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ABSTRACT One of the main security requirements for symmetric-key block ciphers is resistance against
differential cryptanalysis. This is commonly assessed by counting the number of active substitution boxes
(S-boxes) using search algorithms or mathematical solvers that incur high computational costs. These
costs increase exponentially with respect to block cipher size and rounds, quickly becoming inhibitive.
Conventional S-box enumeration methods also require niche cryptographic knowledge to perform. In this
paper, we overcome these problems by proposing a data-driven approach using deep neural networks to
predict the number of active S-boxes. Our approach trades off exactness for real-time efficiency as the bulk
of computational work is brought over to pre-processing (training). Active S-box prediction is framed as
a regression task whereby neural networks are trained using features such as input and output differences,
number of rounds, and permutation pattern. We first investigate the feasibility of the proposed approach
by applying it on a reduced (4-branch) generalized Feistel structure (GFS) cipher. Apart from optimizing a
neural network architecture for the task, we also explore the impact of each feature and its representation
on prediction error. We then extend the idea to 64-bit GFS ciphers by first training neural networks using
data from five different ciphers before using them to predict the number of active S-boxes for TWINE,
a lightweight block cipher. The best performingmodel achieved the lowest root mean square error of 1.62 and
R2 of 0.87, depicting the feasibility of the proposed approach.

INDEX TERMS Active S-boxes, block cipher, cryptanalysis, deep learning, differential cryptanalysis,
lightweight cryptography, neural networks, TWINE.

I. INTRODUCTION
Block ciphers are ubiquitous cryptographic primitives that
not only provide data confidentiality but are used as build-
ing blocks for myriad other cryptographic algorithms and
protocols. More recently, lightweight block ciphers have
been gaining popularity as they provide data security to
resource-constrained devices such as RFID tags or smart
Internet-of-Things (IoT) devices [1]. A block cipher pro-
cesses a fixed-length (block) of data using a key-dependent
transformation that usually consists of generic operations
such as substitution and permutation. This key-dependent
transformation will be applied multiple times (multiple
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rounds) before the final ciphertext is produced. Keys for each
encryption round, known as round keys, are derived from
a master key using a key scheduling algorithm. Depending
on their underlying structure, modern block ciphers can be
classified into different categories such as the generalized
Feistel structure (GFS), addition-XOR-rotate (ARX), and
substitution-permutation network (SPN). A block cipher is
considered to be secure enough for practical applications if
it has shown to be resistant against various state-of-the-art
cryptanalysis techniques over a certain period of time.

In 1990, Biham and Shamir introduced differential
cryptanalysis, a statistical tool that observes the propa-
gation of plaintext differences (input differences) through
a block cipher to produce ciphertext differences (output
differences) [2]. Even today, resistance against differential
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cryptanalysis is considered one of the de facto requirements
for block ciphers, and more recently, authenticated ciphers.
It has even been used to analyse the security of image encryp-
tion algorithms [3]. An input difference is defined as

1X = X ′ ⊕ X ′′, (1)

where X ′ and X ′′ are two distinct plaintexts and ⊕ refers
to the exclusive-OR (XOR) operation. An output difference,
1Y can be similarly defined using a pair of corresponding
ciphertexts, Y ′ and Y ′′.We denote an r-round differential path
or differential trail as the propagation of 1X to 1Y after r
rounds of encryption, 1X

r
−→ 1Y . Each differential path

holds with a certain probability, Pr(1X
r
−→ 1Y ) = 2−p

which an adversary wishes to maximize. Generally, a b-bit
block cipher is considered insecure if p < b because the
differential trail can be used as a statistical distinguisher for
key recovery attacks.

Many block cipher designs that are based on substitu-
tion boxes (S-boxes) estimate their security margins against
differential cryptanalysis by counting the number of active
S-boxes [4]–[7]. An S-box is considered differentially active
when it receives a nonzero difference as an input. For each
nonzero input, there are several possible output differences
with varying chances of occurrence. Thus, the difference
propagation through each active S-box incurs a statistical
cost, lowering the overall differential probability by a factor
of psbox which is the probability that a particular difference
propagation can occur. psbox is obtained by deriving a dif-
ferential distribution table for a particular S-box. Resistance
is estimated using the worst-case probability (from the per-
spective of the block cipher designer), which for optimal
4 and 8-bit S-boxes are usually psbox = 2−2 and psbox =
2−6 respectively. The overall differential probability for a
differential trail is then calculated as Pr(1X

r
−→ 1Y ) =

(psbox)AS , where AS is the total number of active S-boxes
after r rounds of the cipher. In other words, each active S-box
incurs a penalty, lowering the overall differential probability.
Thus, the goal of a block cipher designer is to maximize
the number of active S-boxes in their block cipher designs
whereas a cryptanalyst aims to find a differential trail that
minimizes this number. Identification of the best differen-
tial trail or minimum of number of active S-boxes can be
performed using search algorithms that are computationally
intensive [8], [9] or by representing it as Boolean satisfia-
bility (SAT) or mixed-integer linear programming (MILP)
problems that are then solved computationally [10], [11].
These approaches usually require considerable cryptographic
knowledge to execute efficiently.

Recently, concepts from differential cryptanalysis have
been used for an entirely different purpose - to train machine
learning algorithms for cryptanalysis applications. The rela-
tionship between machine learning and cryptanalysis was
examined nearly two decades ago by Rivest [12] but recently
began to gain traction thanks to Gohr who introduced the
first successful application of machine learning (or more

specifically, deep learning) in the context of classical crypt-
analysis [13]. A machine learning-based differential distin-
guisher trained using differential data was used to achieve
the best cryptanalytic attack to date on a round-reduced
Speck32/64. His findings showed that machine learning dis-
tinguishers were superior to conventional differential distin-
guishers, paving the way for future research in the area.

A. CONTRIBUTION
In this paper, we train deep neural network models to predict
the number of active S-boxes for lightweight block ciphers
based on general block cipher features and differential data.
More specifically, the training samples consist of features
such as truncated input and output differences, the number
of rounds, and permutation pattern whereas the number of
active S-boxes is used as labels. We modified the branch-
and-bound search from [8] to generate randomly sampled
data for training and testing.1 Unlike most of the existing
machine learning-based cryptanalysis methods, ours is gen-
eralizable to more than just one block cipher; the resulting
neural network can predict the number of active S-boxes for
block ciphers other than the ones it has been trained for.

We first investigate the feasibility of the approach on
smaller-scale (4-branch) GFS ciphers. This allows us to iden-
tify optimal neural network models for the prediction task
within a practical amount of time. In addition, we explore the
impact of each block cipher feature and its representation on
prediction error. Compared to other neural networks such as
long short-term memory (LSTM) and convolutional neural
networks (CNN), we found that fully connected neural net-
workswere best suited for the prediction task due to the innate
complexity of block ciphers. The best performing models
achieved low root mean square error (RMSE) values ranging
between 1.67 to 1.96 and R2 scores of approximately 0.88.
Our results show that the permutation pattern has the biggest
impact on prediction performance as its removal leads to
the largest increase in prediction errors (88.8%), followed
by input differences (23%) and finally output differences
(15.8%). We also found that splitting these key features into
multiple features (e.g. representing each bit in a truncated
difference as separate features) leads to improved prediction
performance.

Next, we extend the idea towards full-scale (16-branch or
64-bit) lightweight block ciphers. Here, we investigate the
capability of trained neural network models to generalize to
a block cipher that they have not seen during training. The
lightweight GFS block cipher, TWINE developed by NEC
Corporation. Suzaki et al. [6] was used as the target cipher.
The neural network model was trained using data generated
from five GFS ciphers, each with different permutation pat-
terns and limited to eight rounds. In the baseline experiments,
this model was trained and tested using data taken from these
GFS ciphers. Then, we use this data to train deep learning

1Supplementary code for this paper, including the search algorithm,
is available at https://github.com/jesenteh/deeplearning-gfs.
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models to label data samples taken from a round-reduced
TWINE. The best performing model achieved the lowest
RMSE of 1.62 (as compared to the baseline result of 0.71) and
R2 of 0.87 (a 12.6% decrease from the baseline result). From
the perspective of a cryptanalyst, the trained deep learning
model can be expected to correctly predict the number of
active S-boxes that deviates, on average, by ±1.62 from the
actual result. These results showcase the feasibility of the
proposed approach that has amyriad of practical applications,
ranging from a rapid assessment of block cipher security to
filtering differential pairs for cryptanalytic attacks. It is also
a data-driven approach that can be easily adopted without
requiring niche cryptographic expertise.

B. OUTLINE
The rest of this paper is structured as follows. Related work,
background information on neural networks, truncated differ-
entials, and GFS are provided in Section II. The experiments
on both the 4-branch and 16-branch ciphers are described in
Section III followed by experimental results in Section IV.
Section V discusses the important findings and potential
applications of the proposed work before the paper is con-
cluded in Section VI.

II. BACKGROUND
A. RELATED WORK
The use of machine learning in cryptography may not be
new but successful applications in cryptanalysis have only
recently begun to emerge. One popular use case of machine
learning is to distinguish or identify encryption algorithms
based on ciphertext data. These approaches have been used
to analyze data encrypted by popular block ciphers such as
AES, 3DES, Blowfish and Camellia [14]–[17]. Cryptanalysts
have also attempted to use machine learning in a straightfor-
ward manner - performing decryption of ciphertexts without
knowledge of the secret key. This is equivalent to training a
machine learning model to emulate or mimic an encryption
algorithm for a fixed secret key. For this purpose, [18] utilized
unsupervised learningwith neural networks to attack classical
ciphers such as the Vigenere and Shift ciphers.

Mishra et al. investigated whether neural networks can be
used to predict plaintext bits of the block cipher PRESENT
based on data obtained from any particular round [19]. They
used the same approach in [20] against the FeW cipher, both
with limited success. Xiao et al. described a black-box secu-
rity evaluation approach to measure the strength of propri-
etary ciphers without knowledge of the encryption algorithms
themselves [21]. They quantified the strength of a cipher by
measuring how difficult it was for a neural network to mimic
the cipher algorithm. Their results showed that the security
of Hitag2 (a cipher used for keyless entries in modern cars)
was weaker than 3 rounds of the Data Encryption Standard
(DES). Cipher mimicking has also been explored in [22].
The researchers optimized a deep neural network to decrypt
64-bit DES ciphertexts without knowledge of the secret key,
achieving an accuracy of up to 90%.

Perov demonstrated that using machine-learning tech-
niques, it was possible to distinguish the ciphertexts of
round-reduced ciphers from random sequences [23]. This was
achieved with a smaller sample size (212 bits) as compared to
conventional statistical methods. A machine learning model
was used in [24] to predict the outputs of a quantum random
number generator. Their model could perform predictions
better than random guessing even when a given random
sequence passed the NIST statistical test. Machine learning
was also used to identify locations that are sensitive to fault
attacks in block and stream ciphers [25].

Although there have been attempts in the past to iden-
tify differential characteristics using neural networks [26],
Gohr introduced what was considered the first successful
application of machine learning from the perspective of
conventional cryptanalysis back in 2019 [13]. A machine
learning-based differential distinguisher was developed and
used to attack Speck32/64 reduced to 11 rounds. The
machine learning distinguishers were found to be superior
to conventional differential distinguishers. Baksi et al. [27]
expanded upon this concept by developing deep learning dis-
tinguishers based on all-in-one differentials for non-Markov
ciphers. As proofs-of-work, they performed distinguishing
attacks using 8-round distinguishers on Gimli-Hash and
Gimli-Cipher, each with trivial complexity. Machine learning
has also been applied to perform linear cryptanalysis on
DES based on plaintext-ciphertext pairs and linear expres-
sions [28]. Lee et al. [29] recently proposedmachine learning
classifiers that can classify differential trails as secure or
insecure based on differential data. Proof-of-concept exper-
iments were performed on small-scale GFS ciphers. Their
findings showed that the trained models were able to gen-
eralize to ciphers that the models have not seen before.
Last but not least, [30] attempted key recovery attacks on
block ciphers, Simon and Speck, using deep learning. They
were successful in recovering encryption keys for full-round
Simon32/64 and Speck32/64 only when the keyspace was
restricted to text-based keys.

B. NEURAL NETWORKS
A neural network is a machine learning algorithm that can
train a computer to perform a task from training examples.
Modeled loosely on how the human brain works, a neu-
ral network composes of connected processing units called
neurons. The neurons are organized into multiple layers of
interconnected nodes, including an input layer, output layer,
and one or more hidden layers. The more hidden layers
they are, the ‘‘deeper’’ the neural network. Each neuron is
assigned a weight, which is multiplied by the data from every
incoming connection. The resulting products for a neuron are
then added together. If the sum of products reaches above a
threshold, the neuron ‘‘fires’’ and sends along the number to
all its outgoing connections [31].

Training a neural network involves optimizing these
weights to minimize the difference between the actual
(expected) value and a predicted value, otherwise known
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as the loss function. Given a set of initial weights, training
data enters the input layer and is transformed as it passes
successively through each layer of the neural network until
it reaches the output layer that determines the result of the
prediction. The weights are continuously adjusted during
training until the loss function reaches near-zero error.

Loss functions that were used in the proposed work
include:
• Root mean square error (RMSE) is the square root
of the average of squared differences between an actual
value and its predicted value (prediction error) for all
instances in a dataset.

• Mean absolute error (MAE) calculates the average of
the absolute values of prediction errors for all instances
in a dataset.

• The quantile loss function is applied to predict intervals
or range of predictions rather than just single point pre-
dictions. The value belowwhich a fraction of predictions
in a group falls is known as a quantile.

We have selected to experiment with the fully connected
deep neural network architecture in our regression task. After
experimentingwith various neural network architectures such
as LSTM and CNN, we found that a fully connected neural
network performed consistently for the active S-box predic-
tion problem. In addition to shorter training times (under an
hour for the fully connected neural network as compared to
several hours or more for CNN and LSTM when training
with 100 epochs for 4-branch GFS), fully connected neural
networks were also found to be more accurate for the given
problem. Preliminary testing showed that the fully connected
neural networks could achieve RMSE values of under 2.0,
while CNN and LSTM both achieved RMSE values upward
of 2.0. In addition, a fully connected neural network does not
make any assumption to the input, thus making it flexible
to be applied in our problem [32]. A fully connected neural
network consists of a series of fully connected layers, where
each neuron is connected to all neurons in the following layer.
Figure 1 illustrates the fully connected neural network that
was used in our experiments on the 4-branch GFS ciphers,
where the edges represent the weights of each input. A fully
connected neural network with many layers is also referred
to as a deep network.

C. TRUNCATED DIFFERENTIAL CRYPTANALYSIS
Differential cryptanalysis relies on identifying an r-round
differential trail, 1X

r
−→ 1Y with a high probability of

occurring. An S-box is considered active when it receives a
non-zero input difference, which will be mapped to several
possible non-zero differences depending on the actual value
of the round key, rkr . An example of an active S-box is shown
in Figure 2, whereby the left S-box is active while the right
S-box is inactive. Truncated differential cryptanalysis is a
generalization of differential cryptanalysis whereby differ-
ences that are only partially determined can be used in attacks.
In our paper, we adopt the same definition as [33], whereby
a full input difference or concrete differential state, 1X can

FIGURE 1. Fully connected neural network.

FIGURE 2. 4-branch GFS (1 round).

be mapped to a truncated differential state 1X̂ by dividing
the input difference into t-bit blocks that have the same size
as the S-box. For example, a 64-bit input difference can be
truncated to a 16-bit truncated difference if 4-bit (t = 4)
S-boxes are used. As long as any of the t bits are nonzero
in the concrete differential state, its corresponding truncated
bit is set to 1. Otherwise, if a t-bit block in the concrete
differential state is zero, its corresponding truncated bit is
set to 0. An example of the truncation process is depicted
in Figure 2.
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D. GENERALIZED FEISTEL STRUCTURE AND TWINE
One of the common structures for a block cipher is GFS,
a generalization of the Feistel structuremade popular byDES.
A GFS divides an input into b sub-blocks (or words), where
b ≥ 2. The size of these sub-blocks is usually dependent
on the S-box size. The Type-II GFS [34], [35] is one of
the more popular GFS variants used in many block cipher
designs where one sub-block from each pair of sub-blocks
will undergo a key-dependent transformation (referred to as
a round function) before being XOR-ed with the other half.
This is followed by a permutation layer. Figure 2 illustrates
one round of a 4-branch Type-II GFS cipher that will be used
in the proof-of-concept experiments in our proposed work.
In the diagram, an example of an input to output difference
propagation is provided, along with their truncated represen-
tation. The left S-box is considered active because it receives
a nonzero difference as an input. The round function, F is
defined as

F(xi) = s(xi ⊕ rki), (2)

where s is the S-box function and rki is the round key.
In essence, this 4-branch structure can represent either a
16 or 32-bit block cipher depending on the S-box size. There
are a total of 4! = 24 possible permutation patterns for
a 4-branch permutation. The permutation pattern depicted
in Figure 2 is P = {1, 2, 3, 0}. The structure of the block
cipher TWINE [6] is basically an extension of this 4-branch
GFS to 16 branches, with a permutation pattern of P =
{5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14}. TWINE is
a lightweight 64-bit block cipher that supports 80 and 128-bit
keys designed for hardware efficiency. It processes the 64-bit
plaintext as 16 4-bit sub-blocks. The size of the sub-blocks
corresponds to the cipher’s S-box size. TWINE will be used
as the target cipher for our generalization experiments.

III. METHODOLOGY
A. PROBLEM FRAMING
The overall goal of the proposed work is to train neural net-
workmodels to predict the number of active S-boxes of a GFS
block cipher based on features such as truncated differences,
the number of rounds, and permutation patterns. Using super-
vised learning, we framed the problem as a regression task
because the goal is to predict the number of active S-boxes
consisting of non-negative integers. By training the models
with sufficient data samples, they will eventually learn the
relationship between the cipher features and the number of
active S-boxes, and be able to predict them with reasonable
accuracy. Experiments were performed for both the 4-branch
and 16-branch GFS ciphers.

The minimum number of active S-boxes is 0 when the
plaintext consists entirely of zeroes whereas the maximum
number of active S-boxes, ASmax will vary depending on
the number of rounds, r , block size, b, S-box size, t , and
underlying structure of a block cipher. A generic GFS block
cipher such as TWINE would have a theoretical maximum of
ASmax = b×r

2t active S-boxes whereas a classical SPN block

cipher such as PRESENT [4] would have ASmax = b×r
t . The

goal of a cryptanalyst is to identify a differential trail that
minimizes the number of active S-boxes so it can be used in
attacks against the cipher.

RMSE and R-squared (R2) are two performance metrics
selected to evaluate the performance of the neural networks
on the test set. RMSE measures the magnitude of prediction
errors made by a machine learning model. Ideally, a trained
model should have an RMSE value of as close to zero as
possible. RMSE indicates the average deviation of the pre-
dicted number of active S-boxes from the actual one. R2 is
the quantitative measure of the goodness of fit of a regression
model. In other words, it represents how closely prediction
values conform to the best-fitted regression line. The R2

metric ranges between 0 and 1, where 1 is the ideal value.
Both metrics will be used to determine how accurate the
trainedmodels are in predicting the number of active S-boxes.

B. NEURAL NETWORK ARCHITECTURE
In all of the following experiments, we utilized fully con-
nected neural networks. We first performed hyperparameter
tuning2 to identify the optimal number of layers (2-16), num-
ber of neurons per layer (16-1024), loss function, optimizer,
number of epochs (100-1000), and batch size (8-1024) for
the regression task. Based on our experiments, we selected
a neural network with four hidden layers. The number of
neurons per layer differs depending on the target block cipher.
For 4-branch GFS ciphers, there are 13 neurons in the input
layer (equivalent to the number of input features), four hidden
layers with 64 neurons each, and an output layer with 1 neu-
ron to represent the predicted number of active S-boxes as
depicted in Figure 1. As for 16-branch GFS ciphers, there are
49 neurons for the input layer, 512 neurons for the hidden
layers, and 1 neuron for the output layer. The remaining
hyperparameters used in our experiments are summarized
below:
• 4-branch GFS Experiments

– Optimizer: Adam with 0.001 learning rate
– Activation Function for Hidden Layers: Exponen-

tial linear unit (ELU)
– Activation Function for Output Layer: Linear Acti-

vation Function
– Epochs: 100 epochs
– Batch Size: 32

• 16-branch GFS Experiments
– Optimizer: Adam with 0.001 learning rate
– Activation Function for Hidden Layers: ELU
– Activation Function for Output Layer: Linear Acti-

vation Function
– Epochs: 200 epochs
– Batch Size: 32

In the experiments on full-scale GFS ciphers, we have
selected regularization as a means to avoid overfitting.

2Values in brackets indicate the range being tested during hyperparameter
tuning
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Regularization involves adding an additional penalty term to
the loss function. This additional term controls or regulates
the function by placing constraints on the amount and type
of information being stored by the model, forcing it to focus
more on prominent patterns. This leads to higher chances of
the model generalizing well to unseen data.

C. DATA PREPARATION
By using the smaller scale 4-branch GFS ciphers for proof-
of-concept experiments, we could generate a large dataset
within a practical amount of time. In addition, data for all
24 possible permutation patterns (each of which can be
viewed as an individual 4-branch GFS cipher) could be gen-
erated. We generated a dataset of 500000 samples (denoted
as DATA4b) using a modified branch-and-bound differential
search algorithm [8]. The original differential search algo-
rithm was a depth-first search algorithm that explores all pos-
sible differential trails going through a cipher, bounding those
that will not lead to improved results in terms of differential
probability.Modification of the original search algorithmwas
required because our goal was not to identify a differential
trail with optimal probability nor the minimum number of
active S-boxes but rather to enumerate every possible branch
to ensure that the dataset consisted of randomly sampled
differential data from round 1 to 12 of the 24 GFS ciphers.
This was performed by removing all bounding criteria and
differential probability calculations, focusing only on count-
ing the number of active S-boxes for each differential trail
and all its possible branches. The format of the data samples
is depicted in Table 1.

TABLE 1. Examples of data samples for the 4-branch GFS.

As it was not practical to enumerate every possible per-
mutation pattern or block cipher variant for a 16-branch
GFS, we selected only six for our experiments. The first was
TWINE itself, our target cipher, whereas the other five were
based on permutation patterns with the best cryptographic
properties based on findings in [35]. Notably, they all achieve
full diffusion in eight rounds and have a minimum number
of active S-boxes of at least 40 after 20 rounds. All six
permutation patterns are listed in Table 2.

The dataset was generated using the samemodified branch-
and-bound search. 100000 data samples were generated for
each cipher, consisting of 12500 randomly selected samples
from round 1 to 8. Apart from being able to generate data sam-
ples within a practical amount of time, the 8-round limit was
selected because it is theminimumnumber of rounds required
to achieve full diffusion of plaintext bits [35]. We limited
the number of output differences per input difference to four,

TABLE 2. 16-branch permutation patterns.

to ensure that there was a larger variety of input differences
in the dataset. The format of the data samples is similar
to the one depicted in Table 1. The 500000-sample dataset
that consists of the five GFS ciphers (excluding TWINE)
is denoted as DATA16b whereas the 100000-sample dataset
generated from only TWINE is denoted as DATATW . Our
overall methodology shown in Figure 3 is further detailed in
the upcoming subsections.

D. ACTIVE S-BOX PREDICTION FOR 4-BRANCH GFS
Our experiments on the 4-branch GFS were divided into two
main phases: In Phase 1-1, we identified the best performing
neural network architecture to become our baseline model
whereas in Phase 1-2, we examined the effect of excluding
certain features on prediction error. Prediction error was mea-
sured using RMSE and R2. The DATA4b dataset was used
in both phases. All experiments were implemented using
Tensorflow 2.3.1 on an Intel Core i5 Processor, 8GB RAM
using Python and Jupyter Notebook.

1) PHASE 1-1—BASELINE EXPERIMENT
The first experiment involved training a baseline model using
all the available block cipher features, where a train-test split
with a ratio of 80:20 was applied to the DATA4b dataset
(400000 training samples, 100000 test samples). In terms of
feature representation, we first performed our experiments
with each feature being represented as individual variables
as illustrated in Table 1. However, we later found that the
trained models performed better when the truncated differ-
ence and permutation features were split into four separate
variables each (four features) as shown in Table 3. In this
paper, we only report results from experiments that used
this alternative representation. We trained three separate deep
learning models, each using a different loss function (MAE,
RMSE, and quantile), to determine which one led to more
accurate predictions.

TABLE 3. Examples of data samples for the 4-branch GFS with alternate
representation.

2) PHASE 1-2—FEATURE REFINEMENT
In this phase, we explored the effect of specific block cipher
features on prediction error. This was performed by excluding
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FIGURE 3. Methodology for GFS Experiments.

only one of the features (truncated output difference, trun-
cated input difference, or permutation) then using the remain-
ing ones for training.We note that r was not removed a feature
because the number of active S-boxes in a block cipher is
directly dependent on it. The experiment was performed three
times (once for each feature). The magnitude of performance
degradation would correspond to the impact that a particular
block cipher feature has on the prediction task. The best
performing model from Phase 1-1 was used for training and
comparison purposes.

E. ACTIVE S-BOX PREDICTION FOR 16-BRANCH GFS
Our experiments on 16-branch GFS ciphers were also divided
into two main phases: In Phase 2-1, we identified the best
performing neural network architecture to become our base-
line model whereas in Phase 2-2, we determined if deep
learning models trained using data from five GFS ciphers
can generalize to data from an unseen GFS cipher, TWINE.
This showcases the improved flexibility of the proposed
method as compared to existing machine learning-based
cryptanalysis methods that are cipher-specific [13], [27].
Prediction error was again measured using RMSE and R2.
The same computing setup as the 4-branch GFS exper-
iments (Tensorflow 2.3.1, Intel Core i5 Processor, 8GB
RAM, Python, Jupyter Notebook) was used in Phase 2
as well.

1) PHASE 2-1—BASELINE EXPERIMENT
In this phase, the models were trained and tested using the
DATA16b dataset. A train-test split with a ratio of 80:20 was
used (400000 training samples, 100000 test samples).
In terms of feature representation, we split the truncated input
and output differences, and permutation pattern into 16 sep-
arate features. In total, 49 features were used for training
(corresponding to the 49 neurons in the input layer of the
deep neural network). We also investigated the use of three
different loss functions (MAE, RMSE, quantile) to determine
their impact on prediction error.

2) PHASE 2-2—GENERALIZATION EXPERIMENT
Next, we determined if the proposed deep learning models
were capable of labeling unseen data or in other words,
generalize to a block cipher they have never encountered
before. The models were trained using 500000 data samples
from DATA16b and tested using the 100000 samples from
DATATW . By using separate datasets for training and testing,
the deep learning models would have never encountered data
samples from TWINE during the training stage. This experi-
ment represents one of the practical use cases of the proposed
approach, whereby a deep learning model can be pre-trained
using available data, and then used to perform active S-box
predictions for other block ciphers in the future. The same
fully connected neural network architecture and hyperparam-
eters as the baseline model was used for these experiments.
However, rather than just one loss function, we still examined
the use of all three (MAE, RMSE, and quantile). In addition,
we used the L2 regularizer (regularizers.l2(0.001) in Tensor-
Flow) to overcome overfitting problems for better prediction
performance.

IV. EXPERIMENTAL RESULTS
A. 4-BRANCH GFS RESULTS
The experimental results for Phase 1-1 are shown in Table 4
which compares the baseline performance of the deep learn-
ing models based on three loss functions, MAE, RMSE, and
quantile. Overall, all models could predict the number of
active S-boxes with an RMSE of 1.96 and under. This implies
that on average, predictions vary from the real value by
approximately two active S-boxes. The R2 values of 0.88 to
0.89 imply that there is a strong relationship between the
actual and predicted values for all three cases. The quanti-
tative metrics suggest that the use of any of the three loss
functions will lead to similar performance.

From the perspective of differential cryptanalysis, an aver-
age error of two 4-bit active S-boxes translates to a probability
penalty of 2−2×AS = 2−4. This penalty is more significant
for a smaller number of rounds because the number of active
S-boxes is generally lower. Thus, the deep learning models
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can also be compared in terms of how well they perform for a
smaller number of block cipher rounds which generally have
fewer active S-boxes. Figure 4 illustrates that the quantile loss
function has slightly better curve fitting as compared to the
other loss functions, especially when the number of active
S-boxes is smaller. Therefore, the neural network model with
the quantile loss function was chosen as the baseline model
for Phase 1-2.

TABLE 4. Predicted number of active S-boxes based on loss functions
(4-branch GFS).

FIGURE 4. Comparison of loss functions for baseline experiments
(4-branch GFS).

The experimental results for Phase 1-2 are shown
in Table 5. Generally, exclusion of either the truncated input
or output difference had a minor negative effect on prediction
error. Experimental evidence from Table 5 suggests that the
input difference,1X̂ plays a slightly bigger role in prediction

performance than the output difference, 1Ŷ . Removal of 1X̂
led to a 23% increase in prediction errors (as compared to
the baseline results) whereas removal of 1Ŷ led to a 15.8%
increase. In both cases, R2 values only reduced by an average
of 6.3% as compared to the baseline, implying that there was
still a strong relationship between actual and predicted values.
In contrast, excluding the permutation pattern had a detrimen-
tal impact on themodel’s performance as it led to a significant
increase of 88.8% in prediction errors (RMSE), with the
R2 score dropping by 31.8%. By excluding the permutation
pattern from the training process, a neural network must learn
how to differentiate between 24 different block ciphers based
entirely on the input and output truncated differences. This
is a complex task due to the strong diffusive property of
block ciphers. Our experimental results confirmed this notion
by showing that the deep learning model relied heavily on
permutation patterns to make accurate predictions. Based on
our findings, all three features were included in the 16-branch
GFS experiments to ensure optimal prediction performance.

TABLE 5. Predicted number of active S-boxes when removing specific
features.

B. 16-BRANCH GFS RESULTS
The baseline performance of the deep learning models when
performing predictions for 16-branch GFS ciphers are sum-
marized in Table 6. Generally, the models had low pre-
diction errors for all three loss functions, achieving RMSE
values of 0.96 and under. From a cryptanalyst’s perspective,
the results imply that the proposed models can perform active
S-box prediction with low error (±1 active S-box on average)
for block ciphers that the model has seen. The R2 values
are also near-ideal (ranging between 0.992 to 0.994), depict-
ing a strong relationship between the predicted and actual
values. We note that there is a significant improvement in
prediction performance for the 16-branch GFS ciphers as
compared to 4-branch ciphers, which could be attributed to
the larger number of training features (49 as compared to 13).
Figure 5 illustrates good graph fitting for all three instances.
Generally, predictions weremore accurate for a lower number
of active S-boxes (/ 10) and a larger number of active
S-boxes (' 40). As prediction errors are more significant
for a smaller number of rounds that have a lower number of
active S-boxes, we conclude that both the MAE and RMSE
loss functions respectively led to slightly better prediction
performance as compared to the quantile loss function based
on the quantitative results in Table 6 and the curve fitting
observed in Figure 5. However, as there are only minor differ-
ences in performance, we still used all three loss functions in
Phase 2-1.
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TABLE 6. Predicted number of active S-boxes based on loss functions
(16-branch GFS).

FIGURE 5. Comparison of loss functions for baseline experiment
(16-branch GFS).

Experimental results in Table 7 show that the deep learn-
ing models are capable of predicting the number of active
S-boxes for the unseen cipher, TWINE based on data from
five other GFS ciphers. In other words, themodel can general-
ize well to a cipher it has never seen before based on data from
the ones that it already has. The neural network model with
RMSE as its loss function had the lowest prediction errors
(RMSE=1.62) and the highest R2 score (0.87). The use of
the quantile loss function led to the worst performance of the
three.

Overall, prediction performance faltered as compared to
the baseline experiments. This was an expected outcome
because predictions for TWINE were made based on what
the deep learning models learned from other GFS ciphers.

Prediction errors when using the MAE, RMSE, and quantile
loss functions doubled respectively as compared to their base-
line counterparts. From the cryptographic perspective, this
is equivalent to an increase from ±1 to ±2 active S-boxes.
Considering that a full-sized block cipher such as TWINE
can have a large number of active S-boxes (50 or more even
at 8 rounds), a deviation of two active S-boxes is small
in comparison. Therefore, a cryptanalyst must account for
a possible deviation of two active S-boxes when using the
proposed approach in a practical attack scenario.

TABLE 7. Predicted number of active S-boxes based on loss functions
(TWINE).

FIGURE 6. Comparison of loss functions for generalization experiment
(TWINE).

V. DISCUSSION AND FUTURE WORK
Our preliminary experiments on the 4-branch GFS showed
that neural networks can be trained to predict the number
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of active S-boxes of a block cipher based on block cipher
features that are common to more than just one block cipher.
We also discovered that among these features, the permu-
tation pattern plays the biggest role in reducing prediction
error. However, we still recommend the inclusion of all other
supporting features, such as truncated input and output differ-
ences, as they all contribute towards minimizing prediction
error. Next, we showcased the feasibility of the proposed
approach when being applied to actual lightweight GFS block
ciphers such as TWINE. Apart from achieving even smaller
prediction errors as compared to the preliminary experiments,
the trained model was able to generalize well to block ciphers
that it has yet seen. Based on our findings, we recommend the
use of the following neural network architecture for future
S-box prediction efforts, notably for 64-bit GFS ciphers:
• Input layer: 49 neurons (equivalent to the number of
training features)

• Output layer: 1 neuron
• Hidden layer: 4 hidden layers, each with 512 neurons
• Loss function: RMSE
• Regularizer: regularizers.l2(0.001) (L2 regularization)
• Optimizer: Adam with 0.001 learning rate
• Activation Function: ELU
• Epochs: 200
• Batch size: 32
The capability of the deep learning models to generalize

to the same block cipher structure they have been trained
on is one of the main strengths of the proposed method.
It is more flexible than prior cipher-specific approaches such
as SAT or MILP because there is also no need to retrain
the model if other block ciphers with a similar structure
need to be analyzed. Even if retraining is required, it only
takes approximately 40 and 70 minutes to train the model
with 400000 training samples for the 4-branch and 16-branch
ciphers respectively. In addition, the predictions are nearly
instantaneous. Thus, the active phase of a cryptanalytic attack
can be made more efficient as the bulk of the computational
work has been moved to pre-processing (the training phase).
This can be seen as a type of cryptanalytic time/memory/data
trade-off [36], [37]. The proposed approach is also a trade-off
between efficiency and exactness (predictions rather than
actual values).

To illustrate this trade-off in practice, we compared the per-
formance of a branch-and-bound search [8] and the proposed
deep learning model when labeling the number of active
S-boxes for 10000 randomly selected truncated difference
pairs for TWINE. The amount of time required to label
these pairs with respect to the number of rounds is depicted
in Figure 7. The time required by the branch-and-bound
search increased from approximately 2 milliseconds for
1 round to 9.7 hours for 8 rounds whereas the deep learning
model had a constant time of around 1.2 seconds. To cal-
culate the number of active S-boxes for a given truncated
plaintext-ciphertext pair, the branch-and-bound search algo-
rithm needs to traverse every possible branch until a match is
discovered. The number of branches increases exponentially

with the number of rounds, leading to an exponential decline
in efficiency. This exponential increase in computational
complexity also occurs in other differential search methods
such as MILP [11]. In contrast, the prediction speed for the
deep learning model is independent of the number of rounds.
However, as compared to the branch-and-bound search which
is an exact method, the deep learning model is bound to have
prediction errors. For example, when performing predictions
for up to 8 rounds of TWINE, the best-performing model
achieved an R2 score of 0.87. This can be estimated as a 13%
degradation in terms of error in exchange for an efficiency
gain of approximately 31000%.

FIGURE 7. Time required to label 10000 randomly selected truncated
differential pairs.

Performing cryptanalysis usually requires niche expertise
which includes a strong understanding of the underlying
structure of a block cipher and the intricacies of the crypt-
analytic method itself. The proposed method alleviates some
of the technical expertise required to analyze block ciphers,
making it a more data-driven approach. To evaluate a block
cipher (with the same underlying structure) using the trained
model, one would just need to use the block cipher itself
to generate plaintext-ciphertext pairs for testing. There is
no need to represent the block cipher as constraints to be
solved by a SAT solver or to modify a branch-and-bound
algorithm to suit the cipher’s structure. The trained model can
potentially be utilized in a multitude of ways such as filtering
differential pairs for attacks, block cipher security evalua-
tion for fast design prototyping, and security benchmarking.
These potential applications will be explored further in future
work.

However, the proposed method is not without its draw-
backs. Firstly, as a data-driven approach, it relies on hav-
ing a sufficiently large dataset which may take a long
time to generate. For example, generating data samples for
8 rounds of a 16-branch GFS took two days to complete.
The increase in search time is exponential with respect to
the number of rounds and block size. This can be allevi-
ated by identifying suitable bounding criteria for the branch-
and-bound algorithm that can ensure that examples are still
randomly sampled without having to exhaustively explore
each branch. Another drawback is that prediction perfor-
mance falters when labeling data generated frommore rounds
than the model has been trained for. This is due to the fact that
there are many instances where the number of active S-boxes
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is out of the range used in training. One way to overcome this
issue is by labeling the dataset with a new metric that scales
the number of active S-boxes with respect to the number of
block cipher rounds. Last but not least, the current work has
only delved into GFS ciphers. More research is still required
to identify suitable block cipher features that can be used for
SPN or ARX ciphers, which may need to take into account
varying S-box sizes.

VI. CONCLUSION
In this paper, we proposed a deep learning approach to block
cipher security analysis. Specifically, we train fully con-
nected, deep neural network models to predict the number of
active S-boxes, trading off exactness for efficiency. The active
S-box prediction is framed as a regression task, whereby the
fully connected, deep neural networks are trained using com-
mon block cipher features such as the number of rounds and
permutation pattern, and differential cryptanalysis-related
features such as truncated input and output differences.
We investigate the feasibility of the proposed approach and
the effect of block cipher features and their corresponding
data representations on prediction error by applying it to
smaller-scale (4-branch) GFS ciphers. The best performing
models achieved low RMSE scores of under 1.96, which
translates to prediction errors of approximately ±2 S-boxes.
High R2 values ranging between 0.88-0.89 also indicate that
there is a strong relationship between predicted and actual
values. In terms of the features, the permutation pattern has
the biggest impact on prediction performance as its removal
leads to the largest increase in prediction errors (88.8%) as
compared to the truncated input (23%) and output differ-
ences (15.8%). We also found that splitting these features
into multiple smaller features reduces error. When applied
to full-scale (16-branch) lightweight GFS block ciphers,
the neural network models achieved low RMSE scores of
under 0.96, and R2 values ranging between 0.992-0.994. The
deep learning models were also able to generalize to a cipher
that they have not seen before, specifically the lightweight
block cipher TWINE. The best performing model was able
to predict the number of active S-boxes for TWINE with an
RMSE of 1.62 and R2 of 0.87. Overall, our findings showcase
the feasibility of the proposed approach which can be used for
rapid security assessment (which in turn contributes towards
faster block cipher prototyping), security benchmarking, and
also to aid cryptanalytic efforts.
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