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Abstract. Our purpose is to compare how much the F5 algorithm can gain in
efficiency compared to the F4 algorithm. This can be achieve as the F5 algo-
rithm uses the concept of signatures to foresee potential useless computation
which the F4 algorithm might make represented by zero rows in the reduction
of a large matrix. We experimentally show that this is a modest increase in effi-
ciency for the parameters we tested.

1 Introduction

In Algebraic Geometry and its applications which includes problems in Robotics,
Cryptography, etc., the fundamental problem is (efficiently) solving a system of m
polynomial equations in n variables

f1(x1, x2, . . . , xn) = 0 f2(x1, x2, . . . , xn) = 0 · · · fm(x1, x2, . . . , xn) = 0

where for each i ∈ {1,2, . . . ,m} we have fi ∈ F[x1, x2, . . . , xn], the polynomial ring over
a field F which throughout this paper we will assume to be finite.

There are cases in which efficient methods exist. In the case that each polynomial
fi is linear, meaning that it has no terms of degree greater than one, then the problem
reduces to the techniques of linear algebra and may be solved by Gaussian elimina-
tion. More advanced techniques may be used if the linear polynomials have special
form, like if they are sparse (which many coefficients being zero) in which case the
Wiedermann algorithm would lead to greater efficiency. In the case that the system is
univariate i.e. n = 1, then the best method is to first find the greatest common divisor
of the polynomials

f (x) = g cd( f1(x), f2(x), . . . , fm(x))

using the Extended Euclidean Algorithm. Then Berlekamp’s Algorithm can be used
to find a solution if one exists [1].

However, in the case that both the system is multivariate i.e. n > 1 and nonlin-
ear, then finding a solution to the system is an NP-complete problem even when the
system is only quadratic and |F| = 2 [20]. The problem is believed to exponential for
random system an average as well. The best current methods are the XL (eXtended
Linearization) family originally by [6] and the F4 [16] and F5 [17] families by Faugere
(really, F4/F5 are the start of solving the system with other algorithms needed later,
but they are by for the most computationally intense part of finding the solution).
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Both families of algorithms reduce the problem of finding a solution to that of solving
a large, sparse matrix. While in overdetermined system XL often has the advantage
[30], in other cases F4 and F5 are superior and are often the benchmark in describing
the complexity of solving the system. F5 was made to be an improvement over F4 be
reducing unnecessary computation done in F4, and in this paper we present some
experimental results on how big of an improvement that this can be.

Both F4 and F5 (and their variants) are algorithms to designed to compute what
is called a Groebner basis for the system

F = ( f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), · · · , fm(x1, x2, . . . , xn)).

To describe what a Groebner basis, we first need to define some terms. We will follow
the terminology of the excellent textbook Ideals, Varieties, and Algorithms by Cox et
al[7] .

Definition 1. A subset I ⊂ F[x1, x2, . . . , xn] is an ideal of F[x1, x2, . . . , xn] if

1. 0 ∈ I .
2. f , g ∈ I =⇒ f + g ∈ I .
3. f ∈ I and h ∈ F[x1, x2, . . . , xn] =⇒ h f ∈ I .

The Hilbert Basis Theorem shows, as F is a field and thus a Noetherian ring, an ideal
I of F[x1, x2, . . . , xn] is finitely generated by a finite set of elements of elements

I = 〈 f1, f2, . . . , fs〉 :=
{

s∑
i=1

hi fi

∣∣∣ hi ∈ F[x1, x2, . . . , xn]

}
.

Definition 2. We define the variety of a basis { f1, f2, . . . , fs } ⊂ F[x1, x2, . . . , xn] to be the
set

V ( f1, f2, . . . , fs ) = {a ∈ Fn | fi (a) = 0,1 ≤ i ≤ s}.

It is easy to show that if { f1, f2, . . . , fs } and {g1, g2, . . . , gr } are two bases for the ideal I ,
then

V ( f1, f2, . . . , fs ) =V (g1, g2, . . . , gr ).

This changes the problem of trying to solve a polynomial system to finding a basis
for its ideal from which it is easier to find solutions. We now define a order on the
monomials of F[x1, x2, . . . , xn]

Definition 3. A monomial order > on the set of monomials in F[x1, x2, . . . , xn] is a well
ordered, total ordering such that

α>β =⇒ αγ>βγ.

for all monomials α,β,γ.

The usual ordering given are the lexicographical ordering, the graded lexicographical
ordering, and the reverse lexicographical ordering whose definitions can be found
in [7]. Given a monomial ordering > and a polynomial f ∈ F[x1, x2, . . . , xn], we may
define the leading monomial of f LM( f ) to be the largest monomial of f with a
nonzero coefficient, the leading coefficient LC ( f ) to be the coefficient of LM( f ),
and the leading term LT ( f ) := LC (F )LM( f ). For a set of polynomials F , we define
LT (F ) := {LT ( f ) | f ∈ F }.



How Much Can F5 really Do? 3

1.1 Buchberger’s Algorithm

We now may define a Groebner basis:

Definition 4. For a monomial ordering> in F[x1, x2, . . . , xn], a finite basis { f1, f2, . . . , fs }
of an ideal I is a Groebner basis of I is

〈LT ( f1),LT ( f2), . . . ,LT ( fs )〉 = 〈LT (I )〉.

An examination of both the linear case with Gaussian elimination and the univariate
case with finding the greatest common divisor finds that finding a Groebner basis is
what we try to do.

Groebner bases were first defined by Buchberger his in 1965 thesis [3] in which he
also gave an algorithm, now called Buchberger’s Algorithm, to compute a Groebner
basis given a set of polynomials

F = ( f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn), · · · , fm(x1, x2, . . . , xn)).

The core idea behind Buchberger’s Algorithm is the S-polynomial:

Definition 5. Let f1, f2 ∈ F[x1, x2, . . . , xn]. We define the S-polynomial for the pair { f1, f2}
as

S( f1, f2) = t

LT ( f1)
f1 − t

LT ( f2)
f2

where t = l cm(LM( f1),LM( f2)).

Notice that the leading monomial of S( f , g ) will be different than both that of f1 and
f2. Buchberger proved a condition for a basis to be a Groebner basis based on the set
of all S-polynomials of the generators.

Theorem 1. (Buchberher’s Criterion) [7] Let F = { f1, f2, . . . , fm} be a basis for an ideal
I ⊂ F[x1, x2, . . . , xn]. Then F is a Groebner basis if and only if for each i 6= j the normal
form of S( fi , f j ) modulo F is zero.

Here, the normal form of a polynomial is an extension of the division algorithm given
by Algorithm 1.

Buchberger’s strategy is to select one of the S-polynomials S( f1, f2) of the gener-
ators { f1, f2, . . . , fm}, create its normal form r , and if that normal form is nonzero it
is added to the basis. This process will eventually terminate due to the Hilbert Ba-
sis theorem. See Algorithm 2 for the pseudo-code. For many years, improvements
to the Buchberger algorithm were focused on the finding a strategy for selecting the
S-polynomial such that it does not reduce to zero (which is worthless computation)
and leads to a Groebner basis as soon as possible [21]. An improvement to which se-
lects subset of S-polynomials to reduce simultaneously is the F4 algorithm to which
we now turn.
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Algorithm 1 NormalForm(g ,F )

Input: A polynomial g ∈ F[x1, x2, . . . , xn ], a finite subset F ⊂ F[x1, x2, . . . , xn ]
Output: The normal form of g modulo F
h := g
while there exists f ∈ F such that LM( f ) | LM(h) do

choose f ∈ F such that LM( f ) | LM(h)

h := h − LT (h)
LT ( f ) f

end while
return h

Algorithm 2 Buchberger(F )

Input: A finite subset F ⊂ F[x1, x2, . . . , xn ]
Output: A Groebner basis G for the ideal generated by F
G := F
B := {

{g1, g2} | g1, g2 ∈G , g1 6= g2
}

while B 6= ; do
B∗ := {g1, g2} ⊂ B
B := B \ B∗
r := NormalForm(S(g1, g2),G)
if r 6= 0 then

B := B ∪{
{g ,r } | g ∈G

}
G :=G ∪ {r }

end if
end while
return G

2 Faugere’s F4 Algorithm

2.1 F4 algorithm

F4 is a family of algorithms, originally proposed by Faugere in 1999 [16], which are an
improvement of Buchberger algorithm which utilizes symbolic precomputation and
sparse linear algebra techniques to more efficiently compute a Groebner basis. They
are especially efficient using the reverse graded lexicographical ordering, which then
can be turned into another ordering with another algorithm whose cost will be small
in comparison to F4. The essential idea is to reduce several S-polynomials simulta-
neously by turning the reduction process into what amounts to row reduction of a
large matrix and extracting non-zero rows of said matrix.

Here we will follow the thesis of Cabarcas [4] in describing roughly the basic ver-
sion of F4. We note that this is slightly different than the notation used by Faugere
originally, and Cabarcas more closely follows the form of Buchberger’s algorithm.
Our treatment will not be complete, and the reader should consult either the thesis
or the original F4 paper for details. Suppose we want to construct a Groebner basis G
for a set of polynomial F = ( f1, . . . , fs ) for some fixed monomial order >. We perform
the following steps whose pseudo-code can be seen in Algorithm 3
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Algorithm 3 BasicF4(F )

Input: A finite subset F ⊂ F[x1, x2, . . . , xn ]
Output: A Groebner basis G for the ideal generated by F
G := F
B := {

{g1, g2} | g1, g2 ∈G , g1 6= g2
}

while B 6= ; do
Select B∗ ⊂ B , B∗ 6= ;
B := B \ B∗
L :=

{ lcm(LM(gi ),LM(g j ))
LT(gi ) · gi

∣∣∣{gi , g j } ∈ B∗}
H := BasicSymbPreProc(L,G)
H̃ := rref(H)
H̃+ := {h ∈ H̃ | LM(h) ∉ LM(H)}
G :=G ∪ H̃+
B := B ∪{

{h, g } | h ∈ H̃+, g ∈G ,h 6= g
}

end while
return G

Initialization First let us set G = F , and then construct the index set

B := {{gi , g j } | 1 ≤ i < j ≤ s}

which records all pair in the ideal for which we do not know if the S-polynomial will
reduce to zero. We will edit this set until it is empty and then G will be a Groebner
basis for the ideal of F .
Select Through some selection strategy, select a nonempty subset B∗ ⊂ B for which
we will simultaneously reduce the S-polynomials. Remove these from B by redefin-
ing B := B \B ′. An example of a selection strategy would be the normal strategy for F4
which would be to select all the critical pairs with a minimal degree where the degree
of a pair ( f , g ) is defined to be

deg(lcm(LM( f ),LM(g ))).

This was originally found to be the best strategy [16]. If the selection strategy is to
only select one pair, we reduce a single S-polynomial and thus recover the Buch-
berger algorithm.
Symbolic Precomputation We wish to consider the set H of all polynomials which
might help us reduce the S-polynomials in B∗. First, we define the set

L :=
{

lcm(LM(gi ),LM(g j ))

LT(gi )
· gi

∣∣∣{gi , g j } ∈ B∗
}

which we notice is effectively the "halves" of the S-polynomials. Then we perform
BasicSymbPreProc(L,G) in which we selected polynomials still in the ideal of G (and
thus in the ideal of F ) which will help reduce H .

Reduce H as a matrix We then view H as the Macaulay matrix whose rows rep-
resent the polynomials in H and columns the monomials in those polynomials (in
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Algorithm 4 BasicSymbPreProc(L,G)

Input: Finite subsets L,G ⊂ F[x1, x2, . . . , xn ]
H := L
done := LM(H)
while M(H) 6= done do

Select t in M(H) \ done
done := done ∪ {t }
if there exist g ∈G s.t. LM(g ) | t then

choose g ∈G s.t LM(g ) | t

H := H ∪
{

t
LM(g ) g

}
end if

end while
return H

descending order with respect to >). We perform linear algebra techniques to create
the row echelon form H̃ of H .
Update B Finally for this iteration of the loop we append to G each h ∈ H̃ which has
a new leading monomial. we then selected another subset of B to repeat the process.

That this does terminate and produce a Groebner basis can be found in the origi-
nal F4 paper, and there are also improvements to this basic form of F4 as well such as
reducing the basis at each step, discarding pairs which are known to reduce to zero
automatically, and choosing the element to add in the reprocessing computation in
a clever way [16].

3 Faugere’s F5 algorithm

3.1 The F5 algorithm

Inspired by the idea from the paper by Moller et al. which states the relationship be-
tween the zero reduction and syzygies [23], Faugere proposed the F5 algorithm to
avoid the redundant computations when computing a Grobner basis. In particular,
the idea behind the F5 algorithm is to detect the useless reduction even before they
occur. According to Faugere’s paper [17], F5 has been claimed to be extremely suc-
cessful in Groebner basis computation. In 2002 Faugere claimed that the previously
intractable "cyclic 10 module p" problem was successfully solved by an improved
version of F5 algorithm in 16 hours on a 1GHz PIII. However, the implementation of
the F5 algorithm that was used in this computation has never been published. Later
in August 2004, the same problem was solved by a new optimized implementation
of the F4 algorithm (released in May 2004) in 17.6 days on a 750MHz Sunfire v880.
Moreover, as an application to cryptography, the HFE system of 80 quadratic equa-
tions in 80 variables over the binary field was first solved by Faugere’s F5/2 algorithm
in May 2002 in 52.2 hours on a 1GHz Alpha EV68. As a comparison, the new opti-
mize F4 in Magma V2.11 solves the system in 22.1 hours on a 750MHz Sunfire v880
(using 14.4GB of memory)[27]. Thus, the F5 algorithm is not always faster than the
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F4 algorithm. Faugere stated that the F5 algorithm is expected to reach its maximal
efficiency in underdetermined systems.

There are many theoretical deficiencies in Faugere’s original F5 paper. First, the
proof of the termination was left unclear. Steger partially filled the details [28], but
his proof is still under some hypothesis. Later, S. Pan et al. proved the termination
of the F5B algorithm, an equivalent version of F5 in Buchberger’s style [24]. The ter-
mination of the original F5 was proved by V. Galkin [19]. Second, Faugere only par-
tially proved the correctness of the F5 algorithm, and the proof was based on extra
assumption. Third, there are some errors in the pseudocode for an implementation
the F5 algorithm.

The efficiency of F5 mainly comes from the new criteria in the algorithm, the F5

criterion and the rewritten criterion. These two powerful criteria can detect and thus
reject a lot of useless critical pairs. Faugere’s idea is to associate each polynomial a
signature. By analyzing of the signature, we can track fundamental structural infor-
mation of polynomials. So F5 is the ancestor of many signature-based algorithm to
compute Groebner basis.

In this section, we will describe the nature of the F5 algorithm, then state the cri-
teria (the syzygy criterion and the rewritten criterion). We will provide two examples
to show how these two criteria work and how they are related to the zero rows in the
F4 algorithm. More detail about the F5 algorithm and proof of these two criteria can
be found here [17]. We will borrow the definitions and terminology from [29].

3.2 Polynomials and signatures

Let R = k[x1, · · · , xn], consider the vector space R s . The standard basis of R s are de-
noted by e1, · · · ,es . The monomial ordering can be extended to module R s in the
following fashion.

Definition 6. We define the module term ordering ≺ on R s as follows: xαei ≺ xβe j if
and only if
1. i > j or
2. i = j and xα < xβ. ut

Remark 1. Let < be the lex order and let ≺ be the corresponding module term order-
ing on R s . We can define the leading term, leading monomial, and leading coefficient
of a vector g ∈ R s in a natural way. For example: Let g = (3x2+y)e1+y3e2. The leading
term of g is LT(g) = 3x2e1, the leading monomial of g is LM(g) = x2e1 and the leading
coefficient of g is LC(g) = 3.

Let F be a set of polynomials { f1, · · · , fs } ⊂ R, and I =< f1, · · · , fs >, then for any poly-

nomial f ∈ I , f has the form f =
s∑

i=1
ai fi . We define a homomorphism φF : R s → I in

the way that

φF (a1, · · · , as ) =
s∑

i=1
ai fi .
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Definition 7. Let g = (g1, · · · , gs ) ∈ R s . If g =φF (g ), the signature of g , denoted sig(g ),
is LM(g) the leading monomial of g. ut

The relationship between a polynomial and its signature is fixed by the labeled poly-
nomial.

Definition 8. Let f ∈ I = 〈 f1, · · · , fs〉, and suppose that f has a signature sig( f ) = xαei ,
then we define a labeled polynomial r ∈ R s × R of f to be r f = (xαei , f ). We call
sig(r f ) = xαei the signature part of r f , and poly(r f ) = f the polynomial part of r f .

Remark 2. We further define the leading term, leading monomial, and leading coef-
ficient of r f : LT(r f ) = LT( f ), LM(r f ) = LM( f ), and LC(r f ) = LC( f ).

Remark 3. Let r f = (xαei , f ) and rg = (xβe j , g ) be two labeled polynomials. Let cxγ

be a term. The operations on labeled polynomial can be defined as follows:
1. cxγr f = (xα+γei ,cxγ f ).

2. r f + rg = (max{xαei , xβe j }, f + g )

Definition 9. Let r f and rg be two labeled polynomials. Suppose u, v are terms in R
such that uLT(r f ) = vLT(rg ) = lcm(LM(r f ),LM(rg )), we call [r f ,rg ] = (u,r f , v,rg ) a
critical pair of r f and rg . The s-polynomial of a critical pair [r f ,rg ] = (u,r f , v,rg ) is
defined as ur f − vrg .

3.3 The F5 criterion

The F5 criterion, also known as the syzygy criterion, detects useless computation
arisen from the syzygies.

Definition 10. A syzygy with respect to the polynomials { f1, · · · , fs } is an element a =
(a1, · · · , as ) ∈ R s such that

s∑
i=1

ai fi = 0

ut

Definition 11. Let r f = (xαei , f ) be a labeled polynomial, cxγ be a nonzero term in R.
Let B be a set of label polynomials. The labeled polynomial cxγr f = (xα+γei ,cxγ f ) is

said to be NOT normalized by B if there exists a labeled polynomial rg = (xβe j , g ) ∈ B
such that:
1. LM(g )|xα+γ and
2. i < j ut

We are now ready to state the F 5 criterion.

Definition 12. (F5 criterion) Let [r f ,rg ] = (u,r f , v,rg ) be a critical pair and B be a set
of labeled polynomials. If either ur f or vrg is not normalized by B, then the critical
pair [r f ,rg ] meets the F5 criterion.
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3.4 Example 1

Consider f1 = x2
2 + x1, f2 = x2x3 + x2 in F2[x1, x2, x3] with graded lex order. The s-

polynomial of f1, f2 is S( f1, f2) = x3 f1 +x2 f2 = x1x3 +x2
2 . Set f3 = S( f1, f2) = x1x3 +x2

2 .
Now let us consider f4 = S( f2, f3) = x1 f2 + x2 f3 = x1x2 + x3

2 = x2 f1. So f4 = S( f2, f3) is
a useless computation. In the F4 algorithm, the s-polynomial S( f2, f3) will produce a
zero row reduction.

M1 =


x1x2x3 x3

2 x1x2

x2 f1 0 1 1
x1 f2 1 0 1
x2 f3 1 1 0


Apply row reduction on M1, we have that

M ′
1 =


x1x2x3 x3

2 x1x2

x2 f1 1 0 1
x1 f2 0 1 1
x2 f3 0 0 0


Now let us check if this example satisfies any of these two criteria. Let r f1 = (e1, f1)
and r f2 = (e2, f2) be the labeled polynomials of f1, f2 respectively. The s-polynomial
of r f1 ,r f2 is r f3 = S(r f1 ,r f2 ) = (x3e1, x1x3 + x2

2). Consider the critical pair of [r f2 ,r f3 ] =
(x1,r f2 , x2,r f3 ). x2r f3 = (x2x3e1, x1x2x3 + x3

2) is not normalized by {r f2 }. Hence, the
critical pair [r f2 ,r f3 ] meets the F5 criteria.

3.5 The rewritten criterion

The rewritten criterion aims to detect duplicated reductions of polynomials.

Definition 13. Let r f be a labeled polynomial, and cxγ be a nonzero term in R. Let B
be a set of labeled polynomials. The labeled polynomial cxγr f = (xα+γ,cxγ f ) is said

to be rewritable by B if there exists a labeled polynomial rg = (xβei , g ) ∈ B such that:
1. xβei |xα+γei and
2. rg is generated later than r f . ut
The rewritten criterion is defined as follows.

Definition 14. Let [r f ,rg ] = (u,r f , v,rg ) be a critical pair and B be a set of labeled
polynomials. If either ur f or vrg is rewritable by B, then the critical pair [r f ,rg ] meets
the rewritten criterion.

3.6 Example 2

Consider the polynomials f1 = x2
1 + x2

2 , f2 = x2
1 + x3 ∈ F2[x1, x2, x3] with graded lex

order. The s-polynomial of f1, f2 is S( f1, f2) = f1 + f2 = x2
2 + x3. Set f3 = S( f1, f2) =

x2
2+x3. If we consider the s-polynomial of f2, f3, we have that S( f2, f3) = x2

2 f2+x2
1 f3 =

x2
2 x3+x2

1 x3 = x3 f1. So reduction on the s-polynomial of f2 and f3 will be a duplicated
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work if x3 f1 has been reduced. In the F4 algorithm, reductions on both x3 f1 and the
s-polynomial of f2 and f3 will produce zero row reduction.

M2 =


x2

1 x2
2 x2

1 x3 x2
2 x3

x3 f1 0 1 1
x2

2 f2 1 0 1
x2

1 f3 1 1 0


Apply row reduction on M2, we have that

M ′
2 =


x2

1 x2
2 x2

1 x3 x2
2 x3

x3 f1 1 0 1
x2

2 f2 0 1 1
x2

1 f3 0 0 0


Now let r f1 = (e1, f1) and r f2 = (e2, f2) be the labeled polynomials corresponding to
f1, f2 respectively. The s-polynomial r f3 of r f1 ,r f2 is r f3 = (e1, x2

2 + x3). Consider the
critical pair [r f1 ,r f3 ] = (x2

2 ,r f1 , x2
1 ,r f3 ), x2

1r f1 is rewritable by {r f3 } since e1 divides x2
2e1

and r f3 is generated later than r f1 .

4 Complexity of F4 and F5

4.1 Degree of Regularity

For the remainder of this paper in judging the efficiency of F4 versus that of F5, let
us assume that we are working over a finite field Fq of size q , which is a power of a
prime number. F 4 works over different fields than these, but the finite fields are what
is largely used in cryptography which is our focus here. The complexity of F4 will be
determined the largest size of the matrix H involved and the linear algebra cost in
working with that matrix. The size of the matrix will be determined by what is called
the degree of regularity which is the degree at which the first non-trivial relation from
the original polynomials f1, · · · , fm occurs. The trivial relations are f h

i f h
j − f h

j f h
i = 0

and f q
i − fi = 0. All others are nontrivial. We will denote this by Dr eg . As F4 will have

to deal with polynomial of degree Dr eg [9], the number of rows and columns of our
matrix will be roughly the number of monomials of degree equal to or less then Dr eg

which is
(n+Dr eg

Dr eg

)
. We note that the degree of regularity for F4 and F5 are the same

Dr eg [30], the matrix that F5 and F5 inspired algorithms will be working with is es-
sentially the same size as F4 but having fewer rows due to the use of signatures. Thus,
we may measure the gain in efficient that F5 can bring by seeing how many rows re-
duce to zero in F4.

The complexity for F4/F5 will be approximately
(n+Dr eg

Dr eg

)ω
where 2 ≤ ω ≤ 3 is the

complexity exponent of matrix multiplication. ω is likely to be about log2(7) ≈ 2.8
though may be as low as 2.3727 [30]. We note that there has been work on improv-
ing the linear algebra cost involved in Groebner basis calculations due to the special
shape of the matrices involved such as the GBLA library [2].
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4.2 Random Quadratic Systems

Most of multivariate cryptography, which is a serious contender for the new post
quantum cryptosystems [5] required given Shor’s algorithm [26] and recent work on
quantum computing, is based on systems of m polynomial equations in n variables
over a finite field Fq . Though higher degree systems exists like the work of Ding and
Yang for hashing [12], the best current schemes like the NIST post-quantum com-
petition finalist Rainbow [11] rely on quadratic systems as they are the most effi-
cient [10]. The finding of pre-images for the systems can provide a method of cre-
ating an encryption scheme or a signature scheme depending on the parameters.
Most schemes are designed so that their public key is seemingly a random system.
Thus, solving a random quadratic multivariate polynomial system lies in the heart of
cryptanalysis of multivariate public key cryptography. Though some MPKC system
contains linear terms and constant terms in their public keys, it is the quadratic part
that guarantees the security. Yeh et al. [30] give Dr eg , and thus the main parameter
in determining complexity of F4/F5, for random quadratic systems over small fields
(Dr eg ≤ q) as

Dr eg = min

{
d : [t d ]

(1− t q )n(1− t 2)m

(1− t )n(1− t 2q )m < 0

}
and for larger fields (Dr eg < q)

Dr eg = min
{

d : [t d ](1− t )m−n(1+ t )m < 0
}

.

where the notation [t d ]g (t ) means the coefficient of t d in the series expansion of
g (t ).

4.3 The HFE Encryption Scheme

For certain polynomial systems with specific (even if hidden) structure like HFE and
its variants, the Dr eg may be much smaller than the Dr eg for a random system, one
such example is the HFE cryptosystem and its variants like HFEv- [8, 9, 13, 14, 22].
The HFE encryption scheme was proposed by Pataran [25]. Let k be a finite field of q
elements, and K be a degree n extension of k. The k-vector isomorphism φ : kn → K
allows we to go back and forth between the fields kn and its extension K . It follows

that the Frobenius isomorphism X 7→ X q i
is a linear map. Patarin’s idea is to use

another Frobenius isomorphism X 7→ X q j
so that the central map remains quadratic

in the form of X 7→ ∑
i , j

X q i+q j
. The central map F : K → K of the HFE encryption

scheme is a univariate polynomial in the form of

F (X ) =
q i+q j ≤D∑

i , j
αi , j X q i+q j +

q i≤D∑
i
βi X q i +γ

in which the coefficientsαi , j , βi and γ are randomly chosen from the extension field
K and D is the upper bound of the degree of F . The public key of the HFE encryption
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scheme is the composition:

P =S ◦φ−1 ◦F ◦φ◦T .

in which S ,T : kn → kn are two invertible affine maps.
In 2002, Faugere experimentally showed the degree of regularity of HFE is much
lower than expected for a random system. For some instances of HFE, the systems
can even be solved polynomialy. Faugere proved that there is a relatively small up-
per bound on the degrees of polynomials that occur in the Grobner basis compu-
tation [18]. However, no explicit formula to estimate the degree of regularity of HFE
or its variant is provided in [18]. Later, Dubios and Gama proposed a mathematical
method to compute the degree of regularity on general finite field [15]. A closed for-
mula for HFE- is finally provided by Ding and Kleinjung [9]. They claimed that the
degree of regularity of the polynomial system derived from an HFE- system is less
than or equal to:{ (q−1)(bLogq (D−1)c+a)

2 +2, if q is even and r +a is odd,
(q−1)(bLogq (D−1)c+a+1)

2 +2, otherwise

in which q is the size of base field, and D is the degree of the HFE secret polynomial,
r = bLogq (D −1)c+1, and a is the number of removed equations. Moreover, in [13],
Ding and Yang further showed that the degree of regularity of HFEv- is bounded by:{

(q−1)(r+v+a−1)
2 +2, if q is even and r +a is odd,

(q−1)(r+v+a)
2 +2, otherwise

in which v is the number of vinegar variables in the HFEv- system. If a = 0, the for-
mula gives the upper bound of the degree of regularity of HFEv:{

(q−1)(r+v−1)
2 +2, if q is even and r is odd,

(q−1)(r+v)
2 +2, otherwise

5 Experimental Results and Analysis

Here we record our experimental results on how many rows reduce to zero in the
largest matrix in the F4 algorithm. Note that this is not necessarily the matrix with the
largest percentage of zero rows. We performed both the basic and improved version
on both a determined (n = m) system of random homogeneous quadratic polynomi-
als for the finite field F2. As the purpose in cryptography would be to find a solution
in the base field, we also experiment with the same system appended with the field
equations

xq
1 = x1, xq

2 = x2, . . . , xq
n = xn

which also increases the efficiency of finding a Groebner basis. We also experimented
with HFE public keys with D = n with field equations attached. We record the num-
ber of zero rows in the maximal sized matrix in F4, not necessarily the one with the
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largest proportion of zero rows.
Examining the three tables finds that the highest proportion of zero rows is ap-

proximately 0.617 with many of the matrices being slightly higher than half of zero
rows. Sometimes, we are lucky and almost all of the rows are non-zero implying that
almost all of them added useful information. This this pattern holds for larger values
of n, then the F5 algorithm should not be much better than twice as fast as F 4. As
often the strength of cryptosystems are measured in the hundreds of bits, having no
zero row reductions would be a modest increase in efficiency.

n Max (Rows × Columns) Zero Rows Proportion of Zero Rows

2 9×6 3 1/3 ≈ 0.333
3 24×16 9 3/8 = 0.375
4 42×31 11 11/42 ≈ 0.262
5 74×58 18 9/37 ≈ 0.243
6 204×113 91 91/204 ≈ 0.446
7 515×198 318 318/515 ≈ 0.617
8 938×381 559 559/938 ≈ 0.596
9 986×536 450 225/493 ≈ 0.456

10 1477×1446 31 31/1477 ≈ 0.021
11 2513×2469 44 44/2513 ≈ 0.018
12 3535×3487 48 48/3535 ≈ 0.014
13 6119×5201 920 920/6119 ≈ 0.150

Table 1: Data for Homogeneous System with Field Equations

n Max (Rows × Columns) Zero Rows Proportion of Zero Rows

2 4×3 1 1/4 = 0.25
3 12×6 6 1/2 = 0.5
4 33×22 13 13/33 ≈ 0.394
5 118×61 57 57/118 ≈ 0.483
6 285×166 119 119/285 ≈ 0.418
7 724×359 366 183/362 ≈ 0.506
8 2111×934 1179 1179/2111 ≈ 0.559
9 5257×2341 2920 2920/5257 ≈ 0.555

Table 2: Data for Homogeneous System without Field Equations
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n Max (Rows × Columns) Zero Rows Proportion of Zero Rows

5 70×53 18 9/35 ≈ 0.257
6 233×105 129 129/233 ≈ 0.554
7 537×210 329 329/537 ≈ 0.613
8 804×349 456 38/67 ≈ 0.567
9 1356×537 821 821/1356 ≈ 0.605

10 1727×779 948 948/1727 ≈ 0.549
11 2384×1109 1275 1275/2384 ≈ 0.535
12 3240×1518 1722 287/540 ≈ 0.531
13 4434×4315 119 119/4434 ≈ 0.027
14 6492×6333 159 53/2164 ≈ 0.024

Table 3: Data for HFE System with D = n and Field Equations
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