
The Cryptographic Complexity of Anonymous Coins: A

Systematic Exploration

Niluka Amarasinghe, Xavier Boyen, Matthew McKague

Queensland University of Technology, Australia

Abstract

The modern financial world has seen a significant rise in the use of cryptocurrencies in
recent years, partly due to the convincing lures of anonymity promised by these schemes.
Bitcoin, despite being considered as the most widespread among all, is claimed to have
significant lapses in relation to its anonymity. Unfortunately, studies have shown that many
cryptocurrency transactions can be traced back to their corresponding participants through
the analysis of publicly available data, to which the cryptographic community has responded
by proposing new constructions with improved anonymity claims. Nevertheless, the absence
of a common metric for evaluating the level of anonymity achieved by these schemes has led
to a number of disparate ad hoc anonymity definitions, making comparisons difficult. The
multitude of these notions also hints at the surprising complexity of the overall anonymity
landscape.

In this study, we introduce such a common framework to evaluate the nature and extent
of anonymity in (crypto)currencies and distributed transaction systems, irrespective of their
implementation. As such, our work lays the foundation for formalising security models and
terminology across a wide range of anonymity notions referenced in the literature, while
showing how “anonymity” itself is a surprisingly nuanced concept.

Keywords: Anonymity; Security Models; Cryptocurrencies; Foundations

1 Introduction

Cryptocurrencies are undeniably one of the most attention-grabbing developments in security
research of the last decade. They continue to open up new classes of inquiries for the crypto-
and distributed-systems communities, while also arguably offering tangible financial benefits to
the common man and woman. Consequently, their emergence as alternatives to traditional fiat
currencies is reaching new heights.

Thanks to the blockchain technology, trust, the grease of financial transactions, can now
be inferential rather than axiomatic. The decentralised nature, ease of conducting cross-border
transactions, resistance to censure, and promises (or hopes) of privacy and anonymity, are factors
that have contributed towards this popularity. Bitcoin is the first and by far the most widely
used true 1 cryptocurrency at the time of this writing, and has attracted much attention with
respect to its privacy and anonymity aspects.

Anonymity, from a broad perspective, means that with respect to a given group of entities,
it is not possible to uniquely identify one entity from the rest in that group. This concept of

1By which we mean: permissionless, fully decentralized, with democratic governance, and transparently
operated—in other words, conducive to trust from first principles.

1

anonymity has been widely discussed in the context of anonymous communication and also in
anonymous information sharing. Consequently, many theoretical models have been developed to
model anonymity, such as k-Anonymity [25] and approaches based on modal logic [26]. Some
such studies present formalised terminologies to capture different aspects of anonymity [18],
while some propose metrics that could be used to measure a quantitative notion thereof; e.g. as
a degree of anonymity [7]. For better or for worse, these available theoretical frameworks have
been borrowed for discussing anonymity in cryptocurrencies.

The absence of an acceptable level of anonymity and privacy could hinder the effectiveness
of any currency scheme. Many traditional currency schemes are centralised systems where cus-
tomers depend on another party to preserve the privacy of related information. For example,
in a banking model, banks are bound by regulation to preserve the confidentiality of customer
information. If the transaction history of a particular individual or entity were exposed to an
outsider, it could result in many undesirable consequences, from a subjective sense of betrayal,
to more concrete abuses such as misuse of that information to gain undue advantages in contract
bidding. Even worse, if currency units came attached with transaction histories, that could lead
to the blacklisting of specific units based on their use in unlawful activities in the past, or their
involvement in boycotted operations, even though the units may have had only uncontroversial
uses afterwards. As such, it is paramount to have a tolerable level of anonymity in a currency
scheme in order to ensure its fungibility.

In relation to the anonymity of Bitcoin, it has been argued that the current Bitcoin framework
only provides a level of ‘pseudonymity’, in place of anonymity, since transactions are linked to
payment addresses in a big graph that is visible to all [10, 6]. Detailed analyses of public bitcoin
transaction data have shown that it is possible to uncover behaviour patterns of Bitcoin users
and trace their identities in real life [14, 3, 22].

As a consequence of this tension between the need for, and the lack of, effective anonymity
in cryptocurrencies, a lot of energy has been expended with the primary focus of fulfilling that
demand. Some solutions are centered around improving the anonymity of the Bitcoin framework
(e.g. Zcash) whereas other approaches have sought to revisit the blockchain machinery in the
design of new cryptocurrency schemes (e.g. Monero). In spite of many such solutions making
claims of “anonymity”, further studies have shown that a majority of them could still be subject
to deanonymisation [13, 15].

As rationalised in [2], despite a large number of studies around the topic of cryptocurrency
anonymity, no standardised means are available to evaluate the actual level of privacy achieved
by different cryptocurrencies. Many studies have been conducted in isolation using different
metrics, with the consequence that it is not feasible to compare and benchmark the anonymity
landscape in a reliable manner across various constructions. To make matters worse, it turns out
that the very notion of anonymity itself, in such complex multi-party systems as decentralized
cryptocurrencies, has been until now very poorly understood, and is anything but clear-cut. It
is replete with nooks and crannies of special cases and limitations, that could turn into so many
vulnerabilities.

1.1 Our Contribution

The present study was initially motivated by the works of [1, 2, 6, 10], which lifted the veil on
the multiplicity of anonymity notions for cryptocurrencies, but stopped short of actually pro-
viding a crisp formalism for defining and using those notions. Over the course of this study, we
identified a very fine-grained structure for the intuitive notion of payment anonymity, parame-
terised through qualitative distinct definitions that are all sensible and justifiable in appropriate
scenarios. Moreover, our definitions follow patterns that make them amenable to being brought

2

to order according to a logical taxonomy.
Our purpose in this work, therefore, is to initiate a comprehensive formal study of fine-

grained notions of anonymity in payment systems. While the multiplicity of notions is truly
a by-product of the diversity and complexity of cryptographic cash systems (both existing or
envisioned), our framework is general enough to capture familiar instances such as intermediated
banking transactions and interpersonal physical payments. It should be noted that we do not
intend to address the anonymity of the underlying implementation of currency schemes in this
work i.e. consensus or communication mechanisms.

Our main contribution in this context is the formulation of a theoretical framework that
can be used to provide a systematic categorisation of terminology related to anonymity of
(crypto)currencies and to model anonymity across different instances of such currency schemes.

Before we even start discoursing of anonymity, we create a flexible framework to abstract the
generic functionality of nearly arbitrary payment systems, as long as certain basic consistency,
security and financial soundness properties that we define, are satisfied. We model notions
of spendability, balance and indemnification, among others, considered either in an absolute
universal sense for all inputs, or with respect to adversaries granted access to helper oracles.

On this foundation, we then analyse the multiple precise ways in which a broad notion of
anonymity can be envisaged, and we provide a common game-based security template that con-
solidates a massive group of explicit attacker scenarios. Our framework is based around the
fundamental notion of distinguishability, leading to a security concept of indistinguishability,
likely familiar to readers from other security definitions, and a weaker notion of unlinkability.
These notions are further particularized to certain subjects such as transaction value, sender,
recipient and metadata, and parameterised across multiple dimensions based on which informa-
tion and capabilities are given to the adversary, including (or not) the ability to see or set the
initial state, to access or choose ancillary public/private keys, to query and/or manipulate the
system as it runs and to access or choose other transaction data.

Throughout this rather expansive exercise, we strive to identify similarities between related
notions, which allows us in certain instances to “compress” or abstract them according to a com-
mon template, cutting size and tedium while boosting descriptive power. Some of the resulting
definitions are not distinct; others are mere tweaks in a common template; and yet others will
require individual treatment. In order to encapsulate these dispersed scenarios, we present a set
of theorems, underpinning the relationships among them.

While a multitude of separate definitions may seem absurdly excessive, we emphasise that
these definitions arise naturally from considering the possible interactions between the adversary
and the cryptocurrency. Indeed, our notions generalise many security notions familiar to cryp-
tographers such as known vs. chosen plaintext, forward security, indistinguishability, active vs.
passive adversaries, and so on. The fact that we consider all of these security dimensions simul-
taneously multiplies the number of definitions, but also allows us to meaningfully understand
and compare the anonymity of systems that differ along multiple dimensions.

The take-away message from our effort is that (financial) anonymity is not an all-or-nothing
binary property; it is far more subtle. We fully intend that our framework be used to clearly spell
out what aspects of privacy a certain coin does or does not satisfy, across diverse implementations.
Of course, one could be content with asking for absolute fungibility (think: isotopically pure
melted gold), but that is likely not to lead us anywhere, as no cryptocurrency in existence comes
close to reaching that goal. This only makes the need for a (much) more refined model, all the
more pressing.

Organisation. Subsequent sections of this paper are organised as follows. We first present
a brief summary of related studies where theoretical notions of anonymity have been discussed

3

with reference to cryptocurrencies. We then provide a preamble to the notation used in this
paper. Thereafter, we set forth the preliminaries of our currency scheme, algorithms involved and
relevant considerations for correctness and security of the scheme. Next, we present anonymity
definitions and theorems which depicts the implications and separations among those definitions,
followed by a detailed discussion on the significance of this work.

1.2 Other Related Work

As mentioned at the outset, many early studies have focused on quantitative analysis of publicly
available Bitcoin transaction data such as payment addresses and values as the Bitcoin blockchain
records all transaction details publicly.

One of the early studies conducted by Reid et al. [21] on the anonymity of Bitcoin, presents a
passive analysis on publicly available transaction data by constructing two topological structures
based on the connectivity of users and transactions showing how these data can be analysed in
many different ways compromising the anonymity of users. Some have attempted to quantify
such data as in [22], where behavioural patterns and transaction flows are studied at the user
level. Meiklejohn et al. [12] present a different characterisation of Bitcoin transaction data by
clustering user accounts in terms of several heuristics, thereby highlighting the gap between
expected vs actual level of anonymity in the Bitcoin network. A similar work done by Spagnuolo
et al. [24] proposes a framework (named BitIodine) to extract Bitcoin user information, mainly
aiming for forensic purposes. These studies evidently, place more emphasis on the quantitative
analysis while we follow a qualitative approach.

On a different note, some have attempted to formalise the anonymity concepts in a theoretical
manner. In this regard, a majority of the work conducted in the Bitcoin system evaluates the
level of anonymity based on the notion of so called linkability, yet with different interpretations.
Androulaki et al. [3] conducted an analysis of Bitcoin privacy based on activity unlinkability and
profile indistinguishability. In this work, unlinkability is defined in relation to addresses and
transactions (independently) with respective users. This interpretation of unlinkability has been
applied in several subsequent studies related to the anonymity of Bitcoin [16, 17, 30]. From
these studies, it is apparent that Bitcoin anonymity cannot be defined at the transaction layer
since addresses and transactions are linkable by the construction itself. As Bitcoin receives much
criticism to that effect, new currency schemes have emerged with more promising anonymity
expectations, which has led to the need for more concrete formalisation of anonymity concepts.
Zcash is one such scheme which supports two types of transactions, ‘shielded’ and ‘unshielded’.
Shielded transactions are encrypted, hence concealing the addresses and values involved, thereby
claiming to acquire improved levels of anonymity. However, users have the option to choose the
transaction type, and thus they end up creating unshielded transactions at some point, where
they work similar to Bitcoin transactions. Several experimental studies have shown that it is
prone to linkability [9, 20]. Linkability in this context is defined as the ability to link transactions
and the corresponding payment addresses, and they claim that shielded transactions eventually
end up in transparent addresses [20].

Cryptonote is one of the protocols based on which several currency systems have been con-
structed with improved anonymity claims. Saberhagen [27], in the original Cryptonote paper,
states that a fully anonymous currency scheme should satisfy two properties with respect to
anonymity; unlinkability and untraceability. Unlinkability in this work refers to the property
that given two transactions, it is not possible to identify whether both transactions were intended
to the same party, whereas untraceability is defined as the inability to identify the correspond-
ing sender among a set of possible senders for a given transaction. Monero, which originated
from the Cryptonote protocol was then claimed to provide untraceable transactions and untrace-

4

able payments. However, these two properties have fallen to deanonymisation attacks in many
subsequent studies through analysis of Monero transaction data [15, 29, 28].

Fungibility, which is the property of every currency unit being identical, is regarded by many
as an elementary requirement of any currency scheme, but it is a tall order. It is well accepted
that Bitcoin is not fungible [6, 23]. Although it has been claimed [20] that Zcash achieves
fungibility through its use of zero-knowledge SNARK proofs, the survey study of [6] makes the
countermanding claim that Mimblewimble [19] is the only cryptocurrency scheme to do so. Even
so, the original Mimblewimble is insecure, and the fix proposed in [8], by making it preserve a
lot more data, reintroduces the coin history removed in the original fungibility claim.

A recent work by Biryukov et al. [4] presents an experimental analysis on deanonymisation
of sample transactions in several cryptocurrencies based on network analysis. The outcomes
are presented in terms of anonymity degree, which provides an information-theoretic notion of
anonymity as a metric external to the scheme being studied. The study however stresses the need
for a common mechanism that could be used to measure the effectiveness of various techniques
used by different currency schemes in their search of anonymity.

Cachin et al. [5] has proposed a formal model for blockchain systems by modelling the trans-
actions in terms of a graphical structure called Transaction Graphs, focusing on three different
blockchain systems; Bitcoin, Ethereum and Hyperledger Fabric. While this work focuses on
the semantics of a blockchain, our model deviates from this as our emphasis is on modelling
anonymity based on the functionality of a currency scheme.

With this background, many have attempted to evaluate and compare the level of anonymity
achieved by different cryptocurrencies through diverse means. Khalilov et al. [10] conducted a
comprehensive survey on a wide range of cryptocurrencies. They attempted to group the under-
lying constructions around three aspects of anonymity; untraceability, hidden values and hidden
IP addresses. A similar study was carried out by Conti et al. [6], which discusses the privacy as-
pects of Bitcoin and other cryptocurrencies as a comparison of advantages and disadvantages in
terms of privacy and anonymity. Further, [2] presented a survey of several cryptocurrencies with
respect to a set of qualitative anonymity properties such as fungibility, unlinkability, untrace-
ability, hidden values, unlinkability of IP addresses. Without formally defining those properties,
they used them to compare cryptocurrencies over multiple dimensions. In a more recent survey
paper, Alsalami et al. [1] presented a systematic grouping of a chosen set of cryptocurrencies in
terms of four privacy tiers; pseudonymity, set anonymity, full anonymity and confidential trans-
actions, based on two characteristics; ability to break links between transactions and hiding user
identities. This categorisation also however, similar to [10], provides a very high level picture of
the anonymity levels based on the techniques used by the schemes, which is orthogonal to our
work.

Nevertheless, these studies, mostly based on experimental analyses or specific constructions,
do not necessarily facilitate the assessment and comparison of cryptocurrencies in terms of a
common, fine-grained, formal qualitative model of anonymity.

2 Proposed Model

We start by constructing a model for a cryptocurrency scheme in terms of a set of algorithms
which depicts the overall functionality of a generic cryptocurrency scheme.

The currency scheme is defined in terms of a security parameter λ ∈ Z+ and the initial state
of the system, is called the genesis state. The scheme consists of a set of payment addresses,
each consisting of a private key and a public address or identity. A transaction takes place
between multiple senders and recipients, and consists of a private and a public part. A minting

5

operation collects unminted transactions at any given point in time and generates a new state.
New currency units are generated as a result of the minting process, as per the underlying
implementation of the scheme. The adjudicate operation selects the rightful new state of the
system. A system state p is defined by the implementation and will typically record all payment
addresses and transactions that are valid in that instance. In Bitcoin, for example, the blockchain
is the state. Every valid state descends from a valid checkpoint state, which descends from
another checkpoint state or the genesis state. Accordingly, consecutive states of the scheme form
a partial ordering with respect to the internal system specifications.

Table 1: Notation

Description Notation

Security parameter λ : λ ∈ Z+

A system state/Current state p

A set of states P

p0 is an earlier state in time than p1 or p0 = p1 i.e. p0 is in p1’s history p0 � p1

p0 is not in the history of p1 p0 � p1

p0 � p1 ∧ p0 6= p1 p0 ≺ p1

A payment address a

Public key/Private key of a payment address apk, ask
Ordered tuple of one/more addresses (senders/recipients) of secret keys S̄, R̄

Ordered tuple of one/more addresses containing only public keys S, R

Number of items in a tuple S |S|
Public and private parts of a transaction tp, ts
Ordered tuples of input and output values of a transaction Vold, Vnew

Metadata for a transaction m

Excess value of a transaction (fees + minted value) Vx
A tuple of addresses of miners Rm
Concatenation of tuples A and B, Set minus operation of tuples A, B A‖B, A \ B
Empty set, empty tuple (∅/{}), ()

apk is an element of tuple R apk ∈ R
apk is not an element of tuple R apk /∈ R
Every element in tuple R

′
is in tuple R R

′
⊆ R

If [condition] is false after < statement >, then return 1 < statement > [condition]

If 〈 condition 〉 is false after < statement >, then return 0 < statement > 〈condition〉
If a = ⊥ then return c, else return b a?b : c

If a = ⊥ then return b, else return a a? : b

Return X if y, otherwise return 1 Xy

Standard operations on Associative Arrays OperationAA
Set of all possible system states P
Set of all possible addresses (both public and secret parts) A
Set of all possible transactions (both public and secret parts) T
Set of all possible transaction values of the form (Vold, Vnew,m) V
Set of all possible mint data values of the form (Rm, VM) M

2.0.1 Notation

We use the notation given in Table 1 throughout the document in order to represent the scheme
and its operations mathematically.

2.1 A Generic Cryptocurrency Scheme

We define a generic cryptocurrency scheme as follows:

Definition 2.1. A cryptocurrency scheme Π, is defined in terms of security parameter λ and with
the functionality prescribed by means of a set of algorithms; {Init, CreateAddr, IsValidPubAddr,
IsValidSecAddr, GetBalance, CreateTxn, IsValidPubTxn, IsValidSecTxn, ExtractSenderPub-
Addr, ExtractRecipientPubAddr, ExtractInputVal, ExtractOutputVal, IsMintable, Mint, Adju-
dicate, IsValidState, IsGenesisState, CreateCheckpointState, RetrieveCheckpointState}.

6

2.1.1 Functionality

Table 2: Functions.

Algorithm Syntax

Init p0 ← Initπ(1λ)

CreateAddress ⊥ ∨ (apk, ask, tp, ts)← CreateAddrπ(p, d; ρ)

IsValidPubAddr {0, 1} ← IsValidPubAddrπ(apk, p)

IsValidSecAddr {0, 1} ← IsValidSecAddrπ(apk, ask, p)

GetBalance ⊥ ∨ Bal ← GetBalanceπ(apk, ask, p)

CreateTxn ⊥ ∨ (ts, tp) ← CreateTxnπ(R, Vnew, S̄, Vold,m, p; ρ)

IsValidPubTxn {0, 1} ← IsValidPubTxnπ(tp, p)

IsValidSecTxn {0, 1} ← IsValidSecTxnπ(tp, ts, p)

ExtractSenderPubAddr ⊥ ∨ S ← ExtractSenderPubAddrπ(tp, ts, p)

ExtractRecipientPubAddr ⊥ ∨ R ← ExtractRecipientPubAddrπ(tp, ts, p)

ExtractInputVal ⊥ ∨ Vold ← ExtractInputVal(tp, ts, p)

ExtractOutputVal ⊥ ∨ Vnew ← ExtractOutputVal(tp, ts, p)

IsMintable {0, 1} ← IsMintableπ({tp}, p)
Mint ⊥ ∨ (p

′
, Vx) ← Mintπ({tp}, Rm, p)

Adjudicate p
′
∈ P : p ∨ p

′
← Adjudicateπ(P, p)

IsValidState {0, 1} ← IsValidStateπ(p, λ)

IsGenesisState {0, 1} ← IsGenesisStateπ(p, λ)

RetrieveCheckpointState ⊥ ∨ pc ← RetrieveCheckpointStateπ(p)

CreateCheckpointState ⊥ ∨ pc ← CreateCheckpointStateπ(p)

AdditionalFunctionality (outputs) ← AdditionalFunctionality(inputs)

Table 2 summarises the structure of the algorithms of the scheme. The initial setup of the scheme
is defined by the Init algorithm in terms of a security parameter λ and this process generates
the genesis state. Payment address creation process, CreateAddr takes and identity and some
randomness, and generates a public, private key pair (apk, ask) and a transaction, which can be
minted to register the addresses. Public and private keys can be validated with respect to a given
state, p. A transaction (tp, ts) is created with unspent funds from one or more senders (Vold)
and corresponding funds for recipients (Vnew), together with transaction related metadata m
such as corresponding IP addresses or other system specific data. The validity of a transaction
can be defined with respect to its public part as well as both public and private parts taken
together. The difference between the total input value and the total output value is considered
as transaction fees. Further, transaction related data (input output values and public keys of
senders and recipients) can be extracted from a given transaction, if both public and private
parts of the transaction are known.

A minting operation takes place on a set of public parts of transactions {tp} and new currency
units may be generated through this process, whose value is decided by the implementation spec-
ifications, internally. These minted currency units and respective transaction fees, collectively
termed as excess value (Vx), are collected by the miners. The preferred state out of a set of
candidate states is chosen to be the subsequent state of the system through the Adjudicate

operation by preserving the precedence of states. IsValidState algorithm checks the validity
of a given state with respect to a given security parameter. A given state can be designated
as a checkpoint state through the CreateCheckpointState function based on the particulars of
the state, which can be retrieved later through the RetrieveCheckpointState operation. The
genesis state is considered as the first checkpoint and the algorithm IsGenesisState can be used
to identify the genesis state corresponding to a given security parameter.

It should be noted that we model only the generic functionality of a cryptocurrency scheme
in this scheme. Hence, we do not consider the specifics of the underlying consensus mechanism
or the network in this work. However, there may be additional functionality associated with
real world cryptocurrency systems, e.g. Smart contracts with Ethereum. In order to capture
such additional features, we define a supplementary function AdditionalFunctionality. This

7

enables us realise the security implications of functionality of a scheme that may be outside our
base model.

3 Correctness

Table 3: List of experiments for correctness.

Correctness property Experiment

Correctness of state initialisation Expinitπ

Correctness of address creation Expcreate-addrπ

Correctness of transaction creation Expcreate-txnπ

Correctness of minting Expmint
π

Correctness of extracting transaction data Expextract-txn-dataπ

Correctness of adjudicate operation Expadjudicateπ

Correctness of checkpoint creation Expcreate-checkpointπ

Correctness of the verification of genesis state Expgenesis-stateπ

Monotonicity of checkpoint states Expcheckpoint-monotonicity
π

Monotonicity of states with respect to adjudicate operation Expadj-monotonicity
π

Correctness of the checkpoint retrieval Expretrieve-checkpointπ

In this section we establish the correctness of our model in terms of the functionality. We consider
the correctness of individual functions as well as their collective functionality, in terms of a set
of experiments as listed in Table 3.

3.1 Generating input data

We define several functions to generate input data for the correctness experiments in terms of λ
and a tuple of bit strings ρ ∈ ({0, 1}∗)∗. Bit strings are mapped to required datasets through
separate and arbitrary surjective functions with following mappings:

DeserialiseW : {0, 1}∗ × N→ {⊥} ∪W where W ∈ {P,A,T,V,M}

GenerateState(λ, ρk)

1. p← DeserialiseP(λ, ρk)
2. if ¬(IsValidStateπ(p, λ))
3. return ⊥
4. return p

GenerateTxns(p, λ, ρk)

1. {(tp, ts)} ← DeserialiseT(λ, ρk)
2. for all (tp, ts) ∈ {(tp, ts)} do
3. if ¬(IsValidSecTxnπ(tp, ts, p))
4. return ⊥
5. return {(tp, ts)}

GenerateTxnValues(R, S̄, λ, ρk)

1. (Vold, Vnew,m)← DeserialiseV(λ, ρk)
2. if (|Vold| 6= |S̄|) ∨ (|Vnew| 6= |R|)
3. return ⊥
4. return (Vold, Vnew,m)

GenerateAddr(p, λ, ρk)

1. ((apk, ask))← DeserialiseA(λ, ρk+1

2. for all (apk, ask) ∈ ((apk, ask)) do
3. if ¬(IsValidPubAddrπ(apk, p))
4. return ⊥
5. if ¬(IsValidSecAddrπ(apk, ask, p))
6. return ⊥
7. return ((apk, ask))

GenerateMintAddr(p, λ, ρk)

1. Rm ← DeserialiseM(λ, ρk+1)
2. for all apk ∈ Rm do
3. if ¬(IsValidPubAddrπ(apk, p))
4. return ⊥
5. return Rm

Figure 1: Functions used to generate input data from bitstring ρ

Here we list the functions that generate input data for the correctness experiments from a
given ρ, which can be thought of as random coins (Figure 1). ρ is represented as ρ = (ρ1, ρ2, ...)

8

within experiments where ρ1, ρ2 etc. are bit strings of arbitrary finite length of which the
combined length is equal to the length of ρ. i.e.

∑
i|ρi| = |ρ|. Each ρi is used to generate

required inputs for the experiments through respective Deserialise functions.

SelectSubsetofStates(Pset, k, λ, ρ)

1. n← ({1, .., |Pset|}; ρk+1)
2. for i ∈ {1, .., n} do
3. pi ← (Pset; ρk+1+i)
4. Pset ← Pset \ {pi}
5. return (Pset, k + 1 + i)

EvolveState(p, k, λ, ρ)

1. W ← GenerateTxns(p, λ, ρk+1)
2. if W = ⊥, return ⊥
3. {(tp, ts)} ← W
4. if ¬(IsMintableπ({tp}, p)), return ⊥
5. Y ← GenerateMintData(p, λ, ρk+2)
6. if Y = ⊥, return ⊥
7. Rm ← Y
8. (p1, Vx)← Mintπ({tp}, Rm, p; ρk+3)
9. return (p1, k + 3)

GenerateSetofStates(k, λ, ρ)

1. Pset ← {}
2. m← |ρ| − k
3. if m < 1, return ⊥
4. n← ({1, ..,m− 1}; ρk+1)
5. i← k + 2
6. for j ∈ {1, .., n} do
7. pj ← GenerateState(λ, ρi)
8. if IsValidStateπ(pj , λ), Pset ← Pset ∪ {pj}
9. i← i+ 1

10. return (Pset, i)

Figure 2: Helper functions for correctness

Expcheckpoint-monotonicity
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. pc0 ← CreateCheckpointπ(p0, λ)[pc0 6= ⊥]
3. p1 ← pc0
4. i, nc ← 1
5. while (i < |ρ|) do
6. X ← EvolveState(p1, i, λ, ρ) [X 6= ⊥]
7. (p2, k)← X

8. b
$←− {0, 1}

9. if b = 1
10. H ← CreateCheckpointπ(p2, λ; ρk+1)
11. if H 6=⊥, pc ← H; nc ← nc + 1
12. i← k + 1
13. else
14. i← k
15. p1 ← p2

16. for j ∈ {1, .., nc − 1} do
17. pc1 ← RetrieveCheckpointState(pc)
18. if pc1 = ⊥, return 0
19. pc ← pc1

20. return (pc
?
= pc0)

Expadj-monotonicity
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. X ← GenerateSetofStates(2, λ, ρ) [X 6= ⊥]
3. (Pset, k)← X
4. (Ptest, j)← SelectSubsetofStates(Pset, k, λ, ρ)
5. p1 ← Adjudicateπ(Pset , p0)
6. X ← EvolveState(p1, j, λ, ρ) [X 6= ⊥]
7. (p2, j)← X
8. p3 ← Adjudicateπ(Ptest ∪ {p2}, p1)

9. return P3
?
= P2

Expretireve-checkpoint
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. p1 ← p0

3. while RetrieveCheckpointStateπ(p1) 6= p1 do
4. X ← RetrieveCheckpointStateπ(p1)
5. if X = ⊥, return 0

6. p
′
← X

7. if ¬(IsValidStateπ(p
′
, λ)), return 0

8. if p
′
� p1, return 0

9. p1 ← p
′

10. return IsGenesisStateπ(p1, λ)

Figure 3: Correctness experiments 1

Further, ρi strings are also used to introduce randomness to the operations performed within
experiments with the notation, Function(parameters ; ρi). In the case where the length of
ρ is not sufficient to produce required number of ρi bit strings, corresponding experiment is
terminated by returning 1 (i.e. experiment terminates with success). In addition, we also intro-
duce several helper functions that help improve the readability of the correctness experiments

9

(Figure 2). Figures 3 and 4 list all experiments that establish the correctness of the proposed
scheme.

Expinit
Π (λ, ρ)

1. p0 ← Initπ(1λ; ρ1)
2. b← IsGenesisStateπ(p0, λ)

3. b
′
← IsValidStateπ(p0, λ)

4. return (b ∧ b
′
)

Expcreate-addr
Π (λ, d, ρ)

1. p0 ← GenerateStateπ(λ, ρ1) [p0 6= ⊥]
2. (apk, ask, tp, ts)← CreateAddrπ(p0, d; ρ2)
3. b← (IsValidPubAddrπ(apk, p0)

4. b
′
← IsValidSecAddrπ(apk, ask, p0))

5. b
′′
← (IsMintableπ({tp}, p0)

6. return (b ∧ b
′
∧ b
′′

)

Expmint
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. X ← GenerateTxns(p0, λ, ρ2) [X 6= ⊥]
3. {(tp, ts)} ← X
4. b← IsMintableπ({tp}, p0)
5. Y ← GenerateMintData(p0, λ, ρ3) [Y 6= ⊥]
6. (Vm, Rm)← Y
7. (p1, Vx)← Mintπ({tp}, Rm, p0; ρ4)

8. b
′
← IsValidState(p1, λ) ∧ (p0 ≺ p1)

9. return (b
?
= b

′
)

Expadjudicate
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. X ← GenerateSetofStates(1, λ, ρ) [X 6= ⊥]
3. (Pset, k)← X

4. p
′
← Adjudicateπ(Pset , p0)

5. if p
′

= p0

6. for all pi ∈ Pset do
7. if IsValidStateπ(pi, λ) ∧ (p0 ≺ pi)
8. return 0
9. else

10. if ¬(IsValidStateπ(p
′
, λ)) ∨ (p

′
/∈ Pset)

11. return 0
12. if p0 � p

′
, return 0

13. for all pi ∈ Pset do

14. if (p
′
≺ pi), return 0

15. return 1

Expcreate-checkpoint
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. pc0 ← CreateCheckpointπ(p0, ρ2) [pc0 6= ⊥]
3. X ← EvolveState(p1, 2, λ, ρ) [X 6= ⊥]
4. (p1, k)← X
5. return (pc0 � RetrieveCheckpointStateπ(p1))

Expcreate-txn
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. R̄← GenerateAddr(p0, λ, ρ2) [R̄ 6= ⊥]
3. S̄ ← GenerateAddr(p0, λ, ρ3) [S̄ 6= ⊥]
4. Z ← GenerateTxnValues(λ, ρ4) [Z 6= ⊥]
5. (Vold, Vnew,m)← Z
6. for i ∈ {0, .., |S̄| − 1} do
7. (apki , aski)← S̄[i]
8. if GetBalanceπ(apki , aski , p0) < Vold[i]
9. return 1

10. (tp, ts)← CreateTxnπ(R, Vnew, S̄, Vold,m, p0; ρ5)
11. b← IsValidPubTxn(tp, p0)

12. b
′
← IsValidSecTxn(tp, ts, p0)

13. return (b ∧ b
′
)

Expextract-txn-data
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. R̄← GenerateAddr(p0, λ, ρ2) [R̄ 6= ⊥]
3. S̄ ← GenerateAddr(p0, λ, ρ3) [S̄ 6= ⊥]
4. Z ← GenerateTxnValues(λ, ρ4) [Z 6= ⊥]
5. (Vold, Vnew,m)← Z
6. for i ∈ {0, .., |S̄| − 1} do
7. (apki , aski)← S̄[i]
8. if GetBalanceπ(apki , aski , p0) < Vold[i]
9. return 1

10. (tp, ts)← CreateTxnπ(R, Vnew, S̄, Vold,m, p0; ρ5)
11. W ← GenerateMintData(p0, λ, ρ6) [W 6= ⊥]
12. (Vm, Rm)← W
13. if ¬(IsMintableπ({tp}, p0)), return 0
14. (p1, Vx)← Mintπ({tp}, Rm, p0; ρ7)

15. S
′
← ExtractSenderPubAddrπ(tp, ts, p1)

16. R
′
← ExtractSenderPubAddrπ(tp, ts, p1)

17. V
′
old ← ExtractInputValπ(tp, ts, p1)

18. V
′
new ← ExtractOutputValπ(tp, ts, p1)

19. b← (R
′ ?

= R) ∧ (S
′ ?

= S)

20. b
′
← (V

′
old

?
= Vold) ∧ (V

′
new

?
= Vnew)

21. return (b ∧ b
′
)

Expgenesis-state
Π (λ, ρ)

1. p0 ← GenerateState(λ, ρ1) [p0 6= ⊥]
2. if RetrieveCheckpointStateπ(p0) = p0

3. return (IsGenesisStateπ(p0, λ))
4. X ← EvolveState(p1, 1, λ, ρ) [X 6= ⊥]
5. (p1, k)← X
6. b← IsValidStateπ(p1, λ)

7. b
′
← ¬ IsGenesisStateπ(p1, λ)

8. return (b ∧ b
′
)

Figure 4: Correctness Experiments 2

10

Accordingly, the correctness of the proposed scheme is defined as follows:

Definition 3.1. (Correctness of the Cryptocurrency Scheme) A currency scheme Π is
correct if, for all security parameters λ ∈ Z+, for all sufficiently long bit strings ρ ∈ ({0, 1}∗)∗
and for all X ∈ {init, create-addr, create-txn, extract-txn-data, mint, adjudicate, adj-monotinicty,
create-checkpoint, ret- rieve-checkpoint, genesis-state, checkpoint-monotinicity}, ExpXπ (λ, ρ) re-
turns 1.

4 Security

In this section, we establish the security requirements for the proposed framework through a
game-based approach. We chose game-based definitions over the UC framework because the
former are intuitive and can be agreed upon by non-specialists (much less non-cryptographers).
This is essential as a bridge between theory and applications. Further, UC is a very nice theo-
retical methodology which is best suited for small primitives whose ideal functionalities may still
have a clean description, which is certainly not the case in the context of cryptocurrencies.

We define a comprehensive adversarial model to accommodate a wide range of capabilities
on the part of the adversary. Then we define security requirements for the functionality of the
proposed currency scheme. Anonymity aspects, although related to security, are discussed in a
separate section as it is the main focus of this paper.

4.1 Adversarial Model

We consider several parameters to define the adversarial model in depth. These parameters repre-
sent various levels of adversary capabilities, which include the level of knowledge of public/secret
keys, transaction values, metadata and transactions (ψ), the ability to view and manipulate the
state (δ), the nature of state initialisation in the experimental setup (α), and whether failed
minting is allowed during the execution of the game (β). These symbols are used with different
subscripts denoting which entity is being referred to, as listed in Table 4. These values scale from
the least capability (0) to the strongest on the part of the adversary in game based experiments.

The adversary’s level of knowledge ψ is modelled in the following manner. When any knowl-
edge parameter has a value of 0, corresponding entity of that parameter is considered to be
hidden from the adversary. We assume that the adversary has oracle access through opaque
handles to those hidden entities using which desired activities can be initiated through relevant
oracles. A value of 1 in these parameters represents the situation where the adversary learns
the corresponding entity at the end of the game, just before he makes his choice. Beyond that
point, the adversary is not allowed to create or mint any transactions involving those entities.
With the parameter ψt on the other hand, the public part of the transaction tp is revealed to
the adversary when ψt = 1. When ψt = 2, the secret part ts is revealed and with ψt = 3, the
randomness of the actual coins is revealed. Further, when ψt = 4, the adversary gets to choose
the randomness for the transaction and finally the adversary gets to create the transaction when
ψt = 5. For other ψ parameters, with a value of 2, relevant information is known to the adversary
throughout the game in real time via appropriate oracle access. However, for all those cases,
the adversary does not have control over the entities. Conversely, for any value higher than 2,
the adversary has some form of control over the relevant entity as explained in Table 4. With
this parameterisation, we can capture a wide range of adversaries ranging from passive (with all
parameters equal to zero) to static (with δ, β ≤ 1) and adaptive adversaries (with parameter
values greater than 1).

11

Table 4: Parameters of the adversarial model

Paramet- Adversarial knowledge Adversarial power

er value Sender pub-
lic/ secret
keys

Recipie- nt
public /se-
cret keys

Transact-
ion value

Transact-
ion Meta-
data

Transact-
ion

State
manipul-
ation

State
initialis-
ation

Cause mint
to fail

ψpks
/ψsks

ψpkr
/ψskr

ψv ψm ψt δ α β

0 Hidden Hidden Hidden Hidden Hidden Hidden Hidden
randomness
honest Init
(HIDH)

Not allowed

1 Hidden but
revealed at
the end

Hidden but
revealed at
the end

Hidden but
revealed at
the end

Hidden but
revealed at
the end

tp is re-
vealed

Can view
the state

Public ran-
domness
honest Init
(PUBH)

Allowed

2 Access
public keys
through
oracle

Access se-
cret keys
through
oracle

Chosen by
Oracle and
known

Chosen by
oracle and
known

ts is re-
vealed

Can manip-
ulate the
state

Public ran-
domness
adversar-
ial Init
(PUBA)

-

3 Adversary
chooses the
identity,
the oracle
creates
addresses

Adversary
chooses
the ran-
domness,
the oracle
creates
addresses

Adversary
chooses the
values

Adversary
chooses
metadata

Random-
ness of
the coins
revealed,
oracle
creates
transaction

- Hidden
randomness
adversarial
Init (HIDH)

-

4 Adversary
generates
the address

Adversary
generates
the address

- - Adversary
chooses the
randomness

- - -

5 - - - - Adversary
creates the
transaction

- -

Helper functions We define a group of oracle functions to provide the adversary with access
to honest functionality during the execution of the game (Figure 5). These include Oaddr for
creating addresses, Ohidaddr for creating hidden addresses, Otxn for creating transactions and
Omint for minting. Another oracle is defined to generate hidden metadata (OhidMdata). The
history of the activities of the oracles are maintained globally within the games; i.e. AO, TO
as associative arrays and MO as a set to store all addresses, transactions and minting history
respectively. In addition, A∗O, T

∗
O, and D∗O are maintained as sets to store hidden addresses,

transactions and metadata. In order to cater for the addresses created with different adversarial
inputs, the oracle keeps track of different groups of addresses in AOjk with binary values j and
k, and a value of 0 representing adversarial identity and adversarial randomness, respectively.
Omint sets the flag fO = 1 globally, if a minting operation fails, in which case the adversary
loses the game, unless β=1. The adversary has access to all available oracles, unless specifically
mentioned with a specific subscript in the games. Table 5 summarises the variables used by the
oracles.

Further, the current state of the system is denoted by pO for these games. It is assumed that
pO is updated as the state evolves within the game (e.g. through oracle calls with side effects,
which is what the subscript O tries to convey), except where a new state is generated through a
mint operation, in which case the new state is denoted with a different subscript. e.g. p1.

12

Table 5: A summary of oracle variables

Variable Description

AO All addresses created by the oracle i.e. all (apk, ask)

A∗O All hidden addresses created by the oracle i.e. all hidden apk
AO11

All addresses created by the oracle with randomly chosen d and ρ

AO10
All addresses created by the oracle with adversarial randomness (ρ)

AO01
All addresses created by the oracle with adversarial identity (d)

AO00
All addresses created by the oracle with adversarial identity (d) and randomness (ρ)

TO All transactions created by the oracle

T∗O All hidden transactions created by the oracle

T ′O Randomness of the coins involved in transactions created by the oracle

D∗O All hidden metadata generated by the oracle

MO Minting details of all mint operations performed by the oracle

pO Current state

Omint({tp}, Rm)

1. X ← Mintπ({tp}, Rm, pO)
2. if X = ⊥, fO ← 1
3. else
4. (p1, Vx)← X
5. MO ←MO ∪ {(p1, {tp}, Vx, Rm)}
6. pO ← p1

7. return pO

Otxn(R, Vnew, S, Vold,m, ρ
′)

1. k ← (ρ
′

= ∅); ρ← [k ? $: ρ
′
]

2. R← LookupPubAddr(R,A∗O)
3. S̄ ← LookupSecAddr(S,A∗O, AO)
4. if ψv ∈ {0, 1, 2} then
5. (Vold, Vnew)← GenerateTxnVals(S,R,A∗O, AO)
6. if ψm ∈ {0, 1, 2} then
7. m← GenerateMetadata(λ)
8. (tp, ts)← CreateTxnπ(R, Vnew, S̄, Vold,m, pO; ρ)
9. T∗O ← T∗O‖(tp)

10. TO ← AddKeyValAA(tp, ts, TO)
11. T ′O ← AddKeyValAA(tp, ρ, T

′
O)

12. return tp

Ohidaddr()

1. d
$←− {0, 1}λ; ρ

$←− {0, 1}∗
2. (apk, ask, tp, ts)← CreateAddrπ(pO, d; ρ)
3. AO ← AddKeyValAA(apk, ask, AO)
4. TO ← AddKeyValAA(tp, ts, TO)
5. A∗O ← A∗O‖(apk)
6. return (|A∗O|, tp)

Oaddr(d
′
, ρ
′
)

1. j ← (d
′

= ∅); k ← (ρ
′

= ∅)
2. d← [j ? $: d

′
]; ρ← [k ? $: ρ

′
]

3. (apk, ask, tp, ts)← CreateAddrπ(pO, d; ρ)
4. AO ← AddKeyValAA(apk, ask, AO)
5. AOjk ← AddKeyValAA(apk, ask, AOjk)

6. TO ← AddKeyValAA(tp, ts, TO)
7. if (ψssk

∈ {2, 3}) ∨ (ψrsk
∈ {2, 3})

8. return (ask, tp)
9. else return (apk, tp)

OHidMdata()

1. m
$←− poly(λ); D∗O ← D∗O‖m

2. return |D∗O|

Figure 5: Oracle functions

Additionally, we also define a set of helper functions to be used in the security games as given
in Figure 6 to improve the clarity of the games. The SetupState function performs the state ini-
tialisation based on γ, whereas the RunAdversary function executes an instance of the adversary
A denoted by different subscripts based on δ. LookupPubAddr and LookupSecAddr functions are
used to obtain public keys and private keys from hidden addresses. In addition, LookupPubTxn
outputs the tp corresponding to a hidden transaction when ψt = 0. GenerateTxnVals function
is used when ψv ∈ {0, 1}, to generate required input and output transaction values, based on the
the maximum transaction value given by the adversary. Further, LookupMdata function is used
to reveal hidden metadata when ψm ∈ {0, 1}.

4.2 Security Properties

First, we define a set of security properties to ensure the functional security of the proposed
scheme. These are defined by means of game-based experiments around several attributes;
Unforgeability, Transaction binding property, Spendability, Balance property, Descendency and

13

SetupStateπ,O,A(λ, α)

1. if (α = 3)
2. (p, s)← A1(λ)
3. return (p, ∅, s)
4. else if (α = 2)

5. (r, s)← A
′
1(λ); p← Initπ(λ; r)

6. return (p, r, s)
7. r ← $; p← Initπ(λ; r)
8. if (α = 1), return (p, r, ∅)
9. else return (p, ∅, ∅)

LookupPubAddr(H,A∗O)

1. S ← ()
2. for all x ∈ H do
3. if x ∈ Z+ then
4. x← [A∗O[x]? : x]
5. S ← S‖x
6. return S

LookupSecAddr(H,A∗O, AO)

1. S̄ ← ()
2. S ← LookupPubAddr(H,A∗O)
3. for all apk ∈ S do
4. ask ← [AA.Lookup(apk, AO)? : apk]
5. S̄ ← S̄‖ask
6. return S̄

GenerateMetadata(λ)

1. m
$←− {0, 1}|λ|

2. return m

RunAdversaryπ,O(Ai, p0, inputVal, r, s, δ)

1. if δ = 0
2. (∅, returnVal, s)← Ai(∅, inputVal, r, s)
3. return (pO, returnVal, s)
4. else
5. (p1, returnVal, s)← Ai(p0, inputVal, r, s)
6. if Adjudicateπ({p1}, p0) 6= p1

7. return (⊥,⊥,⊥)
8. return (p1, returnVal, s)

LookupPubTxn(t, T∗O)

1. tp ← [T∗O[t]? : t]
2. return tp

GenerateTxnVals(Vmax1, Vmax2, S, R)

1. Vold, Vnew, X,W ← ()
2. v0, w0, `1, `2 ← 0; j,m← 1
3. ns ← |S|; nr ← |R|
4. for i = {1, .., ns − 1} do

5. xi
$←− {0, .., Vmax1[0]}; X ← X‖{xi}

6. while (X 6= ()) do
7. x← Min(X); Vold[j − 1] ← x− `1
8. `1 ← x; j ← j + 1
9. X ← X \ x

10. for k = {1, .., nr} do

11. wk
$←− {0, .., Vmax2[0]}; W ← W‖{wk}

12. while (W 6= ()) do
13. w ← Min(W); Vnew[m− 1] ← w − `2
14. `2 ← w; m← m+ 1
15. W ← W \ w
16. return (Vold, Vnew)

Figure 6: Helper functions

Anonymity. Each property is demonstrated with respect to attacker’s goals and we construct
appropriate games to model adversarial behaviour explained earlier.

4.2.1 Unforgeability

Unforgeability property ensures that it is not possible to spend the funds associated with a
payment address without the knowledge of the secret key corresponding to that payment address.
We define a security game to model this property as listed in Figure 7.

Game : In this game, the initial state is setup according to the input parameters and the
adversary A = (A1,A2) outputs a transaction (tp, ts) and the current state pO based on the
capabilities defined by the parameters δ and α. The challenger verifies whether the given state
is valid. Subsequently, the challenger extracts the public addresses of the senders from the given
transaction and performs a check to see if those addresses were created by the oracle (i.e. to
ensure that the adversary does not have the knowledge of any of the secret keys). Further, the
challenger also checks whether the transaction was created by the oracle and also whether the
transaction is valid. This experiment is listed in Figure 7.

Winning Condition : Adversary wins this game, if he is able to produce a valid spending
transaction (which is not a transaction created by the Oracle) with at least one sender address
in S which was created by the oracle, for which he does not know the corresponding secret key
ask.

14

Exp
unforgeability
Π,A,O,ψ,δ,α,β(λ)

1. AO, TO ← AA.Init() ; MO ← {}; fO ← 0
2. (pO, r, s) ← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO, (tp, ts), s)← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. S ← ExtractSenderPubAddrπ(tp, ts, pO)

5. return IsValidPubTxnπ(tp, pO) ∧ (AA.Lookup(tp, TO)
?
= ⊥) ∧ (S ∩ AA.Keys(AO) 6= ∅)

Figure 7: Experiment for Unforgeability.

4.2.2 Transaction binding property

This property establishes that the secret part of a transaction ts cannot be tampered with and
ensures that ts binds with a unique tp. i.e. A given ts cannot correspond to two different tp’s.
Figure 8 lists the corresponding game.

Exp
txn-binding
π,A,O,Φ,ψ,δ,α,β(λ)

1. AO, TO ← AA.Init() ; MO ← {}
2. (pO, r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO, ts, s)← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈pO 6= ⊥〉
4. tp ← AA.Lookup(ts, TO)
5. return (tp 6= ⊥) ∧ (IsValidSecTxnπ(tp, ts, pO))

Figure 8: Experiment for Transaction binding property.

Game : The game starts with the initial state generated as per the parameters. Then the
adversary A = (A1,A2) outputs a secret part of a transaction ts and the current state pO
according to his capabilities. The challenger checks whether the current state is valid. Then the
challenger checks whether ts corresponds to a transaction created by the oracle with tp and the
validity of transaction ts with respect to tp. The corresponding game is listed in Figure 8.

Winning condition : If ts is present in the list of transactions created by the oracle with
corresponding public part tp and ts is a valid binding with tp in the given state, then adversary
wins the game.

4.2.3 Spendability

The property of spendability guarantees that the funds associated with a payment address (a)
cannot decrease unless the corresponding secret keys are known (Figure 9). i.e. Balanceaft(a) <
Balancebef(a) only if secret key of a (ask) is known ∀a

Game : After the initial setup, the adversary A = (A1, A2, A3) outputs the current state pO
to start the game. The challenger then records the fund balances of all addresses created by the
oracle (all addresses in AO). In addition, the challenger obtains a list of unminted transactions
created by the oracle, and takes away all Vnew values from corresponding payment addresses
in the stored balances, in order to ensure that the adversary cannot mint those transactions
later (Figure 9). Then the adversary evolves the state from that point onwards and the oracle
does not create any new addresses or transactions during that period. The adversary has access
to the minting oracle only. Subsequently, the adversary outputs the evolved state pO and the
challenger then checks the balances of each address in AO again in that state and compares with
the corresponding initial balances stored (Figure 9).

15

Winning condition : Adversary wins if there is at least one address in AO for which the
closing balance is less than the starting balance.

ExtractUnmintedTxns(TO,MO)

1. TM ←
⋃
m∈MO

m[1]

2. T ← AA.Keys(TO)

3. T
′
← T \ TM

4. return T
′

Exp
spendability
π,A,O,Φ,ψ,δ,α,β(λ)

1. AO, TO, B ← AA.Init() ; MO ← {}; fO ← 0
2. (pO, r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO, ∅, s)← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. for all apk ∈ AO do
5. ask ← AA.Lookup(apk, AO); bal← GetBalanceπ(apk, ask, pO)
6. B ← AA.Insert(apk, bal, B)

7. T
′
← ExtractUnmintedTxns(TO,MO)

8. for all tp ∈ T
′

do
9. ts ← AA.Lookup(tp, TO)

10. R← ExtractRecipientPubAddrπ(tp, ts, pO)
11. Vnew ← ExtractOutputValπ(tp, ts, pO)
12. for i ∈ {0, .., |R|} do
13. apk ← R[i]; bal← AA.Lookup(apk, B)
14. B ← AA.Update(apk, bal− Vnew[i], B)
15. (pO, ∅, s)← RunAdversaryπ,Omint

(A3, pO, ∅, r, s, δ) 〈 pO 6= ⊥ 〉
16. for all apk ∈ AO do

17. ask ← AA.Lookup(apk, AO); bal
′
← GetBalanceπ(apk, ask, pO)

18. if bal
′
< AA.Lookup(apk, B), return 1

19. return 0

Figure 9: Experiment for Spendability.

4.2.4 Balance

This property requires that the fund balances of participants in a transaction are updated cor-
rectly. Further, the balances of miners’ addresses should also be updated correctly with relevant
transaction fees and mint values (Vx). These goals can be summarised for a set of transactions
involved in one minting operation as follows:∑

a∈S̄

Vold(a)−
∑
a∈R̄

Vnew(a) + Minted units =
∑
a∈R̄m

Vx(a) (1)

Balancebef(a) + Vnew(a)− Vold(a) = Balanceaft(a) ∀a ∈ S̄, R̄ (2)

Balancebef(a) + Excess(a) = Balanceaft(a) ∀a ∈ R̄m (3)

A single experiment is defined to capture all three properties in (Figure 10).

Game : In this game, the adversary A = (A1, A2, A3) outputs a tuple of sender addresses S̄,
a tuple of recipient addresses R̄, a tuple of miner addresses R̄m together with the current state
pO. The challenger records the balances of all addresses in the three groups of addresses and the
minting history of the oracle MO. Then, the state evolves and the adversary outputs a set of
transactions {(tp, ts)} and the updated state pO. The challenger then records the new minting
history M2 and checks whether only one mint operation has taken place between M1 and M2,
and also checks whether the minted transactions corresponds to the transactions returned by the

16

Expbalance
π,A,O,ψ,δ,α,β(λ)

1. AO, TO ← AA.Init() ; MO ← {}; S
′′
, R
′′
← ()

2. Bbef, Bold, Bnew, Bmint, Badj ← AA.Init()
3. vin, vout, va ← 0
4. (pO, r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
5. (pO, (R̄, S̄, R̄m), s)← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈pO 6= ⊥〉
6. M1 ←MO
7. for all (apk, ask) ∈ R̄ ‖ S̄ ‖ R̄m do
8. bal← GetBalanceπ(apk, ask, pO); Bbef ← AA.Insert(apk, bal, Bbef)
9. (pO, ({(tp, ts)}), s)← RunAdversaryπ,O(A3, pO, ∅, r, s, δ) 〈 pO 6= ⊥ 〉

10. M
′
←MO \M1 〈 |M

′
| = 1 〉

11. (p
′
, {tp}

′
, V
′
x , R̄

′
m)←M

′
〈 (p
′

= pO) ∧ ({tp}
′

= {tp} ∧ (R̄
′
m = R̄m) 〉

12. for all (tp, ts) ∈ {(tp, ts)} do

13. V
′
old ← ExtractInputVal(tp, ts, pO); V

′
new ← ExtractOutputVal(tp, ts, pO)

14. S
′
← ExtractSenderPubAddr(tp, ts, pO); R

′
← ExtractRecipientPubAddr(tp, ts, pO)

15. for i ∈ {0, .., |S
′
| − 1} do

16. v1 ← AA.Lookup(S
′
[i], Bold)

17. if v1 = ⊥, Bold ← AA.Insert(S
′
[i], V

′
old[i], Bold)

18. else Bold ← AA.Update(S
′
[i], V

′
old[i] + v1, Bold)

19. vold ← vold + V
′
old[i]

20. for j ∈ {0, .., |R
′
| − 1} do

21. v2 ← AA.Lookup(R
′
[j], Bnew)

22. if v2 = ⊥, Bnew ← AA.Insert(R
′
[j], Vnew[j], Bnew)

23. else Bnew ← AA.Update(R
′
[j], V

′
new[j] + v2, Bnew)

24. vnew ← vnew + V
′
new[j]

25. S
′′
← S

′′
‖ S
′
; R
′′
← R

′′
‖ R
′

26. if (S
′′
6= S) ∨ (R

′′
6= R), return 0

27. for k ∈ {0, .., |R
′
m| − 1} do

28. Bexcess ← AA.Insert(R
′
m[k], V

′
x [k], Bexcess); vx ← vx + V

′
x [k]

29. for all (apk, ask) ∈ R̄ ‖ S̄ ‖ R̄m do
30. waft ← GetBalanceπ(apk, ask, pO)
31. wbef ← AA.Lookup(apk, Bbef)
32. wold ← (AA.Lookup(apk, Bold) ? : 0)
33. wnew ← (AA.Lookup(apk, Bnew) ? : 0)
34. wexcess ← (AA.Lookup(apk, Bexcess) ? : 0)
35. if waft 6= wbef + wnew + wexcess − wold, return 1
36. return 0

Figure 10: Experiment for the Balance property.

adversary. In addition, another check is performed to see if the sender and recipient addresses
involved in all transactions are the same as the sender and recipient addresses returned by the
adversary. If any of these checks fails, adversary loses the game. For each transaction returned
by the adversary, Vold and Vnew values are recorded separately with the corresponding addresses.
In addition, Vx values are also recorded with the miners’ address details. Finally, the challenger
records respective balances of all involved addresses and checks whether above conditions are
satisfied for all the addresses.

Winning condition : Adversary wins the game if there is at least one address in which the
individual balances do not satisfy the above three conditions, based on the formula below:

Balancebef (a) + Vnew(a)− Vold(a) + Vx(a) = Balanceaft(a) ∀a ∈ S̄, R̄, R̄m

Figure 10 lists the corresponding game (Expbalanceπ,A,O,ψ,δ,α,β) which demonstrates this property.

17

4.2.5 Indemnification

requires that fund balances associated with the payment addresses that are not involved in a
transaction should remain unchanged. We define this experiment in Figure 11.

Game : In this game, the adversary A = (A1, A2, A3) outputs the current state first. The
challenger records the balances of all addresses in AO in Bbef and also records the mint history
M1. Then, adversary evolves the state and outputs a set of transactions {(tp, ts)} together with
the current state pO and the challenger ensures that there has been only one mint operation
since the previous state, and also whether the set of transactions corresponding to that mint
operation matches the transactions returned by the adversary. Then the challenger records the
sender and recipient addresses corresponding to the given transactions S and R. Subsequently,
he checks the closing balances of all addresses in AO and ensures none of these addresses are in
S or R (Figure 11).

Winning condition : Adversary wins if the balance of at least one address in AO has changed.

Exp
indemnification
π,A,O,ψ,δ,α,β(λ)

1. AO, TO, Bbef ← AA.Init(); MO ← {}; S,R← (); fO ← 0
2. (pO, r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO, ∅, s)← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈 (pO 6= ⊥) 〉
4. M1 ←MO
5. for all apk ∈ AA.Keys(AO) do
6. ask ← AA.Lookup(apk, AO)
7. bal← GetBalanceπ(apk, ask, pO)
8. Bbef ← AA.Insert(apk, bal, Bbef)
9. (pO, ({(tp, ts)}), s)← RunAdversaryπ,O(A3, pO, ∅, r, s, 0) 〈 pO 6= ⊥ 〉

10. M
′
←MO \M1 〈 |M

′
| = 1 〉

11. (p
′
, {tp}

′
, V
′
a , V

′
m, R̄

′
m)←M

′
〈 (p
′

= pO) ∧ ({tp}
′

= {tp}) 〉
12. for all (tp, ts) ∈ ({tp, ts}) do
13. S ← S ‖ ExtractSenderPubAddrπ(tp, ts, pO)
14. R← R ‖ ExtractRecipientPubAddrπ(tp, ts, pO)
15. for all apk ∈ AA.Keys(AO) do 〈 apk /∈ S ‖ R 〉
16. ask ← AA.Lookup(apk, AO)
17. if GetBalanceπ(apk, ask, pO) 6= AA.Lookup(apk, Bbef), return 1
18. return 0

Figure 11: Experiment for Indemnification.

4.2.6 Positivity

ensures that the fund balance corresponding to each payment address in the system is non-
negative at all times. Figure 12 defines the corresponding experiment for this property.

Game : In this game, the adversary A = (A1, A2) outputs an address (apk, ask) and the state
pO. The challenger checks whether the given address is valid and checks the corresponding
balance of that address (Figure 12).

Winning condition : Adversary wins if the given address is valid and has a negative balance.

18

Exp
positivity
π,A,O,ψ,δ,α,β(λ)

1. AO, TO ← AA.Init(); MO ← {}; fO ← 0
2. (pO, r, s)← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO, (apk, ask), s)← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. return (IsValidSecAddrπ(apk, ask, pO)) ∧ (GetBalanceπ(apk, ask, pO) < 0)

Figure 12: Experiment for Positivity.

4.2.7 Descendancy

requires that an adversary should not be able to produce a valid system state, which does not
descend from the genesis state. We define this property in Figure 13.

Game : In this game, adversary A = (A1, A2) gives a state to the challenger. The challenger
retrieves the checkpoint state of the given state and attempts to loop back to the genesis state
by retrieving the checkpoint state iteratively (Figure 13).

Winning condition : Adversary wins if the loop ends up in an invalid state. Experiment for
Descendancy:

Exp
descendancy
π,A,O,ψ,δ,α,β(λ)

1. AO, TO ← AA.Init() ; MO ← {}; fO ← 0
2. (pO, r, s) ← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉
3. (pO, ∅, s) ← RunAdversaryπ,O(A2, pO, ∅, r, s, δ) 〈 pO 6= ⊥ 〉
4. p

′
← pO

5. while IsValidStateπ(p
′
, λ) 6= 0 do

6. pc ← RetrieveCheckpoint(p
′
)

7. if IsGenesisStateπ(pc, λ), return 0

8. p
′
← pc

9. return 1

Figure 13: Experiment for Descendancy.

4.2.8 Security of the currency scheme

Having constructed different games to capture a comprehensive set of attacker scenarios related
to the functionality of our scheme, now we formally define the security of the proposed currency
scheme in terms of those experiments.

Definition 4.1. (Security of the currency scheme) For Y ∈ {unforgeability, txn-binding,
spendability, balance, indemnification, positivity, descendancy} the currency scheme Π is said
to be (ψ, δ, α, β)-secure with respect to Y if for every PPT adversary A = (A1,A2,A3), the
advantage of winning the security experiment ExpYΠ,A,O,ψ,δ,α,β(λ) is negligible in λ ∈ Z+, i.e.

AdvYΠ,A,O,ψ,δ,α,β =

∣∣∣∣ Pr(ExpYΠ,A,O,ψ,δ,α,β(λ) = 1)

∣∣∣∣ ≤ ε(λ)

where ε is a negligible function2 in λ.

5 Anonymity

In this section, we demonstrate how we can model different aspects of anonymity of a currency
scheme, in terms of the proposed model. Initially, we formulate a game to capture different

2∀ positive polynomials p(λ), ∃ N such that ∀ λ > N, ε(λ) ≤ 1/p(λ)

19

attacker scenarios each of which represents a different aspect of anonymity. Then, we provide
a group of definitions for several anonymity properties stemming from the fundamental concept
of indistinguishability. The term indistinguishability means that it is not possible to distinguish
between two known entities in a given situation, e.g. inability to distinguish the sender of a
transaction from two possible sender addresses.

We also define a weaker notion of anonymity, unlinkability, which is similar to indistinguisha-
bility, except the two entities to choose between are not known to the attacker explicitly, but
rather by their history in previous transactions. For example, value unlinkability refers to the
inability to decide which of two transactions has the same value as a transaction of interest.

We define these anonymity notions around a set of entities in a typical currency scheme. These
entities can be categorised as topological and non-topological where topological entities directly
correspond to entities in the transaction graph of the scheme. Senders and recipients form the
topological category whereas value and other relevant metadata are categorised as non-topological
entities, without having a direct relationship to the transaction graph. We parameterise different
scenarios where an attacker can manipulate these entities at various levels.

RevealData(tp, ω, ψ,A
∗
O, T

∗
O, TO, T

′
O, p1)

1. (ψpks
, ψsks

, ψpkr
, ψskr

, ψv, ψm, ψt)← ψ; (ωs, ωr, ωv, ωm) ← ω

2. tp ← LookupPubTxn(tp, T
∗
O); ts ← AA.Lookup(tp, TO); ρt ← AA.Lookup(tp, T

′
O)

3. S ← ExtractSenderPubAddrπ(tp, ts, p1); R← ExtractRecipientPubAddrπ(tp, ts, p1)
4. Vold ← ExtractInputValπ(tp, ts, p1); Vnew ← ExtractOutputValπ(tp, ts, p1)
5. m← ExtractMetadataπ(tp, ts, p1)

6. Us ← (S
ψpks , (LookupSecAddr(S,A∗O))

ψsks)

7. Ur ← (R
ψpkr , (LookupSecAddr(R,A∗O))

ψrsk)

8. Uv ← ((Vold, Vnew)ψv); Um ← (m)ψm

9. Ut ← (tψtp , t(ψt=2)
s , ρ

(ψt=3)
t)

10. return (Us‖Ur‖Uv‖Um‖Ut)

CheckAdvConditions(ω, ψ, S0, S1, R0, R1, Vold0
, Vnew0

, Vold1
, Vnew1

,m0,m1, A
∗
O, AOjk , D

∗
O)

1. (ωs, ωr, ωv, ωm) ← Ω; (ψpks
, ψsks

, ψpkr
, ψskr

, ψv, ψm, ψt)← ψ

2. if (ψpks
∈ {0, 1}) ∧ (ψsks

∈ {0, 1}) ∧ ¬(S0, S1 ⊆ A∗O), return 0

3. if (ψpks
∈ {0, 1, 2}) ∧ (ψsks

∈ {0, 1, 2}) ∧ ¬(S0, S1 ⊆ AA.keys(AO11
)), return 0

4. if (ψpks
= 3) ∧ (ψsks

/∈ {3, 4}) ∧ ¬(S0, S1 ⊆ AA.keys(AO01
)), return 0

5. if (ψpks
/∈ {3, 4}) ∧ (ψsks

= 3) ∧ ¬(S0, S1 ⊆ AA.keys(AO00
)), return 0

6. if (ψpks
= 3) ∧ (ψsks

= 3) ∧ ¬(S0, S1 ⊆ AA.keys(AO10
)), return 0

7. if (ψpkr
∈ {0, 1}) ∧ (ψskr

∈ {0, 1}) ∧ ¬(R0, R1 ⊆ A∗O), return 0

8. if (ψpkr
∈ {0, 1, 2}) ∧ (ψskr

∈ {0, 1, 2}) ∧ ¬(R0, R1 ⊆ AA.keys(AO11
)), return 0

9. if (ψpkr
= 3) ∧ (ψskr

/∈ {3, 4}) ∧ ¬(R0, R1 ⊆ AA.keys(AO01
)), return 0

10. if (ψpkr
/∈ {3, 4}) ∧ (ψskr

= 3) ∧ ¬(R0, R1 ⊆ AA.keys(AO00
)), return 0

11. if (ψpkr
= 3) ∧ (ψskr

= 3) ∧ ¬(R0, R1 ⊆ AA.keys(AO10
)), return 0

12. if (ψm ∈ {0, 1}) ∧ ¬(m ∈ D∗O), return 0
13. return 1

Figure 14: Additional helper functions for the Anonymity game

5.1 Anonymity Game

In order to facilitate the execution of the Anonymity game in a more transparent manner, we
define a few additional helper functions to check the adversarial conditions of inputs at the start
of the game (CheckAdvConditions) and to reveal data to the adversary at the end (RevealData)
based on the parameter ψ (Figure 14). Note that for a particular security notion, ψ is constant.
Moreover, we also introduce another variable; ω to represent test variable/s. We define ω =
(ωsωrωvωm) with each ωx ∈ {0, 1} to indicate which entity (sender/recipient/value/metadata)
is being tested in a given instance of the game. The adversarial inputs are crafted based on the

20

ω and ψ parameters. We now define a common game to capture all possible attacker scenarios
in this setting. Figure 15 illustrates the game.

Exp
Anonymity
π,A,O,ω,ψ,δ,α,β(λ)

1. AO, AO11
, AO10

, AO01
, AO00

, TO, T
′
O ← AA.Init(); A∗O, T

∗
O, D

∗
O ← ()

2. U ← ∅; MO ← {}; fO ← 0
3. (pO, r, s) ← SetupStateπ,O,A(λ, α) 〈 pO 6= ⊥ 〉 . State initialisation

4. (pO, (S0, S1, R0, R1, Vold0
, Vnew0

, Vold1
, Vnew1

, T, Rm,m0,m1, t0, t1, ρ0, ρ1, s) ←
RunAdversaryπ,O(A2, pO, (∅), r, s, δ) 〈 pO 6= ⊥〉

5. (ωs, ωr, ωv, ωm) ← ω;
6. (ψpks

, ψsks
, ψpkr

, ψskr
, ψv, ψm, ψt) ← ψ

7. if ¬{CheckAdvConditions(ω, ψ, S0, S1, R0, R1, Vold0
, Vnew0

, Vold1
, Vnew1

,m0,m1, A
∗
O, AOjk , DO)} then

8. return 0 . Check adversarial conditions on inputs
9. if (ψt = 5) then

10. (tp0
, ts0)← t0 〈IsMintableπ({tp0

} ∪ T, pO)β̄ 〉
11. (tp1

, ts1)← t1 〈IsMintableπ({tp1
} ∪ T, pO)β̄ 〉

12. else
13. tp0

← Otxn(R0, Vnew0
, S0, Vold0

,m0, ψ, pO, ρ0) 〈IsMintableπ({tp0
} ∪ T, pO)β̄ 〉

14. tp1
← Otxn(Rωr , Vnewωv

, Sωs , Voldωv
,mωm , ψ, pO, ρ1)〈IsMintableπ({tp1

} ∪ T, pO)β̄〉

15. b
$←− {0, 1} . Challenger picks a bit

16. (p1, Vx)← Mintπ({tpb} ∪ T,Rm, pO)

17. U ← RevealData(tpb , ψ, ω,A
∗
O, T

∗
O, TO, p1)

18. (·, b
′
, ·)← RunAdversaryπ,O(A3, p1, (U), r, s, δ) 〈 β ∨ (fO 6= 1) 〉

19. return b
′ ?

= b

Figure 15: Anonymity Game

Execution of the Game The state initialisation takes place at the beginning of the execution
of the game based on α (line 3). The game continues if the returned state pO is valid. Here we
use ‘〈condition〉’ notation to check this condition. In this notation, if the condition inside the
brackets is false, then the game terminates and the adversary loses the game. In this case, if the
state is valid, the adversary outputs a set of data to the challenger, based on the values of ω
and ψ. These outputs include two sets of senders S0, S1, recipients R0, R1, input/output values
Vold, Vnew, miners’ addresses Rm, metadata m0, m1, a set of transactions T (to be minted), two
additional transactions t0, t1, two sets of randomness of coins ρ0, ρ1 (line 4). If sender/recipient
addresses are hidden, respective outputs S/R should be handles to those hidden addresses created
by the oracle. i.e. ψpks , ψsks , ψpkr , ψskr ∈ {0, 1}. In addition, if transaction values are hidden
(i.e. ψv ∈ {0, 1}), then the adversary provides maximum values for respective input and output
values (through Vold, Vnew), and the oracle chooses appropriate transaction values accordingly.
If ψm ∈ {0, 1}, then adversary returns a handle for hidden metadata. The transactions t0 and t1
represent two transactions created by the adversary when ψt = 5. For other values of ψt, these
will remain null. The inputs ρ0 and ρ1 provide the randomness (of coins) required to create the
transactions when ψt = 4, or will be empty, otherwise. According to the values of ω and ψ, the
challenger checks whether the values returned by the adversary meet the expected criteria and
terminates the game if any of the inputs are invalid (line 7). Upon submission of valid inputs,
the adversary continues to evolve the current state through appropriate oracle queries.

Next, the challenger checks whether ψt = 5, in which case the adversary produces the required
transactions (which will be considered as tp0

and tp1
). Otherwise, the challenger creates a

transaction tp0
, using the input values through the oracle Otxn as given in step 13. Based

on the entity/entities being tested as defined by ω, a second transaction tp1
is also created as

appropriate (line 14). If the transactions are not mintable and the parameter β = 0 (i.e. failed

21

mint operations are not allowed), then the game is terminated and the adversary loses the game.
We use the notation ‘〈IsMintableπ({tp1

} ∪ T, pO)β̄ 〉’ to represent this condition. In this case,
when β= 0, β̄ = 1 and the game continues if IsMintable() = 1. When β = 1, β̄ = 0 and hence
IsMintable()0 = 1 always and hence the game proceeds.

Subsequently, the challenger picks a bit b and chooses to mint tpb together with the list of
transactions T returned by the adversary (line 15). Next, the challenger calls the RevealData

function to prepare the information that needs to be revealed to the adversary based on ψ and
this information is then passed to the adversary. At this point, the adversary is not allowed to
create any further transactions involving the revealed addresses. Then he makes a guess (b

′
)

for the bit b, based on the revealed data U , minted state p1 and the adversarial state s. The
challenger checks whether the guess is correct, subject to the condition β ∨ (fO 6= 1). The
adversary wins the game if his guess is correct.

Unsurprisingly, there are over 600,000 different combinations of ω, ψ, δ and α alone, resulting
in different attacker scenarios, which reveal the atomicity of anonymity in a currency system.
This game helps one to assess which combinations are satisfied by a given currency scheme, by
proving that the attacker has negligible advantage of winning the game. In order to simplify this
task, in the next section, we come up with a set of anonymity notions which can be related to
the terminology discussed in the literature.

5.2 Notions of anonymity

As previously mentioned, different combinations of the parameters in the Anonymity Game yields
a large number of unique scenarios with respect to anonymity. While some notions may not result
in apprehensible real world scenarios, others may assist in assessing different levels in achievable
anonymity. In this section, we identify a set of some useful anonymity notions with respect to
indistinguishability (IND) and unlinkability (ULK) of entities; senders (S), recipients (R), value
(V) and metadata (M) in a currency scheme.

We define each notion in terms of a unique adversary, based on the adversary’s goal, knowledge
and power as GOAL-KNOWL-POWER, which is also represented as a unique parameter vector
ω-ψ-(δ, α, β). The strongest adversary is modelled with the highest power (to manipulate the
state initialisation and the state, and to make minting to fail) and the maximum knowledge (full
knowledge of secret keys of senders/recipients, values and metadata), which we name as a FULL-
FULL adversary. The weakest adversary has no power and no knowledge of transaction data,
hence we name as a NIL-NIL adversary. Other intermediate adversaries are named accordingly
to emphasise the capabilities in power and knowledge specific to a given setting. Hence, the
highest level of anonymity modelled by the game is the notion ALL-IND-FULL-FULL and the
weakest is the notion of NIL-IND-NIL-NIL. Accordingly, Table 6 lists some useful anonymity
notions and their corresponding parameter vectors.

22

Table 6: Some useful anonymity notions

Goal Adversarial Adversarial Parameter vector

Knowledge Power

ALL-IND FULL FULL (1s1r1v1m)ω-((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ,3α,1β)

S-IND PUBS ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)

S-ULK NILS ACTIVE (1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ,3α,0β)

R-IND PUBR ACTIVE (0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 5t)ψ-(2δ,3α,0β)

R-ULK NILR ACTIVE (0s1r0v0m)ω-((4, 4)s, (0, 0)r, 3v, 3m, 5t)ψ-(2δ,3α,0β)

V-IND PUBSRV ACTIVE (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 2v, 3m, 5t)ψ-(2δ,3α,0β)

V-ULK PUBSR-NILV FULL (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 5t)ψ-(2δ,3α,1β)

M-IND PUBM ACTIVE (0s0r0v1m)ω-((3, 0)s, (3, 0)r, 2v, 2m, 5t)ψ-(2δ,3α,0β)

M-ULK PUBSR-NILM ACTIVE (0s0r0v1m)ω-((3, 0)s, (3, 0)r, 2v, 0m, 5t)ψ-(2δ,3α,0β)

NIL-IND NIL VIEW (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(1δ,1α,0β)

NIL-IND NIL NIL (0s0r0v0m)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(0δ,0α,0β)

5.2.1 Topological Entities

As already mentioned, the identification of topological entities such as senders and recipients
participating in a transaction can directly contribute towards constructing the corresponding
relationships among those entities. As a result, one can trace the flow of transactions of a
particular entity, affecting the level of anonymity. Several studies have been conducted in this
regard, especially in the case of Bitcoin, where a transaction graph could be built using publicly
available data related to senders and recipients [17]. As such, topological entities play a vital
role in the achievable level of anonymity of a currency scheme. Therein, we define a set of useful
anonymity properties around these entities in this section (Figure 16).

Sender Indistinguishability (S-IND): We define this property to represent a case where
given two possible senders and a transaction, it is not possible to distinguish the correct sender.
Figure 16(a) illustrates this scenario. In the anonymity game, only the public keys of the senders
will be known to the adversary with ψpks

= 3 and ψsks = 0 with same transaction values and
other metadata, and the challenger will create two transactions tp0

and tp1
with same value

and metadata. Based on the chosen bit b, the challenger mints the transaction tpb and the
adversary gets to see the data related to the minted transaction, based on ψt and has to guess
the challenger’s choice. The knowledge of recipient addresses can vary based on ψpkr

and ψskr .
We can see that the game represents the strongest attacker scenario when the recipient

addresses are fully controlled by the adversary in a setting with an adversarial hidden state
initialisation and the ability to manipulate the state, as well as with the highest knowledge of
the transaction (i.e. ψt = 5). However, having β=1 enables the adversary to craft messages
in a manner so that failed mint operations can be used to learn about account balances etc.,
thus revealing the transaction graph, which will be trivial. Hence, the strongest notion of this
property is S-IND-PUBS-ACTIVE which is represented by “(1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m,
5t)ψ-(2δ, 3α, 0β)” in the Anonymity game with the following formal definition.

Definition 5.1. (S-IND-PUBS-ACTIVE) A currency scheme Π is said to satisfy the anonym-
ity notion S-IND-PUBS-ACTIVE with respect to Sender Indistinguishability against an adver-
sary A, if A’s advantage of winning the Anonymity game defined by the parameter vector
(1s0r0v0m)ω-((3, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible. i.e.

AdvS−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

23

S0 S1

R0

tp0
tp1

(a) Sender Indistin-
guishability (S-IND)

S0

R0 R1

tp0
tp1

(b) Recipient Indistin-
guishability (R-IND)

S0 S1

R0

tp0
tp1

(c) Sender Unlinkability
(S-ULK)

S0

R0 R1

tp0 tp1

(d) Recipient Unlinkabil-
ity (R-ULK)

Figure 16: Topological anonymity notions. (Dashed outline: addresses with hidden secret keys, double-dashed
outline: addresses with hidden public/private keys, Solid outline: both keys known)

Sender Unlinkability (S-ULK): The notion of sender unlinkability is defined to be the
property that it is not possible to link a transaction with its corresponding sender in a given
setting. As Figure 16(c) illustrates, the adversary has to guess the correct transaction as with
S-IND scenario, but without knowing both public/private keys of the senders. i.e. Senders in this
case are hidden with ψpks

, ψsks = 0. The strongest notion in this sense is given by S-ULK-NILS-
ACTIVE with the parameter vector “(1s0r0v0m)ω-((0, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)”and
the corresponding formal definition is as follows.

Definition 5.2. (S-ULK-NILS-ACTIVE) A currency scheme Π is said to satisfy the anonym-
ity notion S-ULK-NILS-ACTIVE with respect to Sender Unlinkability against an adversary
A, if A’s advantage of winning the Anonymity game defined by the parameters (1s0r0v0m)ω-
((0, 0)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible. i.e.

AdvS−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Recipient Indistinguishability (R-IND): This notion is similar to sender indistinguisha-
bility, except with recipient addresses. Hence, it is defined to be one’s inability to distinguish the
correct recipient out of two given recipients in a given situation. As shown in the Figure 16(b),
public keys of the recipients (ψpkr

= 3, ψskr = 0) are known and the senders could be hidden or
known as per the parameters ψpks

and ψsks . The two transactions tp0
and tp1

both carry the
same sender, values and metadata, yet two different recipients. The adversary needs to guess
which transaction out of tp0 and tp1 was minted. The strongest adversarial scenario in this case is
R-IND-PUBR-ACTIVE, denoted as “(0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 5t)ψ-(2δ, 0α, 0β)”. We
define the notion formally as below.

Definition 5.3. (R-IND-PUBR-ACTIVE) A currency scheme Π is said to satisfy the
anonymity notion R-IND-PUBR-ACTIVE with respect to Recipient Indistinguishability against
an adversary A, if A’s advantage of winning the Anonymity game defined by the parameters
(0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 5t)ψ-(2δ, 0α, 0β) is negligible. i.e.

AdvR−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Recipient Unlinkability (R-ULK): This property is referred to as the inability to link a
transaction to the correct recipient. Figure 16(d) shows the basic setup for this game where
the adversary needs to guess the correct transaction out of the two options tp0

and tp1
, with-

out any knowledge about the corresponding recipients, i.e. ψpkr
,ψskr = 0. The strongest no-

tion in this setting is represented as R-ULK-NILR-ACTIVE given by the vector “(0s1r0v0m)ω-
((4, 4)s, (0, 0)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)” and the formal definition is given below.

24

Definition 5.4. (R-ULK-NILR-ACTIVE) A currency scheme Π is said to satisfy the anonym-
ity notion R-ULK-NILR-ACTIVE with respect to Recipient Unlinkability against an adversary
A, if A’s advantage of winning the Anonymity game defined by the parameters (0s1r0v0m)ω-
((4, 4)s, (0, 0)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible.

AdvR−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

5.2.2 Non-topological Entities

As opposed to topological entities, non-topological entities such as value and metadata in a
currency scheme do not directly affect the structure of the transaction graph. However, if made
public, these entities also could hinder the privacy of users. Hence, these entities can also be
regarded as equally important in determining the level of anonymity in a currency scheme. In
this section, we provide formal definitions for major anonymity notions involving non-topological
entities; value and metadata (Figure 17).

S0

R0

tp0 (v0/m0) tp1 (v1/m1)

(a) Value/Metadata indistinguisha-
bility

S0

R0

tp0 (v0/m0) tp1 (v1/m1)

(b) Value/Metadata unlinkability
(hidden values/metadata)

Figure 17: Non-topological Anonymity notions

Value Indistinguishability (V-IND): The notion of indistinguishability with respect to
transaction values refers to the fact that it is impossible to distinguish the correct value from
two given values for a given transaction. In the game, the challenger creates two transactions tp0

and tp1
, with two different values v0 and v1, while having other entities the same (Figure 17(a)).

In this case, the adversary knows what the two values are and other entities can vary according to
their ψ values. The challenger then picks a bit b and mints the transaction tpb and the adversary
has to guess which transaction it is. We represent the strongest adversary as PUBSR-ACTIVE
as the knowledge of secret keys would leak information about the value. Hence the strongest
notion in this scenario is given by V-IND-PUBSR-ACTIVE which is represented by the vector
“(0s0r1v0m)ω-((3, 0)s, (3, 0)r, 3v, 3m , 5t)ψ-(2δ, 3α, 0β)” with the following formal definition.

Definition 5.5. (V-IND-PUBSR-ACTIVE) A currency scheme Π is said to satisfy V-IND-
PUBSR-ACTIVE with respect to Value Indistinguishability against an adversary A, if A’s
advantage of winning the Anonymity game defined by the parameters (0s0r1v0m)ω-((3, 0)s,
(3, 0)r, 3v, 3m , 5t)ψ-(2δ, 3α, 0β) is negligible. i.e.

AdvV−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Value Unlinkability (V-ULK): We define the property of unlinkability related to transaction
value as the inability correctly identify value of the minted transaction from two possible hidden

25

values. In order to realise this scenario, failed minting operations have to be allowed in the
game with the parameter β set to 1, as it would be impossible for the adversary to win the
game otherwise. As ψv = 0, the adversary gives maximum values for Vnew and Vold values
from which the challenger generates corresponding values required for the transaction using the
GenerateTxnVals helper function (Figure 6). Further, as in the case of V-IND, we restrict
the knowledge of secret keys of senders/recipients as otherwise the transaction is trivial. As
shown in Figure 17(b) in this context, the challenger creates two transactions tp0 and tp1 with
hidden transaction values v0 and v1, respectively.The challenger then picks a bit b and mints the
transaction tpb and the adversary makes a guess to identify the correct scenario. Accordingly,
we have “(0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 5t)ψ-(2δ, 3α, 1β)” as the combination of parameters
required to achieve the strongest level of anonymity notion V-ULK-PUBSR-NILV-FULL in this
sense and the corresponding definition is as follows.

Definition 5.6. (V-ULK-PUBSR-NILV-FULL) A currency scheme Π is said to satisfy the
anonymity notion V-ULK-PUBSR-NILV-FULL with respect to Value Unlinkability against an
adversary A under a hidden adversarial initialisation, if A’s advantage of winning the Anonymity
game defined by the parameters (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 5t)ψ-(2δ, 3α, 1β) is negligible.
i.e.

AdvV−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Metadata Indistinguishability (M-IND): Other transaction related data such as scripts,
IP addresses etc. also pose a risk to anonymity since, they can be linked to addresses or transac-
tions in many different ways. Although such metadata can be specific to a given implementation,
it might be useful in modelling the effects imposed by the other layers of implementations such
as the consensus scheme. Hence, in this case, we discuss metadata in general without linking to
any specific data, for the completeness of this work.

In this context, we define Metadata Indistinguishability to represent the scenario where it is
not possible to correctly identify the metadata corresponding to a given transaction, between
two given possibilities. Similar to the value indistinguishability scenario, the challenger creates
two transactions with different metadata values (already known to the adversary) and mints
only one transaction leaving the adversary make a guess as to what it is. The following vector
represents the strongest scenario as “(0s0r0v1m)ω-((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β)” as per
the notion M-IND-PUBM-ACTIVE and it is formally defined below.

Definition 5.7. (M-IND-PUB-ACTIVE) A currency scheme Π is said to satisfy the anonym-
ity notion M-IND-PUB-ACTIVE with respect to Metadata Indistinguishability against an adver-
sary A, if A’s advantage of winning the Anonymity game defined by the parameters (0s0r0v1m)ω-
((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 0β) is negligible. i.e.

AdvM−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Metadata Unlinkability (M-ULK): We define the property of unlinkability of metadata
with a close analogy to value unlinkability. i.e. Given a transaction, it is not possible to
correctly identify the metadata from two given hidden metadata values. Here we use the
GenerateMetadata helper function to generate the data required for the game (Figure 6). Ac-
cordingly, we have the corresponding notion M-ULK-NILM-ACTIVE parameterised by, “(0s0r0v
1m)ω-((4, 4)s, (4, 4)r, 3v, 0m, 5t)ψ-(2δ, 3α, 0β)” representing the strongest case in this sense. The
formal definition follows.

26

S0 S1

R0 R1

tp0 (v0/m0) tp1 (v1/m1)

(a) ALL-IND game

S0

R0

(v0/m0)tp0
tp1 (v0/m0)

(b) NILL-IND game

Figure 18: Strongest and weakest anonymity games

Definition 5.8. (M-ULK-NILM-ACTIVE) A currency scheme Π is said to satisfy the
anonymity notion M-ULK-NILM-ACTIVE with respect to Metadata Unlinkability against an
adversary A, if A’s advantage of winning the Anonymity game defined by the parameters
(0s0r0v1m)ω-((4, 4)s, (4, 4)r, 3v, 0m, 5t)ψ-(2δ, 3α, 0β) is negligible. i.e.

AdvM−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

5.2.3 Other useful anonymity notions

Further to above notions, we also formally define the strongest and weakest anonymity notions
modelled in this framework as they are useful in benchmarking the anonymity landscape.

Strongest anonymity (ALL-IND) In this setting, the game models two senders and two
recipients. The challenger creates two transactions tp0

and tp1
as before, but each transaction is

created using distinct set of data; i.e. different sender, recipient, value and metadata (Figure 18
(a)). The strongest adversary in this scenario has the FULL knowledge and FULL power given
by ALL-IND-FULL-FULL notion and parameterised by the vector (1s1r1v1m)ω-((4, 4)s, (4, 4)r,
3v, 3m, 5t)ψ-(2δ, 3α, 1β). This setting models the highest level of anonymity achievable by a
currency scheme and can be considered as “absolute fungibility”. We provide the following
formal definition in this connection.

Definition 5.9. (ALL-IND-FULL-FULL) A currency scheme Π is said to satisfy the anonym-
ity notion ALL-IND-FULL-FULL with respect to indistinguishability against an adversary A, if
A’s advantage of winning the Anonymity game defined by the parameters (1s1r1v1m)ω-((4, 4)s,
(4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 1β) is negligible. i.e.

AdvALL−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

We also define another set of notions here which are useful in analysing the anonymity of
many existing cryptocurrencies as those schemes are not secure when the randomness of the
coins in a transaction (i.e. when ψt > 1). These represent slightly weaker anonymity notions
with respect to S-IND, S-ULK, R-IND, R-ULK, V-IND and V-ULK as formalised below.

Definition 5.10. (S-IND-PUBST-ACTIVE) A currency scheme Π is said to be anonymous
with respect to Sender Indistinguishability against an adversary A, if A’s advantage of winning
the Anonymity game defined by the parameters (1s0r0v0m)ω-((3pk, 0sk)s, (4pk, 4sk)r, 3v, 3m, 1t)ψ-
(2δ,3α,0β) is negligible. i.e.

AdvS−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

27

Definition 5.11. (S-ULK-NILS-PUBT-ACTIVE) A currency scheme Π is said to be anony-
mous with respect to Sender Unlinkability against an adversaryA, ifA’s advantage of winning the
Anonymity game defined by the parameters (1s0r0v0m)ω-((0, 0)s, (4, 4)r, 3v, 3m, 1t)ψ-(2δ,3α,0β)
is negligible. i.e.

AdvS−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Definition 5.12. (R-IND-PUBRT-ACTIVE) A currency scheme Π is said to be anonymous
with respect to Recipient Indistinguishability against an adversary A, if A’s advantage of win-
ning the Anonymity game defined by the parameters (0s1r0v0m)ω-((4, 4)s, (3, 0)r, 3v, 3m, 1t)ψ-
(2δ,0α,0β) is negligible. i.e.

AdvR−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Definition 5.13. (R-ULK-NILR-PUBT-ACTIVE) A currency scheme Π is said to be
anonymous with respect to Recipient Unlinkability against an adversary A, if A’s advantage of
winning the Anonymity game defined by the parameters (0s1r0v0m)ω-((4, 4)s, (0, 0)r, 3v, 3m, 1t)ψ-
(2δ,3α,0β) is negligible.

AdvR−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Definition 5.14. (V-IND-PUBSRT-ACTIVE) A currency scheme Π is said to be anonymous
with respect to Value Indistinguishability against an adversary A, if A’s advantage of winning the
Anonymity game defined by the parameters (0s0r1v0m)ω-((3, 0)s, (3, 0)r, 2v, 3m , 1t)ψ-(2δ,3α,0β)
is negligible. i.e.

AdvV−INDΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Definition 5.15. (V-ULK-PUBSRT-NILV-FULL) A currency scheme Π is said to be anony-
mous with respect to Value Unlinkability against an adversary A under a hidden adversar-
ial initialisation, if A’s advantage of winning the Anonymity game defined by the parameters
(0s0r1v0m)ω-((3, 0)s, (3, 0)r, 0v, 3m, 1t)ψ-(2δ,3α,1β) is negligible. i.e.

AdvV−ULKΠ,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

Further, we consider the weakest adversary that can be modelled in our game. In this case, the
game produces two identical transactions as opposed to the strongest scenario above (Figure 18
(b)). These transactions differ only in their randomness and the adversary has to identify the
correct transaction. Hence, the weakest adversary in this case is a NIL-NIL adversary with no
knowledge nor power, which is a passive adversary. This means that even δ=0 , meaning that the
scheme has a hidden private state, which however may not be the case for most cryptocurrency
schemes. Yet, we provide the following formalisation for comparison.

Definition 5.16. (NIL-IND-NIL-NIL) A currency scheme Π is said to satisfy the anonymity
notion NIL-IND-NIL-NIL with respect to indistinguishability against an adversary A, if A’s ad-
vantage of winning the Anonymity game defined by the parameters (0s0r0v0m)ω-((0, 0)s, (0, 0)r,
0v, 0m, 0t)ψ-(0δ, 0α, 0β) is negligible. i.e.

AdvNIL−IND1
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

28

As many cryptocurrency schemes have public states, we can see that at the very least, the
adversary can view the state, meaning that we can have δ=1 for most schemes. This will model
an adversary with VIEW power with other parameters being zero. Hence, we define a slightly
less weaker notion in this sense, which can be useful to model anonymity in some real world
constructions.

Definition 5.17. (NIL-IND-NIL-VIEW) A currency scheme Π is said to satisfy the anonym-
ity notion NIL-IND-NIL-VIEW with respect to indistinguishability against an adversary A, if
A’s advantage of winning the Anonymity game defined by the parameters (0s0r0v0m)ω-((0, 0)s,
(0, 0)r, 0v, 0m, 0t)ψ-(1δ, 0α, 0β) is negligible. i.e.

AdvNIL−IND2
Π,A,O,ω,ψ,δ,α,β =

∣∣∣∣ Pr
[
ExpAnonymityΠ,A,O,ω,ψ,δ,α,β(λ) = 1

]
− 1/2

∣∣∣∣ is negligible in λ.

5.2.4 Representation of anonymity notions

In order to clearly represent above anonymity notions, we construct graphical illustrations as
shown in figures 19 and 20. These diagrams are useful in comparing anonymity landscape across
different implementations while illustrating the complex multidimensional diversity of adversarial
parameters.

Figure 19 represents a comparison between the strongest anonymity notion ALL-IND-FULL-
FULL against the weakest notion NIL-IND-NIL-NIL in our anonymity game. All other notions
lay within the area bounded by these two notions. The larger the area covered by the graph
of a given notion, the stronger is the level of anonymity. This is evident from the Figure 20,
which represents two more anonymity notions related to S-IND and S-ULK corresponding to
definitions 5.1 and 5.2, and shows that S-IND is stronger than S-ULK.

ωs

ωr

ωv

ωmψspk
ψssk

ψrpk

ψrsk

ψv

ψm
ψt δ

α

β

Figure 19: Strongest anonymity notion: ALL-IND-FULL-
FULL (red); Weakest notion: NIL-IND-NIL-NIL (cyan)

ωs

ωr

ωv

ωmψspk
ψssk

ψrpk

ψrsk

ψv

ψm
ψt δ

α

β

Figure 20: Anonymity notions S-IND-PUBS-ACTIVE
(green) and S-ULK-NILS-ACTIVE (blue)

5.3 Theorems

As it is apparent from the definitions presented in the previous section, we can utilise the
Anonymity game to realise a multitude of potential different attacker scenarios. Identifying
the relationships among these is a worthwhile exercise in order to discern the meaningful aspects
of anonymity captured by them.

It is interesting to note that as we vary different security parameters in our model, their
correlations result in a non-trivial lattice form as depicted in figures 21 and 22. These relations
are interpreted as implications, equivalences and separations. The arrow “ 7→” represents an

29

ω-ψ(4,4)s-(δ,α,β)

ω-ψ(3,3)s-(δ,α,β)

ω-ψ(3,2)s-(δ,α,β)

ω-ψ(2,3)s-(δ,α,β) ω-ψ(1,3)s-(δ,α,β) ω-ψ(0,3)s-(δ,α,β)

ω-ψ(3,1)s-(δ,α,β)

ω-ψ(3,0)s-(δ,α,β)

ω-ψ(2,2)s-(δ,α,β) ω-ψ(1,2)s-(δ,α,β) ω-ψ(0,2)s-(δ,α,β)

ω-ψ(2,1)s-(δ,α,β)

ω-ψ(2,0)s-(δ,α,β)

ω-ψ(1,1)s-(δ,α,β) ω-ψ(0,1)s-(δ,α,β)
ω-ψ(2,1)s-(δ,α,β)

ω-ψ(1,0)s-(δ,α,β)
ω-ψ(0,0)s-(δ,α,β)

Figure 21: Relationship of anonymity notions for different sender addresses (ψpk, ψsk)s

implication in the direction of the arrow and a separation in the opposite direction whereas the
double arrow “↔” shows an equivalence relation. In order to formalise these relationships, we
define a set of theorems that will simplify the process of assessing the anonymity of a currency
scheme and we describe them below.

Theorem 1. For a currency scheme Π and for a given combination of ω, δ, α, ψsks , (ψpk, ψsk)r,
ψv, ψm, ψt and β, the notion resulting from increasing the value of ψpks

while holding others is
strictly stronger than the former for the following scenarios:

i. given that Π is secure in ω-ψ((3,0)s)-(δ, α, β), Π is also secure in ω- ψ((2,0)s)-(δ, α, β),
ω-ψ((1,0)s)-(δ, α, β) and ω-ψ((0,0)s)-(δ, α, β).
i.e. ω-ψ((3,0)s)-(δ, α, β)→ ω-ψ((2,0)s)-(δ, α, β)→
ω-ψ((1,0)s)-(δ, α, β)→ ω-ψ((0,0)s)-(δ, α, β)

ii. given that Π is secure in ω-ψ((3,1)s)-(δ, α, β), Π is also secure in ω- ψ((2,1)s)-(δ, α, β)
and ω-ψ((1,1)s)-(δ, α, β).
i.e. ω-ψ((3,1)s)-(δ, α, β)→ ω-ψ((2,1)s)-(δ, α, β)→ ω-ψ((1,1)s)-(δ, α, β)

iii. given that Π is secure in ω-ψ((3,2)s)-(δ, α, β), Π is also secure in ω- ψ((2,2)s)-(δ, α, β).
i.e. ω-ψ((3,2)s)-(δ, α, β)→ ω-ψ((2,2)s)-(δ, α, β)

iv. given that Π is secure in ω-ψ((3,3)s)-(δ, α, β), Π is also secure in ω- ψ((2,3)s)-(δ, α, β).
i.e. ω-ψ((3,3)s)-(δ, α, β)→ ω-ψ((2,3)s)-(δ, α, β)

v. given that Π is secure in ω-ψ((4,4)s)-(δ, α, β), Π is also secure in ω- ψ((3,3)s)-(δ, α, β).
i.e. ω-ψ((4,4)s)-(δ, α, β)→ ω-ψ((3,3)s)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 21).

Proof. (Part i) Assume a currency scheme Π which is secure against the anonymi- ty game
defined by a given combination of ψpkr

, ψskr , ψv, ψm, ψt, α, β and with (ψpks
, ψsks) =

(3, 0). This means that senders’ addresses are created with respect to identity information
controlled by the adversary and senders’ public keys are known throughout, yet secret keys

30

are not known. Now consider a scenario with (ψpks
, ψsks) = (2, 0), while having other param-

eters fixed. This means that the adversary has access to the public keys of senders through
the oracles and the addresses are honestly generated. When compared to the former case, the
adversary has less control in the latter scenario. Hence, we can conclude that if Π is secure
against a more powerful adversary, then it is also secure against a less powerful adversary.
i.e. ω-ψ((3, 0)s)-(δ, α, β) → ω-ψ((2, 0)s)-(δ, α, β). Similarly, if we consider the case where
(ψpks

, ψsks) = (1, 0) by only changing ψpks
, then the adversary gets to know the public keys in

the end with secret keys unknown throughout. In comparison with the case (2, 0), the adversary
has less knowledge about the keys in the case (1, 0). Hence, it is clear that if Π is secure in (2, 0),
it is also secure in (1, 0). i.e. ω-ψ((2, 0)s)-(δ, α, β)→ ω-ψ((1, 0)s)-(δ, α, β). Similarly, (0, 0) case
provides even less knowledge to the adversary compared to (1, 0). Hence, if Π is secure in (1, 0),
it is also secure in (0, 0). i.e. ω-ψ((1, 0)s)-(δ, α, β)→ ω-ψ((0, 0)s)-(δ, α, β).

(Part ii) Similar to part i, we can see that in this case ψsks = 1 is fixed. Hence, ψsks = 3
represents the strongest case, followed by ψpks

= 2 and ψpks
= 1. Following the same argument

as above, we can see that (3, 1) is more powerful than (2, 1), followed by (1, 1). And hence the
implication relations follow from that.

(Part iii) In this case ψsks = 2 is fixed and it follows from above that (3, 2) is more powerful
than (2, 2) since the adversary has the control over identity. Hence, the equivalence relation
follows.

(Part iv) This scenario represents the case where ψsks = 3. As before, we see that (3, 3) is
stronger than (2, 3) since with the former case, the adversary has control over both the identity
and the randomness over the latter case. Hence, it follows that (3, 3) → (2, 3).

(Part v) Consider the case where (ψpks
, ψsks)=(4, 4), in which the adversary has full control

over the senders. In comparison, in the (3, 3) case, although the adversary gets to choose the
identity and randomness, he does not have full control over the senders as the address creation
is performed honestly. Hence, (4, 4) is more powerful than (3, 3) and along the same line of
argument as before, we can say that (4, 4) → (3, 3).

Theorem 2. For a currency scheme Π and for a given combination of ω, δ, α, ψpks
, (ψpk, ψsk)r,

ψv, ψm, ψt and β, the notion resulting from increasing the value of ψsks while holding others is
strictly stronger than the former for the following scenarios:

i. given that Π is secure in ω-ψ((0,3)s)-(δ, α, β), Π is also secure in ω- ψ((0,2)s)-(δ, α, β),
ω-ψ((0,1)s)-(δ, α, β) and ω-ψ((0,0)s)-(δ, α, β).
i.e. ω-ψ((0,3)s)-(δ, α, β)→ ω-ψ((0,2)s)-(δ, α, β)→
ω-ψ((0,1)s)-(δ, α, β)→ ω-ψ((0,0)s)-(δ, α, β)

ii. given that Π is secure in ω-ψ((1,3)s)-(δ, α, β), Π is also secure in ω- ψ((1,2)s)-(δ, α, β)
and ω-ψ((1,0)s)-(δ, α, β).
i.e. ω-ψ((1,3)s)-(δ, α, β)→ ω-ψ((1,2)s)-(δ, α, β)→
ω-ψ((1,0)s)-(δ, α, β)

iii. given that Π is secure in ω-ψ((2,3)s)-(δ, α, β), Π is also secure in ω- ψ((2,2)s)-(δ, α, β),
ω-ψ((2,1)s)-(δ, α, β) and ω-ψ((2,0)s)-(δ, α, β).
i.e. ω-ψ((2,3)s)-(δ, α, β)→ ω-ψ((2,2)s)-(δ, α, β)→
ω-ψ((2,1)s)-(δ, α, β)→ ω-ψ((2,0)s)-(δ, α, β)

iv. given that Π is secure in ω-ψ((3,3)s)-(δ, α, β), Π is also secure in ω- ψ((3,2)s)-(δ, α, β),
ω-ψ((3,1)s)-(δ, α, β) and ω-ψ((3,0)s)-(δ, α, β).
i.e. ω-ψ((3,3)s)-(δ, α, β)→ ω-ψ((3,2)s)-(δ, α, β)→
ω-ψ((3,1)s)-(δ, α, β)→ ω-ψ((3,0)s)-(δ, α, β)

31

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 21).

Proof. This proof is similar to the proof of theorem 1 based on the fact that the knowledge of
secret keys implies the knowledge of the public keys.

Theorem 3. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)r, ψv,
ψm, ψt and β, the resulting notion from increasing the value of ψspk while holding others fixed,
is equivalent to the former when ψpks

≤ ψsks under the following scenarios;

i. given that Π is secure in ω-ψ((0, 1)s)-(δ, α, β), then Π is also secure in ω- ψ((1, 1)s)-(δ, α, β)
and vice versa.
i.e. ω-ψ((0, 1)s)-(δ, α, β)↔ ω-ψ((1, 1)s)-(δ, α, β)

ii. given that Π is secure in ω-ψ((0, 2)s)-(δ, α, β), then Π is also secure in ω- ψ((1, 2)s)-(δ, α, β)
and ω-ψ((2, 2)s)-(δ, α, β), and vice versa.
i.e. ω-ψ((0, 2)s)-(δ, α, β)↔ ω-ψ((1, 2)s)-(δ, α, β)↔ ω-ψ((2, 2)s)-(δ, α, β)

iii. given that Π is secure in ω-ψ((0, 3)s)-(δ, α, β), then Π is also secure in ω- ψ((1, 3)s)-(δ, α, β)
and ω-ψ((2, 3)s)-(δ, α, β), and vice versa.
i.e. ω-ψ((0, 3)s)-(δ, α, β)↔ ω-ψ((1, 3)s)-(δ, α, β)↔ ω-ψ((2, 3)s)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 21).

Proof. (Part i) Assume a currency scheme Π which is secure against the anonymi- ty game
defined by a given combination of ω, δ, α, (ψpk, ψsk)r, ψv, ψm, ψt, β and with (ψpks

, ψsks) =
(0, 1). This means that senders’ public keys are hidden and the secret keys are also hidden but
will be revealed in the end (because ψpks

= 1) in the game. According to our construction, the
knowledge of the secret keys implies the knowledge of the public keys. Hence, this scenario can
be simplified to a case in which both secret keys and public keys are revealed in the end. Now,
consider the case where (ψpks

, ψsks) = (1, 1) while having all other parameters fixed. In this
case, both secret keys and public keys are revealed in the end. As such, we can conclude that
both cases represent the same amount of knowledge for the adversary (since all other parameters
are constant) and hence both notions are equivalent. Hence, Π is also secure in the case where
(ψpks

, ψsks) = (1, 1). i.e. ωs̄-ψ((0,1)s)-(δ, α, β)↔ ωs̄-ψ((1,1)s)-(δ, α, β).
(Part ii) Similar to part i, ψsks = 2 in this case corresponds to the case where the addresses

are honestly generated and secret keys are accessible by the adversary through the oracles during
the game. This means that this case is the same irrespective of ψsks in (0, 2), (1, 2) and (2, 2)
through the same line of argument as before. Hence the equivalence relation follows.

(Part iii) As before, ψsks = 3 models the case where the addresses are generated based on
the randomness chosen by the adversary and the secret keys are already known to the adversary.
Following the same argument, we can say that (1, 3), (1, 3) and (2, 3) scenarios are equivalent
and hence, the above equivalence relation.

Theorem 4. For a currency scheme Π for a given combination of ω, δ, α, (ψpk, ψsk)r, ψv, ψm,
ψt and β (with ψt 6= 0), the notion resulting from decreasing the value of ψspk while holding
others is not necessarily stronger than the former for the following scenarios:

i. ω-ψ((0,0)s)-(δ, α, β) 9 ω-ψ((1,0)s)-(δ, α, β) 9 ω-ψ((2,0)s)-(δ, α, β) 9
ω-ψ((3,0)s)-(δ, α, β)

ii. ω-ψ((1,1)s)-(δ, α, β) 9 ω-ψ((2,1)s)-(δ, α, β) 9 ω-ψ((3,1)s)-(δ, α, β)

32

iii. ω-ψ((2,2)s)-(δ, α, β) 9 ω-ψ((3,2)s)-(δ, α, β)

iv. ω-ψ((2,3)s)-(δ, α, β) 9 ω-ψ((3,3)s)-(δ, α, β)

v. ω-ψ((3,3)s)-(δ, α, β) 9 ω-ψ((4,4)s)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {1, 2, 3, 4, 5}, β ∈ {0, 1}
and δ ∈ {1, 2} (Figure 21).

Proof. (Part i)
(a). Consider a currency scheme where there is some special value associated with the public
key of the addresses which could provide a hint about the secret key. For example, the hash of
a value V that is related to the corresponding senders is associated with the public keys of the
recipient addresses as a special value. Hence, being able to view the public keys of recipients
will give an adversary additional information about the transaction, as opposed to having hidden
addresses.

Assume that there exists a currency scheme Π1 which is secure in (ψpk, ψsk)s = (0, 0). This
means that the scheme is secure against an adversary who is unable to view the public keys.
i.e. These are hidden addresses created by the oracle. Consider a modified currency scheme Π

′

1

derived from Π1 such that the transaction creation process is modified as follows :
CreateTxn

Π
′
1
(args,R, V) {

(tp, ts)← CreateTxnΠ1
(args)

if SpecialValue(R) = Hash(V) then
return ((tp, args), ts)

return ((tp, ∅), ts)
}

All other operations in Π
′

are of the form: fΠ′ = fPi. In this case, with the modified CreateTxn

operation, if the adversary knows the transaction, then the public keys can be known and details
about senders could be obtained. When a bit b is chosen, the adversary simulates Π

′
and if

ψt ≥ 1, the adversary is able to obtain additional information about the senders and hence it is
not secure. Accordingly, this scheme is secure in (0, 0), but not necessarily secure in (1, 0). i.e.
ωs̄-ψ((0,0)s)-(δ, α, β) 9 ωs̄-ψ((1,0)s)-(δ, α, β).

(b). Consider a scheme Π2 which is secure when (ψpk, ψsk)s = (1, 0). Accordingly, the adversary
knows the public keys of senders at the end of the game. However, the adversary is not able
to create or mint any more transactions involving those senders. With a similar construction as
above, consider a modified scheme Π

′

2 with the a modified Mint operation, which leaks additional
information about the senders from a transaction tp via a special value V. i.e.

Mint
Π
′
2
(args, tp, V) {

(p
′
, Vx)← MintΠ2

(args)
if SpecialValue(tp) = Hash(V) then

return ((p
′
, args), Vx)

return ((p
′
, ∅), Vx)

}

Now, Π
′

2 is secure when (ψpk, ψsk)s = (1, 0) as the transactions cannot be minted after the reveal
at the end of the game. However, when (ψpk, ψsk)s = (2, 0), the adversary has the knowledge
of the senders at the start of the game, and hence is able to craft a transaction to reveal ad-
ditional information about the senders through the above modification, making Π

′

2 not secure
when (ψpk, ψsk)s = (2, 0). i.e. ω-ψ((1,0)s)-(δ, α, β) 9 ω-ψ((2,0)s)-(δ, α, β).

(c). Consider another scheme Π3 which is secure when (ψpk, ψsk)s = (2, 0). In this case, the
adversary has access to the senders’ public address throughout the game. Now consider a modified
scheme Π

′

3 as before with a modified CreateTxn operation, where a special value is associated

33

with the identity of the senders d, which leaks additional information about the senders’ private
keys when it is equal to the hash of the special value V . i.e.

CreateTxn
Π
′
3
(args, d, V) {

(tp, ts)← CreateTxnΠ3
(args)

if SpecialValue(d) = Hash(V) then
return ((tp, args), ts)

return ((tp, ∅), ts)
}

The modified CreateTxn together with the knowledge of the transaction, allows the adversary
gain additional information about the secret keys of the senders. Hence, Π

′

3 is secure when the
senders’ identity is unknown (i.e. (ψpk, ψsk)s = (2, 0)), but not secure when the identity is
known. Hence, we conclude that, ω-ψ((2,0)s)-(δ, α, β) 9 ω-ψ((3,0)s)-(δ, α, β).

(Parts ii to v) We can use the same line of argument as above to provide counter examples
for other separations.

Theorem 5. For a currency scheme Π for a given combination of ω, δ, α, (ψpk, ψsk)r, ψv,
ψm, ψt and β (with ψt 6= 0), the notion resulting from decreasing the value of ψssk while holding
others is not necessarily stronger than the former for the following scenarios:

i. ω-ψ((2,0)s)-(δ, α, β) 9 ω-ψ((2,1)s)-(δ, α, β) 9 ω-ψ((2,2)s)-(δ, α, β) 9
ω-ψ((2,3)s)-(δ, α, β)

ii. ω-ψ((3,0)s)-(δ, α, β) 9 ω-ψ((3,1)s)-(δ, α, β) 9 ω-ψ((3,2)s)-(δ, α, β) 9
ω-ψ((3,3)s)-(δ, α, β)

iii. ω-ψ((1,0)s)-(δ, α, β) 9 ω-ψ((1,1)s)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {1, 2, 3, 4, 5}, β ∈ {0, 1}
and δ ∈ {1, 2} (Figure 21).

Proof. (Sketch) This proof is similar to the proof of Theorem 4.

Note that the Theorems 1, 2, 3, 4 and 5 also hold for recipient addresses in the same manner
and hence we do not provide separate theorems for the recipients here.

Theorem 6. For a currency scheme Π and for a given combination of ω, δ, ψ and β, if α is
decreased while holding the others, the former notion is strictly stronger than the resulting notion
for the following scenarios;

i. given Π is secure in ω-ψ-(δ,3α, β), then Π is also secure in ω-ψ-(δ,2α, β).
i.e. ω-ψ-(δ,3α, β) → ω-ψ-(δ,2α, β)

ii. given Π is secure in ω-ψ-(δ,2α, β), then Π is also secure in ω-ψ-(δ,1α, β).
i.e. ω-ψ-(δ,2α, β) → ω-ψ-(δ,1α, β)

iii. given Π is secure in ω-ψ-(δ,1α, β), then Π is also secure in ω-ψ-(δ,0α, β).
i.e. ω-ψ-(δ,1α, β) → ω-ψ-(δ,0α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(d)).

34

ω-ψ-(δ,3α,β)

ω-ψ-(δ,2α,β)

ω-ψ-(δ,1α,β)

ω-ψ-(δ,0α,β)

(d) Varying α (Theorems 6

and 7.)

ω-ψ-(2δ ,α,β)

ω-ψ-(1δ ,α,β)

ω-ψ-(0δ ,α,β)

(a) Varying δ (Theorems 8

and 9.)

ω-ψ-(δ,α,1β)

ω-ψ-(δ,α,0β)

(c) Varying β (Theorem 10

and 11.)

ω-ψ(5t)-(δ,α,β)

ω-ψ(4t)-(δ,α,β)

ω-ψ(3t)-(δ,α,β)

ω-ψ(2t)-(δ,α,β)

ω-ψ(1t)-(δ,α,β)

ω-ψ(0t)-(δ,α,β)

(b) Varying ψt (Theorems 16

and 17.)

ω-ψ(3v)-(δ,α,β)

ω-ψ(2v)-(δ,α,β)

ω-ψ(1v)-(δ,α,β)

ω-ψ(0v)-(δ,α,β)

(e) Varying ψv (Theorems 12

and 13.)

ω-ψ(3m)-(δ,α,β)

ω-ψ(2m)-(δ,α,β)

ω-ψ(1m)-(δ,α,β)

ω-ψ(0m)-(δ,α,β)

(f) Varying ψm (Theorems 14

and 15).

Figure 22: Relationships among notions based on α, δ, ψv , ψm, ψt and β.

Proof. (Part i) We start with a currency scheme Π that is secure against a ω-ψ-(δ, 3α, β) adver-
sary. In this case, the adversary has the full control over the state initialisation for the anonymity
game. Now, consider an adversary for α = 2 with all other parameters the same. In this scenario,
the adversary only has control to choose the randomness, but with an honest state initialisation.
Hence, the adversary in the latter case is less powerful than the former. Thus it follows that Π
is also secure against ω-ψ-(δ, 2α, β) given that Π is secure against a more powerful adversary in
ω-ψ-(δ, 3α, β).

(Part ii) Similar to part i, α = 2 adversary is more powerful than a α = 1 adversary since
the adversary has no control over state initialisation in the latter case. Hence, given a scheme Π
is secure in ω-ψ-(δ, 2α, β), it is clear that Π is also secure in ω-ψ-(δ, 1α, β).

(Part iii) Applying the same argument as before, the adversary has less information when
α = 0 compared to α = 1. Hence, given that a currency scheme Π is secure against ω-ψ-(δ, 1α, β),
then Π is also secure against a less powerful adversary, ω-ψ-(δ, 0α, β).

Theorem 7. For a currency scheme Π and for a given combination of ω, δ, ψ and β (with
δ ∈ {0, 1}), if α is increased while holding the others, the system is necessarily secure in the

35

resulting notion for the following scenarios;

i. Given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(δ,2α, β)
and Π0 is not secure in ω-ψ-(δ,2α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(δ,2α, β) but not secure in ω-ψ-(δ,3α, β).
i.e. ω-ψ-(δ,2α, β) 9 ω-ψ-(δ,3α, β)

ii. Given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(δ,1α, β)
and Π0 is not secure in ω-ψ-(δ,1α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(δ,1α, β) but not secure in ω-ψ-(δ,2α, β).
i.e. ω-ψ-(δ,1α, β) 9 ω-ψ-(δ,2α, β)

iii. Given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(δ,0α, β)
and Π0 is not secure in ω-ψ-(δ,0α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(δ,0α, β) but not secure in ω-ψ-(δ,1α, β).
i.e. ω-ψ-(δ,0α, β) 9 ω-ψ-(δ,1α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt, β ∈ {0, 1} and δ ∈ {0, 1, 2}
(Figure 22(d)).

Proof. (Part i) Assume that there exist two currency schemes Π1 and Π0 such that Π1 is secure
in ω-ψ-(δ, 2α, β) and Π0 is not secure in ω-ψ-(δ, 2α, β). In the case of γ = 2, the state is initialised
through an honest initialisation based on the randomness chosen by the adversary whereas when
γ = 3, the adversary generates the initial state on his own with randomness of his choice.
Consider a new currency scheme Π, where the state initialisation process takes place based on
the selection of a bit b. If b = 1, then the initial state is decided by the honest behaviour as
follows: InitΠ(λ; r) = (InitΠ1

(λ, r1), 1)

Otherwise, the adversary chooses to construct the initial state p0 through: p0 = (InitΠ0
(λ; r1), 0)

simulating the insecure Π0 protocol. Other functions in Π will be of the following form depending
on the value of b: fΠ((p, b), ...) = fΠb(p, ...)

In the case of b = 1, this construction returns InitΠ1 which makes Π secure in ω-ψ-(δ, 2α, β).
When b = 0, the adversary chooses to output InitΠ0

simulating the insecure protocol Π0. Π is
not secure in ω-ψ-(δ, 3α, β) in this case. This shows that ω-ψ-(δ, 2α, β) → ω-ψ-(δ, 3α, β) is false.
Hence, we conclude that ω-ψ-(δ, 2α, β) 9 ω-ψ-(δ, 3α, β).

(Part ii) Assume there exist two currency schemes Π1 and Π0 such that Π1 is secure in
ω-ψ-(δ, 1α, β) and Π0 is not secure in ω-ψ-(δ, 1α, β). γ = 1 represents an honest state initiali-
sation with randomness over which the adversary does not have control, whereas when γ = 2,
the adversary chooses the randomness with an honest state initialisation. Hence the difference
between the two cases is whether the randomness is chosen by the adversary as per the algorithm
SetupState. We now define a new currency scheme Π where the initialisation takes place upon
a selection of a random string r2 as follows depending on a bit b:

InitΠ(λ, (r1, r2)) =

{
(InitΠ1(λ, r1), 1), if r2 6= 0...0

(InitΠ0
(λ, r1), 0), if r2 = 0...0

Similarly, all functions in Π need to be dependent on r, similar to part i above. i.e.

fΠ(p, ...) =

{
fΠ1(p, ...), if p = (., 1)

fΠ0(p, ...), if p = (., 0)

36

According to this construction, in the honest scenario (b = 1), Π is secure in ω-ψ-(δ, 1α, β)
with since it returns state initialisation (InitΠ1

(r), 1) which is ω-ψ-(δ, 1α, β) secure. However,
it should be noted that r2 can be 00...0 in the honest scenario also with a small probability of
1/2λ which is negligible and hence we can assume that Π is secure in ω-ψ-(δ, 1α, β) in the honest
case. When b = 0, the adversary can choose r2 to be 0..0 to simulate the insecure protocol Π0

which makes Π insecure in ω-ψ-(δ, 2α, β). This means that ω-ψ-(δ, 1α, β) → ω-ψ-(δ, 2α, β) is
false since Π can be secure in ω-ψ-(δ, 1α, β) but not secure in ω-ψ-(δ, 2α, β). Thus we conclude
that ω-ψ-(δ, 1α, β) 9 ω-ψ-(δ, 2α, β).

(Part iii) Assume there exist two currency schemes Π1 and Π0 such that Π1 is secure in
ω-ψ-(δ, 0α, β) and Π0 is not secure in ω-ψ-(δ, 0α, β). In this scenario, an honest state initialisation
takes place and the adversary does not see the randomness involved whereas with γ = 1 state
initialisation, the adversary is able to see the randomness.

Construct a new currency scheme Π as explained previously.

InitΠ(λ, (r1, r2)) = (InitΠ0
(λ, r1), InitΠ1

(λ, r1), r2, 1)

In the honest case, this will output (p0, p1, 1). Consider the γ = 0 game where, immediately after
the RunAdversary process is run for the first time, a transaction is run by the adversary which
would reveal the randomness and the bit b. i.e. (tp, r, b). This would simulate a γ = 1 scenario
and if the bit b = 0, then fΠ0

will be chosen. However, Π0 is not secure when γ = 0, and thus it
makes this situation insecure. Hence, we claim that Π is not secure with γ = 1 in this case since
Π0 is not secure when γ = 0. This shows that Π can be secure in ω-ψ-(δ, 0α, β) but not secure
in ω-ψ-(δ, 1α, β). i.e. ω-ψ-(δ, 0α, β) 9 ω-ψ-(δ, 1α, β).

Theorem 8. For a currency scheme Π and for a given combination of ω, α, ψ and β, if δ is
decreased while holding the others, the former notion is strictly stronger than the resulting notion
for the following scenarios;

i. given Π is secure in ω-ψ-(2δ, α, β) then Π is also secure in ω-ψ-(1δ, α, β).
i.e. ω-ψ-(2δ, α, β) → ω-ψ-(1δ, α, β)

ii. given Π is secure in ω-ψ-(1δ, α, β) then Π is also secure in ω-ψ-(0δ, α, β).
i.e. ω-ψ-(1δ, α, β) → ω-ψ-(0δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(a)).

Proof. δ = 2 represents the strongest adversary with the capability to manipulate the state
whereas the adversary is only able to view the state when δ = 1, hence representing a weaker
adversary. Similarly with δ = 0, the state is private and hence the adversary is the weakest in
this respect, being unable to view the state. Using the same proof technique as in Theorem 6,
we can see that ω-ψ-(2δ, α, β) represents a more powerful attacker than ω-ψ- (1δ, α, β) and also
ω-ψ-(1δ, α, β) is more powerful than ω-ψ-(0δ, α, β), hence it is clear that both implications are
true.

Theorem 9. For a currency scheme Π and for a given combination of ω, α, ψ and β (with
α 6= 0), if δ is increased while holding the others, the resulting notion is not necessarily stronger
than the former notion for the following scenarios;

i. given that two currency schemes Π0 and Π1 exists such that Π1 is secure in ω-ψ-(1δ, α, β)
and Π0 is not secure in ω-ψ-(1δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ-(1δ, α, β) but not secure in ω-ψ-(2δ, α, β).
i.e. ω-ψ-(1δ, α, β)-β 9 ω-ψ-(2δ, α, β)

37

ii. given that two currency schemes Π0 and Π1 exists such that Π1 is secure in ω-ψ-(0δ, α, β)
and Π0 is not secure in ω-ψ-(0δ, α, β), there exists a currency scheme Π which is secure in
ω-ψ-(0δ, α, β) but not secure in ω-ψ-(1δ, α, β).
i.e. ω-ψ-(0δ, α, β) 9 ω-ψ-(1δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(a)).

Proof. (Part i) The difference between the two scenarios where δ = 1 and δ = 2 is that with
δ = 2, the adversary is able to modify the state whereas with δ = 1, he can only view the state.
Suppose that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ-(1δ, α, β) and
Π0 is not secure in ω-ψ-(1δ, α, β). Assume that a currency scheme Π is constructed as before in
the proof of part (ii) of the Theorem 7. The initialisation of the scheme Π results in: (p0, p1, r, b)
with functions fΠb . In the honest construction, we have b = 1, with fΠ1 and the adversary is
only able to view the state which simulates a ω-ψ-(1δ, α, β) scenario. Π1 is already secure in
ω-ψ-(1δ, α, β) and hence Π is also secure in ω-ψ-(1δ, α, β). Now assume that the adversary gets
to choose the bit b = 0. In this case, functions fΠ0

will be executed and hence the adversary
is now able to change the state through the functions fΠ0 that return the state as (p

′

0, p1, r, 0)
which represent a ω-ψ-(2δ, α, β) adversary. However, from the definition, Π0 is not secure against
this adversary since Π0 is not secure in ω-ψ-(1δ, α, β) and hence is not secure in ω-ψ-(2δ, α, β)
as well. Therefore, Π is also not secure in ω-ψ-(2δ, α, β) in this case.

(Part ii) Suppose that a currency scheme Π1 is secure in ω-ψ-(0δ, α, β) and another currency
scheme Π0 is not secure in ω-ψ-(0δ, α, β). Define a new honest construction for a currency
scheme Π as described in the proof of part (ii) of the Theorem 7 with the same initialisation and
a modification to the Mint function: i.e.

InitΠ(λ, (r1, r2)) = (InitΠ0
(λ, r1), (InitΠ1

(λ, r1), r2, 1))
MintΠ((p0, p1, r, b), T, args) = {

if p0 and p1are inital states and b = 1 and T = {r},
then return ((p0, p1, r, 0), outputs)

}

In the honest case, InitΠ will output (p0, p1, 1) and all functions fΠ1
will be executed. Since

the adversary is not able to view the state now, this simulates ω-ψ-(0δ, α, β). We claim that Π
is ω-ψ-(0δ, α, β) secure in this case since the adversary has the same amount of information as
for Π1 and Π1 is secure in ω-ψ-(0δ, α, β). Then immediately after the state initialisation, the
adversary mints {r} which will return (p0, p1, r, 0), setting bit b = 0. In this instance, the protocol
simulates Π0 which is not secure. Hence we can conclude that Π is secure in ω-ψ-(0δ, α, β) but
not secure in ω-ψ-(1δ, α, β).

Theorem 10. For a currency scheme Π and for a given combination of ω, α and ψ, if β is
decreased while holding the others, the former notion is strictly stronger than the resulting notion
for the following scenarios;

i. given Π is secure in ω-ψ-(δ, α,1β) then Π is also secure in ω-ψ-(δ, α,0β).
i.e. ω-ψ-(δ, α,1β) → ω-ψ-(δ, α,0β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(a)).

Proof. Consider a currency scheme Π which is secure in ω-ψ-(δ, α,1β). In this case, the adversary
is able to cause minting to fail so that failed mint operations may leak information about the
corresponding transaction. On the other hand, β = 0 represents a weaker adversary as no
additional information is leaked in this case. As the scheme Π is secure against a more powerful
adversary with β = 1, we can conclude that Π is also secure against any weaker adversary, and
an adversary with β = 0. i.e. ω-ψ-(δ, α,1β) → ω-ψ-(δ, α,0β).

38

Theorem 11. For a currency scheme Π and for a given combination of ω, α and ψ, if β is
decreased while holding the others, the former notion is strictly stronger than the resulting notion
for the following scenarios;

i. given that Π is secure in ω-ψ-(δ, α,0β) then Π is not necessarily secure in ω-ψ-(δ, α,1β).
i.e. ω-ψ-(δ, α,0β) 9 ω-ψ-(δ, α,1β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(a)).

Proof. Assume that a currency scheme Π is secure in ω-ψ-(δ,α,0β). Consider a construction

Π
′

similar to Π except that the Mint operation is modified with an input bit b and a special
value V which reveals additional information about the transaction when b = 1 and when a mint
operation fails. i.e.

Mint
Π
′ (args, b, V) {

if (MintΠ(args) =⊥) ∧ (b = 1) then
return V

else return MintΠ(args)
}

When the bit b = 0, Π
′

functions similar to Π and hence is secure in ω-ψ-(δ,α,0β). However,

when b = 1, with the modified Mint function models a scenario for β= 1 for Π
′
, yet Π

′
is not

secure here as the Mint operation leaks special information about the transaction in this case.
Hence, we conclude that ω-ψ-(δ, α,0β) 9 ω-ψ-(δ, α,1β).

Theorem 12. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s,
ψm, ψt and β, when the value of ψv is decreased while holding others fixed, the former notion is
strictly stronger than the resulting notion under the following scenarios;

i. given Π is secure in ω-ψ(3v)-(δ, α, β), then Π is also secure in ω-ψ(2v)- (δ, α, β).
i.e. ω-ψ(3v)-(δ, α, β) → ω-ψ(2v)-(δ, α, β)

ii. given Π is secure in ω-ψ(2v)-(δ, α, β), then Π is also secure in ω-ψ(1v)- (δ, α, β).
i.e. ω-ψ(2v)-(δ, α, β) → ω-ψ(1v)-(δ, α, β)

iii. given Π is secure in ω-ψ(1v)-(δ, α, β), then Π is also secure in ω-ψ(0v)- (δ, α, β).
i.e. ω-ψ(1v)-(δ, α, β) → ω-ψ(0v)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(e)).

Proof. As before, it is clear that ψv = 3 represents a stronger adversary compared to ψv = 2 and
ψv = 2 adversary is stronger than ψv = 1 by our construction and ψv = 1 adversary is stronger
than ψv = 0. Hence, given that a currency scheme Π is secure against a ψv = 3 adversary, then
Π is also secure against ψv = 2. Similarly, Π is also secure in ψv = 1 then in ψv = 0.

Theorem 13. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψm,
ψt and β (with ψt = 1), the resulting notion from increasing the value of ψv while holding others
fixed, the scheme is not necessarily secure in the resulting notion under the following scenarios;

i. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(0v)-(δ, α, β)
and Π0 is not secure in ω-ψ(0v)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(0v)-(δ, α, β) but not secure in ω-ψ(1v)-(δ, α, β).
i.e. ω-ψ(0v)-(δ, α, β) 9 ω-ψ(1v)-(δ, α, β)

39

ii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(1v)-(δ, α, β)
and Π0 is not secure in ω-ψ(1v)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(1v)-(δ, α, β) but not secure in ω-ψ(2v)-(δ, α, β).
i.e. ω-ψ(1v)-(δ, α, β) 9 ω-ψ(2v)-(δ, α, β)

iii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(2v)-(δ, α, β)
and Π0 is not secure in ω-ψ(2v)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(2v)-(δ, α, β) but not secure in ω-ψ(3v)-(δ, α, β).
i.e. ω-ψ(2v)-(δ, α, β) 9 ω-ψ(3v)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, β ∈ {0, 1} and δ ∈ {1, 2}
(Figure 22(e)).

Proof. (Sketch)
The proof follows the same line of argument as the proof in Theorem 4, with the exception that
the special value gives a hint about the transaction value instead of the senders.

Theorem 14. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s,
ψv, ψt and β, when the value of ψm is decreased while holding others fixed, the former notion is
strictly stronger than the resulting notion under the following scenarios;

i. given Π is secure in ω-ψ(3m)-(δ, α, β), then Π is also secure in ω-ψ(2m)- (δ, α, β).
i.e. ω-ψ(3m)-(δ, α, β)→ ω-ψ(2m)-(δ, α, β)

ii. given Π is secure in ω-ψ(2m)-(δ, α, β), then Π is also secure in ω-ψ(1m)- (δ, α, β).
i.e. ω-ψ(2m)-(δ, α, β)→ ω-ψ(1m)-(δ, α, β)

iii. given Π is secure in ω-ψ(1m)-(δ, α, β), then Π is also secure in ω-ψ(0m)- (δ, α, β).
i.e. ω-ψ(1m)-(δ, α, β)→ ω-ψ(0m)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(f)).

Proof. Adhering to the same line of argument, with ψm = 3, the adversary is more powerful than
ψm = 2 adversary, since the adversary has full control over metadata in the former case. Hence
it follows that given a currency scheme which is secure against a ψm = 3 adversary, the scheme
is also secure against a less powerful ψm = 2 adversary. And through the same line of argument,
it follows that (ψm = 2)→ (ψm = 1) and (ψm = 1)→ (ψm = 0).

Theorem 15. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s, ψm,
ψt and β (with ψt = 1), the resulting notion from increasing the value of ψm while holding others
fixed, the scheme is not necessarily secure in the resulting notion under the following scenarios;

i. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(2m)-(δ, α, β)
and Π0 is not secure in ω-ψ(2m)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(2m)-(δ, α, β) but not secure in ω-ψ(3m)-(δ, α, β).
i.e. ω-ψ(2m)-(δ, α, β) 9 ω-ψ(3m)-(δ, α, β)

ii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(1m)-(δ, α, β)
and Π0 is not secure in ω-ψ(1m)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(1m)-(δ, α, β) but not secure in ω-ψ(2m)-(δ, α, β).
i.e. ω-ψ(1m)-(δ, α, β) 9 ω-ψ(2m)-(δ, α, β)

40

iii. given that two currency schemes Π0 and Π1 exist such that Π1 is secure in ω-ψ(0m)-(δ, α, β)
and Π0 is not secure in ω-ψ(1m)-(δ, α, β), then there exists a currency scheme Π which is
secure in ω-ψ(0m)-(δ, α, β) but not secure in ω-ψ(1m)-(δ, α, β).
i.e. ω-ψ(0m)-(δ, α, β) 9 ω-ψ(1m)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(f)).

Proof. (Sketch)
The proof follows the same line of argument as the proof in Theorem 4, with the exception that
the special value gives a hint about the transaction metadata instead of the senders.

Theorem 16. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s,
(ψpk, ψsk)r ψv, ψm and β, when the value of ψt is decreased while holding others fixed, the former
notion is strictly stronger than the resulting notion under the following scenarios;

i. given Π is secure in ω-ψ(5t)-(δ, α, β), then Π is also secure in ω-ψ(4t)- (δ, α, β).
i.e. ω-ψ(5t)-(δ, α, β)→ ω-ψ(4t)-(δ, α, β)

ii. given Π is secure in ω-ψ(4t)-(δ, α, β), then Π is also secure in ω-ψ(3t)- (δ, α, β).
i.e. ω-ψ(4t)-(δ, α, β)→ ω-ψ(3t)-(δ, α, β)

iii. given Π is secure in ω-ψ(3t)-(δ, α, β), then Π is also secure in ω-ψ(2t)- (δ, α, β).
i.e. ω-ψ(3t)-(δ, α, β)→ ω-ψ(2t)-(δ, α, β)

iv. given Π is secure in ω-ψ(2t)-(δ, α, β), then Π is also secure in ω-ψ(1t)- (δ, α, β).
i.e. ω-ψ(2t)-(δ, α, β)→ ω-ψ(1t)-(δ, α, β)

v. given Π is secure in ω-ψ(1t)-(δ, α, β), then Π is also secure in ω-ψ(0t)- (δ, α, β).
i.e. ω-ψ(1t)-(δ, α, β)→ ω-ψ(0t)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 22(b)).

Proof. (Part i) Consider a currency scheme Π which is secure in ω-ψ(5t)-(δ, α, β). With ψt = 5,
the adversary has the highest possible knowledge of the transaction as the adversary creates the
transaction and hence is more powerful than any other adversary having the knowledge of ψt < 5
(while having other parameters fixed). This means that if a currency scheme Π is secure against
a stronger adversary with ψt = 5, then Π is secure against less powerful adversaries; e.g. an
adversary with ψt = 4. i.e. ω-ψ(5t)-(δ, α, β)→ ω-ψ(4t)-(δ, α, β).

(Part ii) Similarly, ω-ψ(4t)-(δ, α, β) → ω-ψ(3t)-(δ, α, β) also holds as being able to choose
the randomness for the transaction (ψt = 4) leaks additional information about the transaction
to the adversary earlier in the game compared to knowing that at the end of the game (ψt = 3),
which models a weaker adversary.

(Part iii) With ψt = 3, the knowledge of the randomness of the transaction (i.e. actual coins
involved) provides more information to the adversary than just the secret part of the transaction
ts (i.e. ψt = 2). Hence, ω-ψ(3t)-(δ, α, β)→ ω-ψ(2t)-(δ, α, β) holds.

(Part iv) With the same argument, ψt = 2 represents a more powerful adversary than ψ1 with
the knowledge of just the public part of the transaction. i.e. ω-ψ(2t)-(δ, α, β)→ ω-ψ(1t)-(δ, α, β).

(Part v) In this case of ψt = 1, the adversary is able to view the transaction whereas when
ψt = 0, the transaction is hidden. Hence, the former case shows a more powerful adversary than
the latter case. Accordingly, ω-ψ(1t)-(δ, α, β)→ ω-ψ(0t)-(δ, α, β).

41

Theorem 17. For a currency scheme Π and for a given combination of ω, δ, α, (ψpk, ψsk)s,
ψv, ψm and β the resulting notion from increasing the value of ψt while holding others fixed, the
scheme is not necessarily secure in the resulting notion under the following scenarios;

i. Given that there exists a currency scheme Π1 which is secure in ω-ψ(0t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(1t)-(δ, α, β). i.e. ω-(ψ(0t)-(δ, α, β) 9 Π1

is secure in ω-(ψ(1t)-(δ, α, β).

ii. Given that there exists a currency scheme Π1 which is secure in ω-ψ(1t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(2t)-(δ, α, β). i.e. ω-(ψ(1t)-(δ, α, β) 9 Π1

is secure in ω-(ψ(2t)-(δ, α, β).

iii. Given that there exists a currency scheme Π1 which is secure in ω-ψ(2t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(3t)-(δ, α, β). i.e. ω-(ψ(2t)-(δ, α, β) 9 Π1

is secure in ω-(ψ(3t)-(δ, α, β).

iv. Given that there exists a currency scheme Π1 which is secure in ω-ψ(3t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(4t)-(δ, α, β). i.e. ω-(ψ(3t)-(δ, α, β) 9 Π1

is secure in ω-(ψ(4t)-(δ, α, β)

v. Given that there exists a currency scheme Π1 which is secure in ω-ψ(4t)- (δ, α, β), it does
not necessarily imply that Π1 is secure in ω-(ψ(5t)-(δ, α, β). i.e. ω-(ψ(4t)-(δ, α, β) 9 Π1

is secure in ω-(ψ(5t)-(δ, α, β)

where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, β ∈ {0, 1}] and δ ∈
{1, 2}(Figure 22(c)).

Proof. (Sketch)
This can be proven in a manner similar to Theorem 4, except that the special value leaks
information about the transaction tp or ts in each scenario instead of sender addresses.

It should be noted that in some cases the separations are not known to hold for all values of
the unspecified parameters. Based on the above theorems, we also define the following corollaries.

Corollary 1. (Absolute Fungibility (ALL-IND-FULL-FULL)) Given that a currency
scheme Π is secure in the strongest anonymity notion (i.e. secure against the strongest pos-
sible adversary), then Π is also secure in any other notion (any other adversary).
i.e. (1s1r1v1m)ω-((4, 4)s, (4, 4)r, 3v, 3m, 5t)ψ-(2δ, 3α, 1β)→ ω-ψ-(δ, α, β)
where ω =∈ {1, 0}4, ψpk, ψsk ∈ {0, 1, 2, 3, 4}, ψv, ψm ∈ {0, 1, 2, 3}, ψt ∈ {0, 1, 2, 3, 4, 5}, β ∈
{0, 1} and δ ∈ {1, 2} (Figure 21).

Proof. (sketch) This follows from the above theorems as illustrated in figures 21 and 22 since
this notion is the strongest among all.

S-IND-KNW-PWR R-IND-KNW-PWR V-IND-KNW-PWR M-IND-KNW-PWR

S-ULK-KNW-PWR R-ULK-KNW-PWR V-ULK-KNW-PWR M-ULK-KNW-PWR

Figure 23: Relations between indistinguishability and unlinkability (Corollary 2).

42

Corollary 2. (IND → ULK) For a currency scheme Π and for a given entity, indistinguisha-
bility with respect to that entity implies unlinkability with all other parameters which are not
linked to the entity are kept fixed. i.e.

i. given Π is secure in S-IND-KNW-PWR for a given adversarial knowledge KNW of re-
cipients, value and metadata and given adversarial power PWR, then Π is also secure in
S-ULK-KNW-PWR.
i.e. S-IND-KNW-PWR → S-ULK-KNW-PWR

ii. given Π is secure in R-IND-KNW-PWR for a given adversarial knowledge KNW of senders,
value and metadata and given adversarial power PWR, then Π is also secure in R-ULK-
KNW-PWR.
i.e. R-IND-KNW-PWR → R-ULK-KNW-PWR

iii. given Π is secure in V-IND-KNW-PWR for a given adversarial knowledge KNW of senders,
recipients and metadata and given adversarial power PWR, then Π is also secure in V-ULK-
KNW-PWR.
i.e. V-IND-KNW-PWR → V-ULK-KNW-PWR

iv. given Π is secure in M-IND-KNW-PWR for a given adversarial knowledge KNW of senders,
recipients and value and given adversarial power PWR, then Π is also secure in M-ULK-
KNW-PWR.
i.e. M-IND-KNW-PWR → M-ULK-KNW-PWR
(Figure 23)

Proof. (sketch) (Part i) From the definitions of S-IND (definition 5.1) and S-ULK (definition 5.2),
the difference between the two notions is that (ψspk , ψssk) = (2, 0) in S-IND and it is (0, 0) in
S-ULK. Then from Theorem 1, it follows that (2, 0)s → (0, 0)s and hence the implication follows.

(Part ii) Similarly, follows from Theorem 1 with respect to recipients.
(Part iii) Follows from Theorem 12.
(Part iv) Follows from Theorem 14.

Conversely, the weakest adversary is represented by the notion NIL-IND-NIL-NIL represented
by the vector (0000)ω-((0, 0)s, (0, 0)r, 0v, 0m, 0t)ψ-(0δ, 0α, 0β) with all entities hidden (defini-
tion 5.16). Note that this notion is trivial in that no adversary can ever win the corresponding
game since the transactions t0 and t1 are, aside from randomness, identical.

6 Discussion

In this work we have developed a comprehensive framework which depicts the generic function-
ality of a cryptocurrency scheme, irrespective of the underlying implementation. We have estab-
lished the soundness of our model while ensuring the functional correctness and security against
a wide range of adversaries. Our main contribution is to propose a unified means of analysing
the true level of anonymity achieved by a cryptocurrency system in a qualitative manner.

The proposed anonymity model is centered around the idea of indistinguishability and it is
elaborated around a group of entities; e.g. senders, recipients, values and metadata. A compre-
hensive adversarial model is defined encompassing different combinations of state initialisation
methods and adversary power, and is capable of modelling anonymity at a much granular level,
resulting in a vast number of different notions per each test case (defined by ω). While some
notions may not carry a meaningful realisation in a real currency scheme, a majority leads to a
multitude of attacker scenarios, which may not have been thought possible otherwise. One may
wonder why we need such granularity in modelling anonymity in the context of cryptocurrencies,

43

yet our analysis outcome shows how a minute change such as varying one value in a single variable
in the Anonymity game, could drastically affect the level of anonymity of a cryptocurrency.

Building upon this model, we have provided formal definitions for a set of anonymity notions
that demonstrate baseline anonymity notions in indistinguishability. Moreover, we also define
unlinkability, a weaker notion of indistinguishability, in order to define an intermediary level of
anonymity notions. However, even without formal definitions, other notions also play a significant
role in performing a rigorous analysis of anonymity aspects of cryptocurrencies.

Taking a step further, we have attempted to understand the relationships and interdepen-
dencies among these myriad notions. Consequently, we have identified several implications,
equivalences and separations which provide useful comparisons in the multi-dimensional adver-
sarial parameter model. While some correlations are trivial, there are others that may depend
on the underlying constructions, all of which demonstrates the sophistication of anonymity in
the context of cryptocurrencies. We have demonstrated how such complexity is evident in real
world cryptocurrency schemes in a separate work, which focuses on specific case studies based
on a subset of the general framework described here.

In our attempt to grasp the anonymity landscape modelled by these notions, we see some
familiar anonymity notions referenced in existing literature present similar interpretations to
some notions in our model. As mentioned at the outset, the most widely referenced notion
with respect to the anonymity of cryptocurrencies is the concept of unlinkability. In the context
of Bitcoin, unlinkability is interpreted as linking addresses to transactions and to real world
user identities [9, 16, 17, 30]. This interpretation closely relates to the sender and recipient
unlinkability notions defined in our model, yet ours present a more detailed approach, where we
can model very minor aspects of unlinkability by varying different parameters in our notions.

In the case of Monero, unlinkability refers to the inability of deducing whether two transac-
tions were intended to the same recipient addresses, which is closely analogous to the recipient
unlinkability notion in our model [11, 29]. On the other hand, the notion of traceability, which
is widely discussed in the context of Monero, closely correlates to the sender unlinkability no-
tion in our work, [11, 29]. However, our notions are defined with respect to several dimensions
addressing a wider scope of adversarial capabilities.

Further, the notion of k -anonymity has been utilised in some studies to visualise the anonymity
landscape in terms of a quantitative measure [29, 10]. Our work here is orthogonal to this in the
sense that ours provide a means of qualitative analysis of anonymity.

In essence, the notions we propose herein are in relation to the entities within a currency
scheme, with a much wider span of attacker scenarios which helps to analyse anonymity in
minute detail. As noted earlier, this stu- dy does not investigate the privacy aspects of the
underlying consensus mechanism or the network of a cryptocurrency scheme. Yet, these layers
may leak information independently from the currency scheme in which case it may affect the
achievable level of anonymity.

Therein, our work shows the very complex nature of the level of anonymity demonstrated
by any currency scheme. It is hence evident that existing claims for anonymity of different
cryptocurrency schemes might only be anonymous in some aspects. i.e. A currency scheme
which is claimed to possess unlinkability, might not demonstrate unlinkability with respect to all
entities. Hence, claims for anonymity cannot be made lightly in the presence of such granularity.

7 Conclusion

In this report, we have presented a common framework that can be used to evaluate the level of
anonymity associated with different cryptocurrency schemes, regardless of the implementation

44

method. We provide a single formal experiment to capture a plethora of distinct security and
privacy properties that we identify, and attempt to draw connections to existing terminology.

Our model defines a rigorous set of anonymity properties based on the fundamental property
of indistinguishability, further particularised to varying security subjects and adversarial models.
Together, these represent a precise and exhaustive recount of true anonymity achieved by a
currency scheme.

Acknowledgements

Xavier Boyen is the recipient of an Australian Research Council Future Fellowship and acknowl-
edges generous support from the grant, number FT140101145.

References

[1] Alsalami, N., Zhang, B.: SoK: A systematic study of anonymity in cryptocurrencies. In:
2019 IEEE Conference on Dependable and Secure Computing (DSC). pp. 1–9 (Nov 2019)

[2] Amarasinghe, N., Boyen, X., McKague, M.: A survey of anonymity of cryptocurrencies.
In: Proceedings of the Australasian Computer Science Week Multiconference. pp. 2:1–2:10.
ACSW 2019, ACM, New York, NY, USA (2019)

[3] Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user pri-
vacy in bitcoin. In: International Conference on Financial Cryptography and Data Security.
pp. 34–51. Springer (2013)

[4] Biryukov, A., Tikhomirov, S.: Deanonymization and linkability of cryptocurrency trans-
actions based on network analysis. In: 2019 IEEE European Symposium on Security and
Privacy (EuroS P). pp. 172–184 (June 2019)

[5] Cachin, C., De Caro, A., Moreno-Sanchez, P., Tackmann, B., Vukolic, M.: The transaction
graph for modeling blockchain semantics. IACR Cryptology ePrint Archive 2017, 1070
(2017)

[6] Conti, M., Kumar, S., Lal, C., Ruj, S.: A survey on security and privacy issues of bitcoin.
IEEE Communications Surveys & Tutorials (2018)

[7] Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingle-
dine, R., Syverson, P. (eds.) Privacy Enhancing Technologies. pp. 54–68. Springer Berlin
Heidelberg, Berlin, Heidelberg (2003)

[8] Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: A cryptographic investiga-
tion of mimblewimble. In: EUROCRYPT (2019)

[9] Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in
zcash. CoRR abs/1805.03180 (2018)

[10] Khalilov, M.C.K., Levi, A.: A survey on anonymity and privacy in bitcoin-like digital cash
systems. IEEE Communications Surveys Tutorials pp. 1–1 (2018)

[11] Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s blockchain.
In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) Computer Security – ESORICS 2017.
pp. 153–173. Springer International Publishing, Cham (2017)

45

[12] Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G.M., Savage,
S.: A fistful of bitcoins: Characterizing payments among men with no names. In: Proceed-
ings of the 2013 Conference on Internet Measurement Conference. pp. 127–140. IMC ’13,
ACM, New York, NY, USA (2013)

[13] Miller, A., Moeser, M., Lee, K., Narayanan, A.: An empirical analysis of linkability in the
monero blockchain. arXiv preprint arXiv:1704.04299 (2017)

[14] Morris, L.: Anonymity Analysis of Cryptocurrencies. Ph.D. thesis, Rochester Institute of
Techology (2015)

[15] Möser, M., Soska, K., Heilman, E., Lee, K., Heffan, H., Srivastava, S., Hogan, K., Hennessey,
J., Miller, A., Narayanan, A., et al.: An empirical analysis of traceability in the monero
blockchain. Proceedings on Privacy Enhancing Technologies 2018(3), 143–163 (2018)

[16] Möser, M., Böhme, R.: Anonymous alone? measuring bitcoin’s second-generation
anonymization techniques. In: 2017 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW). pp. 32–41 (April 2017)

[17] Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin trans-
action graph. Future Internet 5(2), 237–250 (2013), copyright - Copyright MDPI AG 2013;
Last updated - 2014-07-30

[18] Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization:
Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity man-
agement. Http://dud.inf.tu-dresden.de/literatur/Anon Terminology v0.34.pdf (Aug 2010),
v0.34

[19] Poelstra, A.: Mimblewimble (2016)

[20] Quesnelle, J.: An Analysis of Anonymity in the Zcash Cryptocurrency. Master’s thesis,
University of Michigan-Dearborn (2018)

[21] Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Security and
privacy in social networks, pp. 197–223. Springer (2013)

[22] Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi,
A.R. (ed.) Financial Cryptography and Data Security. pp. 6–24. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

[23] Ruffing, T., Moreno-Sanchez, P.: Valueshuffle: Mixing confidential transactions for compre-
hensive transaction privacy in bitcoin. In: Financial Cryptography and Data Security. pp.
133–154. Springer International Publishing, Cham (2017)

[24] Spagnuolo, M., Maggi, F., Zanero, S.: Bitiodine: Extracting intelligence from the bitcoin
network. In: International Conference on Financial Cryptography and Data Security. pp.
457–468. Springer (2014)

[25] Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 10(05), 557–570 (2002)

[26] Tsukada, Y., Mano, K., Sakurada, H., Kawabe, Y.: Anonymity, privacy, onymity, and
identity: A modal logic approach. In: 2009 International Conference on Computational
Science and Engineering. vol. 3, pp. 42–51 (Aug 2009)

46

[27] Van Saberhagen, N.: Cryptonote v 2. 0 (2013), https://cryptonote.org/whitepaper.pdf

[28] Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D.: Monero ring attack: Recreating zero mixin
transaction effect. In: 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE). pp. 1196–1201 (Aug 2018)

[29] Wijaya, D.A., Liu, J., Steinfeld, R., Liu, D., Yuen, T.H.: Anonymity reduction attacks to
monero. In: Guo, F., Huang, X., Yung, M. (eds.) Information Security and Cryptology. pp.
86–100. Springer International Publishing, Cham (2019)

[30] Wijaya, D.A., Liu, J.K., Steinfeld, R., Sun, S.F., Huang, X.: Anonymizing bitcoin transac-
tion. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.) Information Security Practice and
Experience. pp. 271–283. Springer International Publishing, Cham (2016)

47

