outputs from Alice and
Bob. The adversary A can corrupt either Alice or Bob, in
which case he gains the control over that participant. The
network scheduling is assumed to be adversarial and thus A
is responsible for delivering the messages between Alice and
Bob. In the ideal world, there is an ideal functionality F that
captures the perfect specification of the desired outcome of
the computation. F receives the inputs directly from Alice and
Bob, performs the computations locally following the primitive
specification and delivers the outputs directly to Alice and Bob.
A protocol π executed between Alice and Bob in the real world
UC-realizes the ideal functionality F if for every adversary A
there exists a simulator S such that no environment Z can
distinguish between: (1) an execution of the protocol π in
the real world with the participants Alice and Bob, and the
adversary A; (2) and an ideal execution with dummy parties
(that only forward inputs/outputs), F and S.

Simplifications: The messages of ideal functionalities are
formally public delayed outputs, meaning that S is first asked
whether they should be delivered or not (this is due to the
modeling that the adversary controls the network scheduling).
This detail as well as the session identifications are omitted
from the description of functionalities presented here for the
sake of readability.

Simulation Strategy: As standard in UC security proofs,
in our security proofs the simulator S interacting in the
ideal world will internally run a copy of the adversary A
and internally simulate an execution of the protocol π for
A (using only the information that S can get in the ideal
world). The simulator S forwards the messages of A and Z
that are intended to each other, thus allowing them to freely
communicate (note that in the real world A and Z can freely

7

communicate, so S should also allow this communication).
One of the goals of the simulator is to make the internally
simulated execution of the protocol π and the real execution
of the protocol π in the real world indistinguishable from
the point of view of A and Z . Moreover, in the simulated
execution of π in the ideal world, S needs to extract the inputs
of the corrupted parties in order to forward them to F , and
also make sure that the outputs in the simulated execution
of π and in the ideal functionality F match (note that the
environment Z can see the inputs/outputs of the uncorrupted
parties directly from the dummy parties that simply forward
inputs/outputs between F and Z). As long as the internally
simulated and real executions of π are indistinguishable and
the inputs/outputs of both worlds match, the environment will
not be able to distinguish the real and ideal worlds.

In the case of our (sub-)protocols all the computations
are performed using secret sharings and all the protocol
messages look uniformly random from the point of view of
the receiver, with the single exception of the openings of the
secret sharings. Nevertheless, the messages that open a secret
sharing can be straightforwardly simulated using the outputs
of the respective functionalities. In the ideal world, if π uses
ρ as a sub-protocol and its has been previously shown that ρ
UC-realizes functionality G, then using the UC theorem [14]
it is possible to substitute the instances of ρ used in π by
instances of G. And, in the ideal world, the simulator S has
the leverage of being the one responsible for simulating all
the ideal functionalities other than the one whose security is
being analyzed. Using this leverage, the simulator S will be
easily able to perform a perfect simulation in the case of our
protocols.

As shown in [31], [25], the protocol πDMM for secure matrix
multiplication UC-realizes the distributed matrix multiplica-
tion functionality FDMM in the trusted initializer model. The
correctness follows trivially as Z = XY = (U + D)(V +
E) = UV + UE + DV + DE = W + UE + DV + DE
and therefore JZKq ← JW Kq + EJUKq + DJV Kq + DE
obtains a secret sharing corresponding to Z = XY . The
fact that the resulting shares are uniformly random with the
constraint that Z = XY follows trivially from the fact that
the pre-distributed multiplication triple has this property. The
simulator S runs internally a copy of the adversary A and
perfectly reproduces an execution of the real world protocol
for A: S simulates an execution of πDMM with dummy inputs
for the uncorrupted parties (note that from A’s point of view
the generated messages will be indistinguishable from the
messages in the real protocol execution as the shares of U
and V are uniformly random and unknown to A), and uses
the leverage of being responsible for simulating the trusted
initializer functionality FDTI for A in order to extract the shares
of X and Y whenever a corrupted party announces its shares of
D and E in the simulated protocol execution. Having extracted
the inputs of the corrupted party, S can forward them to the
distributed matrix multiplication functionality FDMM. Given
the knowledge of S about JUKq , JV Kq , JW Kq , D and E, by the
end of the simulated execution, it knows, for each corrupted
party, the value that its share of the output should be, and
therefore S can fix these values in FDMM so that the sum of the

uncorrupted parties’ shares is compatible with the simulated
execution of πDMM. Given these facts, no environment Z can
distinguish the real and ideal worlds.

Functionality FDMM

FDMM is parametrized by the size q of the ring Zq
and the dimensions (i, j) and (j, k) of the matrices.

Input: Upon receiving a message from Alice/Bob
with its shares of JXKq and JY Kq , verify if the share
of X is in Zi×jq and the share of Y is in Zj×kq . If it
is not, abort. Otherwise, record the shares, ignore any
subsequent message from that party and inform the
other party about the receipt.

Output: Upon receipt of the shares from both par-
ties, reconstruct X and Y from the shares, compute
Z = XY and create a secret sharing JZK

q
to distribute

to Alice and Bob: a corrupt party fixes its share of
the output to any chosen matrix and the shares of
the uncorrupted parties are then created by picking
uniformly random values subject to the correctness
constraint.

As proved by Reich et al. [55], the protocol πEQ UC-realizes
the functionality FEQ. The correctness of πEQ follows trivially
from the fact that in the case that x = y, then all ri’s will be
equal to 1 and therefore z =

∏
i ri will also be 1; and if

x 6= y, then for at least one value i, we have that ri = 0,
and therefore z = 0. As showed by Reich et al. [55], in the
ideal world, S can run an internal copy of A and a simulated
execution of πEQ with dummy inputs (from A’s point of view
the messages will be indistinguishable from the ones in the real
protocol execution). Since πDMM is substituted by FDMM using
the UC composition theorem, and S is the one responsible for
simulating FDMM in the ideal world, S can leverage this fact
in order to extract the share that any corrupted party have
of the value xi + yi. Let the extracted value be denoted by
vi,C . S then picks uniformly random xi,C , yi,C ∈ {0, 1} such
that xi,C + yi,C = vi,C mod 2 and submits them to FEQ as
being the corrupted party’s shares of xi and yi (note that FEQ’s
output only depends on the values of xi+yi mod 2). S is also
trivially able to fix in FEQ the output share of the corrupted
party so that it matches the one in the internally simulated
instance of πEQ. This is a perfect simulation strategy and
no environment Z can distinguish the ideal and real worlds.
Therefore πEQ UC-realizes FEQ.

Functionality FEQ

FEQ is parametrized by the bit-length ` of the values
being compared.

Input: Upon receiving a message from Alice/Bob with
her/his shares of JxiK2 and JyiK2 for all i ∈ {1, . . . , `},
record the shares, ignore any subsequent messages
from that party and inform the other party about the

8

receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct x and y from the bitwise shares. If x = y,
then create and distribute to Alice and Bob the secret
sharing J1K

2
; otherwise the secret sharing J0K

2
. Before

the deliver of the output shares, a corrupt party fix
its share of the output to any constant value. In both
cases the shares of the uncorrupted parties are then
created by picking uniformly random values subject
to the correctness constraint.

From the fact that πEQ UC-realizes FEQ, it follows straight-
forwardly that πFE UC-realizes the functionality FFE. The
correctness is trivial to verify and FEQ does not reveal any
information at all about the secret shared values. In the ideal
world, S executes an internal copy of A and simulates an
execution of the protocol πFE for A. Note that in this internal
simulation S can use the leverage of being responsible for
simulating FDTI in order to extract all inputs of the corrupted
party, which can then be forwarded to FFE. S can also fix
in FFE the output shares of the corrupted party to match the
ones in the internally simulation execution. No environment
Z is able to distinguish the real and ideal worlds, and thus
πFE UC-realizes the functionality FFE.

Functionality FFE

FFE is parametrized by the sizes m of Alice’s set
and n of Bob’s set, and the bit-length ` of the elements.

Input: Upon receiving a message from Alice with
her set A = {a1, a2, . . . , am} or from Bob with his
set B = {b1, b2, . . . , bn}, record the set, ignore any
subsequent messages from that party and inform the
other party about the receipt.

Output: Upon receipt of the inputs from both parties,
define the binary feature vector x of length n by
setting each element xi to 1 if bi ∈ A, and to 0
otherwise. Then create and distribute to Alice and
Bob the secret sharings JxiK2 . Before the deliver of
the output shares, a corrupt party fix its share of the
output to any constant value. In both cases the shares
of the uncorrupted parties are then created by picking
uniformly random values subject to the correctness
constraint.

As proved by Reich et al. [55], the protocol π2toQ UC-
realizes the functionality F2toQ. The correctness of π2toQ is
trivial to verify: as x = xa+xB mod 2, then z = xA+xB−
2xAxB is such that z = x for all possible values xA, xB ∈
{0, 1}. In the internal simulation of π2toQ in the ideal world,
S can use the fact that it is the one simulating FDMM in order
to extract the share of any corrupted party and fix the input
to/output from F2toQ appropriately, so that no environment Z
can distinguish the real and ideal worlds. Hence π2toQ UC-

realizes F2toQ.

Functionality F2toQ

F2toQ is parametrized by the size of the field q.

Input: Upon receiving a message from Alice/Bob
with her/his share of JxK

2
, record the share, ignore

any subsequent messages from that party and inform
the other party about the receipt.

Output: Upon receipt of the inputs from both parties,
reconstruct x, then create and distribute to Alice and
Bob the secret sharing JxK

q
. Before the deliver of the

output shares, a corrupt party fix its share of the output
to any constant value. In both cases the shares of
the uncorrupted parties are then created by picking
uniformly random values subject to the correctness
constraint.

The bit extraction protocol πBTX of [1] is a straightforward
simplification of the bit decomposition protocol πdecompOPT

from [27] and UC-realizes the bit extraction functionality
FBTX. Note that the simulator S can straightforwardly extract
the bit-string of a corrupted party in an internal simulation of
πBTX with the adversary A by using the fact that it is responsi-
ble for simulating FDMM that is used to compute the generate
signal. Thus S can forward the necessary inputs FBTX. It can
also easily fix the output share of the corrupted party in FBTX

so that it matches the one in the internal simulation of protocol
πBTX. Therefore S has a perfect simulation strategy and Z
cannot distinguish the ideal and real worlds.

Functionality FBTX

FBTX is parametrized by α. It receives bit-strings
xA = x

(α)
A · · ·x

(1)
A and xB = x

(α)
B · · ·x

(1)
B from Alice

and Bob, respectively, and returns a secret sharing of
the α-th bit of x = xA + xB .

Input: Upon receiving a message from Alice
with her bit-string xA or from Bob with his bit-string
xB , record it, ignore any subsequent messages from
that party and inform the other party about the receipt.

Output: Upon receipt of the inputs from both
parties, compute x = xA + xB , extract the α-th bit
xα of x and distribute a new secret sharing JxαK2

of the bit xα. Before the output deliver, the corrupt
party fix its shares of the output to any desired value.
The shares of the uncorrupted parties are then created
by picking uniformly random values subject to the
correctness constraints.

Proceeding to the analysis of protocol πGEQ, its correctness
follows trivially. In the ideal world, the simulator S executes
an internal copy of A interacting with an instance of protocol
πGEQ in which the uncorrupted parties use dummy inputs.
Note that all the messages that A receives look uniformly

9

random to him. Since πBTX is substituted by FBTX using the
UC composition theorem, and S is responsible for simulating
FBTX in the ideal world, S can leverage this fact in order
to extract the share that any corrupted party have of the
secret shared value diff = x − y. Let the extracted value
of the corrupted party be denoted by diffC . The simulator
then picks uniformly random values xC , yC in Zq such that
diffC = xC−yC and submit these values to FGEQ as being the
shares of the corrupted party for secret shared values x and
y (note that the result of FGEQ only depends on the value of
x− y mod q). S is also trivially able to fix the output share
of the corrupted party in FGEQ so that it matches the one in
the internally simulated instance of πGEQ. This is a perfect
simulation strategy and no environment Z can distinguish the
ideal and real worlds. Therefore πGEQ UC-realizes FGEQ.

Functionality FGEQ

FGEQ runs with Alice and Bob and is parametrized by
the bit length λ of the ring Zq (i.e., q = 2λ). It receives
as input the secret shared values x and y, which are
guaranteed to be such that |x−y| < 2λ−1 (as integers).

Input: Upon receiving a message from Alice
or Bob with its share of JxK

q
and JyK

q
, record

the shares, ignore any subsequent messages from
that party and inform the other party about the receipt.

Output: Upon receipt of the inputs from both
parties, reconstruct the values x and y, and compute
diff = x − y. If diff represents a negative number,
distribute a new secret sharing J0K

2
; otherwise a new

secret sharing J1K2 . Before the output deliver, the
corrupt party fix its shares of the output to any desired
value. The shares of the uncorrupted parties are then
created by picking uniformly random values subject
to the correctness constraints.

When we analyze the security of the final protocol πPPNBC
for privacy-preserving Naive Bayes classification, we can use
the UC theorem [14] to substitute the instances of πFE, π2toQ,
πDMM and πGEQ that are used as sub-protocols in πPPNBC by
instances of FFE, F2toQ, FDMM and FGEQ, respectively. Note
that these ideal functionalities do not leak any information
at all to the protocol participants: the functionalities only
manipulate the secret sharings of the inputs in order to
obtain secret sharings of the desired outputs, but no secret
shared value is ever opened to any party. Thus from the
point of view of any protocol participant, all values that
it sees throughout the execution of πPPNBC look uniformly
random. In the ideal world, S internally runs a copy of A
and simulates an execution of the real world protocol πPPNBC
for A. Using the leverage of being responsible for simulating
FDTI , FFE, F2toQ, FDMM and FGEQ in this internal simulation
of the protocol πPPNBC for the adversary A, the simulator S
is trivially able to extract all inputs of the corrupted party
that it needs to forward to the functionality FPPNBC in this
ideal world. In other words, S can extract (a1, . . . , am) in

the case Alice is corrupted; and it can extract (b1, . . . , bn)
and (log(P (cj)), log(P (b1|cj)), . . . , log(P (bn|cj)), log(1 −
P (b1|cj)), . . . , log(1 − P (bn|cj))) for each class cj in the
case that Bob is corrupted. Knowing all values of the internal
simulation, S can also trivially fix the share of the output that
corresponds to the corrupt party in order to match the one from
the internal execution. Therefore, it follows straightforwardly
that πPPNBC UC-realizes functionality FPPNBC.

Functionality FPPNBC

Input: Upon receiving a message from
Alice with her inputs (a1, . . . , am) or
from Bob with his inputs (b1, . . . , bn) and
(log(P (cj)), log(P (b1|cj)), . . . , log(P (bn|cj)),
log(1 − P (b1|cj)), . . . , log(1 − P (bn|cj))) for each
class cj , record the values, ignore any subsequent
messages from that party and inform the other party
about the receipt.

Output: Upon receipt of the inputs from both
parties, locally perform the same computational steps
as πPPNBC using the secret sharings. Let JcK

2
be

the result. Before the deliver of the output shares, a
corrupt party can fix the shares that it will get, in
which case the other shares are adjusted accordingly
to still sum to JcK2 . The output shares are delivered
to the parties.

V. EXPERIMENTAL RESULTS

To evaluate the proposed protocol in a use case for spam
detection, we use the SMS Spam Collection Data Set from
the UC Irvine Machine Learning Repository.2 This database
contains a set of tagged SMS messages that have been
collected for SMS spam research. It contains a set of 5574
SMS messages in English tagged as legitimate (ham) or spam.
The files contain one message per line, where each line is
composed of two columns: the first contains the label (ham
or spam) and the second contains the raw text (see examples
in Figure 2). The data set has 747 spam SMS messages and
4827 ham SMS messages, that is, 13.4% of the SMSes are
spams and 86.6% are hams.

Table I shows the distribution of tokens/unigrams in the data
set. As we can see, the data set has a total of 81175 tokens.
When training a spam classifier, techniques can be used to
reduce this set of tokens in order to improve the performance
of the protocol in terms of accuracy, runtime or other metrics.

A. Training phase

In the classification phase, Bob already has the ML model.
The model was generated using the following steps:

1) Bob takes the SMS Spam Collection Data Set and parses
each line into unigrams. The letters are converted to
lower case and everything other than letters is deleted.

2https://archive.ics.uci.edu/ml/datasets/sms+spam+collection

10

Fig. 2. Some examples of tagged SMS messages from the SMS Spam Collection Data Set.

TABLE I
TOKEN STATISTICS [5].

Tokens in Hams 63632
Tokens in Spams 17543
Total of Tokens 81175
Average Tokens per Ham 13.18
Average Tokens per Spam 23.48
Average Tokens per Message 14.56

2) To have higher accuracy and improve the runtime of
the algorithm, we used the stemming and stop words
techniques. Stemming is the process of reducing the
inflection of words in their roots, such as mapping a
group of words to the same stem even if the stem
itself is not a valid word in the language. For example,
likes, liked, likely and liking reduce to the stem like;
retrieval, retrieved, retrieves reduce to the stem retrieve;
trouble, troubled and troubles reduce to the stem troubl.
Stop words concerns filtering out words that can be
considered irrelevant to the classification task such as:
the, a, an, in, to, for.

3) The remaining unigrams are inserted in a Bag of Words
(BoW). A BoW is created for the ham category and
another for the spam category. Each BoW contains the
unigrams and their corresponding frequency counters.

4) Based on the frequency counters, we remove the less
frequent words in order to decrease the runtime of
our privacy-preserving solution. We will address this
parameter later when we detail the trade-off between
accuracy and efficiency.

5) Bob computes the logarithm of the class prior probabil-
ity for each class c:

log(P (c)) = log

(
|training examples ∈ c|

|examples in the training set|

)
.

(1)
6) Bob computes the logarithm of the probability of each

word by class. To compute the probability we have to
find the average of each word for a given class. For the
class c and the word i, the average is given by:

log(P (i|c)) = log

(
|word “i” in class c|
|words in class c|

)
. (2)

However, as some words can have 0 occurrences, we
use Laplace Smoothing:

log(P (i|c)) = log

(
|word “i” in class c|+ 1

|words in class c|+ |V |

)
, (3)

where |V | is the size of the vocabulary, i.e., all unique
words in the training data set regardless of the class.

In Equations 1 and 3, before computing the logarithm we
need to scale the result of the division to convert it to integers.
Before inputing this model into our privacy-preserving proto-
col, we need to convert any fixed precision real number into
an integer. In order to do so, we follow section II-B, we pick
up a value of a equal to 34. With the values of log(P (c)) and
log(P (i|c)) computed, the model is generated. Note that only
Bob is involved in training the model.

Table II shows the distribution of tokens/unigrams in the
data set after performing the training phase. Compared to the
Table I, there was a reduction of over 30 thousand tokens.
Besides, we can see that we have less than 6000 unique tokens.

TABLE II
TOKEN STATISTICS AFTER THE TRAINING PHASE.

Tokens in Hams 38469
Tokens in Spams 10981
Total of Tokens 49450
Average Tokens per Ham 7.97
Average Tokens per Spam 14.7
Average Tokens per Message 8.87
Unique Tokens in Hams 5950
Unique Tokens in Spams 1883
Unique Tokens in the Data Set 5950

B. Cryptographic Engineering
Our solution to secure Naive Bayes classification is im-

plemented in Rust using an up-to-date version of the Rust-
Lynx framework (available at https://bitbucket.org/uwtppml/
rustlynx/src/master/), which was used in [27] to achieve a
state-of-the-art implementation of secure logistic regression
training. The supported primitives are, to the best of our
knowledge, the fastest available for two-party computation in
the honest-but-curious setting when performed in a local area
network.

11

a) Parallel Data Transfer: Instead of atomic sending and
receiving queues as might be utilized in a general-purpose
multi-threaded network application, we associate each thread
(for a fixed threadpool size) with a port in a given port range
such that the i-th thread executing in the P0 process will
only exchange data with the i-th thread of the P1 process.
We base this choice on the observation that MPC operations
are symmetric, so there is never an instance where the receiver
does not know the length, intent, or timing of a message from
the sender – situations for which a more complex, and slower,
messaging system would be necessary. An additional benefit of
this structure is that the packets require no header to denote the
sender, thread ID, or length of the body. Based on empirical
testing on Z264 multiplication with an optimized threadpool
size, this method yields a 6× improvement over an architecture
with atomic queues.

b) Operations in Z2λ : RustLynx supports arithmetic over
Z264 . This particular bit length is chosen because (1) it is
sufficiently large to represent realistic data in a fixed-point
form and (2) it aligns with a primitive data type, meaning that
modular arithmetic operations can be performed implicitly by
permitting integer overflow.

c) Operations in Z2: We represent Z2 shares in group-
ings of 128 as the individual bits of Rust’s unsigned 128-bit
integer primitive. Doing so allows for local operations on the
entire group of secrets to share Arithmetic Logic Unit (ALU)
cycles and to be loaded, copied, and iterated quickly. The
downside of this design choice is that sending m Z2 shares
corresponds to 16 · dm/128e bytes of data transfer, which,
in the worst case, is 15 bytes larger than the most compact
possible representation of m bits (that is, using groups of 8).
Based on empirical testing, the performance loss for MPC
primitives is affected significantly more by wasting time on
local operations than wasting a small amount of bandwidth.
So, the largest available primitive data type was chosen to
group Z2 shares.

C. Evaluation

We ran our experiments on Amazon Web Services (AWS)
using two c5.9x-large EC2 instances with 36 vCPUs, 72.0 GiB
of memory and 32 threads. Each of the parties ran on separate
machines (connected over a Gigabit Ethernet LAN), which
means that the results in Table IV cover the communication
time in addition to the computation time. All experiments
were repeated one-hundred times and averaged to minimize
the variance caused by large thread counts.

We evaluate PPNBC using 5-fold cross validation over the
entire corpus of 5574 SMS. For each unigram in Alice’s set
A = {a1, a2, · · · , am} and each unigram in Bob’s set B =
{b1, b2, · · · , bn}, we apply the hash function SHA-256 (and
truncate the result) to transform each one into a bit-string of
size ` = 14.

We evaluated our solution for m = {8, 16, 50, 160} and
n = {369, 484, 688, 5200}. Note that the n value affects
the accuracy and running time. The n values were defined
based on the frequency of tokens appearing in the training
data set: 688 tokens appeared more than 9 times; 484 tokens

appeared more than 14 times; and 369 tokens appeared more
than 19 times. We noticed a significant degradation of the
False Positive Rate (FPR) when further reducing n. The values
of m were defined based on the size of our messages. Note
that m determines the number of tokens in the message and
not the number of characters. Also, we should mention that
some messages in our data set consisted of multiple SMSes
concatenated. Our maximum value of n (160 tokens) is twice
the maximum message found in our data set. We recall that a
single SMS has a 160 7-bit characters maximum. The average
lengths found for SMS classified as ham or spam in our data
set are shown in Table II.

We evaluate the proposed protocol in a use case for SMS
spam detection, however our PPNBC can be used in any other
scenario in which the Naive Bayes classifier can be employed.
It is important to note that designing a model to obtain the
highest possible accuracy is not the focus of this paper. Instead,
our goal is to demonstrate that a privacy-preserving Naive
Bayes classifier based on MPC is feasible in practice. Despite
this, as shown in Table III, the protocol achieves good results
when compared to the best result presented by Almeida et
al. [5], where the data set is proposed. They reach an accuracy
equal to 97.64%, a false positive rate (FPR) equal to 16.9%
and a false negative rate (FNR) equal to 0.18% using a SVM
classifier. In our best scenario (n = 5200), we have an
accuracy equal to 96.8%, FPR equal to 17.94% and FNR equal
to 0.87%. We remark that there is little variation in accuracy
and FNR when using smaller values of n. Classifiers based
on boosted decision trees (AdaBoost) and logistic regression,
previously used in [55], achieved accuracies within 0.5% of
the best accuracy achieved by our protocol.

TABLE III
ACCURACY RESULTS USING 5-FOLD CROSS-VALIDATION OVER THE

CORPUS OF 5574 SMS. FPR IS THE FALSE POSITIVE RATE AND FNR IS
THE FALSE NEGATIVE RATE.

Dictionary size FNR FPR Accuracy
n=369 0.79% 28.52% 95.5%
n=484 0.89% 22.22% 96.2%
n=688 0.87% 21.15% 96.4%

n=5200 0.87% 17.94% 96.8%

Table IV reports the runtime of our PPNBC for different
sizes of m and n, where n is the size of the dictionary,
that is, the amount of unigrams belonging to Bob’s trained
model and m is the number of unigrams present in Alice’s
SMS. The feature vector extraction (Extr) runtime considers
the time required to execute the Protocols πFE and π2toQ
in the steps 1 and 2 of Protocol πPPNBC. The runtime for
classification (Class) considers the remaining steps of the
Protocol πPPNBC. And, the total runtime is Extr + Class. We
can see that the runtime for classification is independent of
the size of m, and is based only on the size n, and even for
n = 5200 features/unigrams it only takes 48ms. The feature
vector extraction (Extr) runtime depends on both m and n. For
n = 5200 and m = 160, the feature extraction takes less than
290ms, while for n = 369 and m = 8 it just takes 11ms. The
total runtime takes a maximum of 334ms to classify a SMS
with 160 unigrams using a dictionary with 5200 unigrams,

12

and just 21ms to classify a SMS with 8 unigrams using a
dictionary with 369 unigrams.

As we can notice from Table IV, the feature extraction is the
part that spends the most time because m×n secure equality
tests of bit strings are required, which are based on secure
multiplications. As discussed by Reich et al. [55], the number
of secure equality tests needed could possibly be reduced if
Alice and Bob first map using the same hash function each
of their bitstrings to t buckets, A1, A2, · · · , At for Alice and
B1, B2, · · · , Bt for Bob. Then, only the bitstrings belonging
to Ai would need to be compared with the bitstrings belonging
to Bi.

To use buckets, each am and bn element is hashed, and
the result is divided into two parts, where the first q bits
indicate which bucket the element belongs to and the other
r bits are stored, thus t = 2q . To hide how many elements are
mapped to each bucket, as this can leak information about the
distribution of the elements, the empty spots of each bucket
must be filled up with dummy elements. Thus, considering s1
the size of each bucket At and s2 the size of each bucket
Bt, the extraction feature protocol will need t × s1 × s2
equality tests, which can be substantially smaller than n×m
needed previously. It is important to note that these dummy
elements do not modify the accuracy (or any other metrics)
of the classification, because when generating Bob’s model,
for each dummy element, the probability of the element to
occur for each class is defined as 0, that is, it does not impact∑d
k=1 log(P (xk|c)). In our case, since the values of m and n

are not large, there is no significant difference between using
buckets or not. Therefore, we use the original version (without
buckets), as in this case there is no probability of information
being leaked due to buckets’ overflow.

We remark that, for the sake of evaluating our solution, we
have selected values of n (the dictionary size) that directly
depend on the frequency of tokens. That is not necessary in
general.
Communication and Round Complexities. We provide an
analysis of the communication and round complexities of our
protocol. Let n be the dictionary length, m the example length,
` the hash output length, and q = 2λ the ring order (remember
that our sub-protocols use the binary field or a larger ring,
depending on the operations). Our protocol πPPNBC makes 1
call to the protocol πFE, n calls to π2toQ (which can be done in
parallel) and one call to protocol πGEQ. Protocol πFE requires
dlog(`)e+1 rounds of communication and 4·m·n·(`−1)+m+
n bits of communication. Protocol π2toQ requires 1 round of
communication and 4λ bits of communication. Protocol πGEQ
requires dlog λ− 1)e rounds and 2(λ− 1)+ 4 log (λ− 1)− 4
bits of communication. So, in total, protocol πPPNBC requires
dlog `e+dlog λ− 1)e+2 rounds and 4·m·n·(`−1)+m+n+
4 ·λ ·n+2(λ−1)+4 log (λ− 1)−4 bits of communication.

VI. RELATED WORK

Privacy-preserving versions of ML classifiers were first
addressed by Lindell and Pinkas [48]. They used MPC to
build a secure ID3 decision tree where the training set
is distributed between two parties. Most of the literature

on privacy-preserving ML focus on the training phase, and
include secure training of ML algorithms such as Naive
Bayes [65], [61], [54], decision tree [48], [11], [28], logis-
tic regression [18], [51], [27], linear regression [26], [51],
[2], neural networks [59], [51], [64] and SVM [62]. Re-
garding privacy-preserving classification/inference/prediction,
most works focused on secure neural network inference,
e.g., [7], [38], [51], [49], [57], [42], [64], [3], [56], [21],
[50], [46], [53]. Far less works focus on privacy in the
classification/prediction phase of other algorithms. De Hoogh
et al. [28] has a protocol for privacy-preserving scoring of
decision trees. Bost et al. [10] proposed privacy-preserving
classification protocols for hyperplane-based classifiers, Naive
Bayes and decision trees where the description of the features
(the dictionary in our implementation) was supposed to be
public. David et al. [23] presented protocols for privacy-
preserving classification with hyperplane-based classifiers and
Naive Bayes, again, the classifier features were supposed to
be publicly known. Our solution guarantees the privacy of the
dictionary. Khedr et al. [44] proposed a secure NB classifier
based on Fully Homomorphic Encryption (FHE). De Cock
et al. [25] presented private scoring protocols for decision
trees and hyperplane-based classifiers. Fritchman et al. [37]
presented a solution for private scoring of tree ensembles.

Regarding privacy-preserving text classification, Costantino
et al. [19] presented a proposal based on homomorphic en-
cryption that takes 19 minutes to classify a tweet, with 19
features and 76 minutes to classify an email with 17 features.
In addition to the high runtime, Bob learns which of his
lexicon’s words are present in Alice’s tweets.

To the best of our knowledge, the work by Reich et al. [55]
was the first work to present solutions for privacy-preserving
feature extraction and classification of unstructured texts based
on secure multiparty computation. We present their results for
dictionary sizes (number of features) equal to 50, 200, and
500, respectively in Table V. The experimental setup of [55]
is exactly the same as ours. Computations were ran on Amazon
Web Services (AWS) using two c5.9x-large EC2 instances
with 36 vCPUs, 72.0 GiB of memory and 32 threads connected
over a Gigabit ethernet local area network. These runtimes
were computed for an average number of words in Alice’s text
equal to 21.7 words. We note that for 500 features, the best
performing protocol proposed in [55] has a total runtime of
10.4s, this runtime is divided in 6.6s for feature extraction and
3.8s for the classification of the feature vector. Our proposed
protocol has a runtime of 0.147s using a larger number of
features (688) and a much larger number of words in Alice’s
text (160).

Since the protocols in [55] were implemented in Java
and ours are implemented in Rust, one could wonder if the
difference in performance is solely due to the change in the
programming language. In order to check the effect of the
programming language’s choice, we have implemented the
feature vector classification protocols proposed in [55] in Rust.
The results are presented in Table VI. We can observe that the
resulting runtimes are faster than the Java ones. However, they
are still 4 times (Logistic Regression) and 6 times (AdaBoost)
slower than our proposed classification protocol.

13

TABLE IV
TOTAL RUNTIME IN MILLISECONDS (TOTAL) NEEDED TO SECURELY CLASSIFY A SMS WITH OUR PROPOSAL. WE DIVIDED IT IN THE TIME NEEDED FOR

FEATURE VECTOR EXTRACTION (EXTR) AND THE TIME FOR CLASSIFICATION (CLASS). n IS THE SIZE OF THE DICTIONARY, THAT IS, THE AMOUNT OF
UNIGRAMS BELONGING TO BOB’S TRAINED MODEL AND m IS THE AMOUNT OF UNIGRAMS PRESENT IN ALICE’S SMS.

SMS size
Dictionary
size

m=8 m=16 m=50 m=160
Extr Class Total Extr Class Total Extr Class Total Extr Class Total

n=369 11 ms 10 ms 21 ms 25 ms 10 ms 35 ms 102 ms 10 ms 112 ms 111 ms 10 ms 121 ms
n=484 12 ms 10 ms 22 ms 26 ms 10 ms 36 ms 103 ms 10 ms 113 ms 124 ms 10 ms 134 ms
n=688 20 ms 11 ms 33 ms 36 ms 11 ms 47 ms 106 ms 11 ms 117 ms 136 ms 11 ms 147 ms
n=5200 77 ms 48 ms 125 ms 89 ms 48 ms 137 ms 140 ms 48 ms 188 ms 286 ms 48 ms 334 ms

TABLE V
RUNTIME FOR THE SECURE TEXT CLASSIFICATION PROTOCOL PROPOSED IN [55] (JAVA FRAMEWORK), BROKEN DOWN IN TIME NEEDED FOR FEATURE

VECTOR EXTRACTION (EXTR) AND TIME FOR FEATURE VECTOR CLASSIFICATION (CLASS).

Java Implementation [55] Runtime (sec)
Extr Class Tot

Ada; 50 trees; depth 1 0.8 6.4 7.2
Ada; 200 trees; depth 1 2.8 6.4 9.2
Ada; 500 trees; depth 1 6.6 6.7 13.3
Logistic regression (50 feat.) 0.8 3.7 4.5
Logistic regression (200 feat.) 2.8 3.7 6.5
Logistic regression (500 feat.) 6.6 3.8 10.4

TABLE VI
RUNTIME FOR THE FEATURE VECTOR CLASSIFICATION OF A TEXT FROM [55] IMPLEMENTED IN RUST.

Rust Implementation Runtime (msec)
Class

Ada; 50 trees; depth 1 62
Ada; 200 trees; depth 1 62
Ada; 500 trees; depth 1 66
Logistic regression (50 feat.) 38
Logistic regression (200 feat.) 39
Logistic regression (500 feat.) 41

As the protocols presented by Reich et al. [55], our solution
does not leak any information about Alice’s words to Bob
neither the words of Bob’s model for Alice, and classifies an
SMS as ham or spam (even for a model with 5200 features)
in less than 0.3s, in the worst case, and less than 0.022s for an
average message of our data set, while using the same type of
machines that they used. Our results include communication
and computation times.

More recently, Badawi et. al proposed a protocol for
privacy-preserving text classification based on fully homomor-
phic encryption [4]. They obtained a highly efficient, GPU-
accelerated implementation that improves the state-of-the-art
of FHE based inference by orders of magnitude. A GPU
equipped machine can compute the private classification of
a text message in about 0.17 seconds in their implementation.
This time does not include the communication time to send
the encrypted text from the client to the server and the time to
receive the result. In a Gigabit Ethernet network, that would
probably add anything between 0.3s to 0.5s to their total
running time because of the ciphertext expansion resulting
from the use of FHE.

VII. CONCLUSION

Privacy-preserving machine learning protocols are powerful
solutions to perform operations on data while maintaining the

privacy of the data. To the best of our knowledge, we propose
the first privacy-preserving Naive Bayes classifier with private
feature extraction. No information is revealed regarding either
Bob’s model (including which words belong to the model) or
the words contained in Alice’s SMS. Our Rust implementation
provides a fast and secure solution for the classification of
unstructured text. Applying our solution to the case of spam
detection, we can classify an SMS as spam or ham in less
than 340 ms in the case where the dictionary size of Bob’s
model includes all words (n = 5200) and Alice’s SMS has
at most m = 160 unigrams. In the case with n = 369 and
m = 8 (the average of a spam SMS in the database), our
solution takes only 21 ms. Besides, the accuracy is practically
the same as performing the Naive Bayes classification in the
clear. It is important to note that our solution can be used
in any application where Naive Bayes can be used. Thus,
we believe that our solution is practical for the privacy-
preserving classification of unstructured text. To the best of
our knowledge, our solution is the fastest SMC based solution
for private text classification.

Finally, we would like to pint out that whenever Alice is
provided with the output of the classification, she will learn
some information about Bob’s model. This is unavoidable but
does not contradict our security definition. Indeed, such feature
is present in the ideal functionality used to define the security

14

of our proposed classification protocol. A way to decrease such
release of information would be to add differential privacy
to the model, so that Alice would never be able to tell with
certainty when a word belongs to Bob dictionary or not. That
would decrease Alice’s information about Bob’s dictionary at
the cost of reducing the accuracy of the model. We leave these
questions as future work.

REFERENCES

[1] Samuel Adams, Chaitali Choudhary, Martine De Cock, Rafael Dowsley,
David Melanson, Anderson Nascimento, Davis Railsback, and Jianwei
Shen. Privacy-Preserving Training of Tree Ensembles over Continuous
Data. IACR ePrint 2021/754, 2021.

[2] Anisha Agarwal, Rafael Dowsley, Nicholas D. McKinney, Dongrui Wu,
Chin-Teng Lin, Martine De Cock, and Anderson C. A. Nascimento.
Protecting privacy of users in brain-computer interface applications.
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
27(8):1546–1555, Aug 2019.

[3] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià
Gascón. QUOTIENT: Two-party secure neural network training and
prediction. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang,
and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on
Computer and Communications Security, pages 1231–1247. ACM Press,
November 11–15, 2019.

[4] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and
Khin Mi Mi Aung. Privft: Private and fast text classification with
homomorphic encryption. IEEE Access, 8:226544–226556, 2020.

[5] Tiago A. Almeida, José Marı́a Gómez Hidalgo, and Akebo Yamakami.
Contributions to the study of SMS spam filtering: new collection and
results. In ACM Symposium on Document Engineering, pages 259–262.
ACM, 2011.

[6] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Uni-
versally composable protocols with relaxed set-up assumptions. In 45th
Annual Symposium on Foundations of Computer Science, pages 186–
195, Rome, Italy, October 17–19, 2004. IEEE Computer Society Press.

[7] Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Ahmad-Reza
Sadeghi, and Thomas Schneider. Privacy-Preserving ECG Classification
With Branching Programs and Neural Networks. IEEE Trans. Informa-
tion Forensics and Security, 6(2):452–468, 2011.

[8] Paulo S. L. M. Barreto, Bernardo David, Rafael Dowsley, Kirill Mo-
rozov, and Anderson C. A. Nascimento. A framework for efficient
adaptively secure composable oblivious transfer in the ROM. Cryptology
ePrint Archive, Report 2017/993, 2017. http://eprint.iacr.org/2017/993.

[9] Donald Beaver. Commodity-Based Cryptography (Extended Abstract).
In STOC, pages 446–455. ACM, 1997.

[10] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser.
Machine Learning Classification over Encrypted Data. In NDSS. The
Internet Society, 2015.

[11] Justin Brickell and Vitaly Shmatikov. Privacy-Preserving Classifier
Learning. In Financial Cryptography, volume 5628 of Lecture Notes
in Computer Science, pages 128–147. Springer, 2009.

[12] Ran Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, January 2000.

[13] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. Cryptology ePrint Archive, Report 2000/067,
2000. http://eprint.iacr.org/2000/067.

[14] Ran Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In FOCS, pages 136–145. IEEE Computer
Society, 2001.

[15] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 19–40, Santa Barbara,
CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[16] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Uni-
versally composable two-party and multi-party secure computation. In
34th Annual ACM Symposium on Theory of Computing, pages 494–503,
Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

[17] Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni. Minutia
Cylinder-Code: A New Representation and Matching Technique for
Fingerprint Recognition. IEEE Trans. Pattern Anal. Mach. Intell.,
32(12):2128–2141, 2010.

[18] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic
regression. In NIPS, pages 289–296. Curran Associates, Inc., 2008.

[19] Gianpiero Costantino, Antonio La Marra, Fabio Martinelli, Andrea
Saracino, and Mina Sheikhalishahi. Privacy-preserving text mining as a
service. In ISCC, pages 890–897. IEEE Computer Society, 2017.

[20] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure
Multiparty Computation and Secret Sharing. Cambridge University
Press, 2015.

[21] Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Secure
evaluation of quantized neural networks. Proceedings on Privacy
Enhancing Technologies, 2020(4):355–375, October 2020.

[22] Bernardo David and Rafael Dowsley. Efficient composable oblivious
transfer from CDH in the global random oracle model. In Stephan
Krenn, Haya Shulman, and Serge Vaudenay, editors, CANS 20: 19th
International Conference on Cryptology and Network Security, volume
12579 of Lecture Notes in Computer Science, pages 462–481, Vienna,
Austria, December 14–16, 2020. Springer, Heidelberg, Germany.

[23] Bernardo David, Rafael Dowsley, Raj Katti, and Anderson CA Nasci-
mento. Efficient unconditionally secure comparison and privacy pre-
serving machine learning classification protocols. In International
Conference on Provable Security, pages 354–367. Springer, 2015.

[24] Bernardo David, Rafael Dowsley, Jeroen van de Graaf, Davidson Mar-
ques, Anderson C. A. Nascimento, and Adriana C. B. Pinto. Un-
conditionally secure, universally composable privacy preserving linear
algebra. IEEE Transactions on Information Forensics and Security,
11(1):59–73, 2016.

[25] Martine De Cock, Rafael Dowsley, Caleb Horst, Raj Katti, Anderson
Nascimento, Wing-Sea Poon, and Stacey Truex. Efficient and private
scoring of decision trees, support vector machines and logistic regression
models based on pre-computation. IEEE Transactions on Dependable
and Secure Computing, 16(2):217–230, 2019.

[26] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, and
Stacey C. Newman. Fast, privacy preserving linear regression over
distributed datasets based on pre-distributed data. In 8th ACM Workshop
on Artificial Intelligence and Security (AISec), pages 3–14, 2015.

[27] Martine De Cock, Rafael Dowsley, Anderson C. A. Nascimento, Davis
Railsback, Jianwei Shen, and Ariel Todoki. High Performance Logistic
Regression for Privacy-Preserving Genome Analysis. To appear at BMC
Medical Genomics. Available at https://arxiv.org/abs/2002.05377, 2021.

[28] Sebastiaan de Hoogh, Berry Schoenmakers, Ping Chen, and Harm
op den Akker. Practical secure decision tree learning in a teletreatment
application. In Nicolas Christin and Reihaneh Safavi-Naini, editors, FC
2014: 18th International Conference on Financial Cryptography and
Data Security, volume 8437 of Lecture Notes in Computer Science,
pages 179–194, Christ Church, Barbados, March 3–7, 2014. Springer,
Heidelberg, Germany.

[29] Jia Deng, Alexander C. Berg, Kai Li, and Fei-Fei Li. What Does
Classifying More Than 10,000 Image Categories Tell Us? In ECCV
(5), volume 6315 of Lecture Notes in Computer Science, pages 71–84.
Springer, 2010.

[30] Nico Döttling, Daniel Kraschewski, and Jörn Müller-Quade. Uncon-
ditional and composable security using a single stateful tamper-proof
hardware token. In Yuval Ishai, editor, TCC 2011: 8th Theory of
Cryptography Conference, volume 6597 of Lecture Notes in Computer
Science, pages 164–181, Providence, RI, USA, March 28–30, 2011.
Springer, Heidelberg, Germany.

[31] Rafael Dowsley. Cryptography Based on Correlated Data: Foundations
and Practice. PhD thesis, Karlsruhe Institute of Technology, Germany,
2016.

[32] Rafael Dowsley, Jörn Müller-Quade, and Anderson C. A. Nascimento.
On the possibility of universally composable commitments based on
noisy channels. In SBSEG 2008, pages 103–114, Gramado, Brazil,
September 1–5, 2008.

[33] Rafael Dowsley, Jörn Müller-Quade, and Tobias Nilges. Weakening the
isolation assumption of tamper-proof hardware tokens. In Anja Lehmann
and Stefan Wolf, editors, ICITS 15: 8th International Conference on
Information Theoretic Security, volume 9063 of Lecture Notes in Com-
puter Science, pages 197–213, Lugano, Switzerland, May 2–5, 2015.
Springer, Heidelberg, Germany.

[34] Rafael Dowsley, Jörn Müller-Quade, Akira Otsuka, Goichiro Hanaoka,
Hideki Imai, and Anderson C. A. Nascimento. Universally composable
and statistically secure verifiable secret sharing scheme based on pre-
distributed data. IEICE Transactions, 94-A(2):725–734, 2011.

[35] Rafael Dowsley, Jeroen Van De Graaf, Davidson Marques, and Ander-
son CA Nascimento. A two-party protocol with trusted initializer for
computing the inner product. In International Workshop on Information
Security Applications, pages 337–350. Springer, 2010.

15

[36] Rafael Dowsley, Jeroen van de Graaf, Jörn Müller-Quade, and Anderson
C. A. Nascimento. On the composability of statistically secure bit
commitments. Journal of Internet Technology, 14(3):509–516, 2013.

[37] Kyle Fritchman, Keerthanaa Saminathan, Rafael Dowsley, Tyler Hughes,
Martine De Cock, Anderson Nascimento, and Ankur Teredesai. Privacy-
preserving scoring of tree ensembles: A novel framework for AI in
healthcare. In Proc. of 2018 IEEE International Conference on Big
Data, pages 2412–2421, 2018.

[38] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter,
Michael Naehrig, and John Wernsing. CryptoNets: Applying Neural
Networks to Encrypted Data with High Throughput and Accuracy. In
ICML, volume 48 of JMLR Workshop and Conference Proceedings,
pages 201–210. JMLR.org, 2016.

[39] Dennis Hofheinz and Jörn Müller-Quade. Universally composable
commitments using random oracles. In Moni Naor, editor, TCC 2004:
1st Theory of Cryptography Conference, volume 2951 of Lecture Notes
in Computer Science, pages 58–76, Cambridge, MA, USA, February 19–
21, 2004. Springer, Heidelberg, Germany.

[40] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Univer-
sally composable zero-knowledge arguments and commitments from
signature cards. In MoraviaCrypt 2005, 2005.

[41] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness
in secure computation. In Theory of Cryptography, pages 600–620.
Springer, 2013.

[42] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A Low Latency Framework for Secure Neural Network
Inference. In USENIX Security Symposium, pages 1651–1669. USENIX
Association, 2018.

[43] Jonathan Katz. Universally composable multi-party computation using
tamper-proof hardware. In Moni Naor, editor, Advances in Cryptology
– EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer
Science, pages 115–128, Barcelona, Spain, May 20–24, 2007. Springer,
Heidelberg, Germany.

[44] Alhassan Khedr, P. Glenn Gulak, and Vinod Vaikuntanathan. SHIELD:
Scalable Homomorphic Implementation of Encrypted Data-Classifiers.
IEEE Trans. Computers, 65(9):2848–2858, 2016.

[45] Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K.
Nayar. Describable Visual Attributes for Face Verification and Image
Search. IEEE Trans. Pattern Anal. Mach. Intell., 33(10):1962–1977,
2011.

[46] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. CrypTFlow: Secure TensorFlow
inference. In 2020 IEEE Symposium on Security and Privacy, pages
336–353, San Francisco, CA, USA, May 18–21, 2020. IEEE Computer
Society Press.

[47] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. Cryptology ePrint Archive, Report 2016/046, 2016. http:
//eprint.iacr.org/2016/046.

[48] Yehuda Lindell and Benny Pinkas. Privacy Preserving Data Mining. In
CRYPTO, volume 1880 of Lecture Notes in Computer Science, pages
36–54. Springer, 2000.

[49] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious Neural Network
Predictions via MiniONN Transformations. In ACM Conference on
Computer and Communications Security, pages 619–631. ACM, 2017.

[50] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. Delphi: A cryptographic inference service
for neural networks. In Srdjan Capkun and Franziska Roesner, editors,
USENIX Security 2020: 29th USENIX Security Symposium, pages 2505–
2522. USENIX Association, August 12–14, 2020.

[51] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In IEEE Symposium on Security
and Privacy, pages 19–38. IEEE Computer Society, 2017.

[52] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture
Notes in Computer Science, pages 554–571, Santa Barbara, CA, USA,
August 17–21, 2008. Springer, Heidelberg, Germany.

[53] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chan-
dran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. CrypTFlow2:
Practical 2-party secure inference. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 20: 27th Conference on
Computer and Communications Security, pages 325–342, Virtual Event,
USA, November 9–13, 2020. ACM Press.

[54] Olivier Regnier-Coudert and John A. W. McCall. Privacy-preserving
approach to bayesian network structure learning from distributed data.
In GECCO (Companion), pages 815–816. ACM, 2011.

[55] Devin Reich, Ariel Todoki, Rafael Dowsley, Martine De Cock, and An-
derson C. A. Nascimento. Privacy-Preserving Classification of Personal
Text Messages with Secure Multi-Party Computation. In NeurIPS, pages
3752–3764, 2019.

[56] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine,
Kristin E. Lauter, and Farinaz Koushanfar. XONN: XNOR-based
oblivious deep neural network inference. In Nadia Heninger and
Patrick Traynor, editors, USENIX Security 2019: 28th USENIX Security
Symposium, pages 1501–1518, Santa Clara, CA, USA, August 14–16,
2019. USENIX Association.

[57] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.
Songhori, Thomas Schneider, and Farinaz Koushanfar. Chameleon: A
Hybrid Secure Computation Framework for Machine Learning Applica-
tions. In AsiaCCS, pages 707–721. ACM, 2018.

[58] Ronald L. Rivest. Unconditionally secure commitment and oblivious
transfer schemes using private channels and a trusted initializer. Preprint
available at http://people.csail.mit.edu/rivest/Rivest- commitment.pdf,
1999.

[59] Reza Shokri and Vitaly Shmatikov. Privacy-Preserving Deep Learning.
In ACM Conference on Computer and Communications Security, pages
1310–1321. ACM, 2015.

[60] Rafael Tonicelli, Anderson C. A. Nascimento, Rafael Dowsley, Jörn
Müller-Quade, Hideki Imai, Goichiro Hanaoka, and Akira Otsuka.
Information-theoretically secure oblivious polynomial evaluation in the
commodity-based model. International Journal of Information Security,
14(1):73–84, 2015.

[61] Jaideep Vaidya, Murat Kantarcioglu, and Chris Clifton. Privacy-
preserving Naı̈ve Bayes classification. VLDB J., 17(4):879–898, 2008.

[62] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving
SVM classification. Knowl. Inf. Syst., 14(2):161–178, 2008.

[63] Mike Voets, Kajsa Møllersen, and Lars Ailo Bongo. Replication
study: Development and validation of deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs. CoRR,
abs/1803.04337, 2018.

[64] Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-
party secure computation for neural network training. Proceedings on
Privacy Enhancing Technologies, 2019(3):26–49, July 2019.

[65] Rebecca N. Wright and Zhiqiang Yang. Privacy-preserving Bayesian
network structure computation on distributed heterogeneous data. In
KDD, pages 713–718. ACM, 2004.

