
Efficient Lattice Gadget Decomposition
Algorithm with Bounded Uniform Distribution?

Sohyun Jeon, Hyang-Sook Lee, Jeongeun Park

Department of Mathematics, Ewha Womans University, Republic of Korea
jeonsh099@ewhain.net, hsl@ewha.ac.kr, jungeun7430@ewhain.net

Abstract. A gadget decomposition algorithm is commonly used in many
advanced lattice cryptography applications which support homomorphic
operation over ciphertexts to control the noise growth. For a special struc-
ture of a gadget, the algorithm is digit decomposition. If such algorithm
samples from a subgaussian distribution, that is, the output is randomized,
it gives more benefits on output quality. One of important advantages
is Pythagorean additivity which makes resulting noise contained in a
ciphertext grow much less than naive digit decomposition. Therefore, the
error analysis becomes cleaner and tighter than the use of other measures
like `2 and `∞. Even though such advantage can also be achieved by the
use of discrete Gaussian sampling, it is not preferable for practical perfor-
mance due to large factor in resulting noise and the complex computation
of exponential function, whereas more relaxed probability condition is
required for subgaussian distribution. Nevertheless, subgaussian sampling
has barely received an attention so far, thus no practical algorithms was
implemented before an efficient algorithm is presented by Genis et al.,
recently.
In this paper, we present a practically efficient gadget decomposition
algorithm where output follows a subgaussian distribution. We paral-
lelize the existing practical subgaussian gadget decomposition algorithm,
using bounded uniform distribution. Our algorithm is divided into two
independent subalgorithms and only one algorithm depends on input.
Therefore, the other algorithm can be considered as pre-computation. As
an experimental result, our algorithm performs over 50% better than the
existing algorithm.

Keywords: Subgaussian distribution, Gadget decomposition, Bounded
uniform distribution, Lattice gadget

1 Introduction

A cryptosystem requires an efficiently computable function of which inverse
function is hard to be computed without secret information called trapdoor. In
lattice based cryptography, a function fA(x) = Ax is used for Short Integer

? This is the full paper version of [JLP21] appered in IEEE Access, vol. 9, pp. 17429-
17437

2 S.Jeon et al.

Solution (SIS) or Inhomogeneous Short Integer Solution (ISIS) and gA(x, e) =
xtA + et is used for Learning With Error (LWE) with a proper random matrix
A. Computing its inverse function of each is known as computationally hard
without trapdoor, in other words, one who holds a trapdoor can easily compute
the inverse. The problem to compute an inverse of fA and gA in a lattice is called
SIS problem or ISIS problem (depending on a function value) and LWE problem,
respectively. If a trapdoor of [MP12] is known, the inverting problems of fA, gA
are transformed to much easier problems to compute inverse functions of fG and
gG for a special matrix G called a gadget matrix of a given lattice. The inversion
problem of fG is particularly called gadget decomposition problem. A gadget
matrix is a matrix that defines a lattice which is a discrete additive subgroup of
Rn for a positive integer n.

Our main focus is a subgaussian (gadget) decomposition algorithm (or subgaus-
sian sampling for short) out of several types of gadget decomposition algorithm.
It is a simply randomized digit decomposition. It samples a short solution of the
inversion problem following a subgaussian distribution. Informally, any distri-
bution where its tails are bounded by a Gaussian distribution is a subgaussian
distribution, hence it has more relaxed condition in terms of the probability
function than a Gaussian distribution. The subgaussian sampling has a significant
property, Pythagorean additivity, which mainly has an important role in lattice
based cryptosystems that support homomorphic operations over ciphertexts. In
particular, homomorphic encryption (HE) is a notable example. In lattice based
HE schemes where all ciphertexts contain noisy terms, a ciphertext gets larger
noise when an homomorphic evaluation is performed. In fact, it is important
to keep the noise growth small as much as possible for further operations. For
the purpose of that, a gadget decomposition algorithm (denoted by G−1(·)) is
used in an evaluation algorithm or encryption algorithm, where an error vector
e contained in an input ciphertext becomes G−1(e) in an output ciphertext.
Even though G−1(·) is a deterministic digit decomposition, it can control the
noise growth by keeping each output component less than a certain digit. If
every component of G−1(e) independently follows a subgaussian distribution,
Pythagorean additivity allows resulting noise smaller only as O(

√
k) than digit

decomposition which scales the noise linearly with k, where k is a dimension of
an output vector. Moreover, it also enables tighter analysis about error growth
(average case) as discussed in [AP14].

Discrete Gaussian sampling also achieves Pythagorean additivity property
since a Gaussian distribution is also a subgaussian distribution by definition.
However, it is not attractive in practice due to the complex computation of
probability and its output quality. The coefficient of output is larger than binary
decomposition with an additional factor Ω(

√
log k). Therefore, subgaussian sam-

pling is regarded as a potential alternative [AP14,GMP19] since it can achieve
not only significant properties of the Gaussian distribution such as Pythagorean
additivity without the factor Ω(

√
log k) but also somewhat faster implementation

performance due to its relaxed probability condition. Even though subgaussian
sampling has much more attractive advantages in many advanced cryptosys-

Efficient Lattice Gadget Decomposition Algorithm 3

tems, the importance of the subgaussian distribution has mainly been studied in
theoretical way [AP14].

In fact, the practical HE schemes [FV12,CGGI16,CGGI17] and their vari-
ants [CDKS19,CCS19,LP19] use a naive digit decomposition algorithm and heuris-
tically assume that each output coefficient of such algorithm independently follows
a subgaussian distribution for practical purpose. Then they analyze the output
quality by using the benefits of subgaussian sampling such as Pythagorean additiv-
ity. However, thanks to the first practical implementation of subgaussian sampling
with a triangular distribution recently proposed by Genise et al. [GMP19], the
deterministic algorithms used in many HE schemes can be replaced by their
algorithm with small computation time overhead and without heuristic inde-
pendence assumption. Furthermore, such digit decomposition algorithm can be
used for many of other lattice based cryptographic primitives which support
homomorphic operations such as GSW-style HE [GSW13,MW16,BHP17,KLP18]
, homomorphic signature scheme [GVW15], Attribute-Based Encryption (ABE)
schemes [DDP+18,BGG+14], homomorphic identity-based encryption [CM15]
and more. Therefore, any efficient subgaussian sampling can replace the naive
(deterministic) digit decomposition algorithm in applications providing better
aforementioned advantages.

1.1 Subgaussian Gadget Decomposition Algorithm

The gadget decomposition algorithm finds a solution x such that Gx = u mod q,
given a gadget matrix G and a vector u. If the output follows a subgaussian dis-
tribution, we call it subgaussian gadget decomposition algorithm (or subgaussian
decomposition for short). In fact, the set of solution x is also a lattice denoted by
Λ⊥u (G). And there is a lattice which is the set of the solutions such that Gx = 0
mod q denoted by Λ⊥q (G). Then the pre-image sampling is carried out over the

lattice Λ⊥u (G) which is a coset of Λ⊥q (G). The existing such algorithm [GMP19]
finds a solution in the following way:

(1) Compute z such that Gz = u mod q. Each component of z is in range from
0 to b.

(2) Sample e← SGΛ⊥
q (G),−z,s, where SGΛ⊥

q (G),−z,s is a subgaussian distribution

with parameter s over the lattice Λ⊥q (G) centered at −z.

(3) Output x = z + e ∈ Λ⊥u (G)

More precisely, the first step (1) gives a deterministic solution and it is a
b-ary decomposition. Then the second step (2) randomly samples a lattice vector
over Λ⊥u (G) among the points near to the vector −z which is outside the lattice.
The probability depends on −z and it follows a triangular distribution. Since the
distribution is triangular in some bounded area and the probability for others
outside the bound is 0, where its tails are bounded by a Gaussian distribution
with parameter s, hence it is a subgaussian distribution. The Euclidean norm of
the output vector is bounded by b

√
kn, where n is the dimension of the lattice,

k = dlogb qe.

4 S.Jeon et al.

There are two such algorithms depending on a relation between the base b
and the modulus q. If b is a power of q, there is nothing complex procedure in
the algorithm since there is pretty simple basis of the lattice Λ⊥q (G). However, if
q is not a power of b, it is not straightforward to do the second step (2) due to
slightly different basis of Λ⊥q (G). In order to do simpler sampling, the basis is

factorized to two matrices, one of which is the sparse matrix Ŝ and the other is
triangular matrix D̂, then the z is transformed to another vector called target
vector t in a lattice transformed by Ŝ−1, that is t = Ŝ−1z outside L(D̂). Then

the step (2) is carried out over the lattice generated by the triangular matrix D̂,

denoted by L(D̂) centered at −t. After step (3) the result is transformed to an
element in the original lattice Λ⊥q (G) by the sparse matrix. The transformation

follows: Ŝ(t + L(D̂)) = z + ŜL(D̂) = z + Λ⊥q (G) = Λ⊥u (G).
Overall, the algorithms are sequential in both cases, since the probability of

sampling a point e ∈ Λ⊥q (G) depends on the distance from z ∈ Λ⊥u (G) which is
computed ahead. In other words, e must be chosen after z is determined.

1.2 Our Contribution

We improve an existing efficient subgaussian gadget decomposition algorithm [GMP19]
with a noncentral bounded uniform distribution which is a subgaussian distribu-
tion thanks to the generalisation of [MP19]. Our algorithm theoretically achieves
Pythagorean error growth, linear time complexity as [GMP19], and much faster
computation cost. Hence, it can be an alternative of naive digit decomposi-
tion used in FHE schemes without any extra assumption in practice. As an
experimental result, it performs much better (over 50%) than existing such algo-
rithm [GMP19]. Comparing to actual deterministic algorithm in HE schemes, it
has only overhead with addition between two polynomials of degree n or vectors
of dimension n.

Our algorithm consists of mainly two independent subalgorithms called
Decomposition and Sampling. The Decomposition only depends on the in-
put of the whole algorithm, hence the sampling which samples a random element
from a bounded uniform distribution can be considered as offline phase which is
a kind of precomputation.

Due to the bounded uniform distribution, we do not need a target vector in
the step (2) for arbitrary q case. Regardless of a vector computed in the first
step, a vector in Λ⊥q (G) is sampled with the same (nonzero) probability in a
bounded area and others are with zero probability. For more detail, we sample a
vector from L(D̂) with the bounded uniform distribution (in the step (2)) then

transform it with Ŝ. In the step (3), we add the both independent two vectors

and then the result is in the original coset: z + ŜL(D̂) = z + Λ⊥q (G) = Λ⊥u (G).
As a result, we can save the computation time in three ways: i) Computing the

probability function (uniform) in Step (2) is simpler than [GMP19]’s (triangular).
ii) We do not need to compute the target vector. iii) Step (2) can be considered
as precomputation (offline phase) due to its independent procedure to the first
step. Indeed, we improve the efficiency by over 50% in terms of computation time.

Efficient Lattice Gadget Decomposition Algorithm 5

Due to the bounded uniform distribution, we can reduce the computation time
of the algorithm, but it outputs the larger size of a vector with higher probability
than using the triangular distribution in the same bounded area. However, the
Euclidean norm of the output is also bounded by b

√
kn as [GMP19].

In addition, our algorithms can be applied to a system that uses the Chinese
Remainder Transformation/Representation (CRT) gadgets for a large modulus
discussed in Appendix A.

1.3 Road Map

We review subgaussian random variables and some basic notions of lattice
in Section 2. We present our algorithms for two cases: for a special modulus
and arbitrary modulus in Section 3. We also show that the output follows a
subgaussian distribution in the section. We compare the magnitude of output
and the computation time of our algorithm using PALISADE library [PRR20] to
an existing algorithm in Section 4.

2 Preliminaries

Notation: Numbers are denoted as small letters, such as a ∈ Z, vectors as bold
small letters, a ∈ Zn, and matrices as capital bold letters, A ∈ Rn×n. We denote
by 〈v,w〉 the dot product of two vectors v,w. For a vector x, x[i] or xi denotes
the i-th component scalar of x. We use the Euclidean norm as a default norm for
a vector x. [u]kb denotes the vector ∈ {0, . . . , b− 1}k which is b-ary decomposition
of u and satisfies 〈[1, b, b2, . . . , bk−1], [u]kb 〉 = u for an integer base b > 0 and an

integer 0 < u < bk. A notation a
$←− S means that a is chosen uniformly from a

set S. We call a uniform distribution on a bounded set as a bounded uniform
distribution.

2.1 Subgaussian Random Variables

We explain subgaussian random variables and the significant properties in this
section.We describe the general definition for a univariate δ-subgaussian random
variable for some δ ≥ 0 as in [MP12].

Definition 1. A random variable V over R is δ-subgaussian (δ ≥ 0) with pa-
rameter s > 0 if its moment generating function satisfies

E[exp(2πtV)] ≤ exp(δ) exp(πs2t2)

for all t ∈ R.

In many papers dealing with subgaussian random variable, 0-subgaussian
random variable (when the mean is zero) is mainly considered. For better under-
standing, if a random variable V is 0-subgaussian with parameter s, then its tails

6 S.Jeon et al.

are dominated by a Gaussian distribution parameterized by s. If a random vari-
able V is centered (i.e. E[V] = 0) and bounded with B, then V is 0-subgaussian
with parameter B

√
2π [Str94].

There is a simple and significant relation between 0-subgaussian and δ-
subgaussian [MP19] for nonzero δ. We introduce some useful lemmas of them
below.

Lemma 1. Let V be a real-valued δ-subgaussian random variable with parameter
s, for some s ∈ R > 0. Then δ = 0 if and only if E[V] = 0.

Lemma 2. If V is a real-valued δ-subgaussian random variable with parameter s,
then the centered random variable V0 = V −E[V] is 0-subgaussian with parameter
s.

As defined in [MP19], a random variable V is a noncentral subgaussian with
parameter s. In other words, Lemma 2 shows that a noncentral subgaussian
random variable, equivalently δ-subgaussian random variable, can be described as
0-subgaussian by shifting its mean. Also, if there exists a 0-subgaussian random
variable, we can make it to a δ-subgaussian random variable for nonzero δ by
shifting the variable with some real number as stated in Lemma 3.

Lemma 3. If V is a 0-subgaussian with parameter s, then the real-valued shifted
random variable V = V + α for α ∈ R is a δ-subgaussian with parameter s for
some nonnegative real-valued δ.

There is one of significant properties of δ-subgaussian random variable, which
is Pythagorean additivity generalised in [MP19].

Lemma 4. Let V be noncentral subgaussian random variable, equivalently δ-
subgaussian, with parameter α and W conditioned on V taking any value be
δ-subgaussian with parameter β. Then, V +W is δ-subgaussian with parameter√
α2 + β2.

Using the proof of Lemma 4 (see Lemma 2.1 of [GMP19]), we can show that
if each coefficient of a random vector is subgaussian with parameter s, then the
vector is also subgaussian with parameter s [MP19]. More general fact is below.

Lemma 5. If y is a discrete random vector over Rn such that each component
yi of y is δ-subgaussian with parameter si, then the vector y is

∑
i δ-subgaussian

with parameter maxi{si}, for i ∈ {1, . . . , n}.

We call such vector a δ-subgaussian (random) vector with parameter s, for
some positive real number s. We call it a subgaussian vector if δ = 0 throughout
the paper for convenience. In our main algorithm, we use a linear transformation
of a δ-subgaussian vector with a certain parameter, and its output is also a
δ-subgaussian with a different parameter.

Lemma 6 ([LPR13]). Let δ, α ≥ 0 and x be a random vector in Rn, and let
A be a n × n matrix. Suppose that the random vector x is δ-subgaussian with
parameter α. Then Ax is δ-subgaussian with parameter αλmax(AAt)

1
2 , where

λmax(·) is the largest eigenvalue.

Efficient Lattice Gadget Decomposition Algorithm 7

2.2 Lattices and Gadget Matrix

A lattice Λ with dimension m and basis B = [b1, . . . ,bk] is a set of all linear
combinations of the basis vectors with coefficients in Z. A lattice of which the
basis vectors consist of integer coordinates is called an integral lattice. i.e. a
lattice which is a sublattice of Zm. We consider a special family of lattice, q-ary
lattice. A q-ary lattice is a full-rank integral lattice with q · Zk as a sublattice.
The lattice is defined by means of a matrix called primitive matrix [MP12]. Let
q > 0 be an integer modulus and m > n. A matrix P ∈ Zn×m is primitive if
PZm = Znq . For a fixed matrix P ∈ Zn×m, we define the following lattice:

Λ⊥q (P) = {z ∈ Zm : Pz = 0 mod q}.

For any u ∈ Znq admitting an integral solution to Pz = u mod q, define the

following shifted lattices as the cosets of Λ⊥q (P):

Λ⊥u (P) = {z ∈ Zm : Pz = u mod q}.

Definition 2. The Short Integer Solution problem (SIS) is defined as follows:
given an integer q, a random integer matrix A ∈ Zn×mq and a real β, find a

nonzero integer vector z ∈ Λ⊥q (A)\{0} with ||z|| ≤ β.

If u is a zero vector, the problem is called Inhomogeneous Short Integer
Solution problem (SIS). The above SIS problem is known as hard as other lattice
hard problems Gap-SVP, SIVP [Ajt99, MR07, GPV08]. However, the problem
becomes straightforward to solve if there exists an additional secret information
called trapdoor. The problem is turned to a gadget decomposition problem which
is much easier to solve with a special matrix G called a gadget matrix [MP12],
given a valid trapdoor.

The gadget matrix denoted by G is also a primitive matrix of a lattice which
satisfies G · Zw = Znq , where G ∈ Zn×wq . The matrix G is constructed with a
primitive vector (or gadget vector) g = [g1, . . . , gk] which defines a k-dimensional
lattice Λ⊥(gt) ∈ Zk such that the greatest common divisor of (g1, . . . , gk, q)
is 1. We use the same gadget matrix G defined as I ⊗ gt as [MP12], where
g = [1, b, b2, . . . , bk−1] for a positive integer b.

If the solution of a gadget decomposition algorithm follows a subgaussian
distribution, we call it subgaussian (gadget) decomposition problem.

Definition 3. Let G ∈ Zn×wq be a primitive matrix. The subgaussian decomposi-
tion problem with parameter s for G is to sample a δ-subgaussian vector x ∈ Zw
with parameter s such that Gx = u mod q for arbitrary u ∈ Znq .

Then the problem is defined on the above integer cosets of Λ⊥q (G), that is, the
goal of an algorithm to solve the problem is to sample a vector from a subgaussian
distribution in Λ⊥u (G) = z + Λ⊥q (G) for an arbitrary z ∈ Λ⊥u (G). We call the
algorithm subgaussian decomposition algorithm.

8 S.Jeon et al.

3 Subgaussian Decomposition Algorithms with Bounded
uniform distribution

In this section, we present our efficient subgaussian decomposition algorithm
using a bounded uniform distribution. We make the two main subalgorithms
independent using a noncentral bounded uniform distribution, thus it can be
divided into online and offline phases. We can set the offline phase as precompu-
tation, hence it can save overall computation time. Then we show that a uniform
distribution in a bounded set is δ-subgaussian with parameter α for some positive
δ, α. We construct two different algorithms according to the relation between
the modulus q and the base b.

In fact, the gadget matrix G is structured as In ⊗ gt, hence our algorithm
solves g−1(ui) for i ∈ [0, . . . , n − 1] component-wise, given u = [u0, . . . , un−1].
In other words, the algorithm solves the above problem over the lattice Λ⊥u (gt)
for u ∈ Zq. Our algorithm does not directly choose an element at random from
the lattice Λ⊥u (gt). The algorithm consists of three subalgorithms, denoted by
Decomposition, Sampling, and Addition. Decomposition computes a vector
in Λ⊥u (gt) using a deterministic b-ary decomposition, which is only affected
by an input u. Sampling chooses a vector in Λ⊥q (gt) with a bounded uniform

distribution, not in Λ⊥u (gt). We stress that the two subalgorithms are independent.
The final result is a randomly chosen vector in Λ⊥u (gt) by combining these two
vectors in Addition.

Then, we can consider the two cases when the modulus q is a power of b
(special case) and for arbitrary q (general case).

3.1 For Power-of-Base Modulus

The procedure becomes straightforward since the basis S of the lattice Λ⊥q (gt)
is a sparse and triangular matrix when q is a power of b. First, Decomposition
computes z ∈ Λ⊥u (gt) such that gtz = u mod q where 0 ≤ zi ≤ b − 1 for all
i = 0, . . . , k−1. It is possible by using a deterministic b-ary decomposition. Second,
Sampling samples a subgaussian vector e = Sy ∈ Λ⊥q (gt) using a bounded
uniform distribution. For more detail, the algorithm samples e at random by
choosing each entry of y from {−1, 0}. In fact, if z is a solution of the problem,
z + Sy is also a solution for any y ∈ Zk. Since Sy = [by0,−y0 + by1, . . . ,−yi−1 +
byi, . . . ,−yk−2 + byk−1], the possible solutions are various according to yi’s for
i ∈ [0, k − 1]. However, the algorithm restricts the choice of yi in the set {−1, 0}
to keep the size of a solution small due to maintaining the hardness of (I)SIS
problem in many cryptographic applications. Finally, Addition computes an
output x = z + e.

We now prove that the output of Algorithm 1 is δ-subgaussian with a pa-
rameter s for some real value δ, s. We know that a centered uniform distribution
on a bounded set is a 0-subgaussian with parameter s′ for some s′ ∈ R > 0,
but our distribution is not centered at 0 (see Figure 1). However, we can shift
our distribution to make the random variables centered. Reversely, one can shift

Efficient Lattice Gadget Decomposition Algorithm 9

Algorithm 1 Gadget Decomposition with Bounded Uniform for q = bk

Input: u ∈ {0, . . . , q − 1}
Output: x ∈ Λ⊥u (gt) distributed uniformly in a bounded set.
Let e,y← 0

y0
$←− {−1, 0}

e0 ← b · y0
for i← 1, . . . , k − 1 do

yi
$←− {−1, 0}

ei ← −yi−1 + b · yi
end for
Let z := [u]kb ([u]kb is u’s b-ary decomposition)
x← z + e
return x

the mean of a centered bounded uniform distribution to have our distribution
with the same parameter. Therefore, we show that our distribution is also a
δ-subgaussian distribution with parameter s for some positive real value δ, s by
Lemma 3.

zi − b 0 zi

1
2

Fig. 1. A bounded uniform distribution on {zi − b, zi}

Theorem 1. Let b > 1 be an integer base, q > 1 be an integer modulus, k =
dlogb qe and gt = [1, b, . . . , bk−1] be a gadget. Then the output vector of Algorithm
1 is k

6 -subgaussian with parameter b
√

2π.

Proof. Let X̂i be chosen from {− b
2 ,

b
2} according to an uniform distribution.

Then X̂i is 0-subgaussian with parameter ŝ = b
2

√
2π by Lemma 1, since X̂i is

b
2 -bounded centered.

If a random variable Xi is an i-th component of a vector output by Algorithm
1, Xi = zi with probability 1

2 or Xi = zi − b with probability 1
2 . Then Xi is

expressed as Xi = zi − b
2 + X̂i. Let α = zi − b

2 . If the parameter s of Xi is
s > ŝ ≥ 0 and δ ≥ (α2π)/(s2 − ŝ2), the moment generating function of Xi

satisfies

E[exp(2πtXi)] = E[exp(2πt(X̂i + α)]

= exp(2πtα)E[exp(2πtX̂i)]

≤ exp(δ) exp
(
πs2t2

)

10 S.Jeon et al.

by the proof of Lemma 3 in [MP19]. Let the parameter of Xi be s = b
√

2π. Then
the parameter s satisfies b

√
2π > b

2

√
2π. And since α2 = (zi − b

2)2 ≤ (b2)2 and

s2 − ŝ2 = 6b2

4 π,

α2π

s2 − ŝ2
≤ πb2/4

6πb2/4
=

1

6
.

Since we show that each component of the output is 1
6 -subgaussian with the

same parameter b
√

2π, the result holds by Lemma 5.

3.2 For Arbitrary Modulus

For an arbitrary modulus q, the basis of the lattice Λ⊥q (gt), denoted by Sq, is
somewhat complex to be dealt with since it is not a sparse matrix. Therefore,
we use the fact that the basis Sq is factorized as sparse and triangular matrices
S and D. (i.e., Sq = SD.) The algorithm in [GMP19] needs an additional
subalgorithm called Transformation between Decomposition and Sampling to
use D. Moreover, the subalgorithms, except for Decomposition, are slightly
different to the case when q is a power of b. The Transformation maps z to
t = S−1z in order to compute the probability in Sampling. They call such t a
target vector. Then Sampling chooses a vector Dy from a lattice generated by
D, denoted by L(D), with a triangular distribution centered at −t. Finally the
Addition adds t and Dy, then transforms the result to the lattice Λ⊥u (gt) by
multiplying S.

However, our algorithm does not need Transformation even in this case
since the probability to choose an element in Λ⊥q (gt) is independent to t to which
an output of Decomposition is transformed. For more detail, the algorithm
Sampling samples a vector Dy ∈ L(D) by choosing each entry of y from two
possible values with the same probability 1

2 . That is, the probability is a constant,
not a relation with a target vector. Then the result is transformed to Λ⊥q (gt) by the

matrix S. Finally, Addition computes an output x = z+e = St+SDy ∈ Λ⊥u (gt).
In fact, when q is not a power of b, there is something more to be handled due

to the different structure of the basis Sq of Λ⊥q (gt). The last column vector of Sq is

[q]kb , denoted by [q0, . . . , qk−1]. We can represent the output x of our algorithm as
x = z+SDy = z+Sqy, and the component of x is xi = zi+(−yi−1+b·yi)+qi·yk−1.
The algorithm samples each yi from {−1, 0}, hence, −b ≤ (−yi−1 + b · yi) ≤ 1.
If the last component of y is -1 and zi < qi, then the value zi + qi · yk−1 is less
than 0 for some i ∈ {0, . . . , k − 2}. Therefore, it may happen that the absolute
value of xi is larger than b, when zi ≤ qi for some i ∈ {0, . . . , k − 2}1. Then, the
algorithm may output a vector of larger size with high probability than smaller
one, which violates the aim of such algorithm. In order to fix the problem, if
yi = −1 and zi < qi, the algorithm in [GMP19] adds basis vector of D to Dy.
That is, yi ← yi + 1. Then, 0 ≤ (−yi−1 + b · yi) ≤ b+ 1 unlike before. Since zi
and qi are positive integers which is smaller than b, −b < zi + qi · yk−1 + b < 0 in
the case that zi < qi. As a result, the absolute value of xi can be smaller than or

1 The last component of z, zk−1, is always smaller than or equal to qk−1 Since u < q.

Efficient Lattice Gadget Decomposition Algorithm 11

equal to b. We also adapt their solution but in different subalgorithm which is
Addition since we do not need a target vector.

Algorithm 2 Gadget Decomposition with Bounded Uniform for q 6= bk

Input: u ∈ {0, . . . , q − 1}
Output: x ∈ Λ⊥u (gt) distributed uniformly in a bounded set.
Let q := [q]kb , e,y← 0, c← 0, y−1 ← 0
for i← 0, . . . , k − 1 do

yi
$←− {−1, 0}

end for
Let z := [u]kb ([u]kb is u’s b-ary decomposition)
for i← 0, . . . , k − 2 do

if zi < qi then
ei ← b · yi − yi−1 + (qi − b+ c) · yk−1

c← 1
else if zi = qi then

ei ← b · yi − yi−1 + (qi − c(b− 1)) · yk−1

else
ei ← b · yi − yi−1 + (qi + c) · yk−1

c← 0
end if

end for
xk−1 ← −yk−2 + (qi + c) · yk−1

x← z + e
return x

Likewise, Algorithm 2 also has to output the samples achieving a subgaussian
distribution. We will show that Algorithm 2 is the sampling algorithm satisfying a
subgaussian distribution similarly with Theorem 1. If y is a subgaussian, then the
output is a subgaussian vector because a linear transformation of a subgaussian
vector also follows a subgaussian distribution by Lemma 6.

Theorem 2. Let b > 1 be an integer base, q > 1 be an integer modulus, k =
dlogb qe and gt = [1, b, . . . , bk−1] be a gadget. Then the output vector of Algorithm
2 is k

6 -subgaussian with parameter (b+ 1)
√

2π.

Proof. The algorithm chooses yi from {−1, 0} and applies a transformation S
at the end. Let ŷi be chosen from {−1/2, 1/2} and Ŷi be ith component of a
vector Dŷ. Then Ŷi is 0-subgaussian with parameter ŝ = 1

2

√
2π by Lemma 1,

since Ŷi is 1
2 -bounded centered. Let X̂i be a random variable after applying the

transformation S to Ŷi. Since a transformation does not change δ, a random
variable is also 0-subgaussian after a transformation. And the parameter becomes
1
2

√
2π
√
λmax(SSt) by Lemma 6. Since λmax(SSt) ≤ (b + 1)2, the parmeter is

ŝ = b+1
2

√
2π. Let a random variable Xi be an ith coordinate of a vector z + SDy.

Then Xi = zi − b+1
2 + X̂i. Let α = zi − b+1

2 , and the parameter s = (b+ 1)
√

2π.

12 S.Jeon et al.

Then, by the proof of Lemma 3 in [MP19],

α2π

s2 − ŝ2
≤ π(b+ 1)2/4

6π(b+ 1)2/4
=

1

6
.

Since we show that each component of the output is 1
6 -subgaussian with the

same parameter (b+ 1)
√

2π, the result holds by Lemma 5.

4 Experimental Results

Experimental Setup All experiments are performed on a laptop with Intel(R)
Core(TM) i7-8565U CPU @ 1.80GHz. We use PALISADE Library [PRR20] to
compare our result to the previous work [GMP19].

10 20 30 40 50 60
0

5

10

15

20

k = dlogb qe

M
a
g
n

it
u

d
e

o
f

o
u

tp
u

t
(l

2
n

o
rm

)

GMP

Ours

b
√
k

(a) for q = bk with Algorithm 1

10 20 30 40 50 60
0

5

10

15

20

k = dlogb qe

M
a
g
n

it
u

d
e

o
f

o
u

tp
u

t
(l

2
n

o
rm

)

GMP

Ours

b
√
k

(b) for q 6= bk with Algorithm 2

Fig. 2. The magnitude comparison, # trial= 10000

Magnitude of output and Computation time Figure 2 shows the magnitude
of each output of our algorithm, denoted by Ours, and [GMP19] denoted by GMP.
Both cases show that our algorithms output a little bit larger size of output than
GMP’s in our experiment (average value of 10000 trials with regard to Euclidean
norm) due to the difference of two distributions, the bounded uniform distribution
(Ours) and the triangular distribution (GMP). In fact, the sampling probability of
larger output is higher than GMP’s. Nevertheless, the magnitude of both algorithms
are bounded by b

√
k with regard to Euclidean norm. Therefore, we show that the

Euclidean norm of the output of two algorithms is indeed smaller than b
√
k when

q is a power of b and q is arbitrary, in Figure 2(a) and Figure 2(b), respectively.
Therefore, it is adequate for Ours to be used in a lattice based cryptographic
applications since it still outputs a small vector. In our experiment, we set u = q/3
in both cases because the size of output becomes too small with overwhelming

Efficient Lattice Gadget Decomposition Algorithm 13

probability (close to 1) to compare if u is close to q in the case of GMP’s. Therefore,
we choose appropriate size of u to see various outputs.

q Algorithm Total Decomposition Transformation Sampling Addition

q = bk
GMP[µs] 2.31487 1.04847 N/A 1.19871 0.06187
Ours[µs] 1.89929 1.02334 N/A 0.81749 0.05826

q 6= bk
GMP[µs] 2.43805 1.06996 0.187131 1.11734 0.06237
Ours[µs] 1.88372 1.00613 N/A 0.81154 0.06588

Table 1. Detailed running time of each subalgorithm consisting of GMP [GMP19] and
ours without preprocessing for lattice dimension n = 1, the base b = 2, the modulus
q ≈ 260.

Table 1 shows that the detailed running time of all subalgorithms of Ours

and GMP. Both algorithms are expected to perform slightly better when the
modulus q is a power of the base b than the other case since GMP does not
run additional subalgorithm Transformation and Ours has simpler Addition.
However, Addition takes negligibly small time so that it barely affects the total
computation time, whereas Transformation takes 4% of total in GMP. Ours is
faster in any case even without precomputation: i) in the case of q = bk, our
Sampling is simpler than GMP’s due to the constant probability. ii) For the case
q 6= bk, we do not run Transformation and have simpler sampling like the case
of q = bk, whereas GMP necessarily requires Transformation.

the base b k = dlogb qe GMP[µs] Ours[µs]

2 60 4947.93 2199.33
25 12 787.70 418.55
210 6 376.56 191.87
215 4 234.48 116.78
220 3 173.99 85.61

Table 2. Comparison of performance results between GMP and our algorithm with
pre-computation for n = 2048, log2 q ≈ 60 with the different base b

We apply our algorithm to the problem Gx = u used in Ring-LWE based ho-
momorphic encryption schemes (for the fixed recommended parameter [CCD+17]:
n=2048, q ≈ 260) then compare computation time with different b between two
algorithms GMP and Ours with precomputation in Table 2. The larger the value of
b, the smaller k for fixed q due to k = logb q. As b is increased, the running time
becomes shorter with the larger size of output as a trade-off since the algorithm
only runs kn times (see also Figure 2(b)).

14 S.Jeon et al.

In fact, the practical gadget decomposition algorithm used in many homomor-
phic encryption schemes is the same as Decomposition which is deterministic.
Then they heuristically assume that all the output coefficients independently
follow a subgaussian distribution. However, we do not need the assumption since
we give a subgaussian decomposition algorithm. As a result, there is only overhead
with Addition which is just coefficient wise addition over two polynomial of
degree n (or a vector of dimension n) in our case.

We note that we have time-memory trade-off due to preprocessing. It requires
more space, O(nk) bits, to store Sampling output. In parameters n = 2048, k =
60, b = 2, our Sampling stores at most 15KB in advance as a preprocessing
output, whereas GMP’s does not cost extra memory for that.

References

Ajt99. Miklós Ajtai. Generating hard instances of the short basis problem. In
Proceedings of the 26th International Colloquium on Automata, Languages
and Programming, ICAL ’99, page 1–9, Berlin, Heidelberg, 1999. Springer-
Verlag.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in
Computer Science, pages 297–314, Santa Barbara, CA, USA, August 17–21,
2014. Springer, Heidelberg, Germany.

BDF18. Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from
tensored homomorphic accumulator. In Antoine Joux, Abderrahmane Nitaj,
and Tajjeeddine Rachidi, editors, AFRICACRYPT 18: 10th International
Conference on Cryptology in Africa, volume 10831 of Lecture Notes in Com-
puter Science, pages 217–251, Marrakesh, Morocco, May 7–9, 2018. Springer,
Heidelberg, Germany.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully
key-homomorphic encryption, arithmetic circuit ABE and compact garbled
circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 533–556, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677
of Lecture Notes in Computer Science, pages 645–677, Baltimore, MD, USA,
November 12–15, 2017. Springer, Heidelberg, Germany.

CCD+17. Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov,
Jeffrey Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Mor-
rison, Amit Sahai, and Vinod Vaikuntanathan. Security of homomorphic
encryption. Technical report, HomomorphicEncryption.org, Redmond WA,
USA, July 2017.

CCS19. Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-key homomorphic
encryption from TFHE. In Steven D. Galbraith and Shiho Moriai, editors,

Efficient Lattice Gadget Decomposition Algorithm 15

Advances in Cryptology – ASIACRYPT 2019, Part II, volume 11922 of
Lecture Notes in Computer Science, pages 446–472, Kobe, Japan, December 8–
12, 2019. Springer, Heidelberg, Germany.

CDKS19. Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient multi-key ho-
momorphic encryption with packed ciphertexts with application to oblivious
neural network inference. Cryptology ePrint Archive, Report 2019/524, 2019.
https://eprint.iacr.org/2019/524.pdf.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Sci-
ence, pages 3–33, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany.

CGGI17. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrapping
for TFHE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 377–408, Hong Kong, China, December 3–7, 2017.
Springer, Heidelberg, Germany.

CM15. Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled
FHE from learning with errors. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume
9216 of Lecture Notes in Computer Science, pages 630–656, Santa Barbara,
CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

DDP+18. W. Dai, Y. Doröz, Y. Polyakov, K. Rohloff, H. Sajjadpour, E. Savaş, and
B. Sunar. Implementation and evaluation of a lattice-based key-policy
abe scheme. IEEE Transactions on Information Forensics and Security,
13(5):1169–1184, 2018.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://eprint.iacr.org/2012/144.

GMP19. Nicholas Genise, Daniele Micciancio, and Yuriy Polyakov. Building an
efficient lattice gadget toolkit: Subgaussian sampling and more. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019,
Part II, volume 11477 of Lecture Notes in Computer Science, pages 655–684,
Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In STOC, pages 197–206,
2008.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of
Computing, pages 469–477, Portland, OR, USA, June 14–17, 2015. ACM
Press.

https://eprint.iacr.org/2019/524.pdf
https://eprint.iacr.org/2012/144

16 S.Jeon et al.

HHSS17. Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz.
Implementing BP-obfuscation using graph-induced encoding. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM
CCS 2017: 24th Conference on Computer and Communications Security,
pages 783–798, Dallas, TX, USA, October 31 – November 2, 2017. ACM
Press.

JLP21. Sohyun Jeon, Hyang-Sook Lee, and Jeongeun Park. Efficient lattice gadget
decomposition algorithm with bounded uniform distribution. IEEE Access,
9:17429–17437, 2021.

KLP18. Eunkyung Kim, Hyang-Sook Lee, and Jeongeun Park. Towards round-
optimal secure multiparty computations: Multikey FHE without a CRS.
In Willy Susilo and Guomin Yang, editors, ACISP 18: 23rd Australasian
Conference on Information Security and Privacy, volume 10946 of Lecture
Notes in Computer Science, pages 101–113, Wollongong, NSW, Australia,
July 11–13, 2018. Springer, Heidelberg, Germany.

LP19. Hyang-Sook Lee and Jeongeun Park. On the security of multikey homo-
morphic encryption. In Martin Albrecht, editor, Cryptography and Coding,
pages 236–251, Cham, 2019. Springer International Publishing.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 35–54, Athens, Greece, May 26–30, 2013.
Springer, Heidelberg, Germany.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 700–718, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany.

MP19. Sean Murphy and Rachel Player. δ-subgaussian random variables in cryp-
tography. In Information Security and Privacy, pages 251–268. Springer,
2019.

MR07. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions
based on gaussian measures. SIAM J. Comput., 37(1):267–302, April 2007.

MW16. Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors,
Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666 of
Lecture Notes in Computer Science, pages 735–763, Vienna, Austria, May 8–
12, 2016. Springer, Heidelberg, Germany.

PRR20. Y. Polyakov, K. Rohloff, and G. W. Ryan. Palisade lattice cryptogra-
phy library. https://git. Accessed May, 2020. https://gitlab.com/palisade/
palisade-release.

Str94. K. Stromberg. Probability For Analysts. Chapman & Hall/CRC Probability
Series. Taylor & Francis, 1994.

A For CRT Representation

A modulus, which is larger than the native 64 bits in most modern hardware,
is often used in many applications of lattice gadgets. Handling large modulus
requires multi-precision numbers which is not the best option in practice. In

https://gitlab.com/palisade/palisade-release
https://gitlab.com/palisade/palisade-release

Efficient Lattice Gadget Decomposition Algorithm 17

order to avoid the use of multi-precision, one can pick a modulus of the form
q =

∏
qi with each co-prime qi less than 64 bits. Then an element u ∈ Zq can be

stored as its Chinese Remainder representation (CRT form) and computed via
the Chinese Remainder Theorem by using the fact below:

Zq ∼= Zq1 × Zq2 × · · · × Zql .

The Chinese Remainder Transformation/Representation (CRT) gadgets, where Zq
when q = q1q2 · · · ql for co-prime qi’s, are used in many lattice-based cryptosystems
where the modulus q is integer exceeding native 64-bits. The gadgets introduced
by [HHSS17, BDF18] are more compatible with CRT representation, but it is
only applied to a limited setting where q has small prime factors.

After that, [GMP19] introduced a general set of CRT gadgets for a wide
class of moduli keeping arithmetic in the CRT representation. Since we use the
same gadget, our algorithms are also suitable for large moduli. The algorithms
in [GMP19] can take input represented in CRT form. Therefore, the algorithms
can be applied to the system that already store their numbers in CRT form,
can operate on each CRT component independently (in-parallel), and only
require arithmetic on small numbers qi. On input (u mod q1, . . . , u mod ql),
the sampling in CRT form, g−1CRT , computes g−1i (u mod qi) which is g−1 for qi
and the corresponding base bi, and each g−1i can be computed independently.
Our algorithm also can support the same technique for computing g−1 since the
difference is only the use of a uniform distribution. Therefore, our algorithms
also achieve several theoretical and practical advantages which can be obtained
by using algorithms in [GMP19].

	Efficient Lattice Gadget Decomposition Algorithm with Bounded Uniform Distribution

