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Abstract. Post-quantum cryptography (PQC) is a trend that has a deserved NIST
status, and which aims to be resistant to quantum computer attacks like Shor and
Grover algorithms. NIST is currently leading the third-round search of a viable set of
standards, all based on traditional approaches as code-based, lattice-based, multi
quadratic-based, or hash-based cryptographic protocols [1]. We choose to follow an
alternative way of replacing all numeric field arithmetic with GF(28) field
operations [2]. By doingso,itiseasy toimplement R-propped asymmetric systems
as the present paper shows [3,4]. Here R stands for Rijndael as we work over the
AES field. This approach yields secure post-quantum protocols since the resulting
multiplicative monoid is immune against quantum algorithms and resist classical
linearization attacks like Tsaban's Algebraic Span [5] or Roman’kov linearization
attacks [6]. The Burmester-Desmedt (B-D) conference key distribution protocol [7]
has been proved to be secure against passive adversaries if the computational Diffie-
Hellman problem remains hard. The authors refer that the proposed scheme could
also be secure against active adversaries under the same assumptions as before if an
authentication step is included to foil attacks like MITM (man in the middle). Also,
this protocol proved to be semantical secure against adaptative IND-CPA2 [8, 9] if
the discrete log problem is intractable. We discuss the features of our present work
and a practical way to include an authentication step. Classical and quantum security
levels are also discussed. Finally, we present a numerical example of the proposed R-
Propped protocol.
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1 Introduction

1.1 PKCProposalsBased on Combinatorial Group Theory

The theoretical foundations for the current generation of cryptosystems lie in the
intractability of problems close to number theory [10] and therefore prone to quantum
attacks. This was the main reason to develop PQC. It is noteworthy that besides a couple of
described solutions [1], there remain overlooked solutions belonging to non-commutative
(NCC) and non-associative (NAC) algebraic cryptography [10]. The general structure of
these solutions relies on protocols defining one-way trapdoor functions (OWTF) extracted
from the combinatorial group theory [11].

12 The motivation of the present work

In this paper, we apply our algebraic patch [2]to the well-known Burmester-Desmedt
(B-D) conference key distribution [7]. In essence, it is a generalization of Diffie-Hellman two
parties protocol [12] to an undefined number of entities while maintaining the number of
interchanges constant. That protocol has the virtue of presenting a proved semantic secure



systems attaining IND-CPA2 level as long computational Diffie-Hellman and discrete log
problems hold. The main target is to make that protocol quantum resistant.

Essentially R-propping consists of replacing all numerical field operations (arithmetic
sum and multiplication), a typical scalar proposal, by algebraic operations using the AES
field, a vectorial proposal [2]. This scales up operations complexity foiling classical
linearization attacks, like AES [13] does and at the same time quantum ones. This is a solid
way to achieve the best of two worlds, both pointing to cryptographic security. As side
benefits, we get rid of big number libraries and step away from the critical dependency of
pseudo-random generators.

The R-propping solution is described as an Algebraic Extension Ring (AER) [2]. For
background knowledge about algebraic solutions, we refer to the Myasnikov NCC treatise
[11] which contributes to exhaustive knowledge of the cryptographic application of the
combinatorial field theory.

2 Preliminaries

Definition 1 (Security levels). Currently, there are several types of attack models for
public-key encryption, namely the chosen-plaintext attack (CPA), non-adaptive chosen-
ciphertext attacks (CCA1), and adaptive chosen-ciphertext attacks (CPA2, CCA2). Security
levels are usually defined by pairing each goal (2: adaptative version, OW: one-way, IND:
indistinguishability, NM: non-malleability) with an attack model (CPA, CCA1 or CPA2,
CCA2); i.e,, OW-CPA, OW-CCA1, OW-CCA2; IND-CPA, IND-CPA2, IND-CCA1 and IND-CCA2 [8,
9].

Definition 2 (Algebraic Extension Ring - AER). The Algebraic Extension Ring
(AER) framework includes the following structures:

F,s6: aka. GF[28], the AES field [6]
Primitive polynomial: 1+x+x3+x4+x8 with <I+x> as the multiplicative subgroup
(F5ss) generator:

M[F,s, d] d-dimensional square matrix of field elements. (bytes). Therefore, a d-
dimensional square matrix is equivalent to a rank-3 Boolean tensor.

The AER platform has two substructures:

(M[F;s6, d], ®, O) Abelian group using field sum as operation and null matrix
(tensor) as the identity element.

(M[F%5, d], ©,1) Non-commutative monoid using field product as operation and
identity matrix (tensor) as the identity element.

From here on, when referring to field elements (bytes) we call them simply as
elements, and when we refer to any d-dimensional matrix of the AER we will use the
term d-dim tensor.

Detailed information on AER could be read at [2].

Definition 3 (One-Way Trapdoor Functions - OWTF): these are the core of the
canonical protocols for asymmetric cryptography based on the combinatorial group theory.
They are based on hard problems, traditionally using commutative numeric fields, but the
same problem definitions could be applied to non-commutative monoids (as in AER) :

- Computational Diffie-Hellman Problem (CDHP): Given (z1, z2) € Z2 and x €
AER, compute x#122= xz2z1for given X, x21, and xz2.



- Discrete Logarithm Problem (DLP): Givenz € Z and x € AER, compute z for given
xand x&

For general non-commutative structure like the multiplicative monoid of AER, the
above problems are difficult enough to be cryptographic assumptions, meaning that there
does not exista probabilistic polynomial-time algorithm that can solve all instances of them
with non-negligible accuracy concerning the problem scale, i.e, the number of input bits of
the problem).

3 Burmester-Desmedt (B-D) distributed the conference key.

Burmester and Desmedt protocol is carried out by composing n-participants in a ring
structure. An example of four entities is performed through the stages of Table 1.

ALICE BOB CHARLIE DAVID
Public prime p, generator <g>
Private a, Private b, Private c, Private d,
ga>toD,toB gb>toA toC gc>to B, toD gi>toC to A
Public Xa= Public Xb = Public Xc = Public Xd =
(g°/g") (g/g) (g4/8")* (/8
Private Za=gxd Private Zb=ge Private Zc=gb* Private Zd=g
Private Ka= Private Kb= Private Kc= Private Kd=
Za*Xa3XbZXc Zb*Xb3Xc2Xd Zc*Xc3Xd?Xa Zd*Xd3XazXb
Ka=Kb=Kc=Kd

Table 1. A schematic view of the original Burmester-Desmedt conference key distribution
protocol for a small ring of n=4 entities. This protocol involves a double pass exchange. The session
key is a cyclic but not symmetric function of degree two.

4 R-Propped B-D distributed conference key.

The differences between the original and the R-Propped version are:

1. Instead of a cyclic (commutative) multiplicative group structure Z*; in a numeric
field, we work over the non-commutative multiplicative monoid of the algebraic
extension ring (AER) defined at point 2. Preliminaries.

2. The elements of AER are d-dimensional square matrices (referred to as tensors) of
Fas6 field elements. Sums and products of tensors are field operations.

3. The generator <G> is a predefined non-singular tensor G. The period |<G>| of the
cyclic subgroup is empirically obtained through computational simulation.

4. Inverses of tensors are obtained through exponentiation using the period |<G>|
minus one. The |[<G>| power of each generator is the identity matrix.

5 The cryptographic security of R-propped B-D protocol

The security of the protocol relies on the intractability of CDHP and DLP problems.
Using R-Propping we design private keys (exponents) of certain public tensors for which
this approach is unfeasible.




The proposed public generators are:

dim3, period 2563

158 215
G3 =| 216 221

. 45 118

dim#4, period 256"4

218 72
156 225 86 224
73 171 53 252
. 38

G4 =

6 .
53

286 |

Ba

w2024

= 232

31 .

22 171 189

dim7, period 256"12

147 65
125 14

a7 =

67

9@

156 242

19

55

236 247
, 119 15

dim 18, period

Gle =

r 222
233
78
234
92
75
241
41
a3

. 126

179
183
52
69
243
2as
a7
15
131
35

l1asg
216
56
122
159
81
112

219

138
25
74

189
75
21

25614

28
227
2
a
15
a8
241
123
155
224

115
B8
7
3
7a
243
224
22
183
17

dim12, period 256°28

Gl2 =

r 255
254
78
235
29
55
133
147
198
239
41

. 17

21
241
182
237
127
159

25
254
136

56
182

43

43
192
117

38

72
168
117
177

42
211
182
171

199
46
99

152

1

196
59

199
71
16
57

195

233
189
1
laa
236
238
138
285
13
19
223
86

» 2796

36

o8
234
146

124
195

28
186
13@e
218
142

61

25

37

1@

86
128
114
121
118/

» 27112

147
17e
155
113
59
83
192
144
158
157

28
B3
51
112
75
17
213
73
34
124

> 2168

a4
239
213
43
4
B
198
148
95
&7
173
58

168
112
173
168
152
139
212
e
115
a7
161
255

69 182 39

13
283
137
141
13@
1as
111
183

32

118
129
144
194
37
43
a7
115
1486
229
246
237

a
221
237
157
1@
53
228
144
148

285
236
178
1@
13
155
l1a9
72
195
283
32
158

283
185
143
213
129
232
191
1889
118

185
114
1es
238
125
146
42
225
245
155
71
65

46
28
27

14@

251

226
15
78

226 |

198
38
22
21

285

1ee

185

7
68
a4

233
84

14a .
162
la4
237
las
112
147
45
31
las
128
9

Table 2. Predefined tensors <G> and corresponding multiplicative orders to be used for the B-D

protocol.




Classical and quantum security levels are as follows:

<G> . . [Grover]
Tensor Period | <G>| Classical Quantum
dimension LT Security (bits) Security
generator (bits)

3 G3 224=16777216 24 12

4 G4 232=4294967296 32 16

7 G7 296=7.92x10%8 96 48

10 G10 2112=5,19x 103 112 56

12 G12 2160=1.46 x 1048 160 80

Table 3. Expected security of increasing size of private keys subjectto classical and quantum attacks.
Depending on the particular situation, it should be chosen security parameters like G7 or above.

The IND-CPA2 semantic security is assured as members of the <G> set are
indistinguishable from random tensors of the same size. Statistic evidence of tensor
structures is provided at [4]. As this protocol is susceptible to a MITM attack, it is
convenient to include an authentication step including public key certificates or HMAC of
session keys with public ID values.

6 Step-By-Step Example

To follow procedures, we show a dim=3 toy program written for Mathematica 12
interpreted language. Detailed code with the newly defined functions is available upon
request to the author. Running as-is on an Intel®Core™i5-5200U CPU 2.20 GHz the
registered mean session time was 4.40 s.

(v.3) Errata> at the below-printed program, variable “period” was undefined and should be set as period

=224 - 1, instead of the mentioned 2"24. The same error appears at the output, but it has not affected
further operations since the correct value was retained as an environmental memory value.

Print [“R-PROPPED BURMESTER-DESMEDT CONFERENCE KEY DISTRIBUTION®!; Print ["CONFERENCE KEY .. oiiiiaiiovinneaaivniu s sinasi saniwaniaass )
Print [*Small dimension step-by-step example”|; (v Ka = ZaM . XB%3 . XbA2 ., Kc =
Print " =

L Za4 = TFastPower(Za, 4];

+ Xa3 = TFastPower(Xa, 3|;
Xb2 = TFastPoner|Xb,
Pl = TProd|Xb2, Xc|;
P2 = TProd|P1, Xa3);
Ka = TProd|P2, Zad ;
Print|"ALICE Ka=", MatrixForm|Ka|l;
(v Kb = Zb*4 , Xb*3 , Xc*2 , Xd «

Print [*PUBLIC PARAMETERS.
Print [*n=4 entities ring: -->ALICE--3BOB-->CHARLIE--:DAVID-->"|;
dim = 3; Print|"tensor dim=", dim|;

zlimit = 2~24 -1

Print ["period = ", 2°24];

Print ["maximum exponent=", zlimit|;

"

Label [begin|;

6= [ﬁi ;;i 56; 5 Print|“tensor G3=", Matrixform(6)|; *hd 8 glassiomen b 415
45 119 286 ) Xb3 = TFastPower |Xb, 3|;
If{Tdet3({6] == 8, Goto|begin|,| (» non singular +) s e
iG = TFastPower (G, period - 1); PL = TProd[Xcz, Xd!;
1#(TProd|i6, G| == IdentityMatrix|3, , Goto|begin P2 = TProd|[P1, Xb3);
(= true inverse =) Kb = TProd[P2, Zb4 ;
Print | "BOB Kb=*, MatrixForm|Kb|!;

PRANE [*PRIVATE EXPOMENTS v eseteasenennnnneeeseseesnennnnnns = (v Kc = Ze™4 |, Xch3 . Xd2 . Xa «

IS

a = RandomInteger|(1, zlimit||; Print|"ALICE a=", a|; Zcd = TFastPoser|Zc, 4]
b = RandomInteger||1, zlimit]; Print|"BOB b=", b|; Xc3 = TFastPower|Xc, 3];
¢ = RandomInteger|{1, zlimit}!; Print["CHARLIE c=", c|; Xd2 = TFastPower(Xd, 2|;
d = RandomInteger|((1, zlimit]); Print["DAVID d=", d|; P1 = TProd[Xd2, Xa ;

P2 = TProd[P1, Xc3];
PR RS T DR E N e e e e et s o e S e Ll 11 Ke = TProd|P2, Zc4 ;
Ga = TFastPower (G, a|; Print["ALICE Ga=", MatrixForm(Gal|; Print ["CHARLIE Ke=", MatrixForm|Kc||;
iGa = TFastPower(Ga, period - 1|; (vinverse of Gaw) (+ Kd = Zd™4 . Xd"3 . Xa*2 . Xb «
Gb = TFastPower(G, b|; Print|"BOB Gb=", MatrixForm|Gb]|; Zd4 = TFastPower|Zd, 4];
iGb = TFastPower|Gb, period - 1); (~inverse of Gbs) Xd3 = TFastPower(Xd, 3|;
Gc = TFastPower(G, ¢|) Print|"CHARLIE Gc=", MatrixForm(Gc||; Xa2 = TFastPower(Xa, 2];
iGc = TFastPower (Gc, perdod - 1); (-inverse of Gew) P1 = TProd|Xa2, Xb ;
Gd = TFastPower (G, d)|; Print|["DAVID Gd=", MatrixzForm|Gd]|; P2 = TProd|P1, Xd3];
i6d = TFastPower [Gd, period - 1]; («inverse of Gdw) Kd = TProd[P2, Zd4 ;

Print ["DAVID Kd=*, MatrixForm{Kd]|;
Print ["SECOND TOKEM. s rassnssonvansssnasensiesannsssansraniasss ] i
Xa = TFastPower|TProd(Gb, iGd|, a|; If{ka == Kb == Kr == Kd,
Print ["ALTCE  Xa=", MatrixForm[Xa]); Print|"Validated conference key” , GoTe [begin |;
Za = TFakxPower(Gd, a|; L3 e [ e e S e e R R e e el o b e i
Xb = TFastPower(TProd(Gc, 1Gaj, b|;
Print | "BOB Xb=", MatrixForm(Xb||;

Zb = TFastPower[Ga, b|;

Xe = TFastPower|TProd(Gd, iGb|, ¢|;
Print [(“CHARLIE Xc=", MatrixForm([Xc||;
Zc = TFastPower|Gb, ¢}

Xd = TFastPower|[TProd|(Ga, 1Gc|, d|;
Print ("DAVID  Xd=", MatrixForm|Xd| | ;
Zd = TFastPower|Gc, d|;



And the corresponding output is:

R-PROPPED BURMESTER-DESMEDT CONFERENCE KEY DISTRIBUTION
Small dimension step-by-step example
PUBLIC PARAMETERS
n-4 entities ring: --.ALICE--.BOB--.CHARLIE--..DAVID--.
tensor dim-3
16777 215
period - 16777216
maximum exponent-16777 215

{158 215 6
tensor G3- 216 221 53

| 45 119 286.

PRIMATE EXPOMENTS . _ .- .. ... ... -....
ALICE a-13268 292
BOB b-3256521
CHARLIE c-1437B566
DAVID d-16382982
FIRST TOKEN. .::usuvsusssnssssssssnsnsnssssssassnnsnsnss

ALICE Ga- 124 182 58
L 96 46 186.

{123 229 218.
BOB Gb- 1%@ 64 176
1162 192 169 .

;11 41 48 .
CHARLIE Gc- 198 145 79
192 58 116,

;251 95 78 .
DAVID Gd- 162 187 97
137 155 182,

SECOND TOKEN. « 2 e s s saasaasassasssssnasassesaanasasannns
;72 88 4

ALICE Xa- 36 145 7
1165 87 154.

248 98 160.
BOB Xb- 94 135 74
1147 58 6

{219 58 183.
CHARLIE Xc- 124 175 22
1153 68 244,

{177 133 75 .
DAVID Xd- 153 B85 174
| 188 227 246.

CONFERENCE KEY - - . -« e e e aaaea e e eme e e e e m e e e aeanmnnns
;35 48 147.

ALICE Ka- 7 243 14
163 165 111.

;35 48 147,
BOB Kb- 7 243 14
163 165 111.

{35 48 147.
CHARLIE Kc- 7 243 14
163 165 111.

;35 48 147,
DAVID Kd- 7 243 14
163 165 111.
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Conclusions

We present a PQC class solution to the distributed conference key necessity. Practical

parameters are presented, and they solve the central question with different security levels.

Other works of the author covering this field can be found at [14].
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