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Abstract

This paper makes a comprehensive comparison of the efficiencies of vectorized implementations of
Kummer lines and Montgomery curves at various security levels. For the comparison, nine Kum-
mer lines are considered, out of which eight are new, and new assembly implementations of all nine
Kummer lines have been made. Seven previously proposed Montgomery curves are considered and
new vectorized assembly implementations have been made for three of them. Our comparisons show
that for all security levels, Kummer lines are consistently faster than Montgomery curves, though
the speed-up gap is not much.
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1 Introduction

Diffie-Hellman (DH) [11] key agreement scheme is a cornerstone of modern cryptography. Presently,
elliptic curves [20, 22] provide the most efficient way to instantiate DH key agreement. The DH key
agreement is a two-phase protocol, consisting of a key generation phase and a shared secret generation
phase. Montgomery form elliptic curves [23] are well suited for implementing the shared secret generation
phase of the DH key agreement. The famous Curve25519 [4] is a Montgomery form curve which has been
proposed for the 128-bit security level. TLS version 1.3 [32] has standardized Curve25519 and another
Montgomery form curve named Curve448 which has been proposed for the 224-bit security level.

Kummer lines have been considered [14, 15] as alternatives to elliptic curve for instantiating crypto-
graphic protocols. For the 128-bit security level, three concrete proposals of Kummer lines have been
put forward in [19]. This work showed that the field arithmetic operations required for Kummer line
operations are naturally amenable to 4-way SIMD operations. Concrete implementations using vector
operations available in modern processors have been reported in [19]. Timing results showed significant
efficiency improvement over Curve25519.

Our Contributions

At the time the work [19] was done, it was not known how to implement the field arithmetic opera-
tions required for Montgomery curve operations using 4-way vectorization. More recently, such 4-way
vectorization of Montgomery curve operations have been reported in [17, 24]. In [17], a comparison of
the 4-way vectorization of Montgomery curve to the 4-way vectorized implementation of Kummer lines
in [19] was made and speed improvements of Curve25519 over the Kummer lines in [19] was reported.
Further, [12] also reported speed improvements of a sequential implementation of Curve25519 over the
Kummer lines in [19].

In view of the above, the goal of the present work is to make a systematic comparative study of the
efficiency of vectorized implementation of Kummer line with that of Montgomery curve. The security
levels of 128-bit, 224-bit and 256-bit were considered. The Kummer lines proposed in [19] are at the
128-bit security level. Since, 224-bit and 256-bit security levels are within the ambit of our study, we
implemented the search algorithms for Kummer lines at these security levels. This yielded new Kummer
lines. Also, at the 128-bit security level, we obtained two new Kummer lines with improved parameters
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in comparison to the Kummer lines reported in [19]. In all, a total of nine Kummer lines (three each at
the 128-bit, 224-bit and 256-bit) security levels have been considered in the present work, out of which
only one is from [19], while the other eight are new. Further, we prove a result which shows that the
co-factors of eight of the curves are optimal.

Efficient assembly implementations for all the nine Kummer lines have been made. These implemen-
tations make use of the 4-way vector instructions provided for modern Intel processors. The previous
vectorized implementations of Kummer lines reported in [19] used Intel intrinsic. More importantly, we
identify several new optimization strategies which have not been considered in [19]. The net effect is
that we obtain a substantial speed improvement over the implementations reported in [19].

Since our goal is to compare to Montgomery curves, we considered such curves also at the 128-bit,
224-bit and the 256-bit security levels. As mentioned earlier, Curve25519 and Curve448 are targeted at
the 128-bit and the 224-bit security levels respectively. Other proposals of Montgomery curves at the
128-bit and the 224-bit security levels have been put forward in [29]. Also, proposals for Montgomery
curves at the 256-bit security level have been made in [27]. Vectorized implementations of Curve25519
have been reported in [17]. The work [24] provides faster vectorized implementations of Curve25519 and
also provides vectorized implementation of Curve448. Vectorized implementations of the curves proposed
in [27] have not appeared in the literature. To obtain a meaningful comparison, we made new assembly
implementations of three Montgomery curves from [27]. The assembly codes of all our implementations
(i.e., including Kummer lines and Montgomery curves) are available at the following links.

https://github.com/kn-cs/kummer-genus-one

https://github.com/kn-cs/mont256-vec

We have made a detailed performance comparison of Kummer lines and Montgomery curves on the
Haswell and Skylake processors of Intel. The timing results show that Kummer lines are faster than
Montgomery curves. This is to be expected, since the 4-way vectorization of the Kummer line is simpler
than that of the Montgomery curve. We believe the timing results settles the issue of which of Kummer
line and Montgomery curve is faster for vectorized implementations. Improvements to the latency and
throughput of vector instructions will lead to further improvement of the efficiency gain of Kummer line
over Montgomery curve.

While, Kummer lines are indeed faster for vectorized implementations, we note that for sequential
implementations Kummer lines will be inherently slower than Montgomery curves. So, the actual choice
of Kummer line or Montgomery curve for a particular application will depend on the anticipated balance
of sequential versus vectorized implementations. If mostly vectorized implementations are conceived,
then it would be better to deploy Kummer lines, otherwise Montgomery curves will be a better choice.

2 Background

We consider elliptic curves and Kummer lines over prime order fields. Let p 6= 2, 3 be a prime and Fp be
the finite field of cardinality p. The algebraic closure of Fp is denoted as Fp.

2.1 Elliptic Curves

We provide a brief description of the relevant ideas of elliptic curves to the extent required in the present
work. A good introduction to the subject can be found in [33].

An elliptic curve E is the set of all points (x, y) ∈ Fp × Fp satisfying an appropriate equation along
with a point at infinity denoted as ∞. Under a suitably defined addition operation, an elliptic curve
forms a group with ∞ as the identity element. The subgroup E(Fp) is the set of all Fp-rational points,
i.e., along with ∞, it contains the set of all points (x, y) ∈ Fp × Fp which satisfies the given equation.
Points given in the form (x, y) are called affine points. Projective coordinates are of the form (X : Y : Z).
If Z 6= 0, then (X : Y : Z) corresponds to the affine point (X/Z, Y/Z). The only projective point on E
with Z = 0 is (0 : 1 : 0) and this is the identity element of the group.

For a point P = (X : Y : Z) on an elliptic curve E, the x-coordinate map x is the following [10]:
x(P ) = (X : Z) if Z 6= 0 and x(P ) = (1 : 0) if P = (0 : 1 : 0). Bernstein [4, 3] introduced the map x0 as
follows: x0(X : Z) = XZp−2 which is defined for all values of X and Z in Fp.

We will specifically be interested in the following two forms of the equation.

Montgomery form: For A,B ∈ Fp such that B(A2 − 4) 6= 0, the Montgomery form EM,A,B is given by
the equation By2 = x(x2 + Ax + 1) in affine coordinates and by the equation BY 2Z = X(X2 +
AXZ +Z2) in projective coordinates. It is known that the order of EM,A,B(Fp) is a multiple of 4.
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Legendre form: For µ ∈ Fp such that µ 6= 0, 1, the Legendre form EL,µ is given by the equation
y2 = x(x − 1)(x − µ) in affine coordinates and by the equation Y 2Z = X(X − Z)(X − Zµ) in
projective coordinates. There are three distinct points of order 2, which in projective coordinates
are (0 : 0 : 1), (1 : 0 : 1) and (µ : 0 : 1). These three points, along with the identity element form a
subgroup of order 4 of E(Fp) and consequently, 4 divides #E(Fp).

For computational efficiency, it is preferable to work with projective coordinates.

Algorithm 1 Differential addition operation on Montgomery curve EM,A,1.

1: function Diff-Add-MC([X1 : Z1], [X2 : Z2], [X : Z])
2: input: [X : Z], [X1 : Z1], [X2 : Z2] ∈ EM,A,B .
3: output: [X3 : Z3] ∈ EM,a,b.

4: R← (X1 − Z1) + (X2 + Z2)

5: S ← (X1 − Z1)− (X2 + Z2)

6: X3 ← Z(R+ S)2

7: Z3 ← X(R− S)2

8: return [X3 : Z3]

9: end function.

Algorithm 2 Double operation on Montgomery curve EM,A,1.

1: function Double-MC([X1 : Z1])
2: input: [X1 : Z1] ∈ EM,a,b.
3: output: [X3 : Z3] ∈ EM,a,b.

4: R← (X1 + Z1)

5: S ← (X1 − Z1)

6: X3 ← R2 · S2

7: Z3 ← (R2 − S2)(S2 + a24(R2 − S2))

8: return [X3 : Z3]

9: end function.

Algorithm 3 Montgomery ladder.

1: function Ladder(P, n)
2: input: P is a projective point [X : Z] ∈ EM,A,B , n is an `-bit scalar such that n = (n`−1, n`−2 . . . n0).
3: output: x-coordinate of nP , the n-times scalar multiple of P .

4: R← x(∞); S ← x(P )

5: for i← `− 1 down to 0 do

6: 〈R,S〉 ← Ladder-Step(R,S, ni)

7: end for

8: let R = [U : V ]

9: return UV p−2

10: end function.

Scalar multiplication on E(Fp) is the operation of computing the r-fold addition rP of a point
P ∈ E(Fp), where r is a non-negative integer. Since E(Fp) is a group, this can be done using the usual
double-and-add algorithm. Montgomery [23] introduced a variant of the usual double-and-add algorithm
to compute the value of rP over Montgomery curves that uses only the x-coordinate of the input.
This is called the Montgomery ladder and we describe this algorithm using projective coordinates. Let
P = (X : Y : Z), and R = [X1 : Y1 : Z1] and S = [X2 : Y2 : Z2] be such that S −R = P . The operations
differential addition and doubling respectively denoted as Diff-Add-MC(R,S, P ) and Double-MC(R)
are described in Algorithms 1 and 2. In Algorithm 2, the constant a24 is equal to (A + 2)/4. The
operations Diff-Add-MC and Double-MC do not involve the Y -coordinate and the parameter B
is not required in the computation. The Montgomery ladder built using the differential addition and
doubling operations is shown in Algorithm 3 which uses Algorithm 4 as a sub-routine. In the Montgomery
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ladder, Algorithm 1 is used to implement the operation Diff-Add and Algorithm 2 is used to implement
the operation Double.

Algorithm 4 A single ladder-step based on the differential add and double operations.

1: function Ladder-Step(R,S, b)

2: if b = 0 then

3: S ← Diff-Add(R,S, P )

4: R← Double(R)

5: else

6: R← Diff-Add(R,S, P )

7: S ← Double(S)

8: end if

9: return 〈R,S〉
10: end function.

Algorithm 4 has a conditional branching. In practice, this may result in non-constant time behavior
leading to an insecure implementation. There are well known ways of implementing the ladder-step
in constant time. We refer to [25] for an overview of several of the methods that have been proposed
in the literature for constant time implementation. Constant time vectorized (both 2-way and 4-way)
implementations of Algorithm 4 have been reported in the literature [8, 9, 12, 17, 24]. For further details
on Montgomery curves we refer to [23, 10, 7].

2.2 Kummer Lines

Kummer lines over genus one are defined using Jacobi theta functions over the complex field [14, 15, 19].
The derivations for the identities involving the theta functions have a good reduction [14, 15] and so the
Lefschetz principle [1, 13] can be used to carry over the identities which hold over the complex field to
those over a large characteristic field. In view of this, Kummer lines over Fp, where p is a large prime,
have been considered in [14, 15, 19, 18] and we also do the same.

Algorithm 5 Differential addition on the Kummer line Ka2,b2 .

1: function Diff-Add-KL([x21 : z21 ], [x22 : z22 ], [x2 : z2])
2: input: [x2 : z2], [x21 : z21 ], [x22 : z22 ] ∈ Ka2,b2 .
3: output: [x23 : z23 ] ∈ Ka2,b2 .

4: r ← (a2 − b2)(x21 + z21)(x22 + z22)

5: s← (a2 + b2)(x21 − z21)(x22 − z22)

6: x23 ← z2(r + s)2

7: z23 ← x2(r − s)2
8: return [x23 : z23 ]

9: end function.

Algorithm 6 Doubling on the Kummer line Ka2,b2 .

1: function Double-KL([x21 : z21 ])
2: input: [x21 : z21 ] ∈ Ka2,b2 .
3: output: [x23 : z23 ] ∈ Ka2,b2 .

4: r ← (a2 − b2)(x21 + z21)2

5: s← (a2 + b2)(x21 − z21)2

6: x23 ← b2(r + s)2

7: z23 ← a2(r − s)2
8: return [x23 : z23 ]

9: end function.

A Kummer line Ka2,b2 is a subset of the projective line P1(Fp) and is determined by two parameters
a2 and b2 both of which are non-zero elements of Fp. It is not required that a and b are in Fp. Points
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on Ka2,b2 do not form a group. Suppose a2, b2 ∈ Fp with a4 6= b4. Then the Kummer line Ka2,b2 is
associated to the Legendre form elliptic curve EL,µ : y2 = x(x− 1)(x− µ) where µ = a4/(a4 − b4). The
conditions µ 6= 0, 1 requires ab 6= 0 mod p. Scalar multiplication on EL,µ can be performed by moving to
its associated Kummer line, performing the scalar multiplication there and then moving back. We refer
to [18] for details.

Even though a Kummer line does not form a group, the operations of doubling and differential addition
can be carried out. Given P = [x2 : z2] on Ka2,b2 , Algorithm 6 shows how to obtain 2P = [x23 : z23 ]; given
R = [x21 : z21 ], S = [x22 : z22 ] such that S −R = P , Algorithm 5 shows how to obtain R+ S = [x23 : z23 ].

Given the differential addition and doubling algorithms for the Kummer line, the ladder algorithm
given in Algorithm 3 can be used to compute nP , where P = [x2 : z2] and n is a scalar. Algorithm 3
calls Algorithm 4 which in turn calls Algorithm 5 and Algorithm 6 for differential addition and doubling
respectively. In effect, simply substituting the differential addition and the doubling algorithms of the
Montgomery curve with those of the Kummer line provides the scalar multiplication algorithm over the
Kummer line. For further details on Kummer lines we refer to [14, 15, 19, 18].

2.3 Diffie-Hellman Key Agreement

The map x0 defined in Section 2.1 can also be applied to a point (x2 : z2) ∈ Ka2,b2 to obtain x0(x2 :
z2) = x2(z2)p−2. Following Miller [22] and Bernstein [4], the Diffie-Hellman key agreement can be carried
out on a Montgomery curve as follows. Let Q be a generator of a prime order subgroup of EM,A,B(Fp).
Alice chooses a secret key s1 and has public key x0(s1Q); Bob chooses a secret key s2 and has public
key x0(s2Q). The shared secret key of Alice and Bob is x0(s1s2Q) which is computed by Alice from
s1 and x0(s2Q) and by Bob from s2 and x0(s1Q). The computation has two phases, namely the key
generation phase, in which Alice and Bob compute their public keys; and the shared secret computation
phase, in which Alice and Bob compute the shared secret. The shared secret computation of both Alice
and Bob consists of the following task. Given (X1 : Z1) corresponding to a point P = (X1 : Y1 : Z1) and
a non-negative integer r, obtain x0(rP ).

Diffie-Hellman key agreement can be implemented using Legendre form curves and associated Kum-
mer lines. In this case, Q is a generator of a prime order subgroup of EL,µ(Fp) and let Q′ be the
corresponding point on the associated Kummer line Ka2,b2 . Suppose as before that s and t are the secret
keys of Alice and Bob respectively. Then the public keys of Alice and Bob are x0(s1Q

′) and x0(s2Q
′)

respectively and the shared secret is x0(s1s2Q
′).

In the above description, the points Q and Q′ are fixed and can usually be chosen such that the
coordinates are small. Consequently, the scalar multiplication nP , where P is either Q or Q′ can be
significantly sped up. Such a scalar multiplication is usually called fixed based scalar multiplication. On
the other hand, if P is an arbitrary point, the scalar multiplication nP is called a variable base scalar
multiplication. Note that the key generation phase requires a fixed base scalar multiplication, whereas
the shared secret computation phase requires a variable base scalar multiplication. The computation of
the shared secret over either Montgomery form curves, or over Kummer lines can be implemented using
the ladder algorithm. The appropriate differential add and doubling algorithms need to be used.

For the key generation phase, on the other hand, it is faster to perform the computation on a
(twisted) Edwards form curve. For Montgomery curves proposed in the literature, birationally equivalent
Montgomery curves are known [6, 21, 29, 27]. In the case of Kummer lines, for p ≡ 3 mod 4, it is possible
to use Theorems 3.3 and 3.4 of [5] to obtain an Edwards form curve which is birationally equivalent to
EL,µ, while for p ≡ 1 mod 4, it is possible to use the methods of [18] to obtain a desired twisted Edwards
form curve. For both Montgomery curves and Kummer lines, the associated (twisted) Edwards form
curve can be used to build an efficient signature scheme based on the suggestion in [6]. Since our focus
in this paper is the shared secret computation phase of the DH protocol, we skip further details of the
key generation phase of the protocol and also of the signature schemes.

2.4 Security

Our consideration of security is based on the recommendations provided in [2].
Let E be an elliptic curve over Fp and n = #E(Fp). From Hasse’s theorem, we have n = p + 1 − t,

where |t| ≤ 2
√
p. Suppose, it is possible to write n = h`, where ` is a prime. Then h is called the co-factor

of the curve. Cryptography is done over the order ` subgroup of E(Fp). On classical computers, the
best known algorithm for computing discrete logarithm in the cryptographic subgroup of order ` requires
about O(`1/2) time. If h is small, then O(`1/2) is about O(2m/2), where m = dlg pe. In this case, the
security level is said to be m/2 bits.
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A quadratic twist of E has order nT = p+ 1 + t and so n+ nT = 2(p+ 1). If it is possible to write
nT = hT `T , where `T is a prime, then hT is the co-factor of a quadratic twist of E. The embedding
degrees k and kT of the curve and its twist are important security parameters. Here k (resp. kT ) is the
smallest positive integer such that `|pk − 1 (resp. `T |pkT − 1). The value of k (resp. kT ) is equal to the
order of p in F` (resp. F`T ) and is found by checking the factors of ` − 1 (resp. `T − 1). The complex
multiplication field discriminant D is defined in the following manner [2]: Hasse’s theorem states that
|t| ≤ 2

√
p and in the cases that we considered |t| < 2

√
p so that t2−4p is a negative integer; let s2 be the

largest square dividing t2 − 4p; define D = (t2 − 4p)/s2 if (t2 − 4p)/s2 mod 4 = 1 and D = 4(t2 − 4p)/s2

otherwise. (Note that D is different from the discriminant of Eµ.)
Recommendations in [2] suggest choosing curves such that both h and hT are small, k and kT are

large and also |D| is large. Note that if h and hT are small, this implies that ` and `T are large.

2.5 Efficient Implementation of Kummer versus Montgomery

High-speed implementation of the shared secret computation phase of the DH protocol is important from
a practical point of view. This requires a high-speed implementation of variable base scalar multiplication.
The issue of efficient implementation of variable base scalar multiplication on Montgomery curves has
been considered in a number of papers in the literature [4, 30, 27]. Such works have mostly focused on
sequential implementations. Modern processors provide opportunities for vectorized implementations. A
few works [9, 12] have investigated 2-way vectorization of scalar multiplication over Montgomery curves.
More recently, 4-way vectorization of Montgomery ladder has been reported in [17, 24].

The combined differential addition and doubling operation on the Kummer line has a natural 4-way
vectorization as has been pointed out in [19]. This makes Kummer lines specially attractive from the
point of view of vectorized implementation. Such implementation for three Kummer lines at the 128-bit
security level has been reported in [19].

For a comparison of Kummer versus Montgomery, the first point to consider is the number of oper-
ations in the computation of Algorithm 4. For Montgomery curves, Algorithm 4 will call Algorithms 1
and 2 for differential addition and doubling respectively. In Algorithm 1, Z may be assumed to be 1. So,
the operations required by Algorithm 4 for Montgomery curves consist of 5 multiplications, 4 squarings
and 1 multiplication by a (small) field constant. On the other hand, for Kummer lines, Algorithm 4 will
call Algorithms 5 and 6 for differential addition and doubling respectively. In Algorithm 5, z2 may be
assumed to be 1. So, the operations required by Algorithm 4 for Kummer lines consist of 3 multiplica-
tions, 6 squarings and 6 multiplications by (small) field constants. The trade-off between Montgomery
curves and Kummer lines is that 2 less multiplications are required for Kummer lines at the cost of 2
squarings and 5 multiplications by field constants. In practice, a squaring will be noticeably faster than
a multiplication. Even then the time for 2 squarings and 5 multiplications by small field constants will
be more than the time for 2 multiplications. So, for a sequential implementation, Kummer lines will be
slower than Montgomery curves, but not by much.

Next we consider 4-way vectorization of Montgomery curves and Kummer lines. For Montgomery
curves, 4-way vectorization have been proposed in [17, 24]. Detailed analysis and implementation results
show that the 4-way vectorization proposed in [24] is faster than the one proposed in [17]. A top-level
schematic diagram of the 4-way vectorization of Montgomery curves proposed in [24] is shown in Figure 1.
A top-level schematic diagram of the 4-way vectorization of Kummer lines is shown in Figure 2. Both
the diagrams suggest that the 4-way vectorization can be completed using 2 multiplication rounds, one
squaring round and one multiplication-by-constant round. The Kummer line vectorization is simpler
in comparison to the Montgomery curve vectorization. This should help in improved efficiency for the
vectorized implementation of the Kummer line operations. The detailed implementation that we describe
later on confirms this intuition.

3 Searching for a Secure Kummer Line

Consider a Kummer line Ka2,b2 associated with the Legendre form curve EL,µ over Fp. As in Section 2.4,
let n = #EL,µ(Fp) and nT be the order of its quadratic twist. Using n + nT = 2(p + 1) and the fact
that 4 divides n, it is not difficult to argue that for p ≡ 3 mod 4, the minimum possible value of (h, hT )
is (4, 4) and for p ≡ 1 mod 4, the minimum possible value of (h, hT ) is either (4, 8) or (8, 4). Since the
goal is to obtain co-factors with the minimum possible values, in the case of p ≡ 3 mod 4, one may wish
to obtain curves such that (h, hT ) = (4, 4). The next result shows that this will not be possible.

Theorem 1. Let p ≡ 3 mod 4 be a prime and a2, b2 ∈ Fp with a4 6= b4. Let EL,µ be a Legendre form
curve with µ = a4/(a4 − b4). Then 8 divides #EL,µ(Fp).
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X2 Z2
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X3 Z3

X2 + Z2 X2 − Z2 X3 − Z3 X3 + Z3

∗ ∗ ∗ ∗
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1 X1

∗

∗

(A+ 2)/4

+

∗

Z2X2 X3 Z3

Figure 1: A top-level schematic diagram for combined doubling and differential addition for Montgomery curves which is
reproduced here from [24]. In the figure, H(a, b) = (a+ b, a− b),H1(a, b) = (a− b, a+ b),H2(a, b) = (b, a− b).

H

x22 z22

H

x21 z21

x22 + z22 x22 − z22 x21 + z21 x21 − z21

∗ ∗ ∗ ∗a2 − b2 a2 + b2 a2 − b2 a2 + b2

∗ ∗ ∗ ∗

H H

∗ ∗ ∗ ∗z2 x2 b2 a2

∗ ∗ ∗ ∗

x24 z24 x23 z23

Figure 2: A top-level schematic diagram for combined doubling and differential addition for
Kummer lines which is reproduced here from [19]. In the figure, H(a, b) = (a+ b, a− b).

7



x2 = 0
x1 =

√
µ y1 = ±

√
−µ2 + 2µ3/2 − µ

x1 = −√µ y1 = ±
√
−µ2 − 2µ3/2 − µ

x2 = 1
x1 = 1 +

√
1− µ y1 = ±(−1 + µ−

√
1− µ)

x1 = 1−
√

1− µ y1 = ±(−1 + µ+
√

1− µ)

x2 = µ
x1 = µ+

√
µ2 − µ y1 = ±

(
2µ3 + 2µ2

√
µ2 − µ− 3µ2 − 2µ

√
µ2 − µ+ µ

)1/2
x1 = µ−

√
µ2 − µ y1 = ±

(
2µ3 − 2µ2

√
µ2 − µ− 3µ2 + 2µ

√
µ2 − µ+ µ

)1/2
Table 1: Values of x1, y1 and x2 which are solutions to (1).

Proof. The proof uses some results from [18].
First note that EL,µ(Fp) has three points of order 2 which along with the identity forms a subgroup of

order 4. So, 4 certainly divides #EL,µ(Fp). From Proposition 1 in [18] we have that 8 divides #EL,µ(Fp)
if and only if EL,µ(Fp) has a point of order 4. So, to prove the result, it is sufficient to show that EL,µ(Fp)
has a point of order 4.

Proposition 2 in [18] shows that the point (x1, y1) is of order 4 if and only if x1 and y1 are solutions
of the equations

x31 − 3x2x
2
1 + (2(µ+ 1)x2 − µ)x1 − µx2 = 0

2y21 − (3x21 − 2(µ+ 1)x1 + µ)(x1 − x2) = 0

}
(1)

for some x2 ∈ {0, 1, µ} and x1 6= x2. Further, the explicit formulas for the possible solutions for (x1, y1)
arising from (1) have been obtained in [18] and are reproduced in Table 1.

The solutions listed in Table 1 are not necessarily in Fp. For p ≡ 3 mod 4, we argue that one of the
solutions in Table 1 is indeed in Fp giving rise to a point of order 4 in EL,µ(Fp) which, as indicated
above, will prove the result.

Since p ≡ 3 mod 4, −1 is a non-square modulo p. The solutions for (x1, y1) corresponding to x2 = 0 in
Table 1, are either (

√
µ,±(

√
mu−1)

√
−µ) or (−√µ,±(

√
µ+ 1)

√
−µ). Since −1 is a non-square, exactly

one of µ and −µ is a square and the other is a non-square and in either case, the solutions (x1, y1) are
not in Fp. So, we consider the other two cases for x2, namely x2 = 1 and x2 = µ.

Note that µ = a4/(a4 − b4) where a2 and b2 are in Fp and so a4 and b4 are squares modulo p. So,
µ − 1 = b4/(a4 − b4) is a square in Fp if and only if µ is a square in Fp, and consequently, 1 − µ is a
square in Fp if and only if µ is a non-square in Fp. So, if µ is a square in Fp, then µ2 − µ = µ(µ− 1) is
a square in Fp and from Table 1, the solutions for (x1, y1) corresponding to x2 = µ are in Fp. On the
other hand, if µ is not a square in Fp, both 1 − µ and µ2 − µ = µ(µ − 1) are squares in Fp so that the
solutions corresponding to both x2 = 1 and x2 = µ are in Fp.

In view of Theorem 1, it follows that if p ≡ 3 mod 4, then 8 divides n and using n+ nT = 2(p+ 1),
it further follows that 8 also divides nT . So, in the case p ≡ 3 mod 4, the minimum possible value of
(h, hT ) is (8, 8).

The strategy to search for an appropriate Kummer line Ka2,b2 is to consider a range of values for
(a2, b2) and for each pair of values, define µ = a4/(a4 − b4) and consider the Legendre form curve EL,µ.
The goal is to obtain (a2, b2) such that (h, hT ) for EL,µ is the minimum possible (correspondingly, ` and
`T is the maximum possible) and k, kT and |D| are large. In this work, the range for the values for
both a2 and b2 is considered to be 2-1023 while in [19] this range was considered to be 2-512 for both a2

and b2. For two of the three primes considered in [19], the values of (h, hT ) were sub-optimal. For these
primes, the expanded search strategy used in the present work has led to curves with optimal values of
(h, hT ).

4 Concrete Curves

We consider a total of nine primes in this work at the three security levels 128-bit, 224-bit and 256-
bit. At each level of security we consider certain Montgomery curves which have been defined earlier in
literature. The different primes are provided in Table 2.

4.1 Montgomery Curves

The Montgomery curves at the various security levels considered in this work are provided in Table 3.
The parameters of the above curves are shown in Table 4. The X and Z coordinates of the corresponding

8



Security level = 128 bits Security level = 224 bits Security level = 256 bits

p251-9 = 2251 − 9 p444-17 = 2444 − 17 p506-45 = 2506 − 45

p255-19 = 2255 − 19 p448-224-1 = 2448 − 2224 − 1 p510-75 = 2510 − 75

p266-3 = 2266 − 3 p452-3 = 2452 − 3 p521-1 = 2521 − 1

Table 2: Primes considered in this work at various security levels.

base points are provided using projective coordinates.

Security level Montgomery curve Prime Reference

128 bit
M[[4698]] p251-9 [29]

Curve25519 p255-19 [4]

224 bit
M[[4058]] p444-17 [29]

Curve448 p448-224-1 [16]

256 bit

M[[996558]] p506-45 [27]

M[[952902]] p510-75 [27]

M[[1504058]] p521-1 [27]

Table 3: Curves considered in this work at various security levels.

Montgomery Curve (lg `, lg `T ) (h, hT ) (κ, κT ) lg(−D) Base point

M[[4698]] (249,249) (4,4)
(
`− 1, `T−1

2

)
253 [3:1]

Curve25519 (252,253) (8,4)
(

`−1
6
, `T−1

2

)
254.7 [9:1]

M[[4058]] (442,442) (4,4)
(

`−1
3
, `T − 1

)
446 [3:1]

Curve448 (446,446) (4,4)
(

`−1
2
, `T−1

4

)
449.5 [5:1]

M[[996558]] (504,504) (4,4)
(

`−1
17

, `T − 1
)

508 [3:1]

M[[996558]] (507,508) (8,4) (`− 1, `T − 1) 510 [4:1]

M[[996558]] (519,519) (4,4) (`− 1, `T − 1) 523 [8:1]

Table 4: Montgomery curves and their parameters.

4.2 Kummer Lines

The previous work [19] had considered Kummer lines only at the 128-bit security level and not for higher
security levels. Using the search strategy outlined in Section 3, we have implemented a Magma code
to search for Kummer lines at the 224-bit and the 256-bit security levels. Also, at the 128-bit level, we
have expanded the range of search as mentioned in Section 3. We use the notation KLp,a2,b2 to denote
a Kummer line associated with a prime p having the parameters a2 and b2. The Kummer lines at the
various security levels considered in this work are provided in Table 5.

The parameters of the Kummer lines and the corresponding Legendre form curves are shown in
Table 6. From the discussion in Section 3, we note that optimal values of (h, hT ) are achieved for
KLp251-9,81,20, KLp255-19,838,831, KLp266-3,683,18, KLp444-17,659,370, KLp448-224-1,410,103, KLp452-3,913,294,
KLp510-75,1063,198, and KLp521-1,1559,796.

Due to the smaller co-factors, the Kummer lines KLp255-19,838,831 and KLp266-3,683,18 are improve-
ments over the Kummer lines KLp255-19,82,77 and KLp266-3,260,139 proposed in [19]. The value of (h, hT )
corresponding to KLp506-45,856,181 is (8, 16) which is sub-optimal (since p506-45 ≡ 3 mod 4, the minimum
possible value is (8, 8) and (8, 16) is the next best.) For p506-45, in the search range that we considered,
no curve has (h, hT ) to be equal to (8, 8).

Remark. For the primes p255-19, p266-3, p506-45 and p510-75 we have also found alternative Kummer
lines having values of (a2, b2) as (911,784), (762,295), (795,461) and (1609,1496) respectively. For these
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Security level Kummer line Prime Reference

128 bit

KLp251-9,81,20 p251-9 [19]

KLp255-19,82,77 p255-19 [19]

KLp255-19,838,831 p255-19 this work

KLp266-3,260,139 p266-3 [19]

KLp266-3,683,18 p266-3 this work

224 bit

KLp444-17,659,370 p444-17 this work

KLp448-224-1,410,103 p448-224-1 this work

KLp452-3,913,294 p452-3 this work

256 bit

KLp506-45,856,181 p506-45 this work

KLp510-75,1063,198 p510-75 this work

KLp521-1,1559,796 p521-1 this work

Table 5: Kummer lines considered in this work at various security levels.

alternative Kummer lines, the values of (h, hT ) are equal to the values of (h, hT ) for the corresponding
Kummer lines reported in Table 6. As a criteria we have chosen the Kummer line corresponding to the
pair (a2, b2) for which the value of the constant (a2 + b2) is minimum. This has been done because in
the Kummer line scalar multiplication algorithm the constants a2, b2, (a2− b2) and (a2 + b2) are involved
out of which (a2 + b2) is the largest.

Kummer line (lg `, lg `T ) (h, hT ) (κ, κT ) lg(−D) Base point

KLp251-9,81,20 (248,248) (8,8)
(
`− 1, `T−1

7

)
248.3 [64:1]

KLp255-19,82,77 (251.4,252) (12,8) (`− 1, `T − 1) 252.9 [31:1]

KLp255-19,838,831 (253,252) (4,8) (`− 1, `T − 1) 252.9 [10:1]

KLp266-3,260,139 (262.4,263) (12,8)
(

`−1
2
, `T − 1

)
263.9 [2:1]

KLp266-3,683,18 (264,263) (4,8)
(

`−1
2
, `T − 1

)
263.9 [2:1]

KLp444-17,659,370 (441,441) (8,8)
(
`− 1, `T−1

6

)
445.8 [47:1]

KLp448-224-1,410,103 (445,445) (8,8)
(

`−1
5
, `T − 1

)
449.9 [10:1]

KLp452-3,913,294 (450,449) (4,8)
(

`−1
2
, `T−1

9

)
449.8 [2:1]

KLp506-45,856,181 (503,502) (8,16)
(

`−1
2
, `T−1

2

)
507.9 [17:1]

KLp510-75,1063,198 (508,507) (4,8)
(

`−1
37

, `T−1
24

)
507.3 [18:1]

KLp521-1,1559,796 (518,518) (8,8) ( `−1
3
, `T − 1) 522.5 [29:1]

Table 6: Parameters of the corresponding Legendre form curves of the Kummer lines. The values of κT for
KLp510-75,1063,198 and κ, κT for KLp521-1,1559,796 were computed using CADO-NFS [31]. Details of the factorizations

involved in these three computations are given in Appendix B.

Set of scalars. For Curve25519, the permitted set of scalars has been defined to be 8(2251 + {0, 1, . . . ,
2251 − 1}). Defining scalars in this manner precludes small subgroup attacks and also ensures that the
loop in Algorithm 3 requires the same number of iterations for all permitted scalars. The procedure
of formatting a 256-bit random string into a scalar of the allowed form has been called clamping1.
Considering the 256-bit string to be a 32-byte quantity, clamping for Curve25519 consists of clearing
bits 0, 1 and 2 of the first byte, clearing bit 7 of the last byte, and setting bit 6 of the last byte (see
Section 3 of [4]). Clamping ensures that the resulting scalar is in the permitted set of scalars. Following
the example of Curve25519, the allowed sets of scalars and clamping strategies have been defined for the
Kummer lines and the Montgomery curves proposed in [19, 27, 29].

The permitted sets of scalars for the new Kummer lines proposed in Table 5 are defined in Table 7. In
the table, s is the number of available bits in the corresponding scalar. Based on the scalars in Table 7,

1https://cr.yp.to/ecdh.html, accessed on October 10, 2020
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an appropriate clamping strategy has been used. Since the details are quite routine and available from
the accompanying code, we do not mention them here.

Kummer line Set of scalars s

KLp255-19,838,831 4(2252 + {0, 1, . . . , 2252 − 1}) 252

KLp266-3,683,18 4(2263 + {0, 1, . . . , 2263 − 1}) 263

KLp444-17,659,370 8(2440 + {0, 1, . . . , 2440 − 1}) 440

KLp448-224-1,410,103 8(2444 + {0, 1, . . . , 2444 − 1}) 444

KLp452-3,913,294 4(2449 + {0, 1, . . . , 2449 − 1}) 449

KLp506-45,856,181 8(2502 + {0, 1, . . . , 2502 − 1}) 502

KLp510-75,1063,198 4(2507 + {0, 1, . . . , 2507 − 1}) 507

KLp521-1,1559,796 8(2517 + {0, 1, . . . , 2517 − 1}) 517

Table 7: Allowed set of scalars for the new Kummer lines proposed in this paper.

5 Field Arithmetic

Differential addition and doubling over both Kummer line and Montgomery curves require arithmetic
over the underlying field Fp. Let m = dlog2 pe. Elements of Fp can be represented as m-bit strings
formatted into κ η-bit words called limbs, where m = η(κ − 1) + ν such that 1 ≤ ν ≤ η < 32. So, the
first (κ− 1) limbs are η bits long, while the size of the last limb is ν which lies between 1 and η.

Note that there are 2m m-bit strings whereas the number of elements in Fp is p < 2m. So, working
with m-bit strings as if they are field elements has the consequence that a few field elements have
two representations. This does not affect the correctness of the computation. At the very end of the
computation, the unique representation of the result is obtained using a constant time algorithm. For
the details of the constant time algorithm to obtain unique representation, we refer to [26].

Representations of elements in the various fields are summarized in Table 8. For the elements of
F2255−19 we also consider the 10-limb representation introduced by Bernstein [4], which is not given in

Table 8. In this representation, a field element A ∈ F2255−19 is written as A =
∑9
i=0 ai2

d25.5ie where
0 ≤ a0 ≤ 226 − 19, 0 ≤ a2, a4, a6, a8 < 226 and 0 ≤ a1, a3, a5, a7, a9 < 225.

Field m κ η ν η − ν

F2251−9 251 9 28 27 1

F2255−19 255 9 29 23 6

F2266−3 266 10 27 23 4

F2444−17 444 16 28 24 4

F2448−2224−1 448 16 28 28 0

F2452−3 452 16 29 17 12

F2506−45 506 18 29 13 16

F2510−75 510 18 29 17 12

F2521−1 521 18 29 28 1

Table 8: Representations of field elements.

The goal of determining the representations is to be able to use 4-way SIMD instructions. Each limb
will be packed into the lower 32 bits of a 64-bit portion of a 256-bit word. The entire 256-bit word
then contains four limbs of four different field elements. Two such 256-bit words are multiplied using a
single SIMD instruction and the result is also a 256-bit word, where each 64-bit portion of the output
256-bit word contains the result of the multiplication of the two corresponding limbs of the input. The
requirement of fitting each limb into a 32-bit word dictates the choice of η to be less than 32.

Field arithmetic for p251-9, p255-19, p448-224-1, and p444-17 using the representations in Table 8
have been reported in [24]. Field arithmetic for the other primes have been freshly implemented as part
of this work. In Appendix A, we provide the details of the multiplication and squaring algorithms for
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the prime p521-1. The details for the other primes for which the implementations have been freshly done
are similar.

Multiplication and squaring in Fp. The major operations required in differential addition and
doubling are field multiplications and squarings. At a conceptual level, a field multiplication consists
of an integer multiplication followed by a reduction. The integer multiplication takes as input two κ-
limb quantities and produce as output a (2κ − 1)-limb quantity, to which the reduction procedure is
applied to obtain a κ-limb quantity. For the purpose of implementation, however, the separation of
integer multiplication and reduction is not always explicit. We identify two strategies for performing the
multiplication and squaring operations.

Strategy 1: Two κ-limb quantities are multiplied using schoolbook multiplication and simultaneously
the results are partially reduced to obtain a κ-limb quantity where the size of all the limbs are at
most 64 bits.

Strategy 2: Two κ-limb quantities are multiplied using a variant of the Karatsuba algorithm to obtain
a (2κ − 1)-limb result. The result is expanded to a 2κ-limb quantity which is then folded into a
κ-limb quantity where the size of all the limbs are at most 64 bits. The reason for the expansion
before folding is that if the (2κ − 1)-limb result is directly attempted to be folded into a κ-limb
quantity, then some of the limbs require more than 64 bits to be represented.

The second strategy is essentially the multe algorithm in [19]. Strategy 1 has been used for p251-9,
p255-19 with 10-limb representation, and for p266-3. Strategy 2 has been used for the 9-limb represen-
tation of p255-19 using (5+4)-Karatsuba; p448-224-1, p444-17 and p452-3 using (8+8)-Karatsuba; and
for p506-45, p510-75 and p521-1 using (9+9)-Karatsuba. Here, by (k1 + k2)-Karatsuba, we mean that at
the top level the κ-limb quantity is divided into k1-limb and k2-limb quantities to which the Karatsuba
algorithm is applied. At the lower levels, the schoolbook algorithm is applied to complete the entire
integer multiplication algorithm.

Both Strategy 1 and Strategy 2 provide a κ-limb result where each limb has at most 64 bits. A
reduction algorithm is applied to this result to ensure that the sizes of the limbs reduce to the appropriate
representations. This reduction algorithm essentially consists of computing a carry and forwarding it to
the next limb and after the last limb, the produced carry is reduced and added back to the first limb. For
the primes p251-9, p255-19, p266-3, p444-17, p448-224-1 and p452-3 an interleaved carry chain suggested
by [9] in the context of p255-19 has been used. On the other hand, for the primes p506-45, p510-75 and
p521-1 we use the simple carry chain instead of the interleaved carry chain. The details of the various
carry chains are as follows.

• For p251-9 and p255-19 with κ = 9, we interleave the chains c0 → c1 → · · · → c4 → c5 and
c4 → c5 → · · · → c8 → c0 → c1.

• For p255-19 and p266-3 with κ = 10, we interleave the chains c0 → c1 → · · · → c4 → c5 → c6 and
c5 → c6 → · · · → c9 → c0 → c1.

• For p444-17, p448-224-1 and p452-3 with κ = 16, we interleave the chains c0 → c1 → · · · → c7 →
c8 → c9 and c8 → c9 → · · · → c15 → (c0, c8)→ (c1, c9).

• For p506-45, p510-75 and p521-1 with κ = 18, we use the simple carry chain c0 → c1 → · · · →
c17 → c0 → c1.

We term this reduction algorithm as reduce1. The multiplication/squaring algorithms without applying
reduction will be termed as mul/sqr.

It should be noted that the number of steps in an interleaved carry chain is actually more than that
in the simple carry chain. The reason that interleaved carry chains are faster for the smaller primes is
due to the fact that internal processor pipelining can take advantage of the independence of the chains.
For the larger primes, however, the number of limbs is 18 while the number of ymm registers (i.e., the
registers where the quantities are to be stored) is 16. So, using the interleaved carry chain for these
primes increases the number of load/stores making its performance inferior to that of the simple carry
chain.
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Multiplication by a small constant in Fp. LetA ∈ Fp have a κ-limb representation (a0, a1, . . . , aκ−1).
Let c be an element in Fp, which can be represented using a single limb. Then multiplication of A by c
provides κ limbs of the form (c0, c1, . . . , cκ−1) = (a0 · c, a1 · c, . . . , aκ−1 · c) where each limb is at most 64
bits. This needs to be reduced so that the limb values respect the appropriate representations.

• For p251-9 and p255-19 with κ = 9, we interleave the chains c0 → c1 → · · · → c3 → c4 and
c4 → c5 → · · · → c8 → c0.

• For p255-19 and p266-3 with κ = 10, we interleave the chains c0 → c1 → · · · → c4 → c5 and
c5 → c6 → · · · → c9 → c0.

• For p444-17, p448-224-1 and p452-3 with κ = 16, we interleave the chains c0 → c1 → · · · → c7 → c8
and c8 → c9 → · · · → c15 → (c0, c8).

• For p506-45, p510-75 and p521-1 with κ = 18, we use the simple carry chain c0 → c1 → · · · →
c17 → c0.

We term this reduction as reduce2. Note that reduce2 is slightly more efficient that reduce1 because
the lengths of the chains are one less. The algorithm to multiply with a small constant without applying
reduction will be termed as mulc.

Negation. Given a field element A, the goal is to compute −A mod p. To avoid handling negative
numbers, the negation of A is computed by subtracting A from an appropriate multiple of p to ensure
that all limbs of the result are non-negative. This requires the following representation of p as a κ-limb
quantity P =

∑κ−1
i=0 piθ

i, where the values of pi are obtained from the appropriate representation as
shown in Table 8.

Let n be the least integer such that all the limbs of (2nP−A) are non-negative. The negation of the
element A is then defined by negate(A) = 2nP−A = C in unreduced form, while reducing C modulo p

gives us the desired value in Fp. Let C =
∑κ−1
i=0 ciθ

i so that ci = 2npi− ai ≥ 0 ∀i. Considering all values
to be α-bit quantities, the computation of ci is done as

ci = ((2α − 1)− ai) + (1 + 2npi) mod 2α. (2)

The operation (2α − 1)− ai is equivalent to taking the bitwise complement of ai, which is equivalent
to 1α ⊕ ai. The values of α will be considered as 32 and 64 in our implementations.

Subtraction. Subtraction is done by first negating the subtrahend B and then adding the obtained
result to the minuend A.

Reduction. The bit-sizes of the limbs of the output of the subtraction procedure are at most two more
than the bit-sizes of the input limbs. This can be reduced using the following parallel carry chain.

(c0, cd(κ−1)/2e)→ (c1, cd(κ−1)/2e+1)→ · · · → (cd(κ−1)/2e−1, c2d(κ−1)/2e−1)

Here, the notation (ci, cj) → (ck, c`) means performing the reductions ci → ck and cj → c` simultane-
ously. We denote this reduction operation as reduce3.

Inversion in Fp. The output of the ladder algorithm is x2(z2)p−2. The computation of (z2)p−2

requires squaring and multiplication in Fp. There is no scope to utilize SIMD instructions for computing
(z2)p−2. So, for the computation of x2(z2)p−2, the quantities x2 and z2 are re-packed into multi-limb
quantities, where each limb is at most 64 bits. This reduces the number of limbs and hence makes the
individual field multiplication and squaring faster. Extensive details along with explicit algorithms for
field multiplication, squaring and inversion have been provided in [26]. We have used these to implement
the inversion algorithms required in the present context.

6 Vector Operations

Our goal is to obtain 4-way vector implementations of the ladder for Kummer arithmetic. To this end,
we introduce the required vector operations. This requires packing four field elements into κ 256-bit
words. Each of the field elements has κ limbs, where each limb is at most 32 bits. We consider two kinds
of packings. These packings have been considered in [24] and in [8, 17] a similar packing strategy has
been called squeeze/unsqueeze.

Notation. In the following sections, for uniformity of description, we use expressions of the form
∑h
i=` fiθ

i.
For p255-19, while dealing with 10-limb representations θi should be considered as 2d25.5ie.
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Dense packing of field elements. Let A =
∑κ−1
i=0 aiθ

i. Consider that every limb ai is less than
232 and is stored in a 64-bit word. Then it is possible to pack abκ/2cwith a0, abκ/2c+1with a1, . . . ,
a2bκ/2c−1with abκ/2c−1, so that every pair can be represented using a 64-bit word without losing any
information. If κ is odd then aκ−1 can be left alone. We denote this operation as dense packing of limbs
and is denoted by A.

Vector representation of field elements. Define A = 〈A0, A1, A2, A3〉 where Ak =
∑κ−1
i=0 ak,iθ

i ∈
Fp. Hence, A is a 4-element vector. Each ak,i is stored in a 64-bit word, and conceptually one may think
of A to be given by a κ× 4 matrix of 64-bit words. If we consider Ak, i.e., densely packed form of Ak,

then we have A = 〈A0, A1, A2, A3〉 where Ak =
∑dκ/2e−1
i=0 ak,iθ

i. Then we can conceptually think of A

as a dκ/2e × 8 matrix of 32-bit words.
We can also visualize A and A by the following alternative representation. Let ai = 〈a0,i, a1,i, a2,i, a3,i〉.

Define aiθ
i = 〈a0,iθi, a1,iθi, a2,iθi, a3,iθi〉. Then, we can write A =

∑κ−1
i=0 aiθ

i. Each ai is stored as a
256-bit value. Similarly, let ai = 〈a0,i, a1,i, a2,i, a3,i〉. Define aθi = 〈a0,iθi, a1,iθi, a2,iθi, a3,iθi〉. Then, we

can write A =
∑dκ/2e−1
i=0 aiθ

i. Like ai, each ai is stored as a 256-bit value.

Dense packing of vector elements. Let 〈A0, A1, A2, A3〉 =
∑κ−1
i=0 aiθ

i, where Ak =
∑κ−1
i=0 ak,iθ

i.
The vectorized normal to dense packing operation Pack-N2D(〈A0, A1, A2, A3〉) returns the 4-tuple

〈A0, A1, A2, A3〉 =
∑dκ/2e−1
i=0 aiθ

i, where Ak = N2D(Ak), such that Ak =
∑dκ/2e−1
i=0 ak,iθ

i. Let 〈A0, A1,

A2, A3〉 =
∑dκ/2e−1
i=0 aθi, where Ak =

∑dκ/2e−1
i=0 ak,iθ

i. The vectorized dense to normal operation

Pack-D2N(〈A0, A1, A2, A3〉) returns the 4-tuple 〈A0, A1, A2, A3〉 =
∑κ−1
i=0 aiθ

i, where Ak = D2N(Ak),

such that Ak =
∑κ−1
i=0 ak,iθ

i. For details of implementations of D2N and N2D we refer to [24].

Vector reduction. Three types of vector reduction operations will be used, namely Reduce1, Reduce2
and Reduce3 out of which Reduce3 will be used on densely packed limbs after the Hadamard trans-
formations.

• Reduce1(〈A0, A1, A2, A3〉): This is used in the vectorized field multiplication and squaring algo-
rithms which returns 〈reduce1(A0), reduce1(A1), reduce1(A2), reduce1(A3)〉.

• Reduce2(〈A0, A1, A2, A3〉): This is used in the vectorized algorithm for multiplication by a field
constant which returns 〈reduce2(A0), reduce2(A1), reduce2(A2), reduce2(A3)〉. The same reduction
is also used after addition and subtraction of two normally packed vector elements.

• Reduce3(〈A0, A1, A2, A3〉): This is used in the vectorized algorithms for Hadamard transforma-
tions which returns 〈reduce3(A0), reduce3(A1), reduce3(A2), reduce3(A3)〉.

Vector multiplication and squaring. Vector multiplication and squaring are done over normally
packed field elements which are defined as below.

• Mul(〈A0, A1, A2, A3〉, 〈B0, B1, B2, B3〉): returns C =
∑κ−1
i=0 ciθ

i such that C = Reduce1(〈C0, C1,
C2, C3〉), where Ck = mul(Ak, Bk).

• Sqr(〈A0, A1, A2, A3〉): returns C =
∑κ−1
i=0 ciθ

i, such that C = Reduce1(〈C0, C1, C2, C3〉), where
Ck = sqr(Ak).

Vector multiplication by a field constant. Vector multiplication by a field constant is done with
a normally packed field element. The function is defined as Mulc(〈A0, A1, A2, A3〉, 〈d0, d1, d2, d3〉),
which returns C =

∑κ−1
i=0 ciθ

i, such that C = Reduce2(〈C0, C1, C2, C3〉). Here d0, d1, d2, d3 ∈ Fp and
Ck = mulc(Ak, dk). The Mulc operation without reduction will be termed as Unreduced-Mulc.

Addition, Subtraction and Hadamard transforms. We will require vector versions of addition,
subtraction and Hadamard transforms. Let A =

∑κ−1
i=0 aiθ

i, B =
∑κ−1
i=0 biθ

i be two elements in Fp.
Using the operation N2D on A and B we obtain the densely packed elements A ←

∑dκ/2e−1
i=0 aiθ

i and

B ←
∑dκ/2e−1
i=0 biθ

i respectively.
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Addition. Two normally packed vector elements 〈A0, A1, A2, A3〉 and 〈B0, B1, B2, B3〉 when added re-
turns Reduce2(〈C0, C1, C2, C3〉) where

Ck = Ak +Bk =

κ−1∑
i=0

(ai + bi)θ
i =

κ−1∑
i=0

ciθ
i.

When we apply a similar addition operation over densely packed vector elements we can exploit 2-way
parallelism to compute a field addition. The addition ci ← ai+bi computes the additions ci ← ai+bi and
cdκ/2e+i ← adκ/2e+i+bdκ/2e+i simultaneously for i = 0, 1, . . . , dκ/2e−1. The quantity cκ−1 ← aκ−1+bκ−1
can be computed as a single addition if κ is odd.

Negation. The negation operation for a single field element has already been defined. It can be applied

to A =
∑dκ/2e−1
i=0 aiθ

i in parallel similar to addition.

Subtraction. This operation can be done over A and B simultaneously similar to addition.

Hadamard transformations. Let A, B be two elements in Fp and A, B be their dense representations.
The Hadamard transform H1(A,B) outputs the pair 〈C,D〉 where

C = reduce2(A+B) and D = reduce2(A+ negate(B)).

The Hadamard transform H2(A,B) outputs the pair 〈C,D〉 where

C = reduce3(A+B) and D = reduce3(A+ negate(B)).

We define the operation unreduced-H1(A,B) which is the same as H1(A,B) except that the reduce2
operation is dropped. Similarly, the operation unreduced-H2(A,B) is same as H2(A,B) except that the
reduce3 operation is dropped.

Remark. When the linear operations are applied in parallel over densely packed elements α is considered
as 32, else α is taken as 64.

Algorithms for vectorized Hadamard operations. For a normally packed 256-bit vector quantity
a = 〈a0, a1, a2, a3〉 we define copy1(a) = 〈a0, a0, a2, a2〉 and copy2(a) = 〈a1, a1, a3, a3〉. Similarly, for a
densely packed 256-bit quantity a = 〈a0, a1, a2, a3〉 we define copy3(a) = 〈a0, a0, a2, a2〉 and copy4(a) =
〈a1, a1, a3, a3〉.

The operations copy1, copy2, copy3 and copy4 can be implemented using the assembly instruction
vpshufd. The instruction vpshufd uses an additional parameter known as the shuffle mask, whose
values for copy1(·) and copy3(·) is 68 and for copy2(·) and copy4(·) is 238. The vector Hadamard oper-
ation HH and Dense-HH are described in Algorithm 7 and Algorithm 8 respectively. HH implements
the transformation H1H1 over normally packed vector elements and Dense-HH implements H2H2 over
densely packed vector elements.

Algorithm 7 Vectorized Hadamard transformation over normally packed elements.

1: function HH(〈A0, A1, A2, A3〉)
2: input: 〈A0, A1, A2, A3〉 =

∑κ−1
i=0 aiθ

i.

3: output: C =
∑κ−1
i=0 ciθ

i representing 〈A0 +A1, A0 −A1, A2 +A3, A2 −A3〉 where each component
is reduced modulo p.

4: for i← 0 to κ− 1 do
5: s← copy1(ai)
6: t← copy2(ai)
7: t← t⊕ 〈064, 164, 064, 164〉
8: t← t + 〈064, 2pi + 1, 064, 2pi + 1〉
9: ci ← s + t

10: end for
11: return Reduce2(C)
12: end function.

15



Algorithm 8 Vectorized Hadamard transformation over densely packed elements.

1: function Dense-HH(〈A0, A1, A2, A3〉)
2: input: 〈A0, A1, A2, A3〉 =

∑dκ/2e−1
i=0 aiθ

i.

3: output: C =
∑dκ/2e−1
i=0 ciθ

i representing 〈A0+A1, A0−A1, A2+A3, A2−A3〉, where each component
is reduced modulo p.

4: for i← 0 to dκ/2e − 1 do
5: s← copy3(ai)
6: t← copy4(ai)
7: t← t⊕ 〈032, 032, 132, 132, 032, 032, 132, 132〉
8: t← t + 〈032, 032, 2pi + 1, 2pi+dκ/2e + 1, 032, 032, 2pi + 1, 2pi+dκ/2e + 1〉
9: ci ← s + t

10: end for
11: return Reduce3(C)
12: end function.

Previous works [19, 17, 24] on Kummer ladder and vectorized Montgomery have used Hadamard
transforms. We mention the similarities and the differences. Neither HH nor Dense-HH were required
in [17, 24]. The idea of HH was used in [19], but the implementation was done using costly permutation
instructions instead of shuffle which has been used here; the Dense-HH was not used in [19].

Vector duplication. For the 256-bit quantity a = 〈a0, a1, a2, a3〉 let us define the operation copy3(a) =
〈a0, a1, a0, a1〉, which can be implemented using the assembly instruction vpermq. The instruction vpermq

uses an additional parameter known as the shuffle mask, whose value for copy3(·) is 68. Let A =∑dκ/2e−1
i=0 aiθ

i. Define the operation Dense-CDup(A) to return
∑dκ/2e−1
i=0 copy3(ai)θ

i. If A represents
〈A0, A1, A2, A3〉, then Dense-CDup(A) = 〈A0, A1, A0, A1〉.

The Dense-CDup operation was not used in the earlier works [19, 17, 24].

Vector swapping. Let a = 〈a0, a1, a2, a3〉 and b be a bit. We define an operation swap(a, b) as

swap(a, b) ←
{
〈a0, a1, a2, a3〉 if b = 0,
〈a2, a3, a0, a1〉 if b = 1.

The operation swap(a, b) is implemented using the assembly instruction vpermd. Let A =
∑dκ/2e−1
i=0 aiθ

i.

We define the operation Dense-Swap(A, b) to return
∑dκ/2e−1
i=0 swap(ai, b)θi. If A represents the vector

〈A0, A1, A2, A3〉, then

Dense-CSwap(A, b) ←
{
〈A0, A1, A2, A3〉 if b = 0,
〈A2, A3, A0, A1〉 if b = 1.

The Dense-CSwap operation (under a slightly different name) has been used in [24].

Remark. The vector operations Mul, Sqr, Mulc, Pack-N2D are applied to normally packed field
elements. and Dense-CSwap, Dense-HH, Dense-CDup, Pack-D2N are applied to densely packed
field elements.

7 Vectorized Ladder

For the Montgomery curves over the primes p266-3, p452-3, p506-45, p510-75 and p521-1, we have
implemented the vectorized algorithm of the ladder for Montgomery curves given in [24].

A vectorized version of the ladder for Kummer lines has been previously proposed in [19]. This did
not incorporate the advantages of using dense packing of field elements. We provide a new vectorized
algorithm of the ladder for Kummer lines in Algorithm 9. This algorithm computes variable base scalar
multiplication.

The correctness of Algorithm 9 is easy to derive from Algorithms 3, 4, 5 and 6. At a top-level, the
main loop of Algorithm 9 is the same as that of Algorithms 3 and 4 except that the conditional statement
of Algorithm 4 has been implemented using a constant time procedure. The body of the main loop in
Algorithm 3 is essentially the vectorized version of the combined field operations of Algorithm 5 and 6.
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Since the first two columns of the output vector in the SQR operations of Initialize-P are unutilized
we can apply the optimization technique used in the SQR operation of Algorithm 8 of [24] for the Kummer
lines at 224-bit and 256-bit security levels.

Algorithm 9 can be slightly modified to obtain a vectorized algorithm for fixed base scalar multiplica-
tion. In this case, the vector 〈T5, T6, T7, T8〉 in Step 16 is small and a single limb quantity. Consequently,
the vector multiplication Mul of Step 18 is actually Mulc which is a vector multiplication by a vector
constant. The operation Dense-CSwap in Step 16 in this case is actually CSwap because we have the
single limb vector constant 〈b2, a2, z2, x2〉 involved in the operation instead of 〈b2, a2, z2, x2〉.

10-limb implementations of KLp255-19,838,831. For the 10-limb implementations of the Kummer line
over the prime p255-19, the Unreduced-MulC and the HH operations in Steps 8, 9 of Initialize-P
and Steps 13, 14 of Kummer-Line-Scalarmult are replaced by the MulC, Pack-N2D, Unreduced-
Dense-HH and Pack-D2N operations. This replacement makes the implementations for the Kummer
line more efficient. Also, the other Dense-HH operations can be kept unreduced in the ladder for these
implementations.

Algorithm 9 Ladder to compute scalar multiplication over Kummer lines using 4-way vectorization.

1: function Kummer-Line-Scalarmult(P, n)
2: input: An x-coordinate only projective point P = [x2 : z2] on KLp,a2,b2 and an `-bit clamped scalar
n given as n = (1, n`−2, n`−3, . . . , n0).

3: output: The x-coordinate of the scalar multiple nP .

4: 〈b2, a2, z2, x2〉 ← Pack-N2D(〈b2, a2, z2, x2〉)
5: 〈T1, T2, T3, T4〉 ← Initialize(P )

6: for i← `− 2 down to 0 do

7: 〈T1, T2, T3, T4〉 ← Pack-N2D(〈T1, T2, T3, T4〉)
8: 〈T5, T6, T7, T8〉 ← Dense-HH(〈T1, T2, T3, T4〉)
9: 〈T5, T6, T7, T8〉 ← Pack-D2N(〈T5, T6, T7, T8〉)

10: 〈T1, T2, T3, T4〉 ← Dense-CDup(〈T5, T6, T7, T8〉, ni)
11: 〈T1, T2, T3, T4〉 ← Pack-D2N(〈T1, T2, T3, T4〉)
12: 〈T1, T2, T3, T4〉 ←Mul(〈T1, T2, T3, T4〉, 〈T5, T6, T7, T8〉)
13: 〈T1, T2, T3, T4〉 ← Unreduced-Mulc(〈T1, T2, T3, T4〉, 〈a2 − b2, a2 + b2, a2 − b2, a2 + b2〉)
14: 〈T5, T6, T7, T8〉 ← HH(〈T1, T2, T3, T4〉)
15: 〈T1, T2, T3, T4〉 ← Sqr(〈T5, T6, T7, T8〉)
16: 〈T5, T6, T7, T8〉 ← Dense-CSwap(〈b2, a2, z2, x2〉, ni)
17: 〈T5, T6, T7, T8〉 ← Pack-D2N(〈T5, T6, T7, T8〉)
18: 〈T1, T2, T3, T4〉 ←Mul(〈T1, T2, T3, T4〉, 〈T5, T6, T7, T8〉)
19: end for

20: 〈x2, z2, ∗, ∗〉 ← Reduce2(〈T1, T2, T3, T4〉)
21: return x2(z2)p−2

22: end function.

8 Implementations and Timings

We have developed constant-time assembly implementations targeting modern Intel architectures. This
was done for nine Kummer lines and three Montgomery curves. Timing results were obtained for the
following two platforms.

Haswell: Intel®CoreTM i7-4790 4-core CPU 3.60 Ghz. The OS was 64-bit Ubuntu 14.04 LTS and the
source code was compiled using GCC version 7.3.0.

Skylake: Intel®CoreTM i7-6500U 2-core CPU @ 2.50GHz. The OS was 64-bit Ubuntu 14.04 LTS and
the source code was compiled using GCC version 7.3.0.

The timing experiments were carried out on a single core of Haswell and Skylake processors. During
measurement of the CPU-cycles, TurboBoost© and Hyper-Threading© features were turned off.

Along with the timings of our implementations, we also report timings of previous implementations.
For a fair comparison, we have downloaded the relevant codes and have measured the timings of these
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Algorithm 10 Initializes the variables for ladder computation.

1: function Initialize(P )
2: input: An x-coordinate only projective point P = [x2 : z2] on KLp,a2,b2 .
3: output: 〈P, 2P 〉.
4: 〈0,0, x2, z2〉 ← Pack-N2D(〈0,0, x2, z2〉)
5: 〈∗, ∗, T1, T2〉 ← Dense-HH(〈0,0, x2, z2〉)
6: 〈∗, ∗, T1, T2〉 ← Pack-D2N(〈∗, ∗, T1, T2〉)
7: 〈∗, ∗, T3, T4〉 ← Sqr(〈∗, ∗, T1, T2〉)
8: 〈∗, ∗, T1, T2〉 ← Unreduced-Mulc(〈∗, ∗, T3, T4〉, 〈∗, ∗, a2 − b2, a2 + b2〉)
9: 〈∗, ∗, T3, T4〉 ← HH(〈∗, ∗, T1, T2〉)

10: 〈∗, ∗, T1, T2〉 ← Sqr(〈∗, ∗, T3, T4〉)
11: 〈∗, ∗, T3, T4〉 ←Mulc(〈∗, ∗, T1, T2〉, 〈∗, ∗, b2, a2〉)
12: 〈T1, T2, ∗, ∗〉 ← 〈x2, z2, ∗, ∗〉
13: return 〈T1, T2, T3, T4〉
14: end function.

Curve Haswell Skylake κ Strategy Implementation Implementation type

M[[4698]]
- 87807 4 64-bit seq [28] maax, assembly

114937 91203 9 4-way SIMD [24] [28] AVX2, assembly

Curve25519

- 98694 4 64-bit seq [28] maax, assembly

120108 99194 9 4-way SIMD [24] [24] AVX2, assembly

123899 95437 10 4-way SIMD [24] [24] AVX2, assembly

KLp251-9,81,20 128322 112275 9 4-way SIMD [19] [19] AVX2, intrinsics

KLp255-19,82,77 169696 140908 10 4-way SIMD [19] [19] AVX2, intrinsics

KLp266-3,260,139 164078 139318 10 4-way SIMD [19] [19] AVX2, intrinsics

KLp251-9,81,20 106640 83424 9 4-way SIMD this work AVX2, assembly

KLp255-19,838,831
113545 91837 9 4-way SIMD this work AVX2, assembly

118959 91151 10 4-way SIMD this work AVX2, assembly

KLp266-3,683,18 135243 105328 10 4-way SIMD this work AVX2, assembly

Table 9: CPU-cycle counts for variable base scalar multiplication at the 128-bit security level.

Curve Haswell Skylake κ Strategy Implementation Implementation type

M[[4058]]
- 384905 7 64-bit seq [29] maax, assembly

476866 401809 16 4-way SIMD [24] [29] AVX2, assembly

Curve448
- 434831 7 64-bit seq [28] maax, assembly

441715 357095 16 4-way SIMD [24] [24] AVX2, assembly

KLp444-17,659,370 471372 385300 16 4-way SIMD this work AVX2, assembly

KLp448-224-1,410,103 439902 350065 16 4-way SIMD this work AVX2, assembly

KLp452-3,913,294 487605 397713 16 4-way SIMD this work AVX2, assembly

Table 10: CPU-cycle counts for variable base scalar multiplication at the 224-bit security level.

codes on the same platforms where we measured the timings of our implementations. The timings thus
obtained have been reported in the tables.

Timings in form of CPU-cycles are shown in Tables 9, 10 and 11 for Haswell and Skylake processors.
For comparison, we report the timings of the previously most efficient (to the best of our knowledge) and
publicly available sequential and vectorized implementations. In the tables, maax-type implementations
refer to 64-bit sequential implementations which have been developed using the modern mulx/adcx/adox

instructions. In the discussion below, speed-up percentages are measured as 100(t1 − t2)/t1, where t1
and t2 are the old and new timings respectively.
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Curve Haswell Skylake κ Strategy Implementation Implementation type

M[[996558]]
- 558757 8 64-bit seq [27] maax, assembly

671196 568938 18 4-way SIMD [24] this work AVX2, assembly

M[[952902]]
- 566088 8 64-bit seq [27] maax, assembly

677102 573672 18 4-way SIMD [24] this work AVX2, assembly

M[[1504058]]
- 689588 9 64-bit seq [27] maax, assembly

651211 542726 18 4-way SIMD [24] this work AVX2, assembly

KLp506-45,856,181 666856 543248 18 4-way SIMD this work AVX2, assembly

KLp510-75,1063,198 672097 554248 18 4-way SIMD this work AVX2, assembly

KLp521-1,1559,796 650107 532177 18 4-way SIMD this work AVX2, assembly

Table 11: CPU-cycle counts for variable base scalar multiplication at the 256-bit security level.

New implementations of Kummer lines at 128-bit security level. The timing results for the
new implementations of variable base scalar multiplication of the Kummer lines at 128-bit security level
are shown in Table 9. We achieve the following speed-ups.

1. Our implementations of KLp251-9,81,20 are 17% and 26% faster in Haswell and Skylake respectively
over the KLp251-9,81,20 implementations of [19].

2. Our 9-limb implementations of KLp255-19,838,831 are 33% and 35% faster in Haswell and Skylake
respectively over the KLp255-19,82,77 implementations of [19].

3. Our 10-limb implementations of KLp255-19,838,831 are 39% and 35.3% faster in Haswell and Skylake
respectively over the KLp255-19,82,77 implementations of [19].

4. Our implementations of KLp266-3,683,18 are 18% and 24.4% faster in Haswell and Skylake respec-
tively over the KLp266-3,260,139 implementations of [19].

Vectorized implementations of Montgomery curves at 256-bit security level. The timing
results for the new implementations of variable base scalar multiplication of the Montgomery curves at
256-bit security level are shown in Table 9. We achieve the following speed-ups.

1. Our vectorized implementation of M[[1504058]] is 21% faster in Skylake over the 64-bit maax-type
sequential implementation of M[[1504058]] from [27].

2. Our vectorized implementation of M[[996558]] and M[[952902]] are about 3% slower in Skylake over
the 64-bit maax-type sequential implementation of the curves from [27].

3. It has been mentioned in [29] that the vectorized implementations of the Montgomery curves at the
128-bit and 224-bit security levels outperform the sequential implementations in Haswell. On the
basis of this we have left out exploring the sequential implementations of the Montgomery curves
at 256-bit security level targeting the Haswell architecture.

Comparison between Kummer lines and Montgomery curves. From the timings provided in the
Tables 9, 10 and 11 it can be observed that the performances of variable base scalar multiplication over
the Kummer lines are uniformly better than the variable base scalar multiplication over the corresponding
Montgomery curves at all the security levels.

Key generation. We have also developed vectorized assembly code for fixed base scalar multiplication
for the Kummer lines at all the security levels. This corresponds to the key generation phase of the Diffie-
Hellman protocol. The timings are reported in Table 12. For comparison, we report the corresponding
timings of fixed-base scalar multiplication over the Kummer lines at 128-bit security level from [19]. It
can be observed that the timings of our implementations are substantially better than those of [19].

Additionally, we have developed the vectorized implementations of fixed-base scalar multiplications
over the Montgomery curves at 256-bit security level. These have been done following Algorithm 7 of [24].
The timings of the implementations have been reported at the end of Table 12. Here too it can be seen
that the implementations over the Kummer lines outperform the implementations over the Montgomery
curves.
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Operation Haswell Skylake κ Strategy Implementation Implementation type

KLp251-9,81,20
10202 91261 9 4-way SIMD [19] [19] AVX2, intrinsics

84892 67491 9 4-way SIMD this work AVX2, assembly

KLp255-19,82,77 120353 107558 10 4-way SIMD [19] [19] AVX2, intrinsics

KLp255-19,838,831
94203 72945 9 4-way SIMD this work AVX2, assembly

91399 70872 10 4-way SIMD this work AVX2, assembly

KLp266-3,683,18
123071 110691 10 4-way SIMD [19] [19] AVX2, intrinsics

104768 82598 10 4-way SIMD this work AVX2, assembly

KLp444-17,659,370 347215 273842 16 4-way SIMD this work AVX2, assembly

KLp448-224-1,410,103 325031 244571 16 4-way SIMD this work AVX2, assembly

KLp452-3,913,294 360158 283582 16 4-way SIMD this work AVX2, assembly

KLp506-45,856,181 489930 391305 18 4-way SIMD this work AVX2, assembly

KLp510-75,1063,198 497224 399064 18 4-way SIMD this work AVX2, assembly

KLp521-1,1559,796 476917 386050 18 4-way SIMD this work AVX2, assembly

M[[996558]] 567250 480584 18 4-way SIMD [24] this work AVX2, assembly

M[[952902]] 573289 486202 18 4-way SIMD [24] this work AVX2, assembly

M[[1504058]] 555958 475849 18 4-way SIMD [24] this work AVX2, assembly

Table 12: CPU-cycle counts required by the curves for fixed base scalar multiplication.

9 Conclusion

This work considered the comparative efficiencies of vectorized implementations of Kummer lines and
Montgomery curves at the 128-bit, 224-bit and 256-bit security levels. A total of nine Kummer lines were
included for comparison, out of which eight were obtained in this work. New implementations of all the
nine Kummer lines have been made in assembly for Intel processors. A total of seven Montgomery curves
were considered and new vectorized assembly implementations of five of these have been made. Timing
results of all the implementations show that Kummer lines are consistently faster than Montgomery
curves at all security levels.

Acknowledgements. We thank Sabyasachi Karati for some preliminary discussion regarding arith-
metic modulo 2521 − 1.
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A Field Multiplication/Squaring over F2521−1

Here we discussion the field multiplication/squaring over the field F2521−1 . It has two phases, the integer
multiplication which is done through a Karatsuba and the reduction after that.

A.1 Multiplication in F2521−1 when κ = 18

Define p = 2521 − 1 and θ = 229. Let A =
∑17
i=0 aiθ

i and B =
∑17
i=0 biθ

i be two elements in F2521−1. We
can perform a schoolbook multiplication of A and B and reduce the product as was done for p = 2255−19.
But this might be costly. Instead, we divide the problem and use the Karatsuba technique to achieve a
better field multiplication algorithm, which we discuss below. Define φ = θ9 = 2261 and write the field
element A as

A = a0 + a1θ + · · ·+ a15θ
17

= (a0 + a1θ + · · ·+ a8θ
8) + (a9 + a10θ + · · ·+ a17θ

8)θ9

= U + V φ (3)

where U = a0 + a1θ + · · ·+ a8θ
8 and V = a9 + a10θ + · · ·+ a17θ

8. Similarly, consider the field element

B = b0 + b1θ + · · ·+ b15θ
17

= (b0 + b1θ + · · ·+ b8θ
8) + (b9 + b10θ + · · ·+ b17θ

8)θ9

= W + Zφ (4)

where W = b0 + b1θ + · · ·+ b8θ
8 and Z = b9 + b10θ + · · ·+ b17θ

8. The bounds on the limbs of A and B
are

0 ≤ a0, a2, . . . , a16 < 229, 0 ≤ a1 < 230 and 0 ≤ a17 < 228 (5)

0 ≤ b0, b2, . . . , b16 < 229, 0 ≤ b1 < 230 and 0 ≤ b17 < 228 (6)

The product of the input polynomials A and B is given by

C = AB

= (U + V φ)(W + Zφ))

= UW + (UZ + VW )φ+ V Zφ2

≡ (UW + 2V Z) + (UZ + VW )φ mod p

= (UW + 2V Z) + ((U + V )(W + Z)− (UW + V Z))φ. (7)

We now compute the three products UW,V Z and (U + V )(W + Z) with the schoolbook method using
3×9×9 = 243 limb-multiplications and combine the results to find the product C. This gives us a saving
of 81 limb-multiplications as compared to the schoolbook method when applied to the entire 18-limb
polynomials A and B. We can find similar equation for squaring as

C = A2

= (U2 + 2V 2) + ((U + V )2 − (U2 + V 2))φ. (8)

The product UV is computed as the polynomial R = UW =
∑16
j=0 rjθ

j , where

rj =

j∑
i=0

aibj−i, for j = 0, 1, . . . , 8; (9)

rj+8 =

8∑
i=j

aib8−i+j , for j = 1, 2, . . . , 8. (10)

Similarly, let the products V Z and (U + V )(W + Z) be denoted by S =
∑16
j=0 sjθ

j and T =
∑16
j=0 tjθ

j

respectively. Then we can write

C = (R+ 2S) + (T −R− S)φ

= E + Fφ. (11)
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A.2 Reduction in F2521−1 when κ = 18

First phase of the reduction. To perform the first phase of reduction on the product C = E + Fφ,
we perform some carry-less additions with specific coefficients of the polynomial C to arrive to a certain
polynomial on which the second phase of the reduction can be applied. We describe the method below.

C = E + Fφ

=

16∑
j=0

ejθ
j +

16∑
j=0

fjθ
j+9

=

8∑
j=0

ejθ
j +

16∑
j=9

(ej + fj−9)θj +

25∑
j=17

fj−9θ
j

=

8∑
j=0

(rj + 2sj)θ
j +

16∑
j=9

(rj + 2sj + tj−9 − rj−9 − sj−9)θj +

25∑
j=17

(tj−9 − rj−9 − sj−9)θj

=

25∑
j=0

cjθ
j , (say)

≡
7∑
j=0

(cj + 2cj+18)θj +

17∑
j=8

cjθ
j mod p [ since 2522 ≡ 2 mod p ]

=

7∑
j=0

(rj + 2sj + 2tj+9 − 2rj+9 − 2sj+9)θj + (r8 + 2s8)θ8 +

16∑
j=9

(rj + 2sj + tj−9 − rj−9 − sj−9)θj + (t8 − r8 − s8)θ17

=

17∑
j=0

hjθ
j = H (say). (12)

Second phase of the reduction. We now apply the second phase of reduction on the polynomial H.
This is done through a simple carry chain on the coefficients of H as

h0 → h1 → · · · → h17 → h0 → h1

which performs a partial reduction on the coefficients of H by keeping an extra bit in the second limb of
the reduced polynomial. A single carry step hj mod 18 → h(j+1) mod 18 perform the following operations.

• Logically right shift the 64-bit word in hj mod 18 by 29 bits. For j = 17 the amount of shift is 28
bits. Let this amount be c.

• Add c to h(j+1) mod 18.

• Mask out the most significant 35 bits of hj mod 18. For j = 17 the masking amount is 26 bits.

It has to be noted that an interleaved carry chain similar to p255-19 [9] can also be applied here as
well. We have implemented this strategy, but it did not lead to any efficiency gain in this case.

B Difficult Factorizations using CADO-NFS

• For the Kummer line KLp510-75,1063,198, the value of `T is

41899399781070615936168828119393269148373018189351229305386129511630512593980727148101
8349009896963361626533879377337777689648106792207292991624363411297

and the different factors of (`T − 1) found by CADO-NFS are

2, 3, 11549, 392569, 276779585051953679508926125803082879968457453672464125721803 and
1159366846281208186788815745408812572669324117361067657462133881331049785856264069

in which 2 has multiplicity of 5 and 3 has multiplicity of 2.
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• For the Kummer line KLp521-1,1559,796, the value of ` is

85809970751632621437273759988517415215867941251791317617430793239819289792470665816252
6282103673152533760615791573986996809484874259004814711790456624840489

and the different factors of (`− 1) found by CADO-NFS are

3, 1157964121682084988272973724079800734311154368548591893923, 2, 19 and
16250914591973089980325568319332754756244271328708799533817613280969343193544604336326
89599511951

in which 2 has multiplicity of 3.

• For the Kummer line KLp521-1,1559,796, the value of `T is

85809970751632621437273759988517415215867941251791317617430793239819289792470735486811
3628061690486210563462056296227512471012125670156138431716616153923799

and the different factors of (`T − 1) found by CADO-NFS are

74453047033998680624155482427306946678019428369030887041522858159238418564309, 2, 3 and
213432974974415376531928914629269546394997549996790267692841033840218928274093

in which 3 has multiplicity of 3.
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