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ABSTRACT

Nowadays, genomic sequencing has become much more affordable
for many people and, thus, many people own their genomic data in
a digital format. Having paid for genomic sequencing, they want to
make use of their data for different tasks that are possible only using
genomics, and they share their data with third parties to achieve
these tasks, e.g., to find their relatives in a genomic database. As
a consequence, more genomic data get collected worldwide. The
upside of the data collection is that unique analyses on these data
become possible. However, this raises privacy concerns because the
genomic data uniquely identify their owner, contain sensitive data
about his/her risk for getting particular diseases, and even sensitive
information about his/her family members.

In this paper, we introduce EPISODE — a highly efficient privacy-
preserving protocol for Similar Sequence Queries (SSQs), which can
be used for finding genetically similar individuals in an outsourced
genomic database, i.e., securely aggregated from data of multiple
institutions. Our SSQ protocol is based on the edit distance approx-
imation by Asharov et al. (PETS’18), which we further optimize
and extend to the outsourcing scenario. We improve their protocol
by using more efficient building blocks and achieve a 5-6X run-
time improvement compared to their work in the same two-party
scenario.

Recently, Cheng et al. (ASIACCS’18) introduced protocols for
outsourced SSQs that rely on homomorphic encryption. Our new
protocol outperforms theirs by more than factor 24 000X in terms
of run-time in the same setting and guarantees the same level
of security. In addition, we show that our algorithm scales for
practical database sizes by querying a database that contains up
to a million short sequences within a few minutes, and a database
with hundreds of whole-genome sequences containing 75 million
alleles each within a few hours.
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1 INTRODUCTION

Numerous efforts by the research community, industries, and gov-
ernments of different countries substantially reduced the costs of
genome sequencing: the costs for sequencing a whole genome have
fallen from 10 million USD to less than 1000 USD in the last ten
years [Wet17]. This leads to more genome data being collected,
and services that use genome data are becoming increasingly pop-
ular, e.g., 23andMe!, MyHeritagez, and ancestry3. Common use
cases for genome data are: (i) Similar Sequence Queries (S5Qs) for
finding genome sequences that are similar to the sequence of the
analyzed person, (ii) Genome-Wide Association Studies (GWAS)
for finding associations between diseases and genetic variants, and
(iii) genealogical tests for determining ancestral ethnicity of the
person.

In this work, we focus on SSQs. They can be used for finding (up
to that time unknown) relatives, and for making better diagnoses
and prescribing the most promising treatments using the medical
history of people that are genetically similar to the patient [FPI16].
However, a data provider (e.g., a medical institution) commonly
has a limited number of collected genome sequences which pre-
vents a high-quality similar patient analysis, since the diversity and
completeness of the database is crucial in genome analyses [PF16].

A further use case for SSQs is crime solving where only the DNA
of the suspect is known. It has been shown in the past that some very
complex criminal investigations can be solved using solely the DNA
information [Jon10], also even if only the suspect’s second-degree
relatives are contained in the database, e.g., by reconstructing the
family tree [Cor18]. However, no global DNA databases exist at
the moment that would facilitate such investigations, since this
would raise concerns about the privacy of the DNA donors. As a
solution, we consider privacy-preserving aggregation of the DNA
databases of multiple parties and privacy-preserving queries on the
aggregated database for ensuring privacy of the DNA donors.

Despite the good uses of genomic data, their leakage causes
severe privacy violations for the genomic data donors. This is
due to the fact that genome data are unique for each individual
and contain sensitive information about him/her and his/her rela-
tives [HAHT15, Ayd16], e.g., ethnicity information and predispo-
sitions to particular diseases. The possession of this information
by third parties can give rise to genetic discrimination, e.g., if a
health insurance company would increase the client’s fee based on
his/her predispositions to diseases, or if an employer would reject
the candidate’s application based on the aforementioned reasons. To
address this, we employ Secure Multi-Party Computation (SMPC)
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techniques for constructing highly efficient privacy-preserving pro-
tocols for distributed SSQs. Although there already exist solutions
for privacy-preserving SSQs, the solutions are either inefficient or
custom-tailored, i.e., it is far from trivial to extend these protocols
to privacy-preserving aggregation of databases or thresholding
distances to similar sequences.

1.1 Our Contributions

We design EPISODE, an efficient SSQ protocol that is by orders of
magnitude more efficient than previous related works. EPISODE
is designed for outsourcing but can be used for the two-party
client/server model as well, e.g., for the same setting as in [AHLR18]
where one party has a database and the other party has a query, or
when each party possesses one or more databases (e.g., for crowd-
sourced SSQs). We also show how multiple databases can be ag-
gregated in the outsourcing scenario and describe related costs for
each scenario. In addition, we describe a thresholding protocol for
finding relatives using EPISODE.

Large-Scale Experiments. We conduct large-scale experiments on
an outsourced database with up to one million genome sequences
of small and medium lengths, and we show that our implementa-
tion has practical run-times on commodity hardware, e.g., secure
evaluation of an SSQ protocol on one million sequences of length
one thousand took only 8.3 minutes.

Whole-Genome Experiments. To the best of our knowledge, we
are the first to conduct experiments on whole-genome sequences
(sequence length n=75 million alleles) using the Edit Distance (ED)
approximation of [AHLR18] that, unlike [WHZ*15], can handle
high-divergence data and show practical run-times of just a few
hours.

1.2 Outline

Section 2 describes related work in the field of privacy-preserving
SSQs. In Section 3, we explain the necessary basics of genetics,
SMPC, and the SMPC framework used in this work. Afterwards,
Section 4 gives the system model and details the designed algo-
rithms. Finally, we show the benchmarking results of our algorithms
in different scenarios in Section 5 and conclude in Section 6.

2 RELATED WORK

In this section, we compare our Edit Distance (ED) and Similar
Sequence Query (SSQ) algorithm with that in previous related work.
Our SSQ protocol is benchmarked in the same system model of the
papers we compare to unless stated otherwise.

Asharov et al. [AHLR18] introduced an approximation technique
for ED that can handle high divergence data. Their contribution is
twofold: (i) they construct an efficient and precise approximation
for ED, and (ii) they use Look-Up Tables (LUTs) instead of direct
computation of the ED, thus precomputing the most expensive
parts of the computation in the clear.

The first contribution works as follows: the genome sequences in
the database and query are split into blocks of small size (e.g., b=5)
and padded to a somewhat greater size (e.g., b’=16). Because of
the much smaller size of the blocks compared to a full sequence,
the overhead for computing ED is also much smaller (ED requires
O(nz) computation in the sequence length n).

For their second contribution, they utilize the fact that genes
in the blocks are naturally distributed highly non-uniformly. For
all sequences available in the clear, this allows to compute cross-
sequence LUTs block-wise for all observed block values. Using this
approach, the value of the block is compared with each element
of the corresponding LUT instead of computing the ED directly. If
the value is equal to one of the values in the LUT, the correspond-
ing distance is selected. Asharov et al. empirically show that the
probability of an element not being in the LUT is small, and the
absence of a single element influences the overall distance only
slightly. Moreover, the authors design a custom protocol for com-
puting the k nearest edit distances between a client’s query and a
server’s database containing parts of genome sequences. However,
their protocol has the drawback that it is custom which makes it
non-trivial to extend to other functionalities such as aggregation of
databases. Their protocol works in a setting with two semi-honest
parties, where the client inputs the query and the server inputs a
database into a Secure Two-Party Computation (STPC) protocol.
EPISODE runs by factor 5-6x faster than their protocol in the same
two-party setting (see Section 5.2 for details).

Atallah et al. [AKDO03] developed protocols for secure sequence
comparison, and Atallah and Li [AL05] moved these protocols to the
outsourcing scenario. In both works, the authors compute the ED,
i.e., the number of additions, deletions, and substitutions needed
to transform one string into another, with quadratic computation
and communication overhead in the sequence length n, i.e., O(nz),
which is a much larger overhead than ours of O(nw), where o is
the LUT width, usually 20 or 30.

Jha et al. [JKS08] designed algorithms for privacy-preserving
ED using Garbled Circuits (GCs). Their construction scales much
worse than the recent solutions including ours, e.g., their algorithm
runs in 658 s and requires 364 MB communication, whereas ours re-
quires only 5.7 ms run-time (more than 100 000x faster) and 397 kB
communication (more than 900X less) for the same sequence length
n=200, and we set the width of the Look-Up Table (LUT) to w=20.

Wang et al. [WHZ*15] propose an extremely efficient approach
for approximating the ED using a set size difference metric. Their
approach can process a genome-wide query over one million pa-
tients in about 3 hours, but, unfortunately, it works only for data
with very small divergence (less than 0.5 % variability between
individuals), which is not always true for genome data.

The authors of [AAAM17] designed two approximations for
ED: a set intersection method based on [PSSZ15] and a banded
alignment-based algorithm that relies on GCs. The drawbacks of
these methods are: (i) neither algorithm achieves good accuracy on
long genome sequences, and (ii) the authors do not show which
security parameters are used and do not detail communication
requirements of their algorithms.

Zhu and Huang [ZH17] design efficient algorithms for ED, which
are, however, much slower than the approximations of ED. Their
benchmarks of ED on two sequences of 4 000 nucleotides with a
security parameter of 127 bits took 7.08 s run-time and 2.04 GB
communication. In contrast, our algorithm requires only 65 ms run-
time (108X faster) and 8 MB communication (261X less) for the same
setting and the width of the LUT «w=20.



Table 1: Notation used in our paper.

Parameters

| Look-up table width

N | Number of sequences
n | Sequence length
b | Block size

b’ | Padded block size
t | Number of blocks
¢ | Block bit-length

¢ | Number of data providers

B | Bit-length for the distance values s.t. no overflow occurs

A, C,G, T | Nucleotides: Adenine, Cytosine, Guanine, Thymine
K, M, G, T | Powers of 10: kilo (10), mega (10°), giga (10°), tera (10'%)
Notation from [DSZ15]
I[i] | Operator for referencing element #i in list
l.e | Operator for accessing element e in list
xAyand x ®y | Bit-wise AND and XOR operation
A,B,Y | Sharing types: Arithmetic, Boolean, Yao
(x)f Share of value x in sharing type t held by party i
Shrit (x) | Sharing function for value x by party i in sharing type ¢
Rec((x)B, (x)ﬁ) Reconstruction function for value x from both shares
(2)t = (x)! © (y)! | Operations on shares, ©: {(x)! X (y)! > (z)*
(x)! = s2t({x)*) | Conversion from sharing type s to sharing type ¢
(0)%, (1)%, (n)! | Secret-shared constant 0, 1, and n, respectively
(F(-))! | Secret-shared constant of locally computed function F
System Model
To,T1 | Semi-trusted third parties that perform SMPC
Py,...,Py | Data providers that contribute genomic data
C | Client

Mabhdi et al. [MHM17] securely computed the Hamming distance
for SSQ, which is an error-prone metric for measuring the distance
between genome sequences, because the sequences are compared
bit-wise and, thus, any deletions and additions, which cause shifts
in the genome sequence, result in severe errors.

The authors of [CHW18] design a protocol for privacy-preserving
SSQs based on [AHLR18] using homomorphic encryption in an
outsourcing scenario with two non-colluding, semi-honest parties,
which provides the same security guarantees as our model. As we
show in Section 5.1, our protocol outperforms theirs by more than
factor 24 000X in terms of run-time and by at least factor 16X in
terms of communication in the same setting.

The privacy of other applications of genomics were also ad-
dressed in the literature, e.g., outsourcing of genome data stor-
ing [SLH*17], pattern matching [WSLH17], genome sequence queries
[DHSS17], and Genome-Wide Association Studies (GWAS) [BMA*18,
TWSH18, BKLS18, CWB18], see [MMDC19] for a good survey on
genomic privacy.

3 PRELIMINARIES

In this section, we explain the basics underlying our constructions.
Our notation is summarized in Table 1.

3.1 Genomic Primer

Deoxyribonucleic Acid (DNA) is contained in the cells of each living
individual and encodes genome information. Based on DNA, indi-
viduals develop different phenotype traits — observable differences
between individuals, e.g., hair or eye color. The basic components

that form DNA are called nucleotides. There exist four of them:
Adenine (A), Cytosine (C), Guanine (G), and Thymine (T), which can
be encoded in log, 4 = 2 bits. In our model, however, we require
a dummy character for padding blocks of alleles to the predefined
global block size, which yields [log, 5T = 3 bits. DNA consists of
multiple long sequences called chromosomes, which are built as
sequences of pairs of nucleotides (e.g., "AT CG AA..").

The human DNA consists of 3.5 billion base pairs from which
only 0.1 % vary among individuals [Eur17]. The variations of sin-
gle nucleotides in specific regions (called loci, singular locus) of a
chromosome are called alleles. The genes, each allele of which is
represented to some minimal degree in the population (e.g., more
than 1 %), are called Single-Nucleotide Polymorphisms (SNPs).

3.2 Similar Sequence Queries (SSQs)

The approach of SSQs is used for finding the sequences that are
most similar to the analyzed query. This approach can be used, for
example, for finding individuals that are genetically very similar
to a patient in order to better analyze the health conditions of the
patient. This leads to more precise medical diagnoses based on the
additional information provided by genetically similar individuals.

A precise SSQ algorithm requires the computation of the Edit Dis-
tance (ED) [Lev66], which measures how different two sequences
are by finding the minimum number of deletions, additions, and
substitutions that are required to transform one string into another.
ED has O(nz) computation complexity, where n = max(ns, nq), ns
is the length of the sequence, and ng is the length of the query.
There exist other distance metrics for measuring the similarity of
the sequences, but they are generally suboptimal, e.g., Hamming
distance is not a good choice because it compares sequences bit by
bit and thus any additions and deletions in the genome lead to large
errors. To avoid heavy computations of ED, a few approximations
have been developed, e.g., [WHZ*15, AHLR18]. For more details
see Section 2.

This work focuses on the ED approximation of Asharov et al.
[AHLR18], since, in contrast to [WHZ*15], it can handle high-
divergence data (the authors of [AHLR18] empirically show this for
up to 10 % variability between individual genomes). An example of
computing this ED approximation is given in Figure 1. It works as
follows: first, the sequences in the database are aligned to a public
reference genome and split into blocks of predefined size. Then, the
statistical distribution of the sequences in the database is used to
construct a Look-Up Table (LUT) containing the most frequently
observed block values and their distances to each other. Afterwards,
the value of the block i in the query is compared to each entry of
the i-th row of the LUT (the comparison is performed only once for
one database), and based on the comparison result pre-computed
distances are either selected as output or set to 0. Here, the sum of
all outputs yields either the correct distance or 0 in the case of an
error (this outcome is rare and influences the overall result only
very slightly [AHLR18]). The last step is to sum up the distances of
all blocks which results in the approximated distance between the
query and the sequence. After computing the ED to all sequences in
the database, they are used to find the indices of the k most similar
sequences.
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Figure 1: Example for computation of the Edit Distance approximation of [AHLR18]. Here, a Look-Up Table (LUT) for Sequence
S1 is precomputed in the clear based on the distribution of values in all sequences Sy, Sz, and S3 each containing ¢ blocks of size
b=b’=2 alleles (top). In more detail, a LUT contains precomputed distances to all observed block values, e.g., in the third row
block AA in S; has distances 0 to itself, 1to TAin Sz, and 2 to TT in S3. After the LUT construction, the LUT and the pre-computed
distances for S; are used for computing the Edit Distance d between query Q and S; (bottom).

For managing LUTs in the outsourcing scenario, we store the LUTs
of all data providers and use them in the ED computation of the cor-
responding genome sequences in the respective databases, which is
a very promising approach in terms of efficiency. The efficiency of
this approach grows with N /¢ (the number of sequences N divided
by the number of institutions /), and in a real-world scenario we
expect a small to medium number of data providers ¥ that con-
tribute a large number of sequences N. We discuss further LUT
management options in Section 4.5.

Family Search from the Similar Sequence Query Protocol. Our SSQ
protocol can also be extended for finding one’s family. Consider a
scenario where a large number of individuals possess their digital
genome sequences. They are willing to contribute their data to
a common database that can be used to perform family search.
For this, they secret-share their genome sequences and compute
distances to a public LUT (this can be prepared by a public authority
and is the same as the reference genome), which are then used
in the SSQ protocol. However, instead of computing k-Nearest
Neighbors (k-NN), we can blind the indices that correspond to a
big distance to the query (greater than some threshold T, e.g., at
most 5 % difference). The result of this protocol is the set of indices
of all similar sequences in the database.

3.3 Secure Multi-Party Computation (SMPC)

SMPC allows parties Py, ..., P, to securely compute a function
f(x1,...,xn) ontheir respective inputs without revealing the inputs
to each other, i.e., one or more parties learn the result of f, but no
intermediate values.

The first approaches to SMPC were proposed in the late 1980s
(see, e.g., [Yao86, GMW87]). Although SMPC was first believed to
be impractical, with the further progress on SMPC optimization and
computer hardware improvements it is nowadays possible to solve
complex problems using SMPC within seconds or minutes. SMPC
can be conducted considering different adversary models. The two
most common adversary models are passive (honest-but-curious)
and active (malicious) adversaries. Whereas passive adversaries fol-
low the protocol specification but try to learn as much information
as possible from the information they obtain, active adversaries
can arbitrarily deviate from the protocol. In this work, as in most
previous works in this area [WHZ*15, AAAM17, AHLR18, ZH17,
MHM17, CHW18] — to name just a few — we concentrate on pro-
tocols with security against passive adversaries that are much more
efficient than actively secure protocols and provide sufficient se-
curity for settings where curious insiders want to learn additional
information from the protocol runs without actively interfering
with it. The major difficulty in the use of SMPC is the need of ex-
tensive knowledge of cryptography, circuit design, and algorithm
complexity for constructing efficient privacy-preserving protocols.

3.3.1 Oblivious Transfer. Oblivious Transfer (OT) is an important
building block of many SMPC protocols. In 1-out-of-2 OT, the
sender has two messages my and mj as input, and the receiver
inputs a choice bit c. As output, the receiver receives the message
of its choice m, without learning mj_., and the sender does not
learn c.

Public key-based OT protocols, e.g., [NP01], achieve thousands
of OTs per second and OT extension allows using mainly symmet-
ric key primitives resulting in millions of OTs per second [IKNP03,



ALSZ13]. There also exist other variants of OT, such as Random

Oblivious Transfer (R-OT) [NNOB12, ALSZ13] and Correlated Obliv-
ious Transfer (C-OT) [ALSZ13]. In C-OT, the sender has m as input,

and the receiver has b as input. The outputs of the parties are as

follows: the sender receives a random my as output, and the receiver

receives mo + bm as output, where m = mq — mg in Z,¢ and ¢ is the

bit-length of the values. This variant of OT improves the commu-
nication of the protocol (especially for large ), where instead of

Kk + 2¢ bits only k + ¢ bits are sent in the C-OT extension, where

is the symmetric security parameter, see [ALSZ13].

3.3.2 ABY Framework. We use the ABY framework [DSZ15], which
implements state-of-the-art optimizations for Secure Two-Party
Computation (STPC), i.e., SMPC with n=2 parties, and is secure
against passive adversaries. It enables privacy-preserving algo-
rithms using three different STPC protocols called sharings: Arith-
metic sharing (a generalization of the GMW protocol [GMW387] to
unsigned integers), Boolean sharing (the Boolean GMW protocol
[GMW387]), and Yao sharing (Yao’s Garbled Circuits (GCs) [Ya086]).
It also enables mixing these protocols to use particular STPC pro-
tocols for the parts of the computed function where they perform
best. For notation used in this paper, please refer to Table 1.

Arithmetic Sharing. Arithmetic (also called Additive) sharing is
performed on integer numbers in a ring Z,¢. Values are shared
locally by subtracting random numbers as one-time-pads from
the initial values, and afterwards one of the shares is sent to the
other party. The reconstruction of the shares for the outputs is also
straightforward: the parties exchange the shares and compute the
sums of the single shares in the corresponding ring which yields the
corresponding cleartext values. The main advantage of Arithmetic
sharing over other sharings is that it allows local computation
of addition mod 2¢ and cheap computation of multiplication mod

2¢ using Multiplication Triples (MTs) [Bea96] that can efficiently

be precomputed using OT extension [DSZ15]. The drawback of this
sharing is that it does not allow to trivially perform other more
complicated operations. For example, secure comparisons are very
expensive in Arithmetic sharing.

Boolean Sharing. In ABY, Boolean sharing stands for the GMW
protocol [GMW87]. This sharing is represented as a Boolean circuit
where shares represent wires in the circuit. Similarly to Arithmetic
sharing, the values are shared by performing the XOR operation
with a random value. Reconstruction can be performed by apply-
ing XOR on both shares (the parties, again, exchange the shares),
which will eliminate the random value and yield the cleartext value.
The Boolean circuit is constructed by using XOR and AND gates
(any computable function can be converted to a Boolean circuit
using XORs and ANDs only). There is, however, a large difference
in efficiency of evaluating these gates. Whereas XOR gates can be
evaluated locally (due to the associative property of XOR), AND
gates require communication during the evaluation. For secure
evaluation of AND gates in ABY, Beaver’s MTs [Bea96] that are
precomputed using OT extension [ALSZ13] are utilized. The com-
munication requirements of GMW can be further reduced at the
cost of slightly higher computation [DKS*17]. Moreover, each AND-
layer in the circuit adds an additional communication round to the

protocol. Consequently, we are interested in shallow circuits for
Boolean sharing.

Yao Sharing. Yao’s Garbled Circuits (GCs) [Yao86] are denoted
as Yao sharing in ABY. Yao sharing includes all state-of-the-art
enhancements, such as point-and-permute [MNPS04], free-XOR
[KS08], fixed-key AES garbling [BHKR13], and half-gates [ZRE15].
Yao sharing, similar to Boolean sharing, can be used to securely
evaluate a Boolean circuit. It is split into two phases: an input-
independent setup phase and an input dependent online phase.
In the setup phase, the party called garbler garbles the circuit and
sends it to the other party called evaluator. The parties then proceed
to the online phase, where only the evaluator’s inputs have to
be obliviously transferred via precomputed OTs [Bea96] and the
evaluator can compute the garbled result locally. For reconstructing
the results on the evaluator’s side, the garbler sends the output
keys for the corresponding shares to the evaluator, and for the
garbler’s side, the evaluator sends the output keys to the garbler.
Yao sharing has a constant number of rounds, i.e., it does not depend
on the circuit depth, and therefore generally is better suited for
high-latency networks than Boolean sharing. On the other hand,
Yao sharing requires more computation and communication than
Boolean sharing.

SMPC Protocol Conversion. It is clear from the description of the
aforementioned sharings that the choice of particular sharing is not
trivial even for relatively simple tasks. To solve this problem, ABY
allows to mix the protocols by implementing efficient algorithms
for converting between the three different sharing types. Although
conversions imply some costs, they may result in better overall
performance as shown in [DSZ15]. The partitioning can even be
done automatically [BDK*18].

OT-Based Multiplication. We extend the OT-based multiplication
algorithm of [AHLR18] for multiplying an additively secret-shared
value (0)? in Arithmetic sharing by a secret-shared bit ()8 in
Boolean sharing. Observe that we want to compute (b)B - (0)4 =
((b)é3 &} (b)f)((u)OA + (v)f), which we reformulate as

BB @)+ BB - (~1) D7 (o)A 4 (BB - (—1) PN (o) + () B (o)L,

Whereas <b>£3 (0)6‘\ and (b)f(v)f can be computed locally by the
respective parties, for the computation of (b)ll3 . (—1)<b>£1 . (0);4_ L
i € {0, 1} interaction is required between Py and P;. Note though
that the right part, i.e., (—1)<b>? . (v);“, is computed locally. For
the remaining two multiplications, we utilize two C-OTs [ALSZ13],
where P; inputs (b)? and P;_; inputs (r, (—1)<b>fi1 . (0)?_1 +7),
where r is a random value, and vice versa. P;_; then sets its share
to —r. As a result, the parties compute a valid Arithmetic share
(b-v)4 of value b - v. Compared to the state-of-the-art multiplication
protocol by Patra et al. [PSSY20], the online communication in our
protocol is only marginally higher (their 2¢ vs. our 2¢ + 2), whereas
our communication in the setup phase is by a factor of (2.5 +
2.5¢/k)x lower for generic (non-amortized) multiplication. With
the optimization technique of the online communication rounds
of C-OT from [BDST20], our protocol requires the same round
complexity of one round as the protocol in [PSSY20].
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Figure 2: Privacy-preserving Similar Sequence Query system model with three medical institutions Iy, I, and I3 that contribute
their secret-shared genomic data to two Semi-Trusted Third Parties Ty and Ty, and a client C who queries the secret-shared
database. The communication between all parties is protected with a secure channel, e.g., TLS. See Section 4.1 for more details.

Note that the original publication [ST18, ST19] erroneously de-
picted a multiplication of two Boolean shares, which does not work
for the multiplication of a Boolean with an arithmetic share. The
description is fixed in this version of the paper.

Single Instruction Multiple Data (SIMD) gates. Wrapping of secret-
shared data in container classes is very memory-consuming. More-
over, this adds additional overhead for managing and initialization
of memory to the protocol. As a solution to this problem, SIMD
gates have emerged [SZ13] and are also implemented in ABY. These
gates are constructed as gates for evaluating arrays of secret-shared
values rather than single values. This approach significantly reduces
the RAM requirements and the online run-times of the protocols.

k-Nearest Neighbors. For finding the k most similar sequences
in the Similar Sequence Query (SSQ) protocol, we utilize ABY’s
functionality for computing k-Nearest Neighbors (k-NN) [JLL*19],
which improves over the work of Songhori et al. [SHSK15] in terms
of the circuit size. This k-NN implementation is by about a factor of
5% more efficient than the one used in [AHLR18], e.g., for a database
of size 500 [AHLR18] required 505 825 AND gates for computing
the k-NNs, whereas we require only 92 500 AND gates.

4 OUR PRIVACY-PRESERVING SSQ
PROTOCOL

Here, we describe the system model of our privacy-preserving

protocol for Similar Sequence Queries (SSQs), the protocol itself,

and we analyze its security.

4.1 System Model

The main idea of our protocol is to secret-share the database ag-
gregated from data of multiple data providers between two non-
colluding Semi-Trusted Third Parties (STTPs). We depict our system
model in Figure 2. The communication between all parties is per-
formed over a secure channel (e.g., TLS). Note that our protocol
alternatively can be run directly between a server and a client
with approximately the same efficiency (the outsourcing scenario
is beneficial for data aggregation, but has the same efficiency in the
querying phase). In our protocol, we have the following parties:

e Data providers (e.g., medical institutions) Py, . .. ,Pl/, that se-
curely contribute their genome sequences to the outsourced
database in a secret-shared form.

o A client C who privately queries the database with a genome
sequence for finding the most similar sequences in the out-
sourced database.

e Two non-colluding Semi-Trusted Third Parties (STTPs) Tp
and T; who obliviously compute the Similar Sequence Query
(SSQ) protocol on the client’s query and outsourced database.

We choose two STTPs because it is the most practical and af-
fordable model in a real-world setting, since each STTP has to
be operated and maintained by different teams, and the servers
must have completely different software stacks, which in total im-
plies high costs. For running the two STTPs, one must choose
two distinct organizations that have a high motivation to not col-
lude, e.g., if they significantly loose in value/reputation if caught
cheating. We can think of the following organizations: (i) health
ministry, (ii) research institutes, or (iii) cloud service providers. This



outsourcing model has been widely used in the literature, e.g., in
[CDC*17, ADS*17, TWSH18].

Our protocol consists of the following steps (see Figure 2):

A Initialization

(1) Each data provider P; locally secret-shares its genomic
data and Look-Up Table.

(2) I; sends the shares to the Semi-Trusted Third Parties Ty
and T, respectively.

B Querying

(3) Client C locally secret-shares its query Q.

(4) C sends its secret-shared query to Ty and Tj.

(5) To and T; obliviously compute the SSQ protocol on the
secret-shared database and the client’s secret-shared query
using STPC.

(6) To and Ty send the resulting output shares containing
secret-shared indices of the most similar sequences in
the database to C.

(7) C locally reconstructs the result from the output shares.

In contrast to querying the database (querying phase), aggre-
gating the database from different sources (initialization phase)
is a one-time expense. Data providers contribute their data only
once, and any changes in the outsourced database are required for
updates only. Since data providers can send their secret-shared se-
quences in any order and from different preprocessing sets (though
using the same global parameters), the database can be updated
without any further preprocessing steps on the STTPs’ and data
providers’ side. Additional data providers in the protocol do not
add any significant overhead because of the following: (i) the ini-
tialization phase is a one-time expense, (ii) the initialization phase
is computed in parallel for all data providers, (iii) the STTPs do not
apply any further preprocessing steps but only store the received
shares, which has a very small overhead.

Client’s Communication and Computation. Our model signifi-
cantly reduces the amount of communication and computation per-
formed by the client compared to the direct application of SMPC.
More detailed, the client sends only 2x the amount of information
compared to the non-private cleartext protocol. Moreover, the client
does not require cryptographic operations in the protocol but only
very efficient XOR and addition mod 2¢ operations. This makes our
protocol even applicable for weak clients using mobile devices.

4.2 Privacy-Preserving Approximated Edit
Distance

Our protocol for securely computing the Edit Distance (ED) be-
tween a genome sequence stored in the outsourced database and a
client’s query utilizes the idea of Asharov et al. [AHLR18] for im-
proving the efficiency of computation by approximating ED using
Look-Up Tables (LUTs) (see Section 3.2).

We extend the two-party protocol of [AHLR18] to the outsourc-
ing scenario and carefully optimize the implementation using a
mix of different sharings and minimize costly operations, such as
conversions between sharings and the operations that require in-
teraction/heavy computations. Our detailed algorithm is given in
Algorithm 1 and its data representation is given in Figure 3. The Sim-
ilar Sequence Query (SSQ) algorithm is given in Algorithm 2.

(distance)? « ED(seq, query)

1:  row dist <+ 0

2: for i=1 to seqlength do

3: (row_sum)® « (0)*

4: for j =1 to seq.LUTwidth do

5: //For multiple ED computations, eq values are computed only once
6: //Next 2 lines are equal to €j0+j == ¢i ? diw4j : 0

7: (eq)® « (seq[i].LUT[j].value)® == (query[i])®

8: (dist)* < OTM((eq)®, (seq[i].LUT]j].dist)*)

9: (row_sum)® « (row_sum)™ + (dist)”*

10 : row_dist.insert((row_sum)™)

11: for i =2 to seqlength do
12: (row_dist[1])*  (row_dist[1])"* + (row_dist[j])"

13: return <rm4/_alist[1]>A

Algorithm 1: Privacy-preserving Edit Distance (ED) algo-
rithm between a sequence seq containing a Look-Up Table
with genomic variants and the corresponding distances, and
a client’s query containing genomic variants. OTM denotes
Oblivious Transfer-Based Multiplication.

ids < SSQ(sequences, query, k)

1: dists< ()

2t ids <« (1)Y, ..., (sequences.size)®

3: for i =1 to sequences.size do

4: (disty* ED(sequencesli], query))
5 dists.append(A2Y ((dist)**))

6: ids < k-NN(dists, ids, k)

7: return ids

Algorithm 2: Privacy-preserving Similar Sequence Query
(SSQ) algorithm between a query and sequences of genomic
data in the outsourced database. k-NN denotes the k-Nearest
Neighbors algorithm.

More detailed, we improve the protocol of [AHLR18] by using
more lightweight GMW [GMW87] instead of GCs [Ya086] for com-
parisons, Correlated Oblivious Transfers (C-OTs) [ALSZ13] instead
of general OTs, and a more efficient k-NN algorithm in Yao sharing.
Although we use a more efficient C-OTs, we require two C-OTs
instead of one OT, which is due to the fact that the Semi-Trusted
Third Parties (STTPs) do not possess the LUTs in cleartext. How-
ever, the cost for OTs remain approximately the same as in the
protocol of [AHLR18] for large databases (less than 1 % overhead
for a database with 10 000 sequences). In contrast to [CHW 18], we
compute most of the functionalities using generic protocols which
enables arbitrary extensions of our protocol. A possible and cheap
extension of our protocol would be a thresholding protocol that
reveals only those sequence indices that have distances smaller
than some threshold T. This protocol has the advantage that it
dispenses with the need of finding the k most similar sequences,
which improves the complexity from O(kN) to O(N).



We optimize the SSQ algorithm by mixing different SMPC pro-
tocols. First, the blocks of the query and LUT are secret-shared in
Boolean sharing. Boolean shares are then used to compare the block
values of the query with the block values of the LUT, namely, the
block value i of the query with each of the w block values of the LUT
in the row i. Afterwards in Arithmetic sharing, shared distances
or zeros are chosen depending on the comparison results between
the query and LUT. For this, we use two C-OTs for multiplying
the comparison result r € {0, 1} with the distances in Arithmetic
sharing. Since all distances are valid for the sequence (each block
yields either a valid block distance or zero) and only need to be
summed up for resulting in the total distance between the query
and sequence, we perform — free in Arithmetic sharing — addition
operations for all distances in the sequence.

4.3 Privacy-Preserving Similar Sequence
Queries

In this work, we consider a system model where the client wants to
find k genome sequences that are most similar to its query among
the sequences stored in the outsourced database. Here, we proceed
as follows: the distances to single sequences are first calculated
using the Similar Sequence Query (SSQ) algorithm, and afterwards,
the distances are used along with the corresponding IDs for finding
the k closest distances using the k-NN algorithm (see Algorithm 2).

Choice of the Algorithm for Finding k Most Similar Sequences.
Generally, we can think of two possible methods for efficiently find-
ing the k most similar sequences: the k-Nearest Neighbors (k-NN)
algorithm and sorting networks. The first has a small AND-size
for small k, but a large AND-depth of O(n), because the algorithm
is difficult to parallelize, whereas the second have a logarithmic
AND-depth and AND-size of O(n log? n), which is independent of k.
Since the resulting circuit size of a sorting network is by an order of
magnitude larger for small k, it is practically less efficient even in
Boolean sharing than k-NN in Yao sharing, so we use the efficient
algorithm for finding indices of the closest distances (k-NN with
precomputed distances) in Yao sharing that is already implemented
in ABY [JLL*19]. In EPISODE, we utilize the highly efficient k-NN
implementation in ABY with Nk(2f + [log, N) AND gates, where
N is the number of sequences, k is the number of most similar
sequences, and ¢ is the bit-length of the distances. Since the dis-
tances are shared in Arithmetic sharing, we first convert them to
Yao sharing.

Communication. Our SSQ algorithm consists of three parts: com-
parison, OTs, and k-NN. The first part requires 6twkb’ bits to be
transferred (see Table 1 on p. 3 for the explanation of all parame-
ters). For our C-OT-based protocol, 2tw (N -NPoT([log, (tb’)]+x))
bits of communication are required. NPoT(x) (Next Power of Two)
denotes a function that takes a rational number as input and out-
puts the smallest number that is a power of two and is equal or
greater than x. For the last part (the k-NN algorithm), we require
2Nkk(2[log,(tb’)] + [log, N1) bits of communication. The total

communication is approximately 2tw(3yxb’+N-NPoT([log, (tb")]))+

2Nkx(2[log,(tb")] + [log, N1) bits.

4.4 Security Analysis

Our protocol is based on the outsourcing protocol described in [KR11],
which gives a generic construction and a security proof for turn-
ing an N-party SMPC protocol into a secure outsourcing scheme
where data is oursourced to N non-colluding Semi-Trusted Third
Parties (STTPs).

We instantiate SMPC with the N = 2-party ABY framework
[DSZ15]. Our protocols implement the algorithm for SSQs of [AHLR18].
Our protocols are even secure against malicious data providers and
clients (who all send a single message in the protocol), and secure
against semi-honest STTPs. Since data providers do not receive any
outputs, their malicious input cannot affect the privacy of the pro-
tocol. Moreover, any changes to the client’s single input message
correspond to a different input to the ideal functionality, which
yields security against malicious clients.

THEOREM 4.1. Assume that the protocols implemented in ABY
[DSZ15] are secure against semi-honest adversaries and the two STTPs
are semi-honest and non-colluding. Then our protocols securely im-
plement the algorithm of Asharov et al. [AHLR18].

PROOF (sketch). The proof follows immediately from the proof in
[KR11] and the fact that the protocols run between the two STTPs
are secure against semi-honest adversaries and operate on secret-
shared data. More detailed, consider shares (x) f and (x){_i of an
input value x shared by Party P; in sharing type t € {A, B, Y} cor-
responding to Arithmetic, Boolean, and Yao sharing, respectively.
Party P1—; gets (x){_i from P;. Party P;_; cannot derive any infor-
mation from (x){_i without knowing (x)f . Similarly, the security
of the STPC protocols and STPC protocol conversions that ABY is
based on guarantees that no information can be derived from the
intermediate shares (i.e., secret-shared result of any operation on
shares). The C-OT-based multiplication (which is a straightforward
extension of [AHLR18]) is performed on secret-shared values and
thus does not reveal any information about the cleartext values.
The STTPs do not learn any new information from the secret-shared
outputs. By aggregating the joint database, the data providers have
no outputs and thus cannot infer any information from the protocol.
In view of the above arguments: (i) no semi-honest STTP can obtain
any new information on the genome data from the shares, (ii) no ac-
tively corrupted server can obtain any information on the genome
data contained in the client’s query or other server’s database, and
(iii) no actively corrupted client can obtain new information on the
genome data contained in the database of any of the servers.

4.5 Data Aggregation from Multiple Data
Providers

We see three possible approaches of aggregating data in the out-
sourced database:

(1) The most intuitive approach is to attach a Look-Up Ta-
ble (LUT) to each genome sequence, which was used in
[CHW18]. This approach dispenses with the need of LUT
management for the Similar Sequence Query (SSQ) protocol
and when updates occur. Since each genome sequence has
its own LUT and is thus independent of other sequences,
the data provider only has to upload the secret-shared new
sequence and the corresponding secret-shared LUT to the
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Figure 3: Data representation of the Similar Sequence Query algorithm. For computing the Edit Distance to three sequences,
the values of the blocks in the client’s query {q1, q2, ¢3} are compared with the precomputed values in the secret-shared
Look-Up Tables (LUTs) {eq, . . ., e9}. Based on the comparison, we process the precomputed distances {d, ..., ds}, {d10, ..., d1s},
{d19,...,d27} to the Sequences 1, 2, and 3, respectively. For example, for Sequence 1 in the first block e; is compared with ¢;;
if they are equal, the precomputed distance d; is returned, and 0 otherwise. The computation of the LUT is parallelized using
Single Instruction Multiple Data gates.

Table 2: Run-time and communication comparison of our algorithm with that of Asharov et al. [AHLR18] with sequence
length n=3 470, number of nearest sequences k=5, block length b=4, padded block length b’=16, and number of data providers
=1 for different parameters N (number of sequences) and @ (Look-Up Table width). The preprocessing stage is not included
in the total run-time. A plot is given in Figure 4 in Appendix A.

N o Run-time (localhost / LAN) in s Communication in MB

[AHLR18] [ Ours [ Improvement || [AHLR18] [ Ours Improvement

1000 25 6.03/-11.07/1.89 5.6X /- 180 130 1.3X

2000 30 14.11/- 2.20 / 4.07 6.4% / - 340 268 1.2x

4000 35 31.60 /-] 4.83/9.02 6.5% / - 660 571 1.1X
Table 3: Run-time comparison of our Edit Distance algo- (2) A more realistic approach is to keep one LUT for each data-
rithm with that of Cheng et al. [CHW18] with sequence base. This approach has the advantage that the number of
length n, Look-Up Table width ©=20, and block size b=2. data providers is commonly not very large, e.g., ten big in-
stitutions is a realistic scenario. Since the STTPs know how
n Run-time (LAN) many and which sequences came from which data provider,
[CHW18] | Ours [Improvement this approach does not violate privacy of the protocol by us-
10 12s 21ms 571X ing predefined LUTs for particular genome sequences. Using
20 22 3.0 ms 733% this approach, only ¢ comparisons with LUTs have to be
30 345 3.1ms 1 096X performed, which is a small overhead if the number of se-
40 47s 3.1 ms 1516% quences N is large. Due to the performance advantages over
50 60s 3.2 ms 1875% other options, we choose this approach in our SSQ protocol.
(3) The least realistic approach is to aggregate LUTs of multiple
data providers. For this, the institutions count the frequen-
Semi-Trusted Third Parties (STTPs). This approach is in cies of all possible alleles for a block in their database (the
particular effective if there is a very large number of partici- most commonly used block size in [AHLR18] is 16). For ex-
pating data providers in the protocol. The best-case scenario ample, a frequency table for a 16-allele block would yield

for this setting is when /=N, i.e., each institution uploads a
single genome.



416=4 3 billion values. These values first have to be aggre-

gated from multiple databases. Afterwards, the w (width of
the LUT) maxima have to be found from the dataset, e.g.,
using the k-Nearest Neighbors (k-NN) algorithm. This ap-
proach is performed for each block (there are 15million
blocks in a whole-genome sequence). Therefore, this ap-
proach is impractical and we do not discuss it further.

5 EVALUATION

We implemented all our protocols using the ABY framework [DSZ15].

We run our two Semi-Trusted Third Parties (STTPs) each on a
standard PC equipped with an Intel Core i7-4770K 3.5 GHz proces-
sor and 32 GB RAM. They are connected via a 1 Gbit/s network
with an average latency of 0.1 ms. All protocols are instantiated
with a symmetric security parameter of 128 bit. We intentionally
exclude the evaluation part for the preprocessing (extensively dis-
cussed in [AHLR18]) and aggregation of the databases (extensively
discussed in [TWSH18]). Furthermore, the initialization phase (ag-
gregation of the databases) is a negligible one-time expense and
securing the communication channels using TLS does not add any
significant overhead. Correctness and accuracy of the algorithms of
Asharov et al. on real genomic data was shown in [AHLR18, Sect. 5].
Therefore, we use artificial data in our benchmarks because the
performance of SMPC depends only on the size of the data, but not
on concrete values.

5.1 Comparison with Cheng et al. [CHW 18]

The most recent related work that covers privacy-preserving Edit

Distance (ED) computations in the outsourcing scenario is [CHW18].

Unfortunately, the authors give the exact run-times only for the
ED computation between two sequences in Table 3 of this paper.
We compare our ED run-times in the system setting of [CHW18],
i.e., the outsourcing scenario, with the run-times of their most ef-
ficient protocol. We achieve a significant run-time improvement
over [CHW18] of 500x to 1 800X (see Table 3).

We can increase this even further when many sequences are
computed in parallel. For this, we (optimistically for [CHW18])
approximate the benchmarking results of [CHW18, Figure 4 (a)]
in Table 4 and in Figure 4 in Appendix A. As a result of the com-
parison, our algorithm outperforms that of Cheng et al. [CHW 18]
by more than factor 24 000X in run-time and by more than factor
16X in communication.

5.2 Comparison with Asharov et al. [AHLR18]

Here, we compare our privacy-preserving algorithm for ED and
Similar Sequence Query (SSQ) with [AHLR18].

In Table 2 and in Figure 4 in Appendix A, we compare our algo-
rithms in the benchmark setting of [AHLR18, Table 3], where both
parties, client and server, are run on one machine (our protocol can
trivially be applied for direct STPC between the client and server).
In addition, we benchmark our algorithm in the LAN setting.

The authors of [AHLR18] do not detail their hardware setting,
whereas we benchmark our algorithm on commodity hardware.
Our algorithm outperforms that of Asharov et al. [AHLR18] by
factor 5-6X in run-time which is due to more light-weight building
blocks. Furthermore, our algorithm is still by factor 3x faster even

on a LAN, compared to the localhost benchmarks of [AHLR18].
The communication of our algorithm is slightly lower. This is due
to the more efficient C-OTs instead of general OTs (see Section 4.2)
and a more efficient algorithm for finding k most similar sequences
(see Section 3.3.2).

5.3 Batching the Execution for Large-Scale
Benchmarks

For some of our large-scale benchmarks, we split the execution into
multiple steps (i.e., we evaluate subcircuits instead of the entire
circuit) because our STTPs ran out of RAM. We split our algorithms
in a black-box way, i.e., without modifying the primitive protocols
such as distance computation and k-Nearest Neighbors (k-NN). For
the distance computation, this only increases the number of com-
munication rounds because the computation is independent for
each SNP, whereas for the k-NN algorithm we have to perform
additional computation because the result depends on all input
elements, which, however, turns out to be very cheap in terms of
computation and does not add any significant overhead to the over-
all protocol. For example, for one million input genome sequences
in total in the k-NN protocol with k=10 and 100 000 batch size, we
have to perform 10 iterations with 100 000 input size and one itera-
tion of k-NN on the joint output of size 10 - k = 100. Since k-NN
has linear complexity in the number of inputs, the total overhead in
the circuit size is ~ 100/1 000 000 = 0.000 1 %, which is negligible.
This also does not violate privacy, because the data and interme-
diate results all remain in secret-shared form and, hence, leak no
information.

5.4 Large-Scale Benchmarks

For our large-scale benchmarks on thousands to millions of genomes,
we define global parameters of the block size b=5, padded block
size b’=16, number of data providers /=10, and the width of the
LUT w=30 (for better accuracy). The results of the benchmarks are
given in Table 5 and in Figure 5 in Appendix A. As can be seen in the
table, practical large-scale privacy-preserving SSQs on sequences of
medium lengths are possible. For the sequence lengths n=1K-10K
and any number of sequences, and n=100 with the number of se-
quences N=100K, the run-times are always in the order of seconds.
For all other parameters, the run-times are in the order of min-
utes (even for databases with N=1M sequences). A few minutes
is a reasonable delay in practice for SSQ which shows real-world
applicability of our protocol to large-scale SSQ.

5.5 Whole-Genome Benchmarks

For our whole-genome benchmarks, we set the genome sequence
length to n=75 M (the same as in [WHZ*15]) and the LUT width to
w € {10,20}. As shown in [CHW18], a LUT width reduction slightly
reduces accuracy, but significantly reduces the communication and
computation of the protocol. The results of our benchmarks are
given in Table 6 and in Figure 6 in Appendix A.

As can be seen in the table, running our protocol on a few hun-
dred whole-genome sequences is practical. For example, a protocol
run on up to N=1000 sequences takes just a few hours. However, if
we extrapolate the results to the dataset of [WHZ"15] with N=1M
sequences, we would require months to execute the protocol. Thus,



Table 4: Run-time and communication comparison of our Similar Sequence Query algorithm with that of Cheng et
al. [CHW18] with sequence length n=500, Look-Up Table width w=20, block size b=5, number of blocks =20, number of
most similar sequences k=10, and number of sequences N. A plot is given in Figure 4 in Appendix A

N Run-time (LAN) Communication
[CHW18] Ours [Improvement [[ [CHW18] Ours [Improvement
100 25min 62 ms 24 193x 50 MB 3MB 16X
200 50 min 96 ms 31250% 100 MB 4MB 25X
300 80 min 132 ms 36 363X 150 MB 5MB 30x
400 || 105min 171 ms 36 842% 200 MB 6 MB 33X
500 || 135min| 207ms 39130x 250 MB 7MB 35X

Table 5: Large-scale benchmarks of our Similar Sequence
Query algorithm for N sequences of length n, LUT width
»w=30, number of data providers =10, number of most sim-
ilar sequences k=10, block size b=5, and padded block size
b’=16. A plot is given in Figure 5 in Appendix A.

l N n H Run-time H Communication ‘

1K 100 0.5s 21.1 MB
10K 100 3.6s 138.9 MB
100K 100 24.2s 1.4GB
1M 100 4.0 min 14.9 GB
1K 1K 1.2s 129.5 MB
10K 1K 59s 457.8 MB
100K 1K 1.1 min 3.9GB
1M 1K 8.3 min 38.8 GB
1K 10K 8.5s 1.2GB
10K 10K 22.4s 3.5GB
100K 10K 4.1 min 26.6 GB
1M 10K|| 39.6min 257.2 GB

Table 6: Run-times and communication for Similar Se-
quence Query on whole-genome genome sequences based
on the computation of sub-sequences of smaller lengths
with the following parameters: number of sequences N,
Look-Up Table widths w, sequence length n=75M, block
size b=5, padded block size b’=16, number of most simi-
lar sequences k=10, number of data providers ¢=10, num-
ber of blocks t=15M, and bit-length of the distances
p=Ilog, (tb’)]=28. A plot is given in Figure 6 in Appendix A.

l N W H Run-time H Communication
10 10 29h 2.3TB

100 10 3.2h 24TB
1000 10 6.8h 3.5TB
10000 10 1.2d 14.3TB
10 20 5.7h 4.6 TB

100 20 6.3h 48 TB
1000 20 12.5h 7.0 TB
10000 20 2.4d 28.6 TB

we propose either to use our protocol for whole-genome runs with

relatively small databases (a few hundred sequences) or to use
high-performance hardware.

6 CONCLUSION

In this work, we designed, implemented, and evaluated EPISODE,
a scalable protocol for distributed privacy-preserving Similar Se-
quence Queries (SSQs), which outperforms the state of the art by
orders of magnitude. Our protocol for SSQ is based on the approx-
imation of Edit Distance (ED) computation of [AHLR18]. SSQ is
performed on two Semi-Trusted Third Parties (STTPs) that oblivi-
ously compute indices of the k most similar sequences to the client’s
query. Our protocol is not only scalable, but it also substantially
reduces the amount of communication and computation of the
client. We implement our protocol using a mix of generic SMPC
protocols and Correlated Oblivious Transfer (C-OT), which (i) im-
proves the efficiency of our SSQ protocol by computing its parts
using techniques that are most efficient for the particular tasks,
which gives a greater than 20 000X speed-up compared to the most
recent work of Cheng et al. [CHW 18], and (ii) extend the proto-
col of Asharov et al. [AHLR18] for outsourcing while reducing its
communication and computation overhead.
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Figure 4: (a) A run-time comparison of our Similar Sequence Query algorithm with that of Asharov et al. [AHLR18] with
sequence length n=3 470, number of nearest sequences k=5, block length b=4, padded block length b’=16, and number of data
providers =1 performed locally for different numbers of sequences N and LUT widths w. (b,c) A run-time and communication
comparison of our SSQ algorithm with that of Cheng et al. [CHW 18] with n=500, b=5, k=10, =20, and number of blocks t=20.
Numbers are given in Tables 2 (a) and 4 (b,c).
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Figure 5: Large-scale benchmarks of our Similar Sequence Query algorithm for N sequences of length n, LUT width w=30,

number of data providers =10, number of most similar sequence queries k=10, block size b=5, and padded block size b’=16.
Numbers are given in Table 5.

Figure 6: Run-times and communication for Similar Sequence Query on whole-genome genome sequences based on the compu-
tation of sub-sequences of smaller lengths with the following parameters: number of sequences N, Look-Up Table widths w,
sequence length n=75M, block size b=5, padded block size b’=16, number of most similar sequences k=10, number of data
providers (=10, number of blocks +=15M, and bit-length of the distances f=[log, (tb’)]=28. Numbers are given in Table 6.

Run-time in h

30 -

30

Communication in TB

10 100 1000
Number of sequences N

10000

100 1000
Number of sequences N

10000




	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Outline

	2 Related Work
	3 Preliminaries
	3.1 Genomic Primer
	3.2 Similar Sequence Queries (SSQs)
	3.3 Secure Multi-Party Computation (SMPC)

	4 Our Privacy-Preserving SSQ protocol
	4.1 System Model
	4.2 Privacy-Preserving Approximated Edit Distance
	4.3 Privacy-Preserving Similar Sequence Queries
	4.4 Security Analysis
	4.5 Data Aggregation from Multiple Data Providers

	5 Evaluation
	5.1 Comparison with Cheng et al. asiaccs18
	5.2 Comparison with Asharov et al. asharov2017privacy
	5.3 Batching the Execution for Large-Scale Benchmarks
	5.4 Large-Scale Benchmarks
	5.5 Whole-Genome Benchmarks

	6 Conclusion
	References
	A Visualized Benchmarks

