
A Gapless Code-Based Hash Proof System
based on RQC and its Applications

Slim Bettaieb1, Löıc Bidoux1, Olivier Blazy2, Yann Connan1,2,, and) Philippe
Gaborit2

1 Worldline, 23 rue de la Pointe, 59139 Noyelles-les-Seclin, France
slim.bettaieb@worldline.com

loic.bidoux@worldline.com

yann.connan@worldline.com
2 University of Limoges, 123 Avenue Albert Thomas, 87000 Limoges, France

olivier.blazy@unilim.fr

philippe.gaborit@unilim.fr

Abstract. Cramer and Shoup introduced at Eurocrypt’02 the concept
of hash proof system, also designated as smooth projective hash func-
tions. Since then, they have found several applications, from building
CCA-2 encryption as they were initially created for, to being at the core
of several authenticated key exchange or even allowing witness encryp-
tion. In the post-quantum setting, the very few candidates use a language
based on ciphertexts to build their hash proof system. This choice seems
to inherently introduce a gap, as some elements outside the language
could not be distinguish from those in the language. This creates a law-
less zone, where an adversary can possibly mount an undetectable attack,
particularly problematic when trying to prove security in the UC frame-
work [19]. We show that this gap could be completely withdrawn using
code-based cryptography. Starting from RQC [4], a candidate selected
for the second round of the National Institute of Standards and Tech-
nology (NIST) post-quantum cryptography standardization project, we
show how to build such a hash proof system from code-based cryptog-
raphy and present a way, based on a proof of knowledge, to fully negate
the gap. We propose two applications of our construction, a witness en-
cryption scheme and a password authenticated key exchange (PAKE).

Keywords: Code-Based Cryptography · Hash Proof System · Rank
Quasi-Cyclic Scheme · Witness Encryption · Password Authenticated
Key Exchange.

1 Introduction

Post-quantum cryptography is starting to really bloom, as we see the emergence
of various cryptographic primitives, the standard ones such as signatures and
encryptions, but also advanced ones like oblivious transfer or authenticated key
exchange based on all sorts of assumptions (lattices, error correcting codes, and
in some cases super singular isogenies).

There nevertheless remains one primitive for which post-quantum cryptog-
raphy is still a long way behind: Hash Proof Systems (HPS) also designated as
smooth projective hash functions [21]. Those functions were introduced origi-
nally to provide a CCA-2 secure encryption scheme. Since then, they have been
used in many interactive protocols as the key building block, in particular for
authenticated key exchange [29, 2, 33, 34], and oblivious transfers [32, 30, 18]. In
addition, they can also be used to produce witness encryption schemes or zero-
knowledge arguments. While the initial construction in group settings works
pretty well, constructions in the post-quantum settings seem painful. Indeed, in
this later setting, languages used for the construction of the HPS are languages
of ciphertexts of a given plaintext µ. Those allow to implicitly prove that a spe-
cific value is encrypted but, on the other hand, seems to inherently introduce a
gap between honestly generated ciphertexts of a given plaintext µ considered for
the correctness property and those, who can not be distinguished from honest
ciphertexts in some cases, who simply decipher into µ without having the good
shape of a ciphertext of µ.

To the best of our knowledge, there are only a few constructions of HPS in the
post-quantum realm. First, a construction over a lattice-based encryption scheme
in the standard model, proposed by Katz and Vaikuntanathan [33]. However,
the language used for their HPS was not simply defined as the set of valid
standard LWE ciphertexts, leading to a decryption procedure very costly, as
pointed in [15]. To solve this issue, Benhamouda and al proposed a new HPS over
a lattice-based encryption scheme, still in the standard model, using the standard
language of ciphertexts and based on the learning with errors assumption.

There is also a subsequent work by Zhang and Yu who proposed an interesting
new lattice-based HPS in [43]. While it uses zero-knowledge proof to supplement
the HPS like our technique, it still suffers from a gap between the language L
of valid encryptions of a message µ used for the (approximate) correctness, and
the language L∗ of elements that decrypts to µ for smoothness.

In code-based cryptography, a candidate was evoked in [39], however some
weaknesses in the technique does not make it a suitable candidate. The author
does not show smoothness but universality. In this paper, universality is properly
defined but the proof does not follow. Instead of proving it for every possible keys,
it is done for random ones, which means adversarially chosen keys can, and in
this case will, make the proof fail. In addition, while there exists generic transfor-
mations from universal projective hash functions to word-dependent (also known
as GL/CS) hash proof systems, they do not allow to achieve word-independent
(KV) hash proof systems. Hence, building a word-independent HPS in code-based
cryptography still remained an open-problem.

To the best of our knowledge, in the post-quantum setting the conception of
a gapless hash proof system has never been achieved.

1.1 On the Necessity of a Gapless Construction

When proving the security of a HPS, one has to distinguish between distinct
languages. The correctness considers correctly generated ciphertexts of a mes-

2

sage µ. On the contrary, the smoothness property consider all the elements that
are not valid ciphertexts. The problem hidden behind this segmentation of the
ambiant space is that it contains some problematic elements that are not valid
ciphertexts of a given message µ but still decrypt into µ. This gap leaves a huge
grey area, where an adversary can maliciously generate such malformed cipher-
texts elements, inconspicuous for an honest verifier, and potentially open the
door for practical attacks in some context.

Moreover, such a gap is not possible when trying to prove security in the
UC framework. As a toy example, imagine an HPS-based PAKE protocol, where
users derive a shared key from a hash proof system over their respective com-
mitments to a password. In the proof, one needs to build a simulator abstracting
the ideal functionality. As of now, post-quantum schemes based on HPS need
to weaken the functionality. The simulator cannot detect whether the adversary
sent a valid encryption of the password or just something that (for the particular
secret key) can be decrypted back to the password. In the first case, the protocol
should always succeed (assuming perfect correctness) while in the latter it is not
clear. Either this is an admissible behavior, and so the protocol should always
succeed, however this does not happen with existing post-quantum HPS, or this
is an inadmissible behavior and the protocol should fail, however the simulator
being unable to detect this situation has to flag the authentication as successful
and so does not fulfill the functionality. As such, for proper UC instantiations,
obtaining a gapless HPS is a major issue that needed to be solved.

1.2 Contribution

Our main contribution consists in proposing a word-independent KV-HPS from
an existing code-based encryption scheme and proving its security in a quantum-
resistant setting. We propose a first application in the standard model relying
on this HPS, namely a witness encryption scheme. We then switch back to the
random oracle model, and propose a PAKE secure in the BPR model [11]. To
do so, we design a zero-knowledge proof of knowledge asserting if two different
ciphertexts of the same message µ are valid. It should be noted that, in all these
constructions, we manage to avoid the main caveat of post-quantum construc-
tions, as we propose gapless protocols. To handle the gap, we define our HPS
only on the set of valid ciphertexts and check if necessary whether the word is a
valid ciphertext by using a proof of knowledge.

Our contribution relies on the RQC candidate of the NIST post-quantum
competition. This is one of the rank-metric based encryption schemes that has
advanced to the round two of the competition. We view as an important challenge
the capacity to build post-quantum HPS without a gap, as this would allow to
avoid the duality in languages and would close the door to some possible practical
attacks that remain undetectable by a simulator.

3

1.3 Road Map

In section 2, we give some preliminaries on code-based cryptography, present the
RQC encryption scheme and give an overview of hash proof systems. Next, in
section 3, we present our code-based HPS in the rank metric setting. Its security
is presented in section 4. We describe the zero-knowledge proof of ciphertext
validity for RQC in section 5. Then, we detail the witness encryption and PAKE
constructed from our HPS in sections 6.1 and 6.2 respectively. Some concrete
parameters for these constructions are given in section 7.

2 Preliminaries

In this section, we give some definitions regarding code-based cryptography and
the rank metric, present the RQC cryptosystem and give an overview of HPS.

2.1 Code-based Cryptography

Throughout this paper, let q be a power of a prime p. The finite field with q
elements is denoted by Fq and more generally, for any natural number m, the
finite field with qm elements will be denoted by Fqm . Let B = (β1, . . . , βm)
denotes a basis of Fqm viewed as a m-dimensional vector space over Fq.

Let V be a n-dimensional vector space over Fqm . Let P ∈ Fq[X] a polynomial
of degree n. The vector space V can be identified with the ring Fqm [X]/〈P 〉 where
〈P 〉 denotes the ideal of Fqm [X] generated by P .

Ψ : Fnqm ' Fqm [X]/〈P 〉

x = (x0, . . . , xn−1) 7→ Ψ(x) =

n−1∑
i=0

xiX
i

By isomorphism, elements of V can be viewed as polynomials in Fqm [X]/〈P 〉.
For all x,y ∈ V, the product x · y is defined as the polynomial multiplication of

x and y performed modulo P . Formally, x · y def
= Ψ−1[Ψ(x) ·Ψ(y)]. For a better

readibility, we will sometimes omit the symbol Ψ and refer either to the vector
or the polynomial form depending on the context.

Rank Metric To any vector x = (x1, . . . , xn) ∈ V, one can associate the matrix
Mx ∈Mm,n(Fq) by expressing its coordinates in the basis B where Mx = (xij)
such that for all j ∈ [[1, n]], xj =

∑m
i=1 xi,jβi.

M : Fnqm ' Mm,n(Fq)

x = (x0, . . . , xn−1) 7→Mx =


x1,0 . . . x1,n−1
x2,0 . . . x2,n−1

...
...

xm,0 . . . xm,n−1


β1
β2
...
βm

4

Definition 1 (Support). Let x = (x1, . . . , xn) ∈ V. The support of x, denoted
Supp(x), is the Fq-subspace of Fqm generated by the coordinates of x, namely
Supp(x) = 〈x1, . . . , xn〉Fq .

Definition 2 (Rank weight). Let x = (x1, . . . , xn) ∈ V. The rank weight of
x, denoted ω(x), is equal to the dimension of its support.

Corollary 1. The rank of a vector is equal to the rank of its associated matrix.

Definition 3 (Rank distance). Let x,y ∈ V. Let d denotes the application
defined as d(x,y) = ω(x− y).

Proposition 1. The application d previously defined is a distance over V.

Notation 1 As we will often manipulate vectors sharing a common support, we
introduce the following notations:

� Sw(V) = {x ∈ V | ω(x) = w} (Spheres of radius w)

� Sn
w(V) =

{
(x1, . . . ,xn) ∈ Vn

∣∣∣∣ ∃E ⊂ Vn with dim(E) = w
such that ∀i ∈ [[1, n]], Supp(xi) = E

}

Coding Theory In this part, we recall some definitions and properties regard-
ing coding theory and introduce ideal codes, Gabidulin codes and LRPC codes.

Definition 4 (Fqm-linear code). An Fqm-linear code C of dimension k and
length n is a subspace of dimension k of Fnqm and is denoted by [n, k]qm . C can
be represented by two equivalent ways

� Using a generator matrix G ∈Mk,n(Fqm). Rows of G form a basis of C.

C = {xG | x ∈ Fkqm}

� Using a parity-check matrix H ∈ Mn−k,n(Fqm). Rows of H determine a
system of equations verified by the elements of C.

C = {x ∈ Fnqm | Hx> = 0}

A generator matrix G (respectively parity-check matrix H) is said to be under
systematic form if and only if it is of the form (Ik | A) (respectively (In−k | B)).

Definition 5 (Syndrome). Let C be a code with parity-check matrix H and x
a vector in V. The vector Hx> is called the syndrome of x.

To any vector v ∈ V, one can associate an n× n square matrix with entries
in V corresponding to the product by v. Indeed:

5

u · v = u(X) · v(X) mod P

=

n−1∑
i=0

uiX
i · v(X) mod P

=

n−1∑
i=0

ui[X
iv(X)] mod P

= u ·


v(X) mod P
Xv(X) mod P

...

Xn−1v(X) mod P


Definition 6 (Ideal matrix). Let a ∈ V and P a polynomial of degree n over
Fq. The ideal matrix induced by a, denoted

⇀

a, is defined as follow:

⇀

a =


a mod P

X · a mod P
...

Xn−1 · a mod P



Definition 7 (Ideal codes). Let a1,a2, . . .as ∈ V. An ideal [sn, n]qm code
of index s is an Fqm-linear code with a generator matrix of the form: G =(⇀
a1

⇀

a2 . . .
⇀

as
)
.

Definition 8 (Systematic Ideal Codes). A systematic ideal [sn, n]qm code
of index s is an ideal code with an (s−1)n× sn parity-check matrix of the form:

H =


In 0 . . . 0

⇀

a1

0 In
. . .

...
⇀

a2

...
. . .

. . . 0
...

0 . . . 0 In
⇀

as−1


where for all i ∈ [[1, s− 1]], ai ∈ V.

We now describe Gabidulin codes which can decode deterministically up
to bn−k2 c errors. These codes were introduced in [23] while the notion of q-
polynomial was introduced in [38].

Definition 9 (q-polynomials). A q-polynomial of q-degree r over Fqm is a

polynomial defined as P (X) =
∑r
i=0 piX

[i] with [i]
def
= qi and for all i ∈ [[0, r]],

pi ∈ Fqm and pr 6= 0.

6

Definition 10 (Gabidulin codes). Let k, n,m ∈ N such that k 6 n 6 m.
Let g = (g1, . . . , gn) ∈ V be a Fq-linearly independent family of vector of Fmq . A
Gabidulin code is a [n, k]qm code whose generator matrix is:

Gabg =


g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n


LRPC codes on the other hand are probabilistic codes introduced later on in

[24].

Definition 11 (LRPC codes). A low rank parity check codes of rank d, length
n and dimension k over Fqm is a code with parity check matrix H = (hi,j) ∈
Mn−k,n(Fqm) such that the sub-vector space generated by the coeficients of H
has dimension at most d.

Hard Problems In the rank metric setting, security generally rely on the rank
syndrome decoding (RSD) problem, the rank metric variant of the Syndrome
Decoding (SD) problem which has been proven NP-complete in [16]. It has been
proven in [27] that there exists a probabilistic reduction of the RSD problem to
the SD one.

Definition 12 (RSD distribution). For positive integers n, k and w, the

RSD(n, k, w) distribution is the distribution obtained by choosing H
$←

Mn−k,n(Fqm) and x
$← Sw(V), and outputing the pair (H, (Hx>)>).

Definition 13 (Search RSD problem). On input (H,y) ∈ Mn−k,n(Fqm) ×
Fn−kqm from the RSD distribution, the rank syndrome decoding problem

RSD(n, k, w) asks to find x ∈ Sw(V) such that Hx> = y>.

Definition 14 (Decision RSD problem). On input (H,y) ∈Mn−k,n(Fqm)×
Fn−kqm , the decision RSD problem asks to decide with non negligible advantage
whether (H,y) came from the RSD(n, k, w) distribution or the uniform distribu-
tion over Mn−k,n(Fqm)× Fn−kqm .

We now introduce the Ideal Rank Syndrome Decoding (IRSD) problem, a
structured version obtained by instantiating the RSD problem with ideal codes.
Let idealsysts (Fqm) denotes the set of parity check matrices of systematic ideal
codes of index s over Fqm modulo P , as defined in definition 8.

Definition 15 (s-IRSD distribution). For positive integers n, w, s and P ∈
Fq[X] a polynomial of degree n, the ideal rank syndrome decoding distribution

s-IRSD(n,w) is the distribution obtained by choosing H
$← idealsysts (Fqm) and

x = (x1, . . . ,xs)
$← Ss

w(V) and outputing the pair (H, (Hx>)>).

7

Definition 16 (Search s-IRSD problem). On input (H,y) ∈ idealsysts (Fqm)
× Fsnqm from the s-IRSD distribution, the ideal rank syndrome decoding problem

s-IRSD(n,w) asks to find x = (x1, . . . ,xs) ∈ Ss
w(V) such that Hx> = y>.

Definition 17 (Decision s-IRSD problem). On input (H,y) ∈ idealsysts (Fqm)
× Fsnqm , the decision s-IRSD problem asks to decide with non negligible advantage
whether (H,y) came from the s-IRSD(n,w) distribution or the uniform distribu-
tion over idealsysts (Fqm)× Fsn−nqm .

Although no general complexity result is known for the ideal variant of the
RSD problem, no known attack taking advantage of the ideal structure has been
discovered either as long as the polynomial P is chosen irreducible.

2.2 The RQC Cryptosystem

Rank Quasi-Cyclic (RQC) is a code-based IND-CCA2 encryption scheme whose
security relies on the rank syndrome decoding problem. The scheme is based on
an approach introduced by Alekhnovitch in [7] in which the security is reduced to
the problem of decoding random codes. As such, the security do not rely on any
additional assumption regarding the indistinguishablity of the family of codes
being used [4, 5]. The scheme is based on an IND-CPA construction denoted
RQC.PKE (see figure 1) on top of which the HHK transformation [31] is applied
in order to obtain an IND-CCA2 cryptosystem.

RQC uses a Gabidulin code of generator matrix Gabg denoted C and a ran-

dom [2n, n]qm ideal code of parity-check matrix (In
⇀

h) with h a random element
over V.

� Setup(1K): Given the security parameter K, generates and outputs the global
parameters param = (n, k, δ, w,wr, P) where P ∈ Fq[X] is an irreducible poly-
nomial of degree n.

� KeyGen(param): Samples h
$← V, g ∈ Sn(V), (x,y)

$← S2
w(V). Computes s =

x + h · y and returns sk = (x,y) and pk = (g,h, s).

� Encrypt(pk, µ, θ): Uses randomness θ to generate (r1, r2, r3)
$← S3

wr (V).
Sets c1 = r1 + h · r2 and c2 = µGabg + s · r2 + r3 and returns c = (c1, c2).

� Decrypt(sk, c): Returns C.Decode(c2 − y · c1).

Fig. 1. Description of RQC.PKE [4]

The correctness of RQC relies on the decoding capability of the Gabidulin
code C. Indeed, the decryption consists of decoding c2 − y · c1 which requires:

ω (x · r2 − y · r1 + r3) ≤
⌊n− k

2

⌋
8

2.3 Hash Proof Systems

Hash proof systems (HPS) were initially introduced by Cramer and Shoup in [21]
in order to construct CCA-2 encryption schemes. Since then, they have been used
as a building block for several applications (see for instance [29, 32, 2]). HPS are
defined over an NP language L ⊂ X and relies on two keys denoted respectively
hk and hp. The hashing key hk can be used to associate to any word W ∈ X
a hash value Hhk while the projection key hp, derived from hk, can be used to
associate to any word W ∈ L a projected hash value Hhp using a witness w for
the membership of W in L. Whenever W ∈ L, the hash values Hhk and Hhp

are expected to be equal. This property is called the correctness of the HPS.
However, whenever W ∈ X \L, one should not be able to guess the value of Hhk

and thus this value should be indistinguishable from a random one. This property
is the smoothness of the HPS. Hence, being able to compute the projective hash
value of a word given only the projection key can be seen as an implicit proof of
knowledge for the membership of the word in the language.

HashKG hk Hash Hhk

ProjKG W

hp ProjHash

w

Hhp

Fig. 2. Hash proof system’s scheme [13]

Interesting applications arise when one uses specific languages called hard-
subset-membership languages for which it is hard to decide whether an element
W is inside the language or not.

Definition 18 (Hard-subset-membership). A hard-subset-membership lan-
guage is a language with the following properties:

� L-samplability: There exist a polynomial-time algorithm which takes as input
a parameter K and randomly sample words W from L together with a valid
witness w according to some distribution (not necessarily the uniform one).

� X -samplability: There exists a polynomial-time algorithm which takes as in-
put a parameter K and randomly sample words W from X according to some
distribution (not necessarily the uniform one).

� Hard-subset-membership: Let ∆X denotes the random uniform distribution
over X and ∆Lµ the random uniform distribution over Lµ. The hard-subset-

9

membership property states that those two distributions are computationaly
indistinguishable.

In the remaining of this section, we introduce hash proof systems formally
and discuss their two main properties: correctness and smoothness.

Definition 19 (Hash Proof System). A hash proof system over a language
L ⊂ X , onto a set V, is defined by five algorithms (Setup,HashKG,ProjKG,Hash,
ProjHash):

� Setup(1K), give the security parameter K, generates the global parameters
param of the scheme, and the description of an NP language L;

� HashKG(L, param), outputs a hashing key hk for the language L;

� ProjKG(hk,L, param,W), derives the projection key hp, possibly depending
on the word W using the hashing key hk;

� Hash(hk,L,W), outputs a hash value Hhk, using the hashing key hk, and W ;

� ProjHash(hp,L,W,w), outputs the hash value Hhp, thanks to the projection
key hp and the witness w of the membership of W to L.

In order to construct HPS in the post-quantum setting, the notion of approx-
imate correctness was introduced in [33]. In such a HPS, the correctness property
is relaxed so that the two hash values are no longer required to be equal but
instead may only be close with respect to a given distance.

Definition 20 (ε-Correctness). Let W ∈ L and w a witness of its mem-
bership. Let d denotes a distance. A hash proof system satisfies the ε-
correctness property if, for all hashing keys hk and associated projection keys
hp, d(Hhk,Hhp) 6 ε.

Several definitions have been proposed for the smoothness property leading
to different families of HPS called CS-HPS, GL-HPS and KV-HPS from the name
of their respective authors. The smoothness ensures that given only hp, the hash
valueHhk of a word W ∈ X \L is indistinguishable from a uniformly chosen value
in V. The last notion, namely the KV-smoothness, has been introduced in [34] in
order to handle cases where an adversary may generate the word W maliciously
after seeing hp. In this paper, we will consider computational KV-smoothness
(see figure 3) as initially introduced in [14].

If we denote by |A| the running time of an adversary A, the global advantage
for polynomial time adversaries running in time less than t is:

Advsmooth(K, t) = max
|A|6t

Advsmooth
A (K)

where Advsmooth
A (K) is the advantage of an adversary A has in winning game

Expsmooth−b
A (K):

Advsmooth
A (K) =

∣∣ P[Expsmooth−1
K (A) = 1]− P[Expsmooth−0

K (A) = 1]
∣∣

10

Expsmooth−b
A (K):

1. param← Setup(1K)

2. hk← HashKG(Lµ, param)

3. hp← ProjKG(hk,Lµ, param)

4. W ∈ X \ Lµ ← A.choose(Lµ, hp)

5. b
$← {0, 1}

6. If b = 0, Hhk ← Hash(hk,Lµ,W)

7. If b = 1, Hhk
$← V

8. b′ ← A.guess(Lµ,Hhk, hp,W)

Fig. 3. Game Expsmooth−b
A (K) for computational KV-smoothness

3 Code-based Hash Proof System

We now describe our approximate code-based hash proof system. The language
Lµ used in our construction is the set of valid ciphertexts of a given message
µ produced by the RQC encryption scheme. It has been shown in [33] that
languages based on ciphertexts are useful to design HPS in the quantum-resistant
setting, although they inherently introduce a gap in the smoothness proof of the
underlying HPS. Indeed, let L∗µ denotes the set of ciphertexts that decrypt to µ,
then one can see that Lµ ⊆ L∗µ, as a valid RQC ciphertexts of a message µ always
decrypt into µ. However, L∗µ ⊆ Lµ is generally not true for languages based on
ciphertexts, as an element generated improperly can still be decrypted into µ.
Elements in this gap are legion. As a toy example, consider the couple c = (c1, c2)
with c1 = h ·r2, c2 = µGabg+s ·r2 and r2 of rank wr (a RQC like ciphertext but
with r1 and r3 set as zero). Then, one can see that c2−y·c1 = µGabg+x·r2. This
expression decrypts into µ as the rank of x · r2 is bellow the correction capacity
of the Gabidulin code, meaning that c ∈ L∗µ, while c 6∈ Lµ as c is obviously not
a valid RQC ciphertext of µ (remind that (r1, r2, r3) should belong to set of the
form S3

wr (V)).

Such a gap leaves a grey area regarding the security of the scheme as an
adversary can produce elements that can still decrypt to µ without belonging
to the language, which may open the door for practical attacks in some context
such as UC-based applications as previously explained.

In order to deal with this gap, we restrict X as the set of all the valid ci-
phertexts under the RQC encryption scheme whereas the language Lµ is defined
as the set of all the valid ciphertexts of a given message µ. Interestingly, even
if these requirements might seem quite restrictive, we show that an HPS con-
structed from these definitions can have many applications thanks to the versa-
tility of coding theory. Indeed, we need to verify that we are manipulating a valid
ciphertext during the considered protocols which can be performed a fortiori if
the word W is honestly generated or a priori using a proof of ciphertext validity.
These strategies are respectively used to construct the applications proposed in
sections 6.1 and 6.2.

11

3.1 Language

Let n,m, k, q, wr be some positives integers depending on the security parameter
K. The language Lµ is the set of valid ciphertexts c in the ciphertext space CT
of a given message µ in the plaintext space PT produced using RQC as depicted
in figure 1. Thus, given an RQC public key pk = (g,h, s), one have:

X =
{

c ∈ CT
∣∣∣ ∃µ ∈ PT ,∃θ, c = RQC.Encrypt(pk, µ, θ)

}
Lµ =

{
c ∈ CT

∣∣∣ ∃θ, c = RQC.Encrypt(pk, µ, θ)
}

=

{(
c1
c2

)
=

(
r1 + h · r2

µ ·Gabg + s · r2 + r3

) ∣∣∣∣∣ (r1, r2, r3)
$← S3

wr (V)

}

The witness of the membership of W ∈ Lµ is w = (r1, r2, r3).

Proposition 2. Lµ is a hard-subset-membership language under the 3-IRSD as-
sumption.

Proof. Lµ respect the three properties of a hard-subset membership language:

� L-samplability: Sampling a random word W ∈ Lµ with its associated witness
w consists in computing a ciphertext of µ ∈ PT using RQC and therefore can
be performed in polynomial time.

� X -samplability: Sampling a random element in X consists in computing a
ciphertext of any message µ ∈ PT using RQC and therefore can be performed
in polynomial time.

� Hard-subset-membership: Let U , ∆X and ∆Lµ denote the random uniform
distributions over V2, X and Lµ respectively. Whenever (c1, c2) are sampled
from ∆X or ∆Lµ , elements of ∆ = (c1, c2 − µGabg) can be seen as instances
of the 3-IRSD problem therefore distributions ∆ and U are computationally in-
distinguishable under the 3-IRSD assumption. As the distribution ∆ only differs
from ∆X (respectively ∆Lµ) by a constant term, ∆X (respectively ∆Lµ) and U
are computationally indistinguishable. Hence ∆X and ∆Lµ are computationally
indistinguishable under the 3-IRSD assumption.

ut

12

3.2 Construction

� Setup(1K): Given the security parameter K, generates the parameters param of

the scheme namely (n,m, k, q, w1, w2, wα, w, θ). Samples h
$← V, g

$← Sn(V),

(x,y)
$← S2

w(V), use randomness θ to generate (r1, r2, r3)
$← S3

wr (V). Computes
(c1, c2) = RQC.Encrypt(pk, µ, θ) and s = x + h · y.

� HashKG(Lµ, param): Samples (α1,α2,α3)
$← S3

wα(V).
Returns hk = (α1,α2,α3).

� ProjKG(hk,Lµ, param): Returns hp = s · α1 + α2.

� Hash(hk,Lµ,W): Returns Hhk = α1 · (c2 − µGabg) + α3.

� ProjHash(hp,Lµ,W, w): Returns Hhp = hp · r2

Fig. 4. A code-based HPS

As an approximate HPS, the construction described in figure 4 computes two
values Hhk and Hhp such that ω(Hhk −Hhp) is relatively small. To achieve this,
Hhk and Hhp are defined such that they both contain the value sα1r2 but differ
due to additional noise from a product space 〈Eα, Er〉 where Er and Eα are two
subspaces of small dimension, denoting respectively the shared support of ri and
αi values. In addition, the Gabidulin code allows to check if W ∈ X is in Lµ or
not using the secret key sk = (x,y) as a trapdoor.

4 Security of the HPS

4.1 Correctness Property

Theorem 1. The HPS depicted in figure 4 satisfies the wα(wr + 1)-correctness
property.

Proof. Let W ∈ Lµ. We have Hhk−Hhp = α1 · r3 +α3−α2 · r2. As Supp(α1) =
Supp(α2) and Supp(r3) = Supp(r2), the product space 〈α1r3〉Fq = 〈α2r2〉Fq and
has dimension wαwr. Furthermore, the space 〈α3〉Fq is not included in this prod-
uct space and has dimension wα. Finally, the overall expression has a maximal
rank of wα(wr + 1).

ut

4.2 A Problem Underlying the Smoothness Property

Intuition of the Problem The smoothness property of our HPS depend of
the decisional version of a special kind of 3-IRSD problem where an adversary

13

can partially manipulate the parity check matrix being used. Given s, t
$← V and

y1,y2 ∈ V, consider the following syndrome equation:(
⇀

s In
⇀

0
⇀

t
⇀

0 In

)α1

α2

α3

 =

(
y1

y2

)

Finding (α1,α2,α3) ∈ S3
wα(V) satisfying the above equation correspond to

an instance of a 3-IRSD problem. Now, instead of a random t value, consider that
an adversary can chooses µ ∈ Fkqm and (r1, r2) ∈ S2

wr (V). Let t = µGabg +sr1 +
r2. The question we have to deal with is to determine if, under this particular
shape, the problem remains hard, and more specifically its decisional version.

Description of the Problem In this part, we formally describe the problem
that we denote flexible ideal rank syndrome decoding problem (FIRSD).

Definition 21 (FIRSD distribution). Given g ∈ Sn(V), s
$← V and wα, wr ∈

N, consider an oracle denoted by Os,g(t) that generates (α1,α2,α3)
$← S3

wα(V),
calculates and outputs y1 = sα1 +α2 as a public value, then verify with a proof
of validity Π that its input t is of the form t = µGabg + sr1 + r2 with µ ∈ Fkqm
and (r1, r2) ∈ S2

wr (V), calculates y2 = tα1 + α3 and outputs (y1,y2) if t is
valid and ⊥ otherwise.

Definition 22 (Decision FIRSD problem). Given g ∈ Sn(V), s
$← V and

wα, wr ∈ N, consider an oracle denoted by Õs,g(t) that generates (α1,α2,α3)
$←

S3
wα(V) and coin

$← {0, 1}, calculates and outputs y1 = sα1 + α2 as a public
value, then verify with a proof of validity Π that its input t is of the form t =
µGabg+sr1+r2 with µ ∈ Fkqm and (r1, r2) ∈ S2

wr (V), calculates y2 = tα1+ α3,
and outputs, if t is valid, the couple (y1,y2) if coin = 0, a couple (y1,y2) with
y2 a random value over V if coin = 1, and ⊥ if t is not valid. The decision
FIRSD problem ask to decide, with non negligible advantage, whether y2 came
from the FIRSD distribution or the uniform distribution over V.

Discussion Upon the Problem’s Hardness

Claim. The decisional FIRSD problem is hard.

As previously highlighted, this problem is close to the decisional 3-IRSD prob-
lem. However, in this particular case, the adversary has some additional control
over a part of the parity check matrix H being used, namely on the ideal matrix
generated from t. The question is to determine how it can impact the hardness
of the problem.

General overview. Let g ∈ Sn(V), s
$← V and wα, wr ∈ N. Consider an

adversary choosing (r1, r2) ∈ S2
wr (V) and µ ∈ Fkqm , and generating t = µGabg+

14

sr1 + r2. The decision FIRSD problem ask to distinguish a value y2 having a
syndrome form as described bellow from a random generated one.

(
⇀

s In 0
⇀

t 0 In

)α1

α2

α3

 =

(
y1

y2

)

Let us consider two extreme cases. The 0-entropy case, where an adversary
would have no choice upon the value of the vector t. In this situation, t would be
a random vector over V and the problem would be a decisional 3-IRSD problem
under a systematic form. The full-entropy case, on the other hand, would be
the extreme opposite situation where an adversary could manage the value of t
as desired. In that case, the problem would no longer be hard, as an adversary
could choose t = (1, 0, . . . , 0) in order to obtain the identity matrix, leaking the
shared support of (α1,α2,α3) in the case where y2 is a syndrome.

As we can see, the hardness of the problem is deeply related to the capability
of an adversary to handle the value of the vector t. We will now give some insight
upon the difficulty of the problem. Firstly, we will consider the problem under
an entropy approach, and show that, under a suitable choice of parameters, the
part an adversary can manage over the t value is restricted. Secondly, we will
describe the case where an adversary try to forge a t value with a specific shape
and show that such a strategy in unlikely to leak any information. We will con-
sider two cases. The first consisting of forging a vector t with as many zeros as
possible and then a second strategy consisting of lowering the rank of t as much
as possible.

Entropy considerations. As previously mentioned, the difficulty of the prob-
lem depends on how much an adversary can control the value of t which depends
on the parameters being used.

In an attempt to manage the value of the t vector, the adversary can first
choose the message µ ∈ Fkqm of its choice, which represent qkm possibilities.
Then, he must chooses a subspace E of Fqm of dimension wr.

There are up to qwrn possibilities for the choice of r1. and up to qwrn possibil-
ities for r2 as well. Overall, the number of bits that an adversary can manipulates
is upper bounded by km+ 2nwr.

On the other hand, choosing a vector over the entire space V represents qmn

possibilities, which can be viewed as an mn bits surface. Therefore, the propor-
tion P of bits that an adversary could handle is equal to km+2nwr

mn . With our set
of parameters, as presented in the following table, this value never exceed 13%.

The ideal structure constraint. As we have seen, an adversary is restricted
upon the choice of the vector t, and this vector is then used to generate an ideal
matrix. As we will see, the inherent cyclicity due to the ideal structure is also
a huge obstacle for the elaboration of an attack. Let consider the following sub

15

Table 1. Proportion of bits possibly manipulated.

Instance q n m k wr P Security

I 2 137 139 4 7 0.123 128
II 2 211 223 4 8 0.104 192
III 2 283 293 3 13 0.099 256

2-IRSD problem extracted from the previous 3-IRSD one:(
⇀

t In

)(
α1

α3

)
= y2

First approach: An adversary could put as many zeros as possible on the
t value in order to retrieve information about α1 and α3.

This way, by solving a system of linear equations, an adversary could manage
to set a bloc of approximatively wr zeros on the vector t.

The ideal matrix generated from t will then shift those zeros over the matrix,
and some of them will be absorb due to the modulus polynomial P used for the
ideal structure.

As the number of zeros are limited to wr coordinates over a total of n coordi-
nates, the proportion P0 of zero coordinates can not exceed 6% of the coordinates
of t. Therefore, such a strategy is unlikely to leak any information about the syn-
drome nor modifying the distribution in order to distinguish it from a random
uniform one.

Table 2. Proportion of zeros.

Instance q n m k wr P0 Security

I 2 137 139 4 7 0.051 128
II 2 211 223 4 10 0.047 192
III 2 283 293 3 13 0.046 256

Second approach: An adversary could lower the rank of t as much as
possible. This would lead to the construction of a parity check matrix under
systematic form of a known decodable [2n, n]qm code from t. An adversary could
reduce the rank of the vector t of approximatively wr, however this would not
be enough to enable the possibility of using a decoding algorithm of a LRPC
code.

Moreover, reducing the rank of t to approximatively wr will not affect the
rank of the overall associated syndrome y2 = t ·α1 +α3. Indeed, we would have
ω(t) = n − wr and ω(α1) = ω(α3) = wα, and as (n − wr + 1) · wα � m, the
overall rank would not be affected.

16

4.3 Computational KV-Smoothness

Theorem 2. The HPS depicted in figure 4 satisfies the computational KV-
smoothness property under the 2-IRSD and the decisionnal FIRSD assumptions.

Proof. We now prove the smoothness of our HPS under the 2-IRSD and the
decisionnal FIRSD assumptions, by building a sequence of games transitioning
from the real game G1 with an adversary receiving an honest value of Hhk to an
adversary receiving in G4 a random value over V.

Game G1,A(K):
1. param← Setup(1K)

2. hk
$← HashKG(Lµ, param)

3. hp← ProjKG(hk,Lµ, param)

4. W ∈ X \ Lµ ← A.choose(Lµ, hp)

5. Hhk ← Hash(Lµ, hk,W)

6. b′ ← A.guess(Lµ,Hhk, hp,W)

Game G2,A(K):
1.a. param← Setup(1K)

1.b. param.s
$← V

2. hk
$← HashKG(Lµ, param)

3. hp← ProjKG(hk,Lµ, param)

4. W ∈ X \ Lµ ← A.choose(Lµ, hp)

5. Hhk ← Hash(Lµ, hk,W)

6. b′ ← A.guess(Lµ,Hhk, hp,W)

D∗K((In,
⇀

h), s):
1. param← Setup(1K)

2. param.s← s

3. param.h← h

4. b′ ← DK(Lµ, param)

5. If b′ == 1, output [2, 1]-IRSD

6. If b′ == 2, output UNIFORM

In game G2, we forget the secret values associated with s by taking it
randomly over the set V and then proceed honestly. Let DK(Lµ, param) de-
notes an algorithm that can distinguish between Game G1 and Game G2 with
advantage ε. Then, one can build an algorithm D∗K breaking the 2-IRSD instance
with the same advantage ε.

Game G3,A(K):
1.a. param← Setup(1K)

1.b. param.s
$← V

2. hk
$← HashKG(Lµ, param)

3. hp← ProjKG(hk,Lµ, param)

4. W ∈ X \ Lµ ← A.choose(Lµ, hp)

5.a. Hhk ← Hash(Lµ, hk,W)

5.b. Hhk
$← V

6. b′ ← A.guess(Lµ,Hhk, hp,W)

D∗K(s,g):
1.a param← Setup(1K)

1.b param.s← s

2. hk
$← HashKG(Lµ, param)

3 hp← Õs,g (public value)

4. W ∈ X \ Lµ ← A.choose(Lµ, hp)

5. Hhk ← Õs,g(c2 − µGabg)

6. b′ ← DK(Lµ, param,Hhk, hp,W)

7. If b′ == 3 output FIRSD

8. If b′ == 4 output UNIFORM

In game G3, we forget the hash value Hhk by taking it randomly over the
set V, and then proceed honestly. Let DK(Lµ, param,Hhk, hp,W) denotes an al-
gorithm that can distinguish between Game G2 and Game G3 with advantage
ε. Then, one can build an algorithm D∗K breaking the decision FIRSD-problem

17

assumption with the same advantage ε.

Game G4,A(K):
1. param← Setup(1K)

2. hk
$← HashKG(Lµ, param)

3. hp← ProjKG(hk,Lµ, param)

4. W ∈ X \ Lµ ← A.choose(Lµ, hp)

5. Hhk
$← V

6. b′ ← A.guess(Lµ,Hhk, hp,W)

In game G4, we reconstruct s as a syndrome and then proceed honestly.
Arguments are the same that the ones used for the transition between games
G1 and G2.

We have built a sequence of games allowing to transition from Expsmooth−0
K (A)

to Expsmooth−1
K (A), therefore our HPS satisfies the computational KV-smoothness

under the 2-IRSD and the decision FIRSD assumptions.
ut

Therefore, the advantage of an adversary against the Expsmooth−b
A (K) experi-

ment is bounded as:

Advsmooth
A (K) 6 2× Adv2-IRSD(K) + AdvFIRSD(K)

ut

5 Proof of Ciphertext Validity

In this section, we design a zero-knowledge proof of ciphertext validity for the
RQC encryption scheme. The latter allows a prover to convince a verifier that a
given ciphertext is well-formed and therefore is a valid RQC encryption. Next,
this proof is extended in order to prove that two ciphertexts of the same message
µ have been generated correctly. We need this primitive to construct the PAKE
described in section 6.2.

We start by briefly reviewing some of the results related to proofs of knowl-
edge in coding theory. Stern’s proof system [41] is a 3-rounds zero-knowledge
interactive protocol based on the hardness of the syndrome decoding problem.
Let H be a public matrix, x a vector of small Hamming weight wx and s = Hx>

the associated syndrome. The protocol allows a prover P to prove to a verifier
V that he knows a vector x of weight wx such that s = Hx>. The scheme
has perfect completeness, however a cheating prover can trick the verifier with
probability up to 2

3 . Thus, the scheme has to be repeated many times to obtain
a negligible soundness error. In 1995, Chen [20] adapted Stern’s scheme to the
rank metric setting where the security is based on the rank syndrome decoding
problem. In 2011, Gaborit et al. [26] break this protocol in two different ways
and then propose a reparation fixing the protocol. In 2016, a even more flexible
variant of this Stern like proof of knowledge called Rank Concatenated Stern’s

18

Protocol (RCSP) was proposed in [6]. In order to achieve a proof of knowledge
for a RQC ciphertext, we need to go deeper and propose an even more flexible
version of this Stern-like proof.

5.1 Proof of Ciphertext Validity for RQC

The Rank Concatenated Stern’s Protocol (RCSP) variant proposed in [6] allows
a prover to convince a verifier that he knows two secrets vectors of small rank
weights. Suppose Q

$←Mk,n(Fqm), R
$←Mk,n′(Fqm) and x, y are two vectors

of small weight wx and wy such that the following equation holds:

(
Q R

)(x
y

)
= s

The protocol depicted in [6] then allows to prove the knowledge of the couple
of vectors satisfying this syndrome equation and such that ω(x) = wx and ω(y) =
wy.

For our purpose, we need a more flexible Stern-like protocol that constrains
the blocks independently which is not provided by the RCSP protocol. More
precisely, we consider the following expression:

(
In

⇀

h 0 0

0
⇀

s In Gabg

)
r1
r2
r3
µ

 =

(
c1
c2

)

The prover should be able to prove that values r1, r2, r3 verify this syndrome
equation, that (r1, r2, r3) ∈ S3

wr (V) and we want no condition on µ as the
support of µ has nothing to do with the supports of r1, r2 and r3. We now
describe some supporting definitions and results in order to achieve this goal.

Definition 23. For x,y ∈ V, we say that x and y are equivalent, denoted x ∼ y,
if Supp(x) = Supp(y).

As explained in the preliminary section, to any vector x ∈ V, one can as-
sociate a matrix Mx ∈ Mm,n(Fq) for a basis B of Fqm . Let φB denotes this
application.

φB : Fnqm ' Mm,n(Fq)

v = (v0, . . . , vn−1) 7→Mv =


v1,0 . . . v1,n−1
v2,0 . . . v2,n−1

...
...

vm,0 . . . vm,n−1


β1
β2
...
βm

Definition 24. Let Q ∈ GLm(q), v ∈ V and B a basis of Fqm . We define the
product Q ∗ v such that Q ∗ v = φ−1B (Q · φB(v)).

Lemma 1. For all v ∈ V, P ∈ GLn(q) and Q ∈ GLm(q), we have :

φB(v · P) = φB(v) · P

19

Proof. Let v ∈ V, P = (pij) ∈ GLn(q) and Q = (qij) ∈ GLm(q). Let denotes
v = (v1, . . . , vn) and, for all i ∈ [[1, n]], vi =

∑m
i=0 vikβk (decomposition of v in

the basis B).

φB(v · P) = φB(

n∑
i=1

vipi1, . . . ,

n∑
i=1

vipin)

= φB(

n∑
i=1

m∑
k=1

vikβkpi1, . . . ,

n∑
i=1

m∑
k=1

vikβkpin)

= φB(

m∑
k=1

βk

n∑
i=1

vikpi1, . . . ,

m∑
k=1

βk

n∑
i=1

vik pin)

=


∑n
i=1 vi1pi1 . . .

∑n
i=1 vi1pin

...
...∑n

i=1 vimpi1 . . .
∑n
i=1 vimpin


= φB(v) · P

ut

Proposition 3. For all v ∈ V, P ∈ GLn(q) and Q ∈ GLm(q), we have :

(Q ∗ v) · P = Q ∗ (v · P)

Proof. Let v ∈ V, P ∈ GLn(q) and Q ∈ GLm(q).

(Q ∗ v) · P = (Q · φB(v)) · P
= Q · (φB(v) · P)

= Q · φB(v · P)

= Q ∗ (v · P)

ut

Lemma 2. For all x ∈ V and Q ∈ GLm(q), ω(Q ∗ x) = ω(x).

Proof. Let x ∈ V and Q ∈ GLm(q). Let us first show that Q ∗ x can not have a
rank greater than x.

Multiplying x on the left by Q is equivalent to do linear combinations over
the lines of φx. Increasing the rank of x means that Q ·φB(x) contains lines that
are not linear combinations of the lines of φB(x) which is impossible by doing
just linear combinations over the lines of φx.

Now, let us show that its rank can not be decreased neither. Let wx denotes
the rank of x (wx < min(m,n)). Suppose, by the absurd, that the rank of
ω(Q ·φB(x)) is lower than wx. As Q ∈ GLm(q), there exists Q−1 ∈ GLm(q) such
that Q−1 ·Q = Im. So ω(Q−1 ·Q ·φB(x)) = ω(φB(x)). As ω(Q ·φB(x)) < wx, it
means that multiplying on the left by Q−1 has increased the rank of Q · φB(x).
Contradiction. Hence, ω(Q ∗ x) = ω(x).

ut

20

Lemma 3. For all x ∈ V and P ∈ GLn(q), ω(x ·P) = ω(x).

Proof. The same reasonning as the previous proof can be applied with the
columns of φB(x) instead of its lines.

ut

Corollary 2. For all x ∈ V, Q ∈ GLm(q) and P ∈ GLn(q), ω(Q∗x ·P) = ω(x).

Proof. It is a direct consequency of the two previous lemmas.
ut

Proposition 4. For all x,y ∈ V with ω(x) = ω(y), there exists Q ∈ GLm(q)
and P ∈ GLn(q) such that y = Q ∗ xP.

Proof. Let x,y ∈ V with ω(x) = ω(y) = r (necessarly r < min(m,n)). There
exists P1 ∈ GLn(q) such that φB(x) · P1 is in systematic form with the first r
columns non equal to zero. There exists P2 ∈ GLn(q) such that φB(y) ·P2 is in
systematic form with the first r columns non equal to zero. The first r columns
of φB(x) · P1 form a basis B1 of Frqm . The first r columns of φB(y) · P2 form
another basis B2 of Frqm . Hence, if we denote by Q the matrix which transforms

the basis B1 into B2, we have Q · x ·P1 = y ·P2. Finally, y = Q · x · (P1 ·P−12).
ut

In the RCSP protocol, an element v ∈ V is transformed to any element of
the same rank by calculating Q ∗ vP with Q ∈ GLm(q) and P ∈ GLn(q). For
each block, different matricies Q and P are used. For our purpose, we need to
keep a support relationship between vectors, not restricted to their rank, as in
the RQC cryptosystem. This property is ensured by the following propositions.

Lemma 4. For all x ∈ V, for all P ∈ GLn(q), x ∼ x ·P.

Proof. Let x ∈ V and P ∈ GLn(q). Let r denotes the rank of x, and Bγ =
{γ1, . . . , γr} a basis of the support of x. As multiplying to the right by P is
equivalent to do linear combinations over the columns of φB(x), Bγ generates all
the coordinates of x ·P. As we have already proved that ω(x) = ω(x ·P), φB(x)
is a basis of the support of x ·P. Hence, x ∼ x ·P

ut

Proposition 5. For all x,y ∈ V, for all Q ∈ GLm(q), for all P1,P2 ∈ GLn(q),
if x ∼ y then (Q ∗ xP1) ∼ (Q ∗ yP2).

Proof. Let x,y ∈ V such that x ∼ y. Let Q ∈ GLm(q) and P1,P2 ∈ GLn(q).

Let us first prove that Q∗x ∼ Q∗y . Let denotes Bγ = {γ1, . . . , γr} a basis of
the support of x and y. Each column of φB(x) and φB(y) is then a combination
of the vectors in Bγ .

φB(x) =
(∑r

k=0 x1kγk | . . . |
∑r
k=0 xnkγk

)
21

φB(y) =
(∑r

k=0 y1kγk | . . . |
∑r
k=0 ynkγk

)
Q · φB(x) =

(∑r
k=0 x1k ·Q · γk | . . . |

∑r
k=0 xnk ·Q · γk

)
Q · φB(y) =

(∑r
k=0 y1k ·Q · γk | . . . |

∑r
k=0 ynk ·Q · γk

)
Therefore, {Q ·γ1, . . . ,Q ·γk} is a common support of Q∗x and Q∗y, which

means that Q ∗ x ∼ Q ∗ y.

Now, as multiplying a vector to the right by a matrix in GLn(q) does not
change the support as proved in the previous lemma, we have Q∗xP1 ∼ Q∗yP2.

ut

Proposition 6. For all x1,x2,y1,y2 ∈ V of rank r ∈ N such that x1 ∼ x2 and
y1 ∼ y2, there exists Q ∈ GLm(q) and P1,P2 ∈ GLn(q) such that y1 = Q∗x1P1

and y2 = Q ∗ x2P2.

Proof. Let x1,x2,y1,y2 ∈ V or rank r ∈ N such that x1 ∼ x2 and y1 ∼ y2.
There exists P1 ∈ GLn(q) such that x1P1 is under systematic form with only

the first r columns are non equal to zero. There exists P2 ∈ GLn(q) such that
x2P2 is under systematic form, and its first r columns are then equal to the first
r columns of x1P1 and the rest are zero columns.

Similarly, there exists P3 ∈ GLn(q) such that y1P3 is under systematic form
with only the first r columns are non equal to zero. There exists P4 ∈ GLn(q)
such that y2P4 is under systematic form, and its first r columns are then equal
to the first r columns of y1P3 and the rest are zero columns.

The first r columns of x1P1 form a basis B1 of Frqm and the first r columns
of y1P3 form a basis B2 of Frqm . Let Q denotes the matrix which transforms the
basis B1 into B2.

Then Q ∗ x1P1 = y1P3 = y2P4 = Q ∗ x2P2. Finally, y1 = Q ∗ x1(P1P
−1
3)

and y2 = Q ∗ x2(P2P
−1
4)

ut

Based on those results, we can now achieve a proof of knowledge for a RQC
ciphertext. The syndrome equation for a RQC ciphertext has the following shape:

(
In

⇀

h 0 0

0
⇀

s In Gabg

)
r1
r2
r3
µ

 =

(
c1
c2

)
(1)

where (r1, r2, r3) ∈ S3
wr (V) and µ ∈ Fkqm .

We can now describe the protocol more formally. The common input is a pair
(H, c), and the prover’s auxiliary input is a vector r such that r = (r1, r2, r3, µ)>

and c = (c1, c2). H is splitted into several submatricies H =
(
H1 H2 H3 H4

)
where:

H1 =

(
In
0

)
H2 =

(
⇀

h
⇀

s

)
H3 =

(
0
In

)
H4 =

(
0

Gabg

)

22

Using those notations, the equation (1) is equivalent to Hr> = c>. The prover
P and the verifier V interact as described in figure 5.

Notations: We denote a | b the concatenation of two elements and by ‖ni=1ai =
a1 | . . . | an the concatenation of a sequence of elements.

1. [Commitment-Step] P samples Q
$← GLm(q); P1,P2,P3

$← GLn(q);

P4
$← GLk(q) ; v1,v2,v3

$← V; v4
$← Fkqm ; z1, z2, z3

$← 1K and sends the com-
mitment CMT:=(cm1, cm2, cm3), where

cm1 = Hash(Q | ‖4i=1Pi |
∑4
i=1 Hiv

>
i | z1)

cm2 = Hash(‖4i=1Q ∗ viPi | z2)

cm3 = Hash(‖3i=1 Q ∗ (vi + ri)Pi | Q ∗ (v4 + µ)P4 | z3)

2. [Challenge-Step] V sends a random challenge ch ∈ {0, 1, 2} to P.

3. [Answer-Step] P replies as follows:

� If ch = 0, let E = Q, ∀i ∈ [[1, 4]], let ai = vi, Fi = Pi.
Send RSP:=(E | ‖4i=1Fi | ‖4i=1ai | z1 | z2)

� If ch = 1, let I = Q, b4 = v4 + µ, ∀i ∈ [[1, 3]], let bi = vi + ri, Ji = Pi.
Send RSP:=(I | ‖4i=1Ji | ‖4i=1bi | z1 | z3)

� If ch = 2, ∀i ∈ [[1, 4]], let ci = Q ∗ viPi, ∀i ∈ [[1, 3]], let di = Q ∗ riPi and
let d4 = Q ∗ µP4.
Send RSP:=(‖4i=1ci | ‖4i=1di | z2 | z3)

4. [Verification-Step], V performs the following checks:

� If ch = 0, check that
cm1 = Hash(E | ‖4i=1Fi |

∑4
i=1 Hia

>
i | z1)

cm2 = Hash(‖4i=1E ∗ aiFi | z2)

� If ch = 1, check that
cm1 = Hash(I | ‖4i=1Ji |

∑4
i=1 Hib

>
i − c> | z1)

cm3 = Hash(‖4i=1I ∗ biJi | z3)

� If ch = 2, check that

cm2 = Hash(‖4i=1ci | z2)

cm3 = Hash(‖4i=1ci + di | z3)

(d1,d2,d3) ∈ S3
wr (V)

V outputs the decision d = 1 (Accept) if all checks are passed.
Otherwise he outputs d = 0 (Reject).

Fig. 5. Proof of validity for a single RQC ciphertext

Definition 25. An interactive protocol between two PPT machines P and V is
statistical zero-knowledge if, for every PPT machine Ṽ , there exists a machine

23

S which generates, in expected polynomial time, an output having a distribu-
tion statistically indistinguishable from the content of the communication tape
produced during the interaction of P and Ṽ .

Theorem 3. The protocol depicted in figure 5 is a statistical zero-knowledge
proof in the random oracle model.

Theorem 4. If there exists a PPT cheating prover P̃ who convinces the verifier
with probability 2

3 + ε, where ε is non-negligible, then there exists a PPT knowl-
edge extractor who outputs with overwhelming probability a tuple (y1,y2,y3,y4)

such that
∑4
i=1 Hiy

>
i = c> with (y1,y2,y3) ∈ S3

wr (V).

Proof. The proofs are deferred to Appendices 1 and 2.

As a corollary of Theorem 4, the protocol has soundness equal to 2
3 , based

on the hardness of the search IRSD problem for a [4n, 2n]qm code.

5.2 Proof of RQC Ciphertexts Validity for Identical Plaintexts

For the PAKE construction in section 6.2, we need to derive from the protocol
in figure 5 a proof that two ciphertexts under two different keys of the RQC.PKE
cryptosystem encrypt the same message µ. For a given message µ, let c = (c1, c2)
and c′ = (c3, c4) be two valid ciphertexts of µ under the key pairs denoted by
(pk, sk) and (pk′, sk′) where sk = (x,y), pk = (g,h, s) with s = x + h · y, and
sk′ = (x′,y′), pk′ = (g,h′, s′) with s′ = x′ + h′ · y′. One can see that a proof
that the two ciphertexts c and c′ encrypt the same message µ is a proof of
knowledge of the vectors r = (r1, r2, r3), r′ = (r4, r5, r6) and µ such that the
following relation is satisfied:

R =


c1 = r1 + hr2
c2 = µGabg + sr2 + r3

(r1, r2, r3) ∈ S3
wr (V)

c3 = r4 + h′r5
c4 = µGabg + s′r5 + r6

(r4, r5, r6) ∈ S3
wr (V)

Let H̃ denotes the following matrix:

H̃ =


In

⇀

h 0 0 0 0 0

0
⇀

s In 0 0 0 Gabg

0 0 0 In
⇀

h′ 0 0

0 0 0 0
⇀

s′ In Gabg

,

and let d = (c1, c2, c3, c4). Let r̃ = (r1, r2 . . . r6, µ) be a witness for the relation
R such that (r1, r2, r3) ∈ S3

wr (V), (r4, r5, r6) ∈ S3
wr (V), and µ ∈ Fkqm . Then, we

have that H̃r̃> = d>.
Therefore, r̃ is a witness for the protocol given in figure 5 when it is instanti-

ated using (H̃,d). In figure 8 (see Appendix 3) we present our interactive proof

24

that two ciphertexts under two different keys encrypt the same message µ. The
protocol takes as input the couple (H̃,d) where H̃ = (‖7i=1H̃i).

Theorem 5. The protocol depicted in figure 8 is a statistical zero-knowledge
proof in the random oracle model.

Theorem 6. If there exists a PPT cheating prover P̃ who convinces the verifier
with probability 2

3 + ε, where ε is non-negligible, then there exists a PPT knowl-
edge extractor who outputs with overwhelming probability a tuple (y1,y2, . . . ,y7)

such that
∑7
i=1 H̃iy

>
i = c>, (y1,y2,y3) ∈ S3

wr (V) and (y4,y5,y6) ∈ S3
wr (V).

Proof. The proofs are deferred to Appendices 4 and 5.

Non-interactive protocol. We apply the Fiat-Shamir transformation [22, 40]
in order to make the protocol non-interactive in the random oracle model. Let
us consider a hash function H : {0, 1}∗ → {0, 1, 2}κ (where κ = ω(logK))
that is modeled as a random oracle. Therefore, we obtain the following non-
interactive proof Π = (‖κi=1CMT(i) | ‖κi=1ch(i) | ‖κi=1RSP(i)), where ‖κi=1ch(i) =

H(M | ‖κi=1CMT(i)) and M is a random message.

6 Applications

Hash Proof Systems can be used as a primitive to build many cryptographic
protocols. Hereafter, we describe a Witness Encryption (WE) scheme and a
Password Authenticated Key Exchange (PAKE) based on the HPS described in
figure 4. We stress that the above constructions can be adapted in the UC set-
ting. It would require the use of an extractable/equivocable commitment scheme
which can be achieved, with no innovating details, using a code-based Haralam-
biev like commitment as in [17]. We choose to not introduce the UC framework
in order to focus on the main results of this paper, namely the construction
of a code-based HPS and the crucial role of the gap upon the security of this
primitive.

6.1 Witness Encryption

The concept of witness encryption (WE) was introduced by Garg et al. [28] and
allows to encrypt a message µ using a word W ∈ L so that the knowledge of the
witness w for the membership of W in L is required to decrypt the ciphertext. A
common strategy [1, 15] for constructing WE schemes consists to use an exact
HPS in the following way: given a word W and a message µ, a sender generates
a hashing key hk, a projection key hp, a hash value Hhk and masks the message
µ using Hhk. In order to decrypt the ciphertext, the recipient uses the witness
w associated with the word W along with the projection key hp to compute the
projected hash value Hhp and retrieve µ.

The figure 6 describes a construction that achieve a similar result using our
approximate HPS. The main idea is to mask µGabg rather than µ in order to
be able to remove the noise introduced by our HPS using a decoding algorithm.

25

Alice (W,µ) Bob (W,w)

hk← HashKG(Lµ, param)

hp← ProjKG(hk,Lµ, param)

Hhk ← Hash(hk,Lµ,W)

c = µGabg ⊕Hhk Hhp ← ProjHash(hp,Lµ,W,w)

c′ = c⊕Hhp

µ = C.Decode(c′)

hp, c

Fig. 6. Witness Encryption from a code-based approximate HPS

6.2 Password Authenticated Key Exchange

Password Authenticated Key Exchange (PAKE) was first introduced by Bellovin
and Merritt [12]. The aim of such protocols is to allow users to generate a strong
cryptographic key based on a shared “human memorable” password pw without
requiring a public-key infrastructure. In this setting, an adversary controlling
all the communication in the network should not be able to mount an off-line
dictionary attack. HPS offers an interesting edge to construct such schemes.
Several papers present PAKE in the lattice-based field [33, 43, 15] however we
are the first, to the best of our knowledge, to present a PAKE based on coding
theory.

[14] proposed a construction allowing to build BPR [11] secure one-round
PAKE. Their construction requires each user to send a CCA-2 encryption of
their password together with the projection key for a KV-HPS for the language
of valid encryption of the expected password.

Alice (pw) Bob (pw)

hp1 = ProjHash(hk1,Lµ, param)

hk1 = Hash(Lµ, param)

hp2 = ProjHash(hk2,Lµ, param)

hk2 = Hash(Lµ, param)

(W1, w1)
$← Encryptpk1(pw) (W2, w2)

$← Encryptpk1(pw)

(X1, x1)
$← Encryptpk2(pw) (X2, x2)

$← Encryptpk2(pw)

W1, X1,Π
1
s, hp1

W2, X2,Π
2
s, hp2

Π1
s = Prove(W1, X1, label1) Π2

s = Prove(W2, X2, label2)

Verify Π2
s Verify Π1

s

Hhk1 = Hash(hk1,Lµ,W2) Hhk2 = Hash(hk2,Lµ,W1)

Hhp2 = ProjHash(hp2,Lµ,W1, w1) Hhp1 = ProjHash(hp1,Lµ,W2, w2)

ζ
$← Fkqm ξ

$← FkqmζGabg +Hhk1

ξGabg +Hhk2

ξ′ = C.Decode(ξGabg +Hhk2 +Hhp2) ζ′ = C.Decode(ζGabg +Hhk1 +Hhp1)

Key = Hash∗(ζ | ξ′) Key = Hash∗(ζ′ | ξ)

Fig. 7. Two rounds Password Authenticated Key Exchange

26

We have shown in section 3 how to build such HPS. Using the Naor Yung
transform [37], one can build a CCA-2 encryption of pw with two CPA encryption
of pw under different keys along with a simulation-sound zero knowledge proof
that the ciphertexts are well-formed and decrypt to the same plaintext. We have
shown how one can use a Stern-like protocol to build such proof in section 5.

Using those building blocks, one directly obtains the protocol described in
figure 7. The first flow corresponds to the proper PAKE protocol while the last
one is the reconciliation phase. If one wants to drop the asynchronous design,
one can obtain a three flow protocol by merging the two flows from Bob.

7 Parameters and Performances

We give some parameters for the protocols described in section 6. Those param-
eters are valid for both protocols and hence are not optimized for any particular
application. The security of the constructions depends on the following instances:

Attack on the hashing key hk: in order to retrieve hk from hp one has to consider
the following 2-IRSD problem

(⇀
s In

)(α1

α2

)
= hp

Attack on the witness values: in order to guarantee the secrecy of the (ri)i∈[[1,3]]
values, one has to consider the following instance of the 3-IRSD problem:(

In 0
⇀

h

0 In
⇀

s

)r1
r3
r2

 =

(
c1

c2 − µGabg

)

Smoothness related: the proof of the KV-smoothness involve two different prob-
lems. The first one is an instance of a 2-IRSD problem:(

In
⇀

h

)(
x
y

)
= s

The second one is the following instance of the FIRSD problem:

(
s In 0

c2 − µGabg 0 In

)α1

α2

α3

 =

(
hp
Hhk

)

Decoding capability of the Gabidulin code: Finally, in order to decode Gabidulin

codewords, we need to have m > n and ω (x · r2 − y · r1 + r3) ≤
⌊
n−k
2

⌋
, which

is equivalent to (ωx + 1) · ωr ≤
⌊
n−k
2

⌋
.

The two main approaches used to solve the rank syndrome decoding prob-
lem are combinatorial and algebräıc attacks. While combinatorial attacks were

27

always the best approach [25, 8], recent improvements have been made in alge-
bräıc ones [9, 10]. We will rely on [10] for the calculation of the parameters. We
have only described complexities for [3n, n] codes as the relative complexities for
[2n, n] codes are always greater in this case.

– hyb3n(a): hybrid attack for a code of length 3n, a is defined as the smallest
value to reach the overdetermined case, a = 0 meaning that parameters are
already in the overdetermined case.

– hyb2n(a): homogeneous hybrid attack for a code of length 2n, a defined the
same way as above.

– und2n: homogeneous underminated attack for a code of length 2n, b defined
as the smallest positive integer such that the number of unknowns is lower
than the number of equations.

– und3n: underminated attack for a code of length 3n. b defined as the smallest
positive integer such that the number of unknowns is lower than the number
of equations.

– comb3n: combinatorial attack for a code of length 3n.

Table 3. Parameters and associated security, homogeneous case.

Instance q n m k wr wx wα Vector length Security
I 2 137 139 4 7 8 11 19 043 128
II 2 211 223 4 10 9 12 47 053 192
III 2 283 293 3 13 10 15 82 919 256

Table 4. Security levels and associated complexities, homogeneous case.

Instance hybr3n(a) und3n(b) comb3n Security
I 138(0) 162(1) 220 128
II 201(0) 229(1) 560 192
III 264(0) 293(1) 1 028 256

The previous table show that the vectors length are quite practical. For the
PAKE protocol nevertheless, one has to consider lengths approximately hundred
times larger for the use of the Stern’s proofs of knowledge from section 5 along
with a Fiat Shamir transformation.

Notice that it is possible to considerably decrease those parameters by con-
sidering non-homogeneous version of the rank syndrome decoding problem, as
it is done in the last version of RQC [4] (specification of April, 2020). In that
scenario, r1, r2, r3 would no longer be all of the same support, but instead we
would have Supp(r1) = Supp(r2) ⊂ Supp(r3) with ω(r1) = ω(r2) = w1 and

28

ω(r3) = w1 + w2. Similarly, α1, α2, α3 would not be all of the same support,
Supp(α1) = Supp(α2) ⊂ Supp(α3) with ω(α1) = ω(α2) = w1 and ω(α3) =
w1 + w2. We have described the homogenous version for the sake of clarity and
simplicity. For the calculation of the parameters in the non-homogeneous cases,
we refer to [4].

Table 5. Parameters and associated security, non-homogeneous case.

Instance q n m k w1 w2 wx Vector length Security
I 2 127 131 3 7 6 7 16 637 128
II 2 163 167 5 8 8 8 27 221 192
III 2 181 191 3 9 7 9 34 571 256

Table 6. Security levels and associated complexities, non-homogeneous case.

Instance hybr3n(a) und3n(b) hybr2n(a) und2n(b) Security
I 216(0) 240(1) 156(5) 151(1) 128
II 268(0) 293(1) 325(23) 228(3) 192
III 295(2) 304(1) 545(43) 300(5) 256

8 Conclusion

Hash proof systems are an attractive and powerful tool to build many crypto-
graphic primitives including CCA-2 secure encryption schemes, authenticated
key exchange, oblivious transfer, zero-knowledge arguments or witness encryp-
tion.

In this paper, we have focused on the construction of a quantum-resistant
HPS and we have answered positively two open questions: whether it is possible
to design a code-based HPS in the rank metric, and whether it is possible to
design a quantum-resistant gapless HPS. In order to provide this gapless con-
struction, we have chosen to define our HPS over a set of valid ciphertexts and to
check whether a word is a valid ciphertext using a Stern-like proof of ciphertext
validity. However, the conception of a gapless post-quantum HPS without the
use of a proof of knowledge to supplement it is still an open question. As an
application of this HPS, we have presented witness encryption in the standard
model. In addition, we have also presented, in the random oracle model, a PAKE
that is secure in the BPR model.

Finally, as a further work, even if the two metrics have real differences, our
construction could probably be adapted to the Hamming setting using the HQC

29

cryptosystem [3], the Hamming version of the RQC scheme, a candidate that
have been selected for the third and last round of the NIST post-quantum cryp-
tography standardization project in the alternate candidates category.

30

A Appendices

Appendix 1 - Proofs of theorem 3: The protocol depicted in figure 5 is a
statistical zero-knowledge proof in the random oracle model.

Proof. The proof uses techniques in the same spirit of those in [41, 35, 36].
Therefore, we construct a simulator S which, given the public inputs of the pro-
tocol and interacting with a cheating verifier Ṽ, outputs a simulated transcript
with probability 2

3 that is statistically close to the distribution of the real tran-
script. The public inputs are (H, c), the simulator S starts by choosing a random

c̄h ∈ {0, 1, 2}, which is a prediction of the challenge that Ṽ will not choose.

♦ Case c̄h = 0:

S samples:

Q′
$← GLm(q) P′1,P

′
2,P

′
3

$← GLn(q); P′4
$← GLk(q);

v′1,v
′
2,v
′
3

$← V; v′4
$← Fkqm ;

(r′1, r
′
2, r
′
3)

$← S3
w(V); r′4

$← Fkqm ; z′1, z
′
2, z
′
3

$← 1K;

and sends the commitment CMT:=(cm′1 | cm′2 | cm′3) to Ṽ, where:

cm′1 = Hash(Q′ | ‖4i=1P
′
i |
∑4
i=1 Hi(v

′
i
>

+ r′i
>

) | z′1)

cm′2 = Hash(‖4i=1Q
′ ∗ v′iP

′
i | z′2)

cm′3 = Hash(‖4i=1Q
′ ∗ (v′i + r′i)P

′
i | z′3)

Receiving a challenge ch from Ṽ, the simulator S responds as follows:

� If ch = 0, Output ⊥ and abort.

� If ch = 1, Send RSP:=(Q′ | ‖4i=1P
′
i | ‖4i=1v

′
i + r′i | z′1 | z′3)

� If ch = 2, Send RSP:=(‖4i=1Q
′ ∗ v′iP

′
i | ‖4i=1Q

′ ∗ r′iP
′
i | z′2 | z′3)

♦ Case c̄h = 1:

S samples:

Q′
$← GLm(q); P′1,P

′
2,P

′
3

$← GLn(q); P′4
$← GLk(q);

v′1,v
′
2,v
′
3

$← V; v′4
$← Fkqm ;

(r′1, r
′
2, r
′
3)

$← S3
w(V); r′4

$← Fkqm ; z′1, z
′
2, z
′
3

$← 1K;

and sends the commitment CMT:=(cm′1 | cm′2 | cm′3) to Ṽ, where:

cm′1 = Hash(Q′ | ‖4i=1P
′
i |
∑4
i=1 Hiv

′
i
> | z′1)

cm′2 = Hash(‖4i=1Q
′ ∗ v′iP

′
i | z′2)

cm′3 = Hash(‖4i=1Q
′ ∗ (v′i + r′i)P

′
i | z′3)

31

Receiving a challenge ch from Ṽ, the simulator S responds as follows:

� If ch = 0, Send RSP:=(Q′ | ‖4i=1P
′
i | ‖4i=1v

′
i | z′1 | z′2)

� If ch = 1, Output ⊥ and abort.

� If ch = 2, Send RSP:=(‖4i=1Q
′ ∗ v′iP

′
i | ‖4i=1Q

′ ∗ r′iP
′
i | z′2 | z′3)

♦ Case c̄h = 2:

Using linear algebra, S computes a vector r′ = (r′1, r
′
2, r
′
3, r
′
4), such that

Hr′
>

= c>.
Next, it samples:

Q′
$← GLm(q); P′1,P

′
2,P

′
3

$← GLn(q); P′4
$← GLk(q);

v′1,v
′
2,v
′
3

$← V; v′4
$← Fkqm ; z′1, z

′
2, z
′
3

$← 1K;

and sends the commitment CMT:=(cm′1 | cm′2 | cm′3) to Ṽ, where:

cm′1 = Hash(Q′ | ‖4i=1P
′
i |
∑4
i=1 Hiv

′
i
> | z′1)

cm′2 = Hash(‖4i=1Q
′ ∗ v′iP

′
i | P′4 | z′2)

cm′3 = Hash(‖4i=1Q
′ ∗ (v′i + r′i)P

′
i | z′3)

Receiving a challenge ch from Ṽ, the simulator S responds as follows:

� If ch = 0, Send RSP:=(Q′ | ‖4i=1P
′
i | ‖4i=1v

′
i | z′1 | z′2)

� If ch = 1, Send RSP:=(Q′ | ‖4i=1P
′
i | ‖4i=1v

′
i + r′i | z1 | z3)

� If ch = 2, Output ⊥ and abort.

It can be seen that the probability that the simulator outputs ⊥ is close to 1
3 .

Additionally, when the simulator does not halt, the distribution of the generated
transcripts is statistically close to the distribution of the real transcript when
the hash function is modeled as a random oracle. Therefore, we have build a
simulator that succeeds the protocol with probability 2

3 without having any
information about the secret values.

ut

32

Appendix 2 - Proof of theorem 4: If there exists a PPT cheating prover
P̃ who convinces the verifier with probability 2

3 + ε, where ε is non-negligible,
then there exists a PPT knowledge extractor who outputs with overwhelming
probability a tuple (y1,y2,y3,y4) such that

∑4
i=1 Hiy

>
i = c> with (y1,y2,y3) ∈

S3
wr (V).

Proof. We show how to construct a knowledge extractor K. Let P̃ be the cheating
prover who convinces the verifier with probability 2

3 + ε. Applying the technique

of Véron [42], that rewinds P̃ a number of times polynomial in 1
ε , the knowledge

extractor can obtain with overwhelming probability a commitment, for which
P̃ can correctly answer all three challenges. Therefore, K obtains the following
equations:

cm1 = Hash(E | ‖4i=1Fi |
∑4
i=1 Hia

>
i) = Hash(I | ‖4i=1Ji |

∑4
i=1 Hib

>
i − c>)

cm2 = Hash(‖4i=1E ∗ aiFi) = Hash(‖4i=1ci)

cm3 = Hash(‖4i=1I ∗ biJi) = Hash(‖4i=1ci + di)

(d1,d2,d3) ∈ S3
wr (V).

Since Hash is modeled as a random oracle (an adversary cannot find a collision
on it), it follows that:

� E = I and ∀i ∈ [[1, 4]], Fi = Ji and
∑4
i=1 Hia

>
i =

∑4
i=1 Hib

>
i − c>

� ∀i ∈ [[1, 4]], E ∗ aiFi = ci, I ∗ biJi = ci + di

Let i ∈ [[1, 4]]. We have I ∗ biJi = E ∗ biFi = ci + di. It follows that
E ∗ (bi − ai)Fi = di, which implies that (bi − ai) = E−1 ∗ diF

−1
i .

∀i ∈ [[1, 4]], (bi − ai) = E−1 ∗ diF
−1
i

Since E−1 ∈ GLm(q) and F−1i ∈ GLm(q), we have (b1−a1,b2−a2,b3−a3) ∈
S3
wr (V). Therefore, the knowledge extractor K obtains vectors yi = bi−ai, with

i ∈ [[1, 4]], such that:
∑4
i=1 Hiy

>
i = c> and (y1,y2,y3) ∈ S3

wr (V).
ut

33

Appendix 3 - Proof of RQC ciphertexts validity for identical plain-
texts:

1. [Commitment-Step] P samples Q
$← GLm(q); {Pi}i∈[[1,6]] $← GLn(q); P7

$← GLk(q);

{vi}i∈[[1,6]] $← V; v7
$← Fkqm ; z1, z2, z3

$← 1K and sends the commitment
CMT:=(cm1 | cm2 | cm3), where:

cm1 = Hash(Q | ‖7i=1Pi |
∑7
i=1 H̃iv

>
i | z1)

cm2 = Hash(‖7i=1Q ∗ viPi | z2)

cm3 = Hash(‖6i=1Q ∗ (vi + ri)Pi | Q ∗ (v7 + µ)P7 | z3)

2. [Challenge-Step] V sends a random challenge ch ∈ {0, 1, 2} to P.

3. [Answer-Step] P replies as follows:

� If ch = 0, let E = Q, ∀i ∈ [[1, 7]], let ai = vi, Fi = Pi.
Send RSP:=(E | ‖7i=1Fi | ‖7i=1ai | z1 | z2)

� If ch = 1, let I = Q, ∀i ∈ [[1, 6]] let bi = vi + ri, b7 = v7 + µ and ∀i ∈ [[1, 7]]
let Ji = Pi.
Send RSP:=(I | ‖7i=1Ji | ‖7i=1bi | z1 | z3)

� If ch = 2, ∀i ∈ [[1, 7]] let ci = Q ∗ viPi, ∀i ∈ [[1, 6]] let di = Q ∗ riPi and
d7 = Q ∗ µP7.
Send RSP:=(‖7i=1ci | ‖7i=1di | z2 | z3)

4. [Verification-Step], V performs the following checks:

� If ch = 0, check that:
cm1 = Hash(E | ‖7i=1Fi |

∑7
i=1 H̃ia

>
i | z1),

cm2 = Hash(‖7i=1E ∗ aiFi | z2).

� If ch = 1, check that:
cm1 = Hash(I | ‖7i=1Ji |

∑7
i=1 H̃ib

>
i − d | z1),

cm3 = Hash(‖7i=1I ∗ biJi | z3).

� If ch = 2, check that:
cm2 = Hash(‖7i=1ci | z2),

cm3 = Hash(‖7i=1ci + di | z3),

(d1,d2,d3) ∈ S3
wr (V), (d4,d5,d6) ∈ S3

wr (V).

V outputs d = 1 (Accept) if all checks are passed. Otherwise, he outputs d = 0 (Reject).

Fig. 8. Proof of RQC ciphertexts validity for identical plaintexts

34

Appendix 4 - Proof of theorem 5: The protocol depicted in figure 8 is a
statistical zero-knowledge proof in the random oracle model.

Proof. The proof uses techniques in the same spirit of those in [41, 35, 36].
Therefore, we construct a simulator S which is given the public inputs of the
protocol and interacting with a cheating verifier Ṽ, outputs a simulated tran-
script with probability 2

3 that is statistically close to the distribution of the real
transcript. The public inputs are (H, c), the simulator S starts by choosing a

random c̄h ∈ {0, 1, 2}, which is a prediction of the challenge that Ṽ will not
choose.

♦ Case c̄h = 0:

S samples:

Q′
$← GLm(q); ; P′1,P

′
2, . . . ,P

′
6

$← GLn(q); P′7
$← GLk(q);

v′1,v
′
2, . . . ,v

′
6

$← V; v′7
$← Fkqm ; z′1, z

′
2, z
′
3

$← 1K;

(r′1, r
′
2, r
′
3) ∈ S3

wr (V); (r′4, r
′
5, r
′
6) ∈ S3

wr (V); r′7
$← Fkqm ;

and sends the commitment CMT:=(cm′1 | cm′2 | cm′3) to Ṽ, where:

cm′1 = Hash(Q′ | ‖7i=1P
′
i |
∑7
i=1 Hi(v

′
i
>

+ r′i
>

) | z′1)

cm′2 = Hash(‖7i=1Q
′ ∗ v′iP

′
i | z′2)

cm′3 = Hash(‖7i=1Q
′ ∗ (v′i + r′i)P

′
i | z′3)

Receiving a challenge ch from Ṽ, the simulator S responds as follows:

� If ch = 0, Output ⊥ and abort.

� If ch = 1, Send RSP:=(Q′ | ‖7i=1P
′
i | ‖7i=1v

′
i + r′i | z′1 | z′3)

� If ch = 2, Send RSP:=(‖7i=1Q
′ ∗ v′iP

′
i | ‖7i=1Q

′ ∗ r′iP
′
i | z′2 | z′3)

♦ Case c̄h = 1

S samples:

Q′
$← GLm(q); P′1,P

′
2, . . . ,P

′
6

$← GLn(q); P′7
$← GLk(q);

v′1,v
′
2, . . . ,v

′
6

$← V; v′7
$← Fkqm ; z′1, z

′
2, z
′
3

$← 1K;

(r′1, r
′
2, r
′
3) ∈ S3

wr (V); (r′4, r
′
5, r
′
6) ∈ S3

wr (V); r′7
$← Fkqm ;

and sends the commitment CMT:=(cm′1 | cm′2 | cm′3) to Ṽ, where:

cm′1 = Hash(Q′ | ‖7i=1P
′
i |
∑7
i=1 Hiv

′
i
> | z′1)

cm′2 = Hash(‖7i=1Q
′ ∗ v′iP

′
i | z′2)

cm′3 = Hash(‖7i=1Q
′ ∗ (v′i + r′i)P

′
i | z′3)

35

Receiving a challenge ch from Ṽ, the simulator S responds as follows:

� If ch = 0, Send RSP:=(Q′ | ‖7i=1P
′
i | ‖7i=1v

′
i | z′1 | z′2)

� If ch = 1, Output ⊥ and abort.

� If ch = 2, Send RSP:=(‖7i=1Q
′ ∗ v′iP

′
i | ‖7i=1Q

′ ∗ r′iP
′
i | z′2 | z′3)

♦ Case c̄h = 2

Using linear algebra, S computes a vector r′ = (r′1, r
′
2 . . . r

′
7), such that

Hr′
>

= c>.
Next, it samples:

Q′
$← GLm(q); P′1,P

′
2, . . . ,P

′
6

$← GLn(q); P′7
$← GLk(q);

v′1,v
′
2, . . . ,v

′
6

$← V; v′7
$← Fkqm ; z′1, z

′
2, z
′
3

$← 1K;

and sends the commitment CMT:=(cm′1 | cm′2 | cm′3) to Ṽ, where:

cm′1 = Hash(Q′ | ‖7i=1P
′
i |
∑7
i=1 Hiv

′
i
> | z′1)

cm′2 = Hash(‖7i=1Q
′ ∗ v′iP

′
i | P′7 | z′2)

cm′3 = Hash(‖7i=1Q
′ ∗ (v′i + r′i)P

′
i | z′3)

Receiving a challenge ch from Ṽ, the simulator S responds as follows:

� If ch = 0, Send RSP:=(Q′ | ‖7i=1P
′
i | ‖7i=1v

′
i | z′1 | z′2)

� If ch = 1, Send RSP:=(Q′ | ‖7i=1P
′
i | ‖7i=1v

′
i + r′i | z1 | z3)

� If ch = 2, Output ⊥ and abort.

It can be seen that the probability that the simulator outputs ⊥ is close to 1
3 .

Additionally, when the simulator does not halt, the distribution of the generated
transcripts is statistically close to the distribution of the real transcript when
the hash function is modeled as a random oracle. Therefore, we have build a
simulator that succeeds the protocol with probability 2

3 without having any
information about the secret values.

ut

36

Appendix 5 - Proof of theorem 6: If there exists a PPT cheating prover
P̃ who convinces the verifier with probability 2

3 + ε, where ε is non-negligible,
then there exists a PPT knowledge extractor who outputs with overwhelming
probability a tuple (y1,y2, . . . ,y7) such that

∑7
i=1 H̃iy

>
i = c>, (y1,y2,y3) ∈

S3
wr (V) and (y4,y5,y6) ∈ S3

wr (V).

Proof. We show how to construct a knowledge extractor K. Let P̃ be the cheating
prover who convinces the verifier with probability 2

3 + ε. Applying the technique

of Véron [42], that rewinds P̃ a number of times polynomial in 1
ε , the knowledge

extractor can obtain with overwhelming probability a commitment, for which
P̃ can correctly answer all three challenges. Therefore, K obtains the following
equations:

cm1 = Hash(E | ‖7i=1Fi |
∑7
i=1 H̃ia

>
i) = Hash(I | ‖7i=1Ji |

∑7
i=1 H̃ib

>
i − c>)

cm2 = Hash(‖7i=1E ∗ aiFi) = Hash(‖7i=1ci)

cm3 = Hash(‖7i=1I ∗ biJi) = Hash(‖7i=1ci + di)

(d1,d2,d3) ∈ S3
wr (V), (d4,d5,d6) ∈ S3

wr (V).

Since Hash is modeled as a random oracle (an adversary cannot find a colli-
sion on it), it follows that:

� E = I and ∀i ∈ [[1, 7]], Fi = Ji and
∑7
i=1 H̃ia

>
i =

∑4
i=1 H̃ib

>
i − c>

� ∀i ∈ [[1, 7]], E ∗ aiFi = ci, I ∗ biJi = ci + di

Let i ∈ [[1, 7]]. We have I ∗ biJi = E ∗ biFi = ci + di. It follows that
E ∗ (bi − ai)Fi = di, which implies that (bi − ai) = E−1 ∗ diF

−1
i .

∀i ∈ [[1, 7]], (bi − ai) = E−1 ∗ diF
−1
i

Since E−1 ∈ GLm(q) and F−1i ∈ GLm(q), we have (b1−a1,b2−a2,b3−a3) ∈
S3
wr (V) and (b4 − a4,b5 − a5,b6 − a5) ∈ S3

wr (V). Therefore, the knowledge

extractor K obtains vectors yi = bi−ai, with i ∈ [[1, 7]], such that:
∑7
i=1 H̃iy

>
i =

c>, (y1,y2,y3) ∈ S3
wr (V) and (y4,y5,y6) ∈ S3

wr (V).
ut

37

References

1. Abdalla, M., Benhamouda, F., and Pointcheval, D. Disjunctions for hash
proof systems: New constructions and applications. In EUROCRYPT 2015, Part II
(Apr. 2015), E. Oswald and M. Fischlin, Eds., vol. 9057 of LNCS, Springer, Hei-
delberg, pp. 69–100.

2. Abdalla, M., Chevalier, C., and Pointcheval, D. Smooth projective hash-
ing for conditionally extractable commitments. In CRYPTO 2009 (Aug. 2009),
S. Halevi, Ed., vol. 5677 of LNCS, Springer, Heidelberg, pp. 671–689.

3. Aguilar-Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O.,
Bos, J., Deneuville, J.-C., Gaborit, P., Persichetti, E., Robert, J.-M.,
Véron, P., and Zémor, G. Hamming Quasi-Cyclic (HQC).

4. Aguilar-Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O.,
Couvreur, A., Deneuville, J.-C., Gaborit, P., Hauteville, A., and Zémor,
G. Rank Quasi-Cyclic (RQC).

5. Aguilar-Melchor, C., Blazy, O., Deneuville, J.-C., Gaborit, P., and
Zémor, G. Efficient encryption from random quasi-cyclic codes. IEEE Trans-
actions on Information Theory 64, 5 (2018), 3927–3943.

6. Alamélou, Q., Blazy, O., Cauchie, S., and Gaborit, P. A practical group
signature scheme based on rank metric. In International Workshop on the Arith-
metic of Finite Fields (2016), Springer, pp. 258–275.

7. Alekhnovich, M. More on average case vs approximation complexity. In 44th
Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings.
(2003), IEEE, pp. 298–307.

8. Aragon, N., Gaborit, P., Hauteville, A., and Tillich, J.-P. A new algo-
rithm for solving the rank syndrome decoding problem. In 2018 IEEE International
Symposium on Information Theory (ISIT) (2018), IEEE, pp. 2421–2425.

9. Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R., Smith-
Tone, D., Tillich, J.-P., and Verbel, J. Algebraic attacks for solving the
rank decoding and minrank problems without grobner basis. arXiv preprint
arXiv:2002.08322 (2020).

10. Bardet, M., Bros, M., Cabarcas, D., Gaborit, P., Perlner, R., Smith-
Tone, D., Tillich, J.-P., and Verbel, J. Improvements of algebraic attacks for
solving the rank decoding and minrank problems.

11. Bellare, M., Pointcheval, D., and Rogaway, P. Authenticated key exchange
secure against dictionary attacks. In EUROCRYPT 2000 (May 2000), B. Preneel,
Ed., vol. 1807 of LNCS, Springer, Heidelberg, pp. 139–155.

12. Bellovin, S. M., and Merritt, M. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In 1992 IEEE Symposium on Security
and Privacy (May 1992), IEEE Computer Society Press, pp. 72–84.

13. Benhamouda, F. Diverse modules and zero-knowledge. PhD thesis, PSL Research
University - ENS, July 2016.

14. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., and
Vergnaud, D. New techniques for SPHFs and efficient one-round PAKE pro-
tocols. In CRYPTO 2013, Part I (Aug. 2013), R. Canetti and J. A. Garay, Eds.,
vol. 8042 of LNCS, Springer, Heidelberg, pp. 449–475.

15. Benhamouda, F., Blazy, O., Ducas, L., and Quach, W. Hash proof sys-
tems over lattices revisited. In PKC 2018, Part II (Mar. 2018), M. Abdalla and
R. Dahab, Eds., vol. 10770 of LNCS, Springer, Heidelberg, pp. 644–674.

38

16. Berlekamp, E., McEliece, R., and Van Tilborg, H. On the inherent in-
tractability of certain coding problems (corresp.). IEEE Transactions on Informa-
tion Theory 24, 3 (1978), 384–386.

17. Blazy, O., and Chevalier, C. Generic construction of UC-secure oblivious
transfer. In ACNS 15 (June 2015), T. Malkin, V. Kolesnikov, A. B. Lewko, and
M. Polychronakis, Eds., vol. 9092 of LNCS, Springer, Heidelberg, pp. 65–86.

18. Blazy, O., Chevalier, C., and Germouty, P. Adaptive oblivious transfer
and generalization. In ASIACRYPT 2016, Part II (Dec. 2016), J. H. Cheon and
T. Takagi, Eds., vol. 10032 of LNCS, Springer, Heidelberg, pp. 217–247.

19. Canetti, R. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS (Oct. 2001), IEEE Computer Society Press, pp. 136–145.

20. Chen, K. A new identification algorithm. In Cryptography: Policy and Algo-
rithms (Berlin, Heidelberg, 1996), E. Dawson and J. Golić, Eds., Springer Berlin
Heidelberg, pp. 244–249.

21. Cramer, R., and Shoup, V. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In EUROCRYPT 2002
(Apr. / May 2002), L. R. Knudsen, Ed., vol. 2332 of LNCS, Springer, Heidelberg,
pp. 45–64.

22. Fiat, A., and Shamir, A. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In CRYPTO’86 (Aug. 1987), A. M. Odlyzko, Ed.,
vol. 263 of LNCS, Springer, Heidelberg, pp. 186–194.

23. Gabidulin, E. M. Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21, 1 (1985), 3–16.

24. Gaborit, P., Murat, G., Ruatta, O., and Zémor, G. Low rank parity check
codes and their application to cryptography. In Proceedings of the Workshop on
Coding and Cryptography WCC (2013), vol. 2013.

25. Gaborit, P., Ruatta, O., and Schrek, J. On the complexity of the rank
syndrome decoding problem. IEEE Transactions on Information Theory 62, 2
(2015), 1006–1019.

26. Gaborit, P., Schrek, J., and Zémor, G. Full cryptanalysis of the chen iden-
tification protocol. In International Workshop on Post-Quantum Cryptography
(2011), Springer, pp. 35–50.

27. Gaborit, P., and Zémor, G. On the hardness of the decoding and the minimum
distance problems for rank codes. IEEE Transactions on Information Theory 62,
12 (2016), 7245–7252.

28. Garg, S., Gentry, C., Sahai, A., and Waters, B. Witness encryption and its
applications. In 45th ACM STOC (June 2013), D. Boneh, T. Roughgarden, and
J. Feigenbaum, Eds., ACM Press, pp. 467–476.

29. Gennaro, R., and Lindell, Y. A framework for password-based authenticated
key exchange. ACM Transactions on Information and System Security 9, 2 (2006),
181–234.

30. Halevi, S., and Kalai, Y. T. Smooth projective hashing and two-message obliv-
ious transfer. Journal of Cryptology 25, 1 (Jan. 2012), 158–193.

31. Hofheinz, D., Hövelmanns, K., and Kiltz, E. A modular analysis of the
Fujisaki-Okamoto transformation. In TCC 2017, Part I (Nov. 2017), Y. Kalai and
L. Reyzin, Eds., vol. 10677 of LNCS, Springer, Heidelberg, pp. 341–371.

32. Kalai, Y. T. Smooth projective hashing and two-message oblivious transfer. In
EUROCRYPT 2005 (May 2005), R. Cramer, Ed., vol. 3494 of LNCS, Springer,
Heidelberg, pp. 78–95.

39

33. Katz, J., and Vaikuntanathan, V. Smooth projective hashing and password-
based authenticated key exchange from lattices. In ASIACRYPT 2009 (Dec. 2009),
M. Matsui, Ed., vol. 5912 of LNCS, Springer, Heidelberg, pp. 636–652.

34. Katz, J., and Vaikuntanathan, V. Round-optimal password-based authenti-
cated key exchange. In TCC 2011 (Mar. 2011), Y. Ishai, Ed., vol. 6597 of LNCS,
Springer, Heidelberg, pp. 293–310.

35. Kawachi, A., Tanaka, K., and Xagawa, K. Concurrently secure identification
schemes based on the worst-case hardness of lattice problems. In International
Conference on the Theory and Application of Cryptology and Information Security
(2008), Springer, pp. 372–389.

36. Ling, S., Nguyen, K., Stehlé, D., and Wang, H. Improved zero-knowledge
proofs of knowledge for the ISIS problem, and applications. In PKC 2013
(Feb. / Mar. 2013), K. Kurosawa and G. Hanaoka, Eds., vol. 7778 of LNCS,
Springer, Heidelberg, pp. 107–124.

37. Naor, M., and Yung, M. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In 22nd ACM STOC (May 1990), ACM Press, pp. 427–
437.

38. Ore, O. On a special class of polynomials. Transactions of the American Mathe-
matical Society 35, 3 (1933), 559–584.

39. Persichetti, E. Code-based public-key encryption resistant to key leakage. In
International Conference on Availability, Reliability, and Security (2013), Springer,
pp. 44–54.

40. Pointcheval, D., and Stern, J. Security proofs for signature schemes. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(1996), Springer, pp. 387–398.

41. Stern, J. A new paradigm for public key identification. IEEE Transactions on
Information Theory 42, 6 (1996), 1757–1768.

42. Véron, P. Improved identification schemes based on error-correcting codes. Appli-
cable Algebra in Engineering, Communication and Computing 8, 1 (1997), 57–69.

43. Zhang, J., and Yu, Y. Two-round PAKE from approximate SPH and instanti-
ations from lattices. In ASIACRYPT 2017, Part III (Dec. 2017), T. Takagi and
T. Peyrin, Eds., vol. 10626 of LNCS, Springer, Heidelberg, pp. 37–67.

40

