
Circuit-PSI with Linear Complexity via
Relaxed Batch OPPRF

Nishanth Chandran, Divya Gupta, and Akash Shah

Microsoft Research, India.
Email: {nichandr, divya.gupta, t-akshah}@microsoft.com.

Abstract. In 2-party Circuit-based Private Set Intersection (Circuit-PSI), P0 and P1 hold sets S0

and S1 respectively and wish to securely compute a function f over the set S0∩S1 (e.g., cardinality,
sum over associated attributes, or threshold intersection). Following a long line of work, Pinkas et
al. (PSTY, Eurocrypt 2019) showed how to construct a concretely efficient Circuit-PSI protocol
with linear communication complexity. However, their protocol requires super-linear computation.
In this work, we construct concretely efficient Circuit-PSI protocols with linear computational and
communication cost. Further, our protocols are more performant than the state-of-the-art, PSTY –
we are ≈ 2.3×more communication efficient and are up to 2.8× faster. We obtain our improvements
through a new primitive called Relaxed Batch Oblivious Programmable Pseudorandom Functions
(RB-OPPRF) that can be seen as a strict generalization of Batch OPPRFs that were used in PSTY.
This primitive could be of independent interest.

1 Introduction

Private Set Intersection. Consider parties P0 and P1 who hold sets S0 and S1 respectively. Private
set intersection (PSI) [50,35] allows the parties to compute the intersection of these 2 sets, S0∩S1, with-
out revealing anything else to each other. This problem has received much attention [11,42,31,45,40,8]
(also see references therein) and practical solutions to this problem are now known. However, in most
applications, typically P0 and P1 would like to compute f(S0 ∩ S1), where f is a symmetric function.
That is, f operates only on S0 ∩ S1 and is oblivious to the order of the elements in S0 ∩ S1. Some
examples of popular and well-studied symmetric functions are set cardinality, set intersection sum [33]
(where every element has an associated attribute and the output is the sum of these attributes for all the
elements in the intersection), and threshold cardinality/set intersection [18,24,53,54,44,20,21,2] (which
computes the intersection size/intersection respectively if the intersection size is larger than a threshold).

Circuit-PSI. To enable the computation of arbitrary symmetric functions securely over the intersection
(including the aforementioned applications), Huang et al. [25] introduced the notion of Circuit-PSI. In a
Circuit-PSI protocol, P0 and P1 receive shares of the set intersection instead of learning the intersection
in the clear. These shares can be used to securely compute any symmetric function using generic 2-party
secure computation protocols [23,4,52]. More specifically, for every element z ∈ (say) S0, P0 and P1

receive random bits a0 and a1 respectively as output where a = a0 ⊕ a1 = 1 if z ∈ S0 ∩ S1 (and is 0
otherwise). Following a sequence of works [42,44,9,16], the work of Pinkas et al. [43] somewhat surpris-
ingly showed how to construct a Circuit-PSI protocol with linear communication complexity in n, the
size of the input sets. Unfortunately, the computational complexity of their protocol is super-linear in n
(specifically, O

(
n(log n)2

)
) and is stated as one of the major bottlenecks for performance in [43].

1.1 Our Contributions

Linear Complexity Circuit-PSI. We construct Circuit-PSI protocols with communication and com-
putational costs linear in n (this asymptotically matches recent work [27]). We demonstrate that our
protocols are concretely better than the state-of-the-art [43] (which in turn outperforms [27]) – as an
example, our protocol is ≈ 2.3× more communication efficient and 2.3 − 2.8× faster (in LAN/WAN

2 Nishanth Chandran, Divya Gupta, and Akash Shah

settings) than [43], when P0’s and P1’s sets comprise of 222 elements. We also extend our protocol to
support computing functions on intersection of input sets with associated payloads.

Main Technical Contributions. As a core technical contribution, we introduce the notion of Relaxed-
Batch Oblivious Programmable Pseudorandom Functions (RB-OPPRF), which can be seen as a strict
generalization of Batch Oblivious Programmable Pseudorandom Functions (B-OPPRF), used in [43].
The linear communication construction of B-OPPRFs in [43] required expensive polynomial interpola-
tion of large degree polynomials, and hence was the source of the main computational (super-linear)
inefficiency. In contrast, we show how to construct RB-OPPRF using cheap (and linear time) operations
such as Cuckoo hashing. Secondly, we also construct new and more efficient protocols for the task of
Private Set Membership (PSM) [17], and by coupling this with our RB-OPPRF construction, we obtain
concretely efficient Circuit-PSI protocols with linear communication and computation. In PSM, one
party has a list B and the other party has a single element a and they wish to test if a ∈ B.

Applications of Circuit-PSI. As discussed earlier, in many applications, P0 and P1 need to com-
pute a function f over the intersection of their input sets and circuit-PSI protocols can be used to
securely realize such applications. We now discuss two such applications:

PSI-CAT/Threshold PSI. [18,24,53,54,44,43,20,21,2]. In the problem of PSI-CAT (resp. Threshold-
PSI), the intersection set size (resp. intersection set) is revealed only if the size of the intersection is
larger than a certain threshold. These problems have applications to privacy-preserving ridesharing
[24].

PSI-Sum. [33,44,43]. In this, P0 has an input set with payloads and P1 only has an input set. The
parties must compute the sum of the payloads for all the elements in the intersection set. This
problem has applications to revenue computation in ad conversion rates [33].

The work of [43] is the state-of-the-art protocol to realize the above applications; our new circuit-PSI
protocols improve over [43] for these applications as well. As observed in [44,43], the cost to compute
these functions over the output of the circuit-PSI protocol is tiny compared to computing the circuit-PSI
output itself. Hence, we expect our 2.8× improvement over [43] to translate to at least a 2× improvement
in the performance of securely realizing these functions.

Other Related Works. Recently, Karakoç and Küpçü [27], using very different techniques, also provide
a Circuit-PSI protocol with linear communication and computational cost. However, their protocol has
worse concrete efficiency (≈ 4× communication) than even [43] and is 5–12× slower than [43] in the
LAN setting. Hence, our circuit-PSI protocols are 9× more communication efficient and upto 33× faster
than [27].

In a concurrent and independent work, Rindal and Schoppmann [48] build a Circuit-PSI protocol
using techniques from the PaXoS data structure [41]. The communication complexity of their protocol
is 2.5× and 1.2× higher than our Circuit-PSI protocols when using IKNP-style OT Extension protocols
[26,30] and Silent-OT Extension protocols [5,51] respectively.

1.2 Technical Overview

Before describing our construction, we discuss the protocol blueprint from [43].

The Protocol From [43]. First, P0 uses Cuckoo hashing (with d hash functions, {hi}di=1) to hash
the elements from set S0 into a hash table HT0 with β bins (where β is linear in n). Cuckoo hashing
guarantees that every bin contains only a single element and that each element x is present in a location
hi(x) for some i ∈ [d] or in a separate set known as the stash. It will be instructive to first consider the
stashless setting ([43] provide a technique to handle the stash separately). Next, P1 employs standard
hashing using all the hash functions {hi}di=1 to hash the set S1 into a hash table HT1 with the same
number of bins. That is, each element y ∈ S1 will appear in d bins in HT1, namely, {hi(y)}i∈[d]. Note

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 3

that every bin can have many elements and it can be shown that for universal hash functions, each bin
of HT1 will have at most O(log n) elements, with all but negligible probability. In the stashless setting,
observe that if some element z ∈ S0 ∩ S1 then if HT0[j] = z for some j, then z ∈ HT1[j] as well. Hence
the circuit-PSI problem is reduced to β instances of the private set membership problem each with a
set of size at most O(log n) - i.e., for each bin, we need to compare a single element in HT0’s bin to the
corresponding elements in HT1’s bin. Since comparing each of the O(log n) elements in HT1’s bin with
an element in HT0’s bin, for a linear number of bins would result in super-linear communication cost, [43]
introduced a primitive known as Batch Oblivious Programmable Pseudorandom Functions (B-OPPRF)
that reduces the number of comparisons per bin from O(log n) to 1 with only linear in n communication.

B-OPPRF. Informally, an Oblivious PRF is a 2-party functionality that provides the sender with a
key to a PRF, and the receiver with the outputs of the PRF on points of his choice. The Oblivious
Programmable Pseudorandom Function (OPPRF) functionality additionally provides a “hint” hint to
both the sender and the receiver that allows the sender to “program” the PRF to output specific values
on certain (private) input points. When invoking β independent instances of OPPRF, where the number
of programmed points in each instance could vary, but the total programmed points, N = dn, across
all instances is fixed, [43], showed how to provide a single hint whose size is linear in N (and hence
n) and further hides the number of programmed points in every instance. Such a primitive is known
as a B-OPPRF. [43] then showed that P1 can play the role of the sender in an instance of B-OPPRF
protocol comprising of β independent instances of OPPRF with HT1[j] as the programmed points and by
setting all the programmed outputs to a single random value tj in the jth OPPRF instance. Now, P0 will
obliviously evaluate the jth OPPRF with HT0[j]. With this, P0 and P1 will each hold a single value that
is equal if HT0[j] ∈ HT1[j] and unequal otherwise. They can then employ a standard equality protocol
to compare these 2 elements. In summary, using B-OPPRF, they reduce the number of comparisons
per bin from O (log n) to 1, at the cost of linear communication; however, this unfortunately results
in super-linear computation. This is because the creation of hint in the B-OPPRF construction of [43]
requires polynomial interpolation that results in super-linear computational complexity.

Relaxed B-OPPRF and our Circuit-PSI Protocol. In this work, we introduce the notion of Relaxed
B-OPPRF (or RB-OPPRF) that is a strict generalization of B-OPPRF; we then show how to efficiently
construct RB-OPPRFs and then use them to realize a circuit-PSI protocol. The RB-OPPRF primitive
reduces the number of comparisons per bin from O(log n) to 3 while incurring only linear computation
cost. In a d-RB-OPPRF instance, the functionality provides a set of “d” PRF outputs to the receiver on
every input point. For programmed points, this set is guaranteed to include the programmed output.
When the output set size is 1, this primitive is exactly the B-OPPRF primitive. Surprisingly, such a sim-
ple generalization makes constructing it much more efficient. In particular, we show how to construct an
RB-OPPRF with output set size 3 that has linear computation and communication (in n) using Cuckoo
hashing (with 3 hash functions), thereby avoiding the computationally expensive polynomial interpo-
lation required in [43]. Applying a RB-OPPRF to the blueprint of [43] gives us the following guarantee
for every bin: P0 will hold a set B = {b1, b2, b3} and P1 will hold a single value a such that a ∈ B if
HT0[j] ∈ HT1[j] and different otherwise. Now, computing whether this is the case or not is a simple
instance of a private set membership [17] with a set size of only 3. While many protocols for this task
exist [25,12,45,9,10], we construct 2 new protocols, PSM1 and PSM2 that have 4.2× and 6.4× lower com-
munication than prior works (see Table 1, Section 4.3). Protocol PSM1, uses techniques from tree-based
comparison protocols [19,13,47] and has better computation but worse communication than PSM2 that
uses the table-based OPPRF construction [32] on small sets.

Circuit-PSI With Stash. As mentioned earlier, the above discussion assumed that no stash is created
during the cuckoo hashing phase. The work of [43] showed a novel dual-execution technique to compare
stash elements of P0 with elements of P1 with linear cost. We show that the idea of dual-execution
can be used with our stashless protocol as well in order to obtain an overall linear computation and
communication protocol even with stash. Crucial to achieving this is the observation that when the
construction in [43] is used with P0 and P1 having different sized-sets (say n0 and n1 with n1 < n0),
then the computational cost of the protocol is super-linear in n1 but linear in n0.

4 Nishanth Chandran, Divya Gupta, and Akash Shah

1.3 Organization

We begin in Section 2 by formally defining the security model and describing the building blocks (such
as cuckoo hashing, secret sharing schemes, and oblivious transfer) used by our protocol. In Section 3
we define our new primitive Relaxed Batch Programmable Pseudorandom Functions along with the
corresponding oblivious 2-party functionality and efficient constructions for the same. Section 4 is devoted
to our two new protocols for private set membership. We describe our circuit-PSI protocol in Section 5.
In Section 6, we experimentally validate our circuit-PSI protocols and show that it outperforms prior
works in both LAN and WAN settings.

2 Preliminaries

Notation. The computational security parameter and statistical correctness parameter are denoted by

λ and σ respectively. The function neg(γ) denotes a negligible function in γ. For a finite set X, x
$←− X

means that x is uniformly sampled from X, |X| denotes the cardinality of set X and X(i) denotes the
ith element of set X. We use the notion of sets and lists interchangeably in this paper. x ← y denotes
that variable x is assigned the value of variable y and operator ‖ denotes concatenation. For a positive
integer `, [`] denotes the set of integers {1, . . . , `}. Let 1{b} denote the indicator function that is 1 when
b is true and 0 when b is false.

2.1 Problem Setting and Security Model

Problem Setting. Consider two parties P0 and P1 with private sets S0 and S1, respectively, each of size
n and each element in the input sets are of bit-length µ. As is standard in secure multiparty computation
(MPC), P0 and P1 agree on a function f to be computed on the intersection, i.e., the parties wish to
compute f(S0∩S1). For this, the two parties agree on a circuit C that computes f . Prior works consider
two settings [44,43]. While in the first setting, f (or, C) takes only the elements as input, in the second
setting, both elements and their associated payloads are considered.

Security Model. Following prior works on Circuit-PSI [25,42,44,16,43,27], we provide security against
static probabilistic polynomial time (PPT) semi-honest adversaries in the real/ideal simulation paradigm
[23,34]. A static semi-honest (or, honest-but-curious) adversary A corrupts either P0 or P1 at the begin-
ning of the protocol and tries to learn as much as possible from the protocol execution while following
the protocol specifications honestly.

Security is modeled using real and ideal interactions. In the real interaction, the parties execute the
protocol Π in the presence of A and the environment Z. Let REALΠ,A,Z denote the binary distribution
ensemble describing Z’s output in the real interaction. In the ideal execution, the parties send their
inputs to a trusted functionality F that performs the computation faithfully. Let S (the simulator)
denote the adversary in this idealized execution and IDEALF,S,Z denote the binary distribution ensemble
describing Z’s output in this interaction. A protocol Π is said to securely realize a functionality F if
for every adversary A in the real interaction, there exists an adversary S in the ideal interaction, such
that no environment Z can tell apart the real and ideal interactions, except with negligible probability.
That is, REALΠ,A,Z ≈c IDEALF,S,Z , where ≈c denotes computational indistinguishability. The universal
composability (UC) framework [7] allows one to guarantee the security of arbitrary composition of
different protocols. Hence, we can prove security of individual sub-protocols and the security of the full
protocol follows from the composition.

2.2 Building Blocks

Simple Hashing. Consider a hash table HT consisting of α bins. Simple hashing uses a hash function
h : {0, 1}∗ 7→ [α] sampled from a universal hash function family H to map elements to bins in HT. An
element e is inserted to HT by simply appending it to the bin h(e). Evidently, a hash table built using

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 5

simple hashing can have more than one element per bin. A variant of simple hashing utilizes d many
universal hash functions, say, h1, . . . , hd : {0, 1}∗ 7→ [α] and an element e is inserted into all the bins
h1(e), . . . , hd(e).

Cuckoo Hashing. Cuckoo hashing [39] uses d > 1 universal hash functions h1, . . . , hd : {0, 1}∗ 7→ [α]
to map nh elements to α bins in hash table HT, where α = O(nh). To insert an element e into HT
do the following: (1) If one of HT[h1(e)], . . . ,HT[hd(e)] bins is empty, insert e in the lexicographically
first empty bin. (2) Else, sample i ∈ [d] uniformly at random, evict the element present in HT[hi(e)],
place e in bin HT[hi(e)], and recursively try to insert the evicted element. If a threshold number of
evictions are reached, the final evicted element is placed in a special bin called the stash that can hold
multiple elements. Hence, after cuckoo hashing, an element e can be found in one of the following bins:
h1(x), . . . , hd(x) or the stash. Observe that in cuckoo hashing each bin except the stash is restricted to
accommodate at most one element.

For a stash of size s, insertion of s + 1 elements into stash leads to stash overflow, and this event
is termed as a hashing failure. The probability (over the sampling of hash functions) that a stash of
size s overflows is known as the failure probability. In [29], it was shown that Cuckoo hashing of nh
elements into (1 + ε)nh bins with ε ∈ (0, 1) for any d > 2(1 + ε)ln(1

ε) and s > 0 has failure probability

O(n
1−c(s+1)
h), for constant c > 0 as nh 7→ ∞. In the application of cuckoo hashing to the problem

of PSI and Circuit-PSI [42,31,45,32,44,43], large stash is quite detrimental to performance, and hence,
it preferable to use hashing parameters that lead to a very small stash or no stash at all. Concrete
parameter analysis of Cuckoo hashing that balances security and efficiency in the context of PSI was
performed in [45] by empirically determining the failure probability given the stash size s, the number
of hash functions d, and the number of bins α. Through the analysis, they determined that for achieving
a concrete failure probability of less than 2−40 for stash size s = 0, α= 1.27nh, 1.09nh and 1.05nh bins
are required for d = 3, 4 and 5 respectively. In our experiments, similar to [45,43], we use this result to
set our hashing parameters for no stash setting, which achieves statistical correctness of 2−40.

Oblivious Transfer. We consider 1-out-M Oblivious Transfer (OT) functionality [46,6]
(
M
1

)
-OT` that

takes as input M messages from sender m1, . . . ,mM ∈ {0, 1}` and index i ∈ [M] from the receiver. The
functionality outputs mi to the receiver, while the sender receives no output. We use the OT extension
protocols proposed in [30,26]. These protocols allow to extend λ ‘base’ OTs to large (polynomial in
λ) number of OTs using symmetric key primitives only. The protocols

(
M
1

)
-OT` [30] and

(
2
1

)
-OT` [26]

execute in two rounds and have total communication of 2λ+M` and λ+ 2` bits respectively.

Secret Sharing Schemes. We use 2-out-of-2 additive secret sharing scheme [49] over field Z2 and use
〈x〉0 and 〈x〉1 to denote shares of an element x ∈ Z2. Shares are generated by sampling random elements
〈x〉0 and 〈x〉1 from Z2 with the constraint that 〈x〉0 ⊕ 〈x〉1 = x. To reconstruct a value x using shares
x0 and x1, compute x← x0 ⊕ x1. We refer shares over Z2 as boolean shares.

AND Functionality. The AND Functionality FAND takes as input shares of bits b0 and b1 from the
two parties and outputs shares of b0 AND b1 to both parties. FAND can be realized using bit-triples [3],
which are of the form (〈p〉s, 〈q〉s, 〈r〉s), where s ∈ {0, 1} and p ∧ q = r. We use the protocol in [47] for
triple generation which has an amortized communication cost of 144 bits/triple.

3 Relaxed Batch OPPRF

Batch PPRF and OPPRF. Informally, a pseudorandom function (PRF) [22], sampled with a key k
from a function family, is computationally indistinguishable from a uniformly random function, to any
adversary that only has oracle access to the function. A programmable PRF (PPRF in short), introduced
by [32] is similar to a PRF, except that the function instead outputs “programmed” values on a set of
“programmed” input points. A “hint”, also given to the adversary, enables encoding such programmed

6 Nishanth Chandran, Divya Gupta, and Akash Shah

inputs and outputs. Although the size of the hint grows with the number of programmed points, it leaks
no other information about programmed inputs or outputs. When β independent instances of a PPRF are
used, the β different hints can be combined into a single hint that only grows with the total number of
programmed points but leaks no information about the number of programmed points in every instance.
This notion was introduced and formalized as Batch PPRF (B-PPRF) by Pinkas et al. [43].

Parameters. A PRF F : {0, 1}λ × {0, 1}` → {0, 1}`.
Sender’s Inputs. No input.

Receiver’s Inputs. Query q ∈ {0, 1}`.
The functionality works as follows:

1. Sample k
$←− {0, 1}λ.

2. Output k to sender and F (k, q) to receiver.

Fig. 1. OPRF Functionality FOPRF

The 2-party Oblivious PRF (OPRF) functionality was defined by [17] and provides a PRF key to the
sender and gives the receiver the evaluation of the PRF on a point chosen by the receiver (see Fig. 1).
Such a functionality can also be defined with the notions of PPRF (respectively B-PPRF), where the
sender specifies the programmed inputs/outputs, and the receiver specifies the evaluation points. The
functionality gives the sender the key k and hint, while the receiver obtains the hint as well as the output
of the PPRF (respectively B-PPRF) on its evaluation points. The corresponding functionalities are then
known as Oblivious PPRF (OPPRF) and Batch Oblivious PPRF (B-OPPRF) respectively.

Constructions in [43]. While the size of the hint in the B-PPRF (and hence B-OPPRF) scheme of [43] is
linear in the total number of programmed points, the computational complexity of generating it is super-
linear. This is because generation of the hint requires interpolating an m-degree polynomial (where m is
a parameter linear in the number of programmed points), which can be done in O(m2) using Lagrange
interpolation or O(m log2m) using FFT. For its application to circuit-PSI problem, [43] proposed an
optimization that brings down the cost to ω(mlogm) using Lagrange interpolation or ω(m(loglogm)2)
using FFT. Even with this optimization, it was noted in [43] that the computational complexity of this
polynomial interpolation step is a major bottleneck. We recall the polynomial based B-PPRF construction
of [43] in Fig. 9 of Appendix A.

New Relaxed Notions. With the computational cost in mind, we generalize the notions of B-PPRF
and B-OPPRF in the following way. While the B-PPRF primitive outputs a single pseudorandom value
on every input point, we allow the primitive to output a set of d pseudorandom values, with the only
constraint that for a programmed input, the programmed output is one out of these d elements. We call
this notion Relaxed Batch Programmable PRF (RB-PPRF in short) and also define the corresponding
2-party Relaxed Batch Oblivious Programmable PRF (RB-OPPRF). We present the definitions of these
notions in Section 3.1 and show how to construct them in Section 3.2 for d = 3. Our constructions are
concretely efficient and have hint size linear in total number of programmed points as in [43] and unlike
[43] only requires linear compute. Further, in Section 5 we show how to make use of this relaxed variant
to construct an efficient Circuit-PSI protocol that outperforms the state-of-the-art [43] (see Section 6).

3.1 Defining RB-OPPRF

We first present the definition of Relaxed Batch Programmable PRF (RB-PPRF). As discussed earlier,
this is a generalization of B-PPRF such that the programmed PRF outputs d pseudorandom values
(instead of 1). On programmed inputs, one of these outputs is guaranteed to be the programmed output.
We present our definition in such a way that setting d = 1, we obtain the same definition of B-PPRF
presented in [43]. Let T be a distribution of multi-sets whose each element is uniformly random but
where the elements can be correlated. Let F ′ be a PRF with keys of length λ and mapping ` bits to d`
bits, i.e., F ′ : {0, 1}λ × {0, 1}` → {0, 1}d`.

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 7

Parameters. An (`, β, d)-RB-PPRF F̂ = (Hint, F).
Sender’s Inputs. Input sets X1, . . . , Xβ and target sets T1, . . . , Tβ , where |Xj | = |Tj | for every j ∈ [β]
and Xj(i) ∈ {0, 1}` and Tj(i) ∈ {0, 1}` for every j ∈ [β] and i ∈ [|Xj |]. Let the total number of elements
across the input sets be N =

∑β
j=1 |Xj |. The target sets are sampled independently from T .

Receiver’s Inputs. The queries x1, . . . , xβ ∈ {0, 1}`.
The functionality does the following:
1. Sample random and independent PRF keys for F ′, K = k1, . . . , kβ .
2. Invoke hint← Hint(K,X, T).
3. Output keys K to sender.
4. Output hint and for all j ∈ [β], F (kj , hint, xj) to receiver.

Fig. 2. Relaxed Batch OPPRF Functionality (`, β, d)-FRB-OPPRF

Definition 1 (Relaxed Batch Programmable PRF). An (`, β, d) Relaxed Batch Programmable
PRF (or (`, β, d)-RB-PPRF) is a pair of algorithms F̂ = (Hint, F) described below:

Hint(K,X, T) → hint: Given a set of uniformly random and independent PRF keys for F ′, K =
k1, . . . , kβ ∈ {0, 1}λ, the disjoint input sets X = X1, . . . , Xβ and target multi-sets T = T1, . . . , Tβ
such that for all j ∈ [β], |Tj | = |Xj | and for all i ∈ [|Xj |], Xj(i) ∈ {0, 1}` and Tj(i) ∈ {0, 1}`.
Moreover, all sets Tj are sampled independently from T . Output the hint hint ∈ {0, 1}c·`·N where

N =
∑β
j=1 |Xj | and c > 1 is a constant.

F (k, hint, x) → W : Given a key k ∈ {0, 1}λ and a hint hint ∈ {0, 1}c·`·N and an input query x ∈
{0, 1}`, outputs a list W of d elements of length `, i.e., for all i ∈ [d], W [i] ∈ {0, 1}` .

A scheme is a (`, β, d)-RB-PPRF if it satisfies:

Correctness. For every K = k1, . . . , kβ, T = T1, . . . , Tβ, X = X1, . . . , Xβ and hint← Hint(K,X, T),
we have for every j ∈ [β] and i ∈ [|Xj |], Tj(i) ∈ F (kj , hint, Xj(i)).

Security. We say that an interactive machine M is a RB-PPRF oracle over F̂ if, when interacting
with a “caller” A, it works as follows:

1. A gives disjoint sets X = X1, . . . , Xβ to M .

2. M samples uniform PRF keys K = k1, . . . , kβ and target multi-sets T = T1, . . . , Tβ from T . M
sends hint ← Hint(K,X, T) to A.

3. M receives β queries x1, . . . , xβ from A and responds with W1, . . . ,Wβ; Wj = F (kj , hint, xj).

4. M halts.

The scheme F̂ is said to be secure if for every disjoint sets X1, . . . , Xβ (where N =
∑β
j=1 |Xj |)

input by a PPT machine A, the output of M is computationally indistinguishable from the output of
S(1λ, N), such that S outputs a uniformly random hint ∈ {0, 1}c·`·N and set of β lists each comprising
of d uniformly random values from {0, 1}`.

Remark. Above definition of (`, β, d)-RB-PPRF sets the input length to be the same as the output
length, i.e., `. The definition easily generalizes to (`, β, d)-RB-PPRF with input length `′, different from
the output length, `.

Relaxed Batch Oblivious Programmable PRF (RB-OPPRF). This 2-party functionality takes as

input the set of programmed input sets {Xj}βj=1 and target sets {Tj}βj=1 from the sender. It takes as
input a set of queries x1, · · · , xβ from the receiver. It samples the set of β keys and hint for an (`, β, d)-
RB-PPRF scheme and provides the sender with the keys and the hint. It gives the hint and the output
of the RB-PPRF for all points xj , j ∈ [β] to the receiver. We define the functionality for RB-OPPRF
formally in Fig. 2.

8 Nishanth Chandran, Divya Gupta, and Akash Shah

Parameters. Let F ′ : {0, 1}λ × {0, 1}` → {0, 1}3` be a PRF, let h1, h2 and h3: {0, 1}` 7→ [γ] be three
universal hash functions, where γ = (1 + ε)N and ε ∈ (0, 1).

Hint(K,X, T): Given β keys for F ′, K = k1, . . . , kβ ∈ {0, 1}λ, disjoint input sets X = X1, . . . , Xβ (with
total elements N) and target multi-sets T = T1, . . . , Tβ , prepare a garbled hash table GT with γ bins as
described below.
1. Do cuckoo hashing using h1, h2 and h3 to store all the elements in input sets X1, . . . , Xβ in a hash

table HT with γ bins.
2. Let E be a mapping that maps elements to the index of the hash function that was eventually used to

insert that element into HT, i.e. E(Xj(i)) = idx such that HT[hidx(Xj(i))] = Xj(i).
3. for j ∈ [β] do
4. for i ∈ [|Xj |] do
5. Compute f1‖f2‖f3 ← F ′(kj , Xj(i)), where fb ∈ {0, 1}` for all b ∈ [3].
6. For idx← E(Xj(i)) and pos← hidx(Xj(i)), set GT[pos]← fidx ⊕ Tj(i).
7. end

8. end

9. For every empty bin i in GT, pick ri
$←− {0, 1}` and set GT[i]← ri.

10. Return GT as hint.

F (k, hint, x): Given k ∈ {0, 1}λ, hint ∈ {0, 1}γ·` and input query x ∈ {0, 1}`, compute list W as follows:

1. Interpret hint as a garbled hash table GT.
2. Compute posb ← hb(x) for all b ∈ [3].

3. Compute f1‖f2‖f3 ← F ′(k, x), where fb ∈ {0, 1}` for all b ∈ [3].
4. Return list W = [fb ⊕ GT[posb]]b∈[3].

Fig. 3. Construction of (`, β, 3)− RB-PPRF

3.2 RB-PPRF Construction

In this section, we present our construction of an (`, β, 3) − RB-PPRF that has linear computational
complexity (in N , the total number of programmed points). Our construction makes use of cuckoo
hashing, instantiated with 3 hash functions, to hash elements from β input sets (with a total of N
elements) into γ = (1 + ε)N bins, where ε ∈ (0, 1). The construction assumes the stashless setting in
cuckoo hashing. If indeed a stash is created, it is handled by the circuit-PSI protocol that uses RB-PPRF
(see Section 5.2).

The construction is formally described in Fig. 3. Let F ′ : {0, 1}λ × {0, 1}` → {0, 1}3` be a PRF.
At a very high level, we construct an RB-PPRF as follows. First, using cuckoo hashing with 3 hash
functions (h1, h2, h3), we hash the N elements from the β sets into γ bins of a hash table. Now, we
know that every element Xj(i) is present in one of 3 locations h1(Xj(i)), h2(Xj(i)), or h3(Xj(i)) of
the hash table. For every element that was hashed, we identify which of the 3 hash functions was used
to insert that element - i.e., the index idx such that Xj(i) was stored at location hidx(Xj(i)). Now, a
garbled hash table GT with γ bins is created as follows. For every programmed input Xj(i), we compute
f1‖f2‖f3 ← F ′(kj , Xj(i)), where each fb is of length ` bits and store Tj(i)⊕ fidx at position hidx(Xj(i))
in GT (see steps 5 & 6). We fill empty bins of GT with random values. This GT now serves as the hint to
evaluate the RB-PPRF. Evaluation of the RB-PPRF on an element x works by computing posb = hb(x)
for all b ∈ [3], f1||f2||f3 ← F ′(k, x) and outputting the 3 elements fb⊕GT[posb] for b ∈ [3]. It is now quite
easy to see that on programmed inputs, one of these values would indeed be the programmed output.
The formal construction is described in Fig. 3 and we prove its correctness and security in Theorem 1.

Remark. It is easy to see that our (`, β, 3)-RB-PPRF can be extended to different values of d by varying
the number of hash functions in the cuckoo hashing.

Theorem 1. The construction described in Fig. 3 is a secure construction of an (`, β, 3)-RB-PPRF.

Proof. Correctness. For correctness, we need to show that for programmed points, we get values from
the target set as output. That is, for every j ∈ [β] and i ∈ [|Xj |], Tj(i) ∈W = F (kj , hint, Xj(i)). In partic-
ular, we show the following: Let idx← E(Xj(i)), that is, Xj(i) is inserted into Cuckoo hash table HT using

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 9

hidx. Then, W [idx] = Tj(i). Let f1‖f2‖f3 ← F ′(kj , Xj(i)) and posidx = hidx(Xj(i)). From the construc-
tion, it holds that GT[posidx] = fidx⊕Tj(i). Hence, W [idx] = fidx⊕GT[posidx] = fidx⊕fidx⊕Tj(i) = Tj(i).

Security. Let M be (`, β, 3) − RB-PPRF oracle described in Definition 1 for F̂ , where F̂ is as defined
in the construction of Fig. 3 and let S be the simulator described in Definition 1. We show that if
there exists a PPT distinguisher D that breaks security of F̂ in Fig. 3 with noticeable probability then
there exists a PPT adversary BO that breaks PRF security of F ′ with noticeable probability. More
concretely, adversary BO successfully distinguishes between oracle access to β pseudorandom functions
{F ′(kj , ·)}j∈[β] and β random functions {Rj}j∈[β]. With this, proof follows by contradiction using PRF
security against PPT adversaries.

Reduction. BO receives input sets X = X1, . . . , Xβ from A and sets N =
∑β
j=1 |Xj |. BO then samples

T = T1, . . . , Tβ from T . Let h1, h2, and h3: {0, 1}` 7→ [γ] be three universal hash functions, where
γ = (1 + ε)N and ε ∈ (0, 1). BO prepares a garbled hash table GT with γ bins as described below. (1)
BO, using cuckoo hashing with h1, h2, and h3 stores all the elements in the input sets X1, . . . , Xβ into a
hash table HT with γ bins. Let E be the mapping with E(Xj(i)) = idx such that HT[hidx(Xj(i))] = Xj(i).
(2) For all j ∈ [β] and i ∈ [|Xj |], BO does the following: (a) Query O on input (j,Xj(i)) - i.e., for the
output of the jth function on input Xj(i) and parse the oracle response as f1‖f2‖f3, where fb ∈ {0, 1}` for
all b ∈ [3]. (b) For idx← E(Xj(i)) and pos← hidx(Xj(i)), set GT[pos]← fidx⊕Tj(i). (3) For every empty

bin i in GT, BO picks ri
$←− {0, 1}` and sets GT[i] ← ri. BO sends GT as hint to the adversary A. BO

receives β queries x = x1, . . . , xβ from A. For all j ∈ [β], BO responds with Wj = [fb ⊕ GT[hb(xj)]]b∈[3],
where f1‖f2‖f3 ← O(j, xj). Finally, BO outputs D’s output.

First, when O is {F ′(kj , ·)}j∈[β], then it is easy to see that BO behaves identically to M in security
game of (`, β, 3)-RB-PPRF.

For the other case, we argue that if O is R1, · · · , Rβ , then BO is identical to S. First, GT is uniformly
random. This is because each element of GT is either chosen uniformly at random (from Step (3)
above) or it is some Tj(i) masked by the output of O on a unique query point (j,Xj(i)) (from Step
(2.b) above). Second, from the above it is clear that GT does not leak any information about any of
the target sets Tj for all j ∈ [β]. Now, consider the query responses provided by BO. For the query
xj , there are two cases depending on whether xj ∈ Xj or not. In the former case, xj = Xj(i) for
some i ∈ |Xj |. Let E(Xj(i)) = idx, that is, Xj(i) is inserted into Cuckoo hash table HT using hidx,
and let f1‖f2‖f3 ← Rj(Xj(i)) and posidx = hidx(Xj(i)). From the construction of BO, it holds that
GT[posidx] = fidx ⊕ Tj(i). Hence, W [idx] = fidx ⊕ GT[posidx] = fidx ⊕ fidx ⊕ Tj(i) = Tj(i). It holds that
W [idx] is uniformly random because (a) GT leaks no information about target sets, (b) Tj are sampled
uniformly from T (c) Each Tj(i) is uniformly random, and (d) there is a single query per j ∈ [β]. Also,
W [b] = fb ⊕ GT[posb], posb = hb(xj) for b 6= idx is uniformly random because given the view of the
adversary so far, fb is uniformly random. Hence, in the case where xj ∈ Xj , BO’s response is identical
to S. For the case when xj /∈ Xj , Wj is a set of values that have been masked by a response from O on
a fresh input xj and hence is uniformly random.

Hence, probability that BO succeeds in distinguishing a set of PRFs from random functions is identical
to that of D succeeding in security game of RB-PPRF.

Correctness Property for Non-programmed Points. When using the RB-PPRF construction in
a circuit-PSI protocol, similar to [43], in order for the probability of false positives to be negligible in
σ, we require the RB-PPRF construction to satisfy the following property. For every K = k1, . . . , kβ ,
T = T1, . . . , Tβ , X = X1, . . . , Xβ and hint ← Hint(K,X, T) in Definition 1, we require that for every
j ∈ [β] and x /∈ Xj , Pr[F (kj , hint, x)∩Tj 6= ∅] be negligible in σ. To see that this property holds, observe
that for all j ∈ [β] and x /∈ Xj , the entries in W = F (kj , hint, x) in our (`, β, 3)-RB-PPRF given in Fig. 3
comprise of a value from hint that is masked with PRF output on a completely fresh point which is never
considered during the construction of hint. From PRF security it follows that these entries are pseudo-
random and independent of values in Tj ; hence, by a union bound, Pr[Wj∩Tj 6= ∅] < 3 ·2−` = 2−(`−log 3).
It is easy to see that a similar property also holds for our (`, β, 3)-RB-OPPRF construction described
below when instantiated with RB-PPRF construction from Fig. 3.

10 Nishanth Chandran, Divya Gupta, and Akash Shah

3.3 RB-OPPRF Construction

We provide an (`, β, 3)-RB-OPPRF construction in Fig. 4 that uses the (`, β, 3)-RB-PPRF described above.

Theorem 2. Given construction in Fig. 3 is a secure (`, β, 3)-RB-PPRF scheme, the construction in Fig. 4
securely realizes (`, β, 3)-FRB-OPPRF (Fig. 2) in the FOPRF-hybrid model. Moreover, the scheme has linear
communication and linear computational complexity in N .

Proof. Correctness. The correctness of the construction follows easily from the correctness of FOPRF

functionality and (`, β, 3)-RB-PPRF construction.

Security. To simulate the view of the sender, sample random PRF keys K = k1, . . . , kβ ∈ {0, 1}λ and
send it to sender. To simulate the view of the receiver, let S1 be the simulator for RB-PPRF. Let inputs
of receiver be x1, . . . , xβ . Invoke S1(1λ, N) to learn hint and {Wj}j∈[β] where Wj ∈ {0, 1}3`. Next, parse
hint as garbled hash table GT of size γ. Compute posb ← hb(xj) for all b ∈ [3]. For all j ∈ [β], b ∈ [3], set
zj,b = Wj,b ⊕ GT[posb]. Set zj = zj,1||zj,2||zj,3. Send {zj}j∈[β] and hint to the receiver. It is easy to see
that the security follows from security of RB-PPRF as proved in Theorem 1.

Linear Complexity. First, note that parties make β calls to FOPRF and β 6 N . To argue overall linear
complexity for the sender, it suffices to argue linear complexity for hint computation and communication.
We note that computing the hint using cuckoo hashing and garbled hash table has linear computation
in N for the sender. Also, the size of the hint is γ · ` = (1 + ε)N` for a constant ε ∈ (0, 1). Finally, given
linear size of hint, it is easy to see that receiver’s compute is linear in N .

Parameters. Functionality FOPRF, (`, β, 3)-RB-PPRF scheme F̂ = (Hint, F) described in Fig. 3 that uses
hash functions h1, h2 and h3. Let F ′ : {0, 1}λ × {0, 1}` → {0, 1}3` be the PRF used in both FOPRF and F̂ .
Sender’s Inputs. Input sets X1, . . . , Xβ with total elements N and target multi-sets T1, . . . , Tβ that are
sampled independently from T . For all j ∈ [β], |Xj | = |Tj | and for all i ∈ [|Xj |], Xj(i) ∈ {0, 1}` and
Tj(i) ∈ {0, 1}`.
Receiver’s Inputs. Queries x1, . . . , xβ ∈ {0, 1}`.
The construction proceeds in the following manner:
1. For every j ∈ [β], the parties invoke an instance of FOPRF where receiver inputs xj . The sender gets a

key kj and receiver gets output zj ∈ {0, 1}3`.
2. Sender computes GT← Hint(K,X, T), where K = k1, . . . , kβ and sends GT to the receiver.
3. Receiver does the following for each j ∈ [β].

– Parse zj = zj,1||zj,2||zj,3 s.t. zj,b ∈ {0, 1}` for all b ∈ [3].
– Compute posb ← hb(xj) for all b ∈ [3].
– Output list {Wj}j∈[β], where Wj = [zj,b ⊕ GT[posb]]b∈[3].

Fig. 4. RB-OPPRF construction using Cuckoo-hashing based RB-PPRF scheme

4 Private Set Membership

The set membership [17] is the 2-party functionality that takes as input a set B of np elements
{B(1), . . . , B(np)}, with B(i) ∈ {0, 1}`, ∀i ∈ [np], from P0 and an element a ∈ {0, 1}` from P1. De-
fine y = 1{a ∈ B}. The functionality outputs boolean shares of y to P0 and P1; i.e., random bits y0
and y1 to P0 and P1 respectively such that y0 ⊕ y1 = y. This functionality, FPSM, is formally defined
in Fig. 5.

FPSM can be realized using one of several standard protocols [23,3,1,12] and many specialized pro-
tocols [25,45,9]. However, the resultant protocols have high communication cost. In this section, we
propose two specialized protocols - PSM1 and PSM2 to realize FPSM that both have significantly lower

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 11

Inputs of P0. Input set B of size np, where ∀i ∈ [np], B(i) ∈ {0, 1}`.
Inputs of P1. a ∈ {0, 1}`.
The functionality outputs random yb to party Pb, where y0 and y1 are boolean shares of y = 1{a ∈ B}.

Fig. 5. Private Set Membership Functionality FPSM

communication overhead than prior approaches. While PSM2 (in Section 4.2) has the lower of the two
communication, its concrete computation cost is higher than PSM1 (in Section 4.1). Trade-offs and
comparison with other generic/specialized protocols are in Section 4.3.

4.1 Private Set Membership Protocol 1

Our protocol PSM1 builds on the idea in [19,13,47] used for the Millionaires’ problem, where parties
have secret inputs a and b respectively and want to compute shares of 1{a < b}. At a high level, the
protocol uses recursion to reduce the problem of inequality on large strings to computing both equalities
and inequalities on smaller substrings. We describe how we build on these ideas to realize FPSM.

First, consider the case of single equality, i.e., computing 1{a = b}, a, b ∈ {0, 1}`. Let a = a1‖a0 and
b = b1‖b0, where a0, b0, a1, b1 ∈ {0, 1}`/2. The problem of computing equality on ` bits strings can be
reduced to equalities on `/2 length strings as follows:

1{a = b} = 1{a1 = b1} ∧ 1{a0 = b0}, (1)

We can then follow this approach recursively, and go to even smaller instances. Overall, we can build
a tree, all the way upto the m-bit leaves that can be computed using

(
M
1

)
-OT1 for M = 2m. Then, we

can traverse the tree bottom up using FAND functionality. As was also observed in [47] for the case of
Millionaires’, there is a compute vs communication trade-off between large and small values of m and
one can empirically determine the value of m that gives best performance. More concretely, larger values
of m result in lower communication but the compute grows super-polynomially in m.

The problem of set membership, i.e. 1{a ∈ B} can be alternatively written as
⊕

i∈[np]
1{B(i) = a},

that is, it involves computing a batch of equalities. We show that for comparing an element a with all
elements in a set B of size np, we can do much better than np instances of equality checks. We observe
that for the leaf nodes, the inputs of P1 are the same in all executions. Now, we run the OTs needed for
the leaves with P0 as the sender and P1 as the receiver. Since the receiver’s inputs are same in all np
executions, these OTs can be batched together, and we replace np instances of

(
M
1

)
-OT1 with a single

instance of
(
M
1

)
-OTnp

reducing communication per leaf from np × (2λ+M) to (2λ+Mnp).

For ease of exposition, we describe the scheme formally in Fig. 6 for the special case when m|` and
when q = `/m is a power of 2. Using the notation in Fig. 6, the batching of equality computation across
np instances for the leaf nodes works as follows: P0 has input set B of np elements such that each element
B(i) = bi,q−1‖ . . . ‖bi,0 for all i ∈ [np]. Similarly, P1 has input a = aq−1‖ . . . ‖a0. It holds that aj , bi,j ∈
{0, 1}m, for all

j ∈ {0, . . . , q − 1} and i ∈ [np]. For each j ∈ {0, . . . , q − 1}, the task is to compute shares of
eq0,i,j = 1{bi,j = aj} for all i ∈ [np], and this is where we use our batching technique. We use an

instance of
(
M
1

)
-OTnp

where P0 is the sender and P1 is the receiver with input aj . Sender’s input
are {ej,v}v∈[M], where ej,v = p1|| . . . ||pnp

, with pi = 〈eq0,i,j〉0 ⊕ 1{bi,j = v}, with a uniformly random

〈eq0,i,j〉0. Essentially, sender’s vth input are boolean shares of values {1{bi,j = v}}i∈[np]. Once we have the
leaf computation of the whole batch of size np, traversing up the tree to the root happens independently
for each instance. Finally, we learn the shares corresponding to the roots, i.e. {1{bi = a}}i∈[np]. For final
output, parties locally XOR these shares.

Next, we prove correctness and security of our protocol. Finally we describe how the scheme can be
naturally extended to the general case.

12 Nishanth Chandran, Divya Gupta, and Akash Shah

Inputs of P0. Input set B of size np, where ∀i ∈ [np], B(i) ∈ {0, 1}`.
Inputs of P1. Element a ∈ {0, 1}`.
Parameters. Radix Parameter m, M = 2m,

(
M
1

)
-OTnp and FAND functionality.

1. Set q ← `/m.
2. P0 parses each of its input element as B(i) = bi,q−1‖ . . . ‖bi,0 and P1 parses its input as
a = aq−1‖ . . . ‖a0, where aj , bi,j ∈ {0, 1}m, for all j ∈ {0, . . . , q − 1} and i ∈ [np].

3. for j ∈ {0, . . . , q − 1} do
4. P0 samples 〈eq0,i,j〉0

$←− {0, 1}, ∀i ∈ [np].

5. for v ∈ [M] do
6. P0 sets ej,v ← 〈eq0,1,j〉0 ⊕ 1{b1,j = v}‖ . . . ‖〈eq0,np,j

〉0 ⊕ 1{bnp,j = v}.
7. end

8. P0 & P1 invoke
(
M
1

)
-OTnp with P0 as sender and inputs {ej,v}v∈[M] and P1 as receiver and input

aj . P1 receives e = 〈eq0,1,j〉1‖ . . . ‖〈eq0,np,j
〉1 as output, where 〈eq0,i,j〉1 ∈ {0, 1} for all i ∈ [np].

9. end
10. for t = 1 to log q do
11. for j ∈ {0, . . . , q/2t − 1} do
12. for i ∈ [np] do
13. For s ∈ {0, 1}, Ps invokes FAND with inputs 〈eqt−1,i,2j〉s and 〈eqt−1,i,2j+1〉s to learn output

〈eqt,i,j〉s.
14. end

15. end

16. end
17. For s ∈ {0, 1}, Ps computes ys ←

⊕
i∈[np]

〈eqlog q,i,0〉s and outputs ys.

Fig. 6. Private Set Membership Protocol, PSM1

Theorem 3. Construction in Fig. 6 securely realizes Functionality FPSM (see Fig. 5) in the (
(
M
1

)
-OTd,FAND)-

hybrid model.

Proof. Correctness. We first prove that 〈eqlog q,i,0〉0, 〈eqlog q,i,0〉1 are correct boolean shares of 1{a =
B(i)} for all i ∈ [np].

The proof is by induction on the level of the tree. By correctness of
(
M
1

)
-OTnp in line 8 of construction,

it follows that 〈eq0,i,j〉1 ← 〈eq0,i,j〉0⊕1{bi,j = aj}, for j ∈ {0, . . . , q−1} which proves the base case of in-

duction. Let qt = q/2t. At the tth level of tree, parse B(i) = b
(t)
i,qt−1‖ . . . ‖b

(t)
i,0 and parse a = a

(t)
qt−1‖ . . . ‖a

(t)
0 .

Let us assume that the correctness holds true for level t, i.e., eqt,i,j=〈eqt,i,j〉1 ⊕ 〈eqt,i,j〉0=1{b(t)i,j = a
(t)
j }

for j ∈ {0, . . . , qt − 1}. We prove that the same holds true for level t + 1. By correctness of FAND, for
j ∈ {0, . . . , qt+1 − 1}, 〈eqt+1,i,j〉0 ⊕ 〈eqt+1,i,j〉1 = eqt,i,2j ∧ eqt,i,2j+1 = 1{bti,2j = at2j} ∧ 1{bti,2j+1 =

at2j+1} = 1{bt+1
i,j = at+1

j }. Hence, for all i ∈ [np], it holds that 〈eqlog q,i,0〉0 ⊕ 〈eqlog q,i,0〉1 = 1{B(i) = a}.
Now, y0⊕y1 =

⊕
i∈[np]

1{B(i) = a}. If a /∈ B, y0⊕y1 = 0 else y0⊕y1 = 1, since B has distinct elements.

Security. To simulate the view of corrupt P0, the simulator sends random bits as outputs from FAND

functionality under the constraint that when plugged into the protocol, they result in the final share
received from FPSM. To simulate view of corrupt P1, the simulator sends random message ∈ {0, 1}np as
output from

(
M
1

)
-OTnp instances. This is correct since each 〈eq0,i,j〉0 is random. Outputs of FAND are

simulated similarly.

General Case. The case when m does not divide ` and q = d`/me is not a power of 2 can be handled
similar to the Millionaires’s problem in [47]. For completeness, the main idea is as follows. Let r = `

mod m then aq−1 ∈ {0, 1}r. For the last leaf, we invoke
(
2r

1

)
-OTnp . Finally, when q is not a power of 2,

we construct maximal possible perfect binary trees and connect the roots of these trees using Equation
(1). The final tree has np(q − 1) calls to FAND (in both special/general cases).

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 13

Inputs of P0. Input set B of size np, where ∀i ∈ [np], B(i) ∈ {0, 1}`.
Inputs of P1. Element a ∈ {0, 1}`.
Parameters. FOPPRF instantiated with table-based OPPRF construction (see Fig. 10) and Feq

instantiated with construction from Fig. 6 (with np = 1).
1. P0 samples a random target value t and prepares a set T such that it has np, elements all equal to t.
2. P0 and P1 invoke FOPPRF in which P0 plays the role of sender with input set B and target multi-set T

and P1 plays the role of receiver with a as the input query. P0 receives key k ∈ {0, 1}λ and P1 receives

hint hint ∈ {0, 1}u ˙̀
and PPRF output w ∈ {0, 1}`.

3. P0 and P1 call Feq with inputs t and w and receive bits y0 and y1 respectively.

Fig. 7. Private Set Membership Protocol, PSM2

Concrete Complexity. In the special case, we invoke q = `/m instances of
(
M
1

)
-OTnp and np(q − 1)

instances of FAND. Hence, total communication is q(2λ + Mnp) + np(q − 1)(λ + 16). For the general

case, let q = d`/me. Then, we use q − 1 instances of
(
M
1

)
-OTnp and 1 instance of

(
2r

1

)
-OTnp to compute

the leaves where r = ` mod m. Then, we make np(q − 1) invocations of FAND in log q rounds. Total
communication is (q− 1)(2λ+Mnp) + (2λ+ 2rnp) +np(q− 1)(λ+ 16). E.g., for ` = 64, λ = 128,m = 4,
and np = 3 communication required is 11344 bits.

Communication Concrete Example

CO [9] 2`npλ+ npλ 49536

ABY [12] 2npλ(`− 1) 48384

PSM1 (m = 4) `npλ/4 + `λ/2 + 8`np 11344

PSM2 (m = 4) (8 + u)`+ 3`λ/4 + 9λ/2 7488
Table 1. Communication Complexity for Private Set Membership Protocols in bits. ` denotes the bit-length
of elements, np denotes the number of elements and u = 2dlog(np+1)e. For the concrete example, we consider:
` = 64, np = 3, λ = 128.

4.2 Private Set Membership Protocol 2

Consider the FOPPRF functionality [32] that is obtained by setting d = 1 and β = 1 in FRB-OPPRF. First at
a high level, observe that FPSM, must compute np equality checks, while FOPPRF is a functionality that
allows reducing multiple equality checks to a single check. Hence, similar to the construction of [32], one
can realize FPSM by first invoking FOPPRF (to reduce the np equality checks to a single equality check)
and then computing the single check using a call to Feq [12,10,28] (the functionality obtained in FPSM

by setting np = 1). Kolesnikov et al. [32] proposed three OPPRF constructions, viz., polynomial based
OPPRF, garbled bloom filter [14] based OPPRF and table-based OPPRF constructions. For small set
sizes, it was experimentally confirmed in [32] that table-based OPPRF construction is the fastest. Since
the set size is 3 in FPSM when used in our final circuit-PSI construction, FOPPRF can most efficiently
be realized by using this table-based construction. Feq can be realized using our protocol from Fig. 6
with np = 1. This protocol is ≈ 2× more communication efficient than the state-of-the-art protocol [10]
for equality testing. It is then easy to see that the final protocol PSM2 obtained realizes FPSM (this
follows trivially from the fact that the underlying protocols realize FOPPRF and Feq respectively). For
completeness, we describe this protocol in Fig. 7 (and the table-based OPPRF [32] in Fig. 10 of Appendix
A).

Concrete Complexity. A single call to PSM2 involves interaction between the two parties in call to
OPRF functionality realized using the construction given in [31], followed by hint transmission and
equality check. The amortized communication cost for a single instance of OPRF evaluation using this
protocol is 3.5λ bits [31, Table 1]. The hint size is λ+ u`, where u = 2dlognp+1e. Finally, we make a call
to PSM1 (with np = 1, see Fig. 6) and from its concrete communication analysis we get, (q − 1)(2λ +
M) + (2λ+ 2r) + (q− 1)(λ+ 16) to be the communication cost incurred in this call. Now, for simplicity
let us set m = 4 and consider the special case in analysis of communication cost of PSM1 construction.

14 Nishanth Chandran, Divya Gupta, and Akash Shah

Thus, the total communication cost is (8+u)`+0.75`λ+4.5λ. As an example, for ` = 64, λ = 128,m = 4
and np = 3 communication required is 7488 bits.

4.3 Comparison of PSM Protocols

In this section, we discuss the communication complexity of our protocols, PSM1 and PSM2. We compare
with the state-of-the-art protocols [9,12] and refer the reader to [9] for more details on prior PSM
protocols. Table 1 illustrates the communication complexity of the PSM schemes1. In our setting, we will
invoke PSM protocols with a set size np = 3. The table also provides a comparison of communication
costs for this setting – observe that our protocols PSM1 and PSM2 are 4.2× and ≈ 6.5× communication
efficient than prior works respectively. From the communication complexity of the protocols given in the
table, note that the performance gains of our protocols over existing protocols improve with increase
in np. Finally, we remark that the computation overhead incurred in PSM1, CO [9] and ABY [12] are
nearly the same, while the computation cost of PSM2 is higher due to its use of the OPPRF scheme.

5 Linear Circuit-PSI

In circuit PSI [25,42,44,16,43,27], the task is to compute a function f on the intersection of two sets,
S0 and S1. Formally, the circuit-PSI functionality, FPSI,f , takes S0 from P0 and S1 from P1 and outputs
f(S0 ∩ S1) to both parties. Similar to prior works, we consider symmetric functions whose output does
not depend on the order of elements in the intersection.

We consider a standard two party computation functionality F2PC that is parameterized by a circuit
C. It takes as input I0 and I1 from parties P0 and P1 respectively. The functionality then computes the
circuit C on the inputs of the parties and returns C(I0, I1) as output to the parties. In our construction,

to evaluate a symmetric function f , we consider the following circuit: Cβ,µ takes as input a
(0)
1 , . . . , a

(0)
β

and z1, . . . , zβ from P0 and a
(1)
1 , . . . , a

(1)
β from P1, where a

(0)
j , a

(1)
j ∈ {0, 1} and zj ∈ {0, 1}µ for all j ∈ [β]

and β = O(n), where n is the set size of both parties. The circuit first computes aj = a
(0)
j ⊕ a

(1)
j , for all

j ∈ [β]. It then computes f(Z) where Z = {zj | aj = 1}j∈[β].
Below, in Section 5.1 we describe our construction in the stashless setting of cuckoo hashing using

the parameter settings based on the empirical analysis from [45] (see Section 2.2). We first discuss a
circuit-PSI protocol for functions that take only the elements in the intersection as input. This protocol
can be trivially extended to the case where the function takes as input both the elements as well as
their associated payloads as long as only one party has a payload associated with its elements (e.g. set
intersection sum). Later, we describe the protocol for the case where the function operates on payloads
provided by both parties. Finally, we describe in Section 5.2 how our ideas easily extend to the setting
with stash by building on the dual execution technique from [43]. We emphasize that all our constructions
(with and without stash) have linear communication and linear computation complexity.

5.1 Circuit-PSI via Stashless Hashing

Construction Overview. Our construction follows a similar high-level blueprint as [43]. The parties
start by hashing their input sets as follows: Consider three universal hash functions h1, h2, h3 : {0, 1}µ →
[β], where β = (1 + ε)n and n is size of input sets. Now, P0 does Cuckoo hashing using h1, h2, h3 of
input set S0 into hash table HT0. The ε, used in setting the number of bins β, is picked using parameters
calculated in [45] for the stashless setting. On the other side, P1 does simple hashing of S1 into HT1

using the same hash functions h1, h2, h3 (where every bin in HT1 can have multiple elements). Now,
the following property holds: Consider z ∈ S0 ∩ S1, such that HT0[j] = z, then z ∈ HT1[j] as well.

1 Though the communication complexity of our protocols is minimized for m = 7, the computational complexity
grows super-polynomiall with m. Similar to [47], we observe best performance for lower values of m (m = 4, 5).

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 15

Parameters. Functionalities Relaxed batch OPPRF, (`, β, 3)-FRB-OPPRF (Fig. 2), Private Set
Membership, FPSM (Fig. 5), Two-party computation, F2PC.
Inputs of P0. Input set S0 of size n, where S0(i) ∈ {0, 1}µ, for all i ∈ [n].
Inputs of P1. Input set S1 of size n, where S1(i) ∈ {0, 1}µ, for all i ∈ [n].

Hashing: Parties agree on universal hash functions h1, h2, h3 : {0, 1}µ → [β], where β = (1 + ε)n, which
are used as follows:
1. P0 does Cuckoo hashing using h1, h2, h3, to map elements in S0 to hash table HT0 with β bins. Since
β > n, P0 fills the empty bins in HT0 with a uniformly random value.

2. P1 does Simple hashing using h1, h2, h3 to map elements in S1 to hash table HT1 with β bins.

Computing Relaxed Batch OPPRF:
3. P0 creates queries x1, . . . , xβ such that xj = (HT0[j]||j) for all j ∈ [β].
4. P1 creates input sets X1, . . . , Xβ and target sets T1, . . . , Tβ as follows: For all j ∈ [β],
Xj = {(y‖j) | y ∈ HT1[j]}, sample random and independent target value tj and Tj has |Xj | elements
all equal to tj .

5. P0 & P1 invoke (`, β, 3)-FRB-OPPRF with P1 as sender with input sets {Xj}j∈[β] and target sets {Tj}j∈[β]
and P0 as receiver with queries {xj}j∈[β]. P1 gets keys set K and P0 gets output lists W1, . . . ,Wβ .

Comparing the RB-OPPRF Outputs and Target Values:
6. For each j in [β], P0 and P1 invoke FPSM with inputs Wj and tj , resp. P0 and P1 get as output
〈aj〉0, 〈aj〉1 ∈ {0, 1}, respectively.

Computing the Circuit Cβ,µ:
7. The parties call F2PC parameterized by circuit Cβ,µ with inputs 〈a1〉0, . . . , 〈aβ〉0 and HT0 from P0 and
〈a1〉1, . . . , 〈aβ〉1 from P1. Both parties receive output y.

Fig. 8. Circuit-PSI Protocol ΠPSI

Hence, it suffices to compare the elements in HT0 and HT1 per bin. For this step, [43] used their batch
OPPRF construction. In this work, we use the computationally more efficient RB-OPPRF. For this, P0

plays the role of the receiver and the queries are {xj}j∈[β] such that xj = HT0[j]||j. P1 plays the role
of the sender and constructs input sets {Xj}j∈[β] as Xj = {(y‖j) | y ∈ HT1[j]}. Next, for j ∈ [β], P1

samples tj ∈ {0, 1}` independently and uniformly, and constructs Tj with |Xj | elements, all equal to tj .
From the (`, β, d)-FRB-OPPRF functionality, P0 receives lists {Wj}j∈[β]. At a high level, we argue below
that tj ∈ Wj if and only if xj ∈ S1, where S1 is the input set of P1. To check this set membership, i.e.,
whether tj lies in Wj , parties invoke instances of FPSM and learn boolean shares of membership. These
shares along with HT0 are finally sent to F2PC that computes the circuit Cβ,µ, i.e., reconstructs these
shares, picks elements from HT0 corresponding to shares of 1 and computes f on them. We describe the
construction formally in Fig. 8.

Instantiating the Protocol in Fig. 8. We can realize the (`, β, 3)-RB-OPPRF functionality using
our scheme in Section 3.2. Note that our scheme uses Cuckoo hashing and here again, we pick our
parameters that ensure no stash. We set ` = σ + log(3β) required by the correctness proof below, to
bound the probability of false positives by 2−σ. Later, we use σ = 40. The functionality FPSM can be
realized either using PSM1 (see Section 4.1) or PSM2 (see Section 4.2). This gives us two protocols for
circuit-PSI, that we call C-PSI1 and C-PSI2 respectively. These protocols have a similar communication
vs compute trade-off as discussed in Section 4.3 and we compare them empirically in Section 6.

Theorem 4. Construction in Fig. 8 securely realizes FPSI,f functionality with O(n) communication and
computational complexity.

Correctness. By correctness of hashing and use of same hash functions by both P0 and P1, it holds
that for any element z ∈ S0 ∩ S1, there exists a unique j ∈ [β] such that HT0[j] = z and z ∈ HT1[j].
Hence, it suffices to compare HT0[j] with all elements in HT1[j], for all j ∈ [β]. So consider a bin j ∈ [β].
If HT0[j] ∈ HT1[j], then xj ∈ Xj in our construction. By correctness of FRB-OPPRF, if xj ∈ Xj , then
tj ∈Wj . Moreover, if HT0[j] /∈ HT1[j], then xj /∈ Xj . From the correctness property for non-programmed
points property (Section 3.2), it holds that if xj /∈ Xj , then tj ∈ Wj with probability at most 3 · 2−`.
Taking a union bound over β bins, total probability of false positives is upper bound by fail = 3β · 2−`.

16 Nishanth Chandran, Divya Gupta, and Akash Shah

We pick ` > log(3β) + σ such that fail < 2−σ. Next, by correctness of FPSM, 〈aj〉0 ⊕ 〈aj〉1 = 1 if and
only if tj ∈Wj . Finally, correctness of final output y follows from correctness of F2PC.

Security. Security of the protocol follows immediately from security of FRB-OPPRF,FPSM,F2PC function-
alities.

Communication and Computational Complexity of C-PSI1/C-PSI2. We argue that the protocol
has linear complexity, i.e., O(n) in both communication and compute ignoring the complexity of func-
tion f being computed on S0 ∩ S1. This follows immediately from the following: 1) Our construction
of (`, β, 3)-RB-OPPRF in Section 3.2 has linear complexity (see Theorem 2). 2) Since each of Wj has a
constant number of elements, i.e., d = 3, and protocol PSM1/PSM2 is invoked independently for each
j, step 6 has linear complexity. 3) Inputs to Cβ,µ are linear in size; hence computation until step of
computing S0 ∩ S1 has linear complexity.

PSI With Associated Payload. The above protocol can be trivially extended to the case when
P0 alone has a payload associated with its elements; this is done by simply appending the payload to
Z. IWe now discuss how we can adapt the protocol in Fig. 8 (similar to [43]) to handle the case when
elements of both P0 and P1 have associated payloads, and we wish to compute a function of both the
elements as well as payloads in the intersection.

Let U(x) ∈ {0, 1}δ and V (y) ∈ {0, 1}δ respectively denote the payloads associated with element
x ∈ S0 and y ∈ S1. We significantly build on our protocol for circuit-PSI in Fig. 8. At a high level,
parties engage in one more instance of RB-OPPRF (consistent with the previous one) such that for
elements in the intersection, they hold shares of payload of P1 in one of 3 locations.

The protocol is as follows: Parties P0 and P1 on respective input sets S0 and S1 execute steps 1 to
5 of ΠPSI protocol (see Fig. 8). After the execution of the above steps, P0 has hash table HT0, query
elements x1, . . . , xβ and output lists W1, . . . ,Wβ . P1 has hash table HT1, input sets X1, . . . , Xβ , target
values t1, . . . , tβ . Note that step 5 in Fig. 8 uses an (`, β, 3)-RB-OPPRF protocol instantiated with our
(`, β, 3)-RB-PPRF protocol given in Fig. 3. Let h′1, h

′
2 and h′3 be the set of universal hash functions used

in (`, β, 3)-RB-PPRF protocol. In step 5 of Fig. 3, P1 acts as sender and within RB-PPRF uses these
functions to hash elements in input sets using cuckoo hashing. HT (step 1, Fig. 3) denotes this hash
table.

Now, P1 samples random and independent target values t̃1, . . . , t̃β and prepares target sets T̃j of size

|Xj |, for all j ∈ [β] as follows: Set T̃j(i) ← t̃j ⊕ V (HT1[j](i)), for all i ∈ |Xj |. P0 and P1 then invoke
another instance of (δ, β, 3)-RB-OPPRF protocol with P1 as the sender and input sets {Xj}j∈[β] and

target sets {T̃j}j∈[β] such that it uses the same hash table HT inside RB-PPRF as was used before. Party

P0 acts as receiver with input queries {xj}j∈[β]. Let W̃1, . . . , W̃β be the output lists received by P0 from
execution of (δ, β, 3)-RB-OPPRF protocol.

Let P0 define Q of length β as follows: For all j ∈ [β] if z = HT0[j] ∈ S0, then Q[j] = U(z), else some
dummy value. Finally, the parties invoke F2PC with circuit CPL that is described as follows. The circuit
CPL takes as input HT0, Q, {Wj}j∈[β] and {W̃j}j∈[β] from P0 and {tj}j∈[β] and {t̃j}j∈[β] from P1. For
j ∈ [β] and i ∈ [3], the circuit CPL sets bj,i = 1 if tj = Wj [i] and 0 otherwise. If bj,i = 1 then CPL forwards

HT0[j], P0’s payload Q(j) and t̃j ⊕ W̃j [i] to an internal sub-circuit that computes f . From Theorem 4, it
follows that ∃ij ∈ [3] such that bj,ij = 1 iff xj ∈ Xj

2 and in the second (δ, β, 3)-RB-OPPRF instance, since

P1 makes use of the same hash table HT in hint computation, it follows that W̃j [ij] = t̃j ⊕ V (HT0[j]),

for all j ∈ [β]. Hence, t̃j ⊕ W̃j [ij] = V (HT0[j]) which corresponds to the payload of P1 associated with
element HT0[j]. The security follows from the security of RB-OPPRF protocol.

2 To show that exactly one such ij exists, we can use a correctness property similar to that used for non-
programmed points.

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 17

5.2 Circuit-PSI via Dual Execution

We describe our linear complexity protocol for the scenario when Cuckoo hashing results in a stash3.
Our idea is inspired by the dual execution idea of Pinkas et al. [43]. It uses the protocol from [43] in
the “unbalanced set-size” setting - i.e., when P0 and P1 have unequal set sizes. We observe that their
protocol can be made to have linear (in the larger set) computation cost, while being super-linear in the
smaller set. We make use of this protocol in a setting where one party, say P0 has a small set of size
O(log n) and other party, P1, has a set of size n.

Theorem 5 ([43]). Consider parties Q0 and Q1 with input sets S0 and S1 of size n0 and n1, respec-
tively such that n1 6 n0. Then, there exists a circuit-PSI protocol ([43, Protocol 9]) with computational
complexity O (n1 log n1 + n0 + sn1), where s is the stash size in cuckoo hashing of n0 elements, and
can be set to O (log n0/ log log n0), for negligible failure probability. Communication of the protocol is
O(n0 + sn1).

Corollary 1 ([43]). For circuit-PSI between sets of sizes n0 = n and n1 = O (log n/ log log n), there
exists a protocol with complexity O(n).

As discussed in Section 2.2, for Cuckoo hashing with 3 hash functions, it holds that failure probability
is negligible in n for stash size s = O (log n/ log log n). In our construction in Fig. 8, we use Cuckoo
hashing twice. First, P0 uses Cuckoo hashing to map its elements in S0 into HT0 and this can result in
a stash. Denote the elements that fit in main table of HT0 as S0,T and elements in stash by S0,S s.t.
|S0,S | = O (log n/ log log n). Our RB-OPPRF construction can lead to a stash at P1 as follows: Earlier,
in Fig. 8, P1 does simple hashing on elements in S1 using h1, h2, h3. Hence, each element in S1 occurs at
most thrice in HT1 and also in sets X1, . . . , Xβ , concatenated with different bin number. Now, P1 acts as
the sender in RB-OPPRF, and hashes the n′ = 3n elements in X1, . . . , Xβ using Cuckoo hashing that can
lead to a stash. Denote the elements that fit in main table as S′1,T and stash elements by S′1,S . Let S1,S
contain elements y ∈ S1, s.t. there exists j ∈ [β] with (y‖j) ∈ S′1,S . Now, |S1,S | = O (log n/ log log n).
Let S1,T = S1 \ S1,S .

Now we run 4 instances of circuit-PSI (in parallel) as follows: (1) Use our protocol described in Fig. 8
between elements in S0,T and S1,T . (By the above construction it is guaranteed that there would be
no stash when invoking this protocol.) (2) Use protocol given by Corollary 1 between elements in S0,S
and S1,T , where P0 plays the role of Q1 and P1 plays the role of Q0. (3) We do a role reversal, and
run protocol from Corollary 1 between elements S0,T and S1,S where P0 plays role of Q0 and P1 plays
role of Q1. (4) Run a protocol to do exhaustive comparison between S0,S and S1,S . This protocol has
complexity, |S0,S | · |S1,S |, (sub-linear in n).

6 Implementation and Evaluation

Our protocols are implemented4 in C++ and we compare the performance of our Circuit-PSI protocols
C-PSI1 and C-PSI2 with the state-of-the-art protocol [43], referred to as the PSTY. For a comparison of
PSTY with other prior circuit-PSI schemes [25,42,44,16], we refer the reader to [43, Section 7]. We set
computational security parameter, λ = 128, and the statistical security parameter, σ = 40.

Protocol Parameters. It was shown in PSTY that the Circuit-PSI protocol for the stashless set-
ting was most performant. Hence, we consider the stashless setting, and compare our performance with
the corresponding stashless protocol from PSTY. Similar to PSTY, we use d = 3 hash functions to hash
nh elements into β = 1.27nh (i.e. ε = 0.27) bins using the analysis from [45] (see Section 2.2). As in
Section 5.1, we set output length ` of RB-OPPRF scheme as ` = σ + dlog(3β)e, where β = 1.27n and n

3 Even though in all practical setting, if parameters are picked based on empirical analysis of [45] , no stash is
observed.

4 Code available at https://aka.ms/2PC-Circuit-PSI.

https://aka.ms/2PC-Circuit-PSI

18 Nishanth Chandran, Divya Gupta, and Akash Shah

is input set size.

Implementation Details. The underlying OPRF in our RB-OPPRF and Table based OPPRF con-
struction [32] (in PSM2) is instantiated using the implementation [38] of Kolesnikov et al. [31]. In our
RB-OPPRF construction (see Fig. 4), the output length of the underlying PRF in FOPRF is 3`. For the
input set sizes that we consider, the maximum output length is 192 bits. We configure the output length
of the underlying PRF in the OPRF construction [31] to 128 bits and then use a PRG to expand this
PRF output based on the input setting (upto 192 bits). PSTY protocol requires the output length of the
underlying PRF in FOPRF to be atmost 64 bits. However, our circuit-PSI protocols do not incur additional
communication cost over PSTY protocol in the OPRF phase because the communication cost of OPRF
construction [31] is the same for the underlying PRF with output length 64 and 128 bits [31, Table 1].
For initial hashing as well as in the implementation of our RB-OPPRF construction, we make use of the
hash tables library from [37]. For implementing our protocol PSM1 and the protocol for Feq function-
ality in our PSM2 scheme, we make use of the implementation of OT-Extension protocols [26,30] and
Bit-Triple generation protocol [13,47] available at [36]. We compare with the implementation of PSTY
scheme available at [15].

System Details. We ran our experiments in both the LAN and WAN network settings. In the LAN
setting, we observed a network bandwidth of 375 MBps with an echo latency of 0.3 ms, while the corre-
sponding numbers in the WAN setting were 34 MBps and 80 ms. The machines we used were commodity
class hardware: 3.7 GHz Intel Xeon processors with 16GBs of RAM. To be fair in our comparison with
PSTY (whose code is single threaded), we also restricted our code to execute in this setting. Similar to
PSTY, our protocols can benefit from parallelization through multi-threading.

6.1 Concrete Communication Cost

In this section, we discuss the concrete communication cost of our circuit-PSI schemes. We summarize
the communication cost of PSTY and compare them with our schemes in Table 2 for varying input set
sizes n and for inputs of arbitrary bitlength. Similar to PSTY, and unlike circuit-PSI protocols proposed
in [25,42,44,16,27], the communication cost of our protocols is independent of the bitlength of elements
in the input sets and depends only on the size of the input sets. As can be observed from the table,
our protocol C-PSI2 is ≈ 2.3× more communication efficient than PSTY (while C-PSI1 is ≈ 1.5× more
efficient).

Next, we discuss the breakdown of communication. We provide a breakdown of our communication
explicitly for both C-PSI1 and C-PSI2 protocols. The communication cost of OPRF phase and hint trans-
mission of PSTY protocol is essentially the same as our circuit-PSI protocols (refer Table 2 and [43, Table
3]). The communication incurred in equality checks in PSTY protocol can, thus, be obtained by subtract-
ing the communication cost of OPRF phase and hint transmission from the total communication. This
gives a breakdown of communication cost of PSTY protocol. Also, since the communication incurred
in OPRF and hint transmission constitute the communication of B-OPPRF and RB-OPPRF construc-
tions, the communication cost of polynomial-based B-OPPRF construction of [43] and our RB-OPPRF
construction is almost the same. Similar to PSTY scheme, the bulk of our communication is incurred
in the final phase of our protocol, where we need to compare the outputs received from our RB-OPPRF
scheme. For C-PSI1 and C-PSI2, PSM accounts for around 93% and 90% of the total communication cost
respectively. In PSTY, circuit component accounts for 96% of the overall communication.

Finally, unlike PSTY and our protocols, the recent linear computation protocol of [27] has a commu-
nication cost that varies with bit-length. For ` = 32 and 64, C-PSI2 is ≈ 8.8−12.7× more communication
efficient than their protocol; see [27, Table 3]. For instance, they communicate 836 MB for input sets of
size 216 and element bitlength of 64, while we communicate 65.4 MB.

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 19

n 214 216 218 220 222

PSTY [43] 40.6 162 650 2600 10397

C-PSI1 (Ours) 24.1 96.9 387 1661 6667

C-PSI2 (Ours) 16.8 65.4 261 1107 4435

Breakdown

OPRF 1.12 4.46 17.9 71.4 286

Hint transmission 0.48 2 7.6 30 122

PSM1 22.4 90.4 362.1 1560 6259

PSM2 15.2 58.9 235 1005 4027
Table 2. Communication in MB of circuit-PSI schemes for sets of size n and elements of arbitrary length. The
best values are marked in bold. The first two costs, viz., OPRF and Hint Transmission are common to both
our schemes. Total communication for scheme C-PSIi can be obtained by adding the communication of these
components to the communication of the corresponding PSMi.

6.2 Performance Comparison

In Table 3, we compare the run-times of our circuit-PSI protocols C-PSI1 and C-PSI2 with PSTY for
input set sizes upto 222 elements5 in both the LAN/WAN settings. Table 3 entries are median across 10
executions.

Network Setting LAN WAN

n PSTY [43] C-PSI1 C-PSI2 PSTY [43] C-PSI1 C-PSI2
214 1.32 0.86 1.27 4.92 4.7 6.5

216 3.80 1.83 2.1 9.14 6.69 8.07

218 13.87 6.03 5.54 25.19 15.08 14.78

220 54.91 23.4 20.21 90.03 49.1 43.37

222 220.86 93.03 77.89 353.75 184.33 155.02

Table 3. Comparison of total run-time in seconds of our Circuit-PSI schemes C-PSI1 and C-PSI2 to [43] for n
elements. The best values are marked in bold.

End-to-end Execution Times. Overall, our protocols are up to 2.8× faster than PSTY and outperform
PSTY in all network settings and set sizes (Table 3).

In both LAN and WAN settings, on small input sets (e.g. of size 214 and 216), C-PSI1 has the best
overall run-time whereas for larger input sets of size 218, 220 and 222, C-PSI2 is the most performant due
to its lower communication. Recall that, C-PSI2 makes use of the computationally more expensive (due
to the table-based OPPRF) PSM2 protocol for private set membership. Even though C-PSI2 incurs lesser
communication than C-PSI1 in all cases, for input sets of size 214 and 216, the respective communication
difference of 7.1 MB and 31.5 MB is not significant enough to compensate for the additional compu-
tational cost introduced by the OPPRF construction even in the WAN setting. Hence, in these cases,
C-PSI1 out-performs C-PSI2.

Breakdown of Individual Components. Next, we present a breakdown of the overall execution times
in the PSTY and C-PSI2 protocols (see Table 4). Since, C-PSI1 and C-PSI2 only differ at the usage of
PSM protocol, the breakdown of run-time C-PSI2 except for the PSM component is same for C-PSI1. An
important point to note is that the bulk of the cost in the LAN setting in PSTY comes from the hint
creation cost that made use of an OPPRF protocol. For example, for a set size of 222 this cost is 155.1 s
and about 71% of the entire cost. In contrast, hint creation in C-PSI2, through the use RB-OPPRF, for
the same setting is about 8× faster – it executes in < 20 s, representing only 26% of the total cost. While
using an RB-OPPRF protocol does increase the total number of comparisons by a factor of 3, since we
have a more communication efficient protocol for PSM, the cost of this phase is only marginally more
than the corresponding phase in PSTY, thus leading to an overall faster protocol.

5 In PSTY implementation [15], polynomial interpolation is implemented in a prime field using Mersenne prime
261 − 1. While Mersenne prime 261 − 1 ensures statistical security of atleast 40-bits for input sets of size upto
220, it only provides statistical security of 38-bits for set size 222. In contrast, implementations of C-PSI1 and
C-PSI2 provide statistical security of atleast 40-bits even for input sets of size 222.

20 Nishanth Chandran, Divya Gupta, and Akash Shah

LAN Setting
Scheme PSTY C-PSI2
n 216 220 222 216 220 222

Hashing 0.07 (2%) 1.49 (3%) 6.51 (3%) 0.07 (4%) 1.5 (8%) 6.6 (9%)
OPRF 0.43 (12%) 2.01 (4%) 6.53 (3%) 0.51 (26%) 1.97 (11%) 6.51 (9%)

Hint Creation 2.28 (63%) 37.84 (70%) 155.1 (71%) 0.22 (11%) 5.34 (28%) 19.98 (26%)
Hint Transmission 0.02 (1%) 0.09 (0%) 0.36 (0%) 0.02 (1%) 0.11 (1%) 0.4 (0%)
Hint Evaluation 0.27 (8%) 4.46 (8%) 17.65 (8%) 0.04 (2%) 0.62 (3%) 2.49 (3%)
Circuit/PSM 0.51 (14%) 7.75 (15%) 30.51 (15%) 1.09 (56%) 9.27 (49%) 41.33 (53%)

Total 3.8 54.91 220.86 2.1 20.21 77.89

WAN Setting
Scheme PSTY C-PSI2
n 216 220 222 216 220 222

Hashing 0.07 (1%) 1.49 (2%) 6.56 (2%) 0.07 (1%) 1.5 (4%) 6.67 (4%)
OPRF 1.37 (16%) 4.9 (6%) 16.3 (5%) 1.38 (20%) 4.9 (11%) 16.29 (11%)

Hint Creation 2.39 (29%) 38.06 (42%) 154.69 (45%) 0.23 (3%) 5.31 (12%) 20.11 (13%)
Hint Transmission 0.5 (6%) 1.59 (2%) 4.1 (1%) 0.42 (6%) 1.5 (4%) 3.96 (3%)
Hint Evaluation 0.28 (3%) 4.39 (5%) 17.78 (5%) 0.04 (1%) 0.63 (1%) 2.53 (2%)
Circuit/PSM 3.73 (45%) 38.13 (43%) 146.73 (42%) 4.81 (69%) 28.96 (68%) 104.46 (67%)

Total 9.14 90.03 353.75 8.07 43.37 155.02

Table 4. Breakdown of runtimes in seconds (s) of PSTY [43] and C-PSI2 circuit-PSI schemes for set size n.
Approximate percentage of the total run-time is provided in parenthesis for each component.

Finally, we note that one could construct a circuit-PSI protocol by using the original PSTY protocol
but replacing their circuit protocol (based on the ABY protocol [12]) with the protocol realizing Feq in
PSM2 protocol (see Fig. 7). Such a protocol would indeed be most frugal in terms of communication com-
plexity (but not by much – only ≈ 1.2× more communication efficient than C-PSI2). This protocol would
however still have a high concrete computational cost and perhaps more importantly would not have
linear computational complexity. For the modified protocol to outperform our proposed constructions,
based on experimental run-times, we estimate that for input sets of size 220, the network bandwidth has
to be poorer than 5MBps. For this modified protocol, we ran experiments for input sets of size 220 and
observed that the run-time of this protocol is 54.52s (i.e., 2.7× slower than C-PSI2 protocol) in the LAN
setting and 72s (1.7× slower than C-PSI2 protocol) in the WAN setting.

Applications of Circuit-PSI. It was argued in [44,43] that the circuits for well-studied problems
of PSI-CAT & threshold PSI [18,24,53,54,44,43,20,21,2] and PSI-Sum [33,44,43] (see Section 1.1 for
problem descriptions) are only slightly larger than the circuit of circuit-PSI protocol. Hence, the overall
runtimes for circuit-PSI reported in Table 3 is a good estimate of performance for these problems.
Moreover, for all of these problems, as shown in [43], the protocols obtained using circuit-PSI are most
performant and beats prior state-of-the-art by huge margins. Since we improve on both communication
and computation (asymptotically as well as concretely) over [43], we improve the state-of-the-art for all
these problems. To summarize, for all of these problems, our new protocols provide > 2× improvement
in performance over the prior best [43].

7 Conclusion

We provide concretely efficient protocols for 2-party circuit-PSI with linear computational and communi-
cation complexity that are up to 2.8× more performant than the state-of-the-art [43]. Both [43] and our
protocols make use of IKNP style OT-Extension protocols [26,30,1,31], the concrete communication of
which can be improved with the recent work on silent-OT extensions [5,51] as discussed in [5,16,48]. While
the communication of these protocols is significantly lower, they are computationally more involved and
hence their concrete performance depends on the network parameters. Based on empirical analysis, we
expect the use of silent-OTs to improve the run-time of circuit-PSI protocols in our WAN setting (34
MBps) but not impact our LAN setting (375MBps). We leave silent-OT extension integration into our
implementation for future work. Finally, our protocols are secure only against semi-honest adversaries,
and we leave the exploration of building protocols that are secure against malicious adversaries who
deviate arbitrarily from the protocol to future work. As also noted in [43], one of the main challenges

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 21

in making our protocols maliciously secure is in ensuring that the hashing is performed correctly by the
parties.

References

1. Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In CCS, 2013.

2. Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter Rindal. Multi-party threshold
private set intersection with sublinear communication. In PKC, 2021.

3. Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, 1991.
4. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-

tolerant distributed computation (extended abstract). In STOC, 1988.
5. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Efficient pseudorandom

correlation generators: Silent OT extension and more. In CRYPTO, 2019.
6. Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure of secrets. In CRYPTO,

1986.
7. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, 2001.
8. Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight oblivious

PRF. In CRYPTO, 2020.
9. Michele Ciampi and Claudio Orlandi. Combining private set-intersection with secure two-party computation.

In SCN, 2018.
10. Geoffroy Couteau. New protocols for secure equality test and comparison. In ACNS, 2018.
11. Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set intersection protocols

secure in malicious model. In ASIACRYPT, 2010.
12. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-protocol

secure two-party computation. In NDSS, 2015.
13. Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza Sadeghi, Thomas Schneider, Shaza Zeitouni, and Michael

Zohner. Pushing the communication barrier in secure computation using lookup tables. In NDSS, 2017.
14. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an efficient and

scalable protocol. In CCS, 2013.
15. Encrypto Group. OPPRF-PSI. https://github.com/encryptogroup/OPPRF-PSI. Accessed: 2020-10-07.
16. Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection with linear communication

from general assumptions. In ACM WPES@CCS, 2019.
17. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious pseu-

dorandom functions. In TCC, 2005.
18. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set intersection. In

EUROCRYPT, 2004.
19. Juan A. Garay, Berry Schoenmakers, and José Villegas. Practical and secure solutions for integer comparison.

In PKC, 2007.
20. Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private set intersection. In

EUROCRYPT, 2019.
21. Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set intersection. In

CRYPTO, 2019.
22. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended abstract).

In FOCS, 1984.
23. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem

for protocols with honest majority. In STOC, 1987.
24. Per A. Hallgren, Claudio Orlandi, and Andrei Sabelfeld. Privatepool: Privacy-preserving ridesharing. In

CSF, 2017.
25. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better than

custom protocols? In NDSS, 2012.
26. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In

CRYPTO, 2003.
27. Ferhat Karakoç and Alptekin Küpçü. Linear complexity private set intersection for secure two-party proto-

cols. In CANS, 2020.
28. Ferhat Karakoç, Majid Nateghizad, and Zekeriya Erkin. SET-OT: A secure equality testing protocol based

on oblivious transfer. In ARES, 2019.

https://github.com/encryptogroup/OPPRF-PSI

22 Nishanth Chandran, Divya Gupta, and Akash Shah

29. Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo hashing with a stash.
SIAM J. Comput., 39(4), 2009.

30. Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets. In
CRYPTO, 2013.

31. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF with
applications to private set intersection. In CCS, 2016.

32. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practical multi-party private
set intersection from symmetric-key techniques. In CCS, 2017.

33. B. Kreuter. Secure multiparty computation at google. In RWC, 2017.
34. Yehuda Lindell. How to simulate it - a tutorial on the simulation proof technique. Cryptology ePrint Archive,

Report 2016/046, 2016.
35. Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence of a

continuously available third party. In IEEE S & P, 1986.
36. mpc-msri. EzPC. https://github.com/mpc-msri/EzPC. Accessed: 2020-10-07.
37. Oleksandr-Tkachenko. HashingTables. https://github.com/Oleksandr-Tkachenko/HashingTables. Ac-

cessed: 2020-10-07.
38. osu-crypto. libOTe. https://github.com/osu-crypto/libOTe. Accessed: 2020-10-07.
39. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Algorithms - ESA, 2001.
40. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight private set intersection

from sparse OT extension. In CRYPTO, 2019.
41. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast, malicious private set

intersection. In EUROCRYPT, 2020.
42. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection using

permutation-based hashing. In USENIX Security, 2015.
43. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-based PSI

with linear communication. In EUROCRYPT, 2019.
44. Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient circuit-based PSI via cuckoo

hashing. In EUROCRYPT, 2018.
45. Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on OT

extension. ACM Trans. Priv. Secur., 21(2), 2018.
46. Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint Archive, Report

2005/187, 2005.
47. Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem Rastogi,

and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. In CCS, 2020.
48. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-ole. In EURO-

CRYPT, 2021.
49. Adi Shamir. How to share a secret. Commun. ACM, 22(11), 1979.
50. Adi Shamir. On the power of commutativity in cryptography. In ICALP, 1980.
51. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension for correlated

OT with small communication. In CCS, 2020.
52. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, 1986.
53. Yongjun Zhao and Sherman S. M. Chow. Are you the one to share? secret transfer with access structure.

PoPETs, 2017(1):149–169, 2017.
54. Yongjun Zhao and Sherman S. M. Chow. Can you find the one for me? In WPES@CCS, 2018.

A Prior B-PPRF and OPPRF Constructions

Pinkas et al. [43] proposed a polynomial based Batch Programmable Pseudorandom Function (B-PPRF)
construction that builts on the polynomial based PPRF construction of [32] by combining hints corre-
sponding to individual input sets in order to obtain a single hint. This is achieved by interpolating a
single polynomial for all the elements across the input sets. We present this polynomial based B-PPRF
construction in Fig. 9.

Fig. 10 describes the table-based OPPRF construction of [32]. The sender prepares a hash table by
hashing elements in input set X using random oracle O : {0, 1}` → {0, 1}u, where u = 2dlog(|X|+1)e. In
step 2, the sender samples a nonce ν until all elements in X hash to distinct positions in hash table
HT. The expected number of times that the nonce ν has to be sampled is 1/Prunique, where Prunique is

https://github.com/mpc-msri/EzPC
https://github.com/Oleksandr-Tkachenko/HashingTables
https://github.com/osu-crypto/libOTe

Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF 23

Parameters. A PRF G : {0, 1}λ × {0, 1}` → {0, 1}`.
Hint(k,X, T). Given the keys k= k0, . . . , kβ−1, the sets X= X0, . . . , Xβ−1 and target multi-sets T=T0,
. . . , Tβ−1, interpolate the polynomial p using points {Xj(i), G(kj , Xj(i))⊕ Tj(i)}j∈[β],i∈[|Xj |]. Return p as

the hint.

F (ki, hint, x). Interpolate hint as polynomial p. Return G(ki, x)⊕ p(x).

Fig. 9. Polynomial-based B-PPRF Construction [43].

Sender’s Inputs. Set X where X(i) ∈ {0, 1}` for all i ∈ [|X|] and set T sampled from T (recall
from Section 3 that T is a distribution of multi-sets whose each element is uniformly random but the
elements can be correlated) such that |X|=|T | and T (i) ∈ {0, 1}` for all i ∈ [|T |].
Receiver’s Inputs. The query x ∈ {0, 1}`.
Parameters. Random Oracle O : {0, 1}` → {0, 1}u, where u = 2dlog(|X|+1)e. The underlying PRF in
OPRF functionality is denoted by F ′ : {0, 1}λ × {0, 1}` → {0, 1}`.
1. The parties invoke an instance of FOPRF where the receiver inputs x. The sender gets a key k and

receiver gets output z ∈ {0, 1}`.
2. Sender samples ν

$←− {0, 1}λ until {O(F ′(k,X(i))‖ν) | i ∈ [|X|]} are all distinct.
3. For i ∈ [|X|], sender computes posi = O(F ′(k,X(i))‖ν), and sets HT[posi] = F ′(k,X(i))⊕ T (i).

4. For j ∈ {0, 1}m \ {posi|i ∈ [|X|]}, sender sets HT[j]
$←− {0, 1}`.

5. Sender sends HT and ν to receiver.
6. Receiver computes pos = O(z‖ν), and outputs HT[pos]⊕ z.

Fig. 10. Table-based OPPRF construction from [32]∏|X|
i=1

(
1 − i

2u

)
. This expectation is low for only small sized input sets. Hence, table-based OPPRF is a

suitable OPPRF candidate when input set X is small. Let F ′(k, ·) be the PRF in OPRF functionality. For
every programmed element X(i) and its respective target value T (i), the sender uses F ′(k,X(i)) to mask
the target value T (i) and stores this masked value at index O(F ′(k,X(i))‖ν) in HT. The empty bins in
HT are filled with random values. The hash table HT along with the nonce ν serves as the hint of this
OPRF. To evaluate the OPPRF at element x, receiver computes pos = O(z‖ν) and outputs HT[pos]⊕ z,
where z is the output it receives from OPRF functionality. From the correctness of OPRF functionality,
it follows that z = F ′(k, x). If x = X(i) for some i, then HT[O(z‖ν)]⊕ z = T (i). Thus, the correctness
of OPPRF construction immediately follows. The security of the construction relies on random oracle
assumption, security of PRF F ′ and OPRF functionality FOPRF.

	Circuit-PSI with Linear Complexity via Relaxed Batch OPPRF

