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Abstract
The random oracle methodology has proven to be a powerful tool for designing and reasoning about cryptographic

schemes. In this paper, we focus on the basic problem of correcting faulty—or adversarially corrupted—random
oracles, so that they can be confidently applied for such cryptographic purposes.
We prove that a simple construction can transform a “subverted” random oracle—which disagrees with the original

one at a small fraction of inputs—into an object that is indifferentiable from a random function, even if the adversary
is made aware of all randomness used in the transformation. Our results permit future designers of cryptographic
primitives in typical kleptographic settings (i.e., those permitting adversaries that subvert or replace basic cryptographic
algorithms) to use random oracles as a trusted black box.

1 Introduction
The random oracle methodology of Bellare and Rogaway [BR93] has proven to be a powerful tool for designing and
reasoning about cryptographic schemes. It consists of the following two steps: (i) design a scheme Π in which all
parties (including the adversary) have oracle access to a common truly random function, and establish the security of
Π in this favorable setting; (ii) instantiate the random oracle in Π with a suitable cryptographic hash function (such
as SHA256) to obtain an instantiated scheme Π′. The random oracle heuristic states that if the original scheme Π is
secure, then the instantiated scheme Π′ is also secure. While this heuristic can fail in various settings [CGH98] the
basic framework remains a fundamental design and analytic tool. In this work we focus on the problem of correcting
faulty—or adversarially corrupted—random oracles so that they can be confidently applied for such cryptographic
purposes.1
Specifically, given a function ℎ̃ drawn from a distribution which agrees in most places with a uniform function,

we would like to produce a corrected version which appears uniform to adversaries with a polynomially bounded
number of queries. This model is partially motivated by the traditional study of “program checking and self-correcting”
[Blu88, BK89, BLR90]: the goal in this theory is to transform a program that is faulty at a small fraction of inputs
(modeling an evasive adversary) to a program that is correct at all points with overwhelming probability. Our setting
intuitively adapts this classical theory of self-correction to the study of “self-correcting a probability distribution.”
Notably, the functions to be corrected are structureless, instead of heavily structured. Despite that, the basic procedure
for correction and portions of the technical development are analogous.
One particular motivation for correcting random oracles in a cryptographic context arises from recent work

studying design and security in the subversion (i.e., kleptographic) setting. In this setting, the various components of a
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1This work expands on the preliminary conference version of this article which appeared in CRYPTO’18. Several improvements are made to the

conference version in this paper. First, this paper fills some gaps in the security proof of the conference paper. Second, this paper applies more
powerful analysis tools and establishes significantly tighter results. Third, the security proof in the conference version indicated how the major
technical hurdles can be overcome without developing the full details. This article fills those details by game transitions from the construction to the
perfect random function.
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cryptographic scheme may be subverted by an adversary, so long as the tampering cannot be detected via blackbox testing.
This is a challenging framework (as highlighted by Bellare, Paterson, and Rogaway [BPR14]), because many basic
cryptographic techniques are not directly available: in particular, the random oracle paradigm is directly undermined. In
terms of the discussion above, the random oracle—which is eventually to be replaced with a concrete function—is
subject to adversarial subversion which complicates even the first step of the random oracle methodology above. Our
goal is to provide a generic approach that can rigorously “protect” the usage of random oracles from subversion and,
essentially, establish a “crooked” random oracle methodology.

1.1 Our contributions
We first describe two concrete scenarios where hash functions are subverted in the kleptographic setting. We then
express the security properties by adapting the successful framework of indifferentiability [MRH04, CDMP05] to our
setting with adversarial subversion. This framework provides a satisfactory guarantee of modularity—that is, that the
resulting object can be directly employed by other constructions demanding a random oracle. We call this new notion
“crooked” indifferentiability to reflect the role of adversary in the modeling; see below. (A formal definition appears in
Section 2.)
We prove that a simple construction involving only public randomness can boost a “subverted” random oracle into a

construction that is indifferentiable from a random function. (Section 3, 4). We expand on these contributions below.

Consequences of kleptographic hash subversion. We first illustrate the security failures that can arise from use of
hash functions that are subverted at only a negligible fraction of inputs with two concrete examples:

(1) Chain take-over attack on blockchain. For simplicity, consider a proof-of-work blockchain setting where miners
compete to find a solution 𝑠 to the “puzzle” ℎ(pre| |transactions| |𝑠) ≤ 𝑑, where pre denotes the hash of the previous
block, transactions denotes the set of valid transactions in the current block, and 𝑑 denotes the difficulty parameter.
Here ℎ is intended to be a strong hash function. Note that the mining machines use a program ℎ̃(·) (or a dedicated
hardware module) which could be designed by a clever adversary. Now if ℎ̃ has been subverted so that ℎ̃(∗| |𝑧) = 0 for a
randomly chosen 𝑧—and ℎ̃(𝑥) = ℎ(𝑥) in all other cases—this will be difficult to detect by prior black-box testing; on the
other hand, the adversary who created ℎ̃ has the luxury of solving the proof of work without any effort for any challenge,
and thus can completely control the blockchain. (A fancier subversion can tune the “backdoor” 𝑧 to other parts of the
input so that it cannot be reused by other parties; e.g., ℎ̃(𝑤 | |𝑧) = 0 if 𝑧 = 𝑓 (𝑤) for a secret pseudorandom function
known to the adversary.)

(2) System sneak-in attack on password authentication. In Unix-style system, during system initialization, the root user
chooses a master password 𝛼 and the system stores the digest 𝜌 = ℎ(𝛼), where ℎ is a given hash function normally
modeled as a random oracle. During login, the operating system receives input 𝑥 and accepts this password if ℎ(𝑥) = 𝜌.
An attractive feature of this practice is that it is still secure if 𝜌 is accidentally leaked. In the presence of kleptographic
attacks, however, the module that implements the hash function ℎ may be strategically subverted, yielding a new function
ℎ̃ which destroys the security of the scheme above: for example, the adversary may choose a relatively short random
string 𝑧 and define ℎ̃(𝑦) = ℎ(𝑦) unless 𝑦 begins with 𝑧, in which case ℎ̃(𝑧𝑥) = 𝑥. As above, ℎ and ℎ̃ are indistinguishable
by black-box testing; on the other hand, the adversary can login as the system administrator using 𝜌 and its knowledge
of the backdoor 𝑧 (without knowing the actual password 𝛼, presenting 𝑧𝜌 instead).

The model of “crooked” indifferentiability. The problem of cleaning defective randomness has a long history in
computer science. Our setting requires that the transformation must be carried out by a local rule and involve an
exponentially small amount of public randomness (in the sense that we wish to clean a defective random function
ℎ : {0, 1}𝑛 → {0, 1}𝑛 with only a polynomial length random string). The basic framework of correcting a subverted
random oracle is the following:
First, a function ℎ : {0, 1}𝑛 → {0, 1}𝑛 is drawn uniformly at random. Then, an adversary may subvert the function

ℎ, yielding a new function ℎ̃. The subverted function ℎ̃(𝑥) is described by an adversarially-chosen (polynomial-time)
algorithm 𝐻̃ℎ (𝑥), with oracle access to ℎ. We insist that ℎ̃(𝑥) ≠ ℎ(𝑥) only at a negligible fraction of inputs.2 Next, the

2We remark that tampering with even a negligible fraction of inputs can have devastating consequences in many settings of interest: e.g., the
blockchain and password examples above. Additionally, the setting of negligible subversion is precisely the desired parameter range for existing
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function ℎ̃ is “publicly corrected” to a function ℎ̃𝑅 (defined below) that involves some public randomness 𝑅 selected
after ℎ̃ is supplied.3
We wish to show that the resulting function (construction) is “as good as” a random oracle, in the sense of

indifferentiability. The successful framework of indifferentiability asserts that a construction C𝐻 (having oracle access
to an ideal primitive 𝐻) is indifferentiable from another ideal primitive F if there exists a simulator S so that (C𝐻 , 𝐻)
and (F ,S) are indistinguishable to any distinguisher D.
To reflect our setting, an 𝐻-crooked-distinguisher D̂ is introduced; the 𝐻-crooked-distinguisher D̂ first prepares

the subverted implementation 𝐻̃ (after querying 𝐻 first); then a fixed amount of (public) randomness 𝑅 is drawn and
published; the construction C uses only subverted implementation 𝐻̃ and 𝑅. Now following the indifferentiability
framework, we will ask for a simulator S, such that (C𝐻̃𝐻 (·, 𝑅), 𝐻) and (F ,S𝐻̃ (𝑅)) are indistinguishable to any
𝐻-crooked-distinguisher D̂ (even one who knows 𝑅). A similar security preserving theorem [MRH04, CDMP05] also
holds in our model. See Section 2 for details.

The construction. The construction depends on a parameter ℓ = poly(𝑛) and public randomness 𝑅 = (𝑟1, . . . , 𝑟ℓ),
where each 𝑟𝑖 is an independent and uniform element of {0, 1}𝑛. For simplicity, the construction relies on a family of
independent random oracles ℎ𝑖 (𝑥), for 𝑖 ∈ {0, . . . , ℓ}. (Of course, these can all be extracted from a single random oracle
with slightly longer inputs by defining ℎ̃𝑖 (𝑥) = ℎ̃(𝑖, 𝑥) and treating the output of ℎ𝑖 (𝑥) as 𝑛 bits long.) Then we define

ℎ̃𝑅 (𝑥) = ℎ̃0

(
ℓ⊕
𝑖=1

ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖)
)
= ℎ̃0

(
𝑔̃𝑅 (𝑥)

)
.

Note that the adversary is permitted to subvert the function(s) ℎ𝑖 by choosing an algorithm𝐻ℎ∗ (𝑥) so that ℎ̃𝑖 (𝑥) = 𝐻ℎ∗ (𝑖, 𝑥).
Before diving into the analysis, let us first quick demonstrate how some simpler constructions fail.

Simple constructions and their shortcomings. During the stage when the adversary manufactures the hash functions
ℎ̃∗ = {ℎ̃𝑖}ℓ𝑖=0, the randomness 𝑅 := 𝑟1, . . . , 𝑟ℓ are not known to the adversary; they become public in the second query
phase. If the “mixing” operation is not carefully designed, the adversary could choose inputs accordingly, trying to
“peel off” 𝑅. We discuss a few examples:

1. ℎ̃𝑅 (𝑥) is simply defined as ℎ̃1 (𝑥 ⊕ 𝑟1). A straightforward attack is as follows: the adversary can subvert ℎ1 in a
way that ℎ̃1 (𝑚) = 0 for a random input 𝑚; the adversary then queries 𝑚 ⊕ 𝑟1 on ℎ̃𝑅 (·) and can trivially distinguish
ℎ̃ from a random function.

2. ℎ̃𝑅 (𝑥) is defined as ℎ̃1 (𝑥 ⊕ 𝑟1) ⊕ ℎ̃2 (𝑥 ⊕ 𝑟2). Now a slightly more complex attack can still succeed: the adversary
subverts ℎ1 so that ℎ̃1 (𝑥) = 0 if 𝑥 = 𝑚 | |∗, that is, when the first half of 𝑥 equals to a randomly selected string 𝑚
with length 𝑛/2; likewise, ℎ2 is subverted so that ℎ̃2 (𝑥) = 0 if 𝑥 = ∗||𝑚, that is, the second half of 𝑥 equals 𝑚.
Then, the adversary queries 𝑚1 | |𝑚2 on ℎ̃𝑅 (·), where 𝑚1 = 𝑚 ⊕ 𝑟1,0, and 𝑚2 = 𝑚 ⊕ 𝑟2,1, and 𝑟1,0 is the first half
of 𝑟1, and 𝑟2,1 is the second half of 𝑟2. Again, trivially, it can be distinguished from a random function.
This attack can be generalized in a straightforward fashion to any ℓ ≤ 𝑛/𝜆: the input can be divided in into
consecutive substrings each with length 𝜆, and the “trigger” substrings can be planted in each chunk.

Challenges in the analysis. To analyze security in the “crooked” indifferentiability framework, our simulator needs to
ensure consistency between two ways of generating output values: one is directly from the construction 𝐶 𝐻̃ ℎ (𝑥, 𝑅); the
other calls for an “explanation” of 𝐹—a truly random function—via reconstruction from related queries to 𝐻 (in a way
consistent with the subverted implementation 𝐻̃). To ensure a correct simulation, the simulator must suitably answer
related queries (defining one value of 𝐶 𝐻̃ ℎ (𝑥, 𝑅)). Essentially, the proof relies on an unpredictability property of the
internal function 𝑔̃𝑅 (𝑥) to guarantee the success of simulation. In particular, for any input 𝑥 (if not yet “fully decided”

models of kleptographic subversion and security. In these models, when an oracle is non-negligibly defective, this can be easily detected by a
watchdog using a simple sampling and testing regimen, see e.g., [RTYZ16].

3We remark that in many settings, e.g., the model of classical self-correcting programs, we are permitted to sample fresh and “private” randomness
for each query; in our case, we may only use a single polynomial-length random string for all points. Once 𝑅 is generated, it is made public and fixed,
which implicitly defines our corrected function ℎ̃𝑅 ( ·) . This latter requirement is necessary in our setting as random oracles are typically used as a
public object—in particular, our attacker must have full knowledge of 𝑅.
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by previous queries), the output of 𝑔̃𝑅 (𝑥) is unpredicatable to the distinguisher even if she knows the public randomness
𝑅 (even conditioned on adaptive queries generated by D̂).
Section 4 develops the detailed security analysis. The proof of correctness for this construction is complicated

by the fact that the “defining” algorithm 𝐻̃ is permitted to make adaptive queries to ℎ during the definition of ℎ̃; in
particular, this means that even when a particular “constellation” of points (the ℎ𝑖 (𝑥 ⊕ 𝑟𝑖)) contains a point that is left
alone by 𝐻̃—which is to say that it agrees with ℎ𝑖 ()—there is no guarantee that

⊕
𝑖 ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) is uniformly random.

This suggests focusing the analysis on demonstrating that the constellation associated with every 𝑥 ∈ {0, 1}𝑛 will have at
least one “good” component, which is (i.) not queried by 𝐻̃ℎ (·) when evaluated on the other terms, and (ii.) answered
honestly. Unfortunately, actually identifying such a good point with certainty appears to require that we examine all of
the points in the constellation for 𝑥, and this interferes with the standard “exposure martingale” proof that is so powerful
in the random oracle setting (which capitalizes on the fact that “unexamined” values of ℎ can be treated as independent
and uniform values). Thus, even such elementary aspects of the internal function require some care and must be handled
with appropriate union bounds. This points to a second difficulty, which is that structural properties must generally be
established with exponentially small (that is 2−𝐶𝑛 for 𝐶 > 1) error probability, to permit a union bound over all inputs,
or must be shown to fail with negligible probability conditioned on a typical transcript of the distinguisher; thus one
must either establish very small error or carry significant conditioning through the proof. In general, we aim for the first
of these options in order to simplify the presentation. For example, part of analysis is supported with a Fourier-analytic
argument that establishes the near uniformity of the random variable 𝑥1 ⊕ · · · ⊕ 𝑥ℓ where each 𝑥𝑖 ∈ Z𝑛2 is drawn from
a sufficiently rich multiset. This provides a simple criterion for the initial random function ℎ from which follows a
number of strong properties that can conveniently avoid the bookkeeping associated with transcript conditioning.
Applications: Our correction function can be easily applied to save the faulty hash implementation in several important
application scenarios.

• Immediate applications, as explained in the motivational examples, one may apply our technique directly in the
following scenarios to defend against backdoors in hash implementation.
(1) Salvaging PoW blockchain against hash subversion. For proof-of-work based blockchains, as discussed above,
miners may rely on a common library ℎ̃ for the hash evaluation, perhaps cleverly implemented by an adversary.
Here ℎ̃ is determined before the chain has been deployed. We can then prevent the adversary from capitalizing on
this subversion by applying our correction function. In particular, the public randomness 𝑅 can be embedded in
the genesis block; the function ℎ̃𝑅 (·) is then used for mining (and verification) rather than ℎ̃.

(2) Preventing system sneak-in. The system sneak-in can also be resolved immediately by applying our correcting
random oracle. During system initialization (or even when the operating system is released), the system
administrator generates some randomness 𝑅 and wraps the hash module ℎ̃ (potentially subverted) to define ℎ̃𝑅 (·).
The password 𝛼 then gives rise to the digest 𝜌 = ℎ̃𝑅 (𝛼) together with the randomness 𝑅. Upon receiving input 𝑥,
the system first “recovers” ℎ̃𝑅 (·) based on the previously stored 𝑅, and then tests if 𝜌 = ℎ̃𝑅 (𝑥). The access will be
enabled if the test is valid. As the corrected random oracle ensures the output to be uniform for every input point,
this remains secure in the face of subversion.4

• Extended applications:

(3) Application to cliptographically secure digital signatures. In a follow-up work, [CRT+19], we constructed
the first digital signature scheme that is secure against kleptographic attacks with only an offline watchdog via
corrected full domain hash. There, a further interpretation of our result is used that the corrected random oracle is
indifferentiable also to a keyed random oracle.

(4) Relation to random oracle against pre-processing attacks. It is easy to see that our model is strictly stronger
than the pre-processing model considered in [DGK17, CDGS18]. There, the adversary made some random oracle
queries first and compress the transcripts as an auxiliary input. While in our model, besides this auxiliary input
(which can be considered as part of the backdoor), the adversary is allowed to further subvert the implementation
of the hash! It follows that our construction can also be directly used to defend the pre-processing attack.

4Typical authentication of this form also uses password “salt,” but this doesn’t change the structure of the attack or the solution.
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1.2 Related Work
Related work on indifferentiability. The notion of indifferentiability was proposed in the elegant work of Maurer et
al. [MRH04]; this notably extends the classical concept of indistinguishability to circumstances where one or more of the
relevant oracles are publicly available (such as a random oracle). It was later adapted by Coron et al. [CDMP05]; several
other variants were proposed and studied in [DP06, DP07]. A line of notable work applied the framework to to the ideal
cipher problem: in particular the Feistel construction (with a small constant number of rounds) is indifferentiable from
an ideal cipher, see [CHK+16, DKT16, DS16]. Our work adapts the indifferentiability framework to the setting where
the construction uses only a subverted implementation and the construction aims to be indifferentiable from a clean
random oracle.
Related work on self-correcting programs. The theory of program self-testing, and self-correcting, was pioneered by
the work of Blum et al. [Blu88, BK89, BLR90]. This theory addresses the basic problem of program correctness by
verifying relationships between the outputs of the program on related, but randomly selected, inputs; additionally, the
theory studies transformations of faulty programs that are almost correct (faulty at negligible fraction of inputs) into
ones that are correct at every point with an overwhelming probability. See Rubinfeld’s thesis [Rub91] for great reading.
Our results can be seen as a distributional version of this theory: (i.) we “correct” independent distributions rather than
structured functions, (ii) we insist on using only an exponentially small amount of public randomness.
Related work on random oracles. The random oracle methodology/heuristic was first explicitly introduced by
Bellare and Rogaway [BR93]; this methodology can significantly simplify both cryptographic constructions and
proofs, even though there exist schemes which are secure using random oracles, but cannot be instantiated in
the standard model [CGH98]. Soon after, many separations have been shown for new classes of cryptographic
tasks [Nie02, Pas03, GK03, CGH04, BBP04, DOP05, LN09, KP09, BSW11, GKMZ16]. In addition, efforts have been
made to identify instantiable assumptions/models in which we may analyze interesting cryptographic tasks [Can97,
CMR98, CD08, BCFW09, BF05, BF06, KOS10, BHK13]. Also, we note that research efforts have also been made to
investigate weakened idealized models [NIT08, KNTX10, Lis07, KLT15]. Finally, there are several recent approaches
that study random oracles in the auxiliary input model (or with pre-processing) [DGK17, CDGS18]. Our model is
strictly stronger than the pre-processing model: besides pre-processing queries, for example, the adversary may embed
some preprocessed information into the subverted implementation; furthermore, our subverted implementation can
further misbehave in ways that cannot be captured by any single-shot polynomial-query adversary because the subversion
at each point is determined by a local adaptive computation.
Related work on kleptographic security. Kleptographic attacks were originally introduced by Young and Yung [YY96,
YY97]: In such attacks, the adversary provides subverted implementations of the cryptographic primitive, trying to learn
secretwithout being detected. In recent years, several remarkable allegations of cryptographic tampering [PLS13,Men13],
including detailed investigations [CNE+14, CCG+16], have produced a renewed interest in both kleptographic attacks
and in techniques for preventing them [BBCL13, BPR14, DGG+15, MS15, DMS16, DFP15, AMV15, BJK15, SFKR15,
BH15, AAB+15, DPSW16, RTYZ16, RTYZ17, CDL17]. None of those work considered how to actually correct a
subverted random oracle.
Similar constructions in other context. Our construction follows a simple design approach, applying the hash function
to the XOR of multiple hash values. The construction calls to mind many classical constructions for other purposes,
e.g., hardness amplification such as the Yao XOR lemma, weak PRF [Mye01], and randomizers in the bounded storage
model [DM04]. Our construction has to have an “extra” layer of hash application (ℎ0 in our parlance) to wrap the XOR
of terms, and our analysis is of course very different from these classical results due to our starting point of a subverted
implementation.

Relationship to the preliminary version. This paper expands on the preliminary conference version of this article
which appeared in CRYPTO ’18 [RTYZ18]. The conference version provided a proof sketch which indicated how the
major technical hurdles can be overcome without developing the full details. This article, while filling in those details,
additionally establishes somewhat tighter and simpler results. Specifically, in many cases, we are able to improve the
analysis to show that certain events of interest fail with exponential, rather than negligible, probability; this achieves
tighter bounds and also simplifies the presentation.

Other follow-up work. In [BNR20] Bhattacharyya et al. pointed out a gap in the security sketch in our preliminary
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version [RTYZ18] and provide an alternate (and independent) approach to prove that the construction of [RTYZ18] is
secure. They also explore an alternate, sponge-based construction that reduces the number of external random bits to
linear.

2 The Model: Crooked Indifferentiability

2.1 Preliminary: Indifferentiability
The notion of indifferentiability proposed in the elegant work of Maurer et al. [MRH04] has proven to be a powerful
tool for studying the security of hash function and many other primitives. The notion extends the classical concept of
indistinguishability to the setting where one or more oracles involved in the construction are publicly available. The
indifferentiability framework of [MRH04] is built around random systems providing interfaces to other systems. Coron
et al. [CDMP05] demonstrate a strengthened5 indifferentiability framework built around Interactive Turing Machines
(as in [Can01]). Our presentation borrows heavily from [CDMP05]. In the next subsection, we will introduce our new
notion, crooked indifferentiability.

Defining indifferentiability. An ideal primitive is an algorithmic entity which receives inputs from one of the parties
and returns its output immediately to the querying party. We now proceed to the definition of indifferentiability [MRH04,
CDMP05]:

Definition 1 (Indifferentiability [MRH04, CDMP05]). A Turing machine C with oracle access to an ideal primitive
G is said to be (𝑡D , 𝑡S , 𝑞, 𝜖)-indifferentiable from an ideal primitive F , if there is a simulator S, such that for any
distinguisher D, it holds that : ���Pr[DC,G (1𝑛) = 1] − Pr[DF,S (1𝑛) = 1]

��� ≤ 𝜖 .

The simulator S has oracle access to F and runs in time at most 𝑡S . The distinguisher D runs in time at most 𝑡D and
makes at most 𝑞 queries. Similarly, CG is said to be (computationally) indifferentiable from F if 𝜖 is a negligible
function of the security parameter 𝑛 (for polynomially bounded 𝑡D and 𝑡S). See Figure 1.

C G F S

D

Figure 1: The indifferentiability notion: the distinguisher D either interacts with algorithm C and ideal primitive G, or
with ideal primitive F and simulator S. Algorithm C has oracle access to G, while simulator S has oracle access to F .

As illustrated in Figure 1, the role of the simulator is to simulate the ideal primitive G so that no distinguisher can
tell whether it is interacting with C and G, or with F and S; in other words, the output of S should look “consistent”
with what the distinguisher can obtain from F . Note that the simulator does not observe the distinguisher’s queries to
F ; however, it can call F directly when needed for the simulation. Note that, in some sense, the simulator must “reverse
engineer” the construction C so that the simulated oracle appropriately induces F and, of course, possesses the correct
marginal distribution.

5Technically, the quantifiers in the security definitions in the original [MRH04] and in the followup [CDMP05] are different; in the former, a
simulator needs to be constructed for each adversary, while in the latter a simulator needs to be constructed for all adversaries.
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C G

P A

E

F

P SA

E

Figure 2: The environment E interacts with cryptosystem P and attackerA. In the G model (left), P has oracle access
to C whereas A has oracle access to G. In the F model, both P and SA have oracle access to F .

Replacement. It is shown in [MRH04] that if CG is indifferentiable from F , then CG can replace F in any
cryptosystem, and the resulting cryptosystem is at least as secure in the G model as in the F model.
We use the definition of [MRH04] to specify what it means for a cryptosystem to be at least as secure in the G model

as in the F model. A cryptosystem is modeled as an Interactive Turing Machine with an interface to an adversary A
and to a public oracle. The cryptosystem is run by an environment E which provides a binary output and also runs the
adversary. In the G model, cryptosystem P has oracle access to C whereas attacker A has oracle access to G. In the F
model, both P and A have oracle access to F . The definition is illustrated in Figure 2.

Definition 2. A cryptosystem is said to be at least as secure in the G model with algorithm C as in the F model, if for
any environment E and any attacker A in the G model, there exists an attacker SA in the F model, such that:

Pr[E(PC ,AG) = 1] − Pr[E(PF ,SFA) = 1] ≤ 𝜖 .

where 𝜖 is a negligible function of the security parameter 𝑛. Similarly, a cryptosystem is said to be computationally at
least as secure, etc., if E, A and SA are polynomial-time in 𝑛.

We have the following security preserving (replacement) theorem, which says that when an ideal primitive is
replaced by an indifferentiable one, the security of the “big” cryptosystem remains:

Theorem 1 ([MRH04, CDMP05]). Let P be a cryptosystem with oracle access to an ideal primitive F . Let C be an
algorithm such that CG is indifferentiable from F . Then cryptosystem P is at least as secure in the G model with
algorithm C as in the F model.

2.2 Crooked indifferentiability
The ideal primitives that we focus on in this paper are random oracles. A random oracle [BR93] is an ideal primitive
which provides an independent random output for each new query. We next formalize a new notion called crooked
indifferentiability to reflect the challenges in our setting with subversion; our formalization is for random oracles, but the
formalization can be naturally extended to other ideal primitives.

Crooked indifferentiability for random oracles. As mentioned in the introduction, we consider the problem of
“repairing” a subverted random oracle in such a way that the corrected construction can be used as a drop-in replacement
for an unsubverted random oracle. This immediately suggests invoking and appropriately adapting the indifferentiability
notion. Specifically, we need to adjust the notion to reflect subversion.
We model the act of subversion of a (hash) function 𝐻 as creation of an “implementation” 𝐻̃ of the new, subverted

(hash) function; in practice, this would be the source code of the subverted version of the function 𝐻. In our setting,
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however, where 𝐻 is modeled as a random oracle, we define 𝐻̃ as a polynomial-time algorithm with oracle access
to 𝐻; thus the subverted function is 𝑥 ↦→ 𝐻̃𝐻 (𝑥). We proceed to survey the main modifications between crooked
indifferentiability and the original notion of indifferentiability.

1. The deterministic construction will have oracle access to the random oracle only via the subverted implementation
𝐻̃ but not via the ideal primitive 𝐻. (Operationally, the construction has oracle access to the function 𝑥 ↦→ 𝐻̃𝐻 (𝑥).)
The construction depends on access to trusted, but public, randomness 𝑅.

2. The simulator is provided, as input, the subverted implementation 𝐻̃ (a Turing machine) and the public randomness
𝑅; it has oracle access to the target ideal functionaltiy (F ).

Point (2) is necessary, and desirable, as it is clearly impossible to achieve indifferentiability using a simulator that has no
access to 𝐻̃ (the distinguisher can simply query an input such that C will use a value that is modified by 𝐻̃ while S has
no way to reproduce this). More importantly, we will show below that security will be preserved by replacing an ideal
random oracle with a construction satisfying our definition (with an augmented simulator). Specifically, we prove a
security preserving (i.e., replacement) theorem akin to those of [MRH04] and [CDMP05] for our adapted notions.

Definition 3 (𝐻-crooked indifferentiability). Consider a distinguisher D̂ and the following multi-phase real execution.
Initially, the distinguisher D̂ commences the first phase: with oracle access to ideal primitive 𝐻 the distinguisher
constructs and publishes a subverted implementation of 𝐻; this subversion is described as a deterministic polynomial
time algorithm denoted 𝐻̃. (Recall that the algorithm 𝐻̃ implicitly defines a subverted version of 𝐻 by providing 𝐻 to 𝐻̃

as an oracle—thus 𝐻̃𝐻 (𝑥) is the value taken by the subverted version of 𝐻 at 𝑥.) Then, a uniformly random string 𝑅 is
sampled and published. Then the second phase begins involving a deterministic construction C: the construction C
requires the random string 𝑅 as input and has oracle access to 𝐻̃ (the crooked version of 𝐻); explicitly this is the oracle
𝑥 ↦→ 𝐻̃𝐻 (𝑥). Finally, the distinguisher D̂, now with random string 𝑅 as input and full oracle access to the pair (C, 𝐻),
returns a decision bit 𝑏. Often, we call D̂ the 𝐻-crooked-distinguisher.

Consider now the corresponding multi-phase ideal execution with the same 𝐻-crooked-distinguisher D̂. The ideal
execution introduces a simulator S responsible for simulating the behavior of 𝐻; the simulator is provided full oracle
access to the ideal object F . Initially, the simulator must answer any queries made to 𝐻 by D̂ in the first phase. Then
the simulator is given the random string 𝑅 and the algorithm 〈𝐻̃〉 (generated by D̂ at the end of the first phase) as
input. In the second phase, the 𝐻-crooked-distinguisher D̂, now with random string 𝑅 as input and oracle access to the
alternative pair (F ,S), returns a decision bit 𝑏.

We say that construction C is (𝑛source, 𝑛target, 𝑞 D̂ , 𝑞𝐻̃ , 𝑟, 𝜖)-𝐻-crooked-indifferentiable from ideal primitive F if
there is an efficient simulator S so that for any 𝐻-crooked-distinguisher D̂ making no more than 𝑞 D̂ (𝑛) queries
and producing a subversion 𝐻̃ making no more than 𝑞𝐻̃ (𝑛) queries, the real execution and the ideal execution are
indistinguishable. Specifically,���� Pr𝑢,𝑅,𝐻

[
𝐻̃ ← D̂𝐻 (1𝑛) ; D̂C𝐻̃ (𝑅) ,𝐻 (1𝑛, 𝑅) = 1

]
− Pr

𝑢,𝑅,F

[
𝐻̃ ← D̂𝐻 (1𝑛) ; D̂F,SF (𝑅, 〈𝐻̃ 〉) (1𝑛, 𝑅) = 1

] ���� ≤ 𝜖 (𝑛) .

Here 𝑅 denotes a random string of length 𝑟 (𝑛) and both 𝐻 : {0, 1}𝑛source → {0, 1}𝑛source and F : {0, 1}𝑛target → {0, 1}𝑛target
denote random functions where 𝑛source (𝑛) and 𝑛target (𝑛) are polynomials in the security parameter 𝑛. We let 𝑢 denote the
random coins of D̂. The simulator is efficient in the sense that it is polynomial in 𝑛 and the running time of the supplied
algorithm 𝐻̃ (on inputs of length 𝑛source). See Figure 3 for detailed illustration of the last phase in both real and ideal
executions. (While it is not explicitly captured in the description above, the distinguisher D̂ is permitted to carry state
from the first phase to the second phase.) The notation 𝐶 𝐻̃ (𝑅) denotes oracle access to the function 𝑥 ↦→ 𝐻̃ (𝑥).

Our main security proof will begin by demonstrating that in our particular setting, security in a simpler model
suffices: this is the abbreviated crooked indifferentiability model, articulated below. We then show that—in light of the
special structure of our simulator—it can be effectively lifted to the full model above.

Definition 4 (Abbreviated 𝐻-crooked indifferentiability). The abbreviated model calls for the distinguisher to provide
the subversion algorithm 𝐻̃ at the outset (without the advantage of any preliminary queries to 𝐻). Thus, the abbreviated
model consists only of the last phase of the full model. Formally, in the abbreviated model the distinguisher is provided
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C

𝑅

𝐻̃ 𝐻 F

𝑅

S
𝐻̃

D̂

Figure 3: The 𝐻-crooked indifferentiability notion: the distinguisher D̂, in the first phase, manufactures and publishes a
subverted implementation denoted as 𝐻̃, for ideal primitive 𝐻; then in the second phase, a random string 𝑅 is published;
after that, in the third phase, algorithm C, and simulator S are developed; the 𝐻-crooked-distinguisher D̂, in the last
phase, either interacting with algorithm C and ideal primitive 𝐻, or with ideal primitive F and simulator S, return a
decision bit. Here, algorithm C has oracle access to 𝐻̃, while simulator S has oracle access to F and 𝐻̃.

as a pair (D̂, 𝐻̃), the random string 𝑅 is drawn (as in the full model), and insecurity is expressed as the difference
between the behavior of D̂ on the pair (𝐶 𝐻̃ (𝑅), 𝐻) and the pair (F ,SF (𝑅, 〈𝐻̃〉)). Specifically, the construction C
is (𝑛source, 𝑛target, 𝑞 D̂ , 𝑞𝐻̃ , 𝑟, 𝜖)-Abbreviated-𝐻-crooked-indifferentiable from ideal primitive F if there is an efficient
simulator S so that for any 𝐻-crooked-distinguisher D̂ making no more than 𝑞 D̂ (𝑛) queries and subversion algorithm
𝐻̃ making no more than 𝑞𝐻̃ (𝑛) queries, the real execution and the ideal execution are indistinguishable:���� Pr𝑢,𝑅,𝐻

[
D̂C𝐻̃ (𝑅) ,𝐻 (1𝑛, 𝑅) = 1

]
− Pr

𝑢,𝑅,F

[
D̂F,SF (𝑅, 〈𝐻̃ 〉) (1𝑛, 𝑅) = 1

] ���� ≤ 𝜖 (𝑛) .

Here 𝑅 denotes a random string of length 𝑟 (𝑛) and both 𝐻 : {0, 1}𝑛source → {0, 1}𝑛source and F : {0, 1}𝑛target → {0, 1}𝑛target
denote random functions where 𝑛source (𝑛) and 𝑛target (𝑛) are polynomials in the security parameter 𝑛. We let 𝑢 denote
the random coins of D̂. The simulator is efficient in the sense that it is polynomial in 𝑛 and the running time of the
supplied algorithm 𝐻̃ (on inputs of length 𝑛source).

Observe that while the abbreviated simulator is a fixed algorithm, its running time may depend on the running time
of 𝐻̃—in particular, the definition permits S sufficient running time to simulate 𝐻̃ on a polynomial number of inputs.
Regarding the difference between these notions, observe that the distinguisher can “compile into” the subversion

algorithm 𝐻̃ any queries and pre-computation that might have been advantageous to carry out in phase I; such queries
and pre-computation can also be mimicked by the distinguisher itself. This technique can effectively simulate the two
phase execution with a single phase. Nevertheless, the models do make slightly different demands on the simulator
which must be prepared to answer some queries (in Phase I) prior to knowledge of 𝑅 and 𝐻̃.

Replacement with crooked indifferentiability. The notion of crooked indifferentiability is formalized for a specific
ideal primitive, i.e., random oracles. We note that the formalization can be trivially generalized for all ideal primitives.
Security preserving (replacement) has been shown in the indifferentiability framework [MRH04]: if CG is

indifferentiable from F , then CG can replace F in any cryptosystem, and the resulting cryptosystem in the G model
is at least as secure as that in the F model. We next show that the replacement property also holds in the crooked
indifferentiability framework.
Recall that, in the “standard” indifferentiability framework [MRH04, CDMP05], a cryptosystem can be modeled as

an Interactive Turing Machine with an interface to an adversaryA and to a public oracle. There the cryptosystem is run
by a “standard” environment E. In our “crooked” indifferentiability framework, a cryptosystem has the interface to an
adversary A and to a public oracle. However, now the cryptosystem is run by a crooked-environment Ê.
Consider an ideal primitive G. Similar to the G-crooked-distinguisher, we can define the G-crooked-environment Ê

as follows: Initially, the crooked-environment Ê manufactures and then publishes a subverted implementation of the
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ideal primitive G, and denotes it G̃. Then Ê runs the attacker A, and the cryptosystem P is developed. In the G model,
cryptosystem P has oracle access to C whereas attacker A has oracle access to G; note that, C has oracle access to G̃,
not to directly G. In the F model, both P andA have oracle access to F . Finally, the crooked-environment Ê returns a
binary decision output. The definition is illustrated in Figure 4.

Definition 5. Consider ideal primitives G and F . A cryptosystem P is said to be at least as secure in the G-crooked
model with algorithm C as in the F model, if for any G-crooked-environment Ê and any attacker A in the G-crooked
model, there exists an attacher SA in the F model, such that:

Pr[Ê (PCG̃ ,AG) = 1] − Pr[Ê (PF ,SFA) = 1] ≤ 𝜖 .

where 𝜖 is a negligible function of the security parameter 𝑛.

C

𝑅

G̃ G

P A

Ê

F

𝑅

P SA

Ê

Figure 4: The environment Ê interacts with cryptosystem P and attacker A: In the G model (left), P has oracle
accesses to C whereas A has oracle accesses to G; the algorithm C has oracle accesses to the subverted G̃. In the F
model, both P and SA have oracle accesses to F . In addition, in both G and F models, randomness 𝑅 is publicly
available to all entities.

We now demonstrate the following theorem which shows that security is preserved when replacing an ideal primitive
by a crooked-indifferentiable one:

Theorem 2. Consider an ideal primitive G and a G-crooked-environment Ê. Let P be a cryptosystem with oracle
access to an ideal primitive F . Let C be an algorithm such that CG is G-crooked-indifferentiable from F . Then
cryptosystem P is at least as secure in the G-crooked model with algorithm C as in the F model.

Proof. The proof is very similar to that in [MRH04, CDMP05]. Let P be any cryptosystem, modeled as an Interactive
Turing Machine. Let Ê be any crooked-environment, and A be any attacker in the G-crooked model. In the G-crooked
model, P has oracle access to C (who has oracle access to G̃, not to directly G.) whereas A has oracle access to ideal
primitive G; moreover crooked-environment Ê interacts with both P and A. This is illustrated in Figure 5 (left part).
Since C is crooked-indifferentiable from F (see Figure 3), one can replace (C G̃ ,G) by (F ,S) with only a negligible

modification of the crooked-environment Ê’s output distribution. As illustrated in Figure 5, by merging attacker A and
simulator S, one obtains an attacker SA in the F model, and the difference in Ê’s output distribution is negligible. �

Restrictions (of using crooked indifferentiability). Ristenpart et al. [RSS11] has demonstrated that the replace-
ment/composition theorem (Theorem 1) in the original indifferentiability framework only holds in single-stage settings.
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P A
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D̂

F

𝑅

S
G̃

P A

Ê

D̂

SA

Figure 5: Construction of attacker SA from attacker A and simulator S

We remark that, the same restriction also applies to our replacement/composition theorem (Theorem 2). We leave it as
our future work to extend our crooked indifferentiability to the multi-stage settings where disjoint adversaries are split
over several stages.

3 The Construction
From this point on, we use D rather than D̂ to denote the distinguisher in our crooked indifferentiability model. For
a security parameter 𝑛 and a (polynomially related) parameter ℓ, the construction depends on public randomness
𝑅 = (𝑟1, . . . , 𝑟ℓ), where each 𝑟𝑖 is an independent and uniform element of {0, 1}𝑛.
The source function of the construction is expressed as a family of ℓ + 1 independent random oracles:

ℎ0 : {0, 1}𝑛 → {0, 1}3𝑛 ,
ℎ𝑖 : {0, 1}3𝑛 → {0, 1}𝑛 , for 𝑖 ∈ {0, . . . , ℓ}.

These can be realized as slices of a single random function 𝐻 : {0, 1}𝑛′ → {0, 1}𝑛′ , with 𝑛′ = 3𝑛 + dlog ℓ + 1e by
an appropriate convention for embedding and extracting inputs and values. In the few cases where we need to be
precise, we write {0, . . . , 𝐿} × {0, 1}3𝑛 = {0, 1}𝑛′ , where ℓ + 1 ≤ 𝐿 = 2 dlog ℓ+1e , and let [𝑖, 𝑥] denote a unique element
of {0, . . . , 𝐿} × {0, 1}3𝑛 to implicitly correspond to the element 𝑥 in the domain for ℎ𝑖: for concreteness, define
[0, 𝑥] = (0, 02𝑛𝑥) and [𝑖, 𝑥] = (𝑖, 𝑥) for 𝑖 > 0. The output of 𝐻 is treated as a string of the correct length without
any special indication. Given subverted implementations {ℎ̃𝑖}𝑖=0,...,ℓ (defined as above by the adversarially-defined
algorithm 𝐻̃), the corrected function is defined as:

C𝐻̃𝐻 (𝑥) def= ℎ̃0

(
ℓ⊕
𝑖=1

ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖)
)
,

where 𝑅 = (𝑟1, . . . , 𝑟ℓ) is sampled uniformly after ℎ̃ is provided (and then revealed to the public). We refer to this
function C as ℎ̃𝑅 (𝑥) and, for the purposes of analysis, also give a name to the “internal function” 𝑔̃𝑅 (·):

𝑔̃𝑅 (𝑥) =
ℓ⊕
𝑖=1

ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖).

Thus

ℎ̃𝑅 (𝑥)
def
= ℎ̃0 (𝑔̃𝑅 (𝑥)) = ℎ̃0

(
ℓ⊕
𝑖=1

ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖)
)
.
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We wish to show that such a construction is indifferentiable from an actual random oracle (with the proper input/output
length). This implies, in particular, that values taken by ℎ̃𝑅 (·) at inputs that have not been queried have negligible
distance from the uniform distribution.

Theorem 3. We treat a function ℎ : {0, 1}𝑛′ → {0, 1}𝑛′ , with 𝑛′ = 3𝑛 + dlog ℓ + 1e, as implicitly defining a family of
random oracles

ℎ0 : {0, 1}3𝑛 → {0, 1}𝑛 , and

ℎ𝑖 : {0, 1}𝑛 → {0, 1}3𝑛 , for 𝑖 > 0,

by treating {0, 1}𝑛′ = {0, . . . , 𝐿 − 1} × {0, 1}3𝑛 and defining ℎ𝑖 (𝑥) = ℎ(𝑖, ·), for 𝑖 = 0, . . . , ℓ ≤ 𝐿 − 1. (Output lengths
are achieved by removing the appropriate number of trailing symbols). We will use the setting ℓ > 𝑛 + 4. Consider a
(subversion) algorithm 𝐻̃ so that 𝐻̃ℎ (𝑥) defines a subverted random oracle ℎ̃. Assume that for every ℎ (and every 𝑖),

Pr
𝑥∈{0,1}𝑛

[ℎ̃(𝑖, 𝑥) ≠ ℎ(𝑖, 𝑥)] ≤ 𝜖 (𝑛) = negl(𝑛) . (1)

The construction ℎ̃𝑅 (·) is (𝑛′, 𝑛, 𝑞D , 𝑞𝐻̃ , 𝑟, 𝜖 ′)-indifferentiable from a random oracle 𝐹 : {0, 1}𝑛 → {0, 1}𝑛, where
𝜖 ′ = 𝑂 (ℓ𝑞𝐷̂𝑞𝐻̃ /

√
2𝑛 +
√
ℓ𝑞𝐷̂𝜖

1/16)., 𝑞D is the number of queries made by the distinguisherD and 𝑞𝐻̃ is the number of
queries made by 𝐻̃ as in Definition 3. 𝑞D and 𝑞𝐻̃ are both polynomial functions of 𝑛.

Domain extension. It is shown in [CDMP05] that an arbitrary-length random oracle can be constructed from a
fixed-length one in the indifferentiability framework, thus our result can be easily generalized to handle the case for
correcting a subverted arbitrary input length hash.
Roadmap for the proof. We first describe the simulator algorithm. The main challenge for the simulator is to ensure
the consistency of two ways of generating the output values of the construction. The idea for simulation is fairly simple:
the ℎ𝑖 (), for 𝑖 > 0, are treated as random functions; ℎ0 is programmed to suitably agree with 𝐹. Specifically, once the
value 𝑔̃𝑅 (𝑥) is determined, the value 𝐹 (𝑥) is used to program ℎ0 on input 𝑔̃𝑅 (𝑥). Our simulator eagerly “completes” any
constellation of related points once any of its constituent points have been queried by the distinguisher; in particular, any
query to ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) prompts the simulator to evaluate ℎ̃ 𝑗 (𝑥 ⊕ 𝑟 𝑗 ) for all 𝑗 ; this provides enough information to properly
program ℎ0 (·) at the desired location 𝑔̃𝑅 (𝑥) to ensure consistency with 𝐹 (·). This convention leads to a relatively
simple invariant maintained during a typical interaction with the distinguisher: all constellations thus far touched
by the distinguisher are correctly programmed. Of course, proving that this simulation doesn’t run into consistency
problems—for example, a circumstance where ℎ0 (𝑦) has unfortunately already been assigned a value at the moment it
would be appropriate to program it—is part of the proof of correctness.
There are two fundamental obstacles that hinder the simulation: (1) for some 𝑥, after completing the constellation

associated with 𝑥, the simulator finds that ℎ0 has been previously queried on 𝑔̃𝑅 (𝑥)—thus the simulator’s hands are tied
when it comes time to program this value of ℎ0 (to be consistent with 𝐹); (2) the distinguisher queries some input 𝑥 such
that 𝑔̃𝑅 (𝑥) falls into the incorrect (subverted) portion of ℎ̃0. It’s convenient to further separate various specific patterns
of behavior that can give rise to collisions as described in (1) above. These are reflected in a sequence of four “hybrid
games” that interpolate between the two interactions of interest—the result of the distinguisher when interacting with
the construction and the result when interacting with the simulator.
To further simplify the proof, we initially focus on the abbreviated variant of crooked indifferentiability where

the distinguisher does not have the luxury of making preliminary queries to the hash function while it formulates its
subversion algorithm 𝐻̃. This places all queries of the distinguisher on the same footing and somewhat simplifies
bookkeeping. We then return at the conclusion of the main proof show that the same techniques can be applied to the
full setting.

4 Security Proof
We begin with an abstract formulation of the properties of our construction, and then transition to the detailed description
of the simulator algorithm and its effectiveness.
Anticipating the full description of the simulator, we formally set down the notion of a “constellation” of points.
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Definition 6 (Constellation). For a fixed 𝑅 = (𝑟1, . . . , 𝑟ℓ) and an element 𝑥 ∈ {0, 1}𝑛, the constellation of 𝑥 is the set of
points {[𝑖, 𝑥 ⊕ 𝑟𝑖] | 0 < 𝑖 ≤ ℓ}; that is, the set includes, for each 𝑖 > 0, the point in the domain of (the implicitly defined)
ℎ𝑖 defining ℎ𝑖 (𝑥 ⊕ 𝑟𝑖). While this depends on 𝑅, we suppress this as it can always be inferred from context.

4.1 The simulator
The major task of the simulator is to ensure the answers to appropriate ℎ0 queries are consistent with the value of
𝐹 (·). In general, queries to the ℎ𝑖 , for 𝑖 > 0, are simply treated as random functions and lazily evaluated and cached
as usual. The function ℎ0 must be given special treatment: ideally, the simulator would like to ensure the equality
ℎ̃0 (𝑔̃𝑅 (𝑥)) = 𝐹 (𝑥). This poses some challenges because the simulator cannot typically identify—for a particular 𝑦 in
question—an 𝑥 for which 𝑦 = 𝑔̃𝑅 (𝑥); thus there will be circumstances where the simulator simply cannot correctly
program ℎ0 (𝑦) with the corresponding 𝐹 (·) value. A further challenge is that values of ℎ̃0 (·) cannot, in general, be
“programmed” to agree with 𝐹 in circumstances where ℎ̃0 has been subverted. To minimize the chance that one of the
simulator’s “inconsistencies” is observable by the distinguisher, the simulator aggressively computes 𝑔̃𝑅 (𝑥) for any 𝑥
whose constellation {ℎ𝑖 (𝑥 ⊕ 𝑟𝑖)} the distinguisher (even partially) examines. In particular, if the distinguisher queries
ℎ𝑖 (𝑥 ⊕ 𝑟𝑖), the simulator will immediately determine the values for all ℎ̃ 𝑗 (𝑥 ⊕ 𝑟 𝑗 ) and, if possible, correctly program
ℎ0 (·) at 𝑔̃𝑅 (𝑥). In this way, the simulator typically guarantees that constellations which the distinguisher has examined
are correctly programmed. Of course, the distinguisher may speculatively query ℎ0 on other locations but, with this
simulator, it will not be easy for the distinguisher to force a lie at a location that will result in a future inconsistency (so
long as the game only runs for polynomially many steps). A similar difficulty arises in cases where the distinguisher
queries an ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) in a constellation for which ℎ̃0 (𝑔̃𝑅 (𝑥)) has been subverted; again, this situation may interfere with
the simulator’s ability to properly program ℎ̃0. Likewise, we will see that such queries are difficult for the distinguisher
to discover.
Formally, we define the simulator S (for the abbreviated model) below. After the proof that this simulator achieves

(abbreviated) crooked indifferentiability (Definition 3), we show that the simulator can be lifted to one that achieves full
indifferentiability (Definition 4).

The Abbreviated Simulator
The simulator is provided 𝑅, the randomness associated with the security game, and 〈𝐻̃〉, the subversion

algorithm. As in our previous discussions, we implicitly associate 𝐻 with the family of functions ℎ𝑖 for 𝑖 ≥ 0 with
particular conventions for padding or embedding inputs and outputs to realize the variety of domains and ranges
for the ℎ𝑖; for simplicity we assume that all queries (made by D or 𝐻̃) to 𝐻 have a unique interpretation as a query
to an ℎ𝑖 . Roughly, S “lazily” maintains the random oracles via tables that are populated according to conventions
that minimize the risk of a conflict arising from its handling of the function ℎ0.

ℎ0
Query ℎ0 (𝑥𝑖)
𝑥1 𝑣1,0
...

...

𝑥𝑞0 𝑣𝑞0 ,0

ℎ1
Query ℎ1 (𝑥𝑖)
𝑥1 𝑣1,1
...

...

𝑥𝑞1 𝑣𝑞1 ,1

. . .

ℎℓ
Query ℎℓ (𝑥𝑖)
𝑥1 𝑣1,ℓ
...

...

𝑥𝑞ℓ 𝑣𝑞ℓ ,ℓ

Table 1: Tables maintained by S.

S responds to queries from D with following procedure, which also describes the mechanism for maintaining
the value tables.

• All tables are initially empty.

• A query 𝑥 to ℎ𝑖 () is answered as follows. If 𝑖 = 0 and the table for ℎ0 holds a value for 𝑥, this is returned
and no further action is taken. If 𝑥 does not appear in the table, a uniformly random value 𝑣 is drawn from
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{0, 1}𝑛, added to the table for ℎ0, and returned. Otherwise, 𝑖 > 0 and the situation is more complicated, as S
wishes to compute the value 𝑔̃ associated with this query. In this case, the simulator then proceeds as follows.

1. S determines the “adjusted” query 𝑥 ′ := 𝑥 ⊕ 𝑟𝑖 , and ensures that all points in the constellation—that is
ℎ 𝑗 (𝑥 ′ ⊕ 𝑟 𝑗 ) for 𝑗 > 0—have assigned values: specifically, for each 𝑗 , if the result of ℎ 𝑗 (𝑥 ′ ⊕ 𝑟 𝑗 ) has
not yet been determined, this value is drawn uniformly and added to the table.

2. The next task is to evaluate 𝑔̃𝑅 (𝑥 ′), the corresponding query to ℎ0, which would ideally be programmed
to agree with 𝐹. For this purpose, S then runs the implementation ℎ̃ 𝑗 (using 𝐻̃) on 𝑥 ′ ⊕ 𝑟 𝑗 = 𝑥 ⊕ 𝑟 𝑗 ⊕ 𝑟𝑖 ,
for all 𝑗 ∈ [ℓ], to derive the value

𝑔̃𝑅 (𝑥 ′) =
ℓ⊕
𝑗=1

ℎ̃ 𝑗 (𝑥 ′ ⊕ 𝑟 𝑗 ),

where [ℓ] is used to denote the set {1, ..., ℓ}.
During the execution of 𝐻̃ on those inputs, S must determine any additional random oracle queries
issued by the implementation 𝐻̃ℎ∗ . These are answered by a less aggressive convention: S first checks
whether the query, say ℎ𝑘 (𝑦), appears in the table; if so, the stored valued is used; if not, S uses a
uniformly random value 𝑢 as answer and records it in the table. (Note that this does not lead to forced
evaluation of the full constellations in which these queries lie.)

3. S checks whether 𝑔̃𝑅 (𝑥 ′) has been previously queried in ℎ0; if not,S properly programs ℎ0: specifically,
S queries 𝐹 on 𝑥 ′, collects the response 𝐹 (𝑥 ′), and assigns ℎ0 (𝑥 ′) = 𝐹 (𝑥 ′). Finally, S returns to the
distinguisher the value appearing in the appropriate table to the original query 𝑥. Note that a value
always appears at this point in light of step (1) above. (N.b., in many cases, for convenience, we assume
that S returns to the distinguisher all values in the constellation of 𝑥—that is, all ℎ 𝑗 (𝑥 ′ ⊕ 𝑟𝑖) for 𝑗 > 0.)

Probability analysis. We prove indifferentiability by introducing a sequences of four games that connect the real
construction and the simulator. In Game 2, we define three crisis events Subv, Pred and Selfref, which play a central role
in distinguishing Game 1, the real construction, from Game 4, the simulator interaction game. According to Theorem 4,
the gap between (C, 𝐻) and (F ,S) is bounded by Pr[Subv] + Pr[Pred] + Pr[Selfref].
Lastly, the three events are shown to be negligible in Theorem 24, Theorem 20, and Therorem 23.

4.2 The hybrid games; the crisis events
4.2.1 The games

We introduce the security games used to organize the main proof. Game 1 corresponds to interaction with the
construction, while Game 4 corresponds to interaction with the simulator described above. The intermediate games
correspond to hybrid settings that are convenient in the proof. The main “crisis events” that reflect circumstances where
the simulator could fail to provide consistency are defined with respect to Game 2.
The description of each game indicates how queries to the two oracles with which D interacts are answered. We

adopt the notational convention that A denotes the rule for answering oracle queries to 𝐹—corresponding to the
construction and the ideal functionality—while B denotes the rule for answering oracle queries to ℎ𝑖—corresponding to
𝐻 and the simulator. For expository purposes, several variants are presented for each game; these variants all yield
precisely the same transcript with the distinguisher but reflect differing internal conventions for generating the responses.

Game 1 (The construction). A = C𝐻 ,B = 𝐻. To most easily compare with the following games, we explicitly express
the game as a “data preparation step” and an “interaction” step:

1. Data preparation: Uniformly select the value ℎ𝑖 (𝑥) for each 0 ≤ 𝑖 ≤ ℓ and each 𝑥 in the domain.

2. Interaction: If D queries A for 𝑥, A returns ℎ̃0 (𝑔̃𝑅 (𝑥)); if D queries B for (𝑖, 𝑥), B returns ℎ𝑖 (𝑥).
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Some conventions and terminology. In general, we say that “the distinguisher D queries the constellation of 𝑥” (for
𝑥 ∈ {0, 1}𝑛) when D queries any ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) term for 𝑖 > 0. (This is consistent with the definition of constellation
above.) Beginning with Game 2.2, we consider procedures for maintaining function values by lazy evaluation. In this
setting we define the notion of completing the constellation of 𝑥 as the following procedure: ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) is evaluated
for all elements in the constellation—that is, they are assigned to uniformly random values if they have not yet been
assigned—followed by evaluation of ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖) (using the subversion algorithm) for each 𝑥 ⊕ 𝑟𝑖 in the constellation. The
evaluation of ℎ̃𝑖 (𝑥𝑖 ⊕ 𝑟𝑖) will in general require evaluation of ℎ𝑖 () at a collection of further points, which are likewise
assigned to new uniformly random values unless they have already been assigned. We also use the notation 𝑔̃𝑅 (𝑥) to
denote the sum of ℎ̃ 𝑗 (𝑥 ⊕ 𝑟 𝑗 ) for 0 < 𝑗 ≤ ℓ. This is directly analogous to the “aggressive” constellation evaluation
discussed in the formal discussion of the simulator above.
The notation 𝑔̃𝑅 (·) described above deserves special consideration. In Game 1.1, 𝑔̃𝑅 (𝑥) can be unambiguously

defined for all 𝑥 (as ℎ̃𝑖 () can be unambiguously defined); the same can be said of Game 2.1, below. For subsequent
games, there is no immediate way to define 𝑔̃𝑅 (𝑥) for all 𝑥, as these values may depend on the queries made by D;
however, the syntactic definition of 𝑔̃𝑅 (𝑥) (as the sum of appropriate ℎ̃ 𝑗 (𝑥 ⊕ 𝑟 𝑗 )) is well-defined for all constellations
that have been completed by S; thus, we continue to use this notation to indicate this sum, with the understanding that it
is only meaningful in settings where the constellation has been completed.
For convenience, we assume the distinguisher does not make repetitive queries.

Game 2 (The construction with unsubverted ℎ0). Game 2 has two variants. Game 2.1 is identical to Game 1 with the
exception that the construction is replaced with an idealized one that uses the unsubverted ℎ0. Game 2.2 merely shifts
the perspective of Game 2.1 to one involving tables.

• Game 2.1:

1. Data preparation: Uniformly select the value ℎ𝑖 (𝑥) for each 0 ≤ 𝑖 ≤ ℓ and each 𝑥 in the domain.
2. Interaction: If D queries A for 𝑥, A returns ℎ0 (𝑔̃𝑅 (𝑥)); if D queries B for (𝑖, 𝑥), B returns ℎ𝑖 (𝑥).

• Game 2.2: A and B maintain tables, 𝑇𝐹 and 𝑇𝐻 , respectively, storing the point evaluations of 𝐹 and 𝐻 arising
during the interaction. Initially, the tables are empty. Interaction with D proceeds as follows:

- If D queries B for (𝑖, 𝑥): if ℎ𝑖 (𝑥) appears in the table 𝑇𝐻 , return the recorded value; otherwise, draw a
uniform value, assign ℎ𝑖 (𝑥) to the value by adding this entry to the table 𝑇𝐻 , and return it. Additionally, if
𝑖 > 0, complete the constellation of 𝑥 ⊕ 𝑟𝑖 and uniformly assign ℎ0 (𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖)) in 𝑇𝐻 unless it has been
previously assigned. If 𝐹 (𝑥) is unassigned in 𝑇𝐹 , it is assigned to the value ℎ0 (𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖)). Otherwise
𝐹 (𝑥) was already assigned and this conflict is not explicitly managed.
- If D queries A for 𝑥: if 𝐹 (𝑥) appears in the table 𝑇𝐹 , return the recorded value; otherwise, complete the
constellation of 𝑥 and properly program 𝐹 (𝑥) at the value ℎ0 (𝑔̃𝑅 (𝑥)). Specifically, completion determines
the value 𝑔̃𝑅 (𝑥); if ℎ0 (𝑔̃𝑅 (𝑥)) is unassigned, it is assigned a random value in 𝑇𝐻 . Finally, A returns
ℎ0 (𝑔̃𝑅 (𝑥)) and 𝐹 (𝑥) is assigned to this value in 𝑇𝐹 .

For technical reasons later, we fill in the empty cells of 𝑇𝐹 and 𝑇𝐻 in Game 2.2 after the interaction. Empty cells of
𝑇𝐻 are filled in by uniformly chosen values while empty cells of 𝑇𝐹 are filled in by 𝐹 (𝑥) := ℎ0 (𝑔̃𝑅 (𝑥)). The resulting
𝑇𝐻 is denoted by ℎ∗. Also, in Game 2.2, we say 𝑦 ∈ {0, 1}3𝑛 is in the subverted area of ℎ0 if, in ℎ∗, ℎ̃0 (𝑦) ≠ ℎ0 (𝑦).

Game 3. Game 3 also has two variants. Game 3.1 is a small pivot from Game 2.2 which handles conflicts by a different
convention. Game 3.2 is identical to Game 3.1 with all randomness selected prior to the game.

• Game 3.1: A and B maintain tables, 𝑇𝐹 and 𝑇𝐻 respectively, storing the evaluated terms during the interaction.
Initially, the data sets are empty. Interaction with D proceeds as follows:

- If D queries B for (𝑖, 𝑥): if ℎ𝑖 (𝑥) appears in the table 𝑇𝐻 , return the recorded value; otherwise, draw a
uniform value, assign ℎ𝑖 (𝑥) to the value by adding this entry to the table 𝑇𝐻 , and return it. Additionally, if
𝑖 > 0, complete the constellation of 𝑥 ⊕ 𝑟𝑖 and uniformly assign 𝐹 (𝑥) in 𝑇𝐹 unless it has been previously
assigned. If ℎ0 (𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖)) is unassigned in 𝑇𝐻 , it is assigned to the value 𝐹 (𝑥) and we say that ℎ0 has
been programmed. Otherwise ℎ0 was already assigned and this conflict is not explicitly managed.
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- If D queries A for 𝑥: if 𝐹 (𝑥) appears in the table 𝑇𝐹 , return the recorded value; otherwise,uniformly select
assign 𝐹 (𝑥) and return this value, complete the constellation of 𝑥 and properly program ℎ0 (𝑔̃𝑅 (𝑥)) at the
value 𝐹 (𝑥). Specifically, completion determines the value 𝑔̃𝑅 (𝑥); if ℎ0 (𝑔̃𝑅 (𝑥)) is unassigned, it is assigned
to 𝐹 (𝑥) and we say that ℎ0 has been programmed; otherwise ℎ0 was already assigned and this conflict is not
explicitly managed.

• Game 3.2: Game 3.2 is identical to Game 3.1, but all randomness is selected a priori; note that responses are
still defined in terms of tables as defined in 3.1. Two data sets, DS1 and DS2, are drawn: DS1 contains uniformly
selected values for each 𝐹 (𝑥) and ℎ𝑖 (𝑥) for all 0 < 𝑖 ≤ ℓ and all 𝑥 ∈ {0, 1}𝑛; DS2 contains uniformly selected
values ℎ0 (𝑦) for all 𝑦 ∈ {0, 1}3𝑛. (Note that all entries are selected independently and uniformly.) The game is a
straightforward adaptation of Game 3.1: When A or B generate values (for table insertion) for 𝑇𝐹 or 𝑇𝐻 (for ℎ𝑖
for 𝑖 > 0), these values are drawn from DS1. The function ℎ0 is treated specially: If ℎ0 is programmed at 𝑦, the
value ℎ0 (𝑦) is drawn from (the table for 𝐹 in) DS1. Otherwise the value is drawn from DS2.

Game 4 (The abbreviated simulator). Observe that queries to A (that is F ) in the interaction between D and (F ,SF)
do not result in associated queries to S (cf. Game 3). Game 4 is identical to the interaction between D and (F ,SF),
but all randomness is selected a priori. Prepare two data sets DS1 and DS2 : DS1 contains uniformly selected values for
𝐹 (𝑥) and ℎ𝑖 (𝑥) for all 0 < 𝑖 ≤ ℓ and all 𝑥 ∈ {0, 1}𝑛; 𝐷𝑆2 contains uniformly selected ℎ0 (𝑦) for all 𝑦 ∈ {0, 1}3𝑛. (Note
that all data are selected independently and uniformly.) Game 4.1 is then carried out with the following conventions for
randomness: All queries to 𝐹 (either direct responses from A or queries by B = S, the simulator) are determined by
DS1. When B evaluates ℎ𝑖 for 𝑖 > 0 and records these assignments in 𝑇𝐻 , values are likewise drawn from DS1. When
B assigns ℎ0 (𝑦) in 𝑇𝐻 to a “fresh random value,” this is drawn from DS2; when ℎ0 (𝑦) is programmed in 𝑇𝐻 to coincide
with 𝐹, this value is drawn from DS1.

We define the following crisis events with respect to a distinguisher D in Game 2.2.

Pred =

{
for some 𝑥, the distinguisher queries the constellation of 𝑥 for the first time and ℎ0 (𝑦), where
𝑦 = 𝑔̃𝑅 (𝑥), has already been assigned a value by the simulator

}
,

Subv = {the distinguisher queries a constellation 𝑥 such that 𝑔̃𝑅 (𝑥) falls into the subverted area of ℎ0} ,

Selfref =
{
for some x, the distinguisher queries a constellation 𝑥 such that ℎ0 at 𝑦 = 𝑔̃𝑅 (𝑥) is evaluated
during completion of the constellation 𝑥

}
.

Note that the crisis event Pred involves the first query made to the constellation of 𝑥. (This distinction can be ignored
under the assumption that the simulator returns all constellation values to the distinguisher which are treated as regular
distinguisher queries and so will not be repeated.)

Definition 7 (Transcript of a game). For one of the games above, a distinguisher D and randomness 𝑅, we define the
𝑅-transcript (or transcript) of the game as the random variable given by 𝑅 and the ordered sequence of (query, answer)
pairs. We encode (query, answer) pairs as tuples of the form (𝑥, 𝐹, 𝑦) or (𝑥, ℎ𝑖 , 𝑦), which indicates that 𝐹 (𝑥) = 𝑦 and
ℎ𝑖 (𝑥) = 𝑦, respectively. For the transcript 𝛼, we let 𝛼[𝑘] denote the first 𝑘 pairs in 𝛼. As a reminder that a transcript 𝛼
determines 𝑅, we let 𝛼[0] = 𝑅.

The notational convention that 𝛼[0] = 𝑅 is occasionally useful in induction proofs of equality between two
transcripts—equality at zero indicates that they correspond to the same randomness.
The analysis focuses on the transcripts of a fixed deterministic distinguisher arising from its interactions in Game 1

through 4. As mentioned above, and discussed more fully below, the variants of each game (e.g., Games 2.1 and 2.2)
yield precisely the same distributions of transcripts. (Indeed, for the same random choices these games yield identical
transcripts.) To reflect this, for a fixed deterministic distinguisher we adopt the notation 𝛼𝑖 , for 𝑖 = 1, 2, 3, 4, to denote
the transcript arising from interaction given by Game 𝑖.
Without loss of generality, we assume at the end of the interaction there exists no 𝑥 ∈ {0, 1}𝑛 such that 𝐹 (𝑥) is

queried but the constellation of 𝑥 is not. Observe that any distinguisher may be placed in this normal form by appending
any necessary extra queries at the end of its native sequence of queries to appropriately query every constellation
associated with a query to 𝐹.
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Theorem 4. For any distinguisher D, ‖𝛼1 − 𝛼4‖𝑡 .𝑣. ≤ Pr[Subv] + Pr[Pred] + Pr[Selfref].

Theorem 4 is proved by the sequence of lemmas below. We recall, at the outset, that if 𝑋 : Ω→ 𝑉 and 𝑌 : Ω→ 𝑉

are two random variables defined on the same probability space Ω and Pr[𝑋 ≠ 𝑌 ] = 𝜖 , then ‖𝑋 − 𝑌 ‖tv ≤ 𝜖 .

Lemma 5. The transcripts of Game 2.1 and Game 2.2 have the same distribution.

Proof. It suffices to notice that the distributions of the query in Game 2.1 and Game 2.2 are identical because the rule of
Game 2.2 guarantees all the ℎ𝑖 (𝛼) for 0 ≤ 𝑖 ≤ ℓ, like those in Game 2.1, are chosen uniformly and independently. �

Notice that the three crisis events defined in Game 2.2 can also be properly defined in 2.1. The proof of Lemma 5
reveals that their probabilities are the same for Game 2.1 and 2.2 since all the three versions of Game 2 have the same
distribution of ℎ∗. In the rest of the paper, we abuse the notation and use Subv, Pred and Selfref to denote the crisis
events in all the three versions of Game 2.

Lemma 6. For any distinguisher D, ‖𝛼1 − 𝛼2‖tv ≤ Pr[Subv].

Proof. Notice that if the data preparation step prepares the same ℎ∗ for Game 1 and Game 2.1, the only way to distinguish
them is to find a 𝑔̃𝑅 (𝑥) falling into the subverted area of ℎ0. That is to say, the transcripts in the two games are different
only when Subv occurs. �

Lemma 7. For any distinguisher D, ‖𝛼2 − 𝛼3‖tv ≤ Pr[Pred].

Proof. Imagine the two parties (A,B) use the same random bits in Game 2.2 and Game 3.1. Then, Game 2.2 and
Game 3.1 have the same query result unless Pred occurs in Game 2.2, which has the probability Pr[Pred]. �

Lemma 8. For any distinguisher D the transcripts of Game 3.1 and Game 3.2 have the same distribution.

Proof. The distributions of the entrees of 𝑇𝐹 and 𝑇𝐻 in Game 3.1 are same as those in Game 3.2, these games have the
same transcript distributions. �

In the next three lemmas, we denote by 𝛽3 [𝑘] (and 𝛽4 [𝑘], respectively) the data in 𝑇𝐻 in Game 3.2 (and Game 4,
respectively) after 𝑘th query and answer. Similar to the conventions in 𝛼, we let 𝛽3 [0](𝛽4 [0]) be 𝑅. Elements in 𝛽, DS1,
and DS2 are given the same tuple syntax as those in the transcript. For any positive 𝑘 , we say 𝛽3 [𝑘] agrees with 𝛽4 [𝑘]
if, for any 𝑚 ≤ 𝑘 , (𝑥, ℎ0, 𝑎) ∈ 𝛽3 [𝑚] and (𝑥, ℎ0, 𝑏) ∈ 𝛽4 [𝑚], we have 𝑎 = 𝑏. For (𝑥, ℎ0, 𝑎) ∈ 𝛽3 [𝑘] (or 𝛽4 [𝑘]), we say
the pair (𝑥, ℎ0) is a free term in 𝛽3 [𝑘] (or 𝛽4 [𝑘]) if there is a (𝑥, ℎ0, 𝑏) ∈ DS2 such that 𝑎 = 𝑏. If the term (𝑥, ℎ0) is not
free, we say that it is programmed. (These notions only apply to ℎ0, reflecting the two mechanisms for assigning ℎ0
values in the games above.)

Lemma 9. Consider the interaction of a distinguisher D with Games 3.2 and 4 given by the same randomness DS1,
DS2 and 𝑅. For any 𝑘 > 0, if 𝛽3 [𝑘] agrees with 𝛽4 [𝑘] then 𝛼3 [𝑘] = 𝛼4 [𝑘] and the 𝑘 + 1st queries of the two games are
identical.

Remark: Note that agreement, in the sense defined above, is much weaker than equality or setwise equality. However,
Lemma 9 implies that to prove 𝛼3 = 𝛼4, it suffices to show that 𝛽3 [𝑘] agrees with 𝛽4 [𝑘] for any 𝑘 .

Proof. We will prove by induction that 𝛼3 [𝑖] = 𝛼4 [𝑖] for each 0 ≤ 𝑖 ≤ 𝑘 . Of course 𝛼3 [0] = 𝛼4 [0], as these are both 𝑅.
Suppose that 𝛼3 [𝑖 − 1] = 𝛼4 [𝑖 − 1] for an 1 ≤ 𝑖 ≤ 𝑘 . Since the first 𝑖 − 1 queries have been identical and have received
the same responses, the 𝑖th query in Game 3.2 and Game 4 are identical. If the 𝑖th query is made to 𝐹 or ℎ𝑖 for 𝑖 > 0, the
responses are identical because the datasets are equal. Otherwise, the query is made to ℎ0, in which case the responses
are identical because 𝛽3 [𝑘] = 𝛽4 [𝑘]. Of course this also implies that the 𝑘 + 1st queries are identical. �

Lemma 10. Consider the interaction of a distinguisher D with Games 3.2 and 4 given by the same randomness DS1,
DS2 and 𝑅. For any 𝑘 > 0, if 𝛽3 [𝑘] agrees with 𝛽4 [𝑘], 𝛽4 [𝑘] ⊂ 𝛽3 [𝑘].

Proof. Assume that 𝛽3 [𝑘] agrees with 𝛽4 [𝑘]; we proceed by induction to show that 𝛽4 [ 𝑗] ⊂ 𝛽3 [ 𝑗] for all 𝑗 ≤ 𝑘 . Of
course 𝛽4 [0] ⊂ 𝛽3 [0] as these are both 𝑅. For an 𝑗 in the range 1 ≤ 𝑗 ≤ 𝑘 , suppose 𝛽4 [ 𝑗 − 1] ⊂ 𝛽3 [ 𝑗 − 1]. Note that
the 𝑗 th query and response in Game 3.2 and Game 4 are identical by Lemma 9. We consider the various cases separately:
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• If the 𝑗 th query is (𝑥, 𝐹) for some 𝑥: Then 𝛽4 [ 𝑗] = 𝛽4 [ 𝑗 − 1] ⊂ 𝛽3 [ 𝑗 − 1] ⊂ 𝛽3 [ 𝑗], as desired. Note, in general,
that 𝛽3 [ 𝑗 − 1] ≠ 𝛽3 [ 𝑗] for such a query.

• If the 𝑗 th query is (𝑥, ℎ0) for some 𝑥: Note that 𝛽4 [ 𝑗]/𝛽4 [ 𝑗 − 1] ⊂ {(𝑥, ℎ0, 𝑦)} for some 𝑦 and that (𝑥, ℎ0, 𝑦) ∈
𝛽3 [ 𝑗].

• If the 𝑗 th query is (𝑥, ℎ𝑖) for some 𝑥 and positive 𝑖: In both games, this calls for the constellation to be completed
and ℎ0 (𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖)) to be evaluated. As the datasets are equal in the two games, the only possible disagreement
that could arise during completion of the constellations must occur on a query to ℎ0: however, this is excluded by
agreement of 𝛽3 [𝑘] and 𝛽4 [𝑘]. It follows that the ℎ𝑖 are evaluated at exactly the same sequence of inputs, yielding
the same results, by the two completions and hence that any table assignment added to 𝛽4 must also appear in 𝛽3;
additionally, 𝑔̃(𝑥 ⊕ 𝑟𝑖) takes the same value in the two games. Finally, ℎ0 (𝑔̃(𝑥 ⊕ 𝑟𝑖)) is evaluated in both games
which, by the same considerations, must yield the same value and must be included in both 𝛽3 and 𝛽4. �

Next, we introduce two further events in Game 3.2 and proceed to our main result.

• Forward Prediction, denoted Pred→: For some 𝑦, the constellation of 𝑦 is completed for the first time at which
point it is discovered that ℎ0 (𝑔̃(𝑦)) has previously been evaluated.

• Backward Prediction, denoted Pred←: For some 𝑥, ℎ0 (𝑔̃𝑅 (𝑥)) is queried, either directly by D or during
completion, after D has already queried 𝐹 (𝑥) (to A) but prior to D making any query to the constellation 𝑥.

Lemma 11. Consider the interaction of a distinguisher D with Games 3.2 and 4 given by the same randomness DS1,
DS2 and 𝑅. For any 𝑘 > 0, if Pred→ and Pred← do not occur in Game 3.2, 𝛽3 [𝑘] agrees with 𝛽4 [𝑘].

Proof. We proceed by induction. First, 𝛽3 [0] agrees with 𝛽4 [0]. Suppose now that 𝛽4 [𝑘 − 1] agrees with 𝛽3 [𝑘 − 1]:
we analyze three cases to ensure that 𝛽4 [𝑘] agrees with 𝛽3 [𝑘]. Note, at the outset, that from Lemma 9 the 𝑘th queries
made by D are identical in the two games.

- If D queries (𝑥, 𝐹) for some 𝑥: 𝛽4 [𝑘] = 𝛽4 [𝑘 − 1] and hence agrees with 𝛽3 [𝑘].

- If D queries for (𝑥, ℎ0) for some 𝑥:

1. if (𝑥, ℎ0) is not evaluated yet in 𝛽3 [𝑘 − 1], by Lemma 2, it is not in 𝛽4 [𝑘 − 1], either. Therefore,
𝛽4 [𝑘]/𝛽4 [𝑘 − 1] = 𝛽3 [𝑘]/𝛽3 [𝑘 − 1] = (𝑥, ℎ0, 𝑎) for some 𝑎 (given by DS2). 𝛽4 [𝑘] and 𝛽3 [𝑘] agree.

2. if (𝑥, ℎ0) is evaluated in both 𝛽3 [𝑘 − 1] and 𝛽4 [𝑘 − 1]. 𝛽4 [𝑘] = 𝛽4 [𝑘 − 1] agrees with 𝛽3 [𝑘] = 𝛽3 [𝑘 − 1].
3. if (𝑥, ℎ0) is evaluated in 𝛽3 [𝑘 − 1] but not in 𝛽4 [𝑘 − 1]. We have two subcases here. First, when (𝑥, ℎ0) is
free in 𝛽3 [𝑘 − 1]: In this case it will be free in 𝛽4 [𝑘] and hence 𝛽4 [𝑘] agrees with 𝛽3 [𝑘]. Second, (𝑥, ℎ0)
is programmed in 𝛽3 [𝑘 − 1]: We show this is actually impossible. Notice that no constellation 𝑦 for which
𝑔̃(𝑦) = 𝑥 has been queried by D in Game 4 since (𝑥, ℎ0) is not in 𝛽4 [𝑘 − 1]. Since 𝛽4 [𝑘 − 1] agrees with
𝛽3 [𝑘 − 1], no such constellation has been queried in Game 3.2 either. Therefore, in this case the event
Pred← would have occurred.

- If D queries a constellation 𝑥: In both games, this leads to completion of the constellation of 𝑥, including
evaluation of the last term ℎ0 (𝑔̃𝑅 (𝑥)).

1. We first analyze the behaviour of the evaluations prior to the last term. We need to show the sequence
of evaluations in Game 3.2 coincides with that in Game 4. No possible disagreement can arise on any
term that is free in both games, as these are both drawn from DS1; thus any disparity must occur at a term
programmed in at least one game. If a term is programmed in only in Game 3.2, the event Pred← occurs,
contrary to assumption. Observe that if a term is programmed in Game 4 it must also be in Game 3.2, as
𝛽4 [𝑘 − 1] ⊂ 𝛽3 [𝑘 − 1] from Lemma 10 and these agree. Finally, if a term is programmed in both games
they are given the same value since 𝛽4 [𝑘 − 1] agrees with 𝛽3 [𝑘 − 1].

18



2. Now we proceed to the last term ℎ0 (𝑔̃(𝑥)). If it is not in 𝛽3 [𝑘 − 1], then it is not in 𝛽4 [𝑘 − 1] by Lemma 10.
Thus, the value of the term is either programmed in both games to be consistent with 𝐹 or was in fact freely
assigned in both games during completion of the constellation itself. In either case, the values in two games
are equal. If the last term is in 𝛽3 [𝑘 − 1], the event Pred→ occurs.

In summary, 𝛽3 [𝑘] agrees with 𝛽4 [𝑘]. �

Lemma 12. ‖𝛼3 − 𝛼4‖tv ≤ Pr[Pred←] + Pr[Pred→] < 2 Pr[Pred], where Pred← and Pred→ are events in Game 3 and
Pred is in Game 2.

Proof. We view the two pairs of (A,B) in Game 2.3 and Game 3.1 as two probabilistic Turing machines sharing the
same randomness 𝑟 for any long enough string 𝑟 . Given the fixed distinguisherD from Lemma 6 to 11 and 𝑟 above, Pred
occurs in Game 2.1 if Pred← or Pred→ occurs in Game 3.2. Since 𝑟 andD are arbitrary, we have Pr[Pred←] < Pr[Pred]
and Pr[Pred→] < Pr[Pred], which implies the lemma. �

Theorem 4 follows by applying the triangle inequality to Lemma 6, Lemma 7, and Lemma 12.

4.3 Establishing pointwise unpredictability and subversion-freedom
W first prove prove that the events Pred and Subv are negligible. Throughout we let 𝜖 denote the equality guarantee of
the subversion algorithm 𝐻̃: (for all 𝑖) ℎ𝑖 (𝑥) ≠ ℎ̃𝑖 (𝑥) with probability no more than 𝜖 (in uniform choice of 𝑥).
Definition 8 (Good term). Fix a subversion algorithm 𝐻̃. For any 𝑖 ∈ [ℓ] and 𝑥 ∈ {0, 1}𝑛, we say (𝑥, ℎ𝑖) is good if
Prℎ∗ [ℎ𝑖 (𝑥) ≠ ℎ̃𝑖 (𝑥)] <

√
𝜖 .

Lemma 13. For any 𝐻̃, any 𝑖 ∈ [ℓ], and uniform 𝑥, Pr𝑥 [(𝑥, ℎ𝑖) is good] > 1 −
√
𝜖 .

Proof. Notice that E𝑥 [Prℎ∗ [ℎ𝑖 (𝑥) ≠ ℎ̃𝑖 (𝑥)]] = Pr𝑥,ℎ∗ [ℎ𝑖 (𝑥) ≠ ℎ̃𝑖 (𝑥)] < 𝜖 . The lemma therefore follows directly from
Markov’s inequality. �

In several circumstances, is it convenient to determine a hash function Rℎ∗ by “resampling” a particular entry of
a hash function ℎ∗. To make this precise, for a hash function 𝐻 : {0, 1}3𝑛 → {0, 1}3𝑛, we define R[𝑧; 𝑠]𝐻 to be the
function given by the rule

R[𝑧; 𝑠]𝐻 (𝑥) =
{
𝐻 (𝑥) if 𝑥 ≠ 𝑧,

𝑠 if 𝑥 = 𝑧,

We typically apply this when 𝑠 is drawn uniformly at random in {0, 1}3𝑛; we then say that the value of 𝐻 has been
“resampled” at 𝑧. In this case, R[𝑧; 𝑠]𝐻 is a random variable which we write R[𝑧]𝐻 (obtained by selecting 𝑠 uniformly);
when 𝑧 is explicitly identified by context, we simply write R𝐻. Finally, we apply this notation consistently with
our conventions for rendering the family ℎ∗ from 𝐻. Thus R[𝑖, 𝑥]ℎ∗ denotes the family of functions resulting from
resampling (𝑥, ℎ𝑖).
Fact 14 (Invariance under resampling). Consider an (unbounded) algorithm 𝐴 with oracle access to 𝐻 : {0, 1}𝑚 →
{0, 1}𝑚, a uniformly random function. Suppose, further, that 𝐴𝐻 carries out a collection of (adaptively chosen) queries
to 𝐻 and with probability 1 returns an element result(𝐴𝐻 ) ∈ {0, 1}𝑚 on which it has not queried 𝐻. Then the random
variable R[result(𝐴𝐻 )]𝐻 is uniform; that is, the distribution arising from sampling 𝐻, querying according to 𝐴, and
resampling 𝐻 at result(𝐴𝐻 ) is uniform.

Proof. Observe that the resampling does not change the distribution of 𝐻 conditioned on the responses the queries of
𝐴. �

Definition 9 (Honest term). Fix a subversion algorithm 𝐻̃. Then for a fixed ℎ∗, an index 𝑖 ∈ [ℓ], and an 𝑥 ∈ {0, 1}𝑛, we
say (𝑥, ℎ𝑖) is honest if for any 𝑗 ∈ [ℓ] and 𝑦 ∈ {0, 1}𝑛,

Pr
𝑠
[Rℎ𝑖 (𝑥) ≠ R̃ℎ𝑖 (𝑥)] < 𝜖1/4 ,

where the randomness is over the resampling of ℎ 𝑗 (𝑦) (so the resampling operator is R[ 𝑗 , 𝑦; 𝑠] in both cases). A term is
dishonest if it is not honest. (N.b. the function(s) R̃ℎ𝑖 are defined by 𝐻̃Rℎ∗ and hence may be very different from ℎ∗.)
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Let us consider the following random variables defined by (uniform) random selection of ℎ∗:

𝑑𝑖 (𝑥) =
{
1 if (𝑥, ℎ𝑖) is dishonest,
0 otherwise.

Lemma 15. Pr
ℎ∗
[∃𝑖 ∈ [ℓ], ℎ𝑖 has more than 2𝑛 (𝑞𝐻̃ + 1)𝜖1/8 dishonest inputs] ≤ ℓ𝜖1/8.

Proof. If (𝑥, ℎ𝑖) is good, then

E[𝑑𝑖 (𝑥)] = Pr
ℎ∗

[
∃( 𝑗 , 𝑦), Pr

𝑠

[
R[ 𝑗 , 𝑦; 𝑠]ℎ𝑖 (𝑥) ≠ �R[ 𝑗 , 𝑦; 𝑠]ℎ𝑖 (𝑥)

]
> 𝜖1/4

]
≤

∑︁
𝑘=1,...,𝑞𝐻̃

Pr
ℎ∗

[
Pr
𝑠

[
R[ 𝑗 , 𝑦; 𝑠]ℎ𝑖 (𝑥) ≠ �R[ 𝑗 , 𝑦; 𝑠]ℎ𝑖 (𝑥)

]
> 𝜖1/4,

where ℎ 𝑗 (𝑦) is the 𝑘-th term queried by the evaluation of ℎ̃𝑖 (𝑥)
]

≤ 𝑞𝐻̃ · Pr
ℎ∗

[
ℎ𝑖 (𝑥) ≠ ℎ̃𝑖 (𝑥)

]
≤ 𝑞𝐻̃ 𝜖1/4

by the union bound and invariance under resampling. Therefore,∑︁
𝑥∈{0,1}𝑛

E[𝑑𝑖 (𝑥)] < 2𝑛 (𝑞𝐻̃ 𝜖1/4 +
√
𝜖) < 2𝑛 (𝑞𝐻̃ + 1)𝜖1/4.

Applying Markov’s inequality and union bound again, we conclude

Pr
ℎ∗
[∃𝑖 ∈ [ℓ], ℎ𝑖 has more than 2𝑛 (𝑞𝐻̃ + 1)𝜖1/8 dishonest inputs] ≤ ℓ𝜖1/8 . �

Definition 10 (Invisible term). Given (𝑅, ℎ∗), we say a term (𝑥, ℎ𝑖) is invisible if for any ℎ̃ 𝑗 (𝑦) that queries (𝑥, ℎ𝑖),
ℎ̃ 𝑗 (𝑦) = ℎ 𝑗 (𝑦) and

Pr
𝑠

[
R[𝑖, 𝑥; 𝑠]ℎ 𝑗 (𝑦) ≠ �R[𝑖, 𝑥; 𝑠]ℎ 𝑗 (𝑦)

]
< 𝜖1/4 .

Lemma 16. Pr[There exists a constellation with fewer than ℓ − 𝑛 invisible terms] = 𝑂 (ℓ𝜖1/8).

Proof. We say ℎ∗ is stealthy if, for all 𝑖 ∈ [ℓ], there are no more than ℓ2𝑛 (𝑞𝐻̃ + 1)𝜖1/8 dishonest terms in ℎ𝑖 . If ℎ∗ is
stealthy, the dishonest terms in ℎ∗ make at most ℓ2𝑛𝑞𝐻̃ (𝑞𝐻̃ + 1)𝜖1/8 queries via the subversion algorithm. In other
words, each column contains at least 2𝑛 − ℓ2𝑛𝑞𝐻̃ (𝑞𝐻̃ + 1)𝜖1/8 terms that are not queried by any dishonest term.
Notice that a term that is only queried by honest terms is invisible. Therefore,

Pr
𝑅,ℎ∗
[There exists a constellation with more than 𝑛 visible terms.]

< Pr
𝑅,ℎ∗
[There exists a constellation with more than 𝑛 visible terms | ℎ∗ is stealthy] + Pr

ℎ∗
[ℎ∗ is stealthy]

< Pr
𝑅,ℎ∗

[
There exists a constellation with more than 𝑛 terms that
are queried by a dishonest or subverted term

���� ℎ∗ is stealthy] + ℓ𝜖1/8
< 2𝑛

(
ℓ

𝑛

)
(ℓ𝑞𝐻̃ (𝑞𝐻̃ + 1)𝜖1/8 + ℓ𝑞𝐻̃ 𝜖)𝑛 + ℓ𝜖1/8 = 𝑂 (ℓ𝜖1/8),

as long as ℓ = 𝑂 (𝑛). In the last equality, we use the face that 𝑞𝐻̃ is polynomial in 𝑛, and for sufficiently large 𝑛,

2𝑛
(
ℓ

𝑛

)
(ℓ𝑞𝐻̃ (𝑞𝐻̃ + 1)𝜖1/8 + ℓ𝑞𝐻̃ 𝜖)𝑛 = 𝑂 (2𝑛4𝑛𝜖𝑛/16) = 𝑂 ((8𝜖1/16)𝑛) = 𝑂 (𝜖1/8) . �

Definition 11 (Normal randomness). We say (𝑅, ℎ∗) is normal if every constellation has at least ℓ − 𝑛 invisible terms.
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For convenience, we focus on a fixed distinguisher in Game 2 for the rest of the section.

Definition 12 (Regular transcript). For any 0 < 𝑘 < 𝑞 D̂ , we say an 𝑅-transcript 𝛼2 [𝑘] is regular if

Pr
ℎ∗
[(𝑅, ℎ∗) is normal | 𝛼2 [𝑘]] > 1 −

√
ℓ𝜖1/16 .

Otherwise, we say 𝛼2 [𝑘] is irregular.

Lemma 17. For any 0 < 𝑘 < 𝑞 D̂ .
Pr[𝛼2 [𝑘] is irregular] <

√
ℓ𝜖1/16 .

Proof. ∑︁
𝛼2 [𝑘 ]

Pr[(𝑅, ℎ∗) is normal | 𝛼2 [𝑘]] · Pr[𝛼2 [𝑘]] = Pr[(𝑅, ℎ∗) is normal] = 1 −𝑂 (ℓ𝜖1/8) .

Using Markov’s inequality, we have, with probability at least 1 −
√
ℓ𝜖1/16 in the choice of 𝛼2 [𝑘],

Pr[(𝑅, ℎ∗) is not normal | 𝛼2 [𝑘]] <
√
ℓ𝜖1/16 . �

Definition 13 (Consistency). For any 0 < 𝑘 < 𝑞 D̂ and any two functions ℎ1∗, ℎ2∗, we say ℎ1∗ is 𝑘-consistent with ℎ2∗ if for
some 𝑅 in Game 2, ℎ∗ = ℎ1∗ and ℎ∗ = ℎ2∗ give the same 𝑅-transcript 𝛼2 [𝑘] at the end of 𝑘-th interaction.

Lemma 18. For any 0 < 𝑘 < 𝑞 D̂ and two 𝑘-consistent functions ℎ1∗, ℎ2∗ with common 𝑅-transcript 𝛼′ after 𝑘-th
interaction,

Pr[ℎ∗ = ℎ1∗ | 𝛼2 [𝑘] = 𝛼′] = Pr[ℎ∗ = ℎ2∗ | 𝛼2 [𝑘] = 𝛼′],
where the randomness is over Game 2.

Proof. Observe that, for a fixed distinguisher, the transcript 𝛼2 [𝑘] is a deterministic function of ℎ. As ℎ is uniformly
distributed, the distribution obtained by conditioning on the value of any fixed function of ℎ is also uniform. �

4.3.1 Unpredictability

In this section we bound the probability of Pred.
For 0 ≤ 𝑘 < 𝑞 D̂ , we define the event Pred[𝑘] to be: in Game 2.2, Pred occurs before the end of 𝑘-th query and

answer. In the rest of section 4.4, we denote by 𝑇 [𝑘] the data in 𝑇𝐻 and 𝑇𝐹 in Game 2.2 after 𝑘-th query and answer.

Corollary 19. For any 0 < 𝑘 < 𝑞 D̂ , Pr[Pred[𝑘] ∧ ¬Pred[𝑘 − 1]] = 𝑂 (ℓ2 (𝑘 − 1)𝑞𝐻̃2−3𝑛 +
√
ℓ𝜖1/16).

Proof. We consider the event Pr[Pred[𝑘] ∧ ¬Pred[𝑘 − 1]].

Pr[Pred[𝑘] ∧ ¬Pred[𝑘 − 1]]
≤ Pr[Pred[𝑘] ∧ ¬Pred[𝑘 − 1] | 𝛼2 [𝑘 − 1] is regular] + Pr[𝛼2 [𝑘 − 1] is not regular]
≤ Pr[Pred[𝑘] ∧ ¬Pred[𝑘 − 1] and (𝑅, ℎ∗) is normal | 𝛼2 [𝑘 − 1] is regular]
+ Pr[(𝑅, ℎ∗) is not normal | 𝛼2 [𝑘 − 1] is regular] +

√
ℓ𝜖1/16

≤ Pr
[
the 𝑘-th query is a constellation 𝑦 that contains
an invisible term and 𝑔̃𝑅 (𝑦) ∈ 𝑇 [𝑘 − 1]

���� 𝛼2 [𝑘 − 1] is regular] + 2√ℓ𝜖1/16
≤

∑︁
𝑖∈[ℓ ]

Pr
[
the 𝑘-th query is a constellation 𝑦, 𝑔̃𝑅 (𝑦) ∈ 𝑇 [𝑘−1]
and the 𝑖th term (𝑦, ℎ𝑖) is invisible

���� 𝛼2 [𝑘 − 1] is regular] + 2√ℓ𝜖1/16
Now consider any fixed 𝛼2 [𝑘 − 1] in conjunction with a fixed index 𝑖. Recall that fixing 𝛼2 [𝑘 − 1] determines 𝑅 and
hence the constellation determined by the 𝑘th query; thus 𝑖 uniquely determines a term (𝑦, ℎ𝑖) of the constellation 𝑦
queried by D at the 𝑘th step. Consider further a “partial assignment” 𝑝∗ to the functions ℎ∗ that provides values at all
points in the domain except for (𝑦, ℎ𝑖). We say that 𝑝∗ has an invisible completion (w.r.t. 𝛼2 [𝑘 − 1]) if there is some
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assignment to (𝑦, ℎ𝑖) so that this term is invisible (for 𝑝∗ and the 𝑅 given by 𝛼[𝑘 − 1]). With this language, we may
further upper bound the expression just above by

≤
∑︁
𝑖∈[ℓ ]

Pr

[
𝑔̃𝑅 (𝑦) ∈ 𝑇 [𝑘 − 1] and the 𝑖th
term (𝑦, ℎ𝑖) is invisible

����� 𝛼2 [𝑘−1] is regular, the 𝑘-th query is a constellation𝑦 with 𝑖th term (𝑦, ℎ𝑖), the partial assignment 𝑝∗
excluding (𝑦, ℎ𝑖) has an invisible completion

]
+ 2
√
ℓ𝜖1/16 . (2)

(Here, the partial assignment 𝑝∗ is simply the function ℎ∗ with the value at (𝑦, ℎ𝑖) excluded.) Observe that for any
fixed triple (𝛼2 [𝑘 − 1], 𝑖, 𝑝∗) that may arise in the conditioning above, there are exactly 23𝑛 completions of 𝑝∗ to a
full function ℎ∗. Recalling the definition of invisible, it follows that at least a 1 − 𝜖1/4 fraction of all completions
are consistent with 𝛼2 [𝑘 − 1] and, furthermore, maintain the invisibility of (𝑦, ℎ𝑖). Note, additionally, that at most
|𝑇 [𝑘 − 1] | of these completions can have the property that 𝑔̃𝑅 (𝑦) ∈ 𝑇 [𝑘 − 1] and, additionally, that all such completions
have the same conditional probability (Lemma 18). We conclude that the probability of (2) is no more than

≤ ℓ

1 − 𝜖1/4
|𝑇 [𝑘 − 1] |
23𝑛

+ 2
√
ℓ𝜖1/16 = 𝑂 (ℓ2 (𝑘 − 1)𝑞𝐻̃2−3𝑛 +

√
ℓ𝜖1/16) . �

Theorem 20. Pr[Pred] = 𝑂 (ℓ2𝑞2
D̂
𝑞𝐻̃2−3𝑛 +

√
ℓ𝑞 D̂𝜖

1/16).

Theorem 20 follows from the union bound to Corollary 19 over 𝑘 .

4.3.2 Subversion freedom
Now we bound the probability of the event Subv.

Definition 14 (Silent term). Given (𝑅, ℎ∗), for any 𝑥 ∈ {0, 1}𝑛 and 𝑖 ∈ [ℓ], we say (𝑥, ℎ𝑖) is silent if (𝑥, ℎ𝑖) is invisible
and is queried by fewer than 22.5𝑛𝑞𝐻̃ terms of ℎ̃0.

Lemma 21. For any 0 < 𝑘 < 𝑞 D̂ , assuming that ℓ > 𝑛 + 4,

Pr[there exists 𝑥 such that the constellation 𝑥 has no silent term | 𝛼2 [𝑘] is regular] = 𝑂

(
ℓ4

2𝑛
+
√
ℓ𝜖1/16

)
.

Proof. Using Markov’s inequality, for each 𝑥 ∈ {0, 1}𝑛 and 𝑖 ∈ [ℓ],

Pr
𝑅,ℎ∗
[ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) is queried by ℎ̃0 (𝑦) for more than 22.5𝑛𝑞𝐻̃ many 𝑦’s] <

1
√
2𝑛

.

Let us call such a (𝑥 ⊕ 𝑟𝑖 , ℎ𝑖) thick if it is queried by so many ℎ̃0 (𝑦) and thin otherwise. (So that a term is silent if it is
invisible and thin.) Note that for any fixed constellation 𝑥, the events that (𝑥 ⊕ 𝑟𝑖 , ℎ𝑖) are thin are independent (as they
are determined by different 𝑟𝑖). Since ℓ > 𝑛 + 4,

Pr[there exists 𝑥 such that the constellation 𝑥 has no silent term | 𝛼2 [𝑘] is regular]

≤ Pr
𝑅,ℎ∗

[there exists 𝑥 such that the constellation 𝑥 has no silent
term and has more than ℓ − 𝑛 invisible terms

��� 𝛼2 [𝑘] is regular]
+ Pr

𝑅,ℎ∗
[there exists a constellation 𝑥 that has more than 𝑛 visible terms | 𝛼2 [𝑘] is regular]

≤ Pr
𝑅,ℎ∗

[there exists 𝑥 such that the constellation 𝑥 has more than
ℓ − 𝑛 invisible terms and all these terms are thick

] /
Pr[𝛼2 [𝑘] is regular] +𝑂

(√
ℓ𝜖1/16

)
≤ Pr

𝑅,ℎ∗

[there exists 𝑥 such that the constellation 𝑥 has more than
ℓ − 𝑛 thick terms

] /
Pr[𝛼2 [𝑘] is regular] +𝑂

(√
ℓ𝜖1/16

)
≤ 2𝑛

(
ℓ

4

) (
1
√
2𝑛

)4
· 2 +𝑂 (

√
ℓ𝜖1/16) = 𝑂 (ℓ4/2𝑛 +

√
ℓ𝜖1/16). �

For 0 ≤ 𝑘 < 𝑞 D̂ , we define the event Subv[𝑘] to be: in Game 2.2, Subv occurs before the end of 𝑘-th query and
answer.
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Corollary 22. For any 0 < 𝑘 < 𝑞 D̂ , Pr[Subv[𝑘] ∧ ¬Subv[𝑘 − 1]] = 𝑂 (ℓ𝑞𝐻̃ /
√
2𝑛 +
√
ℓ𝜖1/16).

Proof. We consider the event Subv[𝑘] ∧ ¬Subv[𝑘 − 1].

Pr[Subv[𝑘] ∧ ¬Subv[𝑘 − 1]]
≤ Pr[Subv[𝑘] ∧ ¬Subv[𝑘 − 1] | 𝛼2 [𝑘 − 1] is regular] + Pr[𝛼2 [𝑘 − 1] is not regular]
≤ Pr[Subv[𝑘] ∧ ¬Subv[𝑘 − 1] and every constellation has a silent term | 𝛼2 [𝑘 − 1] is regular]
+ Pr[not all constellations have a silent term | 𝛼2 [𝑘 − 1] is regular] +

√
ℓ𝜖1/16

≤
∑︁
𝑖∈[ℓ ]

Pr
[
the 𝑖th term (𝑥, ℎ𝑖) of the constellation 𝑥 queried
at step 𝑘 is silent and ℎ0 is subverted at 𝑔̃𝑅 (𝑥)

���� 𝛼2 [𝑘 − 1] is regular] + ℓ4/2𝑛 + √ℓ𝜖1/16
Now consider any fixed 𝛼2 [𝑘 − 1] in conjunction with a fixed index 𝑖. Recall that fixing 𝛼2 [𝑘 − 1] determines 𝑅 and
hence the constellation determined by the 𝑘th query; thus 𝑖 uniquely determines a term (𝑦, ℎ𝑖) of the constellation 𝑦
queried by D at the 𝑘th step. Consider further a “partial assignment” 𝑝∗ to the functions ℎ∗ that provides values at
all points in the domain except for (𝑦, ℎ𝑖). We say that 𝑝∗ has a silent completion (w.r.t. 𝛼2 [𝑘 − 1]) if there is some
assignment to (𝑦, ℎ𝑖) so that this term is silent (for 𝑝∗ and the 𝑅 given by 𝛼[𝑘 − 1]). With this language, we may further
upper bound the expression just above by

≤
∑︁
𝑖∈[ℓ ]

Pr

[
(𝑥, ℎ𝑖) is silent and ℎ0
is subverted at 𝑔̃𝑅 (𝑥)

����� 𝛼2 [𝑘 − 1] is regular, the partial assignment ex-cluding the 𝑖th term (𝑥, ℎ𝑖) of the constellation 𝑥
queried at step 𝑘 has a silent completion

]
+ ℓ4/2𝑛 +

√
ℓ𝜖1/16

≤
∑︁
𝑖∈[ℓ ]

Pr

[
ℎ0 is subverted at 𝑔̃𝑅 (𝑥) and
ℎ̃0 (𝑔̃𝑅 (𝑥)) does not query (𝑥, ℎ𝑖)

����� 𝛼2 [𝑘 − 1] is regular, the partial assignment ex-cluding the 𝑖th term (𝑥, ℎ𝑖) of the constellation 𝑥
queried at step 𝑘 has a silent completion

]
+

∑︁
𝑖∈[ℓ ]

Pr

[
ℎ0 is subverted at 𝑔̃𝑅 (𝑥) and
ℎ̃0 (𝑔̃𝑅 (𝑥)) queries (𝑥, ℎ𝑖)

����� 𝛼2 [𝑘 − 1] is regular, the partial assignment ex-cluding the 𝑖th term (𝑥, ℎ𝑖) of the constellation 𝑥
queried at step 𝑘 has a silent completion

]
+ ℓ4/2𝑛 +

√
ℓ𝜖1/16.

(Here, the partial assignment 𝑝∗ is simply the function ℎ∗ with the value at (𝑦, ℎ𝑖) excluded.) Observe that for any fixed
triple (𝛼2 [𝑘 −1], 𝑖, 𝑝∗) that may arise in the conditioning above, there are exactly 23𝑛 completions of 𝑝∗ to a full function
ℎ∗. Recalling the definition of silent, it follows that at least a 1 − 𝜖1/4 fraction of all completions are consistent with
𝛼2 [𝑘 − 1] and, furthermore, maintain the silence of (𝑦, ℎ𝑖). Note, additionally, that at most 23𝑛𝜖 of these completions
can have the property that ℎ0 is subverted at 𝑔̃𝑅 (𝑥) and ℎ̃0 (𝑔̃𝑅 (𝑥)) does not query (𝑥, ℎ𝑖), while at most 22.5𝑛𝑞𝐻̃ of
these completions can have the property that ℎ0 is subverted at 𝑔̃𝑅 (𝑥) and ℎ̃0 (𝑔̃𝑅 (𝑥)) queries (𝑥, ℎ𝑖). Moreover, all such
completions have the same conditional probability (Lemma 18). We conclude that the probability above is no more than

≤ ℓ

(
23𝑛𝜖
23𝑛
+
22.5𝑛𝑞𝐻̃
23𝑛

)
/(1 − 𝜖1/4) + ℓ4/2𝑛 +

√
ℓ𝜖1/16 = 𝑂 (ℓ𝑞𝐻̃ /

√
2𝑛 +
√
ℓ𝜖1/16). �

Theorem 23. Pr[Subv] = 𝑂 (ℓ𝑞𝐷̂𝑞𝐻̃ /
√
2𝑛 +
√
ℓ𝑞𝐷̂𝜖

1/16).

Theorem 23 can be proved by applying the union bound to Corollary 22 over 𝑘 .

4.4 Controlling the self-referential probability
Now we proceed to prove that the crisis event Selfref is negligible. We prove this result by establishing a stronger
theorem that says the entire data table in Game 2.1 has a negligible chance to have a self-referential constellation.

Theorem 24. In Game 2.1, for any distinguisher D

Pr
ℎ,𝑅
[Selfref] = 𝑂 (𝑞𝐻̃ ℓ2−2𝑛).

We state a standard Chernoff bound; see [MR95], or [Lev] for this particular formulation.
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Lemma 25. (Chernoff Bound) Let 𝑋1,...,𝑋𝑛 be discrete, independent random variable such that 𝐸 [𝑋𝑖]=0 and |𝑋𝑖 | ≤ 1
for all i. Let 𝑋 =

∑𝑛
𝑖=1 𝑋𝑖 and 𝜎2 be the variance of X. Then Pr[|𝑋 | ≥ 𝜆𝜎] ≤ 2𝑒−𝜆2/4 for any 0 ≤ 𝜆 ≤ 2𝜎.

In the next two lemmas, we introduce the Fourier transformation to analyze the total variation distance between the
distribution of 𝑔̃𝑅 (𝑥) and the uniform distribution.

Definition 15 (Character and Dual group). Suppose 𝐺 is a finite abelian group. A character 𝜒 of 𝐺 is a group
homomorphism from 𝐺 into the multiplicative group 𝑇 of complex numbers of norm 1. We define the dual group 𝐺̂ to be
the set of all characters of 𝐺; these make an abelian group under the pointwise product operation [𝜒𝜎] (𝑥) = 𝜒(𝑥) ·𝜎(𝑥).
We let 1 : 𝐺 → 𝑇 denote the trivial character 1 : 𝑔 ↦→ 1.

It is a fact that |𝐺 | = |𝐺̂ | for any finite abelian group 𝐺 and, furthermore, that the functions of 𝐺̂ are linearly
independent: that is, if

∑
𝜒 𝑎𝜒𝜒 is the zero function for some collection of coefficients 𝑎𝜒 ∈ C, then all 𝑎𝜒 = 0.

Definition 16 (Discrete Fourier transform). Suppose 𝐺 is a finite abelian group. Let 𝐿2 (𝐺) be the set of all
complex-valued functions on 𝐺. The discrete Fourier transform on 𝑓 ∈ 𝐿2 (𝐺) is defined by

𝑓 (𝜒) =
∑︁
𝑎∈𝐺

𝑓 (𝑎)𝜒(𝑎) = 〈 𝑓 , 𝜒〉, for 𝜒 ∈ 𝐺̂.

Here 〈 , 〉 denotes the inner product of complex-valued functions on 𝐺. We remark that if 𝑓 : 𝐺 → R is a probability
distribution then 𝑓 (1) = 1 and | 𝑓 (𝜒) | ≤ 1 for all 𝜒

Lemma 26. Define convolution by

( 𝑓 ∗ 𝑔) (𝑥) =
∑︁
𝑦∈𝐺

𝑓 (𝑦)𝑔(𝑥 − 𝑦), for 𝑥 ∈ 𝐺.

Then �𝑓 ∗ 𝑔(𝜒) = 𝑓 (𝜒) · 𝑔̂(𝜒), for all 𝜒 ∈ 𝐺̂ .

Lemma 27. Let 𝑄 be a probability distribution and 𝑈 be the uniform distribution on a finite abelian group 𝐺. Then,

‖𝑄 −𝑈‖tv ≤
1
2

©­«
∑︁

𝜒∈𝐺̂,𝜒≠1

��𝑄̂(𝜒)��2ª®¬
1/2

.

In our application of the Fourier transform, 𝐺 is the group (Z/2)3𝑛. For any fixed 𝑖 ∈ [ℓ] and 𝑥 ∈ {0, 1}𝑛, we denote
the distribution of ℎ𝑖 (𝑥 ⊕ 𝑟𝑖), ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖) and 𝑔̃𝑅 (𝑥) by 𝑝𝑥

𝑖
, 𝑝′𝑥𝑖 and 𝑃𝑥 , respectively. These are random variables defined

by uniform selection ℎ∗ and 𝑅. For a fixed value of ℎ∗, we further define 𝑝𝑥
𝑖,ℎ∗
, 𝑝′𝑥

𝑖,ℎ∗
, and 𝑃𝑥

ℎ∗
to be the distributions of

ℎ𝑖 (𝑥 ⊕ 𝑟𝑖), ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖) and 𝑔̃𝑅 (𝑥) respectively, over the randomness of 𝑅. In most cases below we omit 𝑥 in the notation
when there is no ambiguity.

Lemma 28. For any 𝑥, 𝑟 ∈ {0, 1}𝑛 and any 𝑡 ∈ [ℓ],

Pr
ℎ∗

[
‖𝑃𝑥

ℎ∗;𝑟 ,𝑡 −𝑈‖tv ≥ 2
3𝑛−1 (𝑛2−𝑛/2 + 𝜖)ℓ/2

]
≤ 2−Ω(𝑛2ℓ) ,

where 𝑃𝑥
ℎ∗;𝑟 ,𝑡 is the distribution of 𝑔̃𝑅 (𝑥), conditioned on ℎ∗, over uniform 𝑅 with the constraint 𝑟𝑡 = 𝑟 . 𝑈 is the uniform

distribution on 𝐺 and 𝜖 here is the (negligible) disagreement probability of (1) above.

Proof. Consider an arbitrary 𝑖 ∈ [ℓ] and nontrivial 𝜒 ∈ 𝐺̂ (that is, 𝜒 ≠ 1). Observe that for any ℎ∗,

𝑝𝑖,ℎ∗ =
∑︁

𝑣∈(Z/2)3𝑛
Pr
𝑟𝑖
[ℎ𝑖 (𝑥 ⊕ 𝑟𝑖) = 𝑣]𝜒(𝑣) = 1

2𝑛
∑︁
𝑟𝑖

𝜒(ℎ𝑖 (𝑥 ⊕ 𝑟𝑖)) ,
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as 𝜒() is always real. When ℎ𝑖 is selected uniformly, the 𝜒(ℎ𝑖 (𝑥 ⊕ 𝑟𝑖)) are i.i.d. random variables taking values in {±1}
and we may apply Lemma 25 with 𝜆 = 𝑛; noting that the variance is 𝜎2 = 2𝑛 this yields

Pr
ℎ∗
[2𝑛𝑝𝑖,ℎ∗ (𝜒) ≥ 𝑛2𝑛/2] ≤ 2𝑒−𝑛2/4.

For any fixed ℎ𝑖 and 𝑥, by assumption Pr𝑟𝑖 [ℎ̃𝑖 (𝑥 ⊕ 𝑟𝑖) ≠ ℎ𝑖 (𝑥 ⊕ 𝑟𝑖)] ≤ 𝜖 and hence |𝑝𝑖,ℎ∗ (𝜒) − 𝑝′
𝑖,ℎ∗
(𝜒) | ≤ 𝜖 for every

𝜒. In light of this, for any 𝑡 and 𝜒,

Pr
ℎ∗
[|𝑃̂ℎ∗;𝑡 ,𝑟 (𝜒) | ≥ (𝑛2−𝑛/2 + 𝜖)ℓ/2] = Pr

ℎ∗

[
ℓ∏

𝑖=1,𝑖≠𝑡
|𝑝′𝑖,ℎ∗ (𝜒) | ≥ (𝑛2

−𝑛/2 + 𝜖)ℓ/2
]

≤ Pr
ℎ∗
[∃ half of the coordinates 𝑖 ∈ [ℓ]/{𝑟𝑡 } such that |𝑝′𝑖,ℎ∗ (𝜒) | ≥ 𝑛2−𝑛/2 + 𝜖]

≤ Pr
ℎ∗
[∃ half of the coordinates 𝑖 ∈ [ℓ]/{𝑟𝑡 } such that |𝑝𝑖,ℎ∗ (𝜒) | ≥ 𝑛2−𝑛/2]

≤
(
ℓ

ℓ/2

)
· (2𝑒−𝑛2/4)ℓ/2 = (8𝑒−𝑛2/4)ℓ/2 .

Thus,
Pr
ℎ∗
[∃𝜒 ∈ 𝐺̂ \ {1}, |𝑃̂ℎ∗;𝑟 ,𝑡 (𝜒) | ≥ (𝑛2−𝑛/2 + 𝜖)ℓ/2] ≤ 26𝑛 (8𝑒−𝑛

2/4)ℓ/2

and we conclude that

Pr
ℎ∗

[
‖𝑃𝑥

ℎ∗;𝑟 ,𝑡 −𝑈‖tv ≥
1
2
23𝑛 (𝑛2−𝑛/2 + 𝜖)ℓ/2

]
= Pr

ℎ∗


1
2

∑︁
𝜒∈𝐺̂,𝜒≠1

|𝑃̂ℎ∗;𝑟 ,𝑡 (𝜒) | ≥ 23𝑛−1 (𝑛2−𝑛/2 + 𝜖)ℓ/2


≤ Pr
ℎ∗
[∃𝜒 ∈ 𝐺̂, 𝜒 ≠ 1, |𝑃̂ℎ∗;𝑟 ,𝑡 (𝜒) | ≥ (𝑛2−𝑛/2 + 𝜖)ℓ/2]

≤ 26𝑛 (8𝑒−𝑛2/4)ℓ/2 = 2−Ω(𝑛2ℓ) ,

where the first equality is Lemma 27. �

Now we are ready to show that, with overwhelmingly probability, there is no self-referential constellation in the
entire table.

Lemma 29. In Game 2.1, for some 𝑅, ℎ∗ and 𝑥 ∈ {0, 1}𝑛, we say constellation 𝑥 is self-referential if there exists 𝑡 ∈ [ℓ]
such that ℎ0 (𝑔̃𝑅 (𝑥)) is queried by ℎ̃𝑡 (𝑥 ⊕ 𝑟𝑡 ). Then, assuming that ℓ > 𝑛,

Pr
𝑅,ℎ∗
[there exists a self-referential constellation] = 𝑂 (𝑞𝐻̃ ℓ2−2𝑛).

Proof. For any 𝑥, 𝑟 ∈ {0, 1}𝑛 and any 𝑡 ∈ [ℓ], we say ℎ∗ is (𝑥, 𝑟, 𝑡)-good if ‖𝑃𝑥
ℎ∗;𝑟 ,𝑡 −𝑈‖tv ≤ 2

3𝑛−1 (𝑛2−𝑛/2 + 𝜖)ℓ/2.
Otherwise, we say ℎ∗ is (𝑥, 𝑟, 𝑡)-bad. Let 𝑃𝑥

𝑟 ,𝑡 be the distribution of 𝑔̃𝑅 (𝑥) over the randomness of ℎ∗ and 𝑅 with the
constraint 𝑟𝑡 = 𝑟. Then,

Pr
𝑅,ℎ∗
[∃𝑥 ∈ {0, 1}𝑛, the constellation of 𝑥 is self-referential]

≤
∑︁

𝑥∈{0,1}𝑛

ℓ∑︁
𝑡=1

∑︁
𝑟 ∈{0,1}𝑛

Pr[𝑟𝑡 = 𝑟] Pr
𝑅/𝑟𝑡 ,ℎ∗

[ℎ0 (𝑔̃𝑅 (𝑥)) is queried by ℎ̃𝑡 (𝑥 ⊕ 𝑟𝑡 ) with 𝑟𝑡 = 𝑟]

≤ ℓ2𝑛max
𝑥,𝑟 ,𝑡

{
Pr

𝑅/𝑟𝑡 ,ℎ∗
[ℎ0 (𝑔̃𝑅 (𝑥)) is queried by ℎ̃𝑡 (𝑥 ⊕ 𝑟) | ℎ∗ is (𝑥, 𝑟, 𝑡)-good] · Pr

ℎ∗
[ℎ∗ is (𝑥, 𝑟, 𝑡)-good]

+ Pr
ℎ∗
[ℎ∗ is (𝑥, 𝑟, 𝑡)-bad]

}
≤ ℓ2𝑛

{
(23𝑛−1 (𝑛2−𝑛/2 + 𝜖)ℓ/2 + 2−3𝑛 · 𝑞𝐻̃ ) +𝑂 (2−Ω(𝑛

2ℓ) )
}

= 𝑂 (𝑞𝐻̃ ℓ2−2𝑛) ,
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so long as ℓ > 𝑛. (Note that for sufficiently large 𝑛, we have (𝑛2−𝑛/2 + 𝜖)ℓ/2 = 𝑂 (𝑛ℓ/22−Θ(𝑛ℓ) + 𝜖Θ(ℓ) ).) In the
last inequality we use the fact that if ‖𝐷1 − 𝐷2‖ ≤ 𝛿 for two distributions 𝐷1 and 𝐷2 then, for any event 𝐸 ,
Pr𝐷1 [𝐸] ≤ Pr𝐷2 [𝐸] + 𝛿. �

Theorem 24 follows immediately from Lemma 29.

4.5 Crooked indifferentiability in the full model
Now we show the simulator S achieving abbreviated crooked indifferentiability can be lifted to a simulator that achieves
full indifferentiability (Definition 4).

Theorem 30. If the construction in Section 3 is (𝑛′, 𝑛, 𝑞D , 𝑞𝐻̃ , 𝑟, 𝜖 ′)-Abbreviated-𝐻-crooked-indifferentiable from a
random oracle 𝐹, it is (𝑛′, 𝑛, 𝑞D , 𝑞𝐻̃ , 𝑟, 𝜖 ′ +𝑂 (𝑞2D𝑞𝐻̃ ℓ2−3𝑛))-𝐻-crooked-indifferentiable from 𝐹.

Proof. Consider the following simulator S𝐹 built on S:

1. Draw two data sets, DS1 and DS2: DS1 contains uniformly selected values for each 𝐹 (𝑥) and ℎ𝑖 (𝑥) for all
0 < 𝑖 ≤ ℓ and all 𝑥 ∈ {0, 1}𝑛; DS2 contains uniformly selected values ℎ0 (𝑦) for all 𝑦 ∈ {0, 1}3𝑛.

2. In the first phase, S𝐹 answers ℎ𝑖 (𝑥) (0 < 𝑖 ≤ ℓ) and ℎ0 (𝑦) queries according to DS1 and DS2, respectively.

3. The second phase, after which S𝐹 receives 𝑅, is divided into two sub-phases.

• First, S𝐹 simulates S in Game 4 with data sets DS1 and DS2 generated above. It then plays the role of the
distinguisher, and asks S all the questions that were actually asked by the the distinguisher in the first phase.
S𝐹 aborts the game if, in this sub-phase, there are two (simulated) queries (𝑥, ℎ0) and (𝑦, ℎ𝑖) (0 < 𝑖 ≤ ℓ)
such that 𝑥 = 𝑔̃𝑅 (𝑦 ⊕ 𝑟𝑖).

• Second, S𝐹 simulates S and answers the second-phase questions from the distinguisher.

For an arbitrary full model distinguisher D𝐹 , we construct the an abbreviated model distinguisher D as follows. The
proof will show that, with high probability, the execution that takes place between D and S can be “lifted” to an
associated execution between D𝐹 and S𝐹 .

1. Prior to the game, D must publish a subversion algorithm 𝐻̃. This program is constructed as follows. To decide
how to subvert a certain term ℎ𝑖 (𝑥), 𝐻̃ first simulates the first phase of D𝐹 ; all queries made by this simulation
are asked as regular queries by 𝐻̃ and, at the conclusion, this first phase of D𝐹 produces, as output, a subversion
algorithm 𝐻̃𝐹 . 𝐻̃ then simulates the algorithm 𝐻̃𝐹 on the term ℎ𝑖 (𝑥).

2. In the game, D simulates the queries of D𝐹 in D𝐹 ’s first phase. After that, D continues to simulate D𝐹 in the
second phase. (Note that at the point in D𝐹 ’s game where it produces the subversion algorithm 𝐻̃, this is simply
ignored by D.)

Now we are ready to prove S𝐹 is secure against the arbitrarily chosen distinguisher D𝐹 . We organize the proof
around four different transcripts:

𝛾𝐹𝐶 transcript of C interacting with D𝐹

𝛾𝐶 transcript of C interacting with D
𝛾𝐹𝑆 transcript of S𝐹 interacting with D𝐹

𝛾𝑆 transcript of S interacting with D

S C S𝐹

D D𝐹

𝛾𝑆

𝛾𝐶

𝛾𝐹𝐶

𝛾𝐹𝑆

(Here C denotes the construction, as usual.) Since

‖𝛾𝐹𝐶 − 𝛾𝐹𝑆 ‖tv ≤ ‖𝛾𝐹𝐶 − 𝛾𝐶 ‖tv + ‖𝛾𝐶 − 𝛾𝑆 ‖tv + ‖𝛾𝑆 − 𝛾𝐹𝑆 ‖tv ,

it is sufficient to prove the three terms in the right-hand side of the inequality are all negligible.

- ‖𝛾𝐹𝐶 − 𝛾𝐶 ‖tv = 0. This is obvious by observing that 𝛾𝐹𝐶 = 𝛾𝐶 when the underlying values of 𝐻 are the same.
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- ‖𝛾𝐶 − 𝛾𝑆 ‖tv = 𝜖 ′. This is true because S achieves abbreviated crooked indifferentiability.

- ‖𝛾𝑆 − 𝛾𝐹𝑆 ‖tv = 𝑂 (𝑞2D𝑞𝐻̃ ℓ2−3𝑛). To prove this statement, we suppose both the full model game and the
abbreviated model game select all randomness a priori (as in the descriptions above). Suppose the game between
S𝐹 and D𝐹 and the game between S and D share the same data sets DS1, DS2 and 𝑅. Notice that the two games
have same transcripts unless, S𝐹 aborts the game in the first sub-phase of the second phase. We denote this bad
event by Conflict, which by the following lemma 31, is negligible. �

N.b. While the description of the simulator above calls for all randomness to be generated in advance, it is easy to
see that the simulator can in fact be carried out lazily with tables.
To explore the failure event above, we define the following game, named Exp-Many, played by an unbounded

adversaryM.

Exp-Many

1. Select two data sets 𝐷𝑆1 and 𝐷𝑆2: DS1 contains uniformly selected values for each 𝐹 (𝑥) and ℎ𝑖 (𝑥) for all
0 < 𝑖 ≤ ℓ and all 𝑥 ∈ {0, 1}𝑛; DS2 contains uniformly selected values ℎ0 (𝑦) for all 𝑦 ∈ {0, 1}3𝑛.

2. Given 𝐷𝑆1 and 𝐷𝑆2,M publishes a subversion algorithm 𝐻̃ and a sequence of 𝑝(𝑛) (< 𝑞D) terms in the
form of (𝑦, ℎ𝑖) (0 < 𝑖 ≤ ℓ) or (𝑥, ℎ0).

3. 𝑅 is selected uniformly.

4. Implement Game 4 with 𝐷𝑆1, 𝐷𝑆2, 𝑅, 𝐻̃ and the queries prepared above.

5. Output 1 if, in Game 4 of the last step, there exist two queries (𝑥, ℎ0) and (𝑦, ℎ𝑖) (𝑖 > 0) such that
𝑥 = 𝑔̃𝑅 (𝑦 ⊕ 𝑟𝑖). Otherwise, output 0.

Lemma 31. For any distinguisherM, Pr[Exp-Many outputs 1] = 𝑂 (𝑞2D𝑞𝐻̃ ℓ2−3𝑛).

A quick thought reveals that Lemma 31 implies the negligibility of Conflict. Suppose there exists a distinguisher
M in the full model such that Conflict is non-negligible. Consider the following distinguisherM ′ in Exp-Many: In
step 2 of Exp-Many, simulateM and publish the queriesM publishes. Obviously, by definition of Exp-Many, the
probability that Exp-Many outputs 1 when againstM ′ is non-negligible.
Now we proceed to prove Lemma 31. We introduce several concepts that are useful in the proof. Given data sets

𝐷𝑆1, 𝐷𝑆2 and a subversion algorithm 𝐻̃, for any term (𝑥, ℎ𝑖) with 0 < 𝑖 ≤ ℓ and 𝑥 ∈ {0, 1}𝑛, we define its ideal
subversion 𝐼 (𝑥, 𝑖) to be the subverted value of ℎ𝑖 (𝑥) via the subversion algorithm 𝐻̃, using ℎ0 values in 𝐷𝑆2 and ℎ𝑖
(𝑖 > 0) values in 𝐷𝑆1. The trace of (𝑥, ℎ𝑖) is defined to be the set

Tr(𝑥, 𝑖) = {𝑦 ∈ {0, 1}3𝑛 | (𝑦, ℎ0) is queried in the evaluation of 𝐼 (𝑥, 𝑖)} .

Given 𝐷𝑆1, 𝐷𝑆2, 𝑅 and 𝐻̃, for any constellation 𝑥, its ideal output is

𝐼 (𝑥) =
ℓ⊕
𝑖=1

𝐼 (𝑥 ⊕ 𝑟𝑖 , 𝑖) , and its trace is defined by Tr(𝑥) =
ℓ⋃
𝑖=1

Tr(𝑥 ⊕ 𝑟𝑖 , 𝑖) .

In Exp-Many, we define the event

Crossref = {In step 4, a constellation 𝑥 is queried such that 𝐼 (𝑥) ≠ 𝑔̃𝑅 (𝑥)} .

Lemma 32. For any distinguisherM in Exp-Many, Pr[Crossref] = 𝑂 (𝑞2D𝑞𝐻̃ ℓ2−3𝑛).

Proof. Notice that, if Crossref occurs, there are two queries (𝑥, ℎ𝑖) and (𝑦, ℎ 𝑗 ) (0 < 𝑖, 𝑗 < ℓ) such that 𝐼 (𝑥 ⊕ 𝑟𝑖) ∈
Tr(𝑦 ⊕ 𝑟 𝑗 ). We define the event Two-cross to be

In Exp-Many, among the 𝑝(𝑛) queries made byM, there are two terms
(𝑥, ℎ𝑖) and (𝑦, ℎ 𝑗 ) (0 < 𝑖, 𝑗 < ℓ) such that 𝐼 (𝑥 ⊕ 𝑟𝑖) ∈ Tr(𝑦 ⊕ 𝑟 𝑗 ).
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It is sufficient to show Pr[Two-cross] = 𝑂 (𝑞2D𝑞𝐻̃ ℓ2−3𝑛).
For any two terms (𝑥, ℎ𝑖) and (𝑦, ℎ 𝑗 ) (0 < 𝑖, 𝑗 < ℓ) in the queries ofM, whether 𝐼 (𝑥 ⊕ 𝑟𝑖) ∈ Tr(𝑦 ⊕ 𝑟 𝑗 ) only depends

on 𝐷𝑆1, 𝐷𝑆2, 𝐻̃ and 𝑅 (i.e., it has nothing to do with the queries chosen byM).
For any 𝑥, 𝑟 ∈ {0, 1}𝑛 and any 𝑡 ∈ [ℓ], we say (𝐷𝑆1, 𝐷𝑆2) is (𝑥, 𝑟, 𝑡)-good if ‖𝑃𝑥

ℎ∗;𝑟 ,𝑡 −𝑈‖tv ≤ 2
3𝑛−1 (𝑛2−𝑛/2 + 𝜖)ℓ/2,

where 𝑃𝑥
ℎ∗;𝑟 ,𝑡 is the distribution of 𝐼 (𝑥), conditioned on 𝐷𝑆1 and 𝐷𝑆2, over uniform 𝑅 with the constraint 𝑟𝑡 = 𝑟 , and𝑈

is the uniform distribution. Using the same proof in Lemma 28, we can show for any 𝑥 ∈ {0, 1}𝑛 and 𝑡 ∈ [ℓ],

Pr
𝐷𝑆1 ,𝐷𝑆2 ,𝑟

[(𝐷𝑆1, 𝐷𝑆2) is (𝑥, 𝑟, 𝑡)-good] ≥ 1 − 2−Ω(𝑛2ℓ) .

By Markov’s inequality and the union bound, with probability smaller than ℓ2−Ω(𝑛2ℓ) in the choice of (𝐷𝑆1, 𝐷𝑆2),
we have

Pr
𝑟
[(𝐷𝑆1, 𝐷𝑆2) is not (𝑥, 𝑟, 𝑡)-good | (𝐷𝑆1, 𝐷𝑆2)] ≤ 2−Ω(𝑛

2ℓ) ,

for any 𝑥 ∈ {0, 1}𝑛 and 𝑡 ∈ [ℓ]. We say (𝐷𝑆1, 𝐷𝑆2) is all-good if it satisfies the inequality above.
By a Fourier transform argument similar to that in Lemma 29, if (𝐷𝑆1, 𝐷𝑆2) is all-good in Exp-Many, then for any

𝐻̃, any 0 < 𝑖, 𝑗 ≤ ℓ and any 𝑥, 𝑦 ∈ {0, 1}𝑛, and ℓ > 𝑛,

Pr
𝑅
[𝐼 (𝑥 ⊕ 𝑟𝑖) ∈ Tr(𝑦 ⊕ 𝑟 𝑗 )] ≤

ℓ∑︁
𝑘=1
Pr
𝑅
[𝐼 (𝑥 ⊕ 𝑟𝑖) ∈ Tr(𝑦 ⊕ 𝑟 𝑗 , 𝑘)] = 𝑂 (𝑞𝐻̃ ℓ2−3𝑛)

Finally,

Pr[Two-cross]
< Pr[(𝐷𝑆1, 𝐷𝑆2) is all-good] + Pr[Two-cross | (𝐷𝑆1, 𝐷𝑆2) is not all-good]

< 2−Ω(𝑛
2ℓ) +

(
𝑝(𝑛)
2

)
𝑂 (𝑞𝐻̃ ℓ2−3𝑛)

= 𝑂 (𝑞2D𝑞𝐻̃ ℓ2−3𝑛).

�

To complete the proof, we consider an even simpler game that focuses attention on a pair of queries.

Exp-One

1. Select two data sets 𝐷𝑆1 and 𝐷𝑆2: DS1 contains uniformly selected values for each 𝐹 (𝑥) and ℎ𝑖 (𝑥) for all
0 < 𝑖 ≤ ℓ and all 𝑥 ∈ {0, 1}𝑛; DS2 contains uniformly selected values ℎ0 (𝑦) for all 𝑦 ∈ {0, 1}3𝑛.

2. Given 𝐷𝑆1 and 𝐷𝑆2,M ′ publishes a subversion algorithm 𝐻̃ and a triple ((𝑥, ℎ𝑖), 𝑦) for some 0 ≤ 𝑖 ≤ ℓ,
𝑥 ∈ {0, 1}𝑛 and 𝑦 ∈ {0, 1}3𝑛.

3. 𝑅 is selected uniformly.

4. Implement Game 4 with 𝐷𝑆1, 𝐷𝑆2, 𝑅, 𝐻̃ prepared above and the query (𝑥, ℎ𝑖).

5. Output 1 if in the last step of Game 4, 𝑔̃𝑅 (𝑥) = 𝑦. Otherwise, output 0.

Lemma 33. For any adversaryM in Exp-Many, there exists an adversaryM ′ in Exp-One such that

Pr[Exp-One outputs 1 againstM ′] > 1
𝑝2 (𝑛)

(Pr[Exp-Many outputs 1 againstM] − Pr[Crossref])

Proof. For an arbitrary adversaryM in Exp-Many, consider the following adversaryM ′ in Exp-One:
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• In step 2 of Exp-One

1. When given 𝐷𝑆1 and 𝐷𝑆2 in step 2 of Exp-One,M ′ simulatesM, gets a sequence of polynomial many
terms in the form of (𝑥, ℎ𝑖), and a subversion algorithm 𝐻̃.

2. Write the sequence as the union of two sets 𝐴 and 𝐵, where 𝐴 consists of elements of the form (𝑥, ℎ𝑖) (𝑖 > 0)
and 𝐵 consists of elements of the form (𝑦, ℎ0). Uniformly select an element (𝑥, ℎ𝑖) from 𝐴 and an element
(𝑦, ℎ0) from 𝐵. Output ((𝑥, ℎ𝑖), 𝑦) and the subversion algorithm 𝐻̃.

• In step 4 of Exp-One
M ′ play Game 4 according to 𝐷𝑆1, 𝐷𝑆2, 𝑅 and 𝐻̃ determined in previous steps. In this game,M ′ queries (𝑥, ℎ𝑖).

For Exp-Many with the adversaryM, if Crossref does not occur, then for any term (𝑥, ℎ𝑖) (𝑖 > 0) in step 2, we
have 𝐼 (𝑥 ⊕ 𝑟𝑖) = 𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖). If at the same time Exp-Many outputs 1, there must exist (𝑦, ℎ0) and (𝑥, ℎ𝑖) (𝑖 > 0) in
step 2 such that 𝑦 = 𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖) = 𝐼 (𝑥 ⊕ 𝑟𝑖).

Pr[Exp-One outputs 1 againstM ′]

>
1

𝑝2 (𝑛)
Pr[There must exist (𝑦, ℎ0) and (𝑥, ℎ𝑖) (𝑖 > 0) in the sequence such that 𝑦 = 𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖) = 𝐼 (𝑥 ⊕ 𝑟𝑖)]

>
1

𝑝2 (𝑛)
(Pr[Exp-Many outputs 1] − Pr[Crossref]).

�

Lemma 34. Pr[Exp-One outputs 1] = 𝑂 (𝑞𝐻̃ ℓ2−3𝑛).

Proof. It is sufficient to show 𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖) is unpredictable for any (𝑥, ℎ𝑖) (𝑖 > 0) in 𝐷𝑆1.
The unpredictability comes from the fact that 𝑅 is unknown when the adversary publishes the queries. For any

(𝑥, ℎ𝑖) (𝑖 > 0) in 𝐷𝑆1, select and fix an arbitrary 𝑟𝑖 . The distribution of 𝑔̃𝑅 (𝑥 ⊕ 𝑟𝑖) is then same as that of the sum of
ℎ̃ 𝑗 (𝑥 ⊕ 𝑟𝑖 ⊕ 𝑟 𝑗 ) for 𝑗 ≠ 𝑖, which can be proved to be unpredictable by a Fourier transform similar to that in Lemma 29. �

Proof of Lemma 31. Lemma 31 can be derived by simply summing up Lemma 32, Lemma 33 and Lemma 34. �

Proof of Theorem 3. Theorem 3 can be proved by taking the sum of inequalities in Theorem 20, Theorem 23, Theorem
24 and Theorem 30. �

5 Conclusions and Open Problems
In this paper, we initiate the study of correcting subverted random oracles which are adversarially tampered and disagree
with the original random oracle at a negligible fraction of inputs. We give a simple construction that can be proven
indifferentiable from a random oracle. Our analysis involves, for a given output produced: identifying a good term of
the construction which is both honestly evaluated and independent of other terms for its input; and developing a new
machinery of rejection resampling lemma (to assure the existence of this term). Our work provides a general tool to
transform a buggy implementation of random oracle into a well-behaved one and directly applies to the kleptographic
setting.
There are many interesting problems worth further exploring. Here we only list a few. First, a better construction

that may tolerate a larger fraction of errors in the subverted random oracle. Second, develop a parallel theory of
self-correcting distributions. Third, consider correcting other subverted ideal objectives such as ideal cipher. Fourth,
given our extended model of indifferentiability in the presence of crooked elements, consider stronger indifferentiability
models (e.g., with a global random oracle, more robust replacement theorem with more subverted components). Fifth,
we may consider other type of constructions such as the Feistel structure or sponge construction that maybe more
efficient. Last but not least, can we build connections to (or even a unified theory of) error correction, self-correcting
programs, randomness extraction and our problem of correcting subverted ideal objects?
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