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Abstract. In this paper, we present a new concept named the basic function. By the
study of the basic function, we find the O(n)-time algorithm to calculate the proba-
bility or correlation for some property of Modulo 2", including the difference-linear
connective correlation coefficients, the linear approximation correlation coefficients,
the differential probability, difference-boomerang connective probability, boomerang
connective probability, boomerang-difference connective probability, etc.
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Since the differential analysis and the linear analysis were proposed [1,2], statistical analysis,
which makes use of some significant probability for the block cipher to distinguish from the
random permutation, have become one of the research hotspots in the cryptanalysis of block
cypher in the last 30 years. And most statistical analysis for block cypher is based on the
statistical properties of nonlinear functions [1-5]. Specifically, most statistical properties
of nonlinear functions is the probability that a series of boolean vector function with the
form @, f(x);, where each f(x); in the @), f(z); is constituted by the composite
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operation of @, the nonlinear function and its inverse, are equal to some given values or
the correlation coefficients of a single boolean vector function @, f(z);. In most of block
cypher, the construction of nonlinear functions is based on the S-box that it can be regard
as the nonlinear function with small scale, especially in the SPN structure and Festial
structure, the calculation of statistical properties of nonlinear functions can be completed
by calculating the statistical properties of S-box. Due to the S-box with tiny scale, the
statistical properties of S-box can be got in a short time by trying all possible values. Thus,
for the SPN cipher and the Festial cipher, it almost has no problem to do the statistical
analysis, such as differential analysis, linear analysis, boomerang analysis, differential-linear
analysis, etc. However, because of the modular addition 2™ with large-scale adopted
as the nonlinear functions in ARX structure, it is infeasible for the ARX cipher to get
the statistical properties of nonlinear functions by trying all possible value. In a word,
compared with the SPN structure and the Festial structure, most studies of the utilize of
statistical analysis method for the ARX cipher, especially the new method or improvement
method proposed in the last decade, have made slow progress due to the above reason.

In order to overcome the above problem, we have to look for the polynomial time
algorithms to calculate the statistical properties of modular addition 2". In 2001, Lip-
maa.etc [6] and Johan Wallén [7] proposed the polynomial time algorithms to calculate the
differential probability and the linear approximation correlation coefficients respectively,
which was been about 10 years since the differential attack and the linear analysis were
proposed. And in 2013, Schulte-Geers [8]showed that mod 2™ is CCZ-equivalent to a
quadratic vectorial Boolean function. Based on it, he proposed the explicit formula to
calculate the linear approximation correlation coefficients and the differential probability,
of which time complex are polynomial. Since then, the CCZ-equivalent relation of mod
2" had been acknowledged as the most powerful method to look for the polynomial time
algorithms to calculate the statistical properties of modular addition 2". In addition, a
series of new statistical properties, including the difference-linear connective correlation
coefficients, difference-boomerang connective probability, boomerang connective probability
and boomerang-difference connective probability, etc [1-5], were proposed in order to
improve the previous methods. And those methods had better performance in the SPN
cipher and the Festial cipher. Unfortunately, according to the study of difference-linear
connective correlation coeflicients for nonlinear function [9], for any two permutations in
the same CCZ-equivalent class, their difference-linear connective correlation coefficients
are not in general invariant. It means that the CCZ-equivalent relation can’t be regard
as the general method to look for polynomial time algorithms to calculate the statistical
properties of modular addition 2™. Then, the following questions may be asked naturally:

1.How to find the polynomial time algorithms to calculate such new proposed statistical
properties?

2.Does there exits a general method that the explicit formula with polynomial time
complex can be got for all of the current statistical properties of modular addition 2™ or
even the properties that may come up in the future?

Our contribution

Firstly, this paper give the O(n)-time algorithm to calculate the probability or correla-
tion for newly proposed property of Modulo 27, including the difference-linear connective
correlation coefficients, the linear approximation correlation coefficients, the differential
probability, difference-boomerang connective probability, boomerang connective probability,
boomerang-difference connective probability, etc.

Secondly, for all of the current statistical property used for statistical analysis in block
cipher, such as difference-linear connective correlation coefficients, the linear approxima-
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tion correlation coefficients, the differential probability, difference-boomerang connective
probability, boomerang connective probability, boomerang-difference connective proba-
bility, etc, it can be summarized as the probability of @77, f(z).; = A;, 1 <j <mor
the correlation coefficients of A - (@) f(x);), where f(z).;, 1 <j<m, 1<z <nj
f(x)i, 1 < i < n are composite operation of @, the nonlinear function and its inverse.
Based the above fact, we propose the concept of the basic function, which is a composite
operation of @ and H. Then, based on the regular of the basic function, we construct the
Aa-set and Df-set. According to the property of the Aa-set and Df-set, we can answer the
question 2. The general method has been found, which is fit for all of current statistical
properties of modular addition 2™. As a result, the form of formula for all of current
statistical properties of modular addition 2™ are similar with the Johan Wallén’s work.

1 Preliminaries

In this section, we will introduce some basic knowledge that we will use in the following.

Definition 1(Addition modulo 2™): For z,y € F3', define yHz = z@ydcarry(z, y),
where carry(z,y) = [¢n-1, ", co]. The i-th bit ¢; is defined as

Cit1 = (@i NY) ® (i Nei) @ (yi Nei),0<i<n—1
Definition 2: Let z,y € FJ', e € Fy, define yBHzBe=yBaH(0,---0,¢).

Let carry’(z,y) = [c;_1, - ,ch], if we define i-th bit ¢ as

Cipr=@iANy) D (i Nc) D (ys Nep),0<i<t—1
And the purpose of defining carry’(x,y) is to make y B8 x B e have the same form as y B x:

Theorems 1: For z,y € F}', e € Fy, define yBaHe =2 @y @ carryi(x,y).

Proof. 1f e = 0, then the theorem holds.

If e = 1, let ¢; = carry(z, y)[i], ¢} = carry(z By, (0,---0,¢))[i], for 0 < i < n; then

cé:O
C%:xOEByO
iy =(@i®yi®c)ANc;,2<i<n-—1
Obviously, ¢ Aco =0, cf Ay =20 Ayo A (0 @ yo) = (w0 Ayo) & (zo A yo) = 0.

Next, we will proof ¢} A¢; = 0, for 0 < i < n—1, by introduction. Supposed that ¢} Ac; =0
for 1 <i < k. Then, for c}C_H A Cik+1, we have

‘311€+1 N Cr41

= (s D yr D cr) Acg) A ((Tk Ayr) @ (@5 A ck) @ (yx Ack))
(e ©yr) Ack) A (@ Ayr) & (2 @ yk) A ci))
(
(

Tk ® ye) A (Te Ayi)) Acy,
T ANyp) B (:Ek/\yk))/\c,lc:O

(
(
(



Thus, for 2 <i<n—1, we have ¢j,; = (z; ®y; ® ;) At = (2, B y;) A, and

G=co®cg®l=1

ct=c1®c

Cih1 = Ciy1 @ G

=(@iAy) @ (2 A (e @) ® (i A @), 2<i<n—1

Notice that carry}(x,y) = carry(z,y) & carry(x By, (0,---0,e)) & (0, - - -0, e).
Thus, yBz B (0,---0,e) =z ® y ® carry’(z,y). O

From the definition of H, we can see that the subtraction modulo 2™ (H) can be
converted into the addition modulo 2™ (H):

Theorems 2: yHz = (z® (1,---1))ByHB1.

Proof. Notice that (1,---1) = —1 mod 2" and carry(z @ (1,---1),2) = 0™, then
(xp(1,---1))Ba=(1,---1) = =1 mod 2™, which is equal to
(x®(1,---1))B1=—xmod 2".

Thus, yBr=y—xzmod 2" = (z® (1,---1)) By H1. O

Combing with the theorems 3, the y H = have the same form as y H x:

Corollary 1: yBz=(x® (1,---1)) @y ® carryi(x ® (1,---1),y).

2 The Basic Function

2.1 The motivation and property

In the cryptanalysis of block cypher, the scholar proposed many analysis method based
on some statistics property of the nonlinear function in the cipher. And these statistics
properties can be summarized as the probability of @Z;l (2):; =4, 1 <j<mor
the correlation coefficients of A - (@), f(x);), where f(z).;, 1 <j<m, 1<z <nj
f(x);, 1 < i< n are composite operation of @, the nonlinear function and its inverse. In
the ARX cipher, the sole nonlinear function is the B and its inverse can be converted into
the composite operation of @& and H. Thus, we can define the basic function as composite
operation of & and H:

Definition 3(The Basic function): Supposed that z,y € F}', Ex, = (eg, €1, - €x—1) €
Fy, ag,on,--ap—1 € F3, Bo, B, Br—1 € F3'. Let Ay = (ap, 02, ag_1), By =
(Bos B2, - - - Br—1), where the element of Ay, By, is n-dimension vector. Then the f(z,y)g, A, B.
is called basic function with k order, if f(x,y)E, a,.B, satisfies the follow the form:

(anyo) = (J?,y)
(Tit1,¥i41) = (@i @ o, (2 D o) B (y; ® B;) Bei),0<i<k—1
F(@.Y) By, Ax, B, = (Th, Yk )-

Then, for 0 <i <k —1, (z; D oy, (z; B o) B (v; ® B;) Be;) is called the (i + 1)-th round

function, and carry} (z; ® a;,y; © f) is called the carry function of (i + 1)-th round
function in f(z,y) g, A, By -

According to the definition 3, we can see that the relation between the f (2, y)g, ;. A,_, Be_s
and the f(z,y) g, A, By



Zhongfeng Niu 5

Remark 3: According to the definition of f(z,y)g, a,,B,, the f(z,Y)E, 4,8, can be
written as:

('rk—la yk—l) = f(x’y)Ek—lyAk—th—l
(@ Yk) = (Tp—1 @ ap—1, (Th—1 D o—1) B (yp—1 ® Br—1) Berp—1)
f(x7y)Ek,Ak,Bk - ((Ekhyk)

where Ej—1 = Ey[0: k—2] = (ep, €1, - ex—2), Ap—1 = Ap[0: k—2] = (0, a2, - - - p—2), By—1 =
Bi[0: k —2] = (Bo, B2, - - Br—2)-

Definition 4: For z = X?||X! € F}', where X? € Fy, X! € FY, p+ q = n. Define
r=X?|X!=X2.2? + XL
Then, according to the definition of Addition modulo 2", we can see that the basic function
can be divided into two basic function: . . . ‘ ‘
Theorem 3: For any X1’i+1,Yl’“‘l,aé’lﬂ,a}’zﬂ, 7a,1€’f~1'1, é’”‘l, 11’l+17 e ;f{l €
F7 and By = (e, €1, s ep_1) € FF. Let Y1 = YLi+1[0 ;¢ —1], Y20 = YLit1[j.¢ ;
(i+1)-t—1], XV = XBHH0 14t — 1], X' = XLHL[j.¢: (i +1) -t — 1], then the k
order basic function f(X%i+1, Yl’i+1)Ek7A2+1’BliC+l can be written as

Li+l y1i+1 ) = 2 y2ey it 14 y1, o
f(X it ,Y it )Ek,A;:rl,BZ_Jrl — f(X l,Y l)MI;L;’C;;,7D;c ‘21 +f<X Z,Y Z)Ek7A;C7BL
where

Al = [aé’i,a}’i,~~a,1€’i1], for 0<m<k—1, ali=al™0:4i-t—1];
By = (8", 81", Byl for 0<m < k=1, Bt = A0t~ 1);
Ci=lag" ad',--apt ), for 0<m<k—1,a% =al ™ i-t:(i+1)-t—1];
L= 18 BT Bt for 0<m <k —1, BE =L it (i 4+ 1)t —1];
My = [ch,cl, ¢y, for 0<m <k—1, ¢, =carry (X)) @ oY, @ BL it

Sk =[50, 81, sh1), for 0 <m <k —1, ), = carryls (X5' ®al Yo' @ B5)[t).
Moreover, S’,i = M,i“.

Proof. Notice that when order k = 1, according to the Definition 2, (X! @ ag""") B

(YLt @ BT B ey can be written as

(XL @ b ) B (YL @ ) B e
=(XM @l B (VN @A) B e )2 + (X2 8 ad) B (Y2 & 6) Beg

Thus, when order k = 1, the theorem holds.

Supposed that when order m < k, the theorem holds.

When order m = k + 1, according to the definition of carry}(x,y), the value of the i -t —th
bit of carry}, (X @ay ™ v @ g i - 1] is only rely on the first i -t — 1 bits of
X;,i+1 @ allc,iﬂ and Yk1,z‘+1 @ B;,iJrl’ namely,

carry:k (X,i’“rl @ a,lc’iﬂ, YkI’iJrl @ Bi”l)[z - t]
= carry; (X' @ o Y, @ B - 1]

=,



Thus,

1,5+1 1,5+1
X" Y® i+l pitl
f( ’ )Ek+17Ak+1’Bk+1

_ (X;,’Hrl ® a]lc,i+1) EB (Ykl,iJrl e 6111+1) Eﬂ e
= (X' oo ) B @) B )27 + (X @ o) B (Y, @ By Bex

On the other hand, due to the assumption of induction, we have:

(X, X = (2 X2 24 (X X
= F(XPL Y2 )0 oo ps + (XYY Y g ai B
Thus,

f(Xl’H_l, Yl,i+l) vAiJrl pitl = (X;’H_l ® Oé,lc7i+1) B (Ykl,i-i-l D ﬁ;,i—i-l) H ek

Bkt k+1" k41
= (X oo B @8 B, )2+ (X @ o) B, @ 8,") Be
= FX YR, pp,, 2 PN YL

Crr1 Py

10 Ert41,A; 1,8

When m = k + 1, the theorem holds.

O

Remark 4: Obviously, for any Ej, A;"', By™', when X171 Y1i*lare given, then

M ,i“are uniquely identified.

3 Notion Description About The Basic Function Series

In order to reduce the redundancy of the article, we will introduce some notion description

about the given z basic function {f(X, Y)Ekm’A?c B ilsm< 2z}, where X,Y € F{*,

which will be frequently adopted in the following proof.

l.q l.q l.q l.g plg 1.q q-t
For 1 =m < 2, let C“O,wﬂal,rn’ 7akm—1,m? ﬁO,mﬂ 1ms """ Pk, —1,m € F2 ’ Em
(eg,€1," "+ ,€k,, —1) € ng’". In addition, for 1 < m < z, let

Xhi=X; Y=Y,

q _ Aq _ L4 e . 1ag .
Akm =Al, = [%,mval,mv akmq,m}’

1, 1, 1,
B, = B = (B0 Bt Bt )

msP1m " e, —1,m

And for 1 <i < g —1, define:

YU =yt — 1] =Y [0t — 1)
Y2y (1)t =1 =Yt (i 1) -t — 1];
Xl,i:XlaiJl‘lO:i.t_l]:XLq[O:Z.'t_l];

[
[

X2 = XUV (i)t = 1) = XYt (1) -t — 1];
= agticte(i+1)t—1=a;dfi-t:(i+1)-t—1], where0 < j <kp—1, 1<m< 2

[
Bom =By it (i+1)-t—1] =870 t:(i+1)-t—1], where 0 < j <k — 1, 1 <m < 2

J2,m

att =a1’1+1[0:i~t—1]zozlA’q[O:z'-t—l], where 0 < j <k, —1,1<m<z

Jm Jm J,m

b Z,B;”:jl[O:i-t—l}zﬁl»’q[O:%t—l], where 0 < j <k, —1,1<m<z.

J,m J,m

)
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Beside this, for 1 <i<q, 1 <m < z, let

(X0m7y0 m) (X“ Y“)

(X Yt m) = (X @apy (X0 @apn) B (Y, ® B ) Bejm), where 0< j < ky, —

]m’

and for 1 <i <gq, let

i 1,% 1,0 1, )

AL, = lag] m7a1 o cap ] where 1 <m <z
1,7

[ﬁ0m7 1m7"' k"Lil)mL where 1 SmSZ

then, we have (X;ij,Ykljj) FXPLY I g i gisr, for 1 <m <z,
Secondly, for 1 < i < g, we define:

c?m = carry;‘m(X;’i ]m,Yl g @[3 i t], where 0<j <kyp—1,1<m< 2
M, = [¢h s €l ~-c§€myj_1,m], where 1 <m < z.

and for 1 <i < g — 1, define:

. 2.4 2 .
s;m:carry:;m(Xj’L@ gva Z@ﬂ “I[t], where 0 < j < ky—1, 1 <m < z;
Sj,m = [sf)m7 S1ms s}vmyj_lym], where 1 <m < z.

According to the Remark 4:, we have:
Remark 6: For 1 <m<r] 1<i<qg-—1, M“r1 _Skm]
In addition, for convenience to the follow follovvlng discussion, for 1 <i < qg—1, let

= Al where 1 <m < z;

DO Bl,wherel<m<z;

T, = [043 imaf :m Oéiz,l ), where 1 <m < z;
[ﬁo s B m?"' Iii,l’m], where 1 < m < z.

4 The Aa-set

Definition 6: For XIit! ylLitl ¢ FQ(Hl)'t7 0 <i<gqg—1, given any z basic function
{f(X, Y)Ekm’A}i Bi i1<m< 2}, where X, Y € F{"*. We define the Aa-set with Out, In
as A

Aagy 1 (A7 BT 1< < 2)
_ {(Xl,z—i-l, Yl,i+1)|X1,i+17yl,i+1 c F2(i+1)-t70ut _ (M1i+1’ . M;;—H)}

where Out IneFQd,d Yoiioki, In = (Ey,, - Eg).
Let d =Y ;_, ky;, then there are 2¢ possible results for (MiT!, ... Mi+1), thus

Property 3: For X1t yLitl ¢ FQ(ZH) Y 0<i<gq-—1,given any z basic function
{f(X, Y)Ekm,A',i Bi il<m< 2}, where X, Y € F{''. Then, for all Out € F§, the Aa-set
with Out, In satisfies:

1 +1 +1 . i+1)t
U Aagu (A7 BT 1<) < 2)= {(Xl,i+layl,i+1) X101, Yi,i01 € By }
OutEFd

According to the Property 2, we have:



Property 4: For XL+t ylLit+l ¢ FQ(iH)'t, 0 <i<gq—1, given any z basic function
{f(X.Y)g,, ai i ;1 <m<z} where XY € FJ*. For any Outy, Outy € Fy satisfied
Outy # Outs, then

i+1 i+1 i+l . i+1 i+1 pitl :
Aa’é*utl’]n(A;+ ,B]Z.Jr , 1<j<2) ﬂAag"mtz’ln(A;-Jr ,B;+ ,1<j<2)=0

holds.

From theorem 3, we can see that the Aa-set with Out, In can be divided into many
subset, and each disjoint subset has the following recursive structure:

Lemma 1: For X1+l yLitl ¢ FQ(ZHH, 1< i< gq—1, given any z basic function
{f(va)Ekm,A}; Bi ;1 <m < 2}, where X,Y € F{*. We define the Aa-set with
Out, Mi, In as

Aagua,Mi,In(A;+l7B;+l7 1 S ] S Z)
' i j i+1 pitl ; .

4 4 ' Xbiyhic Aaﬁm’ln(A;- ’B;. , 1< <2);
X1, Y2y Mi= (M, - ALY);

X2 Y?0 € Aabyy (T, DE, 1< 5 < 2).

_ (XQ,i

where Mi,Out,In € F¢, d =37 ky,, In = (Ej,,"-- Ej.). Then,
i+1 i+1 pitl - _ i+1 i+1 pitl ;
AaGu, (A7 B 1S j < 2) = U AaG e vi (A7, BT, 1< j < 2)
MicFg
holds, and for Mi; # Mis, Miy, Miy € FS, satisfy
i+1 i+1 pitl ; i+1 i+1 pitl 1

AalOJrut,Mil,In(A;Jr ,B?L ,1<i<z2)n Aagrut,Mig,In(A;'Jr ,B;+ ,1<j<z2)=0
Proof. Firstly, due to A;, B; can be decided according to the definition from the A;“, B;-H.
And from the property 4, we know that for Mi, # Mis,

Aa’j\/fil,ln(A;WB;v 1 < J < Z) N Aa?\/fig,[n(A;l'vB‘;:a 1 S] < Z) =0

Thus,

Aaiot}t,Mil,In(A;‘H» B;H» 1<j<z)n Aag:}t,Mig,In(A;Ha B;'Ha 1<j<2)=0

Secondly, from theorem 3, for 1 < j < z, we have:

f(Xl’H_laYl’iH)Ej,A;“,B;“ _ f(XQ’iaYQ’i)M;,T;,D; it 4 f(Xl,i7yl,i)Eij;’B;.
Thus,
Aallly 1o (AT B 1< < 2)
:{(Xl,i-|-17 Y1,i+1)| X1,i+1’Y1,i+1 c F2(i+1)-t70ut _ (M1i+17 . M;'H)}

XU yLi e Bt X2 Y% e Ff, Mi e Fy,

_ 2, v1i V20 ) ) ; ;
=4 (X2 v Mi = (M- M), Out = (S}, S%).

Yl,i)

XU yhi e Byt Mi= (Mj,- - M);

14 V2,71, , . ; ;
X y Y ||Y ) X2,7,’Y2,74 c F2t70ut — ( i, e S;)

= U {ee

MicFgd

XU Yh e Adly, 1, (A% B, 1< 5 < 2),

= (J (XX vyt Mi = (Mj, .- M});

MieFg X2 Y? € Aabuy i (T), Di, 1< j < 2).
— i+1 i+1 i+l .
- U AaZOut,MiJn(A;' aB; , 1< J < Z)}

MicFgd
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Definition 7: For X1+l ylitl F(Hl)‘t 0 <i<gq— 1, given any z basic function
{f(X, Y)EkWA}; B :1 <m < z}, where X, Y € FJ". Supposed that v, \, v,w € F(ZH) *

Out, In, Middle € ng, where d = 377 ki, In = (Eg,,--- Ej.). Define the correlatlon
coefficients of h(X 14+ YL+l a5

i+1 . 77.)‘7an7
Cory, <A;-+1,B;+l 1<j< z)
_ 1 Z (_1)(77A)'h(Xl,i+l)Yl,i+1)®U_Xl,i+l®wvyl,i+l
22(i+1)-t

X1,i+1€F2(i+1)t7
Y1,i+1€F2('L+1)t

where h(XTHL Y1) = @7 F(XVHLY LY

km

Additionally, define the correlation coefficients of h(X L ”’1, Y1Lit1) over the Aa-set with
Out, In as

Yy A, U, W,
CorOut In Az+1 Bz+1 1<j<z

1

= Z . . (—1)(v,A)-h(X1*i+1,Yl”"“)éBV-Xl";“EBW'Y““
92(i+1)-t (X141, Y1,001)€Aal ) | (ASFE BIFY)

And for 1 < i < g — 1, define the correlation coefficients of h(X1iT1 Y1i+1l) over the
Aa-set with Out, Mi, In as:

i+1 ) ’73_)‘7 v, w
COrQut, i, n (A;+17 Bit'1<j<z
1

- Z ; L (—1)<v’A)-h<lei+1,Ylﬁi“)eaV-Xl*i“@WY”“
22(i+1)-t (X1,i+1,Y1,i+1)EAalo+u1t,A1,-,1n(A;+l;B;-H)

From the property of the Aa-set, we can see that the correlation coefficients of
R(X T YL+l g equal to the sum of the A(X 1+ Y1i+1l)g correlation coefficients
over the Aa-set with Out,In for all Out € Fg. And the correlation coefficients of
h(X 1L Y LiHL) gver the Aa-set with Out, In have the following recursive structure :

Theorem 4: For XU+l ylitl ¢ F(Hl)'t 0 < i < g—1, given any z basic function
{f(X.Y)g,, A B il<m< 2}, where X, Y € FJ". Supposed that v, \, v, w € F(Hl) *
Out, In, Middle € FQd, where d = Y7 ki, In = (Ej,,--- Ex_). Then

i+1 Vs Aa v, w,
or i i .
C In (A;+1,B;+11SJSZ
i1 Yy A, U, W,
Z CorOutJn <Ai'+1 Bi-+1 1< ] <z
OutEF; 70T -0



10

And for 1 <i<qg-—1,

3 s /\7 v, w,
Corttl ; ; .
Out,In A;‘JFl’B;JFl 1 S j g 2

i+1 VA, v, w,
Z Corgut,mi,in (Ai_Jrl Bifl1<j<z
i 07 -7 =

MicFg
1 1 .1 1
Z Corl i 7232‘27U23w27 x Cor® . ) 77)}71}7107
' Owut,Mi TJ@’D;7 1<j<z Mi,In A;+1’B;+1 1<j<z
MicFg

where
Yr=A0:i-t—1], X =A[0:i-t—1]
V=it (1)t —1], 2= Ai-t:
w? =wli-t:(i+1)-t—1].

vt =00:i-t—1], w' =0v[0:i-t—1],
G41) 1= 1], P =it i+ 1)t 1),

3

Proof. According to the property 3 and property 4, we have:

+1 7’)‘7U7wa
Cory! (A;“,B;H 1<j< z)

. 1 Z (_1)(,‘/7)\),h(Xl,i+1,Yl,/H»l)@U'Xl,iﬁ»l@w.yl,iﬁ»l
92(it+1)-t _
(Xl,i+1aY1,i+1)€F2(l+l>t
_ 1 Z . . . _1)(W,A)Vh(xl,i{»l7yl,i+1)@v‘Xl,i+l@w.Y1,i+1
22(i+1)-t (X141, Y1,0000€ U Aagly n (ATFL B 1<5<2)

OuteFd

Z Z (_1)(%)\)_}1(}(1,141_’Y1,i+1)€Bv‘X1,zx+1@w4Y1,i+1
z+1) -t i1 i+l gitl jcic
Oute g (X1,i41,Y1,i41)€Aag,, 1, (AT, B, 1<j<z)

Yy A, U, W,
Z dCOTIn Out <A1+1 Bl+1 1< j< Z>
OuteFy

Likely, from lemma 1, we can also get

i+1 . ’V{)‘/an?
Corpn.ou (A;_H’B;H 1<j<z

Z Cortt 752U,
i In, Mz Out Al+1 Bl-‘rl 1< j<z
Mi€F;

Secondly, from theorem 3, for 1 < j < z, we have

1,i+1 1,i+1 ) - 2,0 2,0 o i 1, 1, o
VIO GRS Glas )Ekij;H,B;H = f(X*Y Z)M;,T]?,D; 2 f(XMY l)Ekj,A;.,B’J%'

Then
z
h(Xl’ZJrl,Yl’lJrl) _ @h(Xl’lJrl,Yl’lJrl)Ek_ Ai+1 gitt
3i g
=1
P z
2 2 i Li yli
=D& Y gy 2 D FEY g 4
j=1 j=t

_ h(Xl,i’ Yl,i) A 21"15 + h(XQ’i7Y2’i>
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It can be concluded that:
41 e )\7 v, w,
Corly Mi0ut <Ai.“ Bt 1<j< z>
] ) ] b — _—
1
T 92it

1

E (_1)(71,Al)»h(X1~i,ylvi)@V1_lei@Wl_Yl,i
(X1,i7yl,i)eAa§m’In(A;’.,B;’. 1<j<2)

(_1)(72,)\2)'h(X2’i,Yz*i)EBV2~X2*iEBW2~Y2’i
(X%, Y20)eAal,,, (T}, Di, 1<j<z)

1 1,1 1
=Cor{ ; 7N W x Corly; YA
Out, M3 T;,D;, 1 S] <z Mi,In

i+l pitl .
Thus,

i+1 . ’Y,IA,’U,U),
Corous,m (A;“,B;+1 1< < z>

_ i+1 ’Y,)\,’U,’LU,
= E CO’“out,Mi,In(

i+1 pitl .
=, AT BT 1<j<z
i€Fy

2 2 .2 2 1 1 1 1
— § COTI . 77%7’077’07 XCOTi ) . '77)_\,'1)7107
Out,M1 TJZ,D;, 1 <,] < Mi,In AZ<+17B77+1 1 SJ S P
- - J J
MieFyg

O
Given any z basic function {f(X,Y)p, AL Bi ;1 <m <z}, where X,Y € Fg't. For

0 <i<q—1, supposed that matrix Ma® € R2dX2d, of which elements define as :

242 ,2 .2
i _ 1 Vi AT v Wy
Ma'[Out][In] = Corout.in, (T;,D;- 1<j< z) )
where Out, Iny € F§, v, \,v,w € F' A2 =Afi-t: (i+1)-t—1], A2
vi=wfi-t:(i+1)-t—1,wi=wli-t:(i+1)-t—1].
Then, we have:

Mi-t:(i+1)-t—1],

;1 < m < z}, where

Theorem 6: Given any z basic function {f(X,Y)g, a: 5
X,Y € F§'. For y,\,v,w € F{* In € F, where d = 7_ ki, In = (Ey,, - Ex.)
Then,

q—1
q ’y,)\,v,w, _ 1 T
Cor?, (A?,le§j§z> =L [[ Md @F,
i=0

where 1 <i<q¢-—1,L=(1,1,---,1) € F22d, Qrn € F22d, of which sole nonzero component
satisfies Q[In] = 1.

Proof. For 1 <i < g, define the vector Base}, € F2" as follow:

7

1 1,1 1
i _ i Vi Ais V> W
Base, [Out] = Corgy, 1y, (A;,B} 1<j5< z)

where Out € F, vt =~[0:i-t—1], \l = A[0:d-t—1], vl = v[0 :i-t—1], w! = w[0 :i-t—1].

According to the lemma 1, we have:

YAV, W,
Corl, (A?,B;I, 1<j< Z) = L - Base,
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And by the definition, we see that Base! = Ma° - Q7.
In addition, according to the lemma 1, for 1 <i < g —1, 0 < Out < 2? — 1, we have

BaseiH [ Out] = Z Ma'[Out][Out,] - Base?, [Out,]
Out, €FY

Namely,
Baselt! = Ma' - Basel,,

Thus, the theorem holds. O

5 The Df-set

Recall the law of total probability, given a series of subset {4;, 1 <1 < n} of the total
space, where |J_; A; is to equal the total space and each A; are disjoint with each other,
then for any event B, its probability P(B) is equal to Y ., P(B N A;). Notice that the
the Aa-set with Out, In satisfy the above property, thus the same idea can be adopted to
do the following study.

Definition 8: For X1it!1 ylitl ¢ FQ(iH)'t, 0 <i<gq—1, given any z basic function
{f(X’Y)EkmxAim,B)i ;1 <m <z}, where X|Y € F2q't. Supposed that G € F}'**, C =

(J,N) € (Bt gDy " Oup In € FY, where d = S22 ki, In = (Ep,, - Ex.).
We define the Df-set with In and the Df-set with Out, In respectively:

D€, G A BIT 1< j < 2)

i i i+1)-t
Xl’hLl,Yl’hLl c F2(1 )

)

— Xl,i+1 Yl,i+1 \ ]
( ’ ) ho( X1+ YL+l = C[s],1 < s < n.

DfS T (C.G AT B 1 < j < 2)

:Df}:1’7L(C,G,A;-+1,B;+1, 1 S] <z mAaZOt}t " Ai-+1,B;+1, 1 S] < Z)

XLy it ¢ D Oy = (MY, MY,

— Xl,i+1 Yl i+1
( ) h(X“+1Y“+1) Cls],1<s<n.

* pi+1,n ; i )
D Ottt;ln(chvA;‘Jrl;BjJrl, 1 S] S Z)
=B < BT - DATC.G AT BT 1< < 2) () Aagl 1 (AT BT 1< < 2)

where

z
ho(XVHL YY) = @B Gls,m] + f(XW LYY i g, 1< s <.

m=1

According to the property 3 and property 4 we have:
Property 5: For XU+l ylitl ¢ F2(1+1)'t, 0 <i<q—1, given any z basic function
{f(XvY)Ekm,A}; B ;l<m< 2}, where X,V € F{*. Supposed that G € Fy'** C =

(J,N) € (Bt XDt Oyt In € FY, where d = Y27y ki, In = (Eg,, - Ey.).
Then

U Drobi (.G AT BT 1< <2) = DfINC, G AT BT 1< < 2)

OuteFg
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According to the Property 2:, we have:
Property 6: For XU+l ylitl ¢ FQ(l'H)'t7 0 <i<q—1, given any z basic function
{f(X,Y)g, ai B il<m< 2}, where X,V € F{*. Supposed that G € Fy** C =

k

(J,N) € (B0t G " Out In € Fe, where d = S22 ki, In = (Eg,, - Ey.).
If any two Outy, Outy € Fy satisfy Out; # Outy, then

DfS o (C G AT B 1< <) (DS (GG AT B 1< j<2) =0

As same as the law of total probability, we can get the relation between the Df-set with
In and the Df-set with Out, In :
Theorem 5: For XUitl ylLitl ¢ FQ(Hl)'t, 0 < i< gq—1, given any z basic function
{f(X7Y)Ekm,A?;m,B)im;1 <m < z}, where X,Y € F2q't. Supposed that G € F}'**, C =
(J,N) € (Bt gDty Oyt In € FY, where d = S22 ki, In = (Ep,, -+ Ex.).
Then,

S° #DFEA (C.G AT B 1< < 2)
OutEFQ‘i

=#Df"(C,G, AN BT 1< < 2)

5.1 Direct method

According to the lemma 1 and theorem 3, it can be concluded that the Df-set with
Out, In have the fllowing recursive structure:

Lemma 2: For XbLitl ybLitl ¢ F2(i+1)'t, 1 < i < g—1, given any z basic function
{f(X’Y)EkmaA}meB};mﬂ <m < z}, where X,Y € F{'*. Supposed that G € Fy™** C =
(J,N) € (Bt et Oyt In € FY, where d = S22 ki, In = (Egy, -+ Ey.).
Let J' = J[0:it—1], J? = J[i-t: (i+1)-t—1], N1 = N[0 :4-t—1], N2 = N[i-t : (i+1)-t—1],
Cl = (J,NY),C? = (J%,N?). Define

D fuinti (GG A B 1< < 2)
XL ylieD 11\47: In(C{G,A;'-,BJi, 1<j<2)

X2 Y2 € Do a(C? G T, Di, 1< j < 2)

— (XQ,iHXl,i’ Y2,i||y1,i)

Then,

DfS T (CG AT B 1< j<2) = | DISihn m(C.G AT BT 1< < 2)

MicFg
holds. And for any two Miy, Miy € Fy, where Mi; # Mis, satisfy
Dfi+17n (Ca G? A;'+1a B;'+17 1 S .7 S Z) ﬂDfZOthzrltlzz,In(C’ G? A;'+1a B;'+17 1 S .7 S Z) =9

Out,Miq,In

Proof. According to the Theorem 3, we have

1,2+1 1,0+1 2,1 2,1 i 1,2 1,2
FXH Y e J iy, it prvt = F(XTLY ™) i 0t py 27+ f(XY ) g, A
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Thus, for 1 < s < n:
hs (X17i+17 Yl,i-{-l) — @ G[S7 m] * f(X17i+17 Y17i+1)Ekm’A;‘1¢'1’BTin‘f’1

m=1

= @ G[s,m} * X2 i Y2 Z)]\/jz Ti D-L Qi.t + @ GJ[S,m] * f(Xl’i,Yl’i)Ek"UA B

motm? m?

— hs(Xl,i’ Yl,i) . 2i-t + hS(XQ,i7y2,i)
It means that:

Dfiit™C, G, A BT 1< j < 2)
XU yhie ppt X2 Y2 e FY Mi€ F¢, Mi = (M{*h, - Mit1),
= q (XXt YRyt hs (X111 = Clls],

he(X%? Y1) =C2[s], 1 < s <n.

X ybie Dfal(Ch, G, AI; Bl 1<j<2)
= (X2 XL vy ) Mi € F¢, Mi= (M. Mi+1);
X2 Y% e Df;(C?, G, T, Di, 1< j < z)

Then,
Dfp (GG AT B 1< G <) [V A i (45T BT 1< < 2)

Mi= (Ml-‘rl Mz+1)
= [ XY e Al (A5 B, 1< 5 < 2) ﬂDf}M’; C',G, A}, B, 1<j<2)
Y2 Y )XY € Ap e ai(T), Dy, 1< 5 < 2)(\Dfl( c?, G,T;,Dl 1<j<z)
It can be concluded that
41, 1 i1 . i1 i1 i1 .
Dfn n(C’G’A;‘Jr ’B;‘+ s l=js Z)ﬂAgut,Mi,In(A;'Jr BT 1< <2)
i+1, ; ; .
_Dféut ’Xlz In(C? Ga A;+1,B;+1, 1 S J S Z)
From Lemma 1, for any two Miy, Miy € F§, where Miy # Mis, satisfy
i+1 i+1 pitl ; i+1 i+1 i+l ; _
AG iy (AT B 1 <G < 2) [(AG iy (AT B 1< j<2) =2
Thus,
szo-zlti;/“1,ln(c7 G’ A;+1’B;+17 1 S] S Z) ﬂszO—thiy]:/I'LQ,In(C7 G7 A;+17 Z+1 1 < ] < Z) %]
Secondly, due to
i+1 i+1 i+l ' _ i+1 i+1 i+l ;
AlOUtJ"(A; ’B; ? 1 S J é Z) - U AZOut,Mi,In(A;' 7B; ) 1 S J S Z)
MieF§
holds in Lemma 1, we can get:
Do in(C G AT B 1< j < 2)
i+1, i+1 pitl : i+1 i+1 pitl -
=DfitP"M(C, G AT BT 1 <5 < 2)(AG (AT B, 1< < 2)
i+1, i+1 pitl , i+1 i+1 pitl .
=Df""(C,G AT B 1< <2) () U Al (AT BT 1<) < 2)
MicFyg
i+1, i+1 i+1 . i+1 i1 i1 .
- U Dfr, "(C,G,A}* BT 1< < Z)mAlO—Zt,Mi,In(A}+ >B;‘+ , 1< <2)
MieFy
— U Dfl+1n (C G AiJrl Bi+1 1< <Z)
- Out,Mi,In\~"> T35 » 5 ~J]=>
Mi€Fg
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According to the above recursive structure, we can calculate the order of the Df-set
with Out, In based on the following recurrence relation:
Corollary 2: For 1 <i<gq—1, we get

EDISAR (0.6, A B 1< < 2)
= Z #Dfé,;lt,Mi(CiQ’GaT;aD§> 1<j<z2)
MicFg

X #D 11'\}[7;71n(011’G’ A§‘7B;7 1<5< Z)

holds.
Given any z basic function {f(X,Y)p, AL Bi ;1 <m <z}, where X,Y € Fg't. For

0 < i< q— 1, supposed that matrix Md’ € de“d, of which elements define as :

) 1 n 3 i .
Mdl[OUt] [Inl] = ﬁ#Dfé’ut,Inl (szG T; Dj7 1 § J S Z)

L

where Out, Iny € F§, G € F3**,C = (J,N) € (Fy %" Fy*9N, g2 = Jli-t: (i+1)-t—1],
NZ=NJ[i-t:(i+1)-t—1], C? = (J? N?). Then, we have:
Theorem 7: Given any 2 basic function {f(X,Y)g, 4

km’
X,Y € F§"*. For G € F3**, C = (J,N) € (Fy """ F;* "), In € Fy, where d = "7, ki,
In = (Eg,,- - E)_). Then,

B}im;l < m < z}, where

~1
1 n ) q .
22qt ’ #DfI;L (C7G7A;]‘7B;‘]a 1 S] S Z) =1L HMd Q?n
i=0
where L = (1,1,---,1) € Fzzd, Qm € F22d of which the sole nonzero component satisfies
Q[In] = 1.

Proof. For 1 <1i < g, define vector Num?n € F22d as follow:
i 1 in i i .
Num]n[ouﬂ = ﬁ : Dqu;t,ln(czla GOv Gj7Aj7Bja 1 S ) S Z)
where Out € Fy.

According to the theorem 5 we have:

1 n
7Df[

524t (C,G, A1, B, 1 <j<z)=L-Numj,

)
n

And by the definition, we see that Num} = Md° - Q7 .
In addition, according to the corollary 2, for 1 <i < ¢ — 1, Out € F§, we have

Num’H[Out] = Z Md'[Out][Out] - Num?, [Out]
Outq EFQd

Namely,
J\fumifg1 = Md' - Num},,

Thus, the theorem holds. O
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5.2 Indirect method
In this part, we will use the Markov chain to complete the proof of the Theorem 7:
Theorem 7: Given any z basic function {f(X,Y)g, i pi ;1 <m <z}, where

X,Y € F§"*. For G € F}*, C = (J,N) € (F3 """ F3*%"), In € Fy, where d = 37, ki,
In= (Ekl, e 'Ekz)- Then,

~1
1 , 3 ;
gt " HDINC.GAL B, 1< <2) =1L [ md e,
i=0
where L = (1,1,---,1) € F22d, Qm € F22d of which the sole nonzero component satisfies

Q[In] = 1.

Proof. Supposed that (X1 yLitl) ¢ Df’o'; 7.(C,G, AZ+1 BZ+1 1 < j < z) represents
the state ng,lf ?n(C}H,G A’-H,B;-H, 1<j<2), Where 0 <i<q—1. And supposed
that(X Lt yLitl) ¢ ng;i T(C, G,A;“, B;H, 1 < j < 2)* represents the state

éﬁ (CL1,G, A;-H, B]H'l, 1<j<2z), where 0 <i < g — 1. Thus, we can find that any

two of the above sates are disjoint and the union of all the above state is €2 according to
the Property 5-6.
Secondly, for 1 < s < n, due to

1,i+1 1,i+1 1,i+1 1,i+1 ) )
hs(X ,Y @ GS m X Y )Ekm’A;’JLfl’Bﬁl

= @ Gls,m] * f(X2’i,Y2’i)M};L,Tjn,D;'n 2" 4 @ Gjls,m] f(Xl’i»Yl’i)Ekm,A;,B;,
M=1 m=1

_ hS(Xl’i, Yl,i) . 2i~t + hS(XQ,i7y2,i)

If we know the value of X1¢ Y1¢ then the probability of which sate (X1i! ybitl)
belongs to is depend on the state that X% Y1 belongs to. Thus, we can use it to build
a Markov chain.

For 1 <i<q—1,0,0, € Fs:

Pr(To i (Cly, G AT B 1 < j < 2)|TEE ,(CL G AL B, 1< j < 2)) = Md'[04][0,]
1,n i i . i, i pi .

PT(T8+I,L(Cz+17G7Aj+1aBj+1a 1 S] SZ)|FOZIn(Ci17GaAjaBj7 ISJ SZ)):O

Thus, the one step transform matrix form ¢ to ¢ + 1 is:

)

* )k
Then, the ¢ — 1 step transform matrix is

[H?:f Md, 0}

* %
Define vector Vi, € FQd as follow:
an[out] DfOutIn(CllaGO’ijA;vB]la 1§.7§Z)

where Out € F§l. Then V,, = Md° x QT 7n- According to the property of Markov chain, we
get

q—1 q—1
Pr((x"*yh Y e DIEMN(C, G, AL B, 1< j<z2)) =L |[ Md’ Vi, = L [[ Md' @7,
i=1 =0

O
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Likely, if we use the Markov chain, we get another form of Theorem 6:
Given any z basic function {f(X,Y)p, Al B ;1 <m <z}, where X,Y € ng't. For

0 < i< q— 1, supposed that matrix MO0?, M1% € de“d, of which elements define as :

i #AalOut,Im (T;,Dé, 1<j<z) 1 1 717)‘2 V2 W2
MO0 [Out][Inq] = S 5007‘01“& Iny <T’ Di1<j< z)
i #AAH 1 10 (7?71)3" l<j<z) 1 1 VAL VE W
M1'[Out][In,] = - 971 - 5007“01“5 Iny (rpZ Di1<j< z)

where Out Iny € F, v, \,v,w e F{", 712 =fi-t:(i+1)-t=1], A2 = Ali-t:(i+1)-t—1],
vi=wli-t:(i+1)- t—l]w =wli-t:(i+1)-t—1].
Then, for 0 < i < g — 1, define the matrix M; as follow:
MO, M1
M1%, MO
Theorem 8: Given any z basic function {f(X,Y)p, i 5 ;1 <m <z}, where
X,Y € F§*. For v,\,v,w € F§*, In € F{, where d = 3°7_ ki, In = (Ey,--- E.,). Then,

77)\,1},“}7
CO’I“(}n (A?,B;], 1<j< Z) = HM lean)

where L = (1,1,---,1), O = (0,0,--- ,0) € F22d, Qrn € F22d of which the sole nonzero
component satisfies Q[In] = 1.
Remark 7: Supposed that m = g and ¢t = 1 in theorem 6 and theorem 7, if 2™ > 2¢

a2 . . q Y )‘7 ‘/7 W
and m > 2%, then the time complex of calculating the C'orj,, (Ag, B;? 1<j<z and
Dfi»"(C,G, AY, B}, 1 < j < z) is about O(m).

5.3 Instance

For F : (z,y) EiN (z,zBy), it can be treated as l-order basic function. Besides this,
-1
its inverse function F~! is (z,y) RN (z,z By). According to the corollary 1, it can

be conversed into (z,y) L (x,(z®(1,1,--- ,1))ByHE1). For a,8,7,A € F}, let
E = [1,0], By = [0,)], A1 = [0,7],B2 = [3,A], A2 = [a,7]. Then, for 2-order basic
function f(x,y)E 4, B, and f(z,y)E, 4,.8,, the following equation holds.

f@,9) a0, = FH(F (2, y) @ (1,0)
f(xay)EyAzsz =F! (F (.’L‘ Da, yd 6) S (’7) )‘))

Thus, according to the theorem 6 and the theorem 7, we have:
1. The formula for calculating the boomerang connective probability and its variant :

Corollary 3(BCT): Let F' be (z,y) EiN (x,z By), an element of BCT [4] defined by
BCT (o, 8,7, A) = #{(z,9) | 2,y € F, F 7' (F (2, ) @ (v, ) @ F 1 (Fz @, y @) & (71, 1) = (e, )} - 277"

where a, 3,v,A € Fg". Then, for 0 < i < n — 1, let Out = (01,09,03,04) € Fy,
] []) L_(]-v]-a"'7]-)€F2167Q:
<1

In = (61762,63,64) €F27 H = ( [] H [
(0,0,0,0,0,1,0,---,0) € Fj5. Beside this, for 0 < i < n — 1, supposed that the matrix
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My € F}6%16 of which elements define as :

Md[i] [Out] [In]
=D f5ur.1n((alil, BLi), (0,0),{(0,1), (0,~[i]), (0, A[i]) }, {(0, 1), (ala], v[i]), (Bli], Ali])})

es®esDer Bey =0, carrye, (y,x) [1] = o1,
carrye, (y @ x e ® A[il,x & 1@ v[i]) [1] = oz,
=# 4 (z.y) carrye, (y @ Bi],z ® afi]) [1] = o,
carrye, (y® Blil Gz ©afil Ges® A,z @ 1@ afi] ®v[i]) [1] = o4
where carry.(x,y)[1] = (x Ay) ®(x ANe) D (e Ay); x,y, € Fa.

where Out, In € Fy.

Thus, we have

n—1

BCT(a,8,7,A) =27>" - L [] My Q"

Corollary 4 (BCT'): Let F be (z,y) EiN (z,2 By), an element of BCT" [10] defined
as

BCT (o, 8,7, 1,0,0) = #{(z,y) | 2,y € Fy ,\ F ' (F(z, )& (,AN)SF ' (Fz®a, y@d ) & (v, N) = (0,0} 27"

where a, 3,7, \,0,( € F§". Then, for 0 < i < n — 1, let Out = (01,02,03,04) € Fy,
In = (e1,e2,e3,e4) € Fy, d[i] = (aéi],ﬁ[i],’y[i],/\[z’],@[i],C[i]) eFS, L= (1,1,---,1) € F},
Q = (0,0,0,0,0,1,0,---,0) € Fi5 Beside this, for 0 < i < n — 1, supposed that the
matrix M) € F216X16, of which elements define as :

Magy[Out][In]

=D fGur,1 (0[], C[1]), (0,0), {(0, 1), (0,7[i]), (0, AL])}, {(0, 1), (afd], 7[il)., (B[], ALi])})

ali] = 0[d], ¢[i] ® Bli] D es D es @ e1 @ ex =0, carrye, (y,)[1] = o1,
carrye, (y @ @er @ A[il,x @ 1@y [i]) [1] = o2,
=#q (z,9) carryes (y ® B[], @ afi]) [1] = o3,
carrye, (YO L] DD ali] @es® Ai],z ® 1D afi] ®y[i])[1] = oa;
where carrye(z,y)[1] = (x Ay) @ (xANe) @ (e ANy); x,y, € Fo.

where Out, In € F24.

Thus, we have:

n—1
BOT (a, 8,7, A,60,¢) =277 - L [ Ma Q"

=0
Corollary 5(BCT?): Let F be (z,y) RN (z,z By), an element of BCT? [10] defined as

BCT (0, 8,7, X, 0,0) = #{(z,9) | 2,y € Fy , F ' (F (2, ) ®(0,0)) O F ' (F(a® o, y@®B) (7, N) = (o, f)} - 277

where a, 3,7, \,0,( € F". Then, for 0 <i < n — 1, let Out = (01,02,03,04) € Fy,
In—(61,€2763a€4)€F H:(Oé[i]aﬂ[i], [i], A4, (1], C[i]) € 9, L= (1,1,---,1) € F3°,
Q = (0,0,0,0,0,1,0,---,0) € Fi% Beside this, for 0 <i < n —1, supposed that the
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matrix My, € F}5%16 of which elements define as :

Md[i] [Out] [In]

=D [, ra((ali], BL), (0,0), {(0,1), (0, 6[a]), (0, C[])}, {(0, 1), (alal, y[a]), (BL), Ala])})
A @ 0[] ®~[i] BCli] Des DesDer ez =0,
Oi] ®~[i] = 0, carrye, (y,z)[1] = o1,
carrye, (y ®x @ er @ (fil,x &1 O[i]) [1] = oo,
carrye; (y ® B[i],x @ a[i]) [1] = o3,
carrye, (y®Blil @z S afi] @ es @A,z @ 1@ afi] @y [i]) [1] = 043
where carrye(x,y)[1] = (x Ay) D (xANe)® (e ANy); z,y, € Fh.

where Out, In € Fy.

=# (377 y)

Thus, we have:

n—1

BCTI(Q, 5377 )‘a 03 C) = 272” L H Md[z] QT
=0

3. The formula for calculating the difference-boomerange connective probability and the
inverse difference-boomrange probability, respectively:

Corollary 6-1:(DBT) Let F be (z,y) EiN (x,z By), an element of DBT [5] defined by

DBT(a,ﬁ,w,e,o#{(w)’F vy € F) F(z, y)©F(z@a, y& )= (0,0), },2_%

TTF@, @A) F T (Fda, ydB) @ (1, ) = (a,8).

where a, 3,7, \,0,( € Fy. Then, for 0 < i < n — 1, let Out = (01, 02,03,04) € F3,
In = (e1,e2,e3,e4) € F247 d/[l] = (a[z],ﬁ[z]m[@],)\[2]79[2],C[z}) € F267 L=(1, - 71) € F2167
Q = (0,0,0,0,0,1,0,---,0) € Fi5. Beside this, for 0 < i < n — 1, supposed that the
matrix M) € F216X16, of which elements define as :

Mgy [Out][In]
05t (57 ) (60) ((76) - @M. 0D A(T ) (@l T (31 NE)
afi] = 0[i], ali] ® Bli] ® ([i] ® e1 & es =0,
es®esPer ey =0, carrye, (y,x) [1] = o1,
carrye, (y @ e @ A[i],z ® 1@ v[i]) [1] = 0z,
carrye, (y © Bi), @ & a [i]) [1] = o,

carrye, (y@ Bl @ dali] ®es ® A,z @ 1@ afi] @ 7[i]) [1] = o4
where carrye(z,y)[1] = (x Ay) ® (x Ne) @ (e ANy); x,y, € F.

where Out, In € Fy.

=#q (z,9)

Thus, we have

n—1

DBT(a,8,7,A,0,¢) =27 - L ] Mapy Q"
=0

Corollary 6-2:(IDBT) Let F be (x,y) EiN (z,2By), an element of DBT [5] defined by

DB 8,7:2,6,¢) _#{@,y) F(F @ )@@ N)eF (F @oo ye8) @ () = (a,8).

©y€Fy, F ' (z, @ F '(zda, yoB) = (6,0, }.2%

where «, 8,7, \,0,( € F3. Then, for 0 < i < n — 1, let Out = (01, 02,03,04) € F3,
In = (e1,ea,e3,e4) € Fy, d[i] = (li], B[i], v[i], A[i], 0]i], ¢[i]) € F9, L= (1,1,--- ,1) € F},
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Q = (0,0,0,0,0,0,0,0,0,0,1,0,---,0) € F}°. Beside this, for 0 < i < n — 1, supposed
that the matrix Mg € F216X16, of which elements define as :

M gp[Out][In]
=075t (G ) (5 0)€(00)  rtib 03 ((15) @A 6l A

alfi] = 0[i], «fi] ® Bli] ® C[i] Der Pes =0,
esPesder Dea =0, carrye, (y,z®1)[1] = o1,
Carrye, (Y Bx ® 1@ e ® Ai],xz ®v[i]) [1] = o2,
carrye, (y® B il , 2 &1 «i]) [1] = os,
carrye, (y @ Bl @z ® 1@ ali] ®es ® A,z ® afi] ®v[i]) [1] = ou;
where carry.(x,y)[1] = (x Ay) ® (x ANe)d (e Ay); x,y, € Fa.

where Out, In € Fy.

=# (1‘7 y)

Then, we have:

n—1

DBT(a, 8,7,,6,() =27 - L [] Mapy Q"
=0

3. The formula for calculating the difference probability :
Corollary 7:(DDT) Let S be S(z,y) = x By, an element of DDT [1] defined by

DDT(a, 8,A) = #{(z,y)| 2,y € F3'. S (t © a,y ® B) ® S(z,y) = A} - 27"

where «, 3, A € FJ*.Then, for 0 <i <n — 1, let Out = (01,03) € F2, In = (e1,e3),L =
(1,1,1,1),Q = (1,0,0,0) € Fy, d[i] = (c[i], B[], Ali]) € F3. Beside this, for 0 <i <n — 1,
supposed that the matrix Mgy, € F, %4 of which elements define as :

Md[z] [Out,ln]
=D f&ue mm((ali], Ai]), (0,0),{(1), (0), (0)}, {(1), (ald]), (Bi])})
alil © Bli| © Ali] © e1 ® ez =0,
:# (gc,y) Carrye, (yvx) [1] = 01,

carrye, (y © Bli],x @ afi]) [1] = os,
where carry.(x,y)[1] = (x Ay) D (x ANe)d (e Ay); x,y, € Fo.

where Out, In € F3.
Thus, we have:
n—1
DDT(a, 8,A) =272" - L [] My Q"

=0

4. The formula for calculating difference-linear connective correlation coefficients:
Corollary 8:(DLCT) Let S be a S(x,y) = 2By, an element of DLCT [4] defined by

DLCT (o, B, \) = 2727 . Z (—1)N S8y SS(2.y)

z,yeF}

where a, 3, A € F3*. Then, for 0 <i < n — 1, let Out = (01,03) € F§, In = (e1,e3), L =
(1,1,1,1),Q = (1,0,0,0) € F3, ali] = (ali], Bli], A[i]) € F3. Beside this, for 0 <i<n—1,
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supposed that the matrix M,[; € F24X4, of which elements define as :

i [Out][In]

0,)\1 1,0,0,
_COTOut In ({ O }, H) (5[1])})

(0)
(—1)il-(S(=@alily@Bl) @S (@.y)erGes)
(z, 1/)656 ali],Out,In

carrye, (y, ) [1] = o1,
where Set 1,Out,In — (IE, y) CarryYe, (y @ B M T D a [7’]) [1] = 03,
where carrye(z,y)[1] = (x Ay) & (x Ne) @ (e ANy); x,y, € F.

where Out, In € Fy.

Thus, we have:
DLCT (o, B,\) = L H Mapi

5. The formula for calculating the linear approximation correlation coefficients(LAT):
Corollary 9:(LAT) Let S be S(z,y) = « By, an element of LAT [2] defined by

LAT (p,w,\) =272 Z (_1)M'I@W'H®A~S(m7y)
z,yeFG

where p,w, A € Fj. Then, for 0 <i<n—1,let Out € F5, In € F5, L = (1,1), @ = (1,0),
ali] = (u[i],wl[i], A[i]) € F3. Beside this, for 0 < i < n — 1, supposed that the matrix
M, € F22 %2 of which elements define as :

Outllin] — Conl Al i, wlil,
Ma[l] [O tHI ] C Out,In( {( ),(O)} )
_ 3 (—1)plil-e@wlil-y@Ali)(S@y)@n)

(zvy)esetu[i] ,Out,In

carryr, (y, ;c) [1] = Out,

where SetofyOu,tn = { (#:9) ‘where carrye(z,y)[1] = (@ Ay) @ (zAe) @ (e Ny); x,y, € Fo. [

where Out,In € Fy.

Thus, we have:

n—1

LAT(,LL,LU, >‘) =1L H Ma[i] QT
1=0

According to the Theorem 8 in Appendix-A, after reducing the redundancy of matrix,
we have the formulas for the calculating the boomerange-difference connective probability
and the variant of difference-boomerange connective probability, respectively:

Corollary 10(BDT): Let F be (z,y) EiN (z,xBy), an element of BDT [10] defined as

_ z,y € FY,(z,) ®F "(Fz @ o, y®B)) = (6,0) —2n
BDT(e 71, 2.8,¢) = # {(“’) FUF (e ) @ ()@ P (F (a6 a, y@ﬂ)@(mx>>=(a,6).}'2 ’

)

where a, 3,7, ,0,( € F3*. Then, for 0 <i < n — 1, let Out = (01, 02,03,04,05) € Fy
In=(€17€2,63,€4,€5)€F25,L=(171,-- )€F2327 [] (HB[] [] [] H [Z])E
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F$, Q = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,---,0) € F52. Beside this, for 0 <i <n —1,
supposed that the matrix Mg, € F232X32, of which elements define as :

afi] = 0[i], 1 & pli] & ([i] ® es ® e3 =0,
es®esDe Des =0, carrye, (y,x) [1] = oy,
carrye, (Y S x @er ®Ai,zr ® 1@ v[i]) [1] = o2,
Mg [Out][In] = # < (z,v) carrye, (y @ B i),z ® ali]) [1] = os,
carrye, Y@ flil@x @ ali] ®es® i,z @ 1@ afi] y[i]) [1] = 043
carrye, (Y@ LI @x @ ali]®es,x® 1@ ali]®)[1] = os;
where carry.(x,y)[1] = (@ Ay) D (x Ae) D (e Ay); x,y, € Fo.

where Out, In € Fy.

Thus, we have

n—1

BDT(a, 8,7, A,6,¢) =27" - L ] Mapy Q"
=0

Corollary 11(DBT"'): Let F be (z,y) EiN (v, By), an element of DBT! [10] defined
as

T,y € Fy, F(z, y) @F (z @, y D B)

1 _ z :(G;C)7 Lo 2n
DBT (28,7, % 6,6,m9) = #{( ’”‘F*(F(z, W) & (r\) & F1 (F(a, y)EB(%A)EB(O’C))—(n’w)} 2

where a, 3,7, ,0,(,n,9 € Fy.Then, for 0 <i <n — 1, let Out = (01,02,03,04) € Fg,
In = (e1,ea,e3,6e4) € FE, L = (1,1,---,1) € Ff¢ Q = (0,0,0,0,0,1,0,---,0) € F}°
d[i] = (a[d], B[i], v[i], A[i], 0]i], ¢[i], n[i], ©[i]) € FS. Beside this, for 0 < i < n — 1, supposed
that the matrix Mgy € F216X16, of which elements define as :

ali] = 0[i), afi) @ B[i] ® C[i] © ex © ez = 0,7[i] = Oi],

Y[i) B Ofi] ® ([i] D es D ey Bex =0, carrye, (y,x) [1] = o1,
carrye, (YB x®e1 ® A,z @1 v[i]) [1] = 02,
carrye, (y ® Bli],z ® a[i]) [1] = os,
carrye, (y Sz S ex S AN[i] ® ([il,z © 1 &y [i] © 0[i]) [1] = 04;
where carry.(x,y)[1] = (x Ay) @ (x ANe) D (e Ay); x,y, € Fa.

Md[i] [Out] [I?’L] = # (1'7 y)

where Out, In € Fy.

Thus, we have:

n—1
DBTl(avﬂafYa )‘7 07 Canaﬂ)) = 272“ L H Md[z] QT
=0
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A Reduce The Redundancy of Matrix

Definition 9: For any 2 basic function series {f(X, Y)Ek A B i 1<m<rh
and {f(X,Y)Ek ALt Bz+1 ;7 1 < m < ro}o, if there ex1st a k‘l, such that k& > 0,

m,2°
Ey, ,[0: k] = Eg [o l<:1] A”l A0 k) = A0 k] BT [0 ki) = B[00 Rl
then we called that the two basm functlon series are similar. And the degree of smulanty

deg for the two basic function series is defined as

rg,2

deg = maz {k + 1|k > 0, Ey,, ,[0: k] = By, ,[0: k], ATl [0: k] = AL 00 k], B [0 k] = B
Beside this, if two basic function series are not similar, we define deg = 0.
Definition 10: Given any z number rq,--- , 7., supposed that 1 < j; < jo < z, deg <
z
Ty, s, Where d = )~ 4, then we can define

SimiL? ={V e B |V = (Vi,Va, - V), Vi, [0:d] =V, [0:d],V; € Fy?, 1 <i < 2}

U

Define the bijection F : SimeG’;z = Fd e as:

F(‘/M‘/Qa 7‘/jl?"' 7‘/}2’.“ 7V) (‘/1a‘/27 a‘/jlv"' aVsz[deg:sz _1]5 a‘/z)
Theorem 8: For any positive integer q,t, z,n, given any z basic function series

{f(X1a Ylvq)Eka ag g il<m< 7} (XP YN € B 1 < j < z; then we can
J

km,j’
get T, Dj. » € (F3)" from Af Bgmd_, where 1 < j <2z, 0<j <q¢—1. And there are
two bas.lc functlon series ,of Wthh code are ji, jo respectively, are similar. Then we define
the degree of similarity for the two basic function series is deg. Supposed that Gy € Fy*?,
G e ;"1 <j <z C=(J,N)e (B T X", Out,Iny € F§, In € Sim).7

deg
where d = Y7 ky,, In = (Ej, By, ). Let C=(J,N)=C}=(J},N}). We have:

1,10

qg—1
DfEM(C, Go, Gy, AL (Bl 1<j<z)=L [[Md Q"
rind? ke
i=0
where L = (1,1,---,1) € F;ideg, Q € ngdeg, of which the sole nonzero compo-

nent satisfies Q[F(In)] = 1, and Md' € R(I—deg)x(d=deg) qatisfying Md'|out,in] =


https://eprint.iacr.org/2019/848
https://eprint.iacr.org/2019/848
https://eprint.iacr.org/2020/1317
https://eprint.iacr.org/2020/1317
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L,n i i ; ; ;
#DfF—l(Out)7F—l(in)(Ci23GOaG%Tij)j)Dkrj)j) 1 S J S Z)a 0 S 1 S q— 15 0 S out,zn S
2d-deg 7,

Proof. According to the remark 5, for 1 <7 < g, we have :
DfOut In(CilyGo,GﬁAzT, ijlic,‘ 1<j<2)=0, when in ¢ Szmh,az and out € Szmh ]2.

J° J ' ‘
DfOut I'n(cilaG07Gj7A’ILch7j7BI’LgTj’j, 1 S ] S Z) = 0 when in € Slm]17J2 and out ¢ S'meilegz.
Thus, for 1 < i < ¢, when In € Sim(ﬂjlegz

Z #Dfout ITL( z—f—l)GO?Gj?Ai;tjl)j)B]i—:l,.v 1 S j S Z)

i1,32
OutESzdeJ

=#Df;"( M,GO,GJ-,AQL, ;‘le 1<j<2)
And for 1 <i<q—1, when In € Szmﬁ’j2
N , A ,
#DfO-Zt 7Iln( z+1’G07Gj7A;€J:j1,j’Bz+'1,‘ l=j= Z)
= Y #Df5ua(CP GG T Di [ 1<j<2)
MieSim]L 72

X#DszIn( GO’GﬁAk Bli:rj,ﬁ 1<j<a2).

Next, use the bijection F to transform Szmjl’j2 into F£99 and do the similar way like
the theorem 7. Then, the theorem holds. O

Theorem 9: For any positive integer q,t, z,n, given any z basic function series
Y0 g g 5 1<m <}y (X190 Y10 € FYY), 1<) < 2 then we can

. . AL
get Ty, Dy (F2)T7 from Al J_,BZ ;> where 1 <j <z 0<j<q—1 And there
s s ,
are two basic function series ,of Wthh code are jj, jo respectively, are similar. Then we
define the degree of similarity for the two basic function series is deg. Supposed that
GyeFy, 1<j<zy,\v,weF§" Out,In, € F§, In ¢ Szmjm2 where d = Y7 kr,,

In=(Ey,, ., E._.) Let N\l =X\l =7,V =0, W =w. We have:
-1
v 7)\1 Vl Wl q -
COT;-I,,L <AZ . éq _,G 1§]§Z =1L HMCL Q
7‘]"] T‘j,j i=0
where L = (1,1,---,1) € FI%9 @ e F{ %9 of which the sole nonzero compo-
nent satisfies Q[F(In)] = 1, and Md’® € R(I=de9)x(d=deq) gatisfying Ma'|out,in] =

22, V22,
v7D£Tj‘j7G 1<353<z2

T3

COT}*—'_I(Out),F_l(in) (le )v 0<:<qg—1,0<out,in < 2d—deg 1,

Proof. According to the remark 5, for 1 < i < ¢, we have :
1 1 1 1
i Vi )"L ) V;, ’ W’L )
Corout,in Al B! G, 1<j<z =0, when in ¢ Szm”’]2 and out € Szm””z
r; ) = =

i )\i viwk

i ) Loy tr oy T — ; ;2 J1,J2 0 J1,72

Corout,in (AZ B ijj’ 1<j<z) =0, when in € Simy,;* and 0ut§é51md6g .
i . =J >

Thus, for 1 < i < ¢, when In € Simife’gjz,

c i . ’Y'LlyAzlz‘/il?Wil7 o Z C i . 73,)‘117‘/ilvw+17
Ofin \ A, Bi. Gy 1<j<z) T Orounin \ A Bi,  ,Gj, 1<j<z
27 27 77 77

OutGSimfil 2
eg
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And for 1 <i < g —1, when In € Simgtzf:

C i+1 X 7i1+17>4‘11+17‘/i%kl7Wi1+17
OTOut,In A;c+1j7Bllc+lj7Gj? 1 S] <z
T Tis
VizaAzga‘/;lZaWiZa i ’y'}?A'}a‘/il?Wil?
= Z Cordus i | i i , . X Coryin | 4i i i .
’ TkT,.pDkr,ijjz 1<j<z ! Akr,.'karr.ij]v 1<j<=z

Mi€sim]L 72 ’ ’ ’r o
Next, use the bijection F' to transform Sim{fegz into F2d =99 and do the similar way like
the theorem 6. Then, the theorem holds. O
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