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ABSTRACT
Identity-based encryption (IBE), introduced by Shamir in 1984, elim-

inates the need for public-key infrastructure. The sender can simply

encrypt a message by using the recipient’s identity (such as their

email or IP address) without needing to look up the public key. In

particular, when ciphertexts of an IBE scheme do not reveal the

identity of the recipient, this scheme is known as an anonymous

IBE scheme. Recently, Blazy et al. (ARES’19) analyzed the trade-off

between public safety and unconditional privacy in anonymous

IBE and introduced a new notion that incorporates traceability into

anonymous IBE, called anonymous IBE with traceable identities

(AIBET). However, their construction is based on the discrete log-

arithm assumption, which is insecure in the quantum era. In this

paper, we first formalize the consistency of tracing key of the AIBET

scheme to ensure that no adversary can obtain information with the

use of wrong tracing keys. Subsequently, we present a generic for-

mulation concept that can be used to transform structure-specific

lattice-based anonymous IBE schemes into an AIBET scheme. Fi-

nally, we apply this concept to Katsumata and Yamada’s compact

anonymous IBE scheme (Asiacrypt’16) to obtain the first quantum-

resistant AIBET scheme that is secure under the ring learning with

errors assumption.

KEYWORDS
anonymous, identity-based encryption, lattice, traceable identity,

quantum-resistant

1 INTRODUCTION
Identity-based encryption (IBE) enables a sender to encrypt a mes-

sage by using the recipient’s identity (such as their email or IP

address) instead of public keys as in public-key encryption. Because

a user’s identity is identifiable, the sender does not need to look

up the recipient’s public key or verify their public-key certificate;

moreover, the recipient does not need to distribute public-key cer-

tificates. The first actual implementation of IBE was proposed in

2001 by Boneh and Franklin [8] and Cocks [11], although the con-

cept was proposed as early as 1984 by Shamir [27]. Additionally,

Boneh and Franklin [8] formalized the security model of IBE, which
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ensures that no adversary can obtain any plaintext information

from the ciphertext. Furthermore, in 2005, Abdalla et al. [1] pro-
posed an “anonymous” IBE scheme according to the concept in [5].

Specifically, a secure IBE scheme can be considered to be anony-

mous if the ciphertext not only fails to disclose plaintext, but also

fails to disclose the recipient’s information.

However, public safety may be compromised if the recipient’s

information is always hidden or has unconditional privacy. This

is because we cannot monitor the frequency of malicious people’s

encrypted communication in such contexts and prevent potential

threats in advance. For example, the government cannot keep track

of the ciphertext for some specified recipients, such as criminals.

To achieve an optimal trade-off between public safety and privacy,

Blazy et al. [6] recently introduced a new cryptography primi-

tive called anonymous IBE with traceable identities (AIBET). This

scheme, in contrast to the anonymous IBE scheme, has an additional

party called a tracker that enables the filtering of ciphertext for a

specific identity through a trace key generated by a trusted key

generation center. Blazy et al. also formulated a selectively secure

AIBET based on Boneh and Franklin’s IBE [8], and they further

presented a generic AIBET scheme transformed from any affine

message authentication code [7]. Through the generic transforma-

tion, they obtained the first adaptively secure AIBET scheme under

the standard model.

However, although Blazy et al. formulated a generic approach

to achieving AIBET, the generic approach requires the aid of pair-

ing computation and thus the security of their schemes relies on

the discrete logarithm assumption. As reported by Shor [28, 29],

there exists quantum algorithm can violate the integer factoring

and discrete logarithm assumptions in polynomial-time complex-

ity. In other words, as quantum computing matures, the AIBET

scheme of Blazy et al. [6] becomes increasingly insecure against

quantum attacks. In particular, with the advent of multiqubit quan-

tum computers—such as Sycamore and Jiuzhang proposed by Arute

et al. [4] and Zhong et al. [34] respectively—most existing crypto-

graphic protocol are expected to soon be compromised. This raises

the following question:

Is it possible to build a more secure AIBET resist
against future quantum attacks?
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1.1 Our Contribution
The purpose of this paper is to address the aforementioned question.

Accordingly, the contributions of this paper are twofold:

1.1.1 Consistency. Blazy et al. [6] considered only the correctness

of AIBET, which is whether the recipient’s identity can be traced

by using a correct tracing key, which does not guarantee that no

information is leaked even with the use of wrong tracing keys. In

contrast, in this paper, we further formalize the consistency of trac-

ing key of the AIBET to ensure that the recipient’s identity cannot

be traced using wrong tracing keys. Accordingly, we increase the

security of the AIBET scheme.

1.1.2 Lattice-based Construction. To construct a quantum-resistant

AIBET scheme, we first introduce a novel concept that can be ap-

plied to incorporate traceability into structure-specific lattice-based

anonymous IBE. Furthermore, we obtain a lattice-based AIBET

scheme by applying our concept to Katsumata and Yamada’s com-

pact anonymous IBE [19]. According to our findings, our scheme

is secure under the ring learning with errors (RLWE) assumption;

therefore, our scheme is the first quantum-resistant AIBET.

1.2 Organization of the Paper
The remainder of this paper is organized as follows. Section 2

presents some preliminaries, specifically our notations and the ex-

planation about lattices. Section 3 provides a review of the definition

and security requirements of AIBET. In Section 4, we introduce

our concept and present our quantum-resistant AIBET. Section 5

provides a security proof of our proposed scheme. Finally, Section

6 concludes the paper and provides future research directions.

2 PRELIMINARIES
2.1 Notation
We adpot the following notations for convenience. First,N,Z, andR
denotes sets of natural numbers, integers, and real numbers, respec-

tively. Nonitalic bold lowercase (e.g., a) and uppercase (e.g., A) let-
ters denote vectors and matrices, respectively, where each entry is

some number in R; italic bold lowercase (e.g., a) and uppercase (e.g.,
A) letters denote vectors and matrices, respectively, where each en-

try is an element of a ring or number field. For a vector a ∈ R𝑛 , ∥a∥𝑝
denotes the 𝐿𝑝 -norm of a. For a matrixA ∈ R𝑛×𝑛 , ∥A∥GS and 𝑠1 (A)
denote the longest column of the Gram-Schmidt orthogonalization

and the largest singular value of A, respectively. We use [·|·] to de-

note the horizontal concatenation of vectors and matrices. For two

random variables 𝑋 and 𝑌 with support Σ, the statistical distance

of 𝑋 and 𝑌 is defined as ∆(𝑋,𝑌 ) := 1

2

∑
𝑠∈Σ

��
Pr[𝑠 = 𝑋 ] − Pr[𝑠 = 𝑌 ]

��
.

For two integers 𝑎, 𝑏 ∈ N, where 𝑎 ≤ 𝑏, we use [𝑎, 𝑏] to denote

the set {𝑎, 𝑎 + 1, · · · , 𝑏 − 1, 𝑏}. In addition, for a (quotient) polyno-

mial ring 𝑅 over Z, [−𝑎, 𝑎]𝑅 ⊆ 𝑅 denotes the set of elements in 𝑅

with all coefficients in the interval [−𝑎, 𝑎]. We use the standard

notations, 𝑂, 𝑂̃, 𝑜 , and 𝜔 to classify the growth of functions. The

notation negl(𝑛) denotes as an arbitrary function 𝑓 being negligible
in 𝑛, where 𝑓 (𝑛) = 𝑜 (𝑛−𝑐 ) for every fixed constant 𝑐 . The nota-

tion poly(𝑛) denotes an arbitrary function 𝑓 (𝑛) = 𝑂 (𝑛𝑐 ) for some

constant 𝑐 . PPT is short for “probabilistic polynomial-time.” For

a vector or matrix, a superscript ⊤ denotes its transpose. Finally,

let 𝐷 be a distribution over some finite set 𝑆 ; accordingly, 𝑥 ←↪ 𝐷

signifies that 𝑥 is chosen from the distribution 𝐷 , and 𝑥 ←↪ 𝑈 (𝑆)
signifies that 𝑥 is uniformly sampled at random from 𝑆 .

2.2 Lattices
This section introduces the basic concept of lattices, which is used

in our scheme. An𝑚-dimensional lattice Λ is an additive discrete

subgroup of R𝑚 , which can be defined as follows:

Definition 2.1 (Lattice). An𝑚-dimensional lattice Λ generated

by a basis B = [b1 | · · · |b𝑛] ∈ R𝑚×𝑛 can be defined as follows:

Λ(B) = Λ(b1, · · · , b𝑛) =


𝑛∑
𝑖=1

b𝑖𝑎𝑖

������𝑎𝑖 ∈ Z
,

where b1, · · · , b𝑛 ∈ R𝑚 are 𝑛 linearly independent vectors.

In addition, for a prime 𝑞, a matrix A ∈ Z𝑛×𝑚𝑞 , and a vector

u ∈ Z𝑛𝑞 , we can define the following three sets [2, 16]:

• Λ𝑞 := {e ∈ Z𝑚 | ∃s ∈ Z𝑛 where As = e mod 𝑞}.
• Λ
⊥
𝑞 := {e ∈ Z𝑚 | Ae = 0 mod 𝑞}.

• Λ
u
𝑞 := {e ∈ Z𝑚 | Ae = u mod 𝑞}.

2.3 Discrete Gaussian Distributions
For any vector c ∈ R𝑛 and any positive real number 𝑠 , we can define

the following:

• 𝜌𝑠,c (x) = exp

(
−𝜋 ∥x−c∥

2

𝑠2

)
.

• 𝜌𝑠,c (Λ) =
∑
x∈Λ

𝜌𝑠,c (x).

The discrete Gaussian distribution over the lattice Λwith center c
and parameter 𝑠 can then be defined asDΛ,𝑠,c (x) = 𝜌𝑠,c (x)/𝜌𝑠,c (Λ)
for any x ∈ Λ. Notably, c is usually omitted if it is 0. Additionally,

the discrete Gaussian distribution over a (quotient) polynomial

ring 𝑅 in 𝑋 over R can be defined as Dcoeff
Λ,𝑠,c . For a distribution

𝑎 =
∑𝑛−1

𝑖=0
𝛼𝑖𝑋

𝑖 ∈ 𝑅 sampled from Dcoeff
Λ,𝑠

, the coefficient vector

[𝛼0, · · · , 𝛼𝑛−1] ∈ R𝑛 is sampled from DΛ,𝑠 .

We use the following lemmas, introduced in [19], in our correct-

ness and security proofs.

Lemma 2.2 (Noise Rerandomization (Lemma 1 of [19]). Let 𝑞, ℓ ,
and𝑚 be positive integers, and let 𝑟 be a positive real number satisfy-

ing 𝑟 > max

(
𝜔 (

√
log𝑚), 𝜔 (

√
log ℓ)

)
. Let b ∈ Z𝑚𝑞 be arbitrary, and

let x be chosen fromDZ𝑚,𝑟 . Then for any V ∈ Z𝑚×ℓ and positive real
number𝜎 > 𝑠1 (V), there exists a PPT algorithmReRand(V, b+x, 𝑟 , 𝜎)
that outputs b′ = bV + x′ ∈ Zℓ𝑞 where x′ is distributed statistically
close to DZℓ ,2𝑟𝜎 .

Lemma 2.3 (Lemma 4.4 of [24]). For any 𝑛-dimensional lattice Λ,
real number 𝜖 ∈ (0, 1), and 𝑠 ≥ 𝜂𝜖 (Λ), we derive the following:

Pr

[
∥x∥ > 𝑠

√
𝑛

���� x←↪ D
Λ,𝑠𝜔 (
√

log𝑛)

]
≤ 1+𝜖

1−𝜖 · 2
−𝑛 .

Lemma 2.4 (Discrete Gaussian Error Bound (Lemma 20 of

[19])). Let e be some vector in Z𝑛 and let x ←↪ DZ𝑛,𝛼𝑞 for some
𝛼𝑞 > 𝜔 (

√
log𝑛). Then the quantity |ex⊤ | treated as an integer in

[0, · · · , 𝑞−1] satisfies |ex⊤ | ≤ ∥e∥2𝛼𝑞𝜔 (
√

log𝑛) with overwhelming
probability.
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2.4 Rings and Ideal Lattices
This section briefly introduces the concepts of a ring and ideal lattice

as formulated in previous studies [21, 22]. In particular, because

our scheme is based on Katsumata and Yamada’s IBE scheme [19],

we recapitulate some useful functions posited in [19]. Please refer

to [19] for further information.

Let 𝑛 be a power of 2. The ring can then be defined as 𝑅 =

Z[𝑋 ]/Φ𝑚 (𝑋 ), where Φ𝑚 (𝑋 ) = 𝑋𝑛 + 1 is the𝑚th cyclotomic poly-

nomial and𝑚 = 2𝑛. Furthermore, for some integer 𝑞, we use 𝑅𝑞
to denote 𝑅/𝑞𝑅 = Z[𝑋 ]/(𝑞,Φ𝑚 (𝑋 )). Because we can consider the

coefficients in 𝑅 to be elements in Z𝑛 , for convenience, a coefficient-

embedding function 𝜙 : R → Z𝑛 is posited, which maps a ring

𝑎 =
∑𝑛−1

𝑖=0
𝛼𝑖𝑋

𝑖 ∈ 𝑅 to a vector [𝛼0, 𝛼1, · · · , 𝛼𝑛−1] ∈ Z𝑛 . Further-
more, the coefficient-embedding function can be extended natu-

rally to vectors and matrices. We posit the ring homomorphism

rot : 𝑅 → Z𝑛×𝑛 ; it sends 𝑎 ∈ 𝑅 to a matrix in Z𝑛×𝑛 such that the 𝑖th

row in Z𝑛×𝑛 is 𝜙

(
𝑎 · 𝑋 𝑖−1

mod Φ𝑚 (𝑋 )
)
∈ Z𝑛 . Similarly, the defini-

tion of rot can be extended to vectors and matrices. Additionally,

for a matrix R ∈ 𝑅𝑠×𝑡 , the largest singular value of R is defined as

𝑠1 (R) := max∥z∥2=1
∥z · rot(R)∥2. Finally, for a vector a ∈ 𝑅𝑘 , we

can consider a to be short if ∥𝜙 (a)∥2 is small.

A random matrix chosen from [−𝜌, 𝜌]𝑠×𝑡
𝑅

can be bounded by

Lemma 2.5. Furthermore, Lemma 2.6 pertains to ring-based lattice

regularity.

Lemma 2.5 (Lemma 2 of [19]). Let 𝜌 be a positive integer, and let
R be an 𝑠 × 𝑡 matrix chosen uniformly at random from [−𝜌, 𝜌]𝑠×𝑡

𝑅
.

Then, there exists a universal constant 𝐶 (≈ 1/
√

2𝜋) such that

Pr

[
𝑠1 (R) ≥ 𝐶 · 𝜌

√
𝑛 ·

(√
𝑠 +
√
𝑡 + 𝜔 (

√
log𝑛)

)]
= negl(𝑛).

Lemma 2.6 (Regularity Lemma (Lemma 4 of [19])). Let 𝑛 be a
power of 2; let 𝑞 be a prime larger than 4𝑛 such that 𝑞 ≡ 3 mod 8;
and let ℓ, 𝑘 ′, 𝑘 , and 𝜌 be positive integers satisfying ℓ, 𝑙𝑘 ′ ≥ 1, 𝑘 ≥ 2,
and 𝜌 < 1

2

√
𝑞/𝑛, respectively. Consider the family of hash functions

H = {ℎA (x) : [−𝜌, 𝜌]𝑘
𝑅
→ 𝑅𝑘

′
𝑞 }, where ℎA (x) = Ax for A ∈ 𝑅𝑘′×𝑘𝑞

and x ∈ 𝑅𝑘𝑞 . Then, H is a universal hash family. Additionally, for
A←↪ 𝑅𝑘

′×𝑘
𝑞 and X ←↪ 𝑈 ( [−𝜌, 𝜌]𝑘×ℓ

𝑅
), we derive the following:

∆

(
(A,AX);

(
A,𝑈 (𝑅𝑘′×ℓ𝑞 )

))
≤ ℓ

2
·

√(
𝑞𝑘
′

(2𝜌+1)𝑘

)𝑛
.

The security of our construction is based on the famous lattice

hard assumption, namely the RLWE assumption, which was first

posited by Lybashevsky et al. [21, 22].

Definition 2.7 (RLWE Assumption (Definition 1 of [19])). Let 𝜆 be

a security parameter. Given 𝑛 = 𝑛(𝜆), 𝑘 = 𝑘 (𝑛), a prime integer

𝑞 = 𝑞(𝑛) > 2, an error distribution 𝜒 = 𝜒 (𝑛) over 𝑅𝑞 , we can

determine an advantage for the RLWE problem of A as follows:

Adv
RLWE𝑛,𝑘,𝑞,𝜒
A =�����Pr

[
A

(
{𝑎𝑖 , 𝑣𝑖 }𝑘𝑖=1

)
→ 1

]
− Pr

[
A

(
{𝑎𝑖 , 𝑎𝑖𝑠 + 𝑒𝑖 }𝑘𝑖=1

)
→ 1

] �����,
where 𝑎1, · · · , 𝑎𝑘 , 𝑣1, · · · , 𝑣𝑘 , 𝑠 ←↪ 𝑈 (𝑅𝑞) and 𝑒1, · · · , 𝑒𝑘 ←↪ 𝜒 . We

suggest that the RLWE𝑛,𝑘,𝑞,𝜒 assumption holds if for all PPT A,

Adv
RLWE𝑛,𝑘,𝑞,𝜒
A is negligible.

Theorem 2.8 (Theorem 1 of [19]). Let𝛼 be a positive real number,
let𝑚 be a power of 2, let ℓ be an integer, letΦ𝑚 (𝑋 ) = 𝑋𝑛+1 be the𝑚th
cyclotomic polynomial where𝑚 = 2𝑛, let 𝑅 = Z[𝑋 ]/(Φ𝑚 (𝑋 )), let𝑞 ≡
3 mod 8 be a prime such that there exists another prime 𝑝 ≡ 1 mod 𝑚

satisfying 𝑝 ≤ 𝑞 ≤ 2𝑝 , and let also 𝛼𝑞 ≥ 𝑛3/2𝑘1/4𝜔 (log
9/4 𝑛). Ac-

cordingly, there exists a probabilistic polynomial-time quantum re-
duction from an 𝑂̃ (

√
𝑛/𝛼)-approximate SIVP (or SVP) to RLWE𝑛,𝑘,𝑞,𝜒

with 𝜒 = Dcoeff
Z𝑛,𝛼𝑞

.

2.5 Trapdoor for Rings
Before presenting some useful functions in this section, we define

the gadget matrix. Let g𝑏 = [1|𝑏 | · · · |𝑏𝑘′−1 |0] ∈ 𝑅𝑘𝑞 be a gadget

matrix for 𝑏 ∈ N and 𝑘 ≥ 𝑘 ′ = ⌊log𝑏 𝑞⌋, and let g−1

𝑏
(·) be a deter-

ministic polynomial time algorithm [23] that takes the input u ∈ 𝑅𝑘𝑞
and outputs R ∈ [−𝑏,𝑏]𝑘×𝑘

𝑅
such that g𝑏R = u.

The following paragraphs provides a recapitulation of a key

trapdoor function and key sampler functions in the “ring setting”

defined in Lemma 5 of [19]; these functions are used in our con-

struction.

Let 𝑛 be a power of 2 an 𝑞 be a prime larger than 4𝑛 such that

𝑞 ≡ 3 mod 8; moreover, consider some 𝑏, 𝜌 ∈ Z+ satisfying 𝜌 <
1

2

√
𝑞/𝑛. In addition, let log

1
(·) := log

2
(·). According, we derive the

following lemmas.

Lemma 2.9 (TrapGen) [23]). There exists a randomized poly-
nomial time algorithm TrapGen(1𝑛, 1𝑘 , 𝑞, 𝜌) that outputs a vec-
tor a ∈ 𝑅𝑘𝑞 and a matrix Ta ∈ 𝑅𝑘×𝑘 when 𝑘 ≥ 2 log𝜌 𝑞. Here,

rot(a⊤)⊤ ∈ Z𝑛×𝑛𝑘𝑞 is a full-rank matrix and rot(Ta) ∈ Z𝑛𝑘×𝑛𝑘𝑞 is a
basis for Λ

⊥ (rot(a⊤)⊤). Furthermore, a is negl(𝑛)-close to uniform

and ∥rot(Ta)∥GS = 𝑂

(
𝑏𝜌 ·

√
𝑛 log𝜌 𝑞

)
.

Lemma 2.10 (SampleLeft [9]). Consider a, b ∈ 𝑅𝑘𝑞 where
rot(a⊤)⊤, rot(b⊤)⊤ ∈ Z𝑛×𝑛𝑘𝑞 are full-rank matrices; an element
𝑢 ∈ 𝑅𝑞 , a matrix Ta ∈ 𝑅𝑘×𝑘 such that rot(Ta) ∈ Z𝑛𝑘×𝑛𝑘
is a basis for Λ

⊥ (rot(a⊤)⊤), and a Gaussian parameter 𝜎 >

∥rot(Ta)∥GS · 𝜔 (
√

log𝑛𝑘). Accordingly, there exists a randomized
polynomial time algorithm SampleLeft(a, b, 𝑢, Ta, 𝜎) that outputs a
vector e ∈ 𝑅2𝑘 sampled from a distribution that is negl(𝑛)-close to
Dcoeff

Λ
⊥
𝜙 (𝑢) ( [rot(a⊤)⊤ |rot(b

⊤)⊤ ]),𝜎 .

Lemma 2.11 (SampleRight [3]). Consider a, g𝑏 ∈ 𝑅𝑘𝑞 where
rot(a⊤)⊤, rot(g𝑏 ) ∈ Z𝑛×𝑛𝑘𝑞 are full-rank matrices; the elements
𝑦 ∈ 𝑅∗𝑞 and 𝑢 ∈ 𝑅𝑞 ; a matrix R ∈ 𝑅𝑘×𝑘 , a matrix
Tg𝑏 ∈ 𝑅𝑘×𝑘 such that rot(Tg𝑏 )) ∈ Z

𝑛𝑘×𝑛𝑘 is a basis for
Λ
⊥ (rot(g𝑏 )); and a Gaussian parameter 𝜎 > ∥rot(Tg𝑏 )∥GS ·

𝜔 (
√

log𝑛𝑘). Accordingly, there exists a randomized polynomial
time algorithm SampleLeft(a, g𝑏 , R, 𝑦,𝑢, Tg𝑏 ), 𝜎) that outputs a vec-
tor e ∈ 𝑅2𝑘 sampled from a distribution that is negl(𝑛)-close to
Dcoeff

Λ
⊥
𝜙 (𝑢) ( [rot(a⊤)⊤ |rot(b

⊤)⊤ ]),𝜎 , where b = aR + 𝑦g𝑏 .

Lemma 2.12 (Invertible Gadget Algorithm [23]). Let 𝑘 ≥
⌈log𝑏 𝑞⌉. There exists a publicly known matrix Tg𝑏 such that

3
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rot(Tg𝑏 ) ∈ Z
𝑛𝑘×𝑛𝑘 is a basis for the lattice Λ

⊥ (rot(g𝑏 )) and
∥rot(Tg𝑏 )∥GS ≤

√
𝑏2 + 1.

2.6 Homomorphic Computation
We apply the PubEval𝑑 : (𝑅𝑘𝑞 )𝑑 → 𝑅𝑘𝑞 function presented in [19]

in our construction to hash identities to 𝑅𝑘𝑞 . Let 𝑑 ∈ N, and let

b1, · · · , b𝑑 ∈ 𝑅𝑘𝑞 . This function can be defined as follows:

PubEval𝑑 (b1, · · · , b𝑑 ) =
b1 if 𝑑 = 1;

b1 · g−1

𝑏

(
PubEval𝑑−1

(b2, · · · , b𝑑 )
)

if 𝑑 ≥ 2.

Lemma 2.13 (Lemma 6 of [19]). Let 𝑦1, · · · , 𝑦𝑑 be elements in
𝑅; let a, b1, · · · , b𝑑 be vectors in 𝑅𝑘𝑞 ; and let R1, · · · , R𝑑 be matrices
in 𝑅𝑘×𝑘 such that b𝑖 = aR𝑖 + 𝑦𝑖g𝑏 for 𝑖 ∈ [𝑑]. Furthermore, we
assume that 𝑠1 (R𝑖 ) ≤ 𝐵, ∥𝜙 (𝑦𝑖 )∥1 ≤ 𝛿 for 𝑖 ∈ [𝑑]. Then, there exists
an efficient algorithm TrapEval𝑑 that takes R1, · · · , R𝑑 , 𝑦1, · · · , 𝑦𝑑 as
inputs and outputs R′ ∈ 𝑅𝑘×𝑘 such that

PubEval𝑑
(
b1, · · · , b𝑑

)
= aR′ + 𝑦1 · · ·𝑦𝑑g𝑏 ∈ 𝑅𝑘𝑞 ,

and 𝑠1 (R′) ≤ 𝐵𝛿𝑑−1 + 𝐵𝑏𝑛𝑘
(
𝛿𝑑−1−1

𝛿−1

)
.

3 ANONYMOUS IBE WITH TRACEABLE
IDENTITIES

In this section, we consider the system definition and security

model of AIBET provided by Blazy et al. [6]. However, Blazy et al.
considered only the correctness requirement in AIBET. Therefore,

we cannot guarantee that no information is leaked with the use

of wrong tracing keys. Hence, in this paper, we further formalize

the consistency requirement of AIBET to ensure that there exists

no adversary who can obtain any information of the recipient’s

identity with the use of wrong tracing keys.

Definition 3.1. The AIBET scheme comprises six algorithms

(Setup,USKG, TSKG, Enc,Dec, TVerify) along with an identity

space ID, which are described as follows:

• Setup(1𝜆): Given a security parameter 𝜆, the setup algorithm
outputs a master public keympk and master secret keymsk.
• USKG (mpk,msk, id): Given a master public keympk, a mas-

ter secret key msk, and an identity id ∈ ID, the secret key
generation algorithm outputs a secret key uskID for an iden-

tity id.
• TSKG (mpk,msk, id): Given a master public key mpk, a mas-

ter secret key msk, and an identity id ∈ ID, the tracing key
generation algorithm outputs a tracing key tskid for identity

id.
• Enc(mpk, id,M): Given a master public key, an identity id,
and a messageM, the encryption algorithm outputs a cipher-

text C.
• Dec(uskid,C): Given a user’s secret key uskid and a cipher-

text C, the decryption algorithm outputs a messageM.

• TVerify(tskid,C): Given a user’s tracing key tskid and a ci-

phertext C, the trace verification algorithm checks whether

the ciphertext C is targeted for the identity id. If yes, it out-
puts 1; otherwise, it outputs 0.

Definition 3.2 (Correctness). Consider all security parameters

𝜆; all pairs (mpk,msk) generated by Setup(1𝜆); all messages

M; all identities id ∈ ID; all uskid and tskid generated by

USKG (mpk,msk, id) and TSKG (mpk,msk, id), respectively; and all
ciphertextsC generated by Enc(mpk, id,M). Accordingly, we derive
the following:

Pr[Dec(uskid,C) = M ∧ TVerify(tskid,C) = 1] ≥ 1 − negl(𝜆).

Definition 3.3 (Consistency). Consider all security parameters

𝜆; all pairs (mpk,msk) generated by Setup(1𝜆); all messages M,

all identities id, id′ ∈ ID, where id ≠ id′; all uskid, uskid′ , tskid,
and tskid′ generated byUSKG (mpk,msk, id),USKG (mpk,msk, id′),
TSKG (mpk,msk, id), and TSKG (mpk,msk, id′), respectively; and
all ciphertexts C generated by Enc(mpk, id,M). Accordingly, we
derive the following:

Pr

[
TVerify(tskid′,C) = 0

]
≥ 1 − negl(𝜆).

The security requirement of the AIBET scheme is almost the

same as that of the anonymous IBE scheme. The only difference is

that adversary is allowed to query the tracing key on any identity

except for the challenged identity. We present the following game

to model this security between an adversary A and challenger B
for AIBET scheme Π.
Game - IND-ANON-ID-CPA:
• Setup. The challenger B runs Setup(1𝜆) to generate

(mpk,msk) and give mpk to A.

• Phase 1. A is allowed to adaptively query the secret key

generation and tracing key generation oracles as follows:

– OUSKG
: After receiving an identity id ∈ ID submitted by

A, B returns uskid ←↪ USKG (mpk,msk, id).
– OTSKG

: After receiving an identity id ∈ ID submitted by

A, B returns tskid ←↪ USKG (mpk,msk, id).
• Challenge. After Phase 1, A outputs a challenge message

M and an identity id∗ ∈ ID to B, where id has not been

queried to oracles. B picks a random coin b ←↪ 𝑈 ({0, 1})
and a random ciphertext C from the ciphertext space. If

𝑏 = 0, then B outputs a ciphertext Enc(mpk, id∗,M) → C∗;
otherwise, B sets C∗ = C. Subsequently, B returns C∗ as a
challenge to A.

• Phase 2. A can continue to query the oracles as executed

in Phase 1. The only restriction is thatA cannot query these

oracles on the challenge identity id∗

• Guess. Finally, A outputs a guess 𝑏 ′. If 𝑏 ′ = 𝑏, A wins the

game. The advantage ofA winning the game can be defined

as follows:

AdvAIBETA,Π =

���Pr[𝑏 ′ = 𝑏] − 1

2

���.
Definition 3.4 (IND-ANON-ID-CPA for AIBET). For all PPT adver-

saries A, we suggest that AIBET scheme Π is IND-ANON-ID-CPA

secure if AdvAIBETA,Π is negligible.

4 OUR CONCEPT AND CONSTRUCTION
This section presents our concept and the AIBET scheme that is

secure under the RLWE assumption.
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4.1 Overview of Our Concept
Before introducing our concept, we provide an overview of the

framework presented in [2]; this is because the current standard

model secure lattice-based anonymous IBE [3, 9, 19, 20, 30, 32, 33]

follows this framework. Consider the single-bit selectively se-

cure anonymous IBE scheme presented in [2] as an example. Let

A1,A2,B, and 𝑢 be public parameters; let a user’s identity id be

associated with the matrix [A|H(id)]; let the user’s secret USKid
be generate from the SampleLeft function; and let 𝐹id · USKid = 𝑢,

where 𝐹id = [A0 |A1 + 𝐻 (id) · B]. The ciphertext has two parts

C =

𝑐0 = 𝑢𝑠 + 𝑥 + 𝑏 ⌊𝑞
2
⌋, c1 = 𝐹id𝑠 +

[
𝑦

𝑧

], where 𝑐0 is related to

the message 𝑏 and c1 is related to the identity. If the parameters

are set correctly, the message 𝑏 can be recovered by computing

𝑤 = 𝑐0 − USKid · c1 and 𝑏 = 1 if 𝑤 is close to ⌊𝑞/2⌋, and 𝑏 = 0

otherwise.

To incorporate traceability into lattice-based IBE, an intuitive

approach is to generate another formal part of the ciphertext; that

is, 𝑐 ′
0
= 𝑢 ′𝑠 + 𝑥 ′ according to the original scheme. Here, let 𝑢 ′ be an

added public parameter with the same distribution as𝑢. The tracing

key TSKid is generated in a manner similar to that of the user’s

secret key, except that 𝐹id ·TSKid = 𝑢 ′. If the result𝑤 ′ = 𝑐 ′
0
−TSKid ·

c1 is “not” close to ⌊𝑞/2⌋, then the recipient can be considered to be

identity id. However, in this approach, if the encrypter is malicious

and wishes to hide the recipient’s identity, he/she may randomly

generate 𝑐 ′
0
such that𝑤 ′ cannot be computed correctly, then tracker

cannot trace the recipient of the ciphertext even if the tracker has

the tracing key.

To solve the aforementioned problem, two conditions have to be

satisfied: (1) 𝑐0 must connect to 𝑐 ′
0
; (2) identity can be traced even

if 𝑐 ′
0
does not be correctly generated. Hence, we carefully make the

following adjustments:

• each user’s secret key USKid is sampled to satisfy 𝐹id ·
USKid = (𝑢 + 𝑢 ′);
• there are two tracing keys (TSKid,1, TSKid,2) for an identity

id such that 𝐹id · TSKid,1 = 𝑢 ′ and 𝐹id · TSKid,2 = 𝑢 ′;
• for decryptor, he/she must first compute 𝑐0 = 𝑐0 + 𝑐 ′

0
for

decryption, instead of only using 𝑐0;

• for tracker, for 𝑖 ∈ {1, 2}, he/she first obtains 𝑤𝑖 = 𝑐 ′
0
−

TSKid,𝑖 · c1. Then, he/she compares𝑤𝑖 with ⌊𝑞/2⌋ and sets

𝑏𝑖 = 1 if 𝑤𝑖 close to ⌊𝑞/2⌋, and 𝑏𝑖 = 0, otherwise. We say

that the ciphertext is traced if 𝑏1 = 𝑏2.

At a high level, compared with the approach in [2], our ap-

proach has only one additional public parameter 𝑢 ′, and the means

through which a secret key is generated is changed (the parameter

of SampleLeft is changed to 𝑢 + 𝑢 ′). Specifically, this heuristic can
be directly incorporated into pre-existing anonymous IBE schemes

[3, 9, 19, 20, 30, 32, 33] based on [2].
1

1
Notably, because the former part of the ciphertext in lattice-based anonymous IBE

schemes [12, 16, 26] that are secure under random oracle model is independent from

of the identity, our concept is not applicable to these schemes, which is consistent

with the description in [6].

4.2 Lattice-based AIBET
To achieve efficiency and security, we apply our concept to Kat-

sumata and Yamada’s anonymous IBE [19], which was proven to

be IND-ANON-ID-CPA secure under the standard model.

Let the identity space of our proposed scheme be ID ⊆ {0, 1}𝜅
for some 𝜅 ∈ N, and let the message space be {0, 1}𝑛 ⊂ 𝑅. In

addition, we use an efficiently computable injetive map 𝑆 to map

the identity id ∈ {0, 1}𝜅 to a subset 𝑆 (id) of [1, ℓ]𝑑 , where ℓ =

⌈𝜅1/𝑑 ⌉ and 𝑑 ∈ N. The parameters of the scheme are 𝑛 = 𝑛(𝜆), 𝑏 =

𝑏 (𝑛), 𝜌 = 𝜌 (𝑛),𝑚 = 2𝑛, 𝑞 = 𝑞(𝑛), 𝑘 = 𝑘 (𝑛), ℓ = ℓ (𝑛), 𝛼 = 𝛼 (𝑛), 𝛼 ′ =
𝛼 ′(𝑛) and 𝜎 = 𝜎 (𝑛). This choice of parameters is justified in Section

4.4.

• Setup(1𝜆) → (mpk,msk):
(1) Compute a ∈ 𝑅𝑘𝑞 associated with its trapdoor Ta ∈ 𝑅𝑘×𝑘 ,

where (a, T) ←↪ TrapGen(1𝑛, 1𝑘 , 𝑞, 𝜌).
(2) Sample two uniformly random polynomials 𝑢1, 𝑢2 ←↪

𝑈 (𝑅𝑞), and a polynomial vector b0 ←↪ 𝑈 (𝑅𝑘𝑞 ).
(3) For (𝑖, 𝑗) ∈ [𝑑] × [ℓ], sample random polynomial vectors

b𝑖, 𝑗 ←↪ 𝑈 (𝑅𝑘𝑞 ).
(4) Define a deterministic function H : ID → 𝑅𝑘𝑞 :

H(id) =
b0 +

∑
( 𝑗1, · · · , 𝑗𝑑 ) ∈𝑆 (id)

PubEval𝑑 (b1, 𝑗1 , b2, 𝑗2 , · · · , b𝑑,𝑗𝑑 ) ∈ 𝑅
𝑘
𝑞 .

(5) Output mpk := (a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑 ]×[ℓ ] ,H) and
msk := Ta .

• USKG (mpk = (a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑 ]×[ℓ ] ,H),msk =

Ta, id ∈ ID) → uskid:
(1) Compute e←↪ SampleLeft(a,H(id), 𝑢1 + 𝑢2, Ta, 𝜎).
(2) Output uskid := e ∈ 𝑅2𝑘

.

• TSKG (mpk = (a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑 ]×[ℓ ] ,H),msk =

Ta, id ∈ ID) → tskid:
(1) Compute f

1
←↪ SampleLeft(a,H(id), 𝑢2, Ta, 𝜎).

(2) Compute f
2
←↪ SampleLeft(a,H(id), 𝑢2, Ta, 𝜎).

(3) Output tskid := (f
1
, f

2
) ∈ 𝑅2𝑘 × 𝑅2𝑘

.

• Enc(mpk = (a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑 ]×[ℓ ] ,H), id,M ∈
{0, 1}𝑛 ⊂ 𝑅) → C:

(1) Sample 𝑠 ←↪ 𝑈 (𝑅𝑞), 𝑥0,1, 𝑥0,2 ←↪ Dcoeff
Z𝑛,𝛼𝑞

.

(2) Sample x1, x2 ←↪

(
Dcoeff
Z𝑛,𝛼′

)𝑘
(3) Compute 𝑐0,1 = 𝑠𝑢1 + 𝑥0,1 + ⌊𝑞/2⌉M, 𝑐0,2 = 𝑠𝑢2 + 𝑥0,2, and

c1 = 𝑠 [a|H(id)] + [x1 |x2].
(4) Output C := (𝑐0,1, 𝑐0,2, c1) ∈ 𝑅𝑞 × 𝑅𝑞 × 𝑅2𝑘

𝑞 .

• Dec(uskid = e,C = (𝑐0,1, 𝑐0,2, c1)) → M:

(1) Compute 𝑐0 = 𝑐0,1 + 𝑐0,2 ∈ 𝑅𝑞 .
(2) Compute𝑤 =

( ⌊
(2/𝑞) · 𝜙 (𝑐0 − c1e⊤)

⌉
mod 2

)
, where the

rounding function ⌊·⌉ is applied component-wise.

(3) Output M := 𝑤 .

• TVerify(tskid = (f
1
, f

2
),C = (𝑐0,1, 𝑐0,2, c1)) → 1/0:

(1) For 𝑖 ∈ {1, 2}, compute 𝑏𝑖 =(⌊
(2/𝑞) · 𝜙 (𝑐0,2 − c1f⊤𝑖 )

⌉
mod 2

)
, where the round-

ing function ⌊·⌉ is applied component-wise.

(2) If𝑤1 = 𝑤2, output 1; otherwise, output 0.
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4.3 Correctness and Consistency
Lemma 4.1 (Correctness). Given a pair compris-

ing a master public key and master secret key (mpk =

(a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑 ]×[ℓ ] ,H),msk = Ta) ←↪ Setup(1𝜆),
given a ciphertext C = (𝑐0,1, 𝑐0,2, c1) ←↪ Enc(mpk, id,M), given a
secret key uskid = e, and given a tracing key tskid = (f

1
, f

2
) for

user id, our proposed scheme is correct if the norm of the error term is
bounded by 𝑞/5 with overwhelming probability.

Proof. The correctness of our scheme is proven ifDec(uskid,C)
and TVerify(tskid,C) return the message M and 1, respectively.

We first consider the correctness of the decryption algorithm. In

the Dec algorithm, we have

𝜙 (𝑐0 − c1e⊤) =
⌊
𝑞
2

⌉
𝜙 (M) +𝜙 (𝑥0,1) + 𝜙 (𝑥0,2) − 𝜙 ( [x1 |x2])rot(e⊤)︸                                             ︷︷                                             ︸

error term

,

where 𝑐0 = 𝑐0,1 + 𝑐0,2.

We next analyze the norm of the error term by following the

analogue of the Proof of Lemma 10 in [19]. Because 𝑥0,1 and

𝑥0,2 are chosen from Dcoeff
Z𝑛,𝛼𝑞

, the vectors 𝜙 (𝑥0,1) and 𝜙 (𝑥0,2) are
subgaussians with the parameter 𝛼𝑞. Thus, let each 𝑗th entry

of 𝜙 (𝑥0,1), 𝜙 (𝑥0,2), |𝜙 (𝑥0,1) 𝑗 |, |𝜙 (𝑥0,2) 𝑗 | be less than 𝛼𝑞𝜔 (
√

log𝑛)
with overwhelming probability. Similarly, because x1 and x2

are chosen from

(
Dcoeff
Z𝑛,𝛼′

)𝑘
, we have 𝜙 ( [x1 |x2]) ←↪ DZ2𝑛𝑘 ,𝛼′ .

In addition, according to the definition of the rot function, the
norm of each column of rot(e⊤) is ∥𝜙 (e)∥2, where 𝜙 (e) ←↪

D
Λ
⊥
𝜙 (𝑢

1
+𝑢

2
) ( [rot(a⊤)⊤ |rot(H(id)⊤)⊤ ]),𝜎

. According to Lemmas 2.3 and

2.4, we have, for each 𝑗 th column, |𝜙 ( [x1 |x2])rot(e⊤) 𝑗 | ≤ ∥𝜙 (e)∥2 ·
𝛼 ′𝜔 (

√
log𝑛𝑘) ≤

√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘) with overwhelming probabil-

ity.

Hence, we can conclude that each 𝑗th entry of the error

term is bounded as

��𝜙 (𝑥0,1) + 𝜙 (𝑥0,2) − 𝜙 ( [x1 |x2])rot(e⊤)
�� ≤

2𝛼𝑞𝜔

(√
log𝑛 +

√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘)

)
with over-

whelming probability. If the assumption holds, i.e.,

2𝛼𝑞𝜔

(√
log𝑛 +

√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘)

)
≤ 𝑞/5, then we can ob-

tain the message M correctly with overwhelming probability.

Subsequently, we analyze the correctness of the trace verification

algorithm. In the TVerify algorithm, for 𝑖 = 1, 2, we have

𝜙 (𝑐0,2 − c1f⊤𝑖 ) = 𝜙 (𝑥0,2) − 𝜙 ( [x1 |x2])rot(f⊤𝑖 )︸                                ︷︷                                ︸
error term

.

Using the preceding steps of the proof, we can

also deduce that each 𝑗th entry of the error term

is bounded as

����𝜙 (
𝑥0,2 − 𝜙 ( [x1 |x2])rot(f⊤𝑖 )

)���� ≤

𝛼𝑞𝜔

(√
log𝑛 +

√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘)

)
with overwhelm-

ing probability. If the assumption holds (i.e.,

𝛼𝑞𝜔

(√
log𝑛 +

√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘)

)
≤ 𝑞/5), then we can

trace the identity of the recipient correctly with overwhelming

probability. □

Lemma 4.2 (Consistency). Consider a pair compris-
ing a master public key and master secret key (mpk =

(a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑 ]×[ℓ ] ,H),msk = Ta) ←↪ Setup(1𝜆); a
ciphertext C = (𝑐0,1, 𝑐0,2, c1) ←↪ Enc(mpk, id,M); a secret key
uskid′ = e′; and a tracing key tskid′ = (f ′1, f

′
2
) for the user id′, where

id ≠ id′. Accordingly, our proposed scheme is consistent if the norm
of the error term is bounded by 𝑞/5 with overwhelming probability.

Proof. The proof of consistency is analogous to the proof of

Lemma 4.1. Specifically, consistency is proven if TVerify(tskid′,C)
returns 0.

Consider the process of the trace verification algorithm. In the

TVerify algorithm, for 𝑖 = 1, 2, we have

𝜙 (𝑐0,2 − c1f ′𝑖
⊤) =

𝜙 (𝑠𝑢2) − 𝜙 (𝑠 [a|H(id)])rot(f ′𝑖
⊤) + 𝜙 (𝑥0,2) − 𝜙 ( [x1 |x2])rot(f ′𝑖

⊤)︸                                 ︷︷                                 ︸
error term

.

According to the aforementioned assumption, the error term is

bounded only by 𝑞/5. Because 𝑢2 ∈ 𝑅𝑞 , a ∈ 𝑅𝑘𝑞 , and H(id) ∈ 𝑅𝑘𝑞 ,

the term 𝜙 (𝑠𝑢2)−𝜙 (𝑠 [a|H(id)])rot(f ′𝑖
⊤) cannot be eliminated. The

result of TVerify is not composed solely of 0 elements, so the al-

gorithm outputs 0. Therefore, if the assumption holds, the tracker

cannot trace the identity of the recipient correctly with overwhelm-

ing probability. □

4.4 Parameter Selection
To satisfy the algorithms (TrapGen and SampleLeft), the security
proofs, and the requirement for the norm of error term to be less

than 𝑞/5 (for correctness and consistency to hold), the following

requirements must be satisfied.

• the norms of the error terms 𝛼𝑞𝜔 (
√

log𝑛) +√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘) and 2𝛼𝑞𝜔 (

√
log𝑛)+

√
𝑛𝑘𝛼 ′𝜎𝜔 (

√
log𝑛𝑘)

are less than 𝑞/5 with overwhelming probability (required

by Lemma 4.1 and 4.2),

• 𝜌 < 1

2

√
𝑞/𝑛 and 𝑘 ≥ 2 log𝜌 𝑞 to ensure that TrapGen can

function correctly (required by Theorem 2.9).

• 𝑘 ≥ ⌈log𝑏 𝑞⌉ such that the gadget matrix g𝑏 can be defined

(required by Theorem 2.12),

• 𝜎 > 𝑂

(
𝑏𝜌 ·

√
𝑛 log𝜌 𝑞

)
· 𝜔 (

√
log𝑛𝑘) and 𝜎 >

𝑠1 (R)
√
𝑏2 + 1 · 𝜔 (

√
log𝑛) such that the algorithms

SampleLeft and SampleRight function correctly (re-

quired by Theorem 2.10 and 2.11). Here, 𝑠1 (R) ≤

𝐶 ′′ · 𝜅𝜌
√
𝑛

(√
𝑘 + 𝜔 (

√
log𝑛)

) (
(𝑐𝑛)𝑑−1 + 𝑏𝑛𝑘 (𝑐𝑛)

𝑑−1−1

𝑐𝑛−1

)
for

some absolute constant 𝐶 ′′,

• 𝑘
2

(
𝑞2

(2𝜌+1)𝑘

)𝑛/2
= negl(𝑛) such that regularity lemma can

be applied in the security proof (required by Lemma 2.6),

• 𝛼𝑞 ≥ 𝑛3/2𝑘1/4𝜔 (log
9/4 𝑛) such that a worst-case-to-average-

case reduction is achieved (required by Theorem 2.8),

• 𝛼 ′ > 2𝛼𝑞(𝑠1 (R) + 1) and 𝛼𝑞 > 𝜔 (
√

log𝑛𝑘) such that the

ReRand algorithm works correctly in the security proof (re-

quired by Lemma 2.2).

In [19], the author provided two candidate parameter sets, and

the reader can consult that study for more details.
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5 SECURITY PROOF
This section demonstrates that our above proposed scheme is adap-

tively IND-ANON-ID-CPA secure. Because our scheme is based

on Katsumata and Yamada’s IBE [19], we use the formulation they

described for their security proof to implement the following proof.

Theorem 5.1. Our proposed AIBET scheme is adaptively IND-
ANON-ID-CPA secure assuming that RLWE

𝑛,𝑘+2,𝑞,Dcoeff
Z𝑛,𝛼𝑞

is hard,

where the ciphertext space is C = 𝑅𝑞 × 𝑅𝑞 × 𝑅2𝑘
𝑞 .

Proof. Let A be a PPT adversary, 𝜖 = 𝜖 (𝑛) be the advantage
of A, and 𝑄 = 𝑄 (𝑛) be the upper bound of the number of secret

key generation and tracing key generation oracles. Because A
is a PPT adversary and 𝑛 = 𝑂 (𝜆𝛿 ), where 𝛿 is a constant, we

have 4(𝑑𝑄 + 1) ≤ 𝑛𝜑 for all elements 𝑛 that are sufficiently large,

where 𝜑 ∈ N. Similarly, suppose that A breaks the security of our

proposed scheme. Accordingly, we have 2𝜖 ≥ 𝑛−𝜓 for infinitely

many elements 𝑛, where 𝜓 ∈ N. Therefore, for infinitely many

𝑛 ∈ N, we have

4𝑑𝑄 ≤ 𝑛𝜉 for all 𝑛 ∈ N and

𝜖

2(𝑑𝑄 + 1) ≥
1

𝑛𝜉
, (1)

where 𝜉 = 𝜑 + 𝜓 . Because 𝜉 and 𝑑 are constants, assuming that

𝑑 (𝜉 − 1) < 𝑛, the aforementioned statement holds if 𝑛 is sufficiently

large.

To perform the proof, we execute a sequence of games in which

the first game is identical to the IND-ANON-ID-CPA game defined

in Section 3 and A has no advantage in the last game. In addition,

we define 𝑋𝑖 to be the event that A wins Game𝑖 .

Game0: This game is identical to the real IND-ANON-ID-CPA game.

Suppose A outputs a guess
¯𝑏 at the end of the game, by the defini-

tion of the advantage of A, we have���Pr[𝑋0] − 1

2

��� = ���Pr[ ¯𝑏 = 𝑏] − 1

2

��� = 𝜖 .

Game1: This game is similar to the previous game, except that at the

end of the game, B performs additional steps, which are described

as follows:

(1) B picks y = (𝑦0, {𝑦𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑,ℓ ] ), where 𝑦0 ←↪

𝑈 ( [−𝜅 (𝜉𝑛)𝑑 ,−1]𝑅,(𝜉−1)𝑑+1) and 𝑦𝑖, 𝑗 ←↪ 𝑈 ( [1, 𝑛]𝑅,𝜉 ). Here,
for two integers 𝑣0, 𝑣1 ∈ Z, where 𝑣0 ≤ 𝑣1, the positive

integer𝑤 ∈ N, [𝑣0, 𝑣1]𝑅,𝑤 is denoted as

[𝑣0, 𝑣1]𝑅,𝑤 :=
𝑤−1∑
𝑖=0

𝑎𝑖𝑋
𝑖 |𝑎𝑖 ∈ [𝑣0, 𝑣1] for all 𝑖 ∈ [0,𝑤 − 1]

 ⊆ 𝑅.

(2) Let id∗ be the challenged identity and id1, · · · id𝑄 be the

identities queried on the secret key generation and tracing

key generation oracles,B then checks whether the following

condition is satisfied:

Fy (id∗) = 0 ∧ Fy (id1) ∈ 𝑅∗𝑞 ∧ · · · ∧ Fy (id𝑄 ) ∈ 𝑅∗𝑞,
where Fy : ID → 𝑅𝑞 is defined as:

Fy (id) = 𝑦0 +
∑

( 𝑗1, · · · , 𝑗𝑑 ) ∈𝑆 (id)
𝑦1, 𝑗1 · · ·𝑦𝑑,𝑗𝑑 .

If this condition does not hold, B aborts the game and sets

A’s guess to 𝑏 ′ ←↪ {0, 1}. Otherwise, B sets 𝑏 ′ = ¯𝑏.

Lemma 5.2. For any adversary A, we have���Pr[𝑋1] − 1

2

��� ≥ 1

(𝜅𝜉𝑑𝑛𝑑 ) (𝜉−1)𝑑+1

(
𝜖
2
− 𝑑𝑄

𝑛𝜉

)
.

Proof. The proof is executed in a similar manner to the proof

of Lemma 11 in [19]. Due to space constraints, please refer to [19]

for more details. □

Game2: This game is differs only slightly from the previous game,

with the difference being the manner of choosing b0, b𝑖, 𝑗 . Specifi-
cally, in place of choosing b0, b𝑖, 𝑗 ←↪ 𝑈 (𝑅𝑘𝑞 ), b0, b𝑖, 𝑗 are chosen as

follows:

b0 = aR0 + 𝑦0g𝑏 , b𝑖, 𝑗 = aR𝑖, 𝑗 + 𝑦𝑖, 𝑗g𝑏 ,

for (𝑖, 𝑗) ∈ [𝑑] × [ℓ]. According to regularity lemma (Lemma

2.6), the distributions of (a, b0, b𝑖, 𝑗 ) in Game1 and Game2 are

negl-close. Therefore, we have | Pr[𝑋1] − Pr[𝑋2] | = negl(𝑛).

Game3: In the previous games, when the condition

Fy (id∗) = 0 ∧ Fy (id1) ∈ 𝑅∗𝑞 ∧ · · · ∧ Fy (id𝑄 ) ∈ 𝑅∗𝑞,

is not satisfied, B aborts at the end of the game. In the current

game, B moves the abort time forward. In other words, as long

as the condition is not satisfied, B aborts the game. Because

no actual change occurs between Game2 and Game3, we have

Pr[𝑋2] = Pr[𝑋3].

Before moving to the next game, we define and provide the

following results. First, we can define Rid for an identity as follows:

Rid =

R0 +
∑

( 𝑗1, · · · , 𝑗𝑑 ) ∈𝑆 (id)
TrapEval𝑑 (R1, 𝑗1 , · · · , R𝑑,𝑗𝑑 , 𝑦1, 𝑗1 , · · · , 𝑦𝑑,𝑗𝑑 ) .

Additionally, according to the definition of Rid,H(id), PubEval, and
Lemma 2.13, we have

H(id) = b0 +
∑

( 𝑗1, · · · , 𝑗𝑑 ) ∈𝑆 (id)
PubEval𝑑 (b1, 𝑗1 , · · · , b𝑑,𝑗𝑑 )

= aRid + Fy (id)g𝑏 .
Furthermore, we consider the bound of 𝑠1 (Rid). First, because

𝑦𝑖, 𝑗 is chosen from [1, 𝑛]𝑅,𝜉 , we have ∥𝑦𝑖, 𝑗 ∥1 ≤ 𝜉𝑛. Then, according

to Lemma 2.5, we have 𝑠1 (R0), 𝑠1 (R𝑖, 𝑗 ) ≤ 𝐵 with all but negligible

probability because R0 and R𝑖, 𝑗 are chosen from [−𝜌, 𝜌]𝑘×𝑘
𝑅

, where

𝐵 = 𝐶 ′ · 𝜌
√
𝑛(
√
𝑘 + 𝜔 (

√
log𝑛)). Therefore, we have

𝑠1 (Rid) ≤ 𝑠1 (R0) +
∑

( 𝑗1, · · · , 𝑗𝑑 ) ∈𝑆 (id)

𝑠1

(
TrapEval𝑑 (R1, 𝑗1 , · · · , R𝑑,𝑗𝑑 , 𝑦1, 𝑗1 , · · · , 𝑦𝑑,𝑗𝑑 )

)
≤ 𝐵

(
1 + 𝜅 (𝜉𝑛)𝑑−1 + 𝜅𝑏𝑛𝑘 (𝜉𝑛)

𝑑−1 − 1

𝜉𝑛 − 1

)
, (2)

for any id ∈ ID with all but negligible probability.
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Game4: In this game, instead of generating a using the TrapGen
algorithm, B picks a ←↪ 𝑈 (𝑅𝑘𝑞 ). According to Lemma 2.9, a
is negl(𝑛)-close to uniform; thus, the difference is only negli-

gible. In addition, how the challenger answers the oracles is

changed. Specifically, instead of answering the user’s secret key

usk = e ←↪ SampleLeft(a,H(id), 𝑢1 + 𝑢2, Ta, 𝜎) and tracing key

tsk = (f 1, f 2
) ←↪ SampleLeft(a,H(id), 𝑢2, Ta, 𝜎) for the identity

id ∈ ID and Fy (id) ∈ 𝑅∗𝑞 , B answers them as follows: For any

identity id ∈ ID, if Fy (id) ∉ 𝑅∗𝑞 , B aborts it. Otherwise, B first

computes Rid and then returns the secret key by computing

usk = e ←↪ SampleRight(a, g𝑏 , Rid, Fy (id), 𝑢1 + 𝑢2, Tg𝑏 , 𝜎)
and returns the tracing key by computing tsk = (f

1
, f

2
) ←↪

SampleRight(a, g𝑏 , Rid, Fy (id), 𝑢2,Tg𝑏 , 𝜎), depending on which

oracle was queried by A. Therefore, according to the proper

choice of 𝜎 and according to Eq. (2), Theorem 2.10, and Theorem

2.11, the output distribution of SampleRight is negl(𝑛)-close
to the distribution of SampleLeft. Hence, from the perspective

ofA, the change is negligible.We have | Pr[𝑋3]−Pr[𝑋4] | = negl(𝑛).

Game5: In the preceding game, when 𝑏 = 0, B generates the

challenged ciphertext following the real scheme. In the current

game, if the game does not abort and 𝑏 = 0, B creates the

challenged ciphertext as follows. First, B picks 𝑠 ←↪ 𝑈 (𝑅𝑞)

and picks x ←↪

(
Dcoeff
Z𝑛,𝛼𝑞

)𝑘
before computing v = 𝑠a + x ∈

𝑅𝑘 . Additionally, according to Lemma 2.2, B computes c ←↪

ReRand
(
rot( [I𝑘 |Rid∗ ]), 𝜙 (v), 𝛼𝑞, 𝛼′

2𝛼𝑞

)
∈ Z2𝑛𝑘

𝑞 , where I𝑘 ∈ 𝑅𝑘×𝑘

is the identity matrix of size 𝑘×𝑘 .B then picks 𝑥0,1, 𝑥0,2 ←↪ Dcoeff
Z𝑛,𝛼𝑞

,

and sets the challenged ciphertext to be

C∗ = (𝑐0,1 = 𝑣0,1 + ⌊𝑞/2⌉ ·M, 𝑐0,2 = 𝑣0,2, c1 = 𝜙−1 (c)) ∈ 𝑅𝑞 × 𝑅2𝑘
𝑞 ,

where 𝑣0,1 = 𝑠𝑢1 + 𝑥0,2, 𝑣0,2 = 𝑠𝑢2 + 𝑥0,2 and M is the challenge

message chosen by A.

In the following paragraphs, we show that, the change is negligi-

ble from the perspective ofA. Since𝜙 (v) = 𝜙 (𝑠a+x) = 𝜙 (𝑠)rot(a)+
𝜙 (x) ∈ Z𝑛

𝑘
, where 𝜙 (x) has the distribution 𝜙 (x) ←↪ DZ𝑛𝑘 ,𝛼𝑞 , with

the proper choices of 𝛼 and 𝛼 ′ and according to the property of

ReRand, we have

c =
(
𝜙 (𝑠)rot(a)

)
· rot( [I𝑘 |Rid∗ ]) + x′

= 𝜙 (𝑠) · rot( [a|H(id∗)]) + x′

= 𝜙 (𝑠 [a|H(id∗)]) + x′

= 𝜙 (𝑠 [a|aRid∗ ]) + x′.

Thus, according to Lemma 2.2, the distribution of x′ is negl(𝑛)-
close to DZ2𝑛𝑘 ,𝛼′ . From the perspective of A, the distribution of

c1 between Game4 and Game5 is statistically close. Therefore,

| Pr[𝑋4] − Pr[𝑋5] | = negl(𝑛).

Game6: This game continues to change how the challenged ci-

phertext is generated when 𝑏 = 0 and when the game is

not aborted. In this game, B picks 𝑣0,1, 𝑣0,2 ←↪ 𝑈 (𝑅𝑞), v′ ←↪

𝑈 (𝑅𝑘𝑞 ), and x ←↪

(
Dcoeff
Z𝑛,𝛼𝑞

)𝑘
. Then, B computes c ←↪

ReRand
(
rot( [I𝑘 |Rid∗ ]), 𝜙 (v), 𝛼𝑞, 𝛼′

2𝛼𝑞

)
∈ Z2𝑛𝑘

𝑞 , where v = v ′ + x.
Finally, the challenged ciphertext is set to be

C∗ = (𝑐0,1 = 𝑣0,1, 𝑐0,2 = 𝑣0,2, c1 = 𝜙−1 (c)) ∈ 𝑅𝑞 × 𝑅𝑞 × 𝑅2𝑘
𝑞 ,

where 𝑠 ←↪ 𝑈 (𝑅𝑞) and 𝑥0,2 ←↪ Dcoeff
Z𝑛,𝛼𝑞

.

Lemma 5.3. For any adversary A, we have | Pr[𝑋5] − Pr[𝑋6] | =
negl(𝑛) under the RLWE

𝑛,𝑘+2,𝑞,Dcoeff
Z𝑛,𝛼𝑞

assumption.

Proof. Suppose that there exists an adversaryA that can distin-

guish between Game5 and Game6 with a nonnegligible advantage.

Accordingly, there exists an another algorithm B that can solve

RLWE
𝑛,𝑘+2,𝑞,Dcoeff

Z𝑛,𝛼𝑞

assumption with a nonnegligible advantage.

Instance. Before the Setup phase, B is given an RLWE instance:

({𝑎𝑖 , 𝑣𝑖 }𝑘+1𝑖=0
) ∈ (𝑅𝑞 ×𝑅𝑞)𝑘+2. Without loss of generality, we assume

that 𝑣𝑖 = 𝑣 ′
𝑖
+ 𝑥𝑖 for 𝑥𝑖 ←↪ Dcoeff

Z𝑛,𝛼𝑞
. The target of B is to distinguish

whether 𝑣 ′
𝑖
= 𝑎𝑖𝑠 for some 𝑠 ∈ 𝑅𝑞 or 𝑣 ′

𝑖
←↪ 𝑈 (𝑅𝑞).

Setup. B first picks 𝑢1 ←↪ 𝑈 (𝑅𝑞), and sets 𝑢2 = 𝑎0 − 𝑢1,

a := (𝑎2, · · · , 𝑎𝑘+1), 𝑣0,1 := 𝑣0, and 𝑣0,2 := 𝑣1, v := (𝑣2, · · · , 𝑣𝑘+1). In
addition, B picks y as in Game1; picks R0, R𝑖, 𝑗 as in Game2, sets

b0 and b𝑖, 𝑗 as in Game2, and defines a function H as in Game2.

Finally, B outputs mpk = (a, 𝑢1, 𝑢2, b0, {b𝑖, 𝑗 } (𝑖, 𝑗) ∈[𝑑,ℓ ] ,H) to A.

Phase 1 and Phase 2. The secret key generation and tracing key

generation oracles are answered as in Game4. That is, the keys are

generated by R0 and R𝑖, 𝑗 .

Challenge. In this phase, A submits a challenge identity id∗ and
message M to B. If Fy (id∗) ≠ 0, B aborts and sets 𝑏 ′ ←↪ 𝑈 ({0, 1}).
Otherwise, B first randomly picks 𝑏 ←↪ 𝑈 ({0, 1}). Then, if
𝑏 = 0, B computes Rid∗ and c as in Game6. Subsequently,

B sets the challenged ciphertext C∗ as in Game5. If 𝑏 = 1,

B picks 𝑐0,1, 𝑐0,2 ←↪ 𝑈 (𝑅𝑞), picks c1 ←↪ 𝑈 (𝑅2𝑘
𝑞 ), and sets

C∗ = (𝑐0,1, 𝑐0,2, c1). Finally, B returns C∗ to A.

Guess. If the game is not aborted, A outputs its guess 𝑏 ′. B
outputs 1 if 𝑏 ′ = 𝑏 and 0 otherwise.

Analysis. If {𝑎𝑖 , 𝑣 ′𝑖 +𝑥𝑖 }
𝑘
𝑖=0

are valid RLWE samples (i.e., 𝑣 ′
𝑖
= 𝑎𝑖𝑠),B

perfectly simulates the perspective of A in Game5. Otherwise, the

perspective of A is in Game6. Therefore, | Pr[𝑋5] − Pr[𝑋6] | is less
than the advantage that B has after solving the RLWE

𝑛,𝑘+2,𝑞,Dcoeff
Z𝑛,𝛼𝑞

assumption. □

According to Lemma 5.3, if the RLWE
𝑛,𝑘+2,𝑞,Dcoeff

Z𝑛,𝛼𝑞

assumption

is hard, we have | Pr[𝑋5] − Pr[𝑋6] | = negl(𝑛).
Game7: This game continues to change the way how the challenged

ciphertext is generated when 𝑏 = 0 and the game is not aborted. In

this game, the ciphertext is created as

C∗ = (𝑐0,1 = 𝑣0,1, 𝑐0,2 = 𝑣0,2, c1 = [v ′ |v ′Rid∗ ] + [x1 |x2]) ∈
𝑅𝑞 × 𝑅𝑞 × 𝑅2𝑘

Because 𝜙 (v) = 𝜙 (v ′ + x) = 𝜙 (v ′ + 𝜙 (x) ∈ Z𝑛𝑘𝑞 in Game6, for the

output c, we have
8
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c = 𝜙 (v ′) · rot( [I𝑘 |Rid∗ ]) + x′ = 𝜙 ( [v ′ |v ′Rid∗ ]) + x′,

where the distribution of x′ is negl(𝑛)-close to DZ2𝑛𝑘 ,𝛼′ according

to Lemma 2.2. Therefore, we have Pr[𝑋6] − Pr[𝑋7] = negl(𝑛).

Game8: This game changes how the user’s secret key and

tracing key are generated. Instead of generating them by

running SampleLeft or SampleRight, B directly returns

the secret key and tracing key for an identity id by pick-

ing uskid = e ←↪ Dcoeff
Λ
⊤
𝜙 (𝑢

1
+𝑢

2
) ( [rot(a⊤)⊤ |rot(H(id)⊤)⊤ ]),𝜎

and

tskid = (f
1
, f

2
) ←↪ Dcoeff

Λ
⊤
𝜙 (𝑢

2
) ( [rot(a⊤)⊤ |rot(H(id)⊤)⊤ ]),𝜎

, respectively,

without using Rid. From the perspective of A, similar to the

change from Game3 to Game4, the distribution of the secret

key and tracing key remains unchanged; therefore, we have

Pr[𝑋7] − Pr[𝑋8] = negl(𝑛).

Game9: In this last game, B sets the challenged ciphertext to be

C∗ = (𝑐0,1 ←↪ 𝑈 (𝑅𝑞), 𝑐0,2 ←↪ 𝑈 (𝑅𝑞), c1 ←↪ 𝑈 (𝑅2𝑘
𝑞 )),

regardless of whether 𝑏 is 1 or 0. Because 𝑣0, 𝑣1 ←↪ 𝑈 (𝑅𝑞), we can
readily determine that the distribution of (𝑐0,1, 𝑐0,2) betweenGame8

andGame9 is negligible. In the following paragraphs, we show that

c1 in Game8 is negl(𝑛)-close to the uniform distribution over 𝑅2𝑘
𝑞 .

Specifically, because [x1 |x2] ∈ 𝑅2𝑘
, we only show that the distribu-

tion of [v ′ |v ′Rid∗ ] is statistically close to the uniform distribution

over 𝑅2𝑘
𝑞 . Before furnishing such a proof, we demonstrate that the

following distributions are negl(𝑛)-close; that is,

(a, aR0, v ′, v ′R0) ≈ (a, a′, v ′, v ′′) ≈ (a, aR0, v ′, v ′′), (3)

where a, a′ ←↪ 𝑈 (𝑅𝑘𝑞 ), R0 ←↪ 𝑈 ( [−𝜌, 𝜌]𝑘×𝑘
𝑅
) and v ′, v ′′ ←↪

𝑈 (𝑅𝑘𝑞 ). Eq. (3) is satisfied according to Lemma 2.6. Specifi-

cally, we can demonstrate that the first and second distribu-

tions are negl(𝑛)-close by applying Lemma 2.6 for [a; v ′] ∈
𝑅2×𝑘
𝑞 and R0. Similarly, we can show that the second and third

distributions are negl(𝑛)-close by applying the same lemma

for a and R0. According to the preceding description, let

R̃id∗ =
∑

( 𝑗1, · · · , 𝑗𝑑 ) ∈𝑆 (id∗)
TrapEval𝑑 (R1, 𝑗1 , · · · , R𝑑,𝑗𝑑 , 𝑦1, 𝑗1 , · · · , 𝑦𝑑,𝑗𝑑 );

we thus have

(a, aR0, v ′, v ′Rid∗ ) =
(
a, aR0, v ′, v ′

(
R0 + R̃id∗

))
≈

(
a, aR0, v ′, v ′′ + v ′

(
R̃id∗

))
≈ (a, aR0, v ′, v ′′),

where v ′, v ′′ ←↪ 𝑈 (𝑅𝑘𝑞 ) and R0 ←↪ 𝑈 ( [−𝜌, 𝜌]𝑘×𝑘
𝑅
) Therefore, we

have Pr[𝑋8] − Pr[𝑋9] = negl(𝑛).

Analysis. Combining the aforementioned games, we have����Pr[𝑋9] −
1

2

���� =
������Pr[𝑋1] −

1

2

+
8∑

𝑖=1

(Pr[𝑋𝑖+1] − Pr[𝑋𝑖 ])

������
≥

����Pr[𝑋1] −
1

2

���� − 8∑
𝑖=1

| Pr[𝑋𝑖+1] − Pr[𝑋𝑖 ] |

≥ 1

(𝜅𝜉𝑑𝑛𝑑 )𝜉−1𝑑 + 1

(
𝜖

2

− 𝑑𝑄

𝑛𝜉

)
− negl(𝑛)

=
1

poly(𝑛)

(
𝜖

2

− 𝑑𝑄

𝑛𝜉

)
− negl(𝑛).

Because the challenged ciphertext contains no information related

to which 𝑏 is used in Game9, A can only return 𝑏 ′ through a

guessing process. That is,

���Pr[𝑋9] − 1

2

��� = 0. This also implies that(
𝜖
2
− 𝑑𝑄

𝑛𝜉

)
is negligible. However, according to Eq. (1), we have

𝜖
2
−

𝑑𝑄

𝑛𝜉 ≥ 1

𝑛𝜉 holding for infinitely many 𝑛. This, however, contradicts

the underlying assumption. Therefore, by proof by contradiction,

we conclude that there exists no such A that can win the IND-

ANON-ID-CPA game with a nonnegligible advantage. □

6 CONCLUSION AND FUTUREWORK
In AIBET, a tracker can remove the anonymous security in anony-

mous IBE and identify the recipient; this thus increases the flexibil-

ity of anonymous IBE in some scenarios. In this paper, we first for-

malize the consistency property and then propose a novel concept

for achievingAIBET from any lattice-based IBE scheme based on the

anonymous IBE scheme presented by Agrawal et al.’s IBE [2]. Sub-

sequently, we apply the concept to Katsumata and Yamada’s anony-

mous IBE scheme [19] and construct the first quantum-resistant

AIBET under the RLWE assumption.

In our future work, we will explore methods of obtaining more

flexible and revocable trace keys. Additionally, we will consider

whether the traceability system can be incorporated into other

lattice-based IBE schemes, such as revocable IBE [10, 18, 31],

identity-based proxy re-encryption [14, 15, 17], and IBE schemes

with equality test [13, 25].
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