
UC Non-Interactive, Proactive, Distributed ECDSA
with Identifiable Aborts∗

Ran Canetti†‡ Rosario Gennaro§ Steven Goldfeder¶

Nikolaos Makriyannis‖ Udi Peled∗∗

October 21, 2024

Abstract

We present a distributed ECDSA protocol, for any number of signatories. The protocol improves on that
of the authors (CCS’20), which in turn builds on the Gennaro & Goldfeder and Lindell & Nof protocols
(CCS ’18). Specifically:

– Only the last round of the protocol requires knowledge of the message, and the other rounds can take
place in a preprocessing stage, lending to a non-interactive threshold ECDSA protocol.

– The protocol withstands adaptive corruption of signatories. Furthermore, it includes a periodic
refresh mechanism and guarantees proactive security.

– The protocol achieves accountability by identifying corrupted signatories in case of failure to generate
a valid signature. (Identifiable abort)

Furthermore, we formulate a distributed signature ideal functionality within the UC framework that
guarantees unforgeability, proactive security, and identifiable abort, and show that the protocol realizes
this functionality in the global random oracle model, assuming Strong RSA, DDH, semantic security of
the Paillier encryption, and a somewhat enhanced variant of existential unforgeability of ECDSA.

This combination of properties (low latency, compatibility with cold-wallet architectures, proactive
security, identifiable abort and universally composable security) make our protocol a good fit for threshold
wallets for ECDSA-based cryptocurrencies.

∗An extended abstract of this work appears in the proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS’20) [21]. This is an updated version.
†Authors are listed in alphabetical order.
‡Boston University. Member of CPIIS. canetti@bu.edu
§The City College of New York. rosario@ccny.cuny.edu
¶Cornell Tech/Offchain Labs. goldfeder@cornell.edu
‖Fireblocks. nikos@fireblocks.com
∗∗Work done while at Fireblocks. udi0peled@gmail.com

1

Contents
1 Introduction 4

1.1 Our Results. 4
1.2 Paper Organization . 7

2 Overview of our Techniques 7
2.1 Background [38] . 7
2.2 Our Approach . 8
2.3 Protocol Overview . 8
2.4 Identifying Corrupted Parties . 10
2.5 Two-round Presigning . 10
2.6 Security Analysis . 10

2.6.1 Ideal Functionality Ftsig . 11
2.6.2 UC Simulator . 11
2.6.3 Unforgeability proof . 12

2.7 Non-Interactive Zero-Knowledge . 13
2.8 Extension to t-out-of-n Access Structure . 15

3 Preliminaries 16
3.1 Definitions . 16
3.2 NP-relations . 17

3.2.1 Auxiliary Relations . 17
3.2.2 Relations for Accountability . 18

3.3 Cryptographic Tools . 18
3.3.1 Enhanced Existential Unforgeability of ECDSA . 19

3.4 Sigma-Protocols . 19
3.4.1 ZK-Module . 20

3.5 Communication Model and Broadcast . 20
3.5.1 Realizing ‘weak’ broadcast in the point-to-point model. 21

4 Protocol Description 21
4.1 Key Generation . 23
4.2 Key-Refresh & Auxiliary Information . 24
4.3 Presigning . 27

4.3.1 Accountability during Presigning . 27
4.4 Signing . 27

5 Underlying Sigma-Protocols 28
5.1 Paillier Encryption in Range ZK . 28

5.1.1 Protocol Πenc . 29
5.1.2 Special Soundness of the Range Proof & Reduction to Strong RSA 29

5.2 Paillier-Blum Modulus ZK (Πmod) . 31
5.2.1 Extraction of Paillier-Blum Modulus Factorization . 32

5.3 Pedersen Parameters ZK (Πprm) . 32
5.3.1 On the Auxilliary RSA moduli and the Pedersen Parameters 32

6 Security Analysis 33
6.1 Global Random Oracle . 33
6.2 Ideal Threshold Signature Functionality . 34

6.2.1 Discussion . 34
6.3 Security Claims . 36

6.3.1 Forgeries & Fault Misattributions . 37
6.3.2 Putting Everything Together . 37

2

7 Proof of Theorem 6.6 38
7.1 Reduction to Strong-RSA . 39

7.1.1 Hybrid A0 . 39
7.1.2 Proof of Proposition 7.3 . 40
7.1.3 Proofs of Claims 7.7 to 7.9 . 41
7.1.4 Hybrid A1 . 42
7.1.5 Proof of Proposition 7.10 . 42
7.1.6 Hybrid A2 . 43
7.1.7 Proof of Proposition 7.12 . 43

7.2 Reduction to DDH and DCR . 45
7.2.1 Hybrid B0 . 45
7.2.2 Proof of Proposition 7.17 . 45
7.2.3 Hybrid B1 . 46
7.2.4 Proof of Proposition 7.21 . 46

7.3 Reduction to Enhanced Existential Unforgeability of ECDSA 47
7.3.1 Dealing with attackers that do not abort . 47

8 How to handle Adaptive Corruptions 48
8.1 Proof of Lemma 8.1 . 48

8.1.1 Reduction to DDH . 49
8.1.2 Reduction to the Static Corruption Model . 49

9 Additional Related Work 50
9.1 Works Subsequent to [21] . 51

Appendix 57

A Missing Sigma Protocols 57
A.1 Discrete Logarithm Proofs . 57

A.1.1 Completeness, HVZK & Soundness of Πelog . 57
A.2 Range Proof w/ El-Gamal Commitment (Πenc-elg) . 58
A.3 Paillier Operation with Group Commitment in Range ZK (Πaff-g) 59
A.4 Small-Factor Proof (Πfac) . 60
A.5 Setup-less Affine Operation w/ Group Commitment (Πaff-g∗) 61
A.6 Paillier Special Decryption in the Exponent (Πdec) . 62

B Proof of Theorem 6.7 63
B.1 Proof of Proposition B.1 . 63

C Complexity Estimates 64
C.1 Concrete Security . 64

D Number Theory & Probability Facts 65

E On Enhanced Existential Unforgeability 65
E.1 Forgeries with Arbitrary Leakage in the GGM . 65

E.1.1 Proof of Claim E.2 . 66

F Additional Comments 69
F.1 Extension to t-out-of-n . 69

F.1.1 Key-Refresh for the t-out-of-n case . 69
F.2 Comments on previous version of the key-refresh . 69

3

1 Introduction
Introduced by Desmedt [31] and Desmedt and Frankel [32], distributed signatures allow a number of signatories
to share the capability to digitally sign messages, so that a given message is signed if and only if all of the
signatories agree to sign it. More specifically, a set of signatories, presented with a message m, jointly and
interactively compute a signature σ such that (1) if all signatories agree to signm, then the pairm,σ is accepted
as valid by a pre-determined public verification algorithm, and (2) no attacker that controls all but one of
the signatories can forge signatures—namely, it cannot come up with a pair m′, σ′ such that the verification
algorithm accepts σ′ as a valid signature on m′, if the latter was never signed before. (A natural generalization
of distributed signatures involves enabling only privileged subsets of signatories to sign. However, we focus on
the more basic and prevalent case of plain distributed signature schemes, which, by synecdoche, we refer to as
‘threshold signature’ schemes, as is commonly done in the cryptography literature.)

Threshold signatures are an instance of ‘threshold cryptography’ which, in turn, is one of the main appli-
cation areas of the more general paradigm of secure multi-party computation. Threshold cryptography offers
an additional layer of security to a cryptographic task that involves using a secret key, by distributing the
capabilities that require using the secret key among multiple servers/devices, and guaranteeing security as
long as at least one server/device remains uncorrupted. Indeed, this approach eliminates the single point of
failure when using the secret key. Examples include threshold El-Gamal, RSA, Schnorr, Cramer-Shoup, and
others [29, 58, 60, 59, 17].

With the advent of blockchain technologies and cryptocurrencies over the past decade, there has been a
strong renewed interest in threshold cryptography, particularly in threshold signatures. As digital signatures
are essential for enabling transactions, many stakeholders are seeking ways to perform signature generation in a
distributed manner. Consequently, numerous companies are now offering solutions based on, or in combination
with, threshold cryptography.1

Threshold ECDSA. The digital signature algorithm (DSA) [49] in its elliptic curve variant (ECDSA)
[56] is one of the most widely used signature schemes. ECDSA has received a lot of attention from the
cryptography community because, apart from its popularity, it is viewed as somewhat ‘threshold-unfriendly’,
i.e. (naive) threshold protocols for ECDSA require heavy cryptographic machinery. Early attempts towards
making threshold DSA/ECDSA practically efficient include Gennaro et al. [40] in the honest majority setting
and MacKenzie and Reiter [53] in the two-party setting.

In recent years, numerous protocols for threshold ECDSA [41, 7, 38, 50, 52, 33, 34, 28, 23, 24, 21, 45, 35, 25]
have been developed, supporting any number n of parties and allowing any threshold t − 1 < n of corrupted
parties. These recent protocols generally achieve competitive practical performance, with varying trade-offs
between computation and communication costs depending on the tools used. It is worth noting that all
protocols prior to [35] required at least four communication rounds (or 8 prior to [21]), which can be a
significant bottleneck in many modern communication settings, particularly when involving geographically
dispersed servers or mobile devices. A comparison of the complexity between the aforementioned protocols
and our protocol is provided in the following section.

Another limitation of prior work relates to the type of security analysis provided. Specifically, security was
proved either via an ad-hoc game-based extenstion of the traditional notion of existantial unforgeability (as
in, e.g. [38, 23, 24]), or by way of showing that the protocol securely evaluates the ECDSA function within
the universally compoasble (UC) security framework, e.g. as in [51, 50, 52, 33, 34, 35]. While the former
modeling does not provide rigorous composable security guarantees for applications using the protocol, the
latter modeling turns out to be hard to work with; for instance, works that take this approach are unable to
guarantee security when party corruptions happen over time based on the execution history.

1.1 Our Results.
We present a new threshold ECDSA protocol. The protocol builds on the authors’ previous work [21], which,
in turn, builds on the techniques from Gennaro and Goldfeder [38] and Lindell et al. [52]. Our protocol offers
improved efficiency and security guarantees compared to Gennaro and Goldfeder [38], Lindell et al. [52], Canetti
et al. [21], and remains competitive with other state-of-the-art ECDSA protocols. We first discuss the new

1See https://www.mpcalliance.org/ for companies in the threshold cryptography space (retrieved August 2024).

4

https://www.mpcalliance.org/

characteristics of the protocol at a high level, followed by a detailed description of its construction and analysis.
Figure 1 provides a rough comparison of the main costs and security guarantees between our protocol and
those mentioned in the previous section. See Section 9 for additional discussion of related work.

Signing Protocol Rounds Group
Ops

Ring
Ops Communication Proactive ID

Abort UC♥

Gennaro and Goldfeder [38] 9 10n 50n 10κ+ 20ν (7 KiB) 7 7 7

Lindell et al. [52] (Paillier)†‡ 8 80n 50n 50κ+ 20ν (7.5 KiB) 7 7 3

Lindell et al. [52] (OT)† 8 80n 0 20κ2 (190 KiB) 7 7 3

Doerner et al. [34] log(n) 5 0 10κ2 (90 KiB) 7 7 3

Castagnos et al. [24]* 8 15n 0 100κ (3.5 KiB) 7 7 7

Canetti et al. [21] 4 or 7 10n 90n 10κ+ 50ν (15 KiB) 3 3 3

Castagnos et al. [25]* 4 15n 0 100κ (3.5 KiB) 3 3 7

Haitner et al. [45] 5 50n 0 8κ2 (60 KiB) 7 7 3

Doerner et al. [35] 3 6n 0 6κ2 (50 KiB) 7 7 3

This Work: Interactive§ 3 25n 75n 65κ+ 50ν (15 KiB) 3 3 3

This Work: Non-Interactive§ 3 + 1 25n 75n 65κ+ 50ν (15 KiB) 3 3 3

Figure 1: Approximate comparison of our scheme with related works for the signature generation phase. Costs are
displayed per party for a n-party protocol secure against n − 1 corrupted parties as reported in each corresponding
work, or inferred from the protocol descriptions when not directly available. Ring operations contain two types of
operations (mod N and N2) that we do not distinguish in the table; operations modulo N2 represent no more than
a third of the total number of ring operations for all protocols. The communication column describes the number
of group elements (encoded by κ bits) and ring elements (encoded by ν = log(N) bits) sent between each pair of
parties; in parentheses, we provide concrete estimates with κ = 256 for the curve secp256k1 (i.e., the Bitcoin curve
[55]) and log(N) = ν = 2048 for 112-bit security for Paillier. (†Reported costs are based on Lindell et al. [52,
Version 2018] which is subsumed by the updated paper [45]. ‡There is a discrepancy between the ring operations in
the table above and [52] because of how operations mod N or N2 are accounted for. *We note that [24] and [25]
rely on somewhat incomparable hardness assumptions, and it involves operations in a different group than that of the
underlying elliptic curve—cf. Section 9. §We report two round-complexities for our work to reflect the two different
variants of our protocol. ♥The UC column indicates whether the corresponding work provides a security analysis in
the UC framework. Yet, given the results presented in this paper, all of the protocols mentioned above UC-realize the
generic threshold signature functionality described here.) All works are listed in chronological order.

Non-interactive signing. The ability to generate signatures non-interactively—where each signatory can
independently produce a signature share for a given message without interacting with other signatories, and
a public algorithm can then combine these shares into a single signature—is an extremely useful feature.
This capability is particularly valuable in scenarios such as using a ‘cold wallet’ mechanism for some of the
signatories, a common practice in the digital asset space. Notably, several popular signature schemes, such as
RSA [47] and BLS [6], support threshold protocols with non-interactive signing.

While no completely non-interactive threshold ECDSA signature generation is known, it was observed by
Dalskov et al. [28] that the structure of the ECDSA signature allows for doing much of the work ahead of
time, before the message to be signed is known. In [21], this idea is further developed by splitting the signing
process into two phases: an initial preprocessing phase that requires three rounds and can be completed before
the message is known, followed by a non-interactive step where each signatory generates their own signature
share once the message to be signed is known. This second step involves the computation and transmission of
only a single field element (256 bits for the Bitcoin curve). The protocol presented here retains this feature
from [21] while significantly simplifying the overall protocol.

5

https://eprint.iacr.org/archive/2018/987/20181018:122733

Round-minimal interactive signing. For the fully online variant (i.e. the interactive case), our protocol
matches the round complexity of Doerner et al. [35] (three rounds) by appropriately modifying the third-
round messages in the pre-processing phase to depend on the message being signed, so that they yield suitable
signature shares. This is explained in Section 2.5.

Proactive key refresh [57, 46, 18, 48]. While threshold signatures do provide a significant security
improvement over plain signature schemes, they may still be vulnerable to attacks that, over time, compromise
all shareholders. This vulnerability is particularly bothersome in schemes that need to function and remain
secure over long periods of time. Proactive security is designed to alleviate this concern: In a proactive
threshold signature the signatories periodically engage in a key-refresh protocol. We then call the period of
time starting at the onset of one key refresh, and ends at the conclusion of the following key refresh, an epoch.
The security guarantee is that the scheme remains unforgeable as long as for each epoch there is at least one
signatory that is uncorrupted throughout that epoch.

It is stressed that the public signature verification key of the scheme remains the same throughout. At the
same time, the ability to generate signatures is only preserved when all signatories (even compromised ones)
follow their protocols and their local data is preserved. Any single corruption of the state of a server, as well
as any divergence from the protocol, will result in losing its ability to generate signatures. (While there are
standard ways to ‘harden’ the key refresh protocol so as to guarantee continued generation of signatures even
when some of the signatories are actively corrupted [57], we keep such extensions out of scope for this work.)
Our protocol offers a three-round key refresh phase.

Identifiable aborts. Our protocol contains an additional mechanism that allows the signatories to identify,
should the parties fail to obtain a valid signature on a given message, at least one out of the signatories that has
failed to participate in the generation of the signature, or has otherwise deviated from the prescribed protocol.
In this paper, we refer to this property, commonly known as ‘identifiable aborts’ in the MPC literature, as
accountability.

The communication model. We assume that the signatories are connected via an authenticated and
synchronous broadcast mechanism. That is, the communication is public, and every message that is sent will
be received by all parties in the next round. While the protocol can be potentially hardened to deal with other
communication models, this basic model appears to both capture the essence of the problem and reflect the
common assurances in threshold signature applications.

Security & Composability. We provide a security analysis of our protocol within the Universally Com-
posable (UC) Security framework [16]. However, unlike prior work we do not insist on demonstrating that
our protocol securely evaluates any specific function. Instead, we formulate an ideal threshold signature func-
tionality that provides an ideal signing service that offers unconditional unforgeability, periodic key refresh,
and identifiable abort, against an adversary that adaptively corrupts signatories, as long as at least one signa-
tory remains uncorrupted between consecutive refreshes. We then show (under hardness assumption detailed
below) that our protocol realizes this functionality, while guaranteeing that legitimate signatures are verifi-
able by the standard ECDSA verification algorithm. This modeling and analysis allows benefitting from the
composabulity guarantees provided by the UC framework (which is of particular importance in applications
such as cryptocurrencies, where the distributed signature module is a component of a larger system that is
expected to provide strict assurance guarantees), while not being overly restrictive.

Our analysis uses the strict variant of the global random oracle model (GROM) of [20, 13]. (Incorporating
the random oracle as a global functionality within the plain UC framework is done using [2].)

Cryptographic assumptions and ‘enhanced unforgeability’. We show that our ptotocol securely re-
alizes the above ideal theshold signature functionality under the following assumptions. We assume the
unforgeability of plain, non-threshold ECDSA, the semantic security of Paillier encryption (DCR), Decisional
Diffie–Hellman (DDH), and strong-RSA. For the non-interactive variant, we require a somewhat enhanced
unforgeability property of ECDSA, which accounts for scenarios where the adversary obtains some ‘leakage’
information on the random string that the signer will use for generating the upcoming signatures. Still, the
adversary should not be able to forge signatures, even given this leakage. We call this property enhanced

6

unforgeability, and demonstrate that ECDSA is enhanced unforgeable in the generic group model when the
ECDSA digest function is modelled as a random oracle.

1.2 Paper Organization
The paper is organized as follows. In Section 2, we provide a high-level yet detailed overview of our techniques,
including protocol descriptions, the NIZK technique, and the security analysis. This analysis is further broken
down into the description of the ideal functionality and the demonstration that our protocol realizes said ideal
functionality. .

Section 3 covers the necessary toolbox, including the cryptographic primitives and the communication
model that will be used in subsequent sections. Sections 4 and 5 contain, respectively, the protocol description
and the descriptions of the underlying zero-knowledge (ZK) protocols that give rise to the non-interactive
zero-knowledge proofs (NIZKs) used extensively in the protocol. Section 6 contains the description of the
random oracle model, the ideal functionality, and our main security claims. Section 7 is dedicated to the proof
of Theorem 6.6, which is the cornerstone of our security analysis. Finally, Section 8 describes how to handle
adaptive corruptions and provides a security reduction from the adaptive to the static adversarial model for
our protocol.

Section 9 provides additional discussion on related works, including those that appeared after the authors’
CCS 2020 publication [21].

Appendix organization. The appendix is organized as follows. Appendix A contains ZK protocols that
are very similar to the ones presented in Section 5 or are standard (e.g., Schnorr proof of knowledge of discrete
logarithm). Appendix B contains the proof of Theorem 6.7, which is similar to the proof of Theorem 6.6
in Section 7. Appendix C provides our theoretical complexity estimates as well as a discussion on concrete
security. Appendix D contains straightforward facts from elementary number theory and probability theory.
Appendix E presents our security proof of enhanced unforgeability in the GGM. The paper concludes with
Appendix F, discussing the extension to the t-out-of-n threshold case and providing comments on the previous
version of the key-refresh protocol.

2 Overview of our Techniques
Hereafter, Fq denotes the finite field with q elements and F : M → Fq denotes a hash function used for
embedding messages into the field with q elements. Furthermore, let (G, q, g) denote the group-order-generator
tuple associated with the ECDSA curve. We use multiplicative notation for the group operation.

Recall that an ECDSA signature for secret key x ∈ Fq and message msg has the form (ρ, γ−1·(m+ρx)) ∈ F2
q,

where m = F(msg), ρ is the x-axis projection of the point gγ ∈ G, and γ is a uniformly random element of Fq.
The verification algorithm accepts a signature (ρ, σ) as valid for message msg ∈M with respect to public key
X = gx ∈ G, if ρ is the x-axis projection of gmσ

−1 ·Xρσ−1

, where m = F(msg). As a matter of terminology,
γ and Γ = gγ are referred to as the secret and public nonce, respectively.

2.1 Background [38]
As preliminary background, we start by describing the basic protocol from [38] in the honest-but-curious case,
i.e. the case where all signatories follow the protocol specifications.

Key-generation phase. Each signatory (henceforth, party) Pi chooses a random xi ∈ Fq and sends Xi =
gxi to all other parties. The public key is defined as X = X1 · ... ·Xn ∈ G. The secret key then corresponds
to the value x = x1 + . . . + xn (it is stressed that no one knows x). In addition, each party Pi is associated
with parameters for an additively homomorphic public encryption scheme (specifically, Paillier encryption).
That is, all parties know Pi’s public encryption key, and Pi knows its own decryption key. We write enci, deci
for the encryption and decryption algorithms associated with Pi. It is stressed that all parties can run the
encryption algorithm.

7

Signing phase. To sign a message msg, the parties P1, . . . ,Pn generate local shares γ1, . . . , γn, respectively,
of the random value γ = γ1 + . . . + γn, as well as local shares k1, . . . , kn, respectively, of an ephemeral value
k = k1 + . . . + kn which will be used to mask γ. Using their respective encryption schemes, each pair of
parties Pi, Pj computes additive shares αi,j , α̂i,j for Pi and βj,i, β̂j,i for Pj , such that αi,j + βj,i = γjki and
α̂i,j+β̂j,i = xjki. Namely, all pairs of parties engage in a share-computation phase such that each Pi interacting
with Pj provides input Ki = enci(ki) and obtains output (Di,j , D̂i,j) = (enci(γjki − βj,i), enci(xjki − β̂j,i)).2

Next, each Pi sets αi,j = deci(Di,j) and α̂i,j = deci(D̂i,j), and the share-computation phase terminates
by aggregating the outputs across all parties; each Pi calculates δi = γiki +

∑
j 6=i αi,j + βi,j and χi = kixi +∑

j 6=i α̂i,j + β̂i,j .3 Along the way, i.e. concurrently with the share-computation phase, each Pi sends Γi = gγi

and the parties set ρ =
(∏

j Γi

)
|x-axis. Finally, each Pi sends (δi, σ̂i) to all, where σ̂i = ki ·m + ρχi, where

m = F(msg) is the hash-value of msg. The signature is set to (ρ, σ) for σ = (
∑
j σ̂j)·(

∑
j δj)

−1 = γ−1(m+ρx).

Summary. The basic protocol proceeds as follows from Pi’s perspective, where each item denotes a round:

1. Sample ki, γi and send Ki = enci(ki) to all.

2. When obtaining {Kj}j 6=i, set {Dj,i, D̂j,i}j 6=i as prescribed and send (Dj,i, D̂j,i,Γi = gγi) to each Pj .

3. When obtaining {(Di,j , D̂i,j ,Γj)}j 6=i, set δi, σi as prescribed, and send (δi, σi) to all.

Output. When obtaining {δi, σ̂j}j 6=i, set ρ as prescribed, and output (ρ, σ) for σ = (
∑
j σ̂j) · (

∑
j δj)

−1.

The above protocol takes three rounds of communication. For security, it can be seen that, if everything was
computed correctly, then up to the point where the σi’s are released, no information is exposed about x as the
transcript of the protocol until-and-excluding round three is independent of the secret key x. Finally, revealing
(δi, σ̂i) is equivalent to revealing the signature (ρ, σ), i.e. no information is leaked beyond the signature itself.

However, if a corrupted party deviates from the specification of the protocol, it may cause other parties
to send third-round messages that leak information about the secret key; potentially the entirety of it. To
mitigate this problem, Gennaro and Goldfeder [38] devise a special-purpose, clever technique that allows the
parties to verify the validity of the signature shares before releasing them. However, their protocol ends up
adding six rounds of communication.

2.2 Our Approach
Using the above basic protocol as a starting point, we show how the parties can verify the validity of the signa-
ture shares without adding any rounds, and at a comparable computational cost to that of [38]. Interestingly,
we achieve this result by employing the ‘generic’ (and often deemed prohibitively expensive) GMW-approach
of proving in zero-knowledge the validity of every computation along the way, with optimizations owing to
the nature of the signature functionality. Furthermore, our approach preserves the natural property of the
basic protocol, whereby the message is used only in the third and last round. This, in turn, leads to our non-
interactive variant. To achieve cheap accountability in the non-interactive variant of our protocol, we require
one additional round during the pre-processing phase, bringing the total round count to four, instead of three.
Proactive key refreshes are also naturally built on top of the basic protocol, with appropriate non-interactive
zero-knowledge proofs (henceforth referred to as NIZKs).

2.3 Protocol Overview
We proceed with an overview of our protocol. For simplicity, we have omitted many of the details, especially
regarding the zero-knowledge proofs. We refer the reader to the subsequent technical sections for further

2In more detail, the share-computation phase between Pi and Pj for computing αi,j and βj,i proceeds as follows (α̂i,j and
β̂j,i are analogously constructed). Party Pi sends Ki = enci(ki) to Pj , i.e. Ki is an encryption of ki under their own public key.
Then, Pj samples a random βj,i from a suitable range, and, using the homomorphic properties of the encryption scheme, Pj
computes Di,j = (γj �Ki)⊕ enci(−βj,i), where ⊕ and � denote homomorphic evaluation of addition and (scalar) multiplication
(with proper rerandomization), respectively. So, Di,j is an encryption of γjki − βj,i under Pi’s public key.

3Notice that δ1, . . . , δn and χ1, . . . , χn are additive sharings of γk and xk, respectively.

8

details. Let P = {P1, . . . ,Pn} denote the set of parties. Let (enci, deci) denote the Paillier encryption-
decryption algorithms associated with party Pi; the public key is specified below. In this high-level overview,
when we say that a party broadcasts a message, we mean that this message is received by all other parties.
We will refine the meaning of ‘broadcast’ in the subsequent technical sections.

Key-generation. As in the basic protocol, each Pi samples a local random secret share xi ← Fq of the
(master) secret key x =

∑
i xi, it produces a group element Xi = gxi , and then broadcasts a commitment to

Xi. Once receiving the commitments from every other party, it broadcast-decommits Xi and also a Schnorr
NIZK of xi (the Discrete Log of Xi).

Auxiliary info & key-refresh. Each Pi locally generates a Paillier key Ni and sends it to the other parties
along with a NIZK proof that Ni is well-constructed (i.e., that it is the product of suitable primes). Next,
each Pi selects a random secret sharing of 0 =

∑
j xi,j and computes Xi,j = gxi,j for every j 6= i. Then,

Pi broadcasts (Xi,j)j along with a NIZK proof of the discrete logarithms of {Xi,j}j , and sends the discrete
logarithm xi,j of Xi,j to Pj for every j 6= i. The parties update their key shares by setting x∗i = xi +

∑
k xk,i

mod q, provided that all the proofs are valid and
∏
kXj,k = idG for every j.

Pre-processing (aka Presigning). Ahead of time, before the message to be signed is known, the parties
can choose to generate ‘presignature’ shares through the following presigning process. Each party is instructed
to commit to γi and ki by encrypting these values under their own keys and broadcasting Gi = enci(γi) and
Ki = enci(ki). Concurrently, the parties initiate a pairwise share-computation phase (for xjki = αi,j + βj,i
and γjki = α̂i,j + β̂j,i) and a public nonce computation phase (for Γ = gγ ∈ G, corresponding to the nonce of
the future signature). During these phases, the parties also prove in zero-knowledge that the values used in
the multiplications are consistent with the values encrypted in Gi, Ki, as well as the exponent of the public
key-share Xi = gxi .

Finally, when the aforementioned processes terminates, the parties spend an additional round to compute
the field element δ = γ · k ∈ Fq, which corresponds to the value of the secret nonce γ masked by a random
field element k =

∑
j ki. This step includes suitable zero-knowledge proofs to ensure that the parties obtain

the correct value of δ. At the end of the presigning phase, each Pi stores in memory the tuple (ki/δ, χi/δ,Γ),
where ki/δ represents the share of γ−1 (since δ = k · γ and

∑
i ki = k), χi/δ represents the share of γ−1 · x

(since δ = k · γ and
∑
i χi = k · x), and Γ = gγ ∈ G is the public nonce.

Remark 2.1. A key innovation in our work is using the Paillier cryptosystem as a commitment scheme, setting
us apart from other Paillier-based protocols like [38]. Encrypting values under the parties’ own public keys
provides a binding and hiding commitment scheme, assuming Paillier’s semantic security. This approach
enables straightline extraction of the adversary’s secrets in the security analysis, as the corrupted parties’
Paillier keys are obtained in the auxiliary information phase.

In summary, by virtue of the ‘Paillier commitments’ and the accompanying NIZKs, party Pi is confident
that the tuple (Γ, ki/δ, χi/δ) is well-formed at the end of presigning phase, and there is no need for additional
communication rounds to verify the correctness of the tuple, as opposed to [38, 52, 34, 24].

Non-Interactive signing. Once a message msg is known, to generate a signature for presigning data
(Γ, ki/δ, χi/δ), each Pi sets m = F(msg), computes ρ = Γ|(·), and sends σi = kim/δ + ρχi/δ mod q to
all parties. After receiving the other parties’ signature-shares, the parties output the signature (ρ,

∑
i σi) =

(ρ, γ−1(m + ρx)). We note that that the parties detect cheating at this step if the resulting string fails to
verify.

Managing Presignature Tuples For a given presigning parameter L ∈ N, after the parties run the pre-
signing phase L times concurrently, they obtain presigning data {(`,Γ`, k̃`i , χ̃`i)}`=1,...,L. Proper management
of this data is crucial, as any mishandling could potentially lead to key leakage. First, the presigning tuple
(`,Γ`, k̃

`
i , χ̃

`
i) must be erased immediately after it is used. Second, during key refresh, any unused presignatures

must be discarded, i.e. erased.4

4Alternatively, it is possible to retain the presigning data between key refreshes as long as it is properly refreshed, i.e. by
re-randomizing (k̃i, χ̃i). However, we emphasize that any presigning tuple, whether re-randomized or not, must be erased

9

2.4 Identifying Corrupted Parties
Whenever a NIZK fails for a party, the remaining parties attribute the fault to that party and report it as
corrupted. The challenge arises in identifying corrupted parties when δ is malformed or the signature string
does not verify, and yet all the NIZKs verify. To address these situations, we introduce a special-purpose
process, which is outlined below.

Accountability during signing. We instruct the parties to publish (∆̃i, S̃i) = (Γki/δ,Γχi/δ) during the
presigning phase, and Pi saves {(∆̃j , S̃j)}j 6=i for the signing phase later on. During the signing phase, the
signature share σi = (ki/δ) ·m+ ρ · (χi/δ) can be verified in the exponent using the formula Γσi = ∆̃m

i · S̃
ρ
i .

Therefore, assuming that the set {(∆̃j , S̃j)}nj=1 is well-formed, the correctness of each σi can be verified
using the tuple (Γ, ∆̃i, S̃i). The remaining task is to ensure that the set {(∆̃j , S̃j)}nj=1 is indeed well-formed,
as explained below.

Accountability during presigning. Each Pi publishes (∆i, S̃i) = (Γki ,Γχi) in the last round of the
presigning phase, along with a NIZK that ∆i = Γki . Notice that if

∏n
j=1 ∆i = gδ, then δ is well formed as∏n

j=1 ∆i = Γ
∑n
j=1 ki which implies that δ = k · γ. If the check

∏n
j=1 ∆j = gδ fails, each Pi is instructed to

prove that they sent the correct δi by opening the relevant ciphertexts and verifying algebraically whether
the correct data was sent.5 Specifically, if δ is malformed, the parties open the ciphertexts resulting from the
pairwise multiplication of the k’s and the γ’s (i.e. Ki, Gi, Di,j). At this point, all honest parties can agree on
who sent the incorrect value.

Similarly, the parties can verify that the Si’s are well-formed by checking
∏
j Sj = Xδ. If this check

fails, each party proves that their own Si is well-formed, i.e. that it equals Γχi , where χi is the secret value
obtained from the pairwise multiplication of the k’s and the x’s. This process is similar to checking that δi is
well-formed, except that the value χi remains in the exponent and is not revealed in plaintext.

In the end, if no errors are detected, the parties store the set {(∆̃j , S̃j) = (∆δ−1

j , Sδ
−1

j)}nj=1 for use in the
signing phase.

2.5 Two-round Presigning
When accountability is not a concern, or it can be enforced with a storage penalty during signing, it is possible
to recover the round-complexity of the basic three-round protocol described in Section 2.1. Specifically, the
presigning stage of the protocol terminates after round two, and the parties are instructed to store the tuple
(Γ, ki, χi, δi) instead of (Γ, ki/δ, χi/δ). Consequently, the parties are not required to spend resources verifying
the validity of δ =

∑
j δj .

During signing, once m = F(msg) is known, the parties simply broadcast (δi, σ̂i = kim + ρχi) and the
parties output (ρ, σ), where σ = (

∑
i σ̂i) · (

∑
i δi)

−1 if and only if (ρ, σ) is a valid signature for msg. In case of
failure, the parties are instructed to prove the well-formedness of the pair (δi, σ̂i) with respect to the transcript
of the presigning phase; this solution requires that the parties save the transcript of the presigning phase for
the signing phase. The process is similar to the process described in Section 2.4, and a full description is
omitted from the current paper. The parties ignore the last step if accountability is not desired.

2.6 Security Analysis
As mentioned above, we prove security of the protocol by first formulating an ideal functionality, Ftsig, for
threshold signature schemes within the universally composable (UC) security model [16], and then demon-
strating that our protocol securely realizes Ftsig. This approach allows us to keep the protocol relatively lean
and simple, and at the same time provide strong and nuanced composable security guarantees against powerful
adversaries.
immediately after it is consumed.

5For security reasons, the opening of the ciphertext is done in zero-knowledge by revealing gµ—only the plaintext µ in the
exponent is revealed, not the plaintext itself or the randomizer.

10

2.6.1 Ideal Functionality Ftsig

We give a high-level description of the operation of Ftsig. At invocation, Ftsig is provided with a distinguished
set of parties (i.e. the signatories), which are initially marked as uncorrupted. Then:

1. When the adversary takes control of a party, Ftsig marks the party as corrupted.

2. When a key refresh occurs, any parties that were previously marked as corrupted but are no longer under
the adversary’s control are marked as uncorrupted again.

3. When all parties request the generation of a formal public verification algorithm, Ftsig obtains the
algorithm V from the adversary and returns it to the parties.

4. When all parties request the generation of a signature string for a message m, Ftsig obtains a signature
string σ from the adversary and returns it. If the provided verification algorithm fails to verify the
signature for this message (i.e. if V(m,σ) = 0), Ftsig discloses the identity of a corrupted party. This
provision ensures accountability.

5. When anyone (not necessarily one of the signatories) requests verification of a signature σ with respect
to V and a message m, Ftsig proceeds as follows: If there is a currently uncorrupted party that has not
requested to sign m, Ftsig responds with a verification failure. Otherwise, Ftsig responds according to
V(m,σ). This provision ensures proactive unforgeability against mobile, adaptive corruptions.

Indeed, Ftsig can be thought of as an idealized signature service that applications can rely on, providing
guarantees of (i) unforgeability against adaptive corruptions, as long as at least one party remains uncorrupted
between any two consecutive key refreshes, and (ii) accountability in cases where the signature generation
process fails to produce a valid signature. The universal composition theorem [16] ensures that these same
security properties are preserved when replacing Ftsig with any protocol that UC-realizes it.

Unforgeability and accountability as trace properties. It is important to note that protocols that
UC-realize Ftsig are not necessarily designed to securely evaluate or sample the ECDSA function, or any other
specific function. Instead, the guarantees provided by Ftsig are best understood as ‘trace properties’—meaning
that any violation of these guarantees can be easily detected by examining the trace of the execution prefix that
led to the violation.6 This is a significant relaxation relative to ‘secure evaluation’ properties that typically
include also requirements related to hiding of input or output values of the computation. Our security analysis
exploits this feature of Ftsig as follows.

Recall that a security proof showing that a protocol π UC-realizes an ideal functionality F involves two
key steps. First, an ideal model adversary (a ‘UC simulator’) S is described. This simulator interacts with F
on one side and with the UC environment Z on the other, simulating an interaction with π. The next step
is to argue that this simulation is valid, meaning that Z cannot distinguish between the simulated execution
and an actual interaction with π.

2.6.2 UC Simulator

We use a very simple UC simulator, which simply computes the messages sent by each uncorrupted party
P according to the actual protocol instructions. Similarly, when a party is corrupted, S reports the actual
internal state of the party to Z.

This simple simulation strategy is possible since Ftsig reveals the input values obtained from the parties
to S. Additionally, this simplistic simulation is perfect—when limited to executions where no violations of
unforgeability or accountability occur.

6Specifically, a violation would be either (i) a verification request for signature σ on message m, such that not all parties asked
to sign m and yet V(m,σ) = 1, or (ii) a signing request for a message m that results in an invalid signature and yet there is no
consensus on the corrupted party’s identity among the honest parties.

11

Demonstrating the validity of the UC simulation. To establish the validity of the UC simulation, it
remains to show that any environment machine Z can cause forgery or accountability-violation events to occur
only with negligible probability. This is accomplished by reducing these events to the assumptions mentioned
earlier (namely the unforgeability of plain, non-threshold ECDSA, the semantic security of Paillier encryption,
DDH, and Strong RSA). Importantly, this reduction is not constrained by the limitations of the UC model;
instead, it treats the environment machine Z as a plain family of polysize circuits. In particular, the reductions
can rewind Z and also program the random oracle used by Z.

Below we provide more details on these reductions. First, however, let us discuss a number of points
regarding the overall approach.

Discussion on the UC Simulator. We emphasize that employing a ‘trivial’ UC simulator, which simply
mirrors the protocol execution and then bounds the probability of bad events through reductions outside the
UC model, is crucial for proving the security of our protocol. Indeed, in this context, the UC simulator has
little choice but to perform this trivial simulation. For one, under the UC model, the simulator is restricted to
straight-line simulation. Additionally, due to our use of the strict GROM, the simulator is unable to observe
or program the oracle queries made by the environment.

At the same time, the fact that the reductions occur outside the formal UC model does not diminish
the security guarantees provided by Ftsig, and the applicability of this ‘trivial’ simulation technique seems to
extend beyond our protocol or even Ftsig. Specifically, consider an ideal functionality that is a trace-property
ideal functionality, where the only security guarantee it provides is the absence of bad events that are trace
properties, as defined above. (Formally, a trace-property ideal functionality immediately discloses all its
inputs to the adversary and allows the adversary to determine all of its outputs, provided these outputs do not
violate a set of trace properties.) In such cases, demonstrating that a protocol UC-realizes a trace-property
ideal functionality can always use the same methodology.

Liveness. Finally, we note that Ftsig does not guarantee any ‘liveness’ properties. Indeed, protocols that
allow the adversary to arbitrarily delay the generation of public keys or signatures may well UC realize Ftsig,
as long as they are uforgeable. Still it is straightforward to verify that our protocol always generates a public
key and a signature string within a fixed number of communication rounds. Similarly, any execution of the
key refresh protocol completes (either successfully or unsuccessfully) within a fixed number of rounds.

2.6.3 Unforgeability proof

We provide additional details regarding the reduction to the unforgeability of non-threshold ECDSA. Consider
the following experiments involving a simulator attempting to simulate Z’s interaction with the honest parties.

1. In the first experiment, the simulator follows the specifications of the protocol except that:

(a) The simulator samples an ECDSA key-pair (x,X) and fixes the public key of the threshold protocol
to X (this is achieved by rewinding Z).

(b) The simulator extracts the corrupted parties’ Paillier keys (this is achieved by programming the
random oracle).

(c) The simulator never decrypts the ciphertexts encrypted under the honest parties’ Paillier keys.
Rather, to carry on the simulation, the simulator extracts the relevant values from the corrupted
parties’ messages, using the Paillier keys extracted in Item 1b.

(d) To compute the honest parties’ NIZKs, the simulator invokes the zero-knowledge simulator to
generate valid proofs, and programs the random oracle accordingly.

2. The second experiment is identical to the first one except that:

(a) At the beginning of the experiment, the simulator picks a random honest party that is henceforth
deemed as special (in fact, to handle adaptive corruptions, this random party is chosen afresh
every time the key-refresh phase is executed. If Z decides to corrupt the special party, then the
experiment is reset to the last preceding key-refresh by rewinding Z).

12

(b) Every time an honest party is instructed to encrypt a value under the special party’s Paillier key
and send it to the corrupted parties, the simulator sends a random encryption instead.

(c) Every time an honest party is instructed to generate a Diffie-Hellman (DH) tuple, the simulator
computes a random tuple instead.

3. The third experiment is similar to the second one, except that the simulation is carried out without
knowledge of the special party’s secrets, using a standard/enhanced ECDSA oracle.

We show that if Z successfully forges signatures in our protocol, then Z also succeeds in forging signatures
in all three experiments described above. From the third experiment, we conclude that Z forges signatures
for the plain (non-threshold) ECDSA signature scheme, contradicting its presumed security.

The first two experiments serve as stepping stones towards proving that Z forges in the third experiment.
Specifically, the real execution and the first experiment are statistically close, assuming all NIZKs are sound
and the simulator extracts the correct values. The first and second experiments are computationally close
under the DDH assumption, provided the Paillier cryptosystem is semantically secure (DCR assumption).
Finally, the second and third experiments are identical in a perfect sense.

Dealing with adaptive party corruptions. To demonstrate the validity of the reduction against adaptive
party corruptions, it suffices to argue that Experiments 2 and 3 terminate. Under the DDH assumption, our
analysis shows that both experiments terminate in time linear in the number of parties. Consequently, Z
forges signatures in the third experiment, contradicting the presumed security of plain ECDSA.

Extension to two-stage signature generation. When signatures are computed via a two-step pro-
cess—first generating a pre-signature, followed by a non-interactive signature generation once the message
is known—we can no longer reduce a forgery event in the threshold case to a standard forgery event in plain
ECDSA. Instead, we reduce a forgery event in the threshold case to an enhanced variant of ECDSA unforge-
ability. In this enhanced game, the adversary is provided access to a ‘two-stage’ signing oracle: first, the
adversary requests the nonce r = gγ |(·), the first element in an ECDSA signature. Only after receiving r
does the adversary choose the message m to be signed, and then obtains the signature (r, σ) on m. All other
aspects of the enhanced unforgeability game remain identical to the standard game.

Evidence for enhanced unforgeability. To support our assumption that ECDSA is enhanced existentially
unforgeable, we show that enhanced existential unforgeability holds in the following idealized model: In the
random oracle (for F) and generic group model (for G), unconditionally.7 See Appendix E.1.

The aforementioned result is shown via reduction. The reduction simulates the group as if it were a free
group generated by two base points g and X (corresponding to the group generator and ECDSA public key,
respectively). Since the simulated (free) group is indistinguishable from a generic group, it follows that any
forgery exploits a weakness in the hash function, which we rule out by assumption.

2.7 Non-Interactive Zero-Knowledge
Our protocol extensively uses NIZKs by compiling three-move zero-knowledge protocols (also known as sigma-
protocols) using the Fiat-Shamir transform (FS), where the Verifier’s messages are computed by the Prover
using a predetermined hash function. In the random oracle model, where the hash function is treated as a
random oracle, the FS transform produces NIZK argument systems.

We conclude the overview of our techniques by presenting a basic version of the interactive zero-knowledge
technique (the sigma protocol) we employ. While the technique is fairly standard [9, 11, 12, 37, 53], we outline
it here for convenience. The analysis is somewhat intricate and not essential for understanding our signature
protocol, so this section can be skipped if desired.

7To be more precise, we show that any generic forger finds x, y such that F(x)/F(y) = e, for a random e ← Fq , where F
denotes a cryptographically secure hash function (modeled as a random oracle). We conjecture that the latter is also hard for the
actual implementation of ECDSA involving SHA.

13

Paillier & strong-RSA. We recall that Paillier ciphertexts have the form C = (1+N)xrN mod N2, where
N denotes the public key, x ∈ ZN the plaintext, and r is a random element of Z∗N . We further recall the
strong-RSA assumption: for an RSA modulus N of unknown factorization, for uniformly random y ∈ ZN , it
is infeasible to find (x, e) such that e > 1 and xe = y mod N . Here and throughout the paper, we use the
notation ±m to denote the set {−(m−1)/2, . . . , (m−1)/2} if m is odd and {−m/2−1, . . . ,m/2} if m is even.
Finally, before we describe the zero-knowledge technique, we (informally) define Pedersen commitments.

Definition 2.2 (Pedersen, informal). Let N be an RSA modulus and let s, t ∈ Z∗N be non-trivial quadratic
residues. A Pedersen commitment of m ∈ ZN with public parameters (N, s, t) is computed as C = smtρ

mod N where ρ← ZN .

Vanilla ZK range-proof. Consider the following relation:

R = {(C0, N0, Ĉ, N̂ , s, t;α, β, r) | C0 = (1 +N0)αrN0 mod N2
0

∧ Ĉ = sαtβ mod N̂ ∧ α ∈ ±2`}.

In words, the Prover must show that the Paillier plaintext α encrypted as C0 is equal to α′ in the Pedersen
commitment Ĉ, and that it lies in the range ±2` where 2` is much smaller than either N0, N̂ . It is assumed that
the Paillier modulus N0 was generated by the Prover and the Pedersen parameters (N̂ , s, t) were generated
by the Verifier. We further assume that N0 and N̂ were generated as products of suitable8 primes and that
s and t are non-trivial quadratic residues in Z∗

N̂
. This assumption does not incur loss of generality, since in

the actual protocol we instruct the parties to prove in zero-knowledge that all the parameters were generated
correctly.9

We now turn to the description of the NIZK for the relation R under its interactive variant (the actual
proof is compiled to be non-interactive using the Fiat-Shamir transform). We perform the following Schnorr-
style proof: the Prover encrypts a random value γ as D0 = (1 + N0)γρN0 mod N2

0 for a suitable random ρ,
computes a Pedersen commitment D̂ = sγtδ mod N̂ to γ using a suitable random δ, and sends (D0, D̂) to
the Verifier. The Verifier then replies with a challenge e← ±2` and the Prover solves the challenge by sending
z1 = γ + eα. The Verifier accepts only if z1 is in a suitable range and passes two equality checks (one for the
encryption and one for the commitment). Intuitively, the Prover cannot fool the Verifier because ‘the only
way’ for the Prover to cheat is knowing the order of Z∗

N̂
, which was secretly generated by the Verifier and

therefore would violate the strong-RSA assumption. In more detail:

1. The Prover samples elements γ ← ±2`+ε, δ ← ±N̂ · 2ε and ρ← Z∗N0
and sends (D0, D̂) where:{

D0 = (1 +N0)γρN0 mod N2
0

D̂ = sγtδ mod N̂

2. The Verifier replies with e← ±2`.

3. The Prover sends (z1, z2, w) to the Verifier s.t.
z1 = γ + eα

z2 = δ + eβ

w = ρ · re mod N0

.

• Verification: Accept if the z1 ∈ ±2`+ε and

{
(1 +N0)z1wN = Ce0 ·D0 mod N2

0

sz1tz2 = Ĉe · D̂ mod N̂
.

8N̂ should be obtained as products of safe primes.
9In reality, for efficiency reasons, we prove much weaker statements that are sufficient for our purposes.

14

We remark that there is a discrepancy between the range-check of z1 and the desired range by a (multi-
plicative factor) of 2ε, referred to as the slackness-parameter; this is a feature of the proof since the range of α
is only guaranteed within that slackness-parameter. We now turn to the analysis of the NIZK (completeness,
honest verifier zero-knowledge & soundness).

It is straightforward to show that the above protocol satisfies completeness and (honest-verifier) zero-
knowledge with some statistical error. The hard task is showing soundness [12, 37, 53]. Following the standard
paradigm, we show soundness via so-called special soundness by extracting the secrets from two accepting
transcripts of the form (D0, D̂, e, z1, z2, w) and (D0, D̂, e

′, z′1, z
′
2, w

′) such that e 6= e′. Let ∆e, ∆z1 , ∆z2 denote
the relevant differences. We observe that if ∆e divides ∆z1 and ∆z2 (in the integers), then all the values can
be extracted without issue as follows: α and β are set to ∆z1/∆e ∈ ±2`+ε and ∆z2/∆e, respectively, and ρ can
be extracted from the equality (w · w′−1)N = (C0(1 +N0)−α)∆e mod N2

0 (which allows to compute a ∆e-th
root of w/w′ modulo N0 cf. Fact D.2). Thus, the soundness-proof boils down to showing that ∆e divides both
∆z1 and ∆z2 , unless the strong-RSA problem is tractable. Namely, there exists an algorithm S with black-box
access to the Prover that can solve the strong-RSA challenge t (the second Pedersen parameter).10

To elaborate further, it is assumed that S knows λ such that tλ = s mod N̂ and that λ is sampled from
[N̂/2]. Thus, without getting too deep into the details, if ∆e ��| ∆z = λ∆z1 + ∆z2 , then S can solve the strong-
RSA challenge by computing Euclid’s extended algorithm on ∆e and ∆z. On the other hand, if ∆e ��| ∆z1 or
∆z2 , we claim that ∆e | ∆z with probability at most 1/2. To see why, observe that there exists another equaly
likely λ′ 6= λ in [N̂/2] such that tλ = tλ

′
= s mod N̂ , because t has order ϕ(N̂)/4 ≈ 1

2 · (N̂/2) and λ was
sampled uniformly in [N̂/2]. Since the Prover cannot distinguish between the two λ’s given Ĉ = tλ = tλ

′
(in

a statistical information-theoretic sense), if ∆e ��| ∆z1 or ∆z2 , then the probability that ∆e divides λ∆z1 + ∆z2

is at most 1/2 (i.e. the Prover guessed correctly which of the λ’s the algorithm S sampled). In conclusion, the
probability that extraction fails is at most twice the probability of breaking strong-RSA, which is assumed to
be negligible.

Removing the computational assumption in the NIZK. There is a somewhat standard way [9, 10, 11]
to tweak the above NIZK to obtain an unconditional extractor (that does not rely on strong-RSA or any other
hardness assumption), at the expense of higher communication cost.11 Consider the relation

R = {(C0, N0;α, r) | C0 = (1 +N0)αrN0 mod N2
0 ∧ α ∈ ±2`}.

Notice that it’s the same as the previous relation except that we got rid of the Pedersen commitment. Then,
by removing D̂ and z2 from the protocol above, and restricting e ← {0, 1} (instead of ±2`), we obtain a
zero-knowledge proof of knowledge with unconditional extraction and soundness error 1/2. Using the same
notation as before, notice that the new protocol guarantees that ∆e divides ∆z1 since ∆e ∈ {−1, 1}, and thus
divisibility is guaranteed without any hardness assumption. On the downside, a malicious Prover may always
cheat with probability 1/2 and thus the protocol must be repeated to achieve satisfactory soundness.

2.8 Extension to t-out-of-n Access Structure
In this work we focus on n-out-of-n multi-party signing, and do not consider the more general t-out-of-n
threshold signing for t < n. Such a protocol can be derived from our protocol herein for the online variant using
Shamir secret-sharing, with relevant changes to the protocol’s components, similarly to Gennaro and Goldfeder
[38]. One proposal to extend our protocol to the t-out-of-n threshold case is outlined in Appendix F.1.

The same technique can also be applied to the non-interactive variant, but special care must be taken
regarding the preprocessed data that the parties store in memory. Specifically, each distinct set of ‘authorized’
parties (of size at least t) should generate fresh, independent preprocessed data. A party taking part in
different authorized sets must not use the same preprocessed data between the sets. We stress that signing
two distinct messages using dependent shared preprocessed data can enable an attack that reveals the secret
key.

10Parameter t is not completely random in ZN̂ since it’s a quadratic residue, but this does not affect the analysis.
11A similar approach appears in Lindell [50], from Boudot [9] and Brickell et al. [10]

15

3 Preliminaries
Notation. We let Z and N denote the set of integers and natural number, respectively. Upper case bold
letters X,S, . . . denote sets and we write 2X = {A s.t. A ⊆ X} for the power set of X. Secret values are
always denoted with lower case letters (p, q, . . .) and public values are usually denoted with upper case letters
(A,B,N, . . .). Arrow-accented letters ~A, ~ρ, . . . denote ordered sets, i.e. tuples. Lower case bold letters u,v, . . .
denote random variables. Furthermore, for a tuple of both public and secret values, e.g. an RSA modulus and
its factors (N, p, q), we use a semi-colon to differentiate public from secret values (so we write (N ; p, q) instead
of (N, p, q)). For a, b ∈ N, we write a | b for ‘a divides b’ and a ��| b for the negation. For N ∈ N, let QR(N)
denote the set of quadratic residues i.e. QR(N) = {a2 mod N s.t. a ∈ Z∗N}. We write gcd : N2 → N for
the greatest common divisor operation, and ϕ(·) denotes Euler’s totient function (not to be confused with φ
which denotes a group homomorphism in Appendix E).

Groups & fields. G denotes an elliptic-curve group and F is a field (typically we write Fq to specify that the
field has q elements). We write 1 ∈ G for the identity element in G. Typically, (G, g, q) will denote the group-
generator-order tuple for ECDSA. For t ∈ Z∗N , we write 〈t〉 = {tk mod N s.t. k ∈ Z} for the multiplicative
group generated by t. For ` ∈ Z, we let ±` denote the interval of integers {−(|`| − 1)/2, . . . , 0, . . . , (|`| − 1)/2}
if ` is odd and {−|`/2|+ 1, . . . , 0, . . . , |`/2|} otherwise.

Algorithms, polynomials & negligible functions. We use sans-serif letters (enc,dec, . . .) or calligraphic
(S,A, . . .) to denote algorithms. We write x ← E or x ← e for sampling x uniformly from a set E or as a
sample of e respectively, and x ← A or x ← gen for sampling x according to (probabilistic) algorithms A or
gen respectively. For g : N 7→ R we say that g is polynomially bounded and we write g ∈ poly if there exists
c ∈ N such that g(κ) ≤ κc for all-but-finitely-many κ’s. Furthermore, for ε : N 7→ R, we write ε ∈ 1/poly if 1/ε
is polynomially bounded (i.e. 1/ε ∈ poly). A function ν : N 7→ R is negligible if for every ε ∈ 1/poly it holds
that ν(κ) ≤ ε(κ) for all-but-finitely-many κ’s and we write negl for the set of negligible functions.

Distribution ensembles & indistinguishability. A distribution ensemble {vκ}κ∈N is a sequence of ran-
dom variables indexed by the natural numbers. We say two ensembles {vκ} and {uκ} are ε-indistinguishable
and we write {vκ}

ε≡ {uκ} if |Pr[D(1κ,uκ) = 1] − Pr[D(1κ,vκ) = 1]| ≤ ε(κ) for every efficient distinguisher
D, for all-but-finitely-many κ’s. Finally, we write SD(u,v) for the statistical distance of u and v, i.e.

SD(u,v) = max
W⊆supp(u)

|Pr[v ∈W]− Pr[u ∈W]|

3.1 Definitions
Definition 3.1. We say that N ∈ N is a Paillier-Blum integer iff gcd(N,ϕ(N)) = 1 and N = pq where p, q
are primes such that p, q ≡ 3 mod 4. For security parameter κ, we write (N,nrsa; p, q) ← sampleRSA(1κ) for
an algorithm that returns a Paillier-Blum modulus N with its factorization, consisting of two primes p, q of
bitlength b ∈ [nrsa, nrsa + 4) together with nrsa (the minimal bit-length of N as a function of κ).

Definition 3.2 (Paillier Encryption). Define the Paillier cryptosystem as the three tuple (gen, enc, dec) below.

1. Let (N,nrsa; p, q)← sampleRSA(1κ). Write pk = N and sk = (p, q).

2. For m ∈ ZN , let encpk(m; ρ) = (1 +N)m · ρN mod N2, where ρ← Z∗N .

3. For c ∈ ZN2 , letting µ = ϕ(N)−1 mod N ,

decsk(c) =

(
[cϕ(N) mod N2]− 1

N

)
· µ mod N.

Definition 3.3 (Pedersen Tuple). Define samplePed(1κ) to be the following parameters generating algorithm:

1. Let nrsa denote the RSA bit-length returned by sampleRSA(1κ)

16

2. Sample random safe primes p, q of bit length b ∈ [nrsa, nrsa + 4) s.t. (p−1)/2, (q−1)/2 are also prime.

3. Set N̂ = pq, sample t← QR(N̂) and λ← [ϕ(N̂)/4].

4. Return (N̂ , s, t;λ) for s = tλ mod N̂ .

Definition 3.4 (ECDSA). Let (G, g, q) denote the group-generator-order tuple associated with a given
ECDSA curve. We recall that elements in G are represented as pairs a = (ax, ay), where the ax and ay
are referred to as the projection of a on the x-axis, denoted ax = a|(·).

Parameters: Group-generating algorithm group(·) and keyed hash-function family F κ.

0. Return the group-order-generator tuple (G, g, q)← group(1κ) and hash function F ← F κ.

1. (X;x)← gen(G, g, q) such that x← Fq and X = gx.

2. For msg ∈M , let signx(m; k) = (r, γ−1(m+ rx)) ∈ F2
q, where γ ← F∗q and m = F(msg) and r = gγ |(·).

3. For (r, σ) ∈ F2
q, define vrfyX(m,σ) = 1 iff r = (gm ·Xr)σ

−1 |(·).

3.2 NP-relations
Schnorr. For group-generator-order tuple (G, g, q), the following relation verifies that the prover knows the
exponent of the group element X ∈ G with respect to g. For PUB0 of the form (G, g, q), define

Rsch = {(PUB0, X;x) | X = gx} .

Dlog with El-Gamal commitment. For public parameter (G, g, q), the following relation verifies that the
discrete log of Y base h is equal to the discrete log base g of the El-Gamal plaintext associated with ciphertext
(L,M) and public key X. For PUB0 of the form (G, g), define

Relog = {(PUB0, X, h,A,B, Y ;x, α) | X = hx ∧ A = gα ∧ B = gx · Y α}.

Paillier encryption in range with El-Gamal commitment. For parameters (G, g, q,N0) consisting of
the group-generator-order tuple and the Paillier public key N0, the following relation verifies that the plaintext
value of Paillier ciphertext C is equal to the secret value of El-Gamal commitment (A, Y,X) ∈ G3 in range I.
For PUB1 of the form (G, g, q,N0), Define

Renc-elg =
{

(PUB1, I, C, Y,A,X;x, ρ, a) | x ∈ I ∧ C = (1 +N0)xρN0 ∈ Z∗N2
0
∧ A = ga ∧ X = gx · Y a

}
.

Paillier affine operation in range with group commitment. For parameter (G, g, q,N0, N1) consisting
of the group-generator-order tuple and the Paillier public keys N0, N1, the following relation verifies that a
Paillier ciphertext C ∈ Z∗

N2
0
was obtained as an affine-like transformation on K such that the multiplicative

coefficient (i.e. x) is equal to the exponent of X ∈ G in the range I, and the additive coefficient (i.e. y) is
equal to the plaintext value of F ∈ ZN1

and resides in the range J . For PUB2 of the form (G, g, q,N0, N1),
define Raff-g to be all tuples (PUB2, I,J , D,K, F,X;x, y, r, ρ) such that

(x, y) ∈ I × J ∧ D = Kx · (1 +N0)yrN0 ∈ Z∗N2
0

∧ F = (1 +N1)yρN1 ∈ Z∗N2
1
∧ X = gx ∈ G

3.2.1 Auxiliary Relations

Paillier-Blum modulus. The following relation verifies that a modulus N is coprime with ϕ(N) and is the
product of exactly two suitable odd primes, where ϕ(·) is the Euler function.

Rmod =
{

(N ; p, q) | p, q ∈ PRIMES ∧ p, q ≡ 3 mod 4

∧ N = pq ∧ gcd(N,ϕ(N)) = 1
}
.

17

Small-factor modulus. This relation verifies that a modulus N can be factored into two ‘small’ numbers.

Rfac =
{

(`,N ; p, q) | N = pq ∧ p, q ∈ ±
√
N · 2`

}
.

Pedersen parameters. This relation verifies that s ∈ Z∗N belongs to the group generated by t ∈ Z∗N .

Rprm =
{

(N, s, t;λ) | s = tλ mod N ∧ t ∈ Z∗N
}
.

3.2.2 Relations for Accountability

Paillier special decryption in the exponent. For parameter (G, g, q,N0) consisting of the group-
generator-order tuple and the Paillier public keys N0, the following relation verifies that the plaintext-value
of the Paillier ciphertext Kx · D ∈ Z∗

N2
0
, where x is the discrete log of X with respect to g, is equal to the

discrete logarithm of S with respect to h. Letting PUB1 = (G, g, q,N0), define Rdec to consist of all tuples of
the form (PUB1, I,J ,K,X,D, S, h; z, x, ρ) such that

(hz, gx) = (S,X) ∈ G2 ∧ (1 +N0)z · ρN = Kx ·D ∈ Z∗N2
0
∧ (x, z) ∈ I × J .

Remark 3.5. In what follows, to alleviate notation when no confusion arises, we omit writing the public
parameters described by PUB∗.

3.3 Cryptographic Tools
Let sRSA, DDH and DCR denote the following distributions. (N,C)← sRSA(1κ) for (N, . . .)← samplePed(1κ)
and C ← Z∗N , (ga, gb, gab+cz, z) ← DDH(1κ) for z ← {0, 1} and a, b, c ← Fq and (G, g, q) ← group(1κ) for a
group-generating algorith group(·), and (N, (1+N)z ·ρN mod N2, z)← DCR(1κ) for (N, . . .)← sampleRSA(1κ),
z ← {0,m} and ρ,m← Z∗N .

Definition 3.6. We say that strong RSA, DDH and DCR hold true if for every PPTM A there exists ν ∈ negl
such that the probability of following events is upper-bounded by ν(κ), 1/2+ν(κ), and 1/2+ν(κ), respectively.

1. (N,C)← sRSA(1κ) and (m, e /∈ {−1, 1})← A(1κ, N,C) such that me = C mod N.

2. (A,B,C, z)← DDH(1κ) and β ← A(1κ, A,B,C) such that z = β.

3. (N,C, z)← DCR(1κ) and β ← A(1κ, N,C) such that z = β

FIGURE 2 (ECDSA Enhanced Unforgeability Experiment EnhancedECDSA(A, d, 1κ))

0. Compute the group-order-generator tuple (G, q, g)← group(1κ) and hash function F ← F κ.

1. Generate a key-pair (x← Fq, X = gx).

2. Sample ~Ri = (Ri,j = gk
−1
i,j ← G)j≤d.

3. For i = 1 . . . d(κ)

(a) Choose mi ← A(G, g, q,F , X, ~Ri,m1, σ1, . . . ,mi−1, σi−1)

(b) Compute σi = signx(mi; ki).

4. A outputs (m,σ) on input (G, g, q,F , X, ~Ri,m1, σ1, . . . ,md, σd).

• Output: EnhancedECDSA(A, d, 1κ) = 1 if vrfyX(m,σ) = 1 and m /∈ {mi}i and 0 otherwise.

Figure 2: ECDSA Enhanced Unforgeability Experiment EnhancedECDSA(A, d, 1κ)

18

3.3.1 Enhanced Existential Unforgeability of ECDSA

Definition 3.7 (Enhanced Unforgeability). We say that a signature scheme (gen, sign, vrfy) is enhanced exis-
tentially unforgeable if there exists a negligible function ν(·) such that for every A and every d ∈ poly it holds
that Pr[EnhancedECDSA(A, d, 1κ) = 1] ≤ ν(κ), where EnhancedECDSA(·) denotes the enhanced unforgeability
game from Figure 2.

3.4 Sigma-Protocols
In this section, we define zero-knowledge protocols with a focus on interactive three-move protocols, known
as sigma-protocols. In Section 3.4.1, we compile these protocols using the random oracle via the Fiat-Shamir
heuristic to generate non-interactive proofs. We define two notions of sigma-protocols. For security, we use
the standard notions of completeness, honest-verifier zero-knowledge (HVZK), and soundness, which will be
used in the security analysis of the protocol. Additionally, we define the notion of ‘special’ soundness, which
allows for the extraction of the witness from two suitable protocol transcripts. This notion will also be useful
in the later security analysis.

Definition 3.8. A sigma-protocol Π for relation R is a tuple (P1,P2,V1,V2) of PPT algorithms such that

• P1 takes input κ = |x| and random input τ and outputs A, and V1 outputs its random input e.

• P2 takes input (x,w, τ, e) and outputs z, and V2 takes (x,A, e, z) and outputs a bit b deterministically.

Security properties:

– Completeness. If (x,w) ∈ R then with overwhelming probability over the choice of e← V1, A← P1(τ)
and z ← P2(x,w, τ, e), it holds that V2(x,A, e, z) = 1.

– Soundness. If x is false with respect to R (i.e (x,w) /∈ R for all w), then for any PPT algorithm P∗ and
every τ∗ ∈ {0, 1}∗ and A, the following holds with overwhelming probability over e← V1 (as a function
of κ): If z ← P∗(x, τ∗, A, e) then V2(x,A, e, z) = 0.

– HVZK. There exists a simulator S such that (A, e, z) ← S(x) and V2(x,A, e, z) = 1 for every x, with
overwhelming probability over the random coins of S. Furthermore, the following distributions are
statistically indistinguishable. For (x,w) ∈ R:

∗ (A, e, z) where e← V1 and A← P1(x,w, τ), and z = P2(x,w, τ, e).
∗ (A, e, z) where e← V1 and (A, z)← S(x, e).

We use the above notion of sigma-protocol for proving the well-formedness of all but three of the NP-
relations in Section 3.2, namely all but Rfac, Renc-elg, and Raff-g. For these three remaining relations, we
use a variant of the sigma-protocol where all algorithms take a setup parameter as input (see the definition
below). The setup parameter in Definition 3.9 is assumed to be generated by an algorithm S. As specified
in the definition, the algorithm S is only trusted for the property of special soundness, not for completeness
or HVZK. By instructing the verifier to run S, the resulting sigma-protocol is secure without additional trust
assumptions. We further comment on the specific format of the setup parameter in Remark 3.10.

Definition 3.9. A sigma-protocol Πσ with setup σ and special soundness for relation R is a tuple
(S,P1,P2,V1,V2) of PPT algorithms satisfying the same functionalities and security properties of the sigma-
protocol definition (w/o setup and special soundness), with the following changes:

1. Setup algorithm S initially generates σ which is a common input to all other algorithms.

2. Compl. & HVZK are adapted to hold with respect to a fixed σ.

3. Soundness property is replaced with:

– Special Soundness. There exists an efficient extractor E such that for any x, P∗ and τ∗ ∈ {0, 1}∗
the following holds with overwhelming probability over the choice of σ ← S: If (A, e, z), (A, e′, z′) ←
P∗(x, τ∗, σ) such that V2(x,A, e, z) = V2(x,A, e′, z′) = 1 and e 6= e′, then for w′ ← E(x,A, e, e′, z, z′) it
holds that (x,w′) ∈ R.

19

Remark 3.10. Our main sigma-protocols for Rfac, Renc-elg, and Raff-g (see Appendices A.2 to A.4) require a
setup parameter σ = (N̂ , s, t, ψprm). This consists of an RSA modulus N̂ , Pedersen parameters s, t ∈ Z∗

N̂
, and

a non-interactive zero-knowledge proof ψprm validating that (N̂ , s, t) ∈ Rprm (see Section 3.4.1). We denote
the respective protocols as Πfac

σ , Πenc-elg
σ , and Πaff-g

σ .

Notation 3.11. In our protocol, the setup parameter is generated by the Verifier (the intended recipient of
the proof). The Prover generates distinct proofs (one for each Verifier using their personal σ) to prove the
same statement x to multiple verifying parties. Therefore, in the sequel, we incorporate the setup parameter
σ in the protocol description. We write Π∗j for the corresponding protocol using Pj ’s setup parameter (acting
as the Verifier) for ∗ ∈ {fac, enc-elg, aff-g}, and omit mentioning the algorithm S.

3.4.1 ZK-Module

Next, we present how to compile the protocols above using a random oracle via the Fiat-Shamir heuristic.
To generate a proof, the Prover computes the challenge e by querying the oracle on a suitable input, which
incorporates the theorem-statement x and the first message A. The Prover then completes the transcript
by computing the last message with respect to e and communicates the entire transcript as the proof. The
Verifier later accepts the proof if it is a valid transcript of the underlying sigma-protocol and e is well-formed
(verified by querying the oracle as the Prover did).

Formally, we define the compiler via the ZK-Module from Figure 3. Notice that, in addition to the standard
prove/verify operations, the ZK-Module contains a ‘commit’ operation for generating the first message A← P1

of the ZK-Proof. This will be useful for the signature protocol later, as the parties will be instructed to
generate A ahead of time, forcing the adversary to commit to the first message of the (future) proof. This
enables efficient extraction in the security analysis without relying on the forking lemma.

The properties of completeness, zero-knowledge, soundness and special soundness are analogously defined
for the resulting proof system.

FIGURE 3 (ZK-ModuleM for sigma-protocols)

Parameter: Hash Function H : {0, 1}∗ → {0, 1}h.

• On input (com,Π, 1κ), interpret Π = (P1, . . .):

sample τ from the prescribed domain, compute A = P1(τ, 1κ) and output (A; τ).

• On input (prove,Π, aux, x;w, τ), interpret Π = (P1,P2, . . .):

compute A = P1(τ) and e = H(aux, x, A) and z = P2(x,w, τ, e) and output (A, e, z).

• On input (vrfy,Π, aux, x, ψ), interpret Π = (. . . ,V2) and ψ = (A, e′, z):

output 1 if V2(x,A, e′, z) = 1 and e′ = H(aux, x, A), and 0 otherwise.

Figure 3: ZK-ModuleM for sigma-protocols

Notation 3.12. Sometimes we omit writing the randomness τ in the tuple (prove,Π, aux, x;w, τ), indicating
that fresh randomness is sampled.

3.5 Communication Model and Broadcast
We assume some familiarity with the UC framework and we refer the reader for to [16] for a reminder.
Communication between machines over a network is modeled using subroutine-machines that represent the
behavior of the actual communication network. It is assumed that all parties are connected by point-to-point
authenticated channels as well as a verifiable broadcast channel. In the protocol description, messages intended
for a specific party are sent using the point-to-point channel, while messages intended for broadcast are sent
over the broadcast channel. However, for simplicity, the security analysis only uses the broadcast channel,

20

and all messages are addressed to all parties. This convention simplifies the identification process for faulty
parties by eliminating ambiguity between faulty messages (e.g. bad NIZK) and missing messages.

Communication abstraction for security analysis. In the security analysis, we assume for simplicity
that the parties are connected via an authenticated, synchronous broadcast channel. This means that the
computation proceeds in rounds, and each message sent by any party in a given round is made available to
all parties in the next round. Formally, synchronous communication is modeled within the UC framework by
Fsyn, the ideal synchronous communication functionality from [15, Section 7.3.3]. The broadcast property is
modeled by having Fsyn require that all messages are addressed to all parties.

3.5.1 Realizing ‘weak’ broadcast in the point-to-point model.

In many applications that forgo accountability, a weaker, non-unanimous version of the broadcast channel is
implemented using an authenticated point-to-point network, where some honest parties can output a special
abort symbol, meaning consensus is not always reached among all honest parties. This approach is advan-
tageous because it adds minimal overhead in the point-to-point model. However, it sacrifices accountability,
as consensus is essential for accountability, and achieving it requires full broadcast, which incurs significant
overhead in the point-to-point model [26]. Additionally, consensus is crucial during key generation and key
refresh, so ‘weak’ broadcast is not a suitable option in these cases.

Given the popularity of this technique, we outline it here for the reader’s benefit. However, it’s important
to note that the analysis it incurs is beyond the scope of this paper; we provide this discussion solely for
informational purposes.

Informal description of weak broadcast in P2P network. The basic idea for achieving ‘weak’ broadcast
is to insert an additional round between rounds i − 1 and i, during which each party forwards all incoming
messages from round i− 1 to the other parties. If any inconsistencies are detected, the parties are instructed
to report the culprit and halt. Under these instructions, all non-aborting parties that proceed to round i are
in agreement on the data they received in round i.

The aforementioned process incurs a communication complexity penalty proportional to the size of the
incoming messages and a twofold increase in round complexity to account for the interlaced rounds. However,
these penalties can be mitigated if (i) a collision-resistant hash function is used to compress the data, and (ii)
some (or perhaps all) of the rounds can be ‘piggybacked’ so that the interlaced round between rounds i and
i + 1 is combined with round i + 1. It is important to note that optimization (ii) does not preserve security
generically and needs to be implemented carefully, ensuring that the messages for round i + 1 can be sent
optimistically, even before partial consensus is reached on the incoming messages in round i.

Further references and a formal discussion can be found in [43] and subsequent works.

4 Protocol Description
In this section, we present our ECDSA protocol(s), which consist of four phases. The first phase is for
generating the (shared) key, which is run once (Figure 6). The second phase refreshes the secret key shares
and generates the auxiliary information required for signing (Figure 7), including Paillier keys, Pedersen
parameters, etc. The third phase preprocesses signatures before the messages are known (Figure 8). Finally,
the fourth phase calculates and communicates the signature shares once the message to be signed is known
(Figure 10).

Online vs non-interactive signing. We present two variants of our protocol, distinguished by their modes
of operation: one where signature generation is performed non-interactively, and the other where it is fully
online. The fully online mode of operation of the protocol is described in Figure 4, while the non-interactive
mode of operation is described in Figure 5.
Remark 4.1 (Identifiers & Concurrency). We note that the protocol contains three kinds of identifiers: the
session identifier sid, the epoch identifier epid, and the signing session identifier sgid. The session identifier
sid is tied to the identity of the parties, the mathematical parameters, and the public key. The epoch identifier
epid is tied to the key-refresh epoch and the auxiliary key material of the parties for that epoch (e.g., Paillier

21

FIGURE 4 (Threshold ECDSA: Online Signing)

• Key-Generation: Upon activation on input (keygen, sid, i) do:

1. Run the key generation phase from Figure 6 and obtain ~X0 and public key X.

2. Run the auxinfo phase from Figure 7 on input (aux-info, sid, ~X0, i) and do:

– When obtaining output (sid, rid, ~X∗, ~N,~s,~t) and (xi, yi, pi, qi), set epid = (sid, rid, ~X∗, ~N,~s,~t)

3. Output (pub-key, sid,X)

• Signing: On input (sign, epid, sgid, i,msg), do:

1. Run the pre-signing phase from Figure 8 on input (pre-sign, epid, 0, i).

2. Set m = F(msg) and run the signing phase from Figure 10 on input (sign, epid, sgid, 0, i,m).

Obtain (σ,Q), where Q = ∅ if σ is a valid signature, or Q ∈ P is the exposed corrupted party.

3. Output (sig-string, sid, sgid,msg, σ,Q)

• Key-Refresh: On input (key-refresh, sid, ~X, i) for ~X s.t. epid = (. . . , ~X, . . .),

1. Run the auxinfo phase from Figure 7 on input (aux-info, sid, ~X, i).

2. Upon obtaining output (sid, rid, i, ~X∗, ~N,~s,~t) and (xi, yi, pi, qi), do:

– Erase all presigning and auxiliary info data of the form (epid, . . .).
– Reasign epid = (sid, rid, ~X∗, ~N,~s,~t) and

Error. In the event of an error during key refresh, ignore all future invocations of (key-refresh, . . .).

Figure 4: Threshold ECDSA: Online Signing

public keys). The signing session identifier sgid is tied to the message being signed, and two different signature
sessions for the same message are distinguished by the sgid. Within a specific session, identified by the sid, it
is assumed that the key-refresh phase is executed sequentially, meaning no other protocol components for this
sid, including another concurrent execution of the key-refresh, are executed while the key-refresh is ongoing.
No other limitations are imposed on the concurrency of the other components.

FIGURE 5 (Threshold ECDSA: Non-Interactive Signing)

• Key-Generation: Same as in Figure 4.

• Pre-Signing: On input (pre-sign, epid, L, i), do:

1. Erase all pre-signing data (epid, . . .).

2. Run the pre-signing phase from Figure 8 concurrently on inputs {(pre-sign, epid, `, i)}`∈[L]

– When obtaining output standby.

• Signing: On input (sign, epid, sgid, `, i,msg), set m = F(msg) and do:

1. Run the signing phase from Figure 10 on input (sign, epid, sgid, `, i,m).

Obtain (σ,Q), where Q = ∅ if σ is a valid signature, or Q ∈ P is the exposed corrupted party.

2. Output (sig-string, sid, sgid,msg, σ,Q)

• Key-Refresh: Same as in Figure 4.

Figure 5: Threshold ECDSA: Non-Interactive Signing

Remark 4.2 (Aborts). The protocol description instructs the parties to halt in case of an abort. However,
the parties can be reactivated when they receive instructions to do so. The only assumptions we impose in
such cases are (i) any reactivation uses a different identifier, and (ii) if the key-refresh resulted in an error, the
key-refresh phase is not executed again. Therefore, any reattempted key generation is initiated with a new sid

22

compared to the aborted key generation, and any reattempted signature session is initiated with a new sgid
compared to the aborted signing session. Additionally, honest parties will not participate in any reattempted
key-refresh. It goes without saying that the parties are instructed to use fresh randomness in every attempted
session.
Remark 4.3 (Hash Function H). Our protocol is parametrized by a hash function H, modelled in the security
analysis as a random oracle, which is invoked to obtain a hash values in domains of different length (e.g. the
finite field with q elements or an `-size stream of bits). Formally, this is captured by introducing multiple hash
functions of varying length. However, to alleviate notation, we simply write H everywhere.

Nota Bene. Hereafter, let I = ±2`, J = ±2`
′
, Iε = ±2`+ε and Jε = ±2`

′+ε denote integer intervals where `,
`′ and ε are fixed parameters (to be determined by the analysis—see Appendix C.1 for concrete parameters).
We represent integers modulo N in the interval ±N (rather than using the canonical representation); this
convention is crucial to the security analysis.12

4.1 Key Generation

FIGURE 6 (ECDSA Key-Generation)

Round 1.

Upon activation on input (keygen, sid, i), interpret sid = (. . . ,G, q, g,P), and do:

– Sample xi ← Fq and set Xi = gxi .
– Sample ρi ← {0, 1}κ and compute (Ai, τ)←M(com,Πsch).
– Sample ui ← {0, 1}κ and set Vi = H(sid, i, ρi, Xi, Ai, ui).

Broadcast (sid, i, Vi).

Round 2.

When obtaining (sid, j, Vj) from all Pj , send (sid, i, ρi, Xi, Ai, ui) to all.

Round 3.

1. Upon receiving (sid, j, ρj , Xj , Aj , uj) from Pj , do:
– Verify H(sid, j, ρj , Xj , Aj , uj) = Vj .

2. When obtaining the above from all Pj , do:
– Set ρ = ⊕jρj .
– Compute ψi =M(prove,Πsch, (sid, i, ρ), Xi;xi, τ).

Send (sid, i, ψi) to all Pj .

Output.

1. Upon receiving (sid, j, ψj) from Pj , interpret ψj = (Âj , . . .), and do:

– Verify Âj = Aj .
– VerifyM(vrfy,Πsch, (sid, j, ρ), Xj , ψj) = 1.

2. When passing above verification from all Pj , output X =
∏
j Xj .

Errors. In case of failure, output the failed verification together with its index (i.e. the corrupted party), and halt.

Stored State. Store the following: ~X = (X1, . . . , Xn) and xi.

Figure 6: ECDSA Key-Generation

Next, we describe the key-generation phase. At its core, the key-generation consists of each party Pi ∈ P
sampling xi ← Fq and sending the public-key share Xi = gxi to all other parties, together with a Schnorr proof

12The reason is that the Paillier plaintexts are guaranteed to lie within a range that includes negative numbers. Each plaintext,
say m, must thus be represented as an integer in ±N = {−(N − 1)/2, . . . , (N − 1)/2}; otherwise, even correctness may fail, as
−1 6= N − 1 mod q for m = N − 1 in the canonical representation. This discrepancy may also plausibly lead to attacks.

23

of knowledge of the exponent. If no inconsistencies are detected, the ECDSA public key is set to X =
∏
j Xj

and each Pi the public key-shares (X1, . . . , Xn) as well as their own secret key-share xi. See Figure 6.

Remark 4.4. The careful reader will notice that the proof for relation Rsch is done interactively by producing
the first message of the proof in round 1, and then finalizing the proof in round 3 using the unpredictable value ρ
resulting from a coin-toss. This allows us to generate the proof interactively, which enables efficient extraction
in the security proof. A similar technique is used for the proof of knowledge of the parties’ rerandomized
public key shares in Figure 7.

4.2 Key-Refresh & Auxiliary Information
At a very high level, the auxinfo and key-refresh phase proceeds as follows:

1. Pi samples a Paillier modulus Ni and Pedersen parameters (N̂i, si, ti).

2. Pi samples a secret sharing (xi,1, . . . , xi,n) of 0, and computes ~Xi = (gxi,j)nj=1.

3. Pi samples ephemeral DH keys (yi,1, . . . , yi,n), sets ~Y i = (gyi,j)nj=1, and broadcasts ~Xi, ~Y i, Ni, N̂i, si, ti.

4. Pi sends Ck,i = xi,k +H(sid, rid, i, Y
yi,k
k,i) mod q to Pk.

In the end, each Pi updates their private key-share x∗i = xi+
∑n
`=1 x`,i mod q, as well as the public key-shares

of all parties X∗j = Xj ·
∏n
`=1X`,j . They also store the new tuples (N1, N̂i, s1, t1), . . . , (Nn, N̂n, sn, tn).

ZK Proofs & Verification. For malicious security, the aforementioned process is augmented as follows:

(a) ZKP: Nj is a Paillier-Blum Modulus.

(b) ZKP: Nj can be factored into two factors no larger than
√
N · 2`+ε.

(c) ZKP: sj belongs to the multiplicative group generated by tj in Z∗
N̂j
.

(d) ZKP: Schnorr proof of knowledge for the discrete logarithms of Xj,1, . . . , Xj,n.

(e) The tuple of group elements (Xj,1, . . . , Xj,n) satisfies
∏n
j=1Xi,j = id.

(f) The triple (Yi,j , Yj,i, Ci,j) encodes the discrete logarithm of Xj,i, for all j 6= i.

The steps described above are interleaved to obtain the three-round protocol from Figure 7.

All of the items above are fairly intuitive. Each party is simply proving to the others that the Paillier and
Pedersen parameters are well-formed and that they know the discrete logarithm of the X-group elements used
to rerandomize the secret ECDSA shares.

A comment on the DH tuples. The attentive reader will notice that when rerandomizing their
shares, the parties establish pairwise secret keys ρi,j , ρj,i ∈ Fq derived from the Diffie-Hellman (DH) tu-
ples (Yi,j , Yj,i, g

yi,jyj,i). Specifically, these keys are computed as ρi,j = H(sid, rid, i, gyi,jyj,i) and ρj,i =
H(sid, rid, j, gyi,jyj,i). The parties then exchange their random shifts xi,j (from Pi to Pj) and xj,i (from
Pj to Pi) by transmitting the one-time pads Cj,i = xi,j + ρi,j mod q and Ci,j = xj,i + ρj,i mod q, respec-
tively. Under the DDH assumption, it is straightforward to see that the ciphertexts Cj,i and Ci,j do not leak
any additional information to an attacker beyond what Xi,j and Xj,i reveal, provided that both Pi and Pj are
honest. However, if either party is corrupted, both xi,j and xj,i are revealed to the attacker—an outcome that
aligns with the intended purpose of these shares, as they are meant to be disclosed to the corrupted party.

In a previous version of the protocol, the Ci,j values were calculated as Paillier encryptions using the newly
obtained keys, i.e., Ci,j = encNi(xj,i). This change was not motivated by a security concern, and we provide
further comments in Appendix F.2.

24

FIGURE 7 (Auxiliary Info. & Key Refresh in Three Rounds)

Round 1.

On input (aux-info, sid, i), do:

(a) Sample Paillier key (Ni, nrsa; pi, qi)← sampleRSA(1κ).
(b) Sample Pedersen parameters (N̂i, si, ti;λi)← samplePed(1κ)

Compute ψi =M(prove,Πprm, (sid, i), (N̂i, si, ti);λi).
(c) Sample ephemeral DH keys yi,1, . . . , yi,n ← Fq . Set ~Y i = (Yi,j = gyi,j)j .
(d) Sample xi,1, . . . , xi,n ← Fq subject to

∑
j xi,j = 0. Set ~Xi = (Xi,j = gxi,j)j .

(e) Sample (Ai,j , τj)←M(com,Πsch), for j ∈ P . Set ~Ai = (Ai,j)j .

(f) Sample ridi, ui ← {0, 1}κ and compute Vi = H(sid, i, ~Xi, ~Y i, ~Ai, Bi, Ni, N̂i, si, ti, ψi, ridi, ui).

Broadcast (sid, i, Vi).

Round 2.

When obtaining (sid, j, Vj) from all Pj , send (sid, i, ~Xi, ~Y i, ~Ai, Bi, Ni, N̂i, si, ti, ψi, ridi, ui) to all.

Round 3.

1. Upon receiving (sid, j, ~Xj , ~Y j , ~Aj , Bj , Nj , N̂j , sj , tj , ψj , ridj , uj) from Pj , do:
– Verify Nj , N̂j ≥ 2nrsa and

∏
kXj,k = idG andM(vrfy,Πprm, (sid, j), (N̂j , sj , tj), ψj) = 1 .

– Verify H(sid, j, ~Xj , ~Y j , ~Aj , Bj , Nj , N̂j , sj , tj , ψj , ridj , uj) = Vj .

2. When passing above verification for all Pj , set rid = ⊕jridj and do:

– Compute ψ′i =M(prove,Πmod, (sid, rid, i), Ni; (pi, qi))

– For all j 6= i, compute ψj,i =M(prove,Πfac
j , (sid, rid, i), (Ni, κ); pi, qi).

– For all j 6= i, set ρi,j = H(sid, srid, i, Y
yi,j
j,i) ∈ Fq and Cj,i = xi,j + ρi,j mod q.

– For j ∈ P , and ψ̂j,i =M(prove,Πsch, (sid, rid, i), Xi,j ;xi,j , τj).

Broadcast (sid, i, ψ̂j,1, . . . , ψ̂j,n) and send (sid, i, ψ′i, ψj,i, Cj,i) to each Pj .

Output.

1. Upon receiving (sid, j, ψ′j , ψi,j , Ci,j , ψ̂j,1, . . . , ψ̂j,n) from Pj : do:
(a) Set ρj,i = H(sid, srid, j, Y

yi,j
j,i) and xj,i = Ci,j − ρj,i mod q. Verify gxj,i = Xj,i.

In case of error, broadcast (sid, i,Pj , yi,j) and halt. (decryption error)
(b) VerifyM(vrfy,Πmod, (sid, rid, j), Nj , ψ

′
j) = 1 andM(vrfy,Πfac

i , (sid, rid, j), (Nj , κ), ψi,j) = 1.

(c) For k ∈ P , parse ψj,k = (Âj,k, . . .), verify Âj,k = Aj,k andM(vrfy,Πsch, (sid, rid, j), Xj,k, ψj,k) = 1.

2. When passing above verification for all Pj , do:
– Set x∗i = xi +

∑
j xj,i mod q.

– Set X∗k = Xk ·
∏
j Xj,k for every k.

Output (sid, rid, i, ~X∗ = (X∗k)k, ~N = (Nj , N̂j)j , ~s = (sj)j ,~t = (tj)j).

Errors. In case of failure, output the failed verification together with its index (i.e. the corrupted party), and halt.

When obtaining (sid, k,Pj , yj,k) from Pk in case of decryption error, do:

(a) Set ρk,j = H(sid, srid, k, Y
yj,k
k,j) and xk,j = Cj,k − ρk,j mod q.

(b) Check that gxk,j 6= Xk,j .

Stored State. Store x∗i , pi, qi.

Figure 7: Auxiliary Info. & Key Refresh in Three Rounds

25

FIGURE 8 (ECDSA Threshold Pre-Signing)

Recall that Pi’s secret state contains xi, pi, qi such that Xi = gxi and Ni = piqi.

Round 1.

On input (pre-sign, epid, `, i), interpret epid = (. . . ,G, q, g,P , rid, ~X, ~N,~s,~t), and do:

– Sample ki, γi ← Fq, ρi, νi ← Z∗Ni and set Gi = enci(γi; νi), Ki = enci(ki; ρi).

– Sample Yi ← G and ai, bi ← Fq and set (Ai,1, Ai,2) = (gai , Y aii gki), (Bi,1, Bi,2) = (gbi , Y bii gγi).
– Calculate for every j 6= i:

ψ0
j,i =M(prove,Πenc-elg

j , (epid, i), (Iε,Ki, Yi, Ai,1, Ai,2); (ki, ρi, ai))

ψ1
j,i =M(prove,Πenc-elg

j , (epid, i), (Iε, Gi, Yi, Bi,1, Bi,2); (γi, νi, bi))

Broadcast (epid, i,Ki, Gi, Yi, Ai,1, Ai,2, Bi,1, Bi,2) and send (epid, i, ψ0
j,i, ψ

1
j,i) to each Pj .

Round 2.

1. Upon receiving (epid, j,Kj , Gj , Yj , Aj,1, Aj,2, Bj,1, Bj,2, ψ
0
i,j , ψ

1
i,j) from Pj , do:

– VerifyM(vrfy,Πenc-elg
i , (epid, j), (Iε,Kj , Yj , Aj,1, Aj,2), ψ0

i,j) = 1.

– VerifyM(vrfy,Πenc-elg
i , (epid, j), (Iε, Gj , Yj , Bj,1, Bj,2), ψ1

i,j) = 1.

2. When passing above verification for all Pj , do:
(a) Set Γi = gγi and ψi =M(prove,Πelog, (epid, i), (Γi, g, Bi,1, Bi,2, Yi); (γi, bi)).
(b) For every j 6= i, sample ri,j , si,j , r̂i,j , ŝi,j ← ZNj , βi,j , β̂i,j ← J and compute:

– Dj,i = (γi �Kj)⊕ encj(−βi,j , si,j) and Fj,i = enci(βi,j , ri,j).
– D̂j,i = (xi �Kj)⊕ encj(−β̂i,j , ŝi,j) and F̂j,i = enci(β̂i,j , r̂i,j).
– ψj,i =M(prove,Πaff-g

j , (epid, i), (Iε,Jε, Dj,i,Kj , Fi,j ,Γi); (γi, βi,j , si,j , ri,j)).

– ψ̂j,i =M(prove,Πaff-g
j , (epid, i), (Iε,Jε, D̂j,i,Kj , F̂i,j , Xi); (xi, β̂i,j , ŝi,j , r̂i,j)).

Send (epid, i,Γi, ψi, Dj,i, Fj,i, D̂j,i, F̂j,i, ψj,i, ψ̂j,i) to each Pj .

Round 3.

1. Upon receiving (epid, j,Γj , ψj , Di,j , Fi,j , D̂i,j , F̂i,j , ψi,j , ψ̂i,j) from Pj , do
– VerifyM(vrfy,Πaff-g

i , (epid, j), (Iε,Jε, Di,j ,Ki, Fj,i,Γj), ψi,j) = 1.
– VerifyM(vrfy,Πaff-g

i , (epid, j), (Iε,Jε, D̂i,j ,Ki, F̂j,i, Xj), ψ̂i,j) = 1.
– VerifyM(vrfy,Πelog, (epid, j), (Γj , g, Bj,1, Bj,2, Yj), ψj) = 1.

2. When passing above verification for all Pj , set Γ =
∏
j Γj and ∆i = Γki and Si = Γχi , and do:

– For every j 6= i, set αi,j = deci(Di,j) and α̂i,j = deci(D̂i,j) and{
δi = γiki +

∑
j 6=i(αi,j + βi,j) mod q

χi = xiki +
∑
j 6=i(α̂i,j + β̂i,j) mod q

.

– Calculate ψ′i =M(prove,Πelog, (epid, i), (∆i,Γ, Ai,1, Ai,2, Yi); (ki, ai)).

Send (epid, i, δi, Si,∆i, ψ
′
i) to each Pj .

Output.

1. Upon receiving (epid, j, δj , Sj ,∆j , ψ
′
j) from Pj , do:

– VerifyM(vrfy,Πelog, (epid, j), (∆j ,Γ, Aj,1, Aj,2, Yj), ψ
′
j) = 1.

2. When passing above verification for all Pj , set δ =
∑
j δj , and do:

– Verify gδ =
∏
j ∆j and Xδ =

∏
j Sj . In case of failure, report a red alert and go to Figure 9.

– Output
(
epid, `, i,Γ, ki/δ, χi/δ, (∆

δ−1

j , Sδ
−1

j)j∈P
)
.

Errors. In case of failure, output the failed verification together with its index (i.e. the corrupted party), and halt.

Stored State. Store ~X,~Y , ~N , ~s, ~t and (xi, pi, qi).

Figure 8: ECDSA Threshold Pre-Signing

26

4.3 Presigning
Next, we present the presigning phase (Figure 8). Recall that at the end of the auxinfo phase, each Pi has a
Paillier encryption scheme (enci, deci) with public key Ni, as well as Pedersen parameters (N̂i, si, ti ∈ ZNi).
Further, recall that an ECDSA signature has the form (r = gγ |(·), σ = (m+rx) ·γ−1), where Pi has an additive
share xi of x.

Presigning Overview. The protocol proceeds as follows (each numbered item below denotes a round):

1. Pi generates local shares ki and γi, computes Paillier ciphertexts Ki = enci(ki) and Gi = enci(γi), under
its own key, and broadcasts (Ki, Gi).

2. For each j 6= i, party Pi samples βi,j , β̂i,j ← J and computes Dj,i = encj(γi ·kj−βi,j) and D̂j,i = encj(xi ·
kj − β̂i,j) using the homomorphic properties of Paillier. Furthermore, Pi encrypts Fj,i = enci(βi,j),
F̂j,i = enci(β̂i,j), sets Γi = gγi , and sends (Γi, Dj,i, D̂j,i, Fj,i, F̂j,i) to party Pj .

3. Pi decrypts (and reduces modulo q) αi,j = deci(Di,j) and α̂i,j = deci(D̂i,j), and computes δi = γi · ki +∑
j 6=i αi,j + βi,j mod q, χi = xi · ki +

∑
j 6=i α̂i,j + β̂i,j mod q. Finally, Pi sets Γ =

∏
j Γj , ∆i = Γki ,

Si = Γχi and sends δi,∆i, Si to all parties.

When obtaining all (δj ,∆j , Sj)j 6=i, Pi sets δ =
∑
j δj mod q and verifies that gδ =

∏
j ∆j and Xδ =

∏
j Sj .

If no inconsistencies are detected, Pi stores (Γ, ki/δ, χi/δ). To ensure accountability in the subsequent signing
phase, each party additionally stores the tuple (∆̃j , S̃j)j∈P , where ∆̃j = ∆δ−1

j and S̃j = Sδ
−1

j serve as public
commitment values for Pj ’s (future) signature share.

ZK Proofs. For malicious security, the aforementioned process is augmented with the following ZK-proofs:

(a) The plaintexts of Ki, Gi lie in range Iε.

(b) The exponent of Γi is equal to the plaintext-value of Gi.

(c) The discrete logarithm of ∆i with respect to Γ is equal to the plaintext-value of Ki.

(d) The ciphertext Dj,i (resp. D̂j,i) was obtained as an affine-like operation on Kj where the multiplicative
coefficient is equal to the exponent of Γi (resp. Xi), and it lies in range Iε, and the additive coefficient
is equal to the hidden value of Fj,i (resp. F̂j,i), and lies in range Jε.

Looking ahead to the security analysis, in order to simulate the protocol, it is enough to extract the k’s, γ’s,
and β’s of the adversary. Since these values are encrypted under the malicious parties’ Paillier keys in Ki,
Gi, and {Fi,j , F̂i,j}j 6=i, respectively, and the Paillier keys were extracted in the simulation of the auxiliary info
phase, we can extract the desired values without issue.

4.3.1 Accountability during Presigning

If
∏
j ∆j 6= gδ, then Pi follows the process from Figure 9. Analogously, if

∏
Sj 6= Xδ, then Pi proves in

zero-knowledge that (Iε,Jε, D̂j,i,Kj , F̂j,i, Xi) ∈ Raff-g for all j ∈ P and (Iε,Jε,Ki, Xi, D̂i, Si,Γ) ∈ Rdec

for D̂i =
∏
j D̂i,j · F̂j,i mod N2

i . To achieve this, the setupless statistically sound protocols Πaff-g∗ from
Appendix A.5 and Πdec from Appendix A.6 are used.

4.4 Signing
Oncem = H(msg) is known, signing boils down to the following process: Each Pi retrieves (Γ, k̃i, χ̃i) computes
r = Γ|(·) and sends σi = k̃m + rχ̃ mod q to all. The tuple (Γ, k̃i, χ̃i) is erased once it is consumed. For
accountability, using the supplementary presigning material (∆̃j , S̃j)j∈P , it is immediate that (r, σ) is a valid
signature for σ =

∑
j σj , as long as Γσj = ∆̃m

j · S̃rj , for all j ∈ P . See Figure 10 for further details.

27

FIGURE 9 (Failed Nonce or Chi)

Round 1. In case of red alert with
∏
j∈P ∆j 6= gδ (the case

∏
j∈P Sj 6= Xδ is analogous), do:

– Set {D` =
∏
j 6=`D`,j · Fj,` mod N2

` }`∈P and calculate the randomizer ρi of Kγi
i ·Di mod N2

i .

– Set ψ∗i =M(prove,Πdec, (epid, i), (Iε,Jε,Ki,Γi, Di, g
δi , g); (δi, γi, ρi)).

– Set ψi,j =M(prove,Πaff-g∗, (epid, i), (Iε,Jε, Dj,i,Kj , Fj,i,Γi); (γi, βi,j , si,j , ri,j)), for all j 6= i.

Broadcast (sid, i, ψ∗i , ψi,1, . . . , ψi,i−1, ψi,i+1, . . . , ψi,n).

Output. When obtaining (sid, j, ψ∗j , ψj,1, . . . , ψj,j−1, ψj,j+1, . . . , ψj,n) from Pj , do

– CheckM(vrfy,Πdec, (epid, j), (Iε,Jε,Kj ,Γj , Dj , g
δj , g), ψ∗j) = 1.

– For all ` 6= i, j, checkM(vrfy,Πaff-g∗, (epid, j), (Iε,Jε, D`,j ,K`, F`,j ,Γj), ψj,`) = 1.

Errors. When failure, output the failed verification together with its index (i.e. the corrupted party), and halt.

Figure 9: Failed Nonce or Chi

FIGURE 10 (ECDSA Signing)

Round 1. On input (sign, epid, `, i,m), if there is record of (epid, `,Γ, k̃i, χ̃i) and (∆̃j , S̃j)j∈P , do:

– Set r = Γ|(·) and σi = k̃im+ rχ̃i mod q.

– Send (epid, i, σi) to all Pj .
Erase (epid, `,Γ, k̃i, χ̃i) from memory.

Output. Upon receiving (epid, j, σj) from all Pj , do:

– Check that Γσj = ∆̃m
j · S̃rj for all j ∈ P .

Output σ =
∑
j σj .

Errors. In case of failure, output the failed verification together with its index (i.e. the corrupted party), and halt.

Figure 10: ECDSA Signing

5 Underlying Sigma-Protocols
We present the sigma-protocols associated with the NP-relations from Section 3.2, which are invoked (using the
Fiat-Shamir transform) by the parties in the protocols of Section 4. Along the way, we prove the completeness,
HVZK, soundness, or special soundness properties that will be useful for the overall security analysis in
Section 6. The dlog-style protocols (i.e. Schnorr), as well as those very similar to the ones below, are moved
to Appendix A.

5.1 Paillier Encryption in Range ZK
NP-Relation. For Paillier public key N0, the following relation verifies that the plaintext value of Paillier
ciphertext C is in a desired range I = ±2`. Define

Renc =
{

(N0, I, C;x, ρ) | x ∈ I ∧ C = (1 +N0)xρN0 ∈ Z∗N2
0

}
.

In Figure 11, we present a sigma-protocol where the completeness and HVZK relations hold with respect to
Renc, but where the special soundness property (see Claim 5.1) holds with respect to the following related
relation: Define R̃enc to consist of all tuples (N0, Iε, C, S, N̂ , t, s;x, ρ, p, q, z, z

′, e) such that

(N0, Iε, C;x, ρ) ∈ Renc ∨ (N0, Iε; p, q) /∈ Rfac ∩Rmod ∨
(
sztz

′
= Se mod N̂ ∧ e ��| z

)
,

28

where (N̂ , s, t) denotes the auxiliary setup parameter for the proof, and S ∈ Z∗
N̂

is generated on the fly during
the proof generation.

As we shall see later in the security analysis, special soundness with respect to R̃enc suffices for our purpose
since (N0, Iε) ∈ Rfac∩Rmod is validated elsewhere in the protocol (see Figure 12 and Figure 26). Additionally,
sztz

′
= Se mod N̂ with e ��| z breaks strong RSA for (N̂ , s, t)← samplePed(1κ) (see Theorem 5.2).

5.1.1 Protocol Πenc

FIGURE 11 (Paillier Encryption in Range ZK—Πenc)

• Setup: Auxiliary RSA modulus N̂ and Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (N0,K).
The Prover has secret input (k, ρ) such that k ∈ ±2`, and K = (1 +N0)k · ρN0 mod N2

0 .

1. Prover samples

α← ±2`+ε and

µ← ±2` · N̂
r ← Z∗N0

γ ← ±2`+ε · N̂
, and computes

S = sktµ mod N̂ ∈ Z∗

N̂

A = (1 +N0)α · rN0 mod N2
0 ∈ Z∗N2

0

C = sαtγ mod N̂ ∈ Z∗
N̂

,

and sends (S,A,C) to the Verifier.

2. Verifier replies with e← ±q
3. Prover sends (z1, z2, z3) to the Verifier, where

z1 = α+ ek

z2 = r · ρe mod N0

z3 = γ + eµ

.

• Equality Checks: {
(1 +N0)z1 · zN0

2 = A ·Ke mod N2
0 ∈ Z∗N2

0

sz1tz3 = C · Se mod N̂ ∈ Z∗
N̂

• Range Check:
z1 ∈ ±2`+ε

The proof guarantees that k ∈ ±2`+ε.

Figure 11: Paillier Encryption in Range ZK—Πenc

Completeness. The protocol may reject a valid (N0, κ; k, ρ) ∈ Renc only if |α| /∈ ±(2`+ε − q2`) which happens
with probability at most q/2ε.

Honest Verifier Zero-Knowledge. The simulator samples e ← ±q, z1 ← ±2`+ε, z2 ← Z∗N0
, z3 ← ±N̂ · 2`+ε,

and S ← 〈t〉 by setting S = tλ mod N̂ where λ ← ±2` · N̂ , and sets A = (1 + N0)z1wN0 · K−e mod N2
0

and C = sz1tz3 · S−e mod N̂ . From Facts D.5, D.6, we deduce that z1, z3 are (each) (q2−ε)-close to the real
distribution, and S is (2−`)-close to the real distribution. Thus, since e and z2 are identically distributed with
the real transcript (and all other items are determined), it follows that the real and simulated distributions
are (2 · q2−ε + 2−`)-statistically close.

5.1.2 Special Soundness of the Range Proof & Reduction to Strong RSA

Claim 5.1. Let (N̂ , s, t,N0,K, S,A,C, e, z1, z2, z3) and (N̂ , s, t,N0,K, S,A,C, e
′, z′1, z

′
2, z
′
3) denote two accept-

ing transcripts for Πenc such that e 6= e′. Letting ∆x = x− x′ for x ∈ {e, z1, z3} and ∆z2 = z2 · z′−1
2 mod N0,

at least one of the following holds true:

29

1. s∆z1 · t∆z3 = S∆e mod N̂ and ∆e ��| ∆z1 .

2. gcd(∆e, N0) 6= 1 i.e. (N0, Iε) /∈ Rfac ∩Rmod.

3. For k = ∆z1/∆e ∈ Iε, there exists ρ ∈ Z∗
N2

0
s.t. K = (1 +N0)k · ρN0 mod N2

0 , i.e. (N0, Iε,K) ∈ Renc.

Proof. We prove that Item 3 holds assuming ∆e divides both ∆z1 and gcd(∆e, N0) = 1 (i.e. Items 1 and 2 do
not hold). First, we know that ∆z1 ∈ Iε and thus, for k = ∆z1/∆e ∈ Iε, we deduce that

(K · (1 +N0)−k)∆e = ∆N0
z2 mod N2

0 .

Next, since gcd(N0,∆e) = 1, by Fact D.2, there exists ρ ∈ Z∗
N2

0
such that ρN0 = K · (1 +N0)−k mod N2

0 .

Theorem 5.2 (Implicit in [27, 37, 53]). Assume that

Pr
(N̂,s,t)←samplePed(1κ)

[
(α, β, e, V)← A(N̂ , s, t) s.t. tαsβ = V e mod N̂ ∧ |e| < N1/4 ∧ e ��| β

]
≥ δ,

for some PPTM A. Then, there exists PPTM A0, such that

Pr
(N,t)←sRSA(1κ)

[
(m, c)← A0(N, t) s.t. mc = t mod N̂ ∧ c /∈ {−1, 1}

]
≥ δ ·

(
ϕ(N)

N − 1
− 1

2

)
.

Proof. Define algorithm A0(N, t) as follows:

1. Set N̂ = N , sample x← [(N − 1)/2] and set s = tx mod N̂ .

2. Execute A on input (N̂ , s, t); obtain (α, β, e, V). Set σ = α + x · β and let u, v denote the Bézout
coefficients of e and −σ, i.e. ue− vσ = gcd(e, σ).

3. Output (R, R̂, c) = (tuV −v, tu(−V)−v, e/ gcd(e, σ)) and A = tσ/ gcd(e,σ) · V −e/ gcd(e,σ).

We begin by observing that if e ��| σ, then either g = Rc or g = R̂c and c /∈ {−1, 1}, or A is a non-trivial
root of 1 (which yields a suitable pair (R, c) via the factorization of N̂). Let e′ = e/ gcd(e, σ) /∈ {−1, 1} and
σ′ = σ/ gcd(e, σ). Fix ζ to be one of the two nontrivial root of 1. Since p = q = 3 mod 4, we know that
−1 /∈ QRp,QRq and there exists a unique triple (V0, i, j) ∈ QRN̂ × {0, 1}2 such that V = V0 · (−1)i · ζj .
Furthermore, since N̂ is a strong-prime modulus and gcd(e, σ) ≤ e < N̂1/4, we have that tσ

′
= V e

′

0 mod N̂ .
Consequently, either (i) A = tσ

′
V −e

′ ∈ {ζ,−ζ}, or (ii) tσ′V −e′ = −1 and e′ is odd, or (iii) tσ
′
V −e

′
= 1. Case

(i) yields a non-trivial root of 1. For Cases (ii) and (iii), we deduce that R̂c = t and Rc = t, respectively, since{
R̂c = R̂e

′
= tue

′
(−V)−ve

′
= tue

′
t−vσ

′
= tue

′−vσ′ = t mod N̂ in Case (ii).
Rc = Re

′
= tue

′
V −ve

′
= tue

′
t−vσ

′
= tue

′−vσ′ = t mod N̂ in Case (iii).

To conclude the proof, we argue that the probability that e | σ is bounded above by 1/2 + ε0, for ε0 =
1− ϕ(N̂)/(N̂ − 1). Using the notation above, consider (inefficient) algorithm B which is similar to A0 except
that (i) instead of sampling α uniformly in [(N̂−1)/2] as in Item 1, B samples x0 ← [ϕ(N̂)/4] and sets s = tx0 ,
(ii) When obtaining (α, β, e, V) from A, B samples µ← {0, 1} and sets x = x0 +µ ·ϕ(N̂)/2 and, (iii) all other
values are set according to A0. Next, we consider a random execution of B.

Let dµ denote the event that e divides α+ (x0 + µ · ϕ(N̂)/4) · β. Notice that if d0 and d1 both occur (or
d1 and d2), then e divides ϕ(N̂)/4 · β, and since N̂ is a strong-prime modulus and e < N1/4, it follows that
e | β. Thus, if e ��| β then Pr[e | σ] ≤ 1

2 in a random execution of B.
Finally, by noting that α ← B and α ← A0 are statistically ε0-close, and thus the two executions are

statistically ε0-indistinguishable, we deduce that Pr[e | σ] ≤ 1/2 + ε0 in a random execution of A0.

30

FIGURE 12 (Paillier-Blum Modulus ZK—Πmod)

• Inputs: Common input is N . Prover has secret input (p, q) such that N = pq.

1. Prover samples a random w ← Z∗N of Jacobi symbol −1 and sends it to the Verifier.

2. Verifier sends {yi ← Z∗N}i∈[m]

3. For every i ∈ [m] set:

– xi = 4
√
y′i mod N , where y′i = (−1)aiwbiyi mod N for unique ai, bi ∈ {0, 1} such that xi is well defined.

– zi = y
N−1 mod ϕ(N)
i mod N

Send {(xi, ai, bi), zi}i∈[m] to the Verifier.

• Verification: Accept iff all of the following hold:

– N is an odd composite number and gcd(w,N) = 1.

– zNi = yi mod N and yi ∈ Z∗N for every i ∈ [m].

– x4i = (−1)aiwbiyi mod N and ai, bi ∈ {0, 1} for every i ∈ [m].

Figure 12: Paillier-Blum Modulus ZK—Πmod

5.2 Paillier-Blum Modulus ZK (Πmod)
In Figure 12 we give a sigma-protocol for tuples (N ; p, q) satisfying relation Rmod. The Prover claims that N is
a Paillier-Blum modulus, i.e. gcd(N,ϕ(N)) = 1 and N = pq where p, q are primes satisfying p, q ≡ 3 mod 4.
The following protocol is a combination (and simplification) of van de Graaf and Peralta [62] and Goldberg
et al. [42].

Completeness. Probability 1 by construction.

Soundness. We first observe that the probability that yi admits an N -th root if 〈N,ϕ(N)〉 6= 1 is at most
1/ 〈N,ϕ(N)〉 ≤ 1/2. Therefore, with probability 2−m, it holds that 〈N,ϕ(N)〉 = 1, and, in particular, N is
square-free. Next, if N is the product of more than 3 primes, the probability that {yi,−yi, wyi,−wyi} contains
a quadratic residue (which is necessary for being a quartic), for every i, is at most (1/2)m, for any w.

On the other hand, if N = pq and either q or p ≡ 1 mod 4, then the probability that {yi,−yi, wyi,−wyi}
contains a quartic for every i is at most (1/2)−m for the following reason. Write L : Z∗N 7→ {−1, 1}2 such that
L(x) = (a, b) where a is the Legendre symbol of x with respect to p and b is the Legendre symbol of x with
respect to q. For fixed w, the table below upper bounds the probability that {yi,−yi, wyi,−wyi} contains a
quartic depending on the vallue of L(−1) and L(w); in red is the probability that it contains a square, and
in blue is the probability that a random square is also a quartic, since the set contains exactly one square in
those cases.

L(w) \ L(−1) (1, 1) (−1, 1) (1,−1) (−1,−1)
(1, 1) 1/4 1/2 1/2 1/2

(−1, 1) 1/2 1/2 1/2 1/2
(1,−1) 1/2 1/2 1/2 1/2

(−1,−1) 1/2 1/2 1/2 1/2

It follows that the probability that a square-free non-Blum modulus passes the above test is 2−m, at most.
Overall, the probability of accepting a wrong statement is at most 2−m+1.

Honest Verifier Zero-Knowledge. Sample a random γi and set z′i = γ4
i , and xi = γNi and y′i = z′Ni = x4

i

mod N . Sample a random u with Jacobi symbol −1 and set w = uN mod N . Finally sample iid random bits
(ai, bi)i=1...m and do:

– For each i ∈ [m], set yi = (−1)aiw−biy′i and zi = (−1)aiu−biz′i

– Output [w, {yi}i, {(xi, ai, bi), zi}i].

31

Knowing that −1 is a non-square modulo N with Jacobi symbol 1, the real and simulated distributions are
identical.

5.2.1 Extraction of Paillier-Blum Modulus Factorization

We stress that the above protocol is zero-knowledge only for honest verifiers, which we strongly exploit in the
security analysis of our threshold signature protocol. Specifically, assuming the Prover solves all challenges
successfully, if the Verifier sends yi’s for which he secretly knows vi such that v2

i = (−1)aiwbiyi mod N , then,
for some i, the Verifier can deduce v′i such that v′i 6= vi,−vi mod N and v′2i = yi mod N with overwhelming
probability. Thus, a malicious Verifier may efficiently deduce the factorization of N using the pair (vi, v

′
i)

(c.f. Fact D.4).
We strongly exploit the above in the security analysis our protocol. Specifically, when the adversary queries

the random oracle to obtain a challenge for the ZK-proof that his Paillier-Blum modulus is well formed, the
simulator programs the oracle accordingly in order to extract the factorization of the modulus. Namely:

Extraction. Sample random {vi ← ZN}i∈[m] and random uniform bits {(ai, bi)}i∈[m] and set yi = (−1)aiw−biv2
i

mod N . Send {yi}i to the Prover. If N is a Paillier-Blum modulus, then −1 is a non-square modulo N with
Jacobi symbol 1, and thus the yi’s are truly random, as long as w has Jacobi symbol −1.

5.3 Pedersen Parameters ZK (Πprm)
The sigma-protocol of Figure 13 for the relation Rprm is a ZK-protocol for proving that s belongs to the
multiplicative group generated by t modulo N .

FIGURE 13 (Pedersen Parameters ZK—Πprm)

• Inputs: Common input is (N, s, t). Prover has secret input λ such that s = tλ mod N .

1. Prover samples {ai ← Zϕ(N)}i∈[m] and sends Ai = tai mod N to the Verifier.

2. Verifier replies with {ei ← {0, 1}}i∈[m]

3. Prover sends {zi = ai + eiλ mod ϕ(N)}i∈[m] to the Verifier.

• Verification: Accept if t ∈ Z∗N and tzi = Ai · sei mod N , for every i ∈ [m].

Figure 13: Pedersen Parameters ZK—Πprm

Completeness. Probability 1, by construction.

Soundness. Suppose that s /∈ 〈t〉. First notice that if A /∈ 〈t〉, then tz 6= A mod N , for every z. Second,
assuming A ∈ 〈t〉, observe that for any z, it holds that tz · A−1 /∈ 〈t〉. It follows that the adversary generates
an accepting transcript if it can guess correctly all the challenges, which happens with probability 2−m.

Zero-Knowledge. Sample {zi ← ±N}i∈[m] and {ei ← {0, 1}}i∈[m] and set Ai = s−ei · tzi . The real and
simulated distributions are statistically m · (1− ϕ(N)/N)-close.

Finally the Pedersen parameters can be generated as follows; sample τ ← Z∗N and λ← Zϕ(N) and set t = τ2

mod N and s = tλ mod N .

5.3.1 On the Auxilliary RSA moduli and the Pedersen Parameters

The auxilliary moduli always belong to the Verifier and must be sampled as safe bi-prime RSA moduli.
Furthermore, the pair (s, t) should consist of non-trivial quadratic residues in ZN̂ . In the actual setup, we
sample N̂ as a Blum (safe-prime product) integer and s = τ2d mod N̂ and t = τ2 mod N for a uniform
τ ← ZN̂ . During the auxiliary info phase, the (future) Verifier proves to the Prover that s ∈ 〈t〉.

32

Sampling Uniform Elements in 〈t〉. The second issue which was implicitly addressed in the proofs above
is how to sample uniform elements in 〈t〉. The naive idea is to sample random elements in ϕ(N̂) by sampling
elements in N̂ . However, if N̂ has small factors,13 then small values close to zero will have noticeably more
weight than other values, modulo ϕ(N̂). To fix this issue, we instruct the Prover (and the simulator in the proof
of the HVZK property) to sample elements from ±2` · N̂ . That way, modulo ϕ(N̂), the resulting distribution
is 1

2`
-far from the uniform distribution in ϕ(N), by Fact D.6.

Choice of Moduli. With respect to our ECDSA protocol, for the Πenc-elg protocol, N0 is the Paillier modulus
of the Prover and and N̂ is the Paillier modulus of the Verifier. And for the Πaff-g protocol, N0, N̂ are the
Paillier moduli of the Verifier, i.e. the ‘receiver’ of the homomorphic evaluation, and N1 is the modulus of the
Prover, i.e. homomorphic ‘evaluator’. See the presigning protocol from Figure 8 for further details.

6 Security Analysis
In this section, we show that our protocol UC-realizes a proactive ideal threshold signature functionality
(Ftsig from Figure 15). This section presumes familiarity with the UC framework (cf. [16]). We adopt the
global random oracle model for our security analysis and assume that all hash values (e.g. for the Fiat-Shamir
Heuristic) are obtained by querying the random oracle, defined next.

6.1 Global Random Oracle
We use the formalism of Canetti et al. [20], Camenisch et al. [13] to incorporate the random oracle model
within the UC framework. This formalism accounts for the fact that the random oracle is an abstraction of
an actual public hash function used globally across the analyzed system and its environment. Specifically, the
random oracle is modeled as an ideal functionality that is globally accessible in both the real system and the
ideal system. Canetti et al. [20], Camenisch et al. [13] provide a number of alternative formulations for the
functionality representing the random oracle. Here, we use the simplest (and most restrictive) formulation,
called the strict random oracle, which does not allow for observation of the queries or programming of the
oracle responses. The incorporation of global functionalities within the plain UC model is done using [2].14

The functionality takes inputs of arbitrary size and is parameterized by the output space O. When queried
on a new value m ∈ {0, 1}∗, the functionality returns a value uniformly chosen from O. All future queries for
m return the same value.

FIGURE 14 (The Global Random Oracle Functionality H)

Parameter: Output space O.

• On input (query,m) from machine X , do:

– If a tuple (m, a) is stored, then output (answer, a) to X .
– Else sample a← O and store (m, a).

Output (answer, a) to X .

Figure 14: The Global Random Oracle Functionality H

13If N has very small factors it’s not an issue. The more problematic range of parameters is (as a function of the security
parameter κ) N̂ = p̂q̂ where q ∼ poly(κ) and p ∼ 2κ/poly(κ)

14The fact that our analysis works even with the strict formalization of the random oracle means that it would work with any
of the other (more elaborate) variants discussed in Canetti et al. [20], Camenisch et al. [13].

33

6.2 Ideal Threshold Signature Functionality
Next, we describe our ideal threshold signature functionality. This functionality is largely an adaptation of
the (non-threshold) signature functionality from Canetti [14], with added constructs that that account for
multiple signatories, for accountability, and for proactive security. See Figure 15 for the formal description
of the functionality. We also comment on some of the differences between [14] and our functionality further
below.

Initialization & Key generation. At first activation (by a party called P0, representing the administrative
contact for the signature service) Ftsig receives its session ID sid which encodes in it the set of signatories
P = {P1 . . .Pn}. It also intializes a global state variable to uncompromised and a refresh counter to c = 0.
When prompted by all parties to generate a public key, Ftsig obtains a verification key (effectively, a verification
algorithm) V from the adversary and returns this key to the administrative owner.

Signature generation. When all signatories prompt the functionality to obtain a signature for some mes-
sage m and signature ID sgid, the functionality requests a string σ from the adversary. Now, if σ verifies (i.e.,
if V(m,σ) = 1) then Ftsig records (sgid,m, σ, 1) and outputs σ to P0. Else, it outputs the identity of one of
the corrupted parties (chosen by the adversary) as the ‘culprit’ for the generation of a bad signature.

This last provision captures the ‘identifiable abort’ guarantee: a failed signature generation is bound to
identify at least one corrupted party.

Signature verification. When asked to verify some signature σ for a message m and public key V ′, the
functionality proceeds as follows. If (i) V ′ = V, (ii) the global state is uncompromised and (iii) there exists
a party that did not ask to sign m, then a ‘fail’ response is returned. In all other cases, the value V ′(m,σ)
is returned—since V is treated by the functionality as a deterministic algorithm, consistency across multiple
verification requests of the same signature is guaranteed.

It is noted that the unforgeability guarantee provided by the above logic is unconditional, and remains
the case even for unbounded environments. Furthermore, the response to the verification request is generated
within a single activation of the functionality, without invoking the adversary (which could create delays in
generating the response). This represents the requirement that signature verification must be a local process
which can provide an immediate response.

Modeling corruption. When instructed by the adversary to corrupt party Pi the functionality records
Pi as corrupted. When instructed by the adversary to uncorrupt Pi, the functionality records Pi as
quarantined. If at any point in time all parties are either corrupted or quarantined, the global state is set
to compromised. Once compromised, the state does not change any more. When a party queries for its
corruption status, the status is returned.15

Proactive key refresh. When instructed by a party to initiate a key refresh, the functionality informs the
adversary of the request. When the adversary notifies the functionality that a key refresh has been completed,
it updates the state of all the quarantined parties to uncorrupted and increments the refresh counter c.
Whenever some Pi asks for the value of c, the value is returned.

6.2.1 Discussion

We discuss some modeling choices and differences from the ideal signature functionality of [14].

Recording of signature strings. In [14], the functionality stores all signature strings, including invalid
ones—ie strings that are rejected by the functionality. This ensures consistency—namely that invalid signatures
remain invalid and valid signatures remain valid throughout the execution. In our case, we do not need to record
past signatures because (a) unforgeability is guaranteed by making sure that only messages that all parties
asked to sign would ever be accepted as signed, and (b) consistency is guaranteed through the verification

15This last stipulation prevents the undesirable situation where the ideal model adversary surreptitiously corrupts parties even
when these parties were not corrupted by the environment.

34

FIGURE 15 (Ideal Threshold Signature Functionality Ftsig)

Initialization:

At first activation by party P0, interpret the given session ID as a tuple sid = (. . . ,P), where P =
{P1, . . . ,Pn} is a set of signatories. Record all signatories as non-corrupted, and initialize a refresh
counter c = 0 and a state variable to uncompromised.

Key-generation:

1. Upon receiving (keygen) from some party Pi where Pi ∈ P , send (keygen, i) to S.
2. Upon receiving (pub-key,V) from S, if all Pi ∈ P have already input keygen, and no tuple (pub-key,V ′) is

recorded, then record (pub-key,V) and output (pub-key,V) to P0.

Signing:

1. Upon receiving (sign, sgid,m) from Pi:

– If all signatories have provided a (sign, sgid,m) input, then record (sgid,m).

– Send (sign, sgid,m, i) to S.

2. Upon receiving (sig-string, sgid,m, σ,X) from S:

– If (sgid,m) is not recorded, or (sgid,m, σ, . . .) is already recorded, then end the activation.

– Else, set β = V(m,σ) and record (sgid,m, σ, β, C), where if β = 0 and X is the identity of a corrupted
party, then C = X (or C is the lexicographically first corrupted party if X is not corrupted); otherwise,
if β = 1, then C = ∅. ‘Accountability ’

Output (sig-string, sgid,m, σ,X) to P0.

Verification:

Upon receiving (sig-vrfy,m, σ,V ′) from a party Q, do:

– If V ′ = V, there is no (sgid,m) record for any sgid, the state is uncompromised, then output
(istrue,m, σ, 0) to Q. ‘Unforgeability ’

– Else output (istrue,m, σ, β) to Q, where β = V(m,σ). ‘Consistency ’

Key-Refresh:

– Upon receiving input key-refresh from Pi ∈ P , send (key-refresh, i) to S.
– Upon receiving refresh-done from S, record all (quarantined) signatories as (non-corrupted) and

increment c.

– Upon receiving a request for the value of the refresh counter c, return that value.

Corruption/Decorruption:

1. Upon receiving input (corrupt,Pj) from S, record Pj as (corrupted). If all signatories are recorded as
either corrupted or quarantined then change state to compromised.

2. Upon receiving input (decorrupt,Pj) from S, record Pj as (quarantined).
3. Upon receiving input (status) from Pj , return to Pj its corruption status.

Figure 15: Ideal Threshold Signature Functionality Ftsig

35

algorithm V. Indeed, signatures cannot change status during the execution; if an invalid signature were to
become valid, it would be equivalent to breaking unforgeability.

Beyond providing clear logic and simpler code for Ftsig, this formulation also represents the fact that in some
cases the signature string generated by the system would be known the the corrupted parties (and thus to the
environment) before they are known to the ideal-model adversary (i.e., to the simulator). Still, unforgeability
guarantees that such situations happen only when all parties have agreed to sign the said message.

The administrative owner, P0. It is stressed that the administrative owner P0 has no ‘cryptographic
capabilities’ and is unable to generate signatures or expose any sensitive information. Its roles are to (i)
determine the identities of the parties and the epid; (ii) to aggregate the information provided by the parties
to generate the public key and later the signatures.

The sgid mechanism. Recall that to generate a signature on a message m, all parties need to consistently
provide Ftsig with some identifier, sgid, associated with the message m. In contrast, the signature string
returned to P0 does not include sgid, nor is a verification query required to provide the relevant sgid. The
main reason for including this additional identifier is to help the parties distinguish between different signing
requests that unintentionally (perhaps even unknowingly) mention the same message. Said otherwise, the
sgid is a mechanism that puts on the user (or the owner) of Ftsig the onus of distinguishing between different
instances of the signature-generation process.

Modeling pre-signatures. It is noted that Ftsig makes no mention of splitting the signature generation
process to a pre-processing part and an online part. Indeed, while this capability is a main feature of our
protocol, it mandates no mention in the definition of security. Said otherwise, the overall functionality of this
mode is identical to that of standard threshold signatures. The difference is only in the various efficiency gains
and costs.

Modeling strong unforgeability. The current formulation of Ftsig allows for adversarial generation of
new valid signature strings for a legitimately signed message. Strong unforgeability, namely disallowing the
generation of new valid signature strings even for signed messages, can be captured by having Ftsig count the
number of times that a message m has been signed (presumably with a different sgid for each signature), and
then limiting the number of different signature strings that can be accepted as legitimate signatures for that
message.

Unforgeability vs availability. It is emphasized that, while Ftsig provides robust unforgeability guarantees
in the face of an adaptive, mobile adversary, it offers only limited guarantees regarding the availability, or
liveness of the system. In particular, the only liveness guarantee is that signature verification is a local process
that returns within a single activation. In contrast, the ideal adversary (i.e., the simulator) can arbitrarily
delay the generation of the public key and of each signature. Furthermore, the simulator can arbitrarily
delay the successful completion of proactive key refreshes. This formulation was chosen mainly for sake of
simplicity, so as to allow for relatively simple protocols that allow highlighting the new algorithmic constructs.
Formulating (and realizing) stronger variants of Ftsig that provide better liveness guarantees is left out of scope
for this work.

6.3 Security Claims
Theorem 6.1. Assuming semantic security of the Paillier cryptosystem, strong-RSA assumption, DDH, and
unforgeability (resp. enhanced unforgeability) of ECDSA, the protocol from Figure 4 (resp. Figure 5) UC-realizes
functionality Ftsig in the presence of the strict global random oracle functionality H.

The above theorem is a corollary of Lemma 6.5 and Theorems 6.6 and 6.7 stated further below. The
proof follows by contraposition; we show that if our protocol does not UC-realize functionality Ftsig, then
at least one of the following holds true: (i) there exists a PPTM that breaks strong RSA (ii) there exists a
PPTM that breaks DDH (iii) there exists a PPTM that can distinguish Paillier ciphertexts (iv) there exists
a PPT existential forger for the standard/enhanced, non-threshold ECDSA algorithm. Before that, we define
forgeries and fault misattributions.

36

6.3.1 Forgeries & Fault Misattributions

Notation 6.2. Write Σ for the signing protocol from Figure 4 (resp. Figure 5). Let Z denote an arbitrary
PPTM corrupting a subset of parties adaptively in an execution of Σ. It is assumed that Z does not corrupt
all parties simultaneously in a given key-refresh epoch. We write τHZ,Σ to denote the transcript of the protocol
in an arbitrary execution of Σ in the presence of Z and global random oracle H, consisting of (i) the honest
parties’ inputs, (ii) the honest parties’ outputs, i.e., signatures and/or corrupted parties’ identities (iii) the
messages exchanged between all parties and (iv) the output of Z.

Definition 6.3 (Forgeries & Unforgeability). Using Notation 6.2, we say that τHΣ,Z contains a forgery if:

1. Z outputs (s,msg∗).

2. There is no record of (sign, sgid,msg∗, . . .) as a common input in τHΣ,Z for some sgid.

3. vrfyτHΣ,Z (s,msg∗) = 1, where vrfyτHΣ,Z (·) denotes the signature verification process associated with τHΣ,Z .

Furthermore, we say that Σ is unforgeable if the the probability that τHΣ,Z contains a forgery, resulting from
an arbitrary execution of Σ in the presence of Z, is negligible for every Z.

Definition 6.4 (Fault Misattributions & Accountability). Using the notation from Notation 6.2, we say that
τHΣ,Z contains a fault misattribution if there exists some sgid in τHΣ,Z such that two honest parties, Pi and
Pj , output (sig-string, sgid,m, σ,X) and (sig-string, sgid,m, σ′,X ′) respectively, with (σ,X) 6= (σ′,X ′).
(Informally, there exists an aborted signature session in τHΣ,Z where the honest parties fail to reach consensus
on the identity of at least one corrupted party.) Furthermore, we say that Σ is accountable if the probability
that τHΣ,Z contains a fault misattribution, resulting from an arbitrary execution of Σ in the presence of Z, is
negligible for every Z.

6.3.2 Putting Everything Together

Lemma 6.5. Using the notation above, if Σ is unforgeable and accountable according to Definitions 6.3
and 6.4, then Σ UC-realizes functionality Ftsig in the presence of the global random oracle functionality H.

Proof. Assume that Σ is unforgeable and accountable according to Definitions 6.3 and 6.4, and consider
the following ideal-world simulator interacting with Ftsig, Z, and global random oracle H. Following the
standard paradigm, and without loss of generality, any action performed by the corrupted parties is assumed
to be performed by Z. Furthermore, it is assumed that S emulates the ideal synchronous communication
functionality Fsyn, which in the real world is used for the communication of all messages (see Section 3.5).
Since the simulator does not perform any special operations with respect to Fsyn, it can be considered as a
separate machine with the exact same behaviour as in the real world.

In a nutshell, S simply runs the code of the honest parties when interacting with Z, and interacts with H
only as prescribed by the simulated honest parties. More specifically, S performs the following actions when
interacting with Z and Ftsig:

1. When obtaining (keygen, i) for an uncorrupted party Pi from Ftsig, S starts the key generation for Pi.

2. When obtaining (pub-key, sid) from Ftsig, return (pub-key,VX) where X is the ECDSA public key
resulting from the interaction between S and Z, and VX is the verification algorithm associated with X.

3. When obtaining (sign, sgid,m, i) for an uncorrupted party Pi from Ftsig, S initiates the signing phase for
Pi. It is important to note that, depending on the instructions from Z, the signing phase may involve
either the fully online interactive protocol or the non-interactive protocol, which uses presignatures
generated in a previous step between S and Z.

4. Once S receives (sign, sgid,m, i) for all Pi, the simulator sends (sig-string, sgid,m, σ,X) to Ftsig where
X = ∅ if the interaction between S and Z resulted in a valid signature σ for m. If the signature session
was aborted by Z, then σ and X represent the failed verification and the identity of the exposed party,
as determined by the simulated honest parties.

5. When obtaining (key-refresh, i) from Ftsig, S starts the key refresh for Pi.

37

6. Once the key-refresh between S and Z concludes successfully, S sends refresh-done to Ftsig.

Handling corruptions. If Z decides to corrupt a party, say Pi, S sends (corrupt,Pi) to Ftsig and reveals
the secret state (ECDSA secret share, Paillier private key) to Z. When Z decides to decorrupt a
previously corrupted Pi, Z restores the state of Pi, and S sends (decorrupt,Pi) to Ftsig. This allows S
to continue the interaction with Z without issue by simply running the code of the honest Pi from that
point onward.

It is easy to see that the ideal experiment above is trivial in the sense that Z’s view of Σ in the real and ideal
experiments is identically distributed. The only way the two experiments may diverge is with respect to the
ideal functionality, namely in the following two ways:

(a) There was an aborted simulated signature session for some sgid and m, and S failed to register a valid
tuple (sig-string, sgid,m, σ,X) because there was no consensus on X by the simulated honest parties.

(b) Z produced a pair (msg∗, σ∗) such that VX(msg∗, σ∗) = 1 but Ftsig returns (istrue,msg∗, σ∗, 0) on
input (sig-vrfy,msg∗, σ∗,VX).

Notice that Item (a) contradicts the presumed accountability of Σ, and Item (b) contradicts the presumed
unforgeability of Σ. This concludes the proof.

Theorem 6.6. Under DCR, DDH, strong RSA and unforgeability (resp. enhanced unforgeability) of ECDSA,
it holds that protocol Σ from Figure 4 (resp. Figure 5) is unforgeable as per Definition 6.3.

The proof of Theorem 6.6 is presented in Section 7.

Theorem 6.7. Under the strong RSA assumption, it holds that protocol Σ from Figure 4 (resp. Figure 5) is
accountable as per Definition 6.4.

The proof of Theorem 6.7 is very similar to the proof of Theorem 6.6; it is included in Appendix B.

7 Proof of Theorem 6.6
In this section, we prove Theorem E.1 by carefully defining several intermediate hybrid experiments that reduce
the unforgeability of the protocol to the underlying cryptographic assumptions: Strong RSA, DDH, DCR, and
ECDSA security. To maintain the structure outlined in the introduction (Section 2.6), the analysis is divided
into three subsections: the first subsection (the A-experiments) contains the reduction to Strong RSA, the
second (the B-experiments) covers the reductions to DDH and DCR, and the final one (the C-experiments)
addresses the reduction to ECDSA security, which concludes the proof.

All of the security hops in this section are fairly standard, except for the first experiment A0, which might
appear somewhat mysterious. To address this, we have added clarifications in the relevant subsections. Before
beginning the analysis, we make a few simplifying assumptions and provide justifications for them.

Simplifying assumptions As noted in Remark 4.1, within a specific session identified by the sid, the
key-refresh phase is assumed to be executed sequentially, meaning that no other protocol components for this
sid, including another concurrent execution of the key-refresh, are executed while the key-refresh is ongoing.
However, no other limitations are imposed on the concurrency of other components. Additionally, we make
the following simplifying assumptions about Z:

1. For simplicity, we assume that Z statically corrupts all but one party, and the honest party is denoted
Pb. Later, in Section 8, we provide a formal reduction from the adaptive to the static corruption model.

2. Z does not check whether Pb’s messages are consistent with the random oracle, i.e. it does not verify
that Pb’s hashes are computed correctly. This assumption does not incur any loss of generality and is
only used to avoid keeping track of real versus programmed oracle queries in the security reduction.

3. Z may only abort (i.e. quit the execution of the protocol all together) during the third round of the
key-refresh protocol. This assumption does not incur any loss of generality, as it can be handled by
defining an arbitrary continuation of the protocol up to the third round of the key-refresh epoch.

38

4. When Z discontinues the execution of a key-refresh phase, it is assumed that Z aborts at this point
(i.e. quits the execution of the protocol altogether). This assumption results in a multiplicative inverse-
polynomial loss in the forging probability (specifically by the number of key-refresh epochs), which we
justify via Lemma 7.26 in Section 7.3.1.

5. Z never sends a failing NIZK or any other publicly verifiable failing message, but rather sends a special
discontinuation symbol (denoted ⊥). It’s important to note that the discontinuation of a given sign-
ing session does not necessarily imply an abort, as aborting refers to quitting the protocol altogether
(discontinuation of the key-refresh does imply an abort, as per Item 4 above and Remark 4.2). This
assumption does not incur any loss of generality, as the NIZK/message in question can be verified by
the attacker before it is sent.

Finally, it is assumed that Z finds no collisions in the random oracle and that the same epid is never
sampled again in different key-refresh epochs. This last assumption incurs a small, negligible penalty that we
ignore in the analysis below.

Running time of the hybrid experiments. The running time of each algorithm in the experiments
presented below is essentially identical to that of the honest party. This fact is evident from the description
of the algorithms. Finally, the security parameters and all dependent variables are assumed to be fixed.

7.1 Reduction to Strong-RSA
7.1.1 Hybrid A0

FIGURE 16 (Hybrid A0, i.e. Forging Experiment A0)

Define RA0 interacting with Z corrupting all players but Pb:
RA0 runs the code of Pb with the following differences.

1. Key-Generation & Aux Info.

(a) Fork the protocol by using fresh randomness for Pb’s second and third-round messages.
This is accomplished by faking Pb’s decommitment in the second round. (For the security
analysis, it is assumed that the decommitment is faked, meaning it is inconsistent with the
RO in both the main and forked paths. All other queries are consistent with the RO.)

(b) Discard one of the executions according to the following criterion:
i. If the second, ‘forked’ path aborts, continue on the second path.
ii. Else, continue on the first, ‘main’ path.

2. Presigning & Signing.

Same as as the real experiment.

Output. Output the transcript of the execution.

Figure 16: Hybrid A0, i.e. Forging Experiment A0

Remark 7.1 (The purpose of experiment A0). Experiment A0 may seem a bit odd, as the experiment is biased
towards an abort. Notice that RA0

never continues on the forked path unless it aborts, in which case RA0
is

instructed to choose the forked path if the main path does not abort as well. The purpose of this experiment
is related to the extraction of the adversary’s secrets in later experiments. Specifically, both paths need to
be non-aborting for the later experiments to continue. For this reason, we instruct RA0 to choose the forked
path if it aborts and the main one does not and terminate the experiment at this stage.

Proposition 7.2. Suppose that Z outputs a forgery with probability α in an execution of Σ, then Z outputs
a forgery with probability at least α2 in Experiment A0 from Figure 16.

By Jensen’s inequality, the above is an immediate corollary of the proposition below.

39

Proposition 7.3. Assume that all random oracle answers (i.e., all answers for all possible queries) are
sampled in advance and fixed, and let Z’s random tape be set to some arbitrary string ρ ∈ {0, 1}∗. Denote the
corresponding machine by Z(ρ). If Z(ρ) outputs a forgery with probability α in an execution of Σ, then Z(ρ)
outputs a forgery with probability at least α2 in Experiment A0 from Figure 16.

7.1.2 Proof of Proposition 7.3

To alleviate notation, we ignore the random tape of Z which is assumed to be fixed to ρ ∈ {0, 1}∗.

Definition 7.4. Define protocol Σ∗ similarly to Σ, except that early aborts by Z in Σ resulting in forgeries are
not labeled as ‘aborts’. Specifically, if Z halts prematurely in Σ∗ and outputs a forgery, the protocol continues
arbitrarily (e.g., with parties exchanging a check mark symbol ’X’) until the end of the final key-refresh epoch.
Furthermore, if Z does not halt prematurely and the execution does not result in a forgery, a final message
is added to the protocol at the end of the final key-refresh epoch, and it is assumed that Z aborts Σ∗ in this
final message. Finally, define experiment A∗0 with respect to Σ∗ as the analogue of A0 with respect to Σ.

Remark 7.5. We point out that A0 and A∗0 are not strictly equivalent. For instance, A0 may yield a forgery
(because Z aborts prematurely in the forked path and outputs a forgery), while A∗0 does not (because the
experiment continued on the main path and did not yield a forgery).

Claim 7.6. Let τΣ and τA0
denote the transcripts of Σ and A0, respectively, viewed as random variables

over the honest party’s messages and the RO answers, and define τΣ∗ and τA∗0
analogously. Write forgeX for

X ∈ {Σ,Σ∗,A0,A
∗
0} to denote the forgery event in the relevant experiment, and let α = PrτΣ [forgeΣ]. Then:

1. PrτΣ∗ [forgeΣ∗] = α

2. PrτA0
[forgeA0

] ≥ PrτA∗0
[forgeA∗0

]

Proof. Item 1 is immediate. For Item 2, it suffices to note that A0 and A∗0 differ only when there is a
premature abort together with a forgery, i.e. executions of A0 and A∗0 that do not contain such an event are
indistinguishable. Therefore, any execution of A0 that yields a forgery also yields a forgery according to the
rules of A∗0.

Next, we introduce additional notation and we state and prove some intermediate claims. Let
τΣ∗,1, . . . , τΣ∗,m denote the partial transcripts of Σ∗, viewed as random variables, and let ‘�’ denote a partial
ordering of the transcripts such that ui � ui−1 if (ui, ui−1) ∈ supp(τΣ∗,i) × supp(τΣ∗,i−1) and ui is a valid
continuation of ui−1. Next, define the sequences of events {goΣ∗,i, abortΣ∗,i}mi=1 where:

1. goΣ∗,i denotes the event that the attacker has not aborted Σ∗ up-to-and-including the i-th iteration.

2. abortΣ∗,i denotes that the attacker aborts at the i-th iteration of the experiment.

Finally, define random variable εΣ∗,i such that εΣ∗,i ← Pr[goΣ∗,i | τΣ∗,i = ui] for ui ← τΣ∗,i and let f s.t.

f(ui, ui−1) =

{
Pr[τΣ∗,i = ui | τΣ∗,i−1 = ui−1 ∧ goΣ∗,i−1] if εΣ∗,i−1(ui−1) 6= 0

Pr[τΣ∗,i = ui | τΣ∗,i−1 = ui−1] otherwise.

Claim 7.7. It holds that
∑
um�...�u1

f(u1) · f(u2, u1) . . . f(um, um−1) = 1

Claim 7.8. It holds that α = E
f

[ε1 . . . εm] for f such that for arbitrary uΣ∗ = um � . . . � um:

Pr[f = uΣ∗] = f(u1) · f(u2, u1) . . . f(um, um−1).

Claim 7.9. It holds that PrτA∗0
[forgeA∗0

] = Ef [ε2
Σ∗,1 . . . ε

2
Σ∗,m].

Proofs of Claims 7.7 to 7.9. See Section 7.1.3.

40

Putting everything together. Proposition 7.3 is a straightforward corollary of the above claims. Namely,
by Claim 7.6 and Claim 7.9, we know that PrτA0

[forgeA0
] ≥ Ef [ε2

Σ∗,1 . . . ε
2
Σ∗,m], and, by Jensen’s inequality,

Claim 7.8 and Claim 7.6, we deduce that:

PrτA0
[forgeA0

] ≥ Ef [ε2
Σ∗,1 . . . ε

2
Σ∗,m]

≥ Ef [εΣ∗,1 . . . εΣ∗,m]2

= PrτΣ∗ [forgeΣ∗]
2 = α2

This concludes the proof of Proposition 7.3.

7.1.3 Proofs of Claims 7.7 to 7.9

Proof of Claim 7.7. Fix ui−1 � . . . � u1. Deduce that∑
ui�ui−1

f(u1) · f(u2, u1) . . . f(ui−1, ui−2) · f(ui, ui−1)

= f(u1) · f(u2, u1) . . . f(ui−1, ui−2)
∑

ui�ui−1

f(ui, ui−1)

= f(u1) · f(u2, u1) . . . f(ui−1, ui−2).

The claim follows by simple descent since
∑
u1
f(u1) = 1.

Proof of Claim 7.8. Define auxiliary functions g(ui, ui−1) and h(ui−1) such that

g(ui, ui−1) =

{
Pr[τΣ∗,i = ui ∧mj=i goj | τΣ∗,i−1 = ui−1 ∧ goΣ∗,i−1] if εΣ∗,i−1(ui−1) 6= 0

0 otherwise.

h(ui−1) =

{
Pr[∧mj=igoj | τΣ∗,i−1 = ui−1 ∧ goΣ∗,i−1] if εΣ∗,i−1(ui−1) 6= 0

0 otherwise.

Observe that for ui � ui−1:
Pr[∧mj=igoΣ∗,i | τΣ∗,i = ui] = εΣ∗,i(ui) · h(ui)

h(ui) =
∑
ui+1�ui g(ui+1, ui)

g(ui, ui−1) = Pr[∧mj=igoΣ∗,i | τΣ∗,i = ui] · f(ui, ui−1)

Thus:

α = Pr[∧mi=1goΣ∗,i] =
∑
u1

Pr[∧mi=1goΣ∗,i | τΣ∗,1 = u1] · Pr[τΣ∗,1 = u1]

=
∑
u1

h(u1) · εΣ∗,1(u1) · f(u1)

=
∑
u1

εΣ∗1
(u1) · f(u1)

∑
u2�u1

g(u2, u1)

=
∑
u1

εΣ∗,1(u1) · f(u1)
∑
u2�u1

Pr[∧mi=2goΣ∗,i | τΣ∗,2 = u2] · f(u2, u1)

=
∑

um�...�u1

εΣ∗,1(u1) . . . εΣ∗,m(um) · f(u1) · f(u2, u1) . . . f(um, um−1)

= E
f

[ε1 . . . εm]

41

Proof of Claim 7.9. Define {τA∗0 ,i
, goA∗0 ,i

}mi=1 analogously to {τΣ∗,i, goΣ∗,i}mi=1 with respect to Experiment
A∗0. Notice that if for all i and ui ∈ supp(τΣ∗,i), it holds that Pr[goA∗0 ,i

| τA∗0 ,i
= ui] = εΣ∗,i(ui)

2, then,
using the same calculation as in Claim 7.8, it follows that PrτA∗0

[forgeA∗0
] = Ef [ε2

Σ∗,1 . . . ε
2
Σ∗,m]. So, the main

challenge is showing that Pr[goA∗0 ,i
| τA∗0 ,i

= ui] = εΣ∗,i(ui)
2, and we dedicate the rest of the proof to this.

Write goM,i and goF,i for the event that Z aborts in the main and forked path of experiment A∗0. Clearly,
εΣ∗,i(ui) = Pr[goM,i | τA∗0 ,i

= ui] = Pr[goF,i | τA∗0 ,i
= ui] and

Pr[goA∗0 ,i
| τA∗0 ,i

= ui] = Pr[goM,i ∧ goF,i | τA∗0 ,i
= ui] (1)

Given that Z’s random tape and all random oracle queries are fixed, it follows that goF,i and goM,i are
determined by Pb’s second and third-round messages in their respective paths. Consequently, it holds that,
conditioned on τA∗0 ,i

= ui, the events goM,i and goF,i are independent, as Pb’s messages are independent after
the fork. (Using the fact that for any independent identically distributed random variables a and a′, and any
boolean function b, Pr[b(a) = 1 ∧ b(a′) = 1] = Pr[b(a) = 1] · Pr[b(a′) = 1].) This concludes the proof.

7.1.4 Hybrid A1

FIGURE 17 (Hybrid A1, i.e. Forging Experiment A1)

Define RA1 interacting with Z corrupting all players but Pb as follows:
RA1 runs the code of RA0 with the following difference:

1. All of Pb’s ZK-proofs are generated by invoking the relevant ZK simulator.

2. (a) Every time the experiment is forked, do:
i. If Z does not abort in the main path, then:

– In the forked path, program the RO queries of the form (. . . , Nj) as per Section 5.2.1.
– Extract the Paillier keys using the relevant extractor.

ii. Else, ignore Item 2a.
(b) If the experiment continues beyond the i-th key-refresh:

Extract the i-th ECDSA key-shares using the special-soundness extractors.

Output. If RA1 fails to extract the i-th key-shares or the Paillier keys, then output fail.

Else output the transcript of the execution.

Figure 17: Hybrid A1, i.e. Forging Experiment A1

Proposition 7.10. Let ν and ν′ denote smallest (statistical) HVZK and soundness parameters in the protocol
and let d and d′ denote upper bounds on, respectively, the total number of ZK proofs and the number of RO
queries. Suppose that Z outputs a forgery with probability α in Experiment A0 from Figure 16, then Z outputs
a forgery with probability α− ν · d− ν′ · d′ in Experiment A1 from Figure 17.

7.1.5 Proof of Proposition 7.10

Define in-between experiment A∗0 relative to Item 1 of Figure 17 as follows: RA∗0
proceeds as RA0

except
that all of Pb’s ZK-proofs are generated by invoking the relevant ZK simulator. Let α0, α

∗
0, α1 denote the

probability that Z outputs a forgery in experiments A0, A∗0, A1, and let forgeX denote the forgery event in
experiment X ∈ {A0,A

∗
0,A1}. Proposition 7.10 follows from the claim below.

Claim 7.11. Using the notation above, it holds that

1. α∗0 ≥ α0 − ν · d

2. α1 ≥ α∗0 − ν′ · d′.

42

Proof. For the first item, observe that A0 and A∗0 are distinguishable only if the completeness property does
not hold for one of the real ZK proofs. This happens with probability at most ν · d which conclude the proof
of Item 1. For the second item, A∗0 and A1 are distinguishable in the following cases.

• (Nj , N̂j , sj , tj) is malformed and the main path of the experiment does not abort.

• (Nj , N̂j , sj , tj) is well-formed, the main path does not abort, but RA1
fails to extract the Paillier keys.

As either event occurs with probability at most d′ · ν′, this concludes the proof for Item 2.

7.1.6 Hybrid A2

FIGURE 18 (Hybrid A2, i.e. Forging Experiment A2)

Define RA2 interacting with Z corrupting all players but Pb.
Sample (x,X)← Fq ×G such that X = gx. Proceed as RA1 except that:

1. Key-Generation & Aux Info.

(a) Extract {Xj}j 6=b from the RO queries and set Xb = X · (
∏
j 6=bXj)

−1.
(b) Extract {xj}j 6=b and {ϕ(Nj)}j 6=b as in experiment A1 in Figure 17.
(c) Set all other items as in Figure 17.

2. Presigning.

(a) Extract {αj,b, α̂j,b, kj , γj , βj,b, β̂j,b}j 6=b by decrypting {Dj,b, D̂j,b,Kj , Gj , Fb,j , F̂b,j}j 6=b.
(b) Set δb = kb · γb + γb · (

∑
j 6=b kj) + kb · (

∑
j 6=b γj)−

∑
j 6=b αj,b + βj,b mod q

(c) Set all other items as in Figure 17.

3. Signing.

(a) σb =
(
kb ·m+ r ·

(
kb · xb + xb · (

∑
j 6=b kj) + kb · (

∑
j 6=b xj)−

∑
j 6=b α̂j,b + β̂j,b

))
/δ mod q.

(b) Set all other items as in Figure 17.

Output. Same as RA1 in Figure 17.

Figure 18: Hybrid A2, i.e. Forging Experiment A2

Proposition 7.12. Let α denote the probability that Z outputs a forgery in Experiment A1 from Figure 18
and assume that Z outputs a forgery with probability less than α − δ in Experiment A2 from Figure 18. Let
d and ` denote a bound on the number of RO queries and the bit length of the output space of the RO. Let ν
denote the statistical soundness parameter of Πelog. Then, there exists efficient PPTM A such that:

Pr
(N,C)←sRSA(1κ)

[(m, e)← A(1κ, N,C) s.t. me = C mod N ∧ e /∈ {1,−1}] ≥ (δ − 3dν)2/9d− 2−`

7.1.7 Proof of Proposition 7.12

Define the intermediate experiment A∗1, where RA∗1
proceeds as RA1 from Figure 17, except that it (ineffi-

ciently) checks if (Γj , g, Bj,1, Bj,2, Yj) ∈ Relog for j 6= b. If a malformed tuple is detected, it halts the experiment
and outputs an error. Define A∗2 and RA∗2

analogously with respect to A2 and RA2
from Figure 18.

Let forgeX and τX denote the forgery event and the transcript of X ∈ {A1,A
∗
1,A2,A

∗
2}. Recall the relations

Rfac,Renc-elg,Raff-g from Section 3.2, i.e. the ‘range-proof’ relations, verifying the validity of Nj and the tuples
(Iε,Kj , Yj , Aj,1, Aj,2), (Iε, Gj , Yj , Bj,1, Bj,2) and (Iε,Jε, Dj,i,Kj , Fj,i,Γi), (Iε,Jε, D̂j,i,Kj , F̂j,i, Xi) respec-
tively.

Claim 7.13. Experiments A1 and A∗1, and experiments A2 and A∗2, are statistically (d · ν)-indistinguishable.

Proof. Corollary of the statistical soundness of Πelog.

43

Claim 7.14. For X ∈ {A∗1,A∗2}, let cheatX denote the event that experiment X contains a malformed tuple
with respect to Rfac,Renc-elg,Raff-g. Furthermore, let τ̃X denote random variable that returns a transcript of
X conditioned on the event that all relevant tuples are well-formed with respect to Rfac,Renc-elg,Raff-g. Then,{

PrτA∗1
[cheatA∗1

] = PrτA∗2
[cheatA∗2

]

SD(τ̃A∗2
, τ̃A∗1

) = 0

Proof. Consider the following intermediate (inefficient) experiment A∗∗1 : Define RA∗∗1
to run the code of RA∗1

until a malformed tuple is detected with respect to Rfac,Renc-elg,Raff-g (i.e. cheatA∗1
occurred), and then switch

to RA∗2
from that point onward. Clearly, PrτA∗1

[cheatA∗1
] = PrτA∗∗1

[cheatA∗∗1
] and τA∗∗1

≡ τA∗2
and τ̃A∗∗1

≡ τ̃A∗1
.

This concludes the proof.

Claim 7.15. It holds that PrτA1
[cheatA1] ≥ δ − 3d · ν.

Proof. Let δ∗ = PrτA∗1
[forgeA∗1

]− PrτA2
[forgeA∗2

] and notice that δ∗ ≥ δ − 2dν by Claim 7.14. Thus,

δ − 2dν ≤ PrτA∗1
[forgeA∗1

∧ cheatA∗1
]− PrτA2

[forgeA∗2
∧ cheatA∗2

] (2)

≤ PrτA∗1
[cheatA∗1

]
(

PrτA∗2
[forgeA∗1

| cheatA∗1
]− PrτA∗2

[forgeA∗2
| cheatA∗2

]
)

≤ PrτA∗1
[cheatA∗1

] ≤ PrτA1
[cheatA1

] + d · ν (3)

where Equations (2) and (3) follow from Claim 7.13 and Claim 7.14. To conclude, since experiments A1 and
A∗1, and experiments A2 and A∗2, are statistically (d · ν)-indistinguishable, the claim follows.

As a final intermediate step, we will be using the generalized forking lemma, stated next.

Lemma 7.16 (Generalized Forking Lemma [4]). Let A denote a PPTM with inputs (x, h1, . . . , hd; r) that
outputs a pair (j, z) ∈ {0, 1, . . . , d} × {0, 1}∗, where r denotes A’s random tape. Let x denote denote some
arbitrary distribution and let H denote a finite set. Let

δ = Pr
x←x,r←{0,1}∗

{hi←H}di=1

[(j, z)← A(x, h1, . . . , hd; r) s.t. j > 0]

and consider the ‘forking’ algorithm F :

1. Let x← x and sample r according to the prescribed distribution.

2. Sample {hi ←H}di=1.

3. Run A on input (x, h1, . . . , hd; r). Obtain (j, z).

If j = 0, output 0.

4. Sample {h′i ←H}di=j
5. Run A on input (x, h1, . . . , hj−1, h

′
j , . . . , h

′
d; r). Obtain (j′, z′).

If j = j′ and hj 6= h′j, output 1. Else, output 0.

Let δ′ denote the probability that F outputs 1. Then, δ′ ≥ δ2

d −
1
|H| .

Putting everything together. Apply the forking lemma with A = (RA1
,Z) in experiment A1, viewed as a

single machine, r being the random tape of RA1
and Z, viewed as a single random tape, H and {hi}di=1 being

the RO output space and query-answers, x = (N̂ , s, t) denotes the Pedersen tuple, and (j, z) to denote the
index and the accepting, valid proof of the first malformed tuple included in the transcript; (j, z) = (0,⊥) if no
such tuple exists. Using the bound ϕ(N)/(N − 1)− 1/2 ≥ 1/3,16 Proposition 7.10 follows from Lemma 7.16,
Claims 5.1 and 7.15, and Theorem 5.2.

16This bound holds true as long as N3/4 ≥ p, q and N1/4 ≥ 12 for RSA number N = pq.

44

7.2 Reduction to DDH and DCR
7.2.1 Hybrid B0

FIGURE 19 (Hybrid B0, i.e. Forgery Experiment B0)

Define RB0 interacting with Z corrupting all players but Pb.
Sample (x,X)← Fq ×G such that X = gx. Proceed as RA2 except that:

1. Key-Generation & Aux Info.

Same as Figure 18.

2. Presigning. Sample γ, δ ← Fq and set Γ = gγ .

(a) Sample (Yb, Ab,1, Ab,2, Bb,1, Bb,2)← G5.
(b) Set Γb = Γ · (

∏
j 6=b g

γj)−1 and δb = δ − (
∑
j 6=b kj) · (

∑
j 6=b γj) +

∑
j 6=b αj,b + βj,b mod q

(c) Set ∆b = gδ ·
∏n
j=1 Γ−kj and Sb = Xδ · Γ−(

∑
j 6=b kj)·(

∑
j 6=b xj)+

∑
j 6=b α̂j,b+β̂j,b

(d) Set all other items as in Figure 18.

3. Signing. Set σ = γ−1 · (m+ r · x) mod q and r = Γ|(·).

(a) Set σb = σ − (
∑
j 6=b kj)/δ ·m− r ·

(
(
∑
j 6=b kj) · (

∑
j 6=b xj) +

∑
j 6=b α̂j,b + β̂j,b

)
/δ mod q

(b) Set all other items as in Figure 18.

Output. Same as RA2 in Figure 18.

Figure 19: Hybrid B0, i.e. Forgery Experiment B0

Proposition 7.17. Let ν denote smallest (statistical) soundness parameter in the protocol and let d denote
an upper bound on the number of of RO queries. Let α denote the probability that Z outputs a forgery
in Experiment A2 from Figure 18 and assume that Z outputs a forgery with probability less than α − δ in
Experiment B0 from Figure 19. Then, there exists efficient PPTM A such that:

Pr
(A,B,C,z)←DDH(1κ)

[β ← A(1κ, A,B,C) s.t. β = z] ≥ 1

2
+ δ/2− ν · d

7.2.2 Proof of Proposition 7.17

Define in-between experiment A∗2 relative to Item 2a of Figure 19: RA∗2
proceeds as RB0

except that instead
of sampling the tuple (Yb, Ab,1, Ab,2, Bb,1, Bb,2) randomly, it calculates the tuple as in experiment A2 from
Figure 18. Let α, α∗ and α0 denote the probability that Z outputs a forgery in experiment A2, A∗2 and B0

respectively. It is assumed that α− α0 ≥ δ for δ ≥ 0.

Claim 7.18. Recall that ν denotes smallest (statistical) soundness parameter in the protocol and let d denote
an upper bound on the number of of RO queries. Using the notation above, it holds that α∗ ≥ α− ν · d.

Proof. Recall that Πelog is statically ν0-sound for ν0 ≥ ν. The claim is immediate by noting that A∗2 and A2 are
identically distributed if all (∆j ,Γ, Aj,1, Aj,2, Yj , g) are well-formed, i.e. (∆j ,Γ, Aj,1, Aj,2, Yj , g) ∈ Relog.

Definition 7.19. For (A,B,C) ∈ G3, define the following ‘variant’ of DH multi-commitment. To ‘commit’
to k1, k2 ∈ Fq, define randomized algorithm c̃omA,B,C(k1, k2) as follows:

1. Set (A0, B0, C0) = (A · gµ, Bλgρ, AρBµ0Cλ) for µ, λ, ρ← Fq.

2. Return (A0, B0, C0 · gk1 , Bu0 g
v, Cu0A

v
0 · gk2) for u, v ← Fq.

45

Reduction to DDH. Define algorithm RDDH taking input (A,B,C) ∈ G3: Run RA∗2
but instead of gen-

erating the tuple (Yb, Ab,1, Ab,2, Bb,1, Bb,2) as prescribed, use the ‘special’ commitment process c̃omA,B,C(·)
from Definition 7.19 to commit to a pair (k, γ). Output 0 if the execution yields a forgery and 1 otherwise.
Proposition 7.17 follows from the claim below.

Claim 7.20. It holds that Pr(A,B,C,z)←DDH(1κ)[β ← RDDH(A,B,C) s.t. β = z] ≥ 1
2 + (δ − d · ν)/2

Proof. The first thing to note is that (A0, b0, C0, B
′
0, C

′
0) = c̃omA,B,C(k1, k2) is either a random 5-tuple when

A,B,C is a random 3-tuple, or it is identically distributed with the 5-tuple (Yb, Ab,1, Ab,2, Bb,1, Bb,2) (i.e. it
is a commitment to k1, k2). Thus, RDDH corresponds to experiment A2 when A,B,C is a DH tuple, or it
corresponds to B0 when A,B,C is a random 3-tuple. Finally, since RDDH is ‘correct’ (outputs the right bit)
when (A,B,C) is a DH tuple and the execution yields a forgery, or when (A,B,C) is a random 3-tuple and
the execution does not yield a forgery, we conclude that:

Pr[β ← RDDH(A,B,C) s.t. β = z] =
1

2
· α∗0 +

1

2
· (1− α0) =

1

2
+
α∗0 − α0

2

≥ 1

2
+
α− α0 − d · ν

2
≥ 1

2
+
δ − d · ν

2

7.2.3 Hybrid B1

FIGURE 20 (Hybrid B1, i.e. Forgery Experiment B1)

Define RB1 interacting with Z corrupting all players but Pb.
Sample (x,X)← Fq ×G such that X = gx. Proceed as RB0 except that:

1. Key-Generation & Aux-info.

Same as Figure 19.

2. Presigning.

(a) Set Kb, Gb, {Fj,b, F̂j,b}j 6=b as random elements in Z∗N2
b
.

(b) Set all other items as in Figure 19.

Output. Same as RB0 in Figure 19.

Figure 20: Hybrid B1, i.e. Forgery Experiment B1

Proposition 7.21. Let α denote the probability that Z outputs a forgery in Experiment B0 from Figure 19
and assume that Z outputs a forgery with probability less than α− δ in Experiment B1 from Figure 20. Let d
denote an upper bound on the number of key-refresh epochs. Then, there exists efficient PPTM A such that:

Pr
(N,C,z)←DCR(1κ)

[β ← A(1κ, N,C) s.t. β = z] ≥ 1

2
+ δ/2d

7.2.4 Proof of Proposition 7.21

Next, let B
(0)
1 = B0 and define in-between experiments B

(1)
1 , . . . ,B

(d)
1 = B1 with respect to each key-refresh

epoch of Figure 20. In these experiments, R
B

(i)
1

proceeds as RB0
up to and including the (d− i)-th key-refresh

epoch, and as RB1
from the (d − i + 1)-the key-refresh epoch until the end. Let α(i) denote the probability

that Z outputs a forgery in experiment B
(i)
1 .

Claim 7.22. There exists i ∈ [d] such that α(i) − α(i−1) ≥ δ/d.

Proof. Simple averaging argument.

Definition 7.23. For (N,C) ∈ N × Z∗N2 , define the following ‘variant’ of Paillier encryption: to ‘encrypt’
k ∈ ZN , return ẽncN,C(k) = (1 + k ·N) · λN · Cλ mod N2 for λ, ρ← Z∗N .

46

Reduction to DCR. Define algorithm RDCR that takes as input (N,C) ∈ N × Z∗N2 . Run RB0
up to the

(d− i)-th epoch. For the next epoch, in the main path, use Nb = N and the special Paillier encryption process
ẽncN,C(·) from Definition 7.23 to encrypt elements under Nb, while in the forked path, proceed as prescribed
by RB0

. For the subsequent epochs, run RB1
. Output 0 if the execution yields a forgery and 1 otherwise.

Proposition 7.21 follows from the claim below.

Claim 7.24. It holds that Pr(N,C,z)←DCR(1κ)[β ← RDCR(N,C) s.t. β = z] ≥ 1
2 + δ/2d

Proof. The first thing to note is that C0 = ẽncN,C(k) is either a random value in Z∗N2 when C ← Z∗N2 , or it
is identically distributed with encN (k) (i.e. it is an encryption of k). Thus, RDCR corresponds to experiment
B

(i−1)
1 when C is an encryption of zero, or it corresponds to B

(i)
1 when C is a random element in Z∗N2 . Finally,

since RDCR is ‘correct’ (outputs the right bit) when C = encN (0) and the execution yields a forgery, or when
C ← Z∗N2 and the execution does not yield a forgery, we conclude that:

Pr[β ← RDCR(N,C) s.t. β = z] =
1

2
· α(i) +

1

2
· (1− α(i−1)) ≥ 1

2
+ δ/2d

7.3 Reduction to Enhanced Existential Unforgeability of ECDSA

FIGURE 21 (Hybrid C, i.e. Forgery Experiment C)

Define RC interacting with Z corrupting all players but Pb.
Call the signing oracle G obtain ECDSA pk X. Proceed as RB1 except that:

1. Key-Generation & Aux Info.

Same as Figure 20 except that xb =⊥.
2. Presigning.

(a) Sample δ ← Fq and call the signing oracle G to obtain ECDSA presignature Γ.
(b) Set {Dj,b = encj(αj,b), D̂j,b = encj(α̂j,b)}j 6=b for αj,b, α̂j,b ← J

(c) Set all other items as in Figure 20.

3. Signing.

(a) Call the signing oracle G on presignature Γ and message msg. Obtain signature string σ.
(b) Set σb as in Figure 20.

Output. Same as RB1 in Figure 20.

Figure 21: Hybrid C, i.e. Forgery Experiment C

Proposition 7.25. Define random variables a and âk such that α← a for α← J and k′+α← â for α← J .
Let ν = maxk′∈I`+ε(SD(a,ak)). Let α denote the probability that Z outputs a forgery in Experiment B1 from
Figure 20 and let d denote a bound on the number of presignatures. It holds that Z outputs a forgery with
probability α− 2dn · ν in Experiment C from Figure 21.

Proof. The proof is immediate by the definition of ν, since RC generates d samples of {Dj,b, D̂j,b}j 6=b.

7.3.1 Dealing with attackers that do not abort

At the beginning of this section, we assumed that whenever Z disrupts the key-refresh (specifically by pre-
venting parties from obtaining output), the entire protocol was halted. However, as noted in Remark 4.2, the
attacker is actually allowed to continue signature operations even after disrupting the key-refresh (with the
key-refresh not being invoked again). We refer to attackers who abort the protocol whenever they disrupt the
key-refresh as aborting attackers.

In this section, we prove a reduction from non-aborting to aborting attackers, as captured by the following
lemma:

47

Lemma 7.26. For any Z that forges signatures with probability α in an execution of Σ, there exists an
aborting attacker Z0 that forges signatures with probability α/d, where d − 1 denotes an upper bound on the
number of key refresh epochs.

Proof. We define Z0 with black-box access to Z as follows: Z0 samples j ← [d] and acts as an intermediary
between Z and the honest parties up to and including epoch i − 1. At the key-refresh initiating epoch i (if
i = d, then this step is irrelevant), Z0 impersonates the honest parties and generates all the auxiliary material
(Paillier keys, Pedersen keys, DH tuples, etc.). If Z disrupts the key-refresh but does not abort, Z0 reverts to
acting as an intermediary between the honest parties and Z—this is possible because the epoch counter has
not been incremented, and the auxiliary material has not been updated in Z’s view. If Z does not disrupt the
key-refresh, the experiment is considered a failure, and Z0 outputs an error and halts. Otherwise, Z0 outputs
whatever Z outputs and then halts.

Notice that with probability 1/d (i.e. when Z0 correctly guesses the cheating round), Z’s view in the
experiment described above is identically distributed to a random execution of Σ in the presence of Z. As a
result, Z0 outputs a forgery with probability α/d, where α denotes Z’s forgery probability.

8 How to handle Adaptive Corruptions
Previously, we assumed that Z corrupts all-but-one parties statically at the beginning of the execution. Since
the protocol is completely ‘symmetric’, meaning there is no way to distinguish parties other than by their
arbitrarily-assigned labels in P , there is a simple, intuitive way to adapt the above to the adaptive corruption
model. This can be done by randomly assigning Pb to be one of the honest parties at the beginning of each
key-refresh epoch of each experiment, and resetting the experiment back to the beginning of the key-refresh
epoch if Z decides to corrupt Pb during that epoch.

The above-described process impacts the forgery probability only if the running time of the experiment
exceeds some predefined polynomial bound. As long as the new experiment terminates within this bound, the
view of Z in the new experiment is identically distributed with the view of Z in the relevant experiment, up
to a relabeling of the (simulated) honest parties’ identities between epochs.

Adaptive to Static Security Reduction. Formally, we prove a security reduction from the adaptive to
the static corruption model. By increasing the number of key-refresh epochs, we show that any adaptive forger
in Σ can be transformed into a static forger, with a negligible loss in the forgery probability.

The main challenge for the reduction is to ‘break’ the sequence of public key sharesXb → X ′b → . . .→ X
(d)
b ,

where X(i)
b denotes the sole honest party’s (say Pb) public key share in epoch d. The goal is to ensure that,

from Z’s perspective, X(i)
b and X(i+1)

b belong to the same party with probability 1/h when there are at least h
honest parties at the beginning of epoch i+ 1. Before describing the reduction, we present the formal security
claim expressed in asymptotic terms as a function of the security parameter κ.

Lemma 8.1. Recall that κ denotes the security parameter. Let Z̃ denote a PPTM that adaptively corrupts
parties in an execution of Σ with at most d key-refresh epochs, and assume that Z̃ outputs a forgery with
probability α. Recall that n denotes the number of parties in Σ. Then, the following holds under DDH for
some negligible function µ. For any t ∈ ω(log(κ)), there exists a PPTM Z that statically corrupts all-but-one
parties in an execution of Σ with at most d ·tn key-refresh epochs such that Z outputs a forgery with probability
at least α− µ.

8.1 Proof of Lemma 8.1
Similar to the proof of Theorem 6.6, we present a sequence of inbetween hybrid experiments which are in-
distinguishable from each other, and the last experiment corresponds to the static corruption case. Given
the similarity of the security proofs in this section to those in Section 7, we will keep the exposition concise.
Hereafter, the security parameter and all the dependent variables are fixed.

Experiment A. Let C denote the set of parties that are not corrupted by Z̃ at any given time in an
execution of Σ. This set evolves dynamically as the execution progresses. Define algorithm RA that runs the

48

code of the honest parties against Z with the following additional instruction: At the beginning of each key-
refresh epoch, RA randomly chooses a ‘special’ party Pb ← P \C. If Z decides to corrupt Pb, the experiment
resets to the beginning of the last key-refresh epoch and a new special party is chosen. If this step occurs
more than t · n times in any given epoch of Σ̃, Z is instructed to halt. If Z decides to corrupt a party other
than Pb, the experiment continues, with RA revealing that party’s state to Z.

Claim 8.2. If Z̃ outputs a forgery with probability α in an execution of Σ, then RA outputs a forgery with
probabilty α− d exp(−t).

Proof. Clearly, if RA does not halt prematurely, then the view of Z̃ an execution of Σ and experiment A
is identically distributed. Thus, it suffices to bound the probability that RA aborts prematurely. Since the
corruption event of Pb in any given epoch can be modeled as a sequence of t ·n Bernoulli trials with probability
1/n (because the probability of the ‘good’ event, where Z̃ does not guess Pb, is at least 1

|P \C|), Claim 8.2
follows from the fact below.

Fact 8.3. For t, n ∈ N, let r = t · n and define σ =
∑n
i=1 yi for y1 . . .yr iid Boolean variables with Pr[yi =

1] = 1/n. It holds that Pr[σ = 0] ≤ exp(−t).

Proof. Notice that Pr[σ = 0] =
(
n−1
n

)r. Using the fact that (1 + x/m)m ≤ exp(x) for m ≥ 1 and |x| ≤ m:(
n− 1

n

)r
=

(
1− 1

n

)r
=

(
1 +
−t
r

)r
≤ exp(−t)

8.1.1 Reduction to DDH

Experiment B. Define algorithm RB that proceeds as RA with the following additional instructions. Let
Pb and Pb′ denote the chosen special parties in epochs i − 1 and i, respectively. At the beginning of each
epoch i, proceed as follows: Instead of calculating Cb′,b = xb,b′ + ρb,b′ mod q, where ρb,b′ is derived from the
DH tuple using the oracle H and xb,b′ is the random shift sent from Pb to Pb′ , set Cb′,b ← Fq instead.

Claim 8.4. Let δ denote the difference in the probabilities that RA and RB yield a forgery in their respective
experiments. Then, there exists an efficient PPTM A such that:

Pr
(A,B,C,z)←DDH(1κ)

[β ← A(1κ, A,B,C) | β = z] ≥ 1

2
+
δ

2
.

8.1.2 Reduction to the Static Corruption Model

Experiment C. We define adversary Z, which corrupts all parties except Pb ∈ P , and maintains a simulated
execution of Σ with Z̃. To avoid confusion, we write Σ̃ for the protocol execution from Z̃’s point of view, and
values in Σ̃ are generally denoted with a tilde.

1. Z locally emulates all parties except those in C ∪ {Pb}.

2. Z acts as an intermediary between Z̃, and Pb and H, possibly relabeling some of the message identifiers
but not the actual messages, except for those described in Item 5. Z also keeps track of the random-
oracle queries, ensuring the relabeling of the message identifiers is consistent with the oracle from Z̃’s
perspective. This gives rise to a simulated random oracle, H̃, which Z maintains locally.

3. At the beginning of each key-refresh epoch, Z re-randomizes the identity of Pb swithing the identifying
labels between Pb and a random party in P \C (including Pb) in Σ̃. The execution then continues as
per Items 1 and 2.

4. If Z̃ decides to corrupt in Σ̃ the party corresponding to Pb in Σ, a new key-refresh epoch is initiated in
Σ and Z̃ is rewound back to the last key-refresh epoch of Σ̃. If this step occurs more than t · n times in
any given epoch of Σ̃, Z is instructed to halt.

49

5. In every key refresh execution of Σ̃, for the tuple of public shifts (i.e. the Xi,j ’s), Z hands over
(X̃b,1, . . . , X̃b,n) to Z̃ on behalf of Pb instead of (Xb,1, . . . , Xb,n). Here, (X̃b,b, X̃b,b′) = (Xb,b·∆, Xb,b′ ·∆−1,
where Pb′ is the chosen identity for Pb for the new epoch, and ∆ is the difference between the prescribed
public key shares for Pb and Pb′ at the completion of the key refresh.17 All other values are set in the
expected way. Note that the entries of (X̃b,1, . . . , X̃b,n) are sorted according to the ongoing labeling of
the parties from Z̃’s point of view. Additionally,

(a) Z generates proofs for the pair (X̃b,b, X̃b,b′) on behalf of Pb using the ZK simulator for Πsch.

(b) The ciphertext C̃b,b′ in Σ̃ sent from Pb to Pb′ is chosen randomly from Fq.

6. At the end of the execution, if Z did not halt prematurely, then Z outputs whatever Z̃ and halts.

Claim 8.5. If experiment B yields a forgery with probability α, then static adversary Z corrupting all but-
one-parties outputs a forgery with probability α in an execution of Σ (i.e. Experiment C).

Proof. From Z̃ perspective, since the ZK simulator for Πsch is perfect, it follows that, from Z̃’s perspective,
experiments C and B are identically distributed.

9 Additional Related Work
Prior works to [21] on threshold ECDSA. All previous protocols for threshold ECDSA follow (variants)
of the blueprint described in Section 2.1 where the parties locally generate shares γ∗1 . . . γ∗n of γ [52, 34] or γ−1

[38, 24] and then jointly compute r = gγ |(·) and shares of γ−1(m+ rx) via a pairwise-multiplication protocol
in combination with the masking technique described at the beginning of the present section. Furthermore,
all protocols take a somewhat optimistic approach, where the correctness of the computed values in the
multiplication is verified only after the computation takes place; this is the main source of the round-complexity
cost.

Security models in prior works. As mentioned previously, Gennaro and Goldfeder [38] show that their
protocol satisfies a game-based definition of security (i.e. unforgeability) under standard assumptions (DDH,
DCR, strong-RSA, ECDSA). The protocol of Castagnos et al. [24] follows the same template, except that
it replaces Paillier with an encryption scheme based on class groups [23]. Specifically, they show that their
scheme is unforgeable assuming DDH and additional assumptions on class groups of imaginary quadratic fields,
specifically hard subgroup membership, low-order assumption and strong root.18

Lindell et al. [52] and Doerner et al. [34] show secure-function evaluation of the ECDSA functionality and
prove that their respective protocols UC-realize said functionality in a hybrid model with ideal commitments
and zero-knowledge, assuming DDH .

On the GG20 and CMP protocols. The independent works of Gennaro and Goldfeder [39], known as
‘GG20’, and Canetti et al. [22], known as ‘CMP’, are precursors to [21] and the present work.19 These works
were submitted independently to the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS’20). On the authors’ initiative, the two works were merged, resulting in [21], which includes
two distinct non-interactive signing protocols offering a trade-off between the presigning round complexity
and the general resource complexity for achieving accountability. The protocol presented in this document
is the culmination of several improvements and simplifications, achieving the best costs compared to the two
protocols in [21].

17We note that this is possible because Z has access to the RO queries of Z̃ (as Z acts as an intermediary between Z̃ and the
RO) and, being a rushing adversary, Z also has access to Pb’s public shifts before handing them over to Z̃. Consequently, Z can
compute the ∆ without issue.

18These assumptions may be viewed as analogues of DCR & strong-RSA for class groups.
19[39] and [22] are available in the IACR eprint archive.

50

Concurrent works with [21]. The works of [39, 22], Damgård et al. [30], and Gągol and Straszak [44] were
published on the IACR eprint archive within a few days of each other. Interestingly, all of these works mention
a pre-processing mode of operation to improve efficiency. In [30], the authors consider the honest-majority
setting and design a protocol based on Gennaro et al. [40]. They show that their protocol is UC-secure with
abort and also demonstrate how to bootstrap their protocol to achieve fairness. Additionally, they mention
a non-interactive variant of their protocol by pre-processing all-but-one of the rounds, though no security
analysis is provided for this variant.

In [44], motivated by the application of MPC wallets with a large number of signers, the authors design
a protocol that supports robustness in the form of identifiable abort by augmenting the protocol in [52] with
additional NIZKs.

Bootstrapping authentication for proactive security. Kondi et al. [48] consider the case where some
parties remain offline during a proactive refresh phase, and furthermore do not have reliable authenticated
communication with the other parties when they get back online. (Indeed, in the context of cryptocurrency
custody, it may be desirable for offline ‘cold’ wallets to participate in the refresh at their own pace, which, in
turn, may open the door to attacks.) They show how such a late party can regain authenticated communication
with the reset of the system by way of using the blockchain itself as a means to authenticate the public keys
of the other parties. This solution can be seen as a way to use the blockchain for implementing the persistent
threshold signature scheme in the Canetti et al. [19] solution.

9.1 Works Subsequent to [21]
Given the popularity of ECDSA in the blockchain space, many follow-up and related works have emerged
since [21]. Below, we provide a non-exhaustive list of some of the most relevant subsequent works and direct
the interested reader to the respective papers for further references.

In addition to using OT and Paillier, numerous works have introduced alternative building blocks to design
ECDSA protocols. For instance, the work of Xue et al. [63] shows how to improve the share-computation,
typically implemented with Paillier in this work and many others, by using the Joye-Libert cryptosystem
instead. The work of Abram et al. [1] shows how to achieve a bandwidth-efficient protocol based on pseudo-
random correlation generators (PCGs). Additionally, the work of Boneh et al. [8] introduces the concept of an
exponent-VRF, enabling the design of a two-round two-party ECDSA protocol based on standard assumptions.

On Blokh et al. [5]. The work of Blokh et al. [5] extends the present work in several directions. First,
Blokh et al. generalize the security paradigm from this work by showing that any signature protocol that
satisfies a weaker version of ‘standalone’ security UC-realizes functionality Ftsig.20 Additionally, [5] shows how
the range proofs herein can be batched, meaning that a single proof yields the validity of many ciphertexts,
and how these ciphertexts can be packed, meaning that each ciphertext contains many signatures. Finally,
using the aforementioned tools, the authors design an ‘asymmetric’ ECDSA protocol for the cold-wallet use
case. A similar approach was used in the work of Friedman et al. [36].

Three-Round Threshold ECDSA. The protocol of Doerner et al. [35] was the first to achieve three-round
threshold ECDSA in the fully malicious model (all-but-one corruptions). They use a clever technique from
Abram et al. [1] and Gennaro et al. [40] that allows for the nonce and the signature shares to be verified
together via simple signature verification. This technique is also used in this paper, resulting in either the
online three-round protocol or the two-round presigning protocol mentioned in this document. In the latter
case, to ensure accountability, the transcript is saved for the non-interactive signing phase.

Presignatures. The work of Shoup and Groth [61] presents a fine-grained analysis of the presignatures
mode of operation, where the authors confirm and expand the analysis in the GGM found in Appendix E.
Additionally, the authors provide an analysis in the related-key setting, where a number of public keys have a
known discrete logarithm relation for the adversary, as well as the so-called ‘raw signing’ setting. The authors

20So-called ‘standalone’ security for an MPC protocol refers to the security notion where every adversary can be simulated
with negligible distinguishing advantage. In [5], the authors demonstrate that it suffices for the protocol to be simulatable with
a small-but-not-necessarily-negligible distinguishing advantage in order for the protocol to realize Ftsig.

51

show various security bounds in the GGM for each of these cases, and they also propose algorithmic techniques
to achieve better bounds.

Attacks on Pallier-based threshold ECDSA. The work of Makriyannis et al. [54] presents attacks on
several implementations and protocols of Paillier-based threshold ECDSA. The authors exploit various missing
checks, either due to deviations from the protocol specifications in certain implementations or because the
well-formedness of the Paillier key was not enforced by the protocol specification. None of the attacks from
[54] apply here.

Acknowledgements
A previous iteration of this paper contained an inaccurate security bound for enhanced unforgeability in the
GGM (cf. Appendix E). We thank Victor Shoup for pointing this out and for further discussions on enhanced
unforgeability.

We also thank Omer Shlomovits for identifying an issue regarding the identifiable abort in a previous
iteration of this paper. Finally, we thank Geoffroy Couteau for providing valuable feedback on an earlier draft
of this manuscript.

References
[1] D. Abram, A. Nof, C. Orlandi, P. Scholl, and O. Shlomovits. Low-bandwidth threshold ecdsa via pseudo-

random correlation generators. In 2022 IEEE Symposium on Security and Privacy (SP), pages 2554–2572.
IEEE, 2022. doi: 10.1109/SP46214.2022.9833685.

[2] C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V. Zikas. Universal composition with global
subroutines: Capturing global setup within plain UC. In R. Pass and K. Pietrzak, editors, Theory of
Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part III, volume 12552 of Lecture Notes in Computer Science, pages 1–30. Springer, 2020.
doi: 10.1007/978-3-030-64381-2_1. URL https://doi.org/10.1007/978-3-030-64381-2_1.

[3] E. Barker. Recommendation for key management: Part 1 – general. NIST Special Publication 800-57
Part 1 Rev. 5, National Institute of Standards and Technology, May 2020. URL https://doi.org/
10.6028/NIST.SP.800-57pt1r5.

[4] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In A. Juels, R. N. Wright, and S. D. C. di Vimercati, editors, Proceedings of the 13th ACM Conference
on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November
3, 2006, pages 390–399. ACM, 2006. doi: 10.1145/1180405.1180453.

[5] C. Blokh, N. Makriyannis, and U. Peled. Efficient asymmetric threshold ECDSA for MPC-based cold
storage. Cryptology ePrint Archive, Paper 2022/1296, 2022.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. J. Cryptology, 17(4):297–319,
2004. doi: 10.1007/s00145-004-0314-9. URL https://doi.org/10.1007/s00145-004-0314-9.

[7] D. Boneh, R. Gennaro, and S. Goldfeder. Using level-1 homomorphic encryption to improve threshold DSA
signatures for bitcoin wallet security. In Progress in Cryptology - LATINCRYPT 2017 - 5th International
Conference on Cryptology and Information Security in Latin America, Havana, Cuba, September 20-22,
2017, Revised Selected Papers, pages 352–377, 2017.

[8] D. Boneh, I. Haitner, and Y. Lindell. Exponent-VRFs and their applications. Cryptology ePrint Archive,
Paper 2024/397, 2024. https://eprint.iacr.org/2024/397.

[9] F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Preneel, editor, Advances in
Cryptology — EUROCRYPT 2000, pages 431–444, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.
ISBN 978-3-540-45539-4.

52

https://doi.org/10.1007/978-3-030-64381-2_1
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/s00145-004-0314-9
https://eprint.iacr.org/2024/397

[10] E. F. Brickell, D. Chaum, I. B. Damgård, and J. van de Graaf. Gradual and verifiable release of a secret
(extended abstract). In C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87, pages 156–166,
Berlin, Heidelberg, 1988. Springer Berlin Heidelberg. ISBN 978-3-540-48184-3.

[11] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the product of two safe primes.
In Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application
of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 107–122, 1999.
doi: 10.1007/3-540-48910-X_8. URL https://doi.org/10.1007/3-540-48910-X_8.

[12] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In Ad-
vances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, pages 126–144, 2003. doi: 10.1007/978-3-540-45146-4\
_8. URL https://doi.org/10.1007/978-3-540-45146-4_8.

[13] J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The wonderful world of global
random oracles. In J. B. Nielsen and V. Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
pages 280–312, Cham, 2018. Springer International Publishing. ISBN 978-3-319-78381-9.

[14] R. Canetti. Universally composable signature, certification, and authentication. In Proceedings. 17th
IEEE Computer Security Foundations Workshop, 2004., pages 219–233, 2004.

[15] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. IACR Cryp-
tology ePrint Archive, 2000:67, 2020. URL http://eprint.iacr.org/2000/067.

[16] R. Canetti. Universally composable security. J. ACM, 67(5), sep 2020. ISSN 0004-5411. doi: 10.1145/
3402457. URL https://doi.org/10.1145/3402457.

[17] R. Canetti and S. Goldwasser. An efficient Threshold public key cryptosystem secure against adaptive
chosen ciphertext attack. In Advances in Cryptology - EUROCRYPT ’99, International Conference on the
Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
pages 90–106, 1999.

[18] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold cryp-
tosystems. In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages 98–115, 1999.

[19] R. Canetti, S. Halevi, and A. Herzberg. Maintaining authenticated communication in the presence of
break-ins. J. Cryptology, 13(1):61–105, 2000. doi: 10.1007/s001459910004. URL https://doi.org/
10.1007/s001459910004.

[20] R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random oracle. In G. Ahn,
M. Yung, and N. Li, editors, Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014, pages 597–608. ACM, 2014. doi:
10.1145/2660267.2660374. URL https://doi.org/10.1145/2660267.2660374.

[21] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled. UC non-interactive, proactive,
threshold ECDSA with identifiable aborts. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA,
November 9-13, 2020, pages 1769–1787. ACM, 2020. doi: 10.1145/3372297.3423367. URL https:
//doi.org/10.1145/3372297.3423367.

[22] R. Canetti, N. Makriyannis, and U. Peled. Uc non-interactive, proactive, threshold ecdsa. Cryptology
ePrint Archive, Report 2020/492, 2020. https://eprint.iacr.org/2020/492.

[23] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Two-party ECDSA from hash
proof systems and efficient instantiations. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part
III, pages 191–221, 2019.

53

https://doi.org/10.1007/3-540-48910-X_8
https://doi.org/10.1007/978-3-540-45146-4_8
http://eprint.iacr.org/2000/067
https://doi.org/10.1145/3402457
https://doi.org/10.1007/s001459910004
https://doi.org/10.1007/s001459910004
https://doi.org/10.1145/2660267.2660374
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://eprint.iacr.org/2020/492

[24] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient threshold EC-
DSA. IACR Cryptology ePrint Archive, 2020:84, 2020. URL https://eprint.iacr.org/2020/084.

[25] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. Bandwidth-efficient threshold
EC-DSA revisited: Online/offline extensions, identifiable aborts proactive and adaptive security. Theor.
Comput. Sci., 939:78–104, 2023. doi: 10.1016/J.TCS.2022.10.016. URL https://doi.org/10.1016/
j.tcs.2022.10.016.

[26] R. Cohen, I. Haitner, N. Makriyannis, M. Orland, and A. Samorodnitsky. On the round complexity of
randomized byzantine agreement. J. Cryptol., 35(2):10, 2022. doi: 10.1007/S00145-022-09421-7. URL
https://doi.org/10.1007/s00145-022-09421-7.

[27] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM Trans. Inf.
Syst. Secur., 3(3):161–185, 2000. doi: 10.1145/357830.357847. URL https://doi.org/10.1145/
357830.357847.

[28] A. P. K. Dalskov, M. Keller, C. Orlandi, K. Shrishak, and H. Shulman. Securing DNSSEC keys via
threshold ECDSA from generic MPC. IACR Cryptology ePrint Archive, 2019:889, 2019.

[29] I. Damgård and M. Koprowski. Practical threshold RSA signatures without a trusted dealer. In Ad-
vances in Cryptology - EUROCRYPT 2001, International Conference on the Theory and Application of
Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, pages 152–165, 2001.

[30] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergård. Fast threshold ecdsa with
honest majority. Cryptology ePrint Archive, Report 2020/501, 2020. https://eprint.iacr.org/
2020/501.

[31] Y. Desmedt. Society and group oriented cryptography: A new concept. In Advances in Cryptology -
CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic Techniques, Santa Barbara,
California, USA, August 16-20, 1987, Proceedings, pages 120–127, 1987. doi: 10.1007/3-540-48184-2_8.
URL https://doi.org/10.1007/3-540-48184-2_8.

[32] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in Cryptology - CRYPTO ’89,
9th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, pages 307–315, 1989. doi: 10.1007/0-387-34805-0_28. URL https://doi.org/10.
1007/0-387-34805-0_28.

[33] J. Doerner, Y. Kondi, E. Lee, and A. shelat. Secure two-party threshold ecdsa from ecdsa assumptions.
2018 IEEE Symposium on Security and Privacy (SP), 2018.

[34] J. Doerner, Y. Kondi, E. Lee, and A. Shelat. Threshold ECDSA from ECDSA assumptions: The multi-
party case. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019, pages 1051–1066, 2019. doi: 10.1109/SP.2019.00024. URL https://doi.org/10.1109/
SP.2019.00024.

[35] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Threshold ecdsa in three rounds. In 2024 IEEE Symposium
on Security and Privacy (SP), pages 178–178, Los Alamitos, CA, USA, may 2024. IEEE Computer
Society. doi: 10.1109/SP54263.2024.00178. URL https://doi.ieeecomputersociety.org/10.
1109/SP54263.2024.00178.

[36] O. Friedman, A. Marmor, D. Mutzari, O. Sadika, Y. C. Scaly, Y. Spiizer, and A. Yanai. 2PC-MPC:
Emulating two party ECDSA in large-scale MPC. Cryptology ePrint Archive, Paper 2024/253, 2024.

[37] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.
In B. S. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, pages 16–30, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg. ISBN 978-3-540-69528-8.

[38] R. Gennaro and S. Goldfeder. Fast multiparty threshold ECDSA with fast trustless setup. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, Toronto,
ON, Canada, October 15-19, 2018, pages 1179–1194, 2018. doi: 10.1145/3243734.3243859. URL https:
//doi.org/10.1145/3243734.3243859.

54

https://eprint.iacr.org/2020/084
https://doi.org/10.1016/j.tcs.2022.10.016
https://doi.org/10.1016/j.tcs.2022.10.016
https://doi.org/10.1007/s00145-022-09421-7
https://doi.org/10.1145/357830.357847
https://doi.org/10.1145/357830.357847
https://eprint.iacr.org/2020/501
https://eprint.iacr.org/2020/501
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1109/SP.2019.00024
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00178
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00178
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859

[39] R. Gennaro and S. Goldfeder. One round threshold ecdsa with identifiable abort. Cryptology ePrint
Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540.

[40] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures. Inf. Comput., 164
(1):54–84, 2001. doi: 10.1006/inco.2000.2881. URL https://doi.org/10.1006/inco.2000.2881.

[41] R. Gennaro, S. Goldfeder, and A. Narayanan. Threshold-optimal DSA/ECDSA signatures and an ap-
plication to bitcoin wallet security. In Applied Cryptography and Network Security - 14th International
Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, pages 156–174, 2016.

[42] S. Goldberg, L. Reyzin, O. Sagga, and F. Baldimtsi. Efficient noninteractive certification of RSA moduli
and beyond. In Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019,
Proceedings, Part III, pages 700–727, 2019.

[43] S. Goldwasser and Y. Lindell. Secure multi-party computation without agreement. J. Cryptol-
ogy, 18(3):247–287, 2005. doi: 10.1007/s00145-005-0319-z. URL https://doi.org/10.1007/
s00145-005-0319-z.

[44] A. Gągol and D. Straszak. Threshold ecdsa for decentralized asset custody. Cryptology ePrint Archive,
Report 2020/498, 2020. https://eprint.iacr.org/2020/498.

[45] I. Haitner, Y. Lindell, A. Nof, and S. Ranellucci. Fast secure multiparty ECDSA with practical distributed
key generation and applications to cryptocurrency custody. Cryptology ePrint Archive, Paper 2018/987,
2018.

[46] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: How to cope with
perpetual leakage. In Advances in Cryptology - CRYPTO ’95, 15th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 27-31, 1995, Proceedings, pages 339–352, 1995.

[47] S. Jarecki and J. Olsen. Proactive RSA with non-interactive signing. In Financial Cryptography and
Data Security, 12th International Conference, FC 2008, Cozumel, Mexico, January 28-31, 2008, Revised
Selected Papers, pages 215–230, 2008.

[48] Y. Kondi, B. Magri, C. Orlandi, and O. Shlomovits. Refresh when you wake up: Proactive threshold
wallets with offline devices. IACR Cryptology ePrint Archive, 2019:1328, 2019. URL https://eprint.
iacr.org/2019/1328.

[49] D. Kravitz. Digital signature algorithm. US Patent 5231668A, 1993.

[50] Y. Lindell. Fast secure two-party ECDSA signing. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part II, pages 613–644, 2017. doi: 10.1007/978-3-319-63715-0_21. URL https://doi.org/10.
1007/978-3-319-63715-0_21.

[51] Y. Lindell and A. Nof. Fast secure multiparty ECDSA with practical distributed key generation and ap-
plications to cryptocurrency custody. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 1837–1854,
2018. doi: 10.1145/3243734.3243788. URL https://doi.org/10.1145/3243734.3243788.

[52] Y. Lindell, A. Nof, and S. Ranellucci. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody (2018 version). IACR Cryptology ePrint Archive,
2018:987, 2018. URL https://eprint.iacr.org/archive/2018/987/20181018:122733.

[53] P. D. MacKenzie and M. K. Reiter. Two-party generation of DSA signatures. Int. J. Inf.
Sec., 2(3-4):218–239, 2004. doi: 10.1007/s10207-004-0041-0. URL https://doi.org/10.1007/
s10207-004-0041-0.

[54] N. Makriyannis, O. Yomtov, and A. Galansky. Practical key-extraction attacks in leading MPC wallets.
Cryptology ePrint Archive, Paper 2023/1234, 2023.

55

https://eprint.iacr.org/2020/540
https://doi.org/10.1006/inco.2000.2881
https://doi.org/10.1007/s00145-005-0319-z
https://doi.org/10.1007/s00145-005-0319-z
https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2019/1328
https://eprint.iacr.org/2019/1328
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1145/3243734.3243788
https://eprint.iacr.org/archive/2018/987/20181018:122733
https://doi.org/10.1007/s10207-004-0041-0
https://doi.org/10.1007/s10207-004-0041-0

[55] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008. URL https://bitcoin.org/
bitcoin.pdf. Accessed: 2015-07-01.

[56] National Institute of Standards and Technology. Digital signature standard (dss). Federal Informa-
tion Processing Publication 186-5 (Draft), 2019. URL https://doi.org/10.6028/NIST.FIPS.
186-5-draft.

[57] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In Proceedings of
the Tenth Annual ACM Symposium on Principles of Distributed Computing, Montreal, Quebec, Canada,
August 19-21, 1991, pages 51–59, 1991. doi: 10.1145/112600.112605. URL https://doi.org/10.
1145/112600.112605.

[58] C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174, 1991. doi:
10.1007/BF00196725. URL https://doi.org/10.1007/BF00196725.

[59] V. Shoup. Practical threshold signatures. In Advances in Cryptology - EUROCRYPT 2000, International
Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceeding, pages 207–220, 2000.

[60] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. J.
Cryptology, 15(2):75–96, 2002. doi: 10.1007/s00145-001-0020-9. URL https://doi.org/10.1007/
s00145-001-0020-9.

[61] V. Shoup and J. Groth. On the security of ecdsa with additive key derivation and presignatures. In
EUROCRYPT. Springer-Verlag, 2022.

[62] J. van de Graaf and R. Peralta. A simple and secure way to show the validity of your public key. In
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications of Cryptographic
Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, pages 128–134, 1987.

[63] H. Xue, M. H. Au, M. Liu, K. Y. Chan, H. Cui, X. Xie, T. H. Yuen, and C. Zhang. Efficient multiplicative-
to-additive function from joye-libert cryptosystem and its application to threshold ecdsa. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security (CCS), pages 2974–2988.
ACM, 2023. doi: 10.1145/3576915.3616595.

56

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.6028/NIST.FIPS.186-5-draft
https://doi.org/10.1145/112600.112605
https://doi.org/10.1145/112600.112605
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/s00145-001-0020-9
https://doi.org/10.1007/s00145-001-0020-9

A Missing Sigma Protocols

A.1 Discrete Logarithm Proofs
Figure 22 is a Σ-protocol for the relation Rsch.

FIGURE 22 (Schnorr PoK—Πsch)

• Inputs: Common input is (G, q, g,X) where q = |G| and g is generators of G.
The Prover has secret input x such that gx = X.

1. Prover samples α← Fq and sends A = gα to the verifier.

2. Verifier replies with e← Fq
3. Prover sends z = α+ ex mod q to the verifier.

• Verification: Verifier checks that gz = A ·Xe ∈ G.

Figure 22: Schnorr PoK—Πsch

Figure 23 is a Σ-protocol for the relation Relog.

FIGURE 23 (Dlog with El-Gamal Commitment—Πelog)

• Inputs: Common input is (G, g, L,M,X, Y, h).
The Prover has secret input (y, λ) such that L = gλ, M = gyXλ and Y = hy.

1. Prover samples

α,m← Fq and computes

{
A = gα, N = gmXα

B = hm

and sends (A,N,B) to the verifier.

2. Verifier replies with e← ±q.
3. Prover Prover sends (z, u) to the verifier where z = α+ eλ mod q and u = m+ ey mod q.

• Equality Checks: gz = A · Le and guXz = N ·Me and hu = B · Y e ∈ G.

Figure 23: Dlog with El-Gamal Commitment—Πelog

A.1.1 Completeness, HVZK & Soundness of Πelog

Completeness & HVZK. The completeness and HVZK properties hold perfectly. Namely, an honest prover generates
a valid proof with probability 1, and, for the distribution (z, u) ← F2

q, e ← ±q and (A,N,B) = (gz · L−e, guXz ·
M−e, hu · Y −e) yields a transcript (A,N,B, e, z, u) that is identically distributed with an honestly-generated proof.

Special Soundness & Soundness. It is immediate that any two accepting transcripts of the form (A,N,B, e, z, u)
and (A,N,B, e′, z′, u′) for e 6= e′ yield that (G, g, L,M,X, Y, h) ∈ Relog. Consequently, since special soundness holds
unconditionally, if (G, g, L,M,X, Y, h) /∈ Relog then the soundness property holds with probability |±q|/|±q×±q| =
1/q over the choice of e.

57

A.2 Range Proof w/ El-Gamal Commitment (Πenc-elg)
Figure 24 is a Σ-protocol for the relation Renc-elg.

FIGURE 24 (Range Proof w/ EL-Gamal Commitment—Πenc-elg)

• Setup: Auxiliary safe bi-prime N̂ and Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (G, q, g,N0, C,A,B,X).
The Prover has secret input (x, ρ, a, b) such that x ∈ ±2`, and C = (1 + N0)x · ρN0 mod N2

0 and (A,B,X) =
(ga, gb, gab+x) ∈ G3.

1. Prover samples

α← ±2`+ε and

µ← ±2` · N̂
r ← Z∗N
β ← Fq
γ ← ±2`+ε · N̂

, and computes

S = sxtµ mod N̂ ∈ Z∗

N̂

D = (1 +N0)α · rN0 mod N2
0 ∈ Z∗N2

0

Y = Aβgα, Z = gβ ∈ G
T = sαtγ mod N̂ ∈ Z∗

N̂

,

and sends (S, T,D, Y, Z) to the verifier.

2. Verifier replies with e← ±q
3. Prover sends (z1, z2, z3, w) to the verifier, where

z1 = α+ ex

w = β + eb mod q

z2 = r · ρe mod N0

z3 = γ + eµ

.

• Equality Checks:
(1 +N0)z1 · zN0

2 = D · Ce mod N2
0 ∈ Z∗N2

0

Awgz1 = Y ·Xe ∈ G
gw = Z ·Be ∈ G
sz1tz3 = T · Se mod N̂ ∈ Z∗

N̂

• Range Check:
z1 ∈ ±2`+ε

The proof guarantees that x ∈ ±2`+ε.

Figure 24: Range Proof w/ EL-Gamal Commitment—Πenc-elg

58

A.3 Paillier Operation with Group Commitment in Range ZK (Πaff-g)

In Figure 25 we give a Σ-protocol for tuples of the form (I = ±2`,J = ±2`
′
, C, Y,X;x, y, k, r0) satisfying relation

Raff-g. Namely, the Prover claims that he knows x ∈ ±2` and y ∈ ±2`
′
in range corresponding to group-element

X = gx (on the curve) and Paillier ciphertext Y = encN1(y) ∈ Z∗
N2

1
and C,D ∈ Z∗

N2
0
, such that D = Cx(1+N0)y ·ρN0

mod N2
0 , for some ρ ∈ Z∗N0

. Let (N̂ , s, t) be an auxiliary set-up parameter for the proof, i.e N̂ is a suitable (safe bi-
prime) Blum modulus and s and t are random squares in Z∗

N̂
(which implies s ∈ 〈t〉 with overwhelming probability).

FIGURE 25 (Paillier Affine Operation with Group Commitment in Range ZK—Πaff-g)

• Setup: Auxiliary Paillier Modulus N̂ and Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input is (G, g,N0, N1, C,D, Y,X) where q = |G| and g is a generator of G.

The Prover has secret input (x, y, ρ, ρy) such that x ∈ ±2`, y ∈ ±2`
′
, gx = X, (1 + N1)yρN1

y = Y mod N2
1 , and

D = Cx(1 +N0)y · ρN0 mod N2
0 .

1. Prover samples α← ±2`+ε and β ← ±2`
′+ε and

r ← Z∗N0

, ry ← Z∗N1

γ ← ±2`+ε · N̂ , m← ±2` · N̂
δ ← ±2`+ε · N̂ , µ← ±2` · N̂

and computes

A = Cα · ((1 +N0)β · rN0) mod N2
0 ∈ Z∗N2

0

Bx = gα ∈ G
By = (1 +N1)βrN1

y mod N2
1 ∈ Z∗N2

1

E = sαtγ , S = sxtm mod N̂ ∈ Z∗
N̂

F = sβtδ, T = sytµ mod N̂ ∈ Z∗
N̂

and sends (S, T,A,B,E, F) to the Verifier.

2. Verifier replies with e← ±q.
3. Prover Prover sends (z1, z2, z3, z4, w, wy) to the Verifier where

z1 = α+ ex

z2 = β + ey

z3 = γ + em

z4 = δ + eµ

w = r · ρe mod N0

wy = ry · ρey mod N1

• Equality Checks:

Cz1(1 +N0)z2wN0 = A ·De mod N2
0 ∈ Z∗N2

0

gz1 = Bx ·Xe ∈ G
(1 +N1)z2wN1

y = By · Y e mod N2
1 ∈ Z∗N2

1

sz1tz3 = E · Se mod N̂ ∈ Z∗
N̂

sz2tz4 = F · T e mod N̂ ∈ Z∗
N̂

• Range Check: {
z1 ∈ ±2`+ε

z2 ∈ ±2`
′+ε

The proof guarantees that x ∈ ±2`+ε and y ∈ ±2`
′+ε.

Figure 25: Paillier Affine Operation with Group Commitment in Range ZK—Πaff-g

59

A.4 Small-Factor Proof (Πfac)
Figure 26 is a Σ-protocol for the relation Rfac.

FIGURE 26 (Small-Factor Proof)

• Setup: Auxiliary safe bi-prime N̂ and Pedersen parameters s, t ∈ Z∗
N̂
.

• Inputs: Common input RSA modulus N0 > 24`. The Prover has secret input (p, q) such that p, q < ±
√
N0 · 2`.

1. Prover samples

α, β ← ±2`+ε ·
√
N0 and

µ, ν ← ±2` · N̂
r ← ±2`+ε ·N0 · N̂
x, y ← ±2`+ε · N̂

, and computes

P = sptµ, Q = sqtν mod N̂ ∈ Z∗

N̂

A = sαtx mod N̂ ∈ Z∗
N̂

B = sβty mod N̂ ∈ Z∗
N̂

T = Qαtr mod N̂ ∈ Z∗
N̂

,

and sends (P,Q,A,B, T) to the verifier.

2. Verifier replies with e← ±2`

3. Prover sends (z1, z2, w1, w2, v) to the verifier, where

z1 = α+ ep

z2 = β + eq

w1 = x+ eµ

w2 = y + eν

v = r − e · νp

.

• Equality Checks: Verifier set R = sN0 and checks
sz1tw1 = A · P e mod N̂ ∈ Z∗

N̂

sz2tw2 = B ·Qe mod N̂ ∈ Z∗
N̂

Qz1tv = T ·Re mod N̂ ∈ Z∗
N̂

• Range Check:
z1, z2 ∈ ±

√
N0 · 2`+ε

The proof guarantees that each p, q > 2` (assuming 22`+ε ≈
√
N0).

Figure 26: Small-Factor Proof

Special Soundness. Analogously to all other range proofs, the extractor can get p, q, µ, ν to decommit P & Q and
Qp = spqtνp = sN0tνp. Notice that if N0 6= pq, then the binding property of Pedersen is broken which, in turn,
breaks strong RSA.

HVZK. Sample P,Q ← 〈t〉. Sample z1, z2 ← ±2`+ε ·
√
N0 and w1, w2 ← ±2`+ε · N̂ and v ← 2`+ε · N0 · N̂ and

σ ← 2` ·N0 · N̂ . Finally, sample e and set A,B and T accordingly.

60

A.5 Setup-less Affine Operation w/ Group Commitment (Πaff-g∗)
Figure 27 is a Σ-protocol for the relation Raff-g.

FIGURE 27 (Paillier Affine Operation with Group Commitment in Range ZK—Πaff-g∗)

• Inputs: Common input is (G, g,N0, N1, C,D, Y,X) and security parameter κ. The Prover has secret input

(x, y, ρ, µ) such that x ∈ ±2`, y ∈ ±2`
′
, gx = X, (1 +N1)yµN1 = Y mod N2

1 , and D = Cx(1 +N0)y · ρN0 mod N2
0 .

1. For j ∈ [κ], Prover samples αj ← ±2`+ε and βj ← ±2`
′+ε and

{
rj ← Z∗N0

sj ← Z∗N1

and computes

Aj = Cαj · ((1 +N0)βj · rN0

j) mod N2
0 ∈ Z∗N2

0

Rj = gαj ∈ G
Bj = (1 +N1)βj sN1

j mod N2
1 ∈ Z∗N2

1

and sends (Aj , Bj , Rj)
κ
j=1 to the Verifier.

2. Verifier replies with {ej ← {0, 1}}κj=1.

3. Prover Prover sends (zj , z
′
j , wj , λj)

κ
j=1 to the Verifier where

zj = αj + ej · x
z′j = βj + ej · y
wj = rj · ρej mod N0

λj = sj · µej mod N1

• Equality Checks:
Czj (1 +N0)z

′
jwN0

j = Aj ·Dej mod N2
0 ∈ Z∗N2

0

gzj = Rj ·Xej ∈ G
(1 +N1)z

′
jλN1
j = Bj · Y ej mod N2

1 ∈ Z∗N2
1

• Range Check: {
zj ∈ ±2`+ε

z′j ∈ ±2`
′+ε

The proof guarantees that x ∈ ±2`+ε and y ∈ ±2`
′+ε.

Figure 27: Paillier Affine Operation with Group Commitment in Range ZK—Πaff-g∗

61

A.6 Paillier Special Decryption in the Exponent (Πdec)
Figure 27 is a Σ-protocol for the relation Rdec from Section 3.2.2.

FIGURE 28 (Paillier Special Decryption in the Exponent—Πdec)

• Inputs: Common input is (G, g, q,N0, I,J ,K,X,D, S) and security parameter κ. The Prover has secret input
x, y and ρ such that (y, x) ∈ J × I and ρ ∈ Z2

N0
such that (1 +N0)z · ρN0 = Kx ·D mod N2

0 and (S,X) = (gy, gx).

1. Prover samples {αj ← Iε, βj ← Jε}κj=1 and {rj ← Z∗N0
}κj=1 and calculates for all j ∈ [κ]:{

Aj = K−αj · (1 +N0)βj · rN0
j mod N2

0 ∈ Z∗N2
0

(Bj , Cj) = (gβj , gαj) ∈ G2

and sends (Aj , Bj , Cj)
κ
j=1 to the verifier.

2. Verifier replies with {ej ← {0, 1}}κj=1

3. Prover sends (zj , wj , νj)
κ
j=1 where

zj = αj + ej · x
wj = βj + ej · y
νj = rj · ρej mod N0

• Equality Checks: For all j ∈ [κ], verify{
(1 +N0)wj · νN0

j ·K−zj = A ·Dej mod N2
0 ∈ Z∗N2

0

(gzj , gwj) = (Cj ·Xej , Bj · Sej) ∈ G2

• Range Check: For all j ∈ [κ], verify
(zj , wj) ∈ (Iε,Jε)

Figure 28: Paillier Special Decryption in the Exponent—Πdec

62

B Proof of Theorem 6.7
Fix Z and let τΣ denote the transcript (Notation 6.2) of Σ viewed as a random variable, and let α denote
the probability that τΣ contains a fault misattribution (Definition 6.4). Let d and ` denote a bound on the
number of RO queries and the bit length of the output space of the RO. Let ν denote the smallest statistical
soundness parameter in the protocol.

Proposition B.1. Using the notation above, there exists efficient PPTM A such that:

Pr
(N,C)←sRSA(1κ)

[(m, e)← A(1κ, N,C) s.t. me = C mod N ∧ e /∈ {1,−1}] ≥ (α− dν)2/9d− 2−`

B.1 Proof of Proposition B.1
Recall the relation Relog,Renc-elg,Rmod,Rprm,Rfac,Rdec from Section 3.2. Define RD interacting with Z in the
in-between, hybrid experiment D such that RD runs the code of the honest parties in Σ except that it outputs
fail and halts in any one of the cases below. We note that RD is not an efficient machine.

1. Ni /∈ Rmod for some i ∈ P and the associated proof verifies according to Πmod.

2. (Γi, g, Bi,1, Bi,2, Yi) /∈ Relog for some i ∈ P and the associated proof verifies according to Πelog.

3. (∆i,Γ, Ai,1, Ai,2, Yi) /∈ Relog for some i ∈ P and the associated proof verifies according to Πelog.

4. (Iε,Jε, Dj,i,Ki, Fi,j ,Γj) /∈ Raff-g for some i, j ∈ P and the associated proof verifies according to Πaff-g∗.

5. (Iε,Jε, D̂j,i,Ki, F̂i,j , Xj) /∈ Raff-g for some i, j ∈ P and the associated proof verifies according to Πaff-g∗.

6. (Iε,Jε,Ki,Γi, Di, g
δi , g) /∈ Rdec for some i ∈ P and the associated proof verifies according to Πdec.

7. (Iε,Jε,Ki, Xi, D̂i, Si,Γ) /∈ Rdec for some i ∈ P and the associated proof verifies according to Πdec.

Claim B.2. Define τD with respect to D analogously to τΣ. It holds that SD(τΣ, τD) ≤ d · ν.

Proof. Corollary of the statistical soundness of each proof.

Putting everything together. Proposition B.1 is a corollary of the forking lemma [4] (Lemma 7.16),
Claims 5.1 and B.3 and Theorem 5.2. The security proof is essentially identical to the security proof of
Proposition 7.12 in Section 7.1.7.

Claim B.3. Let cheatΣ denote the probability that τΣ contains a malformed tuple for Rfac or Renc-elg. Then,

PrτΣ
[cheatΣ] ≥ α− d · ν.

Proof. Similarly to the proof of Claim 7.14, we define RD∗ analogously to RD for a new experiment D∗, where
RD∗ additionally checks that all the relevant tuples are well formed with respect to Rfac or Renc-elg. Define
cheatX for X ∈ {D,D∗} analogously to cheatΣ. We deduce that PrτD

[cheatD] = PrτD∗ [cheatD∗] using a similar
argument to Claim 7.14. In conclusion, since τD∗ does not contain fault misattributions when all the tuples
are well-formed, and since D and Σ are statistically (d · ν)-indistinguishable, the claim follows.

63

C Complexity Estimates
We provide computation and communication cost-analysis of our protocol’s components in Table 1, mostly
derived from the cost-analysis of each of our NIZKs, presented in Table 2.

Component Rounds Computation Communication

Key Generation 3 n× (2G) n× (4κ)

Aux Info. & Key Refresh 3 n× (2nG + 2m ·N + 2N2) n× (2nκ+ (2m+ 5)ν)

Pre-Signing 3 n× (26G + 48N + 26N2) n× (65κ+ 48ν)

Signing 1 0 n× (κ)

Table 1: We report total costs per party (over all rounds); G,N,N2 denote computing exponentiation in the
EC group G and rings ZN ,ZN2 , respectively. For communication, we report total incoming communication
(for each party over all rounds); κ and ν correspond to the message size of EC group element and Paillier
plaintext ring elements, respectively. Constants and hash (random oracle) invocations were omitted from
above.

ZK-Proof Computation (Prover) Computation (Verifier) Communication

Πsch 1G 2G 2κ

Πelog 4G 7G 5κ

Πenc-elg 3G + 5N + 1N2 5G + 3N + 2N2 9κ+ 6ν

Πaff-g 1G + 10N + 3N2 2G + 6N + 5N2 17κ+ 12ν

Πmod 2m ·N m ·N 2m · ν
Πprm m ·N m ·N 2m · ν

Table 2: In the above, m denotes the amplification parameter of Πmod and Πprm. In the remaining ZK-Range-
Proofs, `, `′, and ε are respectively 1, 5, and 2 times the bit-length of the EC element κ. (See Appendix C.1
for the rationale behind this choice of parameters.)

C.1 Concrete Security
We briefly discuss the choice of concrete parameters and their implications for ‘concrete security.’ Given the
bounds below, it follows that each secret is masked by at least ` bits. Specifically, (` + ε) − (` + κ) ≥ ` and
(`′ + ε) − (`′ + κ) ≥ ` in the ZK proofs Πenc-elg and Πaff-g, where, for example, in Πenc-elg, α is chosen large
enough to hide e ·x for e ∈ ±q and x ∈ ±2`. Additionally, `′− (2`+ε) ≥ ` for the additive mask in the Paillier
affine operation, where β and β̂ are chosen large enough to hide γk and xk. Furthermore, the Paillier modulus
bit length is chosen large enough so that the largest possible plaintext (of size `′ + ε) does not overflow.

κ = log(q)

` ≥ κ
ε ≥ `+ κ

`′ ≥ `+ ε+ 2`

log(N) ≥ `′ + ε

By setting (`, ε, `′) = (κ, 2κ, 5κ) for κ = 256 (e.g., for secp256k1), the bit security is dictated by the
length of the Paillier and Pedersen moduli, and the amplification parameter m in Πprm and Πmod. Using
the NIST recommendations [3] for the RSA moduli, the overall bit security is 112 for (log(N), log(N̂),m) =
(2048, 2048, 112) and 128 for (log(N), log(N̂),m) = (3072, 3072, 128). Aiming for higher bit security with
secp256k1 is somewhat pointless as the bit security of the curve itself is 128.

64

D Number Theory & Probability Facts
Fact D.1. Suppose that λN = xk mod M such that x ∈ Z∗M . Then λ ∈ Z∗M .

Proof. There exists y ∈ Z∗M such that xy = 1 mod M . Therefore λ · (λN−1 · yk) = λN · yk = xkyk = 1
mod M .

Fact D.2. Suppose that λN = xk mod M , where k and N are coprime and x ∈ Z∗M . Then, there exists
efficiently computable y ∈ Z∗M such that yk = λ mod M .

Proof. Since k and N are comprime, there exists u, v ∈ Z such that ku + Nv = 1. Thus λku+Nv = λ, and
consequently (λu · xv)k = λku · (λN)v = λ mod M. For the penultimate equality, we apply Fact D.1 and we
remark that λu and xv are well defined in Z∗M .

Remark D.3. We stress that computing a k-th root of λ in Z∗M can be done efficiently via repeated application
of Euclid’s extended algorithm and exponentiation modulo M , i.e. computing the Bézout coefficients (u, v),
as well as λu mod M and xv mod M .

Fact D.4. Let N = pq be the product of two odd primes and let x, y and z ∈ Z∗N such that x2 = y2 = z
mod N and x 6= y,−y mod N . Then gcd(x− y,N) ∈ {p, q}.

Proof. Let u, v denote the Bézout coefficients of the extended Euclid’s algorithm such that up + vq = 1 and
notice that gcd(p, v) = gcd(q, u) = 1. By Chinese remainder theorem, since x 6= y,−y mod n, it follows that
x − y = 2cuq mod N or x − y = 2cvp mod N for unique element c ∈ Z∗p or c ∈ Z∗q , respectively. In either
case, the claim follows.

Fact D.5. Define i.i.d. random variables a, b chosen uniformly at random from ±R, and let δ ∈ ±K. It
holds that SD(a, δ + b) ≤ K/R .

Fact D.6. Let N be the product of exactly two arbitrary primes p and q. Let a ← Z`·N and b ← Zϕ(N). It
holds that SD(a mod ϕ(N), b) ≤ 1

` .

Proof. Let Q = b` ·N/ϕ(N)c observe that SD(a mod ϕ(N), b) ≤ Pr[a ≥ Q ·ϕ(N)]. Thus, Pr[a ≥ Q ·ϕ(N)] ≤
Pr[a ≥ ` ·N − ϕ(N)] = ϕ(N)/(` ·N) ≤ 1

` .

E On Enhanced Existential Unforgeability
We use the generic model (GGM) to provide some support to the enhanced unforgeability assumption. Namely,
in the GGM, the group operations are handled via an oracle and each group element is encoded using a unique
random identifier (so there is no way to relate the discrete log to the group element via the identifier). Thus,
if we can show that that a property holds in the GGM, then it follows that any adversary that breaks this
property somehow crucially uses the encoding of the group elements (e.g. the underlying curve) in their attack,
or, in other words, no attacker that uses the group generically can break the property in question.

In the paper, we show that any generic attacker that manages to forge signatures in the enhanced ECDSA
game can be transformed into an attacker that finds non-trivial relations in the hash function. Assuming it
is infeasible to find such relation, e.g. by modeling the hash as an RO, it follows that no generic attacker
can break the enhanced unforgeability game. Hereafter, H denotes the ECDSA hash function, modelled as a
random oracle, i.e. F = H.

E.1 Forgeries with Arbitrary Leakage in the GGM
Let G denote the labels of the elements in the elliptic curve (G, g, q). As G denotes an elliptic curve, every
(A,A−1) ∈ G2 has the form ((α, 0), (α, 1)) or ((α, 1), (α, 0)) ∈ G2. Define function τ : G → Fq such that
τ(H) = η ∈ Fq for H ∈ G of the form (η, 0) or (η, 1). Notice that this map is efficiently invertible τ−1 : Fq →
{{G,H} s.t. G,H ∈ G} ∪ {⊥} such that

τ−1 : x 7→

{
{H,H−1} if ∃H s.t. τ(H) = x

⊥ otherwise
.

65

Brief overview of the EC Generic Group Model. The generic group is defined via a random bijective
map µ : G → G that preserves τ and a group-oracle O : G ×G → G such that µ(gh) = O(µ(g), µ(h)) and
τ(µ(g)) = τ(µ(g−1)), for every g, h ∈ G. In group-theoretic jargon, (G, ∗) is isomorphic to (G, ·) via the
group-isomorphism µ, letting ∗ : G×G→ G such that G ∗H = O(G,H).

FIGURE 29 (ECDSA Experiment in Generic Group w/ Enhanced Signing Oracle)

• Group Oracle O:

– On input (X,Y), return Z = X ∗ Y .

• Signing oracle SO:

– On input pub-key, sample G← G and x← Fq and return (G,H = Gx).

– On input pnt-request, sample k ← Fq, return R = Gk
−1

, add R to R and record (R, k).

– On input (sign,msg, R), if R ∈ R retrieve (R, k) and do:

1. Return σ = k(m+ rx), for r = τ(R) and m = H(msg).
2. Remove R from R and add (R,msg, σ) to S.

• Group ‘accounting’:

A list Q = {`Z}Z is maintained for every queried Z under the following rule set.

1. `Z = (αA)A∈R∪{G,H} such that Z = GαGHαH
∏
R∈RR

αR

2. If Z was obtained as X ∗ Y in a group oracle invocation then `Z = `X + `Y mod q

3. If Z ∈ R ∪ {G,H}, then `Z = (0, . . . , 0, 1, 0, . . . , 0), where the 1-value is indexed by Z.

4. For every signature σ obtained for m and R = Gm/σHτ(R)/σ, for every `Z ∈ Q do:

(a) Remove the R-th entry of `Z and let cZ denote the removed value.
(b) Update `Z := `Z + cZ · (m/σ, τ(R)/σ, 0, . . . , 0) mod q.

Figure 29: ECDSA Experiment in Generic Group w/ Enhanced Signing Oracle

Theorem E.1. Let A be an algorithm in the generic group experiment with enhanced signing oracle making
t queries to the group and signing oracle. Assume that A outputs a forgery with probability α. Then, there
exists B with blackbox access to A such that

Pr
e←Fq

[(x, y)← B(e) s.t. H(x)/H(y) = e] ≥ α/2t2 − poly(1/q).

The above theorem follows from the claim below by straightforward averaging argument.

Claim E.2. Using the notation from Theorem E.1, there exists B with blackbox access to A such that

Pr
e1,...,et←Fq

[(x, y)← B(e1, . . . , et) : ∃i s.t. H(x)/H(y) = ei] ≥ α/2t− poly(1/q).

E.1.1 Proof of Claim E.2

Remark E.3 (Simplifying Assumption). The poly(1/q) term comes from the event that the attacker A distin-
guishes between the ‘real’ generic group in Figure 29 and the simulated group presented further below. We
ignore this term in the analysis. Furthermore, the term 1/2 comes from the probability that τ−1(α) =⊥ for
a random α. We also ignore this term in the analysis. Furthermore, it is assumed that the attacker never
queries the group and signing oracle on elements Z ∈ G that were never produced before. This assumption
does not incur any loss of generality and simply makes the description of the experiments less tedious.

66

Using the notation from Figure 29, let φ denote the (efficient) function that maps group-elements to their
representation with respect to Q. Namely φ(Z) = `Z as determined by Q in Figure 29. Let A denote an
adversary that produces a forgery in Figure 29 and consider the reduction from Figure 30. In the end of the
experiment, assume A outputs x ∈ {0, 1}∗ and (F,ψ) such that F = GH(x)/ψ ∗Hτ(F)/ψ and (. . . , x, . . .) /∈ S.

FIGURE 30 (Reduction in Generic Group w/ Enhanced Signing Oracle)

• Input: e1, . . . , et ∈ Zq and λ ∈ N and PPTM A.

– Initialize: ctr = 1.

• Group operation simulation:

– On input (X,Y) from A to the group-oracle, do:

1. If φ(Z) = φ(X ∗ Y) for some previously queried Z.
2. Else If φ(X ∗ Y) = (α, β, 0, . . . , 0) for α, β 6= 0 do:

(a) Sample y ← Fq and set w = ectr · H(y) and Z ← τ−1(α−1wβ).
If τ−1(α−1wβ) =⊥, repeat the above step. Otherwise, increment ctr and carry on.

(b) Return Z.
3. Else if φ(X ∗ Y) = (α, β, γ1, . . . , γ`) for some γi 6= 0 do:

(a) Choose j ← [`] and set Z ← τ−1(ectr · rj), for rj = τ(Rj).
If τ−1(ectr · rj) =⊥, repeat the above step. Otherwise, increment ctr and carry on.

(b) Return Z.

Update Q according to the rule set from Figure 29

• Signing operation simulation:

– On input pub-key from A to the signing-oracle, return (G,H)← G2.

– On input pnt-request from A to the signing-oracle, return R← G, and add R to R.

– On input (sign,msg, R) from A to the signing-oracle, if R ∈ R set m = H(msg) and r = τ(R), and do:

1. Choose Z ← Q such that φ(Z) = (α, β, 0, . . . , 0, γ, 0, . . . , 0) for γ 6= 0 and βm− rα 6= 0,
and R denotes the index of γ.
(a) Sample y and set w = ectr · H(y) and σ = γ(wrζ−1 −m) · (α− wζ−1β)−1, for ζ = τ(Z).

Increment ctr.
(b) If no such Z exists set σ ← Fq.

2. Return σ and remove R from R, and add (R,msg, σ) to S.

Update Q according to the rule set from Figure 29

Figure 30: Reduction in Generic Group w/ Enhanced Signing Oracle

We begin by showing that in the following cases (depending on F), the transcript of the reduction yields
a ‘collision’ (x, y) of the form H(x)/H(y) = e for e← Fq.

Case 1. F was returned to the adversary in Item 2 of the group operation simulation. Using the notation
from Figure 30, it holds that F = GαHβ = GH(x)/ψHf/ψ for f = α−1H(y)eβ. Consequently f/ψ = β and
H(x)/ψ = α and we deduce that H(x)/H(y) = (αψ) · (f−1α−1eβ) = e · (βψf−1) = e.

Case 2. F was returned to the adversary in Item 3 of the group operation simulation, and, for (R, y, σ) ∈ S,
it holds that F = GαHβRγ and αr−βm = 0. Using the notation from Figure 30, it holds that F = GαHβRγ

for τ(F) = e · r and r = τ(R). Next, retrieve (R, y, σ) from S such that R = GH(y)/σHτ(R)/σ and deduce
that F = Gα+γm/σHβ+γr/σ. Deduce that β/r + γ/σ = f/ψ = er

ψ , and, since α = mβ/r, observe that
m(β/r + γ/σ) = χ/ψ which implies that e = χ/m = H(x)/H(y).

67

Case 3. F was chosen by the simulator in Item 1 of the signing operation simulation. It holds that F =
GαHβRγ = Gα+γm/σHβ+γr/σ = GH(x)/ψHf/ψ for σ set as prescribed in Item 1 of the signing operation
simulation i.e.

σ = γ(wrf−1 −m) · (α− wf−1β)−1

Therefore, letting χ = H(x), since χ/ψ = α+ γm/σ and f/ψ = β + γr/σ, it follows that

χ(β + γr/σ) = f(α+ γm/σ) ⇔

fα− χβ =
γ

σ
· (χr −mf) ⇔

fα− χβ =
γ

σ
· (χr −mf) ⇔

(fα− χβ)(χr −mf)−1 = (wrf−1 −m)−1(α− wf−1β) ⇔
(w − χ)(rα− βm) = 0

which implies H(x)/H(y) = e for w = H(y)e since rα− βm 6= 0.

Simulation Indistinguishability. Next, we show that if the adversary forges in Figure 29, then the reduc-
tion from Figure 30 yields a forgery as well. It is sufficient to argue that the (simulated) group elements and
signatures have the same distribution as in Figure 29. Hereafter, we refer to Figure 29 as the real experiment
and to Figure 30 as the simulated experiment.

In the simulated experiment, all the points are simply random uniform elements in G (since R ← τ−1(r)
for r ← Fq). The nontrivial part is to show that the signatures, i.e. the sigmas, are well-distributed. In the
real experiment, σ = k(H(x) + rx) for a random k, so the signatures are simply uniform elements in Fq (since
in the real experiment, elements k and r = τ(R) are independent). We show that the sigmas are (almost)
uniform elements in the simulated experiment by showing that the map w 7→ γ(wrζ−1 −m) · (α− wζ−1β)−1

is injective when γζ 6= 0 and rα−mβ 6= 0. So, for u, v ∈ Fq, if

γ(urζ−1 −m) · (α− uζ−1β)−1 = γ(vrζ−1 −m) · (α− vζ−1β)−1 ⇔ (4)

(urζ−1 −m) · (α− vζ−1β) = (vrζ−1 −m) · (α− uζ−1β) ⇔ (5)
urα+mvβ = vrα+muβ ⇔ (6)

(u− v)(rα−mβ) = 0 (7)

Therefore, for random w, the simulated signature is uniform over Fq \ {z}, where z ∈ Fq corresponds to the
solitary field element not in the support of the function.

Putting everything together. We conclude by calculating the probability that the transcript contains a
‘collision’ of the form H(x)/H(y) = e. Let (F, x, ψ) denote A’s forgery. If F was returned to A in Item 2
of the group operation simulation (case 1), then clearly the transcript yields a suitable collision. The other
two cases are slightly more complicated because the reduction is required to guess the attempted forgery. For
instance, in Item 3 of the group-operation simulation (case 2), the reduction picks a random (presigning) point
R hoping that (F, x, ψ) together with (R,msg, σ) ∈ S will result in a ‘collision’. Similarly, in Item 1 of the
signing-operation simulation (case 3), the reduction chooses a random Z with the aim that F = Z.

In more detail, assume that F was first calculated of the form GαHβ
∏
iR

γi
i and deduce the following about

F = Gα
′
Hβ′Rγ

′
where R denotes the last point to be signed on m = H(msg) among {Ri}i. If α′r+ β′m = 0,

then R was chosen by the reduction in Item 3 of the group operation with probability at least 1/t (since t is
an upper bound on the number of group-queries), or, if α′r + β′m 6= 0, then F was chosen by the reduction
in Item 1 of the signing operation with probability at least 1/t (since t is an upper bound on the number of
presigning queries).

In summary, it holds that the transcript contains a suitable collision with probability α/t.

68

F Additional Comments

F.1 Extension to t-out-of-n
Our protocol can be extended to the t-out-of-n threshold case using Shamir secret sharing and appropriate
modifications to the key-generation and key-refresh phases. The presigning phase remains additive t′-out-of-t′
(for t′ ∈ {t, . . . , n}) as, using Lagrange coefficients, the parties locally convert their shares into additive shares
in each presigning session involving t′ parties. Consequently, the signing phase remains unchanged.

Regarding the security analysis, with suitable tweaks to the ideal functionality Ftsig, the analysis from this
paper extends to the general threshold case as long as nt0 ∈ poly(κ), for t0 = min{t, n − t}. Otherwise, the
reduction from Section 8 does not run in polynomial time.

We propose an extension of our protocol to the t-out-of-n threshold case by discussing the items that need
to be adapted for this case. Since the key-refresh phase implicitly addresses the key-generation phase, our
focus will be on discussing the key-refresh phase.

F.1.1 Key-Refresh for the t-out-of-n case

Pi performs the following operation in the presence of all parties, as the protocol involves all n participants.
Let Xi,0 denote the additive n-out-of-n public share of Pi at the end of a given epoch, obtained by applying
the appropriate Lagrange coefficient,21 and let xi,0 denote the discrete log of Xi,0, i.e. gxi,0 = Xi,0 and∏n
j=1Xj,n = X.
When obtaining the rid during the key-refresh, the parties are instructed to set idj = H(sid, rid,Pj) ∈ Fq

as the Shamir identifier for each Pj in the new epoch. Then, each Pi samples ~Xi = (gxi,k)tk=1 ∈ Gt as a
vector of t group elements, where each xi,k represents the coefficient of the k-th monomial of a degree-(t+ 1)
polynomial with a constant term of xi,0. All other values are sampled as the original protocol prescribes.

In the third round of the protocol, each Pi receives Ci,j = zj,i+ρj,i mod q from Pj , where ρj,i is calculated
as before and zj,i =

∑t
k=0 xj,k · id

k
i mod q. This is verified by Pi using the formula gzj,i =

∏t
k=0X

idki
j,k . All

other checks are adapted from the previous protocol in the expected way (in particular there are t Schnorr
proofs per party for each additional group element Xi,j).

In the end, if no error is detected, each Pi updates its secret share to
∑n
j=1 zj,i mod q. The public share

of each counterparty (Pj) is updated to
∏n
k=0 (

∏n
`=1X`,k)

idkj . Additionally, the protocol updates the auxiliary
information, including the Paillier and Pedersen tuples.

F.2 Comments on previous version of the key-refresh
The key-refresh protocol has been updated compared to the last iteration of this paper, specifically in how the
parties calculate the ciphertexts Ci,j in round 3 of the key-refresh phase. In the current version, Ci,j = xj,i+ρj,i
mod q (instead of a Paillier encryption), and the randomizers ρj,i are calculated as the output of the RO on
an input resulting from a DH tuple shared between Pi and Pj .

In the previous version, each Ci,j was a random Paillier encryption of xj,i under Pi’s key. The reason
for changing this approach, which was implicitly addressed in the description of the key-refresh phase in
Section 4.2, is twofold:

1. First, DH-style encryption is much more efficient than Paillier encryption and better aligns with the
protocol’s intended design. The specific use of Paillier encryption for Ci,j is not crucial; what matters is
that these values are associated with freshly generated, preferably ephemeral, public keys.

2. Second, this change greatly simplifies the security analysis, as now adaptive security follows from static
security under the DDH assumption (Section 8).

21Shamir secret shares allow the parties to generate additive shares for each set of privileged parties they belong to. Conse-
quently, for each Pi, there is a unique well-defined additive share xi,0, derived from its Shamir share, corresponding to the set of
privileged parties that includes all parties.

69

On the security of the previous version. As far as we know, the previous version of the key-refresh
protocol is provably secure, though it introduces some challenges in the security proof. First, in the reduction
to DCR, the simulator must guess whether the attacker will cheat to use a ‘decryptable’ Paillier key rather than
the key resulting from the DCR-challenge distribution. Second, and more importantly, even if the attacker
doesn’t cheat, the simulator can no longer execute the protocol by simply running the code of the honest
parties, as it cannot decrypt the ciphertexts of the honest parties. This means that proving adaptive security
requires additional extraction steps, ultimately leading to reproving unforgeability from scratch.

To avoid this complication and to ensure that adaptive security follows neatly from the static case, we have
opted for the new key-refresh protocol included in this paper.

70

	Introduction
	Our Results.
	Paper Organization

	Overview of our Techniques
	Background [GG18]
	Our Approach
	Protocol Overview
	Identifying Corrupted Parties
	Two-round Presigning
	Security Analysis
	Ideal Functionality Ftsig
	UC Simulator
	Unforgeability proof

	Non-Interactive Zero-Knowledge
	Extension to t-out-of-n Access Structure

	Preliminaries
	Definitions
	NP-relations
	Auxiliary Relations
	Relations for Accountability

	Cryptographic Tools
	Enhanced Existential Unforgeability of ECDSA

	Sigma-Protocols
	ZK-Module

	Communication Model and Broadcast
	Realizing `weak' broadcast in the point-to-point model.

	Protocol Description
	Key Generation
	Key-Refresh & Auxiliary Information
	Presigning
	Accountability during Presigning

	Signing

	Underlying Sigma-Protocols
	Paillier Encryption in Range ZK
	Protocol Pi enc
	Special Soundness of the Range Proof & Reduction to Strong RSA

	Paillier-Blum Modulus ZK (Pi mod)
	Extraction of Paillier-Blum Modulus Factorization

	Pedersen Parameters ZK (Pi prm)
	On the Auxilliary RSA moduli and the Pedersen Parameters

	Security Analysis
	Global Random Oracle
	Ideal Threshold Signature Functionality
	Discussion

	Security Claims
	Forgeries & Fault Misattributions
	Putting Everything Together

	Proof of Theorem
	Reduction to Strong-RSA
	Hybrid A0
	Proof of Proposition 1
	Proofs of Claims
	Hybrid A1
	Proof of Proposition 2
	Hybrid A2
	Proof of Proposition 3

	Reduction to DDH and DCR
	Hybrid B0
	Proof of Proposition 4
	Hybrid B1
	Proof of Proposition 5

	Reduction to Enhanced Existential Unforgeability of ECDSA
	Dealing with attackers that do not abort

	How to handle Adaptive Corruptions
	Proof of Lemma
	Reduction to DDH
	Reduction to the Static Corruption Model

	Additional Related Work
	Works Subsequent to CGGMP-CCS21

	Appendix
	Missing Sigma Protocols
	Discrete Logarithm Proofs
	Completeness, HVZK & Soundness of Pi-elog

	Range Proof w/ El-Gamal Commitment (Pi aff-p)
	Paillier Operation with Group Commitment in Range ZK (Pi aff-g)
	Small-Factor Proof (Pi fac)
	Setup-less Affine Operation w/ Group Commitment (Pi aff-g)
	Paillier Special Decryption in the Exponent (Pi dec)

	Proof of Theorem
	Proof of accountability

	Complexity Estimates
	Concrete Security

	Number Theory & Probability Facts
	On Enhanced Existential Unforgeability
	Forgeries with Arbitrary Leakage in the GGM
	Proof of Claim

	Additional Comments
	Extension to t-of-n
	 Key-Refresh for the t of n case

	Comments on previous version of the key-refresh

