
Post-Quantum LMS and SPHINCS+ Hash-Based Signatures
for UEFI Secure Boot

PANOS KAMPANAKIS, Security & Trust Organization, Cisco Systems, USA
PETER PANBURANA, Security & Trust Organization, Cisco Systems, USA
MICHAEL CURCIO, Security & Trust Organization, Cisco Systems, USA
CHIRAG SHROFF, Security & Trust Organization, Cisco Systems, USA
MDMAHBUB ALAM, University of Florida, USA

The potential development of large-scale quantum computers is raising concerns among IT and security
research professionals due to their ability to solve (elliptic curve) discrete logarithm and integer factorization
problems in polynomial time. This would jeopardize IT security as we know it. In this work, we investigate two
quantum-safe, hash-based signature schemes published by the Internet Engineering Task Force and submitted
to the National Institute of Standards and Technology for use in secure boot. We evaluate various parameter
sets for the use-case in question and we prove that post-quantum signatures with less than one second signing
and less than 10𝑚𝑠 verification would not have material impact (less than 1‰) on secure boot. We evaluate
the hierarchical design of these signatures in hardware-based and virtual secure boot. In addition, we develop
Hardware Description Language code and show that the code footprint is just a few kilobytes in size which
would fit easily in almost all modern FPGAs. We also analyze and evaluate potential challenges for integration
in existing technologies and we discuss considerations for vendors embarking on a journey of image signing
with hash-based signatures.

Additional Key Words and Phrases: HBS signatures, PQ image signing, PQ root of trust, post-quantum secure
boot

Updates: Initially uploaded to Cryptology ePrint Archive on Jan 11, 2021. Re-uploaded on June 4,
2021 with two sentences stating that the customized parameter sets perform significantly faster
signing than the original SPHINCS+ parameter sets corrected.

1 INTRODUCTION
Digital communications have completely penetrated everyday life as enablers of numerous critical
services including telemedicine, online banking, massive e-commerce, machine-to-machine automa-
tion, mobile and cloud computing. As part of guaranteeing that the operating system and software
applications on digital devices is genuine, vendors have implemented several security features (e.g.,
secure boot) which validate authenticity by using digital signatures. Without such protections,
rogue code running on a system could lead to sensitive information leakage, software or hardware
piracy, revenue loss and more. [33] serves as an example where FPGA hardware compromises the
secure boot process to boot from a malicious network source instead of an authentic signed kernel
image.

Secure boot is a multi-step process that involves verifying signatures on software before booting
it. The signatures validated in each step of the secure boot process are usually classical RSA
signatures. While the security of these signatures cannot effectively be challenged by conventional
computer systems, this would not be the case in a post-quantum (PQ) world where a large scale
quantum computer is a reality [50]. Shor’s quantum algorithm [58, 63], assuming a practical
quantum computer (QC) becomes available, would solve (elliptic curve) discrete logarithm ((EC)DL)

Authors’ addresses: Panos Kampanakis, Security & Trust Organization, Cisco Systems, USA, panosk@cisco.com; Peter
Panburana, Security & Trust Organization, Cisco Systems, USA, pepanbur@cisco.com; Michael Curcio, Security & Trust
Organization, Cisco Systems, USA, micurcio@cisco.com; Chirag Shroff, Security & Trust Organization, Cisco Systems, USA,
cshroff@cisco.com; Md Mahbub Alam, University of Florida, USA, mahbub.alam@ufl.edu.



2 Kampanakis et al.

and integer factorization (IF) problems in polynomial time rendering the algorithms insecure. In
this scenario a QC-equipped attacker would be able to sign any specially crafted malicious code in
the secure trust chain and boot non-genuine, malicious software [33].
The cryptographic community has been researching quantum-secure public key algorithms

for some time in order to address the QC threat, and the US National Institute of Standards
and Technology (NIST) has started a public project to standardize quantum-resistant public key
exchange, public key encryption and digital signature algorithms. At the time of this writing,
NIST’s evaluation process is in Round 2 with 26 PQ algorithms remaining. Similarly, the European
Telecommunications Standards Institute (ETSI) has formed a Quantum-Safe Working Group [17]
that aims to make assessments and recommendations on the various proposals from industry
and academia regarding real-world deployments of quantum-safe cryptography. In addition, the
Internet Engineering Task Force (IETF) has seen multiple proposals that attempt to introduce PQ
algorithms in protocols like TLS and IKEv2 [20, 25, 54, 68, 70] and has published two PQ signature
algorithm specifications as Informational RFCs [29, 47]. The integration of PQ algorithms in today’s
technologies presents challenges that pertain to (a) bigger keys, ciphertexts and signatures, (b)
slower performance, (c) backwards compatibility, and (d) lack of hardware acceleration.

Our focus in this work is on post-quantum secure boot signatures. Taking the long lifecycles of
many of our systems today and the fact that secure boot is ultimately anchored in hardware, it is
important to investigate the viability of post-quantum secure boot signatures in order to have a
solution in place to protect against a QC forging software in the future. We chose to evaluate two
well-established hash-based signature (HBS) schemes, namely LMS [47] and SPHINCS+ [3], which
are based on quantum-secure, proven primitives. These primitives are considered more well-trusted
and mature than most other Round 2 NIST PQ signature candidate schemes. We compare their
verification time against classical RSA signatures used today. Verification happens a few times with
every system boot, thus its performance is important. We also study the signing time; even though
signing takes place once per image, we still need to maintain relatively fast signing for high-rate
signers. We also investigate the signatures and public key sizes which would affect the verification
process, especially for resource-constrained verifiers. We finally study the code footprint and stack
used at the verifier in order to estimate the impact on resource-limited verifiers.

The key contributions of our work are summarized as follows:
(i) We formalize and propose post-quantum HBS signature hierarchies for secure boot software

signing. To our knowledge, this is the first work that investigates post-quantum UEFI Secure Boot.
Prior works measure post-quantum signature performance regardless of application and do not
focus on the UEFI use-case and its challenges.

(ii) We propose new HBS parameter sets suitable for different software signing use-cases for two
PQ security levels.
(iii) We use instrumented HBS implementations that minimize code size and optimize perfor-

mance and additionally implement HBS in a Xilinx UltraScale FPGA.
(iv) We analyze the impact of two well-studied HBS algorithms when they are used for image

signing in hardware, virtual secure boot and FPGAs, and compare them to classical RSA. We show
that trusted post-quantum signatures are possible with immaterial impact on the verifier, and an
acceptable impact on the signer.

(v) We identify an important implementation incompatibility with the one-shot calculation of an
HBS signature against how the OpenSSL CMS implementation calculates classical signatures.
Note that we do not attempt to benchmark HBS schemes on various CPUs as that has been

studied by others. Our goal is to study the viability of HBS signatures in UEFI Secure Boot in
systems today.



Post-quantum HBS for Secure Boot 3

The rest of the paper is organized as follows: Section 2 summarizes related work. Section 3 gives
background details on UEFI Secure Boot and HBS signature details. Section 4 lays out the proposed
hierarchy and parameter sets for our investigation and Section 5 presents our experimental results
in various platforms. Section 6 discusses concerns and open issues for integrating these signatures
in secure boot technologies used today. Section 7 concludes the paper.

2 RELATEDWORK
There has been a large body of research on PQ cryptography [5, 31, 39, 74]. Recently, more works
are exploring NIST’s PQ candidate schemes focusing mainly on their security and computational
performance.

Research teams from academia and industry are investigating the performance of PQ candidate
algorithms in Internet protocols. The authors in [62] integrated NTRU in DTLS and studied its
performance. In [8], Bos et al. introduced RLWE for key exchange in TLS 1.2 and studied its impact.
Google, Amazon AWS and Cloudflare have also been working on finding suitable PQ algorithms
for TLS key exchange [11, 28, 41, 41–43, 45]. Moreover, Campagna discussed hybrid key exchange
and double tunnelling for TLS and presented the significant slowdown introduced to TLS by hybrid
key exchange [11]. [37, 64], on the other hand, discussed the impact of PQ signature schemes on
protocols that utilize X.509 certificates. Earlier work by Bindel et al. emulated large hybrid PQ
certificates and studied their impact on TLS libraries and browsers [6]. [16] presented the challenges
of implementing NIST’s PQ key exchange and authentication algorithms in TLS and SSH, with a
focus on hybrid schemes.

More closely related to this work, which focuses on PQ signatures for secure boot, is the potential
for using quantum-secure, HBS schemes on constrained processors were first demonstrated in [60]
which measured memory and time performance in 8-bit Atmel AVR microcontrollers. What is more,
a variant of a stateful HBS scheme, called XMSS [9], was implemented on a 16-bit Infineon SLE78
smart-card in [30] with acceptable time performance which showed the practicality of stateful HBS
in constrained devices. [22] also demonstrated an efficient implementation of XMSS in constrained
IoT motes. [40] integrated XMSS in a SoC platform around RISC-V cores and evaluated on an FPGA
to show that it is very efficient. XMSS shares similarities with LMS investigated in this work, but
with worse performance and a tighter security proof [12, 55]. What’s more, [2] investigated the
practicality of stateful HBS (LDWM, a predecessor of LMS studied here) in TPMs without studying
real time, performance or memory footprint or stateless HBS schemes and HBS parameters specific
to the secure boot use-case.

Boneh and Gueron proposed stateful HBS signatures using various one-way functions for signing
Intel SGX enclaves in [7]. They proposed signing a limited set of SGX enclaves with stateful HBS
and concluded that HBS verification can be faster than RSA3072 and QVRSA. Additionally, Hülsing
et al. implemented stateless HBS SPHINCS signatures in an ARM Cortex M3 with only 16KB of
memory [32]. They also compared SPHINCS with stateful XMSS, evaluated their performance and
showed that stateless HBS verification is acceptable but its signing is 30 times slower. The authors
in [4, 65] conducted a comparison of NIST Round 2 candidate algorithm hardware implementations
with a focus on hardware footprint, latency and impact on hardware design. In [38], Kannwischer et
al. benchmarked Round 2 algorithms on ARM Cortex-M4 and evaluated the more suitable ones for
embedded devices by studying speed, code size and memory. [61] studied the energy consumption
of the NIST algorithm candidates and identified the most expensive ones in terms of energy. The
SPHINCS+ variants were found to be one of the most energy-intensive ones compared to their
competitors at the same security level. The independent performance results in the works above
were collected out of the UEFI Secure Boot context but can strengthen our argument that these
signatures can perform satisfactorily in a secure boot scenario even in constrained devices or chips.



4 Kampanakis et al.

Our work goes beyond plain performance evaluation of HBS schemes as it brings HBS to secure
boot and addresses potential concerns and challenges for their application.
Other post-quantum schemes also showed promising results on embedded systems. A lattice-

based signature was shown to be faster than RSA in a Xilinx Spartan-6 FPGA in [24]. Additionally,
[53] showed that lattice-based signatures can be fast on an ARM Cortex M4 with slightly higher
memory usage compared to HBS. Multivariate-quadratic schemes were also proven to be practical
on constrained devices as well as ASICs in [73]. These signature schemes are promising but do not
come with the maturity and the well-trusted security guarantees of HBS signatures.

3 BACKGROUND
3.1 Secure Boot Overview
When starting the secure boot process, a device’s firmware is initially booted from a tamper-resistant
ROM, a Secure FPGA or a Trust Anchor Module. Usually the first firmware / boot 0 instructions run
are stored in tamper resistant hardware, which establishes a chain of trust. Then the boot process
is passed on to a bootloader, namely UEFI on x86 based systems, that is responsible for further
loading the operating system (OS). Software verification takes place at every step of the process.
Before being loaded, a bootloader signature by the Original Equipment Manufacturer (OEM) is
verified by boot 0 code. The keys or certificates used to verify the bootloader are often stored inside
a Trust Anchor Module. Onward, the OS signature is verified by the bootloader before loading the
OS. While keys/certificates used to validate OS signatures are often attached to the image itself, the
root certificate/key is stored in dedicated signature databases inside trust anchors or in BIOS flash.
Fig. 1 provides an overview of this process which is often referred to as secure boot and ensures
that there is a chain of trust that is passed from the very first step until the operating system comes
live [14].
UEFI Secure Boot leverages multiple types of keys and inventories: Platform Key (PK), Key

Exchange Keys (KEK), allowed signatures database (db), forbidden signatures database (dbx) and
Firmware Update Keys. The PK defines the trust between the platform and the firmware. The
KEK defines the trust between the OS and the firmware. A Firmware Update Key signs firmware
updates. db contains public keys and certificates used to verify firmware and OS signatures [49].
dbx contains hashes of untrusted components and revoked public keys and certificates. Often the
UEFI db/dbx is stored in a Trust Anchor module. Adding new image verification keys to db and
revoking bad images by adding hashes to dbx takes place with messages authenticated by the KEK,
which itself can be managed by the PK.

In a virtual context, vendors often follow a similar paradigm. Instead of running from ROM or
flash storage, UEFI firmware is stored as an Open Virtual Machine Format (OVMF) file on the host’s
file system for use by a hypervisor (e.g., QEMU-KVM). The public keys used to verify signatures
on UEFI binaries are stored in UEFI’ s db which is represented on disk as a file called OVMF_VARS.

Fig. 1. Secure Boot Overview



Post-quantum HBS for Secure Boot 5

Virtual UEFI Secure Boot involves three stages [23, 71]: (1) The UEFI firmware running in the
hypervisor verifies the signature on a first stage bootloader called the SHIM [59] and, if successful,
boots the bootloader. The SHIM is signed by a private key corresponding to a certificate contained
in UEFI’s db authenticated variable. Microsoft (or other SHIM signing vendor) certificates are found
in the UEFI db of most commercially available personal computers today, and they are used to
verify Windows installs and most major Linux distributions’ SHIMs before loading them. These
certificates use 2048-bit RSA keys. (2) A second stage bootloader (SSBL), most commonly GRUB
in Linux, is loaded by the SHIM after verifying the SSBL’s signature using a trusted certificate
built into the SHIM. (3) Finally, the kernel itself is loaded by GRUB after verifying its signature by
leveraging the UEFI db and SHIM certificates. In other words, each stage includes a signature of
the software (i.e., bootloader or OS) which is verified by the software at the previous stage. Booting
a guest OS includes three signature verifications. If all signatures on these EFI binaries can be
successfully validated, then the host OS is booted. A failure results in an EFI error and booting is
stopped. All software signatures are in PKCS#7 [35] format.

UEFI Secure Boot uses Microsoft Authenticode technology to sign executables. Authenticode is a
digital signature format used to determine the authenticity of software binaries. Authenticode is
based on the Public-Key Cryptography Standards (PKCS#7) standard and uses X.509 v3 certificates
to bind a signed file to a software publisher. Authenticode signatures are used to digitally sign
portable executable (PE) files. The signature is embedded in the PE file in a location specified by
the Certificate Table entry in the Optional Header Data Directories. The signature stored in
the location is in a bCertificate binary array which includes the PKCS#7 SignedData with the
signature.
In addition, modern embedded systems, use FPGAs to perform variety of functions. While this

can be facilitated by custom ASICs, FPGAs can also be used. FPGA configuration bitstreams exist
at the lowest level of user-programmable functionality in the system. FPGAs provide greater logic
density than circuits composed of discrete gates or most Complex Programmable Logic Devices
(CPLD), and they do so at a lower development cost than custom ASICs. Custom ASICs also do not
provide the same degree of flexibility and upgradability. An FPGA device often plays a fundamental
role in the functioning of the system, capable of implementing basic "glue logic" that manages
separate design domains and their components. In more advanced applications, FPGAs may also be
customizable hardware acceleration resources.

When implementing signature verification functions or system critical functions, it is essential
that the system only uses authentic FPGA images. FPGA vendors have included various technologies
in their devices to protect the confidentiality of bitstream configuration data and integrity assur-
ances to ensure correct hardware functionality. Over time, improvements to built-in features have
ranged from obfuscation of the proprietary bitstream image formats and CRC verification, through
encryption using the AES algorithm, to authentication using either symmetric (i.e., AES-GCM,
HMAC-SHA256) or asymmetric (i.e., RSA, ECDSA) key algorithms. However, these technologies
are not equivalent among all vendors, nor are the same levels of security shared among different
device families from the same vendor. Often times, the built-in bitstream integrity functions are
not available to user logic. Furthermore, it is not uncommon for an FPGA design to implement
user logic that emulates a microcontroller or even a full-fledged "soft" CPU core that itself runs
user-defined microcode or firmware. Including a post-quantum authentication algorithm to verify
signatures of upgrade images, code for microcontrollers or code for other parts of the system, would
extend additional security properties into the hardware of the system.



6 Kampanakis et al.

.  .  ..  .  .
OTS PK

OTS.  .  .

OTS PK

Msg

OTS PK

OTS

Msg

OTS

Msg

.  .  .

(a) LMS tree

...

...

...

...

Msg

FORS

FORS PK
... ...

...

Msg

FORS

FORS PK

Msg

FORS
...

(b) SPHINCS+ tree

Fig. 2. HBS trees

3.2 HBS Overview
The HBS family of PQ signature algorithms is considered mature, well-understood, and significantly
reliable. The first scheme in the family, the Merkle signature scheme (MSS), was presented in the
late 1970s [10]. HBS signatures rely on Merkle trees and few or one-time-signature (FTS/OTS) used
with secure cryptographic hash functions.

HBS schemes generate keypairs for the FTS/OTS. The FTS/OTS signs a message and the corre-
sponding public key is a leaf in the Merkle tree, whose root is the public key that is expected to
be pre-trusted by the verifier. An HBS signature consists of the OTS/FTS signature and the path
to the root of the tree. The signature is verified using the public key inside it, and by using the
authentication path to construct the root of the hash tree. Currently, the most mature members of
the HBS family are the stateful LMS [47] and XMSS [29], and stateless SPHINCS+, one of the NIST
signature candidates [3]. Fig. 2a shows an LMS tree. The message is signed by an OTS (LMS-OTS
or WOTS+) and the OTS public key forms a binary tree leaf that is aggregated all the way to the
Merkle tree root. The parameters of the tree include the hash function, the tree height, and the
Winternitz parameter of the OTS. Multi-level tree variants are also available and consist of smaller
subtrees that form a big HBS tree. Readers should note that stateful XMSS [9], which was also
published by IETF [29], shares similarities with LMS with a tighter security proof, but with worse
performance [55]. Fig. 2b shows a SPHINCS+ tree which consists of an FTS, namely a FORS tree,
that signs a message, and a multi-level Merkle tree. The FORS tree root is signed by an OTS (i.e.,
WOTS+). The corresponding WOTS+ public keys form the Merkle tree leaves that are aggregated
all the way to the bottom subtree root. That root is signed by WOTS+ and the WOTS+ public key
is aggregated to the root of the subtree above. Subtree roots are signed by subtrees above until we
reach the top subtree. Going forward we focus only on LMS and SPHINCS+.

3.3 Stateful vs Stateless HBS
Excluding their architectural differences, the most significant difference between a stateful and
stateless HBS is state. Stateful schemes (i.e., LMS, XMSS) include a four-byte index value in their
signature which represents the state. The state is used when signing a message and should never be
reused as that could allow for signature forgeries. The state management requirement is considered
an important disadvantage which has been often brought up in the IETF and NIST fora [44, 67].
NIST has announced, at the time of this writing, that it is authoring a Special Publication [15]
that will make recommendations for stateful HBS and identify use-cases where stateful HBS are
more appropriate. In general, HBS should be used in applications where state management is not a



Post-quantum HBS for Secure Boot 7

concern, signing rates are slow enough to ensure state can be protected, and other PQ signatures
are not appropriate.

Stateless HBS (i.e., SPHINCS+), on the other hand, have no state requirement. Hence, messages
are signed by an HBS hypertree without having to keep state with every signature. While stateless
SPHINCS+ eliminates the need for proper state management, it also leads to a significant increase
in signature size and slower performance because of the FORS structure.

4 HBS FOR SECURE BOOT
4.1 Hierarchy

...

...

...

...

Msg Msg MsgMsg
......

Fig. 3. HBS hierarchy

An HBS hierarchy would be needed to provide signatures
for multiple platforms or chips and firmware / software
versions, and comply with existing secure boot standards.
Typically, these hierarchies would include multiple tree
levels. Each multi-level tree would serve as a different
UEFI signing structure, namely the PK, Firmware Update
Key or KEK. The root of each tree would become the
key included in the UEFI db/dbx databases pre-trusted by
the verifier. Each tree would be responsible for signing
firmware, firmware packages, PK updates, or software
images. Fig. 3 shows such a hierarchy with a three-level
tree architecture. The hypertree structurally consists of

smaller trees in order to limit the key generation and signing times.
In such architectures, the height of the trees should be chosen so they can provide enough

signatures for the use-case. A typical top tree could sign 220 bottom trees. A bottom tree that
can sign 215 images would probably suffice for most use-cases. Most vendors’ portfolio would
never exceed 235 total images per signing root. As an example, in 2020, major IT vendors with

...

...

...

...

Img Img ImgImg
......

Fig. 4. HBS Root Revocation in UEFI Se-
cure Boot

thousands of products in their portfolio were signing less
than 250 million (∼ 228) images annually which would lead
to ∼ 233 signatures over a 30 year signing root’s lifetime.
Thus 235 total signatures would suffice for such vendors.
In reality, there would be more than one root signing a
vendor’s software, which means that although 235 is our
conservative choice, smaller trees would probably suffice
for most vendors.

Key Revocation is an important concept for HBS multi-
level tree hierarchies. Revoking a tree root, a signature or
any of the lower level trees is essential to providing a way
to eliminate trust in roots that have been compromised,
broken or replaced. In secure boot, the trusted certificate/key,
signature and revocation list exist in the UEFI db and dbx
respectively [49]. PK revocation and refresh takes place by
entering Setup mode or using a message signed by the PK
tree that is being revoked. HBS Key revocation would take place by using a revocation, firmware
update image, or a signed (by the PK, or KEK tree) message which would add the corresponding
HBS root in the dbx database. Fig. 4 shows an example of a revoked KEK being added to the UEFI
dbx which automatically invalidates all signed images by this KEK.



8 Kampanakis et al.

Some vendors [69] use special images signed by rollover keys in order to revoke PKs. This
concept is very similar to UEFI’s Firmware Update Keys. A rollover key could be another HBS tree
used to sign revocation images which include a new tree root to be loaded on the platform.

4.2 Parameter Sets
In the process of evaluating HBS for secure boot and image signing, we had to come up with
parameters that would satisfy most use-cases. We experimented with multiple parameters in
order to find the most suitable ones. LMS offers many options up to 225 signed messages which
would suffice for the multi-level architecture described in Section 4.1. The PQ security level of all
LMS parameters is 128 bits. These parameters could be adjusted to provide 96-bit PQ security by
truncating the SHA256 outputs to 192 bits [19]. On the other hand, SPHINCS+, as proposed to NIST,
offers three PQ security levels of 64, 96 and 128 bits. For our evaluation we chose to be conservative
and use the latter two. The SPHINCS+ variants submitted to NIST can sign up to 264 messages, as
required by NIST. We generated new parameters for our maximum signature count which does not
exceed a total of 34 trillion (235) signatures. The equivalent NIST-submitted SPHINCS+ parameter
sets (264 total signatures) with bigger signatures (∼5-25KB) and slower verification (∼ ×2-4). We also
chose to only evaluate the ’simple’ variants of SPHINCS+ because of their superior performance.
What’s more, we only used SHA256 SPHINCS+ variants because of its superiority in SPHINCS+
benchmarks and its prevalence in hardware implementations.
Table 1 summarizes all the LMS and SPHINCS+ parameter sets we used in our evaluation and

their respective post-quantum security level in bits. LMS256H5W4, LMS256H5W8, LMS256H10W4 and
LMS256H10W8 are not included as single tree LMS variants in our analysis. We just list them because
they are used in multi-level HSS variants. Regarding HSS256L3W4 and HSS256L3W8, their key
generation and key load times are high, but we included them for reference. A more balanced
option exists in the HSS256L3oW4 and HSS256L3oW8 parameter sets.
When choosing parameter sets, we also considered the type of tree. LMS and SPHINCS+ use

binary trees, but 2𝑦-ary trees (e.g., 4-ary trees with four children per node) have also been proposed.
We evaluated the benefit of introducing 2𝑦-ary trees instead of binary ones. An 𝑥 ′-height 2𝑦-ary
tree can offer as many signatures as an 𝑥-height binary tree when 𝑥 ′ = 𝑥/𝑦. The path to the root is
𝑥 nodes for a binary tree and (2𝑦 − 1)𝑥 ′ nodes for the 2𝑦-ary tree. For a 4-ary tree that becomes
3𝑥/2 nodes, which is 𝑥/2 more nodes than the corresponding binary tree. For a typical 𝑥 = 20,
that would be 10 more nodes, or ∼0.3KB bigger signature. For a 8-ary tree, the corresponding
signature would be ∼0.85KB smaller than a binary tree’s. Such small signature size improvements
are considered insignificant. In terms of storage size, a binary tree has 2𝑥+1 − 1 total nodes and
a 2𝑦-ary one has (2𝑦 (𝑥 ′+1) − 1)/(2𝑦 − 1). For a typical 𝑥 = 20 binary tree of 2 million nodes, the
corresponding 4-ary tree would have ∼1.4 million nodes and the 8-ary one ∼1.2 million nodes. So,
even if an implementation was storing all the nodes of the tree, it would save 0.6 and 0.8 million
nodes by using a 4-ary or 8-ary tree which would amount to 20MB or 25MB of memory respectively.
Storing the whole tree is optional as there are techniques to keep auxiliary data to avoid rebuilding
the tree with every signature, but 20-25MB of memory seems inexpensive for a typical signer
anyway. Regarding performance, 2𝑦-ary tree performance will be faster because it includes less
node calculations, but since most HBS signing and verification time is spent in the OTS/FTS hash
calculations [55] we do not expect a significant speedup over binary trees. Additionally the LMS
and SPHINCS+ "simple" parameter sets we experimented with were optimized to only use one
hash compression per SHA256 hash calculation. Internal node calculations for a 2𝑦-ary tree would
require three hash compressions. Thus, overall we do not expect that 4-ary or 8-ary trees would
significantly benefit our scenarios over binary trees, so all our experiments use binary trees.



Post-quantum HBS for Secure Boot 9

Parameter
name

HBS
Scheme Parameters

PQ
Sec
Level

LMS256H5W4 LMS LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W4 128
LMS256H5W8 LMS LMS_SHA256_M32_H5 with LMOTS_SHA256_N32_W8 128
LMS256H10W4 LMS LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W4 128
LMS256H10W8 LMS LMS_SHA256_M32_H10 with LMOTS_SHA256_N32_W8 128
LMS256H15W4 LMS LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W4 128
LMS256H15W8 LMS LMS_SHA256_M32_H15 with LMOTS_SHA256_N32_W8 128
LMS256H20W4 LMS LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W4 128
LMS256H20W8 LMS LMS_SHA256_M32_H20 with LMOTS_SHA256_N32_W8 128
HSS256L2W4 HSS 𝐿 = 2 with top LMS256H20W4 and bottom LMS256H15W4 128
HSS256L2W8 HSS 𝐿 = 2 with top LMS256H20W8 and bottom LMS256H15W8 128
HSS256L3W4 HSS 𝐿 = 3 with LMS256H5W4, LMS256H10W4, LMS256H20W4 128
HSS256L3W8 HSS 𝐿 = 3 with LMS256H5W8, LMS256H10W8, LMS256H20W8 128
HSS256L3oW4 HSS 𝐿 = 3 with LMS256H15W4, LMS256H10W4, LMS256H10W4 128
HSS256L3oW8 HSS 𝐿 = 3 with LMS256H15W8, LMS256H10W8, LMS256H10W8 128

SPX192H15w16 SPHINCS+ 𝑛 = 24, 𝐻 = 15, 𝑑 = 3, 𝑘 = 18, 𝑎 = 13𝑤 = 16 96
SPX192H15w256 SPHINCS+ 𝑛 = 24, 𝐻 = 15, 𝑑 = 3, 𝑘 = 18, 𝑎 = 13𝑤 = 256 96
SPX192H20w16 SPHINCS+ 𝑛 = 24, 𝐻 = 20, 𝑑 = 4, 𝑘 = 18, 𝑎 = 13𝑤 = 16 96
SPX192H20w256 SPHINCS+ 𝑛 = 24, 𝐻 = 20, 𝑑 = 4, 𝑘 = 18, 𝑎 = 13𝑤 = 256 96
SPX192H35w16 SPHINCS+ 𝑛 = 24, 𝐻 = 35, 𝑑 = 5, 𝑘 = 20, 𝑎 = 12𝑤 = 16 96
SPX192H35w256 SPHINCS+ 𝑛 = 24, 𝐻 = 35, 𝑑 = 5, 𝑘 = 20, 𝑎 = 12𝑤 = 256 96
SPX256H15w16 SPHINCS+ 𝑛 = 32, 𝐻 = 15, 𝑑 = 3, 𝑘 = 19, 𝑎 = 16𝑤 = 16 128
SPX256H15w256 SPHINCS+ 𝑛 = 32, 𝐻 = 15, 𝑑 = 3, 𝑘 = 19, 𝑎 = 16𝑤 = 256 128
SPX256H20w16 SPHINCS+ 𝑛 = 32, 𝐻 = 20, 𝑑 = 4, 𝑘 = 19, 𝑎 = 16𝑤 = 16 128
SPX256H20w256 SPHINCS+ 𝑛 = 32, 𝐻 = 20, 𝑑 = 4, 𝑘 = 19, 𝑎 = 16𝑤 = 256 128
SPX256H35w16 SPHINCS+ 𝑛 = 32, 𝐻 = 35, 𝑑 = 5, 𝑘 = 21, 𝑎 = 15𝑤 = 16 128
SPX256H35w256 SPHINCS+ 𝑛 = 32, 𝐻 = 35, 𝑑 = 5, 𝑘 = 21, 𝑎 = 15𝑤 = 256 128

Table 1. HBS Parameters

5 EXPERIMENTAL RESULTS
5.1 Algorithm Performance
To evaluate algorithm performance in secure boot wemeasured key generation, signature generation
and verification. Signing takes place once per signed object or image in an offline fashion, thus its
performance is not critical but high-rate signers would still want to maintain relatively fast signing.
Key generation takes place only when initializing a signer, so key generation performance is not
as important. Verification takes place by different verifiers every time booting takes place, thus
verification performance is the most important for the use-case. Another important factor for a
secure boot verifier is the size of the public key because often keys/certificates are physically stored



10 Kampanakis et al.

inside a tamper proof chip with limited storage capacity. The private key size is not as significant as
it only affects the signer who is usually not resource-constrained. Additionally, verifiers sometimes
have limited memory which would be affected by high code footprint verification, thus we were
interested in code size and stack use for HBS verification code.
In order to compare our options, we initially experimented and measured the performance of

RSA and all the LMS and SPHINCS+ parameters of interest. We ran all these tests in a Google Cloud
instance with an Intel Xeon CPU @ 2.20GHz with 2 cores and 7.68GB RAM. To compile our code
we used gcc version 7.4.0. The tests were run 1000 times for each parameter set.

To measure RSA performance, we used OpenSSL 1.1.1c with OPENSSL_BN_ASM_MONT enabled.
Our LMS testing code was based on [18], dynamically linked to OpenSSL’s SHA256 implementation
and properly instrumented with various performance optimizations and memory-speed trade-offs.
In HSS, we used auxiliary data that consist of part of the top tree. The auxiliary data was designed
to speed up the key load time and can vary in size up to 10KB to balance between speed and
memory size. We also instrumented extra data used for signing. This data speeds up signing and
has variable length up to 100KB in order trade off between signing speed and memory size. The
extra data is recreated from the private key and the auxiliary data. Our LMS implementation can
also take advantage of multithreading for HSS but we kept it disabled for our experiments. Our
SPHINCS+ testing code [36] is a fork of the original code [66] from the SPHINCS+ NIST submission
tweaked for our goals. The SPHINCS+ verification was dynamically linked to the OpenSSL 1.1.1c
library for its SHA256 implementation, which proved to provide the best verification performance.
For SPHINCS+ signing, we found that the AVX2 optimized code in [66] provided the best results
possible, and thus we didn’t link SPHINCS+ signing to OpenSSL. Multi-threading was disabled
for both implementations. We also measured the memory footprint (code and stack) of LMS/HSS
and SPHINCS+ verification in order to assess their practicality in constrained verifier chips. Both
verifiers used OpenSSL’s SHA256 implementation, which was not counted against the reported
code size. As in [38], we measured the stack usage by writing a random canary to a big chunk of
the available stack space, then running the verification, and finally checking which parts of the
memory had been overwritten.

Table 2 shows the results from our testing. We can see that all the private and public key sizes
are of negligible size. It is also clear that a verifier code and stack size of a few KB would not
practically impact most secure boot verifiers. The heap used by the verifier was always zero. What’s
more, LMS/HSS signing was less costly in CPU cycles than SPHINCS+. SPHINCS+ verification was
worse than LMS/HSS but not as significantly as signing. The standard deviation for both signing
and verification CPU cycles was insignificant. Our results are in agreement with the ARM Cortex
M3 results in [32]. In terms of key generation, LMS/HSS took much longer mainly because LMS
generates trees at every level which is counted against key generation; in SPHINCS+ only the top
tree is counted as part of the key generation and all the other tree generations are part of the
signature operation. Thus, our LMS implementation was optimized by taking longer to generate
keys but performs signing faster by using auxiliary data and pre-loaded private keys, whereas our
SPHINCS+ implementation included part of this work in the signature generation itself.

Fig. 5 demonstrates the signature sizes of all parameter sets. As expected, parameter sets with
𝑊 =8 and𝑤=256 have smaller signatures. We also see that LMS/HSS offers smaller signatures that
stay below 8KB. Note that all LMS/HSS parameters could be adjusted to provide 96-bit PQ security
by truncating the SHA256 outputs to 192 bits [19] which would shrink all reported LMS/HSS
signatures by more than 25%. SPHINCS+ signatures exceed 10KB and grow to almost 23KB for
128-bit PQ security level parameters with𝑤=16. 23KB signatures are small enough for most secure
boot use-cases. In rare scenarios where small signatures are required, LMS/HSS would be preferable.



Post-quantum HBS for Secure Boot 11

Parameter
Keys (B) Verifier (KB) Keygen Sign (Mcycles) Verify (Mcycles)

Priv Pub Code Stack (s) Mean Stdv Mean Stdv

LMS256H15W4 48 60 2.57 1.81 2.519 1.145 0.051 0.370 0.033
LMS256H15W8 48 60 2.15 1.81 13.720 6.237 0.302 2.855 0.290
LMS256H20W4 48 60 2.57 1.81 3.222 1.465 0.037 0.373 0.026
LMS256H20W8 48 60 2.15 1.81 19.373 8.807 0.555 2.857 0.274
HSS256L2W4 48 60 3.15 1.81 350.2 3.945 0.041 0.716 0.026
HSS256L2W8 48 60 2.51 1.81 2712 19.351 0.288 5.771 0.271
HSS256L3W4 48 60 3.15 1.81 339.6 7.512 0.056 1.054 0.028
HSS256L3W8 48 60 2.51 1.81 2659.7 30.266 0.319 8.553 0.263
HSS256L3oW4 48 60 3.15 1.81 10.86 3.771 0.024 1.050 0.022
HSS256L3oW8 48 60 2.51 1.81 84.5 13.084 0.261 8.187 0.254

SPX192H15w16 96 48 4.46 4.98 0.003 176.049 1.170 1.022 0.020
SPX192H15w256 96 48 4.41 2.87 0.026 332.180 1.860 7.045 0.094
SPX192H20w16 96 48 4.46 4.39 0.003 183.444 1.154 1.382 0.024
SPX192H20w256 96 48 4.41 3.24 0.026 391.554 2.219 10.193 0.189
SPX192H35w16 96 48 4.50 4.97 0.012 212.532 1.374 1.591 0.027
SPX192H35w256 96 48 4.43 2.87 0.103 1,218.257 4.139 11.711 0.151
SPX256H15w16 128 64 4.54 6.14 0.004 1,297.180 5.589 1.385 0.024
SPX256H15w256 128 64 4.47 4.68 0.032 1,491.183 5.405 9.219 0.163
SPX256H20w16 128 64 4.54 6.70 0.004 1,310.393 5.480 1.768 0.046
SPX256H20w256 128 64 4.47 4.25 0.032 1,566.816 4.856 11.599 0.139
SPX256H35w16 128 64 4.53 6.58 0.016 814.356 3.697 2.080 0.031
SPX256H35w256 128 64 4.46 4.52 0.128 2,057.650 6.223 15.341 0.214

Table 2. HBS Keys, Memory footprint and Performance

Fig. 6a shows the absolute signing times for all parameter sets measured on our testing platform.
We can see that all signatures take less than one second which would suffice for almost all software
signing use-cases where signing does not take place live. The standard deviation was insignificant.
LMS/HSS and SPHINCS+ with𝑊 =8 and 𝑤=256 respectively perform worse than with𝑊 =4 and
𝑤=16, but their time is still acceptable. SPHINCS+ performs orders of magnitude worse than
LMS/HSS, but still at an acceptable level. Note that signing performance would increase even
further if multi-threading was enabled.

Fig. 6b shows the HBS verification times. None of the proposed parameter sets perform verifi-
cation slower than 7ms, which is satisfactory. The standard deviation was insignificant. Parameters
with𝑊 =4 (LMS) or 𝑤=16 (SPHINCS+) verify signatures significantly faster than with𝑊 =8 or
𝑤=256 respectively.

To give some perspective, a classical RSA2048 signature offers 112 bits of classical security,
0.26KB private, public key and signature.Wemeasured it in our testbed to take 1.657Mcycles/0.753ms
per signature and 0.049Mcycles/0.022ms per verification. RSA4096 offers over 128-bits of classical
security, 0.52KB private, public key and signature, and was measured to take 11.241Mcycles/5.11ms



12 Kampanakis et al.

2.67
1.62

2.83
1.78

5.56

3.44

7.80

4.63

7.80

4.63

10.10

8.30

11.45

9.05

13.22

10.22

17.28

14.11

19.58

15.36

22.62

17.34

0

5

10

15

20

25

Fig. 5. HBS Signature Size (KB)

per signature and 0.173Mcycles/0.078ms per verification. Thus, RSA has smaller signatures and
performs faster than HBS, but within the same order of magnitude which makes HBS appealing.
Note that all RSA variants are considered to offer ∼0 bits of PQ security.
By combining all of the collected data, we can conclude that the best LMS parameters are

with𝑊 =8 and the best HSS parameter is HSS256L3oW8. Regarding SPHINCS+, parameters with
𝑤=256 seem more favorable as they keep signature sizes smaller with acceptable signing and
verification performance. Adopters could of course make different signature, signing and verification
performance trade-off decisions and pick different parameters.

5.2 Hardware Secure Boot Performance

Parameter Total Boot Time (s)

RSA2048 95

Table 3. Cisco Firepower 2110
Total Secure Boot Time (with
RSA2048)

To assess the potential impact of HBS signatures on a hardware
secure boot environment, we measured the total boot time of a
Cisco Firepower 2110 appliance. Cisco Systems is a big IT vendor
offering various platforms with different resource constraints, per-
formance and cost. Appliances like the Firepower 2110 are small
next-generation firewalls with average processing resources of an
1.8GHz Intel x86 4-core processor and 16GB DDR4 RAM. Table 3
shows the total boot time we measured with Firepower 2110s. Read-

ers should note that the total time includes two RSA2048 verifications for the firmware and OS

1.15

6.24

1.46

8.81

1.79

8.80

3.42

13.76

1.71

5.95

80.02

150.99

83.38

177.98

96.60

553.74

589.61
677.79

595.63
712.17

370.16

935.29

1

10

100

1000

(a) Signing (logarithmic scale)

0.17

1.30

0.17

1.30

0.33

2.62

0.48

3.89

0.48

3.72

0.47

3.20

0.63

4.63

0.72

5.32

0.63

4.19

0.80

5.27

0.95

6.97

0

1

2

3

4

5

6

7

(b) Verification

Fig. 6. HBS Time (ms)



Post-quantum HBS for Secure Boot 13

images and two more verifications for OS packages. It was almost one minute from booting the
BIOS until the OS image signature was verified and the OS started loading. The OS image total
verification time was measured approximately to be 15s most of which were spent calculating
the hash of the image. Most other Cisco platforms we tested manifest similar secure boot times
(leveraging RSA2048 image signatures) of several seconds.

We can see that in Cisco platforms, boot times (using RSA2048) are orders of magnitude longer
(tens of seconds) than the HBS verification times (few milliseconds) we measured in Table 2. Thus,
we believe the HBS signatures have immaterial impact (<0.5‰) on Cisco secure boot and the vast
majority of use-cases. Rare cases where HBS signatures may be deemed unfavorable would include
constrained or time-sensitive applications. Even though we consider such cases rare, we believe
that an optimized LMS verification could still offer the performance needed for these environments.

5.3 FPGA-based Signature Verification Performance
To evaluate the practicality of HBS verification in FPGAs, we developed an FPGA core capable of
verifying the LMS parameters. We chose to focus on the LMS algorithms as their smaller signature
size relative to SPHINCS+ requires fewer Block RAM resources to store a signature on-chip for
verification. This concern is particularly relevant to lower power, lower density, and less costly
devices that are more likely to be used in embedded and IoT-type applications. Even though we did
not implement SPHINCS+ verification in FPGAs, we expect their required resources to be higher
than, but in-line with, the resources observed in our FPGA-based LMS verifier. To support this
claim, [4] evaluated SPHINCS+ verification with Xilinx Vivado HLS and Xilinx Virtex-7 FPGA
as the target devices and showed that SPHINCS+ verification would perform acceptably even in
constrained devices.
We chose to focus on parameters with 𝑊 =8 since these gave us smaller signature sizes at

acceptable levels of performance. We also did not test HSS256L3W8 as HSS256L3oW8 performed
better (Section 5.1). We tested these parameters through functional simulation. The Hardware
Description Language (HDL) representation of our LMS verifier was developed with the goal of
minimizing area use while achieving vendor-agnostic support for different FPGA architectures.
In general, optimizing for time leads to an increase in the area footprint and vice versa. Since
LMS verification is relatively fast and verifiers can sometimes be constrained, we considered area
optimizations more important. Moreover, modern FPGAs usually offer Block RAMs suitable for fast,
large, and flexible data storage and distributed RAMs useful for storing coefficients, state machines,
and small buffers [1]. We took advantage of these embedded memory options to optimize our LMS
verifier.

To provide a more direct comparison of LMS with an RSA implementation, we implemented our
design in an FPGA from the Xilinx UltraScale architecture family. Testing assumed that a short
message and its signature were preloaded into a known location of FPGA Block RAM dedicated
to the LMS verifier logic. The LMS algorithm would run to completion and provide a pass/fail
indication via a top-level interface port. The messages were very short (less than 256 bytes) to
ensure time measurements also predominantly represented signature verification time. Table 4
shows our results. The stateful HBS data points were collected from Xilinx Vivado 2018.2, targeting
a mid-speed, industrial temperature grade Kintex UltraScale device (xcku025-ffva1156-2-i).
Vivado was set to use the default options for the Flow_PerfOptimized_high Synthesis Strategy
and the Performance_Explore Implementation Strategy. Timing constraints defining a 4ns logic
clock period were successfully met. The RSA4096 results were kindly provided by Xilinx from
an example design that was optimized for low logic area or high clock rate. The RSA2048 results
were taken from [72]. The latter design was optimized for speed and compatibility with the new
Vitis development platform and therefore has a significantly higher logic footprint. All data points



14 Kampanakis et al.

Parameter Time
(ms)

Clock
(MHz) FFs LUTs BRAM DSP CLB

RSA2048 [72] - ∼300 94455 28668 0 128 3428
RSA4096-Verilog * ∼60 200 316 818 1 1 -
RSA4096-VHDL † ∼10 200 484 346 1 3 -

LMS256H10W8 ∼5.4

250 517 # 968 # 2 1 108 #
LMS256H15W8 ∼6.3
LMS256H20W8 ∼5.1
HSS256L2W8 ∼9.8
HSS256L3oW8 ∼16.1

Table 4. Verification in Xilinx UltraScale chips

* Measurements from example Verilog design provided by Xilinx.
† Measurements from example VHDL design provided by Xilinx.
# SHA256 logic excluded. SHA256 accounted for 1117 FFs, 1865 LUTs and 369
CLBs. The hashing of the image is limited by the Serial Peripheral Interface
(SPI) speed when reading the image from flash at just a few MiB/s. Our
SHA256 implementation was hashing data ∼184MiB/s. The Xilinx Vitis
Libraries documentation reports 296 MiB/s respectively (64 bytes per 68
cycles at 330.25 MHz). Thus, the image hash calculation was excluded from
our evaluation so that our results are not dominated by the amount of time
it takes to read the signature into on-chip memory.

in Table 4 exclude the image hash calculations which would precede an image verification and
increase the footprint significantly.

Given this approach, we observe that the performance of our LMS implementation, in terms of
clock rate, exceeds that of comparative cores implementing RSA4096 signature verification. It does
not attain the speed of the Vitis library module (RSA2048) though. Total verification time between
the classical and PQ signature algorithms is on the same order of magnitude. In terms of area, LMS,
while not nearly as large as the the Vitis design (RSA2048), is larger than the VHDL-optimized
RSA4096 module and similar to the RSA4096-Verilog one. Note that, even though it is not included
in the RSA rows in Table 4, extra SHA256 logic will still exist in an RSA verification scenario to
calculate the digest of the image, which we expect to be similar to the additional LMS SHA256 logic
reported in Table 4-footnote #. It still remains feasible to further optimize an LMS verifier to fit into
almost the smallest of recent-generation FPGAs. We expect that the footprint of verifier logic for
other LMS/HSS and SPHINCS+ parameters will be higher, but easily supported by most modern
FPGAs.
With the desire to make the design of the LMS verification module as efficient as possible,

it is worth noting the trade-off between logic area and performance. We discovered that the
SHA256 hash engine was the largest component of the design and the primary limiting factor of the
maximum supported clock rate. For this study, our hardware SHA256module took a straightforward,
performance-oriented approach towards usage of sequential and combinatorial resources. Different
approaches to the hash implementation could have significant effects on resource utilization when
mapped into an FPGA.



Post-quantum HBS for Secure Boot 15

0.04

0.31

2.51

0.32

2.41

0.60

4.87

0.89

7.24

0.92

7.09

0.91

6.65

1.17

8.75

1.36

9.88

1.19

7.40

1.53

10.42

1.79

13.19

0

2

4

6

8

10

12

14

(a) Lenovo ThinkCentre, Intel i5-8500, 16GB RAM

0.50

3.89

0.51

3.90

0.98

7.87

1.44

11.66

1.43

11.16

1.40

9.61

1.88

13.90

2.17

15.97

1.89

12.57

2.41

15.82

2.84

20.92

0

5

10

15

20

(b) GCP instance, Intel Xeon @ 2.20GHz, 7.68GB RAM

Fig. 7. ×3 Signature Verification Time for virtual secure boot (ms)
5.4 Virtual Secure Boot Performance
To study Virtual secure boot performance, we used OQS OpenSSL [57] and SHIM code in [59].
QEMU was running on a Lenovo ThinkCentre M920 with an Intel Core i5-8500, 16GB RAM and a
7200rpm spinning hard drive. We first evaluated booting an Ubuntu virtual machine. The Ubuntu
guest host was tested with two and four virtual cores without significant difference because UEFI
binaries are not optimized for multi-core use. We measured the time from the invocation of QEMU-
KVM to the Ubuntu login screen. The average boot time was 14.75s with a standard deviation of
0.16s. This time includes three separate verifications of the three EFI binaries in the UEFI boot
process, all of which used RSA2048. The three RSA signature verifications account for a minuscule
fraction (0.04ms measured with OpenSSL 1.1.1) of the total boot time. There would be a noticeable
speed gain if the tests were running on a solid state drive, but we expect the total boot time to still
take several seconds.
Subsequently, to assess the impact of HBS signatures in our Lenovo testbed, we measured the

total verification time (three signatures) for the parameter sets under study with multi-threading
disabled.We used OQSOpenSSL [57] based onOpenSSL 1.1.1c. The average times for three signature
verifications for RSA2048 and the HBS parameters are shown in Fig. 7a. Fig. 7b shows the total
HBS verification times in the Google Cloud instance. We can see that the times across our entire
set of HBS parameters are longer than for RSA2048, but they all remain well below 21ms. Thus,
in a virtual UEFI boot time of several seconds, using post-quantum HBS signatures instead of
conventional ones would be of immaterial impact even for much slower verifiers.

6 DISCUSSION
Section 5 showed that HBS are heavier than RSA, but their performance would have minimal
impact on today’s secure boot technologies. Even though SPHINCS+ is probably the better option
because it does not require state management, LMS would be the preferred choice for constrained
verifiers where memory and performance are important concerns. Signers with common hardware
could sign in less than one second for either scheme. Verification would take just a few milliseconds,
which is fast for secure boot and software signing uses. As we explained, a secure boot chain
involves two or three signature verifications before the OS is booted. Three HBS verifications will
still take minuscule time compared to the total boot time.

Regarding HBS hierarchies, we envision that two or three-level tree architectures would be more
practical for most scenarios as they offer a balance between signature generation performance and
size. The root of each tree becomes the PK, KEK, or Firmware Update Key included in the UEFI
db/dbx databases. As discussed in Section 4, key revocation takes place by placing a HBS public
key or signature in the dbx database by signing a database update message with corresponding the
KEK tree.



16 Kampanakis et al.

The height of the trees (10, 15, or 20) at each level will depend on the use-case. In terms of
Winternitz parameters, we expect𝑊 =8 (LMS) and 𝑤=256 (SPHINCS+) to be the best options of
choice (Table 1). We consider that 96-bit PQ security for SPHINCS+ will suffice for a very long time.
A single HSS tree with HSS192L3oW8 or SPHINCS+ with SPX192H35w256 are expected to be used
in limited scenarios because of revocation challenges. Adopters could of course make different
signature, signing and verification performance trade-off decisions and pick different parameters.
One more consideration for HBS signers are fault injection attacks. Benign or malicious fault

injections were introduced in [13, 21] which focus on stateless SPHINCS+, but can be extended
to HSS and XMSS𝑀𝑇 . A fault injection attack can take place because a lower level subtree of an
HBS hypertree is usually regenerated to create new signatures. A malicious attacker could take
advantage of that at the signer and force a fault in the subtree root that gets signed by the same
OTS. That can ultimately lead to a signature forgery with higher probability or full OTS private
key recovery if enough faulty signatures were generated. In a software signing scenario, the signer
is usually assumed to be trustworthy and fault injections are unlikely. Additionally, signers in these
use-cases usually leverage hardware security modules (HSMs) that are assumed fault-resilient.
Regardless of their likelihood, such attacks can be prevented. [51] proposed Recomputing with
Swapped Nodes (RESN), which recomputes subtrees with swapped nodes and uses an enhanced
hash function to protect against faults. Such protections could work with stateful schemes like LMS,
but would be more challenging for SPHINCS+ [21]. [21] also proposed caching OTS calculated
values and making sure new computations do not deviate. Additonally, it proposed recomputing the
OTS in different hardware modules, which would make it impossible to introduce the same faults.
That way, a majority of the computed values could be picked for the signature. We consider fault
injections to be unlikely for UEFI Secure Boot and their prevention to be relatively straightforward
at the signer.

On the other hand, migrating secure boot and image signing to post-quantum HBS comes with a
set of considerations:
(i) State management is a valid concern raised in various occasions [44, 67]. [48] describes

some techniques to protect state that include bulk key and state generation and volatile and
non-volatile memory storage. Additionally, NIST published a Special Publication [15] to describe
the characteristics of use-cases for stateful HBS. Software signing is believed to be one of these
use-cases. The document also makes recommendations for protecting state, such as using hardware
security modules to store and update the state before releasing a signature. Even though state can
be properly managed for secure boot use-cases, it would not be trivial for crypto policy authors
and testers to ensure that the right precautions are taken by a signer. NIST may add stateful HBS
in their list of FIPS-approved algorithms for certain uses, but it is not clear how testing labs would
verify that state is properly protected. If a testing lab cannot verify proper state management,
then another concern could be raised about how a verifier could trust that none of the signatures
used the same state. One way to confirm this would be to have a vendor publish all generated
signatures so that third parties can confirm state was not re-used, but this is a non-trivial task.
Thus, the question of confirming that a signer has taken proper measures to ensure state is not
re-used remains open.

(ii) A smooth transition to using PQ signatures is also an important consideration. A vendor that
switches to a new signature scheme will still have a lot of deployed devices that use classical RSA
signatures. Thankfully, the signing formats used to sign EFI binaries, PKCS#7 [35] and Authenticode
Portable Executable (PE), allow for the inclusion of multiple signatures.

PKCS#7 includes the signatures in an ASN.1 type SignedData:
SignedData ::= SEQUENCE {

version Version,



Post-quantum HBS for Secure Boot 17

digestAlgorithms DigestAlgorithmIdentifiers,
contentInfo ContentInfo,
certificates [0] IMPLICIT ExtendedCertificatesAndCertificates

OPTIONAL,
crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
signerInfos SignerInfos }

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

SignerInfos ::= SET OF SignerInfo

The digestAlgorithms is a collection of message-digest algorithm identifiers under which
the content is digested for some signer. The certificates includes certificate chains to verify
signer information. The contentInfo is the content that is signed. There can be many signers
(SignerInfos) in the SignedData. The ASN.1 type SignerInfo is defined as

SignerInfo ::= SEQUENCE {
version Version,
issuerAndSerialNumber IssuerAndSerialNumber,
digestAlgorithm DigestAlgorithmIdentifier,
authenticatedAttributes [0] IMPLICIT Attributes OPTIONAL,
digestEncryptionAlgorithm

DigestEncryptionAlgorithmIdentifier,
encryptedDigest EncryptedDigest,
unauthenticatedAttributes [1] IMPLICIT Attributes OPTIONAL }

The digestEncryptionAlgorithm and encryptedDigest include the digest and signature iden-
tifier and the actual signature. RFC4853 [26] clarifies how verification takes place when there are
multiple signatures in the SignedData. It considers that the content is verifiably signed by a given
signer, if any of the digital signatures from that signer are valid.

On the other hand, the Windows Portable Executable (PE) format used to sign EFI binaries allows
for multiple signatures without including multiple SignerInfos in the PKCS#7 SignedData. The
PE section containing the certificate is omitted from the hash calculation of the image and the
signature is embedded in the PE file in a location specified by the Certificate Table entry in the
Optional Header Data Directories. The signature stored in the location is in a bCertificate binary
array which includes the PKCS#7 SignedData. Multiple signatures can be embedded by including
multiple Certificate Table entries that point to different bCertificates. It is common for
PE images to have dual/multiple signatures, a feature that is supported by many code signing
vendors. Micosoft’s Authenticode code-signing technology and Tianocore, the UEFI open-source
implementation, support verifying multiple PE signatures as well. We also confirmed that commonly
used Linux EFI signing tools like sbverify support dual signing and verification of EFI executables.
Thus, to ensure a smooth PQ transition, signers that add HBS signature support could include

these signatures along with classical RSA ones in their PE files. A verifier that does not support
HBS would still verify the RSA signature, and HBS-capable verifiers could verify the PQ signature.
Although the industry has made sure such transition methodologies would work, vendors would
need be careful and confirm that existing verifiers will be able to verify the dual signature and
proceed with booting.
The post-quantum part of this dual signature would not be FIPS-approved unless HBS were

approved by NIST. According to NIST’s recent announcement [52], this dual signature approach
will still be considered FIPS-140 approved if the classical part of the signature is FIPS-approved
and gets verified. Thus, new capabilities could be introduced in the PQ verifier to apply an AND
operation for verification of the classical and HBS signature. The classical and PQ keys used to



18 Kampanakis et al.

generate such signatures would in this case be tied to the dual signature function. It would be up to
the signer to decide the signing policy, but in most cases it would seem natural to consider the two
keys bound and used together to sign software; using only one of these keys could be forbidden.
Such a policy would require changes in the verifier’s trust-store / UEFI db to bind these public keys
together so they can only be used in conjunction and not independently.
(iii) As mentioned, FIPS approval of HBS is an open question. The future will show if HBS

signatures (stateful or stateless) will be added to the FIPS-approved list. Even if these algorithms
were FIPS-approved, we will need to see if the new SPHINCS+ parameters introduced in this work
will be approved. We introduced new parameters because we found that the NIST SPHINCS+
submitted parameter sets would perform ∼ ×2-4 times slower verification with ∼5-25KB bigger
signatures.
(iv) Tianocore/EDK II (the codebase behind UEFI) and the SHIM use OpenSSL for all RSA and

X.509/PKCS#7-related cryptographic operations. The current state of PQ algorithm support is
dependent mainly on the OQS OpenSSL [57] project, which relies on liboqs [56] for the imple-
mentation of various PQ algorithms. The main focus of the OQS OpenSSL project has been TLS,
leaving other facets of OpenSSL such as PCKS#7 relatively untouched. HBS signatures do not
operate in a classical digest-and-sign fashion where a message is initially hashed and then the
digest is signed; HBS signatures include the message digest as part of the scheme itself. EdDSA [34]
is an example of a classical signature scheme that operates in this fashion. At the time of this
writing, new PKCS#7 / CMS algorithm identifiers were standardized in the IETF [27] only for a
few of the proposed HBS parameters which would be necessary for HBS signatures to be included
in software images. Additionally, in order for HBS signature verification to work in UEFI Secure
Boot, support for one-shot (without digest) signature algorithms in OpenSSL’s PCKS#7 stack would
need to be implemented. At the time of this writing, OpenSSL had no plans for adding one-shot
signature support for PKCS#7 leaving this a challenge for the uptake of PQ algorithms in UEFI
Secure Boot [46].
There are eight more PQ signature candidates in NIST’s Round 2 which could serve as alter-

natives to HBS. Most of them offer lengthy signatures and public keys at various speeds. The
best options in terms of size are Falcon 512 with 0.69KB signatures at 103 bits of PQ security and
Dilithium II with ∼2KB signatures at 91 PQ bit security. Falcon 1024 at 230-bit PQ security level
has 1.33KB signatures and ∼1KB public key and Dilithium IV offers 3.37KB signatures and 1.7KB
public key at 158-bit PQ security. Their signing performance is a few milliseconds. Verification
performance is less than 1ms for both. There are also three multivariate schemes from the NIST PQC
standardization effort (Rainbow, GeMSS and LUOV) which offer signatures smaller than 0.25KB
with 58, 352 and 11.5KB public keys respectively at the lowest security level. Excessively large
public keys would add extra burden on constrained verifiers that would need to store the public keys
in their trust-stores which makes multivariate signatures less appealing. Another scheme, qTesla,
has a public key of ∼15KB and a 2.5KB signature at the lowest security level. The corresponding
verification performance is less than 1ms. MQDSS and Picnic also offer small public keys and 21
and 34KB signatures at the lowest security level. Falcon, Dilithium and some of the qTesla, LUOV,
MQDSS and Picnic variants could offer PQ signature alternatives to HBS. However, given that HBS
are the most mature, conservative, and well-analyzed options, and based on the analysis in this
work, we think that HBS is best suited for software signing and secure boot use-cases.

7 CONCLUSION
In conclusion, in this work we evaluated the impact of using post-quantum hash-based signatures
for secure boot and software signing. We proposed parameter sets at different security levels
and introduced an architecture that would work for most vendors. We experimentally showed



Post-quantum HBS for Secure Boot 19

that the impact of switching to such signatures will be insignificant for the verifier compared
to conventional RSA used today in various use-cases (i.e. hardware, virtual secure boot, FPGA).
We also showed that the signer will be more impacted, but still at an acceptable level. Finally, we
discussed practical issues and concerns of migrating to HBS signatures and their alternatives.

ACKNOWLEDGMENTS
We would like to thank Scott Fluhrer for his LMS code, his optimizations and his valuable guidance
and feedback. The authors would also like to thank Jason Moore and JimWesselkamper from Xilinx
for their sample Xilinx design data points included in this work. Thanks to Bruno Couillard and Jim
Goodman fromCrypto4A for the interesting discussions about HBS and their feedback. Quynh Dang
kindly caught our inaccurate overstating of the signing performance of our customized parameter
sets. Finally, we would like to acknowledge Joost Rijneveld for his feedback and comments regarding
SPHINCS+ parameters and the SPHINCS+ implementation and Dimitrios Sikeridis for his help with
the experiments.

REFERENCES
[1] M. M. Alam, S. Tajik, F. Ganji, M. Tehranipoor, and D. Forte. 2019. RAM-Jam: Remote Temperature and Voltage Fault

Attack on FPGAs using Memory Collisions. In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC).
48–55.

[2] Megumi Ando, Joshua D. Guttman, Alberto R. Papaleo, and John Scire. 2016. Hash-Based TPM Signatures for the
Quantum World. In Applied Cryptography and Network Security, Mark Manulis, Ahmad-Reza Sadeghi, and Steve
Schneider (Eds.). Springer International Publishing, Cham, 77–94.

[3] Jean-Philippe Aumasson, Daniel J Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas
Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, et al. 2019. SPHINCS+ - Submission to the 2nd
round of the NIST post-quantum project. https://sphincs.org/data/sphincs+-round2-specification.pdf. Specification
document (part of the submission package).

[4] Kanad Basu, Deepraj Soni, Mohammed Nabeel, and Ramesh Karri. 2019. NIST Post-Quantum Cryptography- A
Hardware Evaluation Study. Cryptology ePrint Archive, Report 2019/047. https://eprint.iacr.org/2019/047.

[5] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza Papachristodoulou,
Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. 2015. SPHINCS: Practical Stateless Hash-Based
Signatures. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. 368–397. https://doi.org/10.1007/978-3-662-46800-5_15

[6] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. 2017. Transitioning to a quantum-resistant
public key infrastructure. In Proc. 8th International Conference on Post-Quantum Cryptography (PQCrypto) 2017 (LNCS),
Tanja Lange and Tsuyoshi Takagi (Eds.). Springer. To appear.

[7] Dan Boneh and Shay Gueron. 2017. Surnaming Schemes, Fast Verification, and Applications to SGX Technology. In
Topics in Cryptology – CT-RSA 2017, Helena Handschuh (Ed.). Springer International Publishing, Cham, 149–164.

[8] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. In 2015 IEEE Symposium on Security and Privacy. IEEE, 553–570.

[9] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. 2011. XMSS - A Practical Forward Secure Signature Scheme
Based on Minimal Security Assumptions. Springer Berlin Heidelberg, Berlin, Heidelberg, 117–129. https://doi.org/10.
1007/978-3-642-25405-5_8

[10] Johannes A Buchmann, Denis Butin, Florian Göpfert, and Albrecht Petzoldt. 2016. Post-quantum cryptography: state
of the art. In The New Codebreakers. Springer, 88–108.

[11] Matt Campagna. 2019. Hybrid-Key Exchanges as an Interim-to-Permanent Solution to Cryptographic Agility. https:
//docbox.etsi.org/Workshop/2019/.

[12] Fabio Campos, Tim Kohlstadt, Steffen Reith, and Marc Stöttinger. 2020. LMS vs XMSS: Comparison of Stateful Hash-
Based Signature Schemes on ARM Cortex-M4. In Progress in Cryptology - AFRICACRYPT 2020, Abderrahmane Nitaj
and Amr Youssef (Eds.). Springer International Publishing, Cham, 258–277.

[13] Laurent Castelnovi, Ange Martinelli, and Thomas Prest. 2018. Grafting Trees: A Fault Attack Against the SPHINCS
Framework. In Post-Quantum Cryptography, Tanja Lange and Rainer Steinwandt (Eds.). Springer International Publish-
ing, Cham, 165–184.

[14] Cisco. 2017. Cisco Secure Boot and Trust Anchor Module Differentiation Solution Overview. https://www.cisco.com/
c/en/us/products/collateral/security/cloud-access-security/secure-boot-trust.html.

https://sphincs.org/data/sphincs+-round2-specification.pdf
https://eprint.iacr.org/2019/047
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-642-25405-5_8
https://docbox.etsi.org/Workshop/2019/
https://docbox.etsi.org/Workshop/2019/
https://www.cisco.com/c/en/us/products/collateral/security/cloud-access-security/secure-boot-trust.html
https://www.cisco.com/c/en/us/products/collateral/security/cloud-access-security/secure-boot-trust.html


20 Kampanakis et al.

[15] David Cooper, Daniel Apon, Quynh Dang, Michael Davidson, Morris Dworkin, and Carl Miller. 2020. Recommendation
for Stateful Hash-Based Signature Schemes. https://csrc.nist.gov/publications/detail/sp/800-208/final.

[16] Eric Crockett, Christian Paquin, and Douglas Stebila. 2019. Prototyping post-quantum and hybrid key exchange and
authentication in TLS and SSH. Cryptology ePrint Archive, Report 2019/858. https://eprint.iacr.org/2019/858.

[17] ETSI. 2017. ETSI TC Cyber Working Group for Quantum-Safe Cryptography. https://portal.etsi.org/TBSiteMap/
CYBER/CYBERQSCToR.aspx. Web page. Accessed 2019-07-25.

[18] Scott Fluhrer. 2019. LMS Hash Based Signature Open-source Implementation. https://github.com/cisco/hash-sigs.
[19] Scott Fluhrer and Quynh Dang. 2019. Additional Parameter sets for LMS Hash-Based Signatures. Internet-Draft draft-

fluhrer-lms-more-parm-sets-00. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-fluhrer-
lms-more-parm-sets-00 Work in Progress.

[20] Scott Fluhrer, David McGrew, Panos Kampanakis, and Valery Smyslov. 2019. Postquantum Preshared Keys for IKEv2.
Internet-Draft draft-ietf-ipsecme-qr-ikev2-08. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/
draft-ietf-ipsecme-qr-ikev2-08 Work in Progress.

[21] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew McLauchlan. 2018. Practical Fault Injection
Attacks on SPHINCS. Cryptology ePrint Archive, Report 2018/674. https://eprint.iacr.org/2018/674.

[22] Santosh Ghosh, Rafael Misoczki, and Manoj R. Sastry. 2019. Lightweight Post-Quantum-Secure Digital Signature
Approach for IoT Motes. Cryptology ePrint Archive, Report 2019/122. https://eprint.iacr.org/2019/122.

[23] Google. 2019. Shielded VM Documentation. https://cloud.google.com/security/shielded-cloud/shielded-vm.
[24] TimGüneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical Lattice-Based Cryptography: A Signature

Scheme for Embedded Systems. In Cryptographic Hardware and Embedded Systems – CHES 2012, Emmanuel Prouff and
Patrick Schaumont (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 530–547.

[25] Paul E. Hoffman. 2019. The Transition from Classical to Post-Quantum Cryptography. Internet-Draft draft-hoffman-
c2pq-05. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-05 Work in
Progress.

[26] Russ Housley. 2007. Cryptographic Message Syntax (CMS) Multiple Signer Clarification. RFC 4853. https://doi.org/10.
17487/RFC4853

[27] Russ Housley. 2020. Use of the HSS/LMS Hash-Based Signature Algorithm in the Cryptographic Message Syntax
(CMS). RFC 8708. https://doi.org/10.17487/RFC8708

[28] http archive. [n.d.]. Measuring TLS key exchange with post-quantum KEM. https://www.shodan.io/report/mNs9fa3I.
[29] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz Mohaisen. 2018. XMSS: eXtended

Merkle Signature Scheme. RFC 8391. https://doi.org/10.17487/RFC8391
[30] Andreas Hülsing, Christoph Busold, and Johannes Buchmann. 2013. Forward Secure Signatures on Smart Cards. In

Selected Areas in Cryptography, Lars R. Knudsen and HuapengWu (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
66–80.

[31] Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. 2016. From 5-pass MQ-based identification
to MQ-based signatures. IACR Cryptology ePrint Archive 2016 (2016), 708.

[32] Andreas Hülsing, Joost Rijneveld, and Peter Schwabe. 2015. ARMed SPHINCS – Computing a 41KB signature in 16KB
of RAM. Cryptology ePrint Archive, Report 2015/1042. https://eprint.iacr.org/2015/1042.

[33] Nisha Jacob, Johann Heyszl, Andreas Zankl, Carsten Rolfes, and Georg Sigl. 2017. How to Break Secure Boot on FPGA
SoCs Through Malicious Hardware. In Cryptographic Hardware and Embedded Systems – CHES 2017, Wieland Fischer
and Naofumi Homma (Eds.). Springer International Publishing, Cham, 425–442.

[34] Simon Josefsson and Ilari Liusvaara. 2017. Edwards-Curve Digital Signature Algorithm (EdDSA). RFC 8032. https:
//doi.org/10.17487/RFC8032

[35] Burt Kaliski. 1998. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315. https://doi.org/10.17487/RFC2315
[36] Panos Kampanakis. 2019. Slim SPHINCS+ Open-source Implementation. https://github.com/csosto-pk/slim_

sphincsplus/tree/master/ref.
[37] Panos Kampanakis, Peter Panburana, Ellie Daw, and Daniel Van Geest. 2018. The Viability of Post-quantum X.509

Certificates. IACR Cryptology ePrint Archive 2018 (2018), 63.
[38] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. 2019. pqm4: Testing and Benchmarking

NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report 2019/844. https://eprint.iacr.org/2019/844.
[39] Stefan Kölbl, Martin M Lauridsen, Florian Mendel, and Christian Rechberger. 2016. Haraka v2-efficient short-input

hashing for post-quantum applications. IACR Transactions on Symmetric Cryptology (2016), 1–29.
[40] Vinay B. Y. Kumar, Naina Gupta, Anupam Chattopadhyay, Michael Kaspert, Christoph Krauß, and Ruben Niederhagen.

2020. Post-Quantum Secure Boot. In Proceedings of the 23rd Conference on Design, Automation and Test in Europe
(Grenoble, France) (DATE ’20). EDA Consortium, San Jose, CA, USA, 1582–1585.

[41] Kris Kwiatkowski. 2019. Towards Post-Quantum Cryptography in TLS. https://blog.cloudflare.com/towards-post-
quantum-cryptography-in-tls/

https://eprint.iacr.org/2019/858
https://portal.etsi.org/TBSiteMap/CYBER/CYBERQSCToR.aspx
https://portal.etsi.org/TBSiteMap/CYBER/CYBERQSCToR.aspx
https://github.com/cisco/hash-sigs
https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-more-parm-sets-00
https://datatracker.ietf.org/doc/html/draft-fluhrer-lms-more-parm-sets-00
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-08
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-08
https://eprint.iacr.org/2018/674
https://eprint.iacr.org/2019/122
https://cloud.google.com/security/shielded-cloud/shielded-vm
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-05
https://doi.org/10.17487/RFC4853
https://doi.org/10.17487/RFC4853
https://doi.org/10.17487/RFC8708
https://www.shodan.io/report/mNs9fa3I
https://doi.org/10.17487/RFC8391
https://eprint.iacr.org/2015/1042
https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC2315
https://github.com/csosto-pk/slim_sphincsplus/tree/master/ref
https://github.com/csosto-pk/slim_sphincsplus/tree/master/ref
https://eprint.iacr.org/2019/844
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/


Post-quantum HBS for Secure Boot 21

[42] Adam Langley. 2016. CECPQ1 results. https://www.imperialviolet.org/2016/11/28/cecpq1.html
[43] Adam Langley. 2018. CECPQ2. https://www.imperialviolet.org/2018/12/12/cecpq2.html
[44] Adam Langley. 2018. Email thread: Proposed addition of hash-based signature algorithms for certificates to the LAMPS

charter. https://mailarchive.ietf.org/arch/msg/spasm/PgzLjPcg-jfywQFQs9gMLFcgRd8.
[45] Adam Langley. 2018. Post-quantum confidentiality for TLS. https://www.imperialviolet.org/2018/04/11/pqconftls.html
[46] OpenSSL Maintainers. 2018. Pull request: Make Ed25519/Ed448 usable from the command line. https://github.com/

openssl/openssl/pull/5880.
[47] David McGrew, Michael Curcio, and Scott Fluhrer. 2019. Leighton-Micali Hash-Based Signatures. RFC 8554. https:

//doi.org/10.17487/RFC8554
[48] David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan Gazdag, Dennis Butin, and Johannes Buchmann. 2016. State

Management for Hash-Based Signatures. In Security Standardisation Research (SSR) 2016 - Lecture Notes in Computer
Science, Vol. 10074. Springer. https://doi.org/10.1007/978-3-319-49100-4_11

[49] Microsoft. 2017. Windows Secure Boot Key Creation and Management Guidance. https://docs.microsoft.com/en-
us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance.

[50] Michele Mosca. 2018. Cybersecurity in an era with quantum computers: will we be ready? IEEE Security & Privacy 16,
5 (2018), 38–41.

[51] Mehran Mozaffari-Kermani, Reza Azarderakhsh, and Anita Aghaie. 2016. Fault Detection Architectures for Post-
Quantum Cryptographic Stateless Hash-Based Secure Signatures Benchmarked on ASIC. ACM Trans. Embed. Comput.
Syst. 16, 2, Article 59 (Dec. 2016), 19 pages. https://doi.org/10.1145/2930664

[52] NIST. 2019. Revising FAQ questions on hybrid modes e-mail thread. https://groups.google.com/a/list.nist.gov/forum/
?utm_medium=email&utm_source=footer#!msg/pqc-forum/qRP63ucWIgs/rY5Sr_52AAAJ.

[53] Tobias Oder, Thomas Pöppelmann, and Tim Güneysu. 2014. Beyond ECDSA and RSA: Lattice-based digital signatures
on constrained devices. In In DAC ’14 Proceedings of the The 51st Annual Design Automation Conference on Design
Automation Conference. 1–6. https://doi.org/10.1145/2593069.2593098

[54] Mike Ounsworth and Massimiliano Pala. 2019. Composite Keys and Signatures For Use In Internet PKI. Internet-Draft
draft-ounsworth-pq-composite-sigs-01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-
ounsworth-pq-composite-sigs-01 Work in Progress.

[55] Scott Fluhrer Panos Kampanakis. 2017. LMS vs XMSS: A comparison of the Stateful Hash-Based Signature Proposed
Standards. Cryptology ePrint Archive, Report 2017/349. http://eprint.iacr.org/2017/349.

[56] Open Quantum Safe Project. 2019. liboqs. https://github.com/open-quantum-safe/liboqs. Web page. Accessed
2019-02-08.

[57] Open Quantum Safe Project. 2019. OQS OpenSSL. https://github.com/open-quantum-safe/openssl. Web page. Accessed
2019-02-08.

[58] John Proos and Christof Zalka. 2003. Shor’s Discrete Logarithm Quantum Algorithm for Elliptic Curves. Quantum
Info. Comput. 3, 4 (July 2003), 317–344. http://dl.acm.org/citation.cfm?id=2011528.2011531

[59] RedHat. 2019. SHIM (in github). https://github.com/rhboot/shim.
[60] Sebastian Rohde, Thomas Eisenbarth, Erik Dahmen, Johannes Buchmann, and Christof Paar. 2008. Fast Hash-Based

Signatures on Constrained Devices. In Smart Card Research and Advanced Applications, Gilles Grimaud and François-
Xavier Standaert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 104–117.

[61] Crystal Roma, Chi-En Amy Tai, and M Anwar Hasan. 2019. Energy Consumption of Round 2 Submissions for NIST
PQC Standards. Second PQC Standardization Conference (Aug 2019).

[62] Johanna Sepúlveda, Shiyang Liu, and Jose M Bermudo Mera. 2019. Post-quantum enabled cyber physical systems.
IEEE Embedded Systems Letters (2019).

[63] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum
Computer. SIAM J. on Computing 26, 5 (1997), 1484–1509.

[64] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. Post-Quantum Authentication in TLS 1.3: A
Performance Study. In NDSS.

[65] Deepraj Soni, Kanad Basu, Mohammed Nabeel, and Ramesh Karri1. 2019. A Hardware Evaluation Study of NIST
Post-Quantum Cryptographic Signature schemes. Second PQC Standardization Conference (Aug 2019).

[66] SPHINCS+ team. 2019. SPHINCS+ Open-source Implementation. https://github.com/sphincs/sphincsplus.
[67] stateful-hbs-comments-nist 2019. Stateful Hash-Based Signatures - Public Comments on Misuse Resis-

tance. https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-
resistance-public-comments-April2019.pdf.

[68] Douglas Steblia, Scott Fluhrer, and Shay Gueron. 2019. Design issues for hybrid key exchange in TLS 1.3. Internet-Draft
draft-stebila-tls-hybrid-design-01. Internet Engineering Task Force. https://datatracker.ietf.org/doc/html/draft-stebila-
tls-hybrid-design-01 Work in Progress.

https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://mailarchive.ietf.org/arch/msg/spasm/PgzLjPcg-jfywQFQs9gMLFcgRd8
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://github.com/openssl/openssl/pull/5880
https://github.com/openssl/openssl/pull/5880
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8554
https://doi.org/10.1007/978-3-319-49100-4_11
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance
https://doi.org/10.1145/2930664
https://groups.google.com/a/list.nist.gov/forum/?utm_medium=email&utm_source=footer#!msg/pqc-forum/qRP63ucWIgs/rY5Sr_52AAAJ
https://groups.google.com/a/list.nist.gov/forum/?utm_medium=email&utm_source=footer#!msg/pqc-forum/qRP63ucWIgs/rY5Sr_52AAAJ
https://doi.org/10.1145/2593069.2593098
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-01
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-01
http://eprint.iacr.org/2017/349
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/openssl
http://dl.acm.org/citation.cfm?id=2011528.2011531
https://github.com/rhboot/shim
https://github.com/sphincs/sphincsplus
https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-resistance-public-comments-April2019.pdf
https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-Signatures/documents/stateful-HBS-misuse-resistance-public-comments-April2019.pdf
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01


22 Kampanakis et al.

[69] Cisco Systems. 2010. Digitally Signed Cisco Software. https://www.cisco.com/c/en/us/td/docs/ios/fundamentals/
configuration/guide/TIPs_Conversion/lmsi_15_1s_book/cf_dgtly_sgnd_sw.html.

[70] C. Tjhai, M. Tomlinson, grbartle@cisco.com, Scott Fluhrer, Daniel Van Geest, Oscar Garcia-Morchon, and Valery
Smyslov. 2019. Framework to Integrate Post-quantum Key Exchanges into Internet Key Exchange Protocol Version 2
(IKEv2). Internet-Draft draft-tjhai-ipsecme-hybrid-qske-ikev2-04. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04 Work in Progress.

[71] VMware. 2019. Enable or Disable UEFI Secure Boot for a Virtual Machine. https://docs.vmware.com/en/VMware-
vSphere/6.7/com.vmware.vsphere.security.doc/GUID-898217D4-689D-4EB5-866C-888353FE241C.html.

[72] Xilinx. 2019. Vitis Security Library. https://xilinx.github.io/Vitis_Libraries/security/guide_L1/internals.html.
[73] Bo-Yin Yang, Chen-Mou Cheng, Bor-Rong Chen, and Jiun-Ming Chen. 2006. Implementing Minimized Multivariate

PKC on Low-resource Embedded Systems. In Proceedings of the Third International Conference on Security in Pervasive
Computing (York, UK) (SPC’06). Springer-Verlag, Berlin, Heidelberg, 73–88. http://dx.doi.org/10.1007/11734666_7

[74] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev. 2017. A Post-Quantum Digital
Signature Scheme Based on Supersingular Isogenies. Cryptology ePrint Archive, Report 2017/186. http://eprint.iacr.
org/2017/186.

https://www.cisco.com/c/en/us/td/docs/ios/fundamentals/configuration/guide/TIPs_Conversion/lmsi_15_1s_book/cf_dgtly_sgnd_sw.html
https://www.cisco.com/c/en/us/td/docs/ios/fundamentals/configuration/guide/TIPs_Conversion/lmsi_15_1s_book/cf_dgtly_sgnd_sw.html
https://datatracker.ietf.org/doc/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04
https://datatracker.ietf.org/doc/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.security.doc/GUID-898217D4-689D-4EB5-866C-888353FE241C.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.security.doc/GUID-898217D4-689D-4EB5-866C-888353FE241C.html
https://xilinx.github.io/Vitis_Libraries/security/guide_L1/internals.html
http://dx.doi.org/10.1007/11734666_7
http://eprint.iacr.org/2017/186
http://eprint.iacr.org/2017/186

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Secure Boot Overview
	3.2 HBS Overview
	3.3 Stateful vs Stateless HBS

	4 HBS for Secure Boot
	4.1 Hierarchy
	4.2 Parameter Sets

	5 Experimental Results
	5.1 Algorithm Performance
	5.2 Hardware Secure Boot Performance
	5.3 FPGA-based Signature Verification Performance
	5.4 Virtual Secure Boot Performance

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

