
Compcrypt – Lightweight ANS-based Compression and
Encryption

Seyit Camtepe2, Jarek Duda3, Arash Mahboubi4, Paweł Morawiecki1, Surya Nepal2, Marcin
Pawłowski1, and Josef Pieprzyk1,2

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Data61, CSIRO, Sydney, Australia

3 Institute of Computer Science and Computer Mathematics, Jagiellonian University, Cracow, Poland
4 School of Computing and Mathematics, Charles Sturt University, Port Macquarie, Australia

Abstract. Compression is widely used in Internet communication to save communication time and
bandwidth. Recently invented by Jarek Duda asymmetric numeral system (ANS) offers an improved
efficiency and a close to optimal compression. The ANS algorithm has been deployed by major IT
companies such as Facebook, Google and Apple. Compression by itself does not provide any security
(such as confidentiality or authentication of transmitted data). An obvious solution to this problem
is an encryption of compressed bitstream. However, it requires two algorithms: one for compression
and the other for encryption.
In this work, we investigate natural properties of ANS that allow to incorporate authenticated
encryption using as little cryptography as possible. We target low-level security communication
such as transmission of data from IoT devices/sensors. In particular, we propose three solutions
for joint compression and encryption (compcrypt). All of them use a pseudorandom bit generator
(PRGB) based on lightweight stream ciphers. The first solution applies state jumps controlled by
PRGB. The second one employs two ANS algorithms, where compression switches between the two.
The switch is controlled by a PRGB bit. The third compcrypt modifies the encoding function of
ANS depending on PRGB bits. Security and efficiency of the proposed compcrypt algorithms are
evaluated.

1 Introduction

It is a common knowledge that a majority of Internet transmission is highly redundant. Popular
video/audio streaming applications such as radio, TV, Skype/Zoom/Webex teleconferencing,
Netflix/Stan entertainment providers, Facebook social platforms, medical remote diagnosis and
monitoring, and remote teaching are all good examples Internet applications, which transmit
and process highly redundant data. To save communication bandwidth and make transmission
faster, a redundant stream is compressed before sending to a receiver. Upon reception, the receiver
recovers the original (redundant) stream from the compressed one. Note that we are talking about
lossless compression, where the receiver is able to recreate the original/uncompressed data. Note
that video/audio compression is usually lossy.

Theoretical underpinning of compression is deeply rooted in Information Theory initiated by
Shannon’s seminal work [9]. The first compression algorithm invented by Huffman [5] and known
as the Huffman code (HC) shows optimal compression for symbol streams, whose probabilities
follow very specific patterns (i.e. natural powers of 1

2). Arithmetic coding (AC) (and many its
variants – see [8]) offers compression of symbols with an arbitrary probability distribution and is
close to optimal. The main drawback of AC is its low efficiency as it requires complex arithmetics
and heavy computational overhead. In contrast, asymmetric numeral system (ANS) invented by
Jarek Duda [2] gives a close to optimal and efficient compression. The efficiency gain is achieved
by representing coding/decoding operations by their tables that define corresponding finite-state

machine transition functions. Note that this variant is called the tabled ANS or simply tANS.
Note that expensive arithmetics for AC is replaced by lookup operation for ANS. Since 2015,
tANS has been applied in Facebook Zstandard, Linux kernel and Android operating system to
name a few.

Motivation: One of emerging applications of ANS is compression of data gathered and trans-
mitted by Internet of things (IoT) devices. It is predicted that by 2025, the IoT infrastructure is
going to include more than 75 billion devices. This allows users to access their data from every-
where any time. Note that because of limited computing and storage resources, IoT devices use
ANS compression that does not protect transmitted data against unauthorised reading and/or
modification. This work addresses the security issues when ANS compression is applied by IoT
devices with limited resources. The idea is to identify natural properties of ANS, which together
with lightweight cryptographic tools, can provide a “decent” level of security for confidentiality
and integrity. The topic has been investigated in [3] by Duda and Niemiec. The authors consider a
plain ANS with a (pseudo)randomly chosen encoding function. In other words, they assume that
the secret is the encoding function and compression is performed by a plain ANS. In contrast,
we cryptographically change behaviour of an underlying ANS during symbol processing.

Contribution: This work investigates joint compression and encryption for low security IoT
communications. In particular, the work

• analyses confidentiality and integrity of data provided by a plain ANS (without any cryptog-
raphy). The analysis is done for ciphertext-only and known-plaintext attacks. It also discusses
integrity of output streams,
• defines our requirements for lightweight compcrypt algorithms, i.e. (1) minimal use of cryptog-

raphy, (2) security against ciphertext-only adversaries and (3) integrity checking mechanism,
• provides three compcrypt solutions. First one is based on state jumps. The second one applies

two plain ANS algorithms with transition between the two controlled by PRGB bits. And
the third one uses PRGB bits to modify ANS encoding function,
• evaluates security and efficiency of the proposed compcrypt algorithms.

The rest of the work is structured as follows. Section 2 introduces the plain ANS. We first
give a bird-eye view of ANS followed by a formal description of its algorithms. The section is
complemented by an example of a toy ANS. Section 3 analyses confidentiality and integrity of
the plain ANS under ciphertext-only and known-plaintext attacks. Section 4 describes our three
lightweight compcrypt algorithms. Section 5 evaluates security and efficiency of the proposed
algorithms. Section 6 concludes the work.

2 Description of Asymmetric Numeral System (ANS)

Let m be the size of an alphabet S, n – the number of symbols in a sequence, and N – the
number of bits in a sequence. Given a source that generates a sequence S = {sj}nj=1 of symbols
with their probabilities Pr(si) = pi ≈ |{j : sj = i}|/n, where |A| is cardinality of the set A. In
entropy coding, we would like to uniquely translate S into bit sequence B = {bj}Nj=1. Shannon
defines entropy of the source as H(p) =

∑m
i=1 pi lg2(

1
pi

). Roughly saying, entropy gives the
average number of bits per symbol for a given probability distribution. This implies that ideally
N/n ≈ H(p) when (n → ∞). The Huffman code (HC) is the first attempt to encode a symbol
sequence S into a binary sequence B. Note that HC works well for probability distributions
described by integer powers of 1

2 . Otherwise, N/n moves away from H(p). Both AC and ANS

address the problem of encoding symbols with an arbitrary probability distribution. They allow
to achieve encoding that is as close to Shannon entropy as needed. The reader interested in ANS
details is referred to [2, 7]

2.1 Bird-eye View of ANS

ANS [2] allows to achieve a close to optimal compression for a source of an arbitrary probability
distribution. The ANS encoding and decoding can be done very efficiently. When describing
ANS operations, it is helpful to think about ANS as a finite state machine (FSM) optimized for
a given probability distribution, whose states are labelled by integers. In this context, ANS is also
a Moore machine as a binary encoding and the corresponding symbol are uniquely determined
by the machine state.
The main data structure is determined by the number of states L = 2R, where R ∈ N+ is a
parameter, which determines the number of states. Let Ls denote the number of occurrences of
symbol s, where

∑
s Ls = L and Ls is an approximation of Pr(s) = ps. Define the following sets

L = {L, . . . , 2L− 1} and Ls = {Ls, . . . , 2Ls − 1}, where s ∈ S. Assume that the current state is
x, then ANS processes a symbol s in two steps:

1. re-normalises the current state x by truncating enough least significant bits (LSB) of x so
the truncated integer belongs to Ls,

2. calculates a new state by applying an encoding function C(·) or Ls
C(·)−→ L and outputs the

binary sequence bs=LSB(x), which is a binary encoding of s.

The crux of ANS is its encoding function x = C(s, y) that assigns a state/integer x ∈ L that
encodes s ∈ S using the integer y ∈ Ls. A symbol spread function s̄ : L→ S is closely connected
to the encoding function C(s, y). It determines the symbol s that is encoded in x or s̄(x) = s.
The encoding function C : Ls → L is constructed so the following conditions hold:

• The approximation Ls

2R
≈ ps determines quality of compression. This means that there are Ls

different integers x ∈ L that encode s. Also the probability distribution of integers x ∈ L is
as flat as possible.
• By construction for a given symbol s, C(s, y) accepts integers y ∈ Ls. The function C(s, y)

can be represented by a table, whose rows are indexed by a symbol s and columns by an
integer y ∈ Ls – see below.

C(·, ·) · · ·
Ls︷ ︸︸ ︷

Ls · · · 2Ls − 1 · · ·
...

...
s Symbol Spread for s︸ ︷︷ ︸

Γs

• The integers x ∈ Γs (called also the symbol spread for s) can be chosen at random from L
as long as any symbol spread pair does not have any integers in common, i.e. Γs ∩Γs′ = ∅ as
long as s 6= s′, where Γs = {x ∈ L|x = C(s, y); y ∈ Ls}.

A decoding function D : L → S × Ls takes an integer x ∈ L and returns the corresponding
symbol s and an integer y, which is a re-normalised state from Ls. In fact, D(x) can be seen as
the inverse of C(s, y). By construction, the integer x points out a unique pair (s, y). Note that if
x ∈ Γs, then it cannot occur in any other Γs′ , otherwise the condition Γs ∩ Γs′ = ∅ is violated.

Encoding – given a state x ∈ Γs that is an encoding of s, the number of bits of bs is computed as

k = ks(x) = blog2(x/Ls)c −→ bs = x mod 2k

The binary string bs is sent to the output. Now for the next symbol s′ ∈ S, the state x is updated
as follows

x −→ x′ = C(s′, bx/2kc)

Note that x ∈ Γs but bx/2kc ∈ Ls.
Decoding – for a state x ∈ L and an output binary string B, the decoding function D(x) = (s, y)

determines the symbol s and integer y ∈ Ls. Next the number of bits that needs to be read from
B is calculated as

k = k(x) = R− blog2 xc

The k-bit string is read from B or bs = MSB(B)k, where MSB stands for the most significant
bits. The string B is updated by removing bs and the state is modified

x′ = 2k · y + bs

The full description of ANS is given below.

2.2 ANS Algorithms

The ANS compression can be seen as a triplet 〈I,C,D〉, where I is an initialization algorithm
executed once before compression by communicating parties. C is a compression algorithm per-
formed by a sender and D is a decompression algorithm used by a receiver.

Initialisation I

Input: A set S of symbols, their probability distribution p : S→ [0, 1],
∑

s ps = 1 and a parameter R ∈ N+.
Output: Instantiation of

• the encoding functions C(s, x) and ks(x) and
• the decoding functions D(x) and k(x).

Steps: Initialisation proceeds as follows:
• calculate the number of states L = 2R;
• determine the set of states L = {L, . . . , 2L− 1};
• for each symbol s ∈ S, compute integer Ls ≈ Lps, where ps is probability of s;
• define the symbol spread function s : L→ S, such that |{x ∈ L : s(x) = s}| = Ls;
• establish the coding function C(s, y) = x for the integer y ∈ Ls = {Ls, . . . , 2Ls − 1}, which assigns states x ∈ L

according to the symbol spread function;
• compute the function ks(x) = blg(x/Ls)c for x ∈ L and s ∈ S. The function shows the number of output bits

generated during a single encoding step;
• construct the decoding function D(x) = (s, y), which for a state x ∈ L assigns its unique symbol (given by the

symbol spread function) and the integer y ∈ Ls. Note that D(x) = C−1(x).
• calculate the function k(x) = R− blg(x)c, which determines the number of bits that need to be read out from the

bitstream in a single decoding step.

The algorithm C takes a sequence of symbols further called a symbol frame and generates a
stream of bits also called binary frame.

Frame Encoding C

Input: A symbol frame S = (s1, s2, . . . , sn) and an initial state x = xn ∈ L; where n = |S|.
Output: A binary frame B = (b1, b2, . . . , bn), where bi is a binary encoding of si; |bi| = ksi (xi) and xi is the state.

Steps: For i = n, n− 1, . . . , 2, 1 do (encoding has to be in opposite direction)
{
s := si;

k = ks(x) = blg(x/Ls)c; (compute the number of bits to be extracted)
bi = x mod 2k; (send k LSB of current state x = xi to the output)
x := C(s, bx/2kc); (update the state xi → xi−1)
};
Store the final state x0 = x;

The next algorithm takes a binary frame and the final state and produces symbols of the corre-
sponding frame.

Stream Decoding D

Input: A binary frame B and the final state x = x0 ∈ L of the encoder.
Output: A symbol frame S.
Steps: while |B| 6= 0

{
(s, y) = D(x); (produce the corresponding symbol s and integer y)
k = k(x) = R− blg(x)c; (compute the number of bits to be read from B)
bs =MSB(B)k; (extract k MSB from B)
B := LSB(B)|B|−k; (update the stream of bits to be processed)
x := 2ky + bs; (update the state xi−1 → xi)
}

Note that LSB(B)n and MSB(B)n stand for the n least and most significant bits of B, respec-
tively.

2.3 Example

Design compression and decompression algorithms for a symbol source S = {s0, s1, s2}, where
p0 = 3

16 , p1 = 8
16 , p2 = 5

16 and a free parameter R = 4. The number of states L = 2R = 16 and
the state set L = {16, 17, . . . , 31}. We follow the initialisation.

• Determine symbol spread function s : L→ S such that

s(x) =


s0 if x ∈ {18, 22, 25} = Γ0
s1 if x ∈ {16, 17, 21, 24, 27, 29, 30, 31} = Γ1
s2 if x ∈ {19, 20, 23, 26, 28} = Γ2

where L0 = |{18, 22, 25}| = 3, L1 = |{16, 17, 21, 24, 27, 29, 30, 31}| = 8

and L2 = |{19, 20, 23, 26, 28}| = 5.
• Write the encoding function C(s, y) as the following table

s\y 3 4 5 6 7 8 9 10 11 12 13 14 15

s0 18 22 25 − − − − − − − − − −
s1 − − − − − 16 17 21 24 27 29 30 31

s2 − − 19 20 23 26 28 − − − − − −

The top row of the table defines L0 = {3, 4, 5}, L1 = {8, 9, 10, 11, 12, 13, 14, 15} and L2 =

{5, 6, 7, 8, 9}.
• Construct the encoding table E(xi, si) = (xi+1, bi)

def
≡
(xi+1

bi

)
as follows:

si\xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s0
(22
00

) (22
01

) (22
10

) (22
11

) (25
00

) (25
01

) (25
10

) (25
11

) (18
000

) (18
001

) (18
010

) (18
011

) (18
100

) (18
101

) (18
110

) (18
111

)
s1

(16
0

) (16
1

) (17
0

) (17
1

) (21
0

) (21
1

) (24
0

) (24
1

) (27
0

) (27
1

) (29
0

) (29
1

) (30
0

) (30
1

) (31
0

) (31
1

)
s2

(26
0

) (26
1

) (28
0

) (28
1

) (19
00

) (19
01

) (19
10

) (19
11

) (20
00

) (20
01

) (20
10

) (20
11

) (23
00

) (23
01

) (23
10

) (23
11

)

To illustrate calculations in the table, assume that we have xi = 25 and input symbol is
s0. First we determine the number of bits that need to be extracted k = blg(xi/L0)c =

blg(25/3)c = 3 and compute

xi+1 = C(s0, b
xi
2k
c) = C(s0, 3) = 18

bi = xi mod 2k = 25 mod 8 = 1 −→ 001

Given an initial state x0 = 19, compress the following symbol frame

S = (s1, s1, s2, s1, s2, s1, s1, s0, s2)

Applying the encoding table for consecutive symbols, we get

(19)→

(19
s1

)
↓
1

→

(17
s1

)
↓
1

→

(16
s2

)
↓
0

→

(26
s1

)
↓
0

→

(29
s2

)
↓
01

→

(23
s1

)
↓
1

→

(24
s1

)
↓
0

→

(27
s0

)
↓

011

→

(18
s2

)
↓
0

→ (28)

The output bits are B = 110001100110 and the final state is 28.
• Build the decoding table. The decoding function D(x) = (s, y), where the integer y is given

by the following table

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

y 8 9 3 5 6 10 4 7 11 5 8 12 9 13 14 15

The decoding table D(xi, bi) can be represented as follows

xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

si s1 s1 s0 s2 s2 s1 s0 s2 s1 s0 s2 s1 s2 s1 s1 s1
k 1 1 3 2 2 1 2 2 1 2 1 1 1 1 1 1

xi+1 16+bi 18+bi 24+bi 20+bi 24+bi 20+bi 16+bi 28+bi 22+bi 20+bi 16+bi 24+bi 18+bi 26+bi 28+bi 30+bi

Note that xi+1 = 2ky + bi, where bi is an integer that corresponds to binary encoding of si.
Given the binary frame B = 110001100110 and the final state 28, we recover the corresponding
sequence of symbols, where the binary string needs to be read from right to left.

(28)→

(28
0

)
↓
s2

→

(18
011

)
↓
s0

→

(27
0

)
↓
s1

→

(24
1

)
↓
s1

→

(23
01

)
↓
s2

→

(29
0

)
↓
s1

→

(26
0

)
↓
s2

→

(16
1

)
↓
s1

→

(17
1

)
↓
s1

→ (19)

Let us check how optimal is our compression algorithm. The source entropy is

H(p) =
3

16
log2 16/3 +

1

2
log2 2 +

5

16
log2 16/5 ≈ 1.48 bits

Assuming that probability distribution of x ∈ L is close to uniform, the average length ` of
binary (compressed) string is

` = p0 · `s0 + p1 · `s1 + p2 · `s2 = p0 · 2.5 + p1 + p2 ·
28

16
≈ 1.51 bits,

where `si is the average length of the output if algorithm compresses the sequence of the same
symbol si.

3 Analysis of Plain ANS

A symbol frame S is compressed at the sender side. A binary frame B together with the final
state xF is sent to a receiver who decompresses the stream back to the symbol frame S. Both
the sender and receiver know a symbol source statistics and parameters of the ANS including
an encoding function C(s, y). It is important to distinguish between different views of binary
frames, namely

• a view of a receiver who knows C(s, y). It sees sequence of encodings for consecutive symbols,
i.e. B = (b1, . . . , bn), where bi is an encoding of si. In other words, it knows how to divide
a binary frame into encodings bi. As each bi may have a different length, we can define a
window frame W = (k1, . . . , kn), where ki indicates the number of bits in bi or ki = |bi|. In
other words, the receiver knows both frames B and W,
• a view of an adversary A who does not know C(s, x). A deals with a binary frame B and it

does not know how to extract particular encodings bsi . In other words, A knows B but does
not know the window frame W. Note that, in general, a window frame does not determine
symbols as the same symbol s can be encoded into bs of different lengths.

Note that we ignore active adversaries who may access to an ANS encoder/decoder (or to
oracles OE/OD). In this case, an adversary is able to extract states and encodings by inputting
short symbol frames to OE and reconstruct the encoding function C(s, x). In our analysis, we
assume that an adversary is passive and can observe behaviour of ANS. The table below shows
attack scenarios investigated in this section.

Attack A’s Knowledge/Ability A’s Goals
ciphertext- – symbol statistics {ps : s ∈ S} – guessing a window frame W

only – parameters of ANS – finding full/partial symbol frame
– n number of symbols in frame
– A observes binary frame B and xF

known- – As above + – guessing a window frame W
plaintext – observes symbol frame S = (si)

n
1 ; si ∈ S – finding encoding function C(s, y)

Integrity – As for ciphertext-only attack – acceptance of forged binary
– A can inject bits to binary frames frames as genuine

The above scenarios are most common in IoT applications. The ciphertext-only attack is relevant
to any adversary who is able to see the traffic generated by an IoT device. The known-plaintext
attack can be launched if an adversary has additionally access to source of symbols. For instance,
it is easy to determine symbols for a temperature sensor by installing an adversarial sensor nearby
that hopefully replicates the temperature readings.

3.1 Ciphertext-only Attack against ANS

A majority of IoT devices that use ANS for compression communicates with their servers via
broadcasting channels (such as Bluetooth or WiFi). This makes them vulnerable to eavesdropping
(alternatively called ciphertext-only attacks). The main difficulty for an adversary is to guess
a window frame. After she has guessed it, she can upload an observed binary frame B into
consecutive windows and recover a sequence of encodings. Our task here is to determine an
upper bound for probability of guessing the window frame and evaluate a lower bound of security
provided by a plain ANS.

Symbol versus Widow Statistics A typical source includes all 28 ASCII symbols. Its statis-
tical properties are approximated by geometric probability distribution truncated to 28 events.
To recall, geometric probability distribution is defined as P (j) = (1− p)jp, where 0 < p < 1 is a
parameter and j = 1, 2, · · · are the events. In practice, instead of infinite number of events, j has
to be equal to the number of all symbols produced by the source. It is important to note that,
in general, a symbol can be assigned to binary encodings of different lengths. In our example, s2
can be compressed into either 1-bit or 2-bit encoding. Consequently, the statistics of windows of
different lengths is different from the source statistics. This is illustrated below.

Source Statistics Window Statistics
P (s1) = p1 P (W = 0) = P0

... → ANS →
...

P (sm) = pm P (W = α) = Pα

P (W = i) = Pi gives probability that ANS produces a window of the length i, where i = 1, · · · , α
and α is the longest window used by ANS. In our example, ANS translates the source probabilities
(3
16 ,

1
2 ,

5
16) into window probabilities (P1, P2, P3) = (3764 ,

21
64 ,

6
64).

Remark 1. Given ANS window probabilities Pi; i = 1, · · · , α and the number n of symbols pro-
cessed by ANS, then an adversary can guess the window frame for the symbols with probability
no better than

PGWF,n ≤ 2−n·HW ,

where HW =
∑α

i=1 Pi log2 P
−1
i is an entropy of W .

Guessing Window Frames Assume that n symbols are generated according to the source
statistics and processed by ANS. The resulting window frame is a random variable, which is a
described by concatenation of n window random variables. In practice, ANS accepts 28 possible
symbols described by an appropriate probability distribution and processes it into a window
probability distribution {P (W = i) = Pi|i = 1, 2, . . . , α}. To simplify our considerations, we
assume that the window variable W is defined for three events {1, 2, 3} only, where P (W = 1) =

P1, P (W = 2) = P2 and P̂3 = P (W = 3) =
∑α

i=3 Pi. To enumerate possible window frames and
find the probability of guessing the right one, we use the binomial theorem [6] that says that

(x+ y)r =
∑
k

(
r

k

)
xkyr−k

Let us illustrate the connection between the theorem and our problem. Assume that we are
dealing with window frames that are built from n window variables. We have 3n possible window
frames (events) containing 1-bit, 2-bit and 3-bit windows. The binomial theorem asserts us that

3n = (1 + 2)n =

n∑
k=0

(
n

k

)
2k =

(
n

0

)
· 20 +

(
n

1

)
· 21 + . . .+

(
n

n− 1

)
· 2n−1 +

(
n

n

)
· 2n

Note that the term
(
n
k

)
2k gives the number of window frame events that consists of k either 2-bit

or 3-bit windows and (n − k) 1-bit windows. The probability that a randomly chosen window
frame contains (n− k) 1-bit windows and k either 2 or 3-bit windows is(

n

k

)
2k · Pn−k1 ·

(
P2 + P̂3

2

)k

The total length of window frames ranges from n+ k to n+ 2k, where k = 0, . . . , n.

Remark 2. It is reasonable to assume that an adversary knows the length n of symbol frame and
the length N of binary frame. This helps the adversary as the space of events is restricted to
N -bit window frames. She knows that

n1 + n2 + · · ·+ nα = n

n1 + 2 · n2 + · · ·+ α · nα = N, (1)

where ni ∈ N is the number of i-bit windows; i = 1, . . . , α. It is easy to determine a space of
solutions (n1, . . . , nα) for which Equation (1) holds. For a given (n1, . . . , nα), the adversary needs
to look through (

n

n1, n2, . . . , nα

)
=

n!

n1!n2! · · ·nα!
(2)

equally probable events (window frames). Equation (2) represents a multinomial coefficient [6].

Let us make the following observations about ANS resistance against ciphertext-only attack.

• The adversary has a “good” chance to guess relatively short window frames. She may attempt
to determine such frames at any position of binary stream as symbols are independently
generated. As the number n of symbols grows, the probability of success quickly becomes
negligible. Note that this observation is consistent with the conclusion made by Gillman et
al. [4] about cryptanalysis of compression with Huffman codes that is “surprisingly difficult”.
• If the length N of binary frame is known and very close to either n or α ·n, then it is possible

to guess the window frame with a non-negligible probability. Note however that probability
of such events is negligible for a large enough n.
• Guessing a window frame allows A to correctly allocate binary encodings. Moreover, she is

able to determine the most frequent symbols (as they are assigned to 1-bit windows with a
high probability) and the least frequent symbols (as they are assigned to α-bit windows with
probability 1).

3.2 Known-Plaintext Attack against ANS

For a given symbol, ANS assigns binary encodings/windows of different lengths. The following
observation can be used to determine the window lengths for each symbol.

Fact 1 Given a symbol s ∈ S and its Ls ≈ 2R · ps, then the window length ks satisfies the
following condition

blog2
2R

Ls
c ≤ ks ≤ blog2

2R+1 − 1

Ls
c

When the approximation Ls ≈ 2R ·ps can be replaced by equality Ls = 2R ·ps, the above condition
can be re-written as

blog2 p
−1
s c ≤ ks ≤ blog2 p

−1
s (2− 1

2R
)c

�
A closer look at the above conditions reveals the following properties of window lengths:

• If ps = (1/2)i, then ANS assigns a window of the length i.
• If ps > 1/2, then ANS assigns a window of the length either 0 or 1.
• Otherwise, ANS assigns a window of the length ks ∈ {i, i+ 1}, where i = blog2 p

−1
s c.

From now on, we assume that for each symbol s ∈ S, ANS assigns an encoding bs, whose length is
either ks or ks+1 with the probabilities P (ks) = βs and P (ks+1) = 1−βs, respectively. In cases,
where there is only one length ks, the probability distribution becomes trivial, i.e. P (ks) = 1

and P (ks + 1) = 0 (or vice versa). A probabilistic model of ANS is illustrated below. Note that
symbols are listed according to decreasing order of their probablities, i.e. s1 is the most probable
while sm – the least.

Symbol s Length ks Probability βs
s1 {0, 1} βs1
s2 {1, 2} βs2
...

sm−1 {m− 2,m− 1} βsm−1

sm {m− 1,m} βsm

Consider ANS from our example. For s1, it assigns a window of length 1 with probability 1. For
s2, it allocates a window of the length either 1 or 2, where βs2 = 1/4. For s0, it points a window
of the length either 2 or 3, where βs0 = 1/2.

Guessing Window Frames This time our adversary knows both a symbol frame S = (si)
n
i=1

and a binary frame B of N bits. To determine a corresponding window frame, the adversary

• finds a space of all solutions of the following relation

k1 + k2 + . . .+ kn = N, (3)

where ki is the length of a window used by ANS to encode si; i = 1, . . . , n. Note that ki can
take on two values only so we can write that ki = ci + γi, where a constant ci is known to
the adversary and γi ∈ {0, 1} is unknown. Equation (3) can be re-written as

n∑
i=1

γi = N −
n∑
i=1

ci

The integer
∑n

i=1 γi is the number of times when γi = 1 and it is known to the adversary,
• enumerates all possible patterns of (γi)

n
1 , whose weight is N −

∑n
i=1 ci. It is obvious that the

number of patters is (
n

N −
∑n

i=1 ci

)
To maximise chances, the adversary tries from most probable patterns. This can be done as
she knows probabilities βs.

In general, guessing of window frames can be difficult or even impractical for some ANS instances.
There is, however, a word caution. If some probabilities of symbols are powers of (1/2) or close
to it, then ANS assigns to them a window with a single length. This increases chances of guessing
a widow frame. In an extreme case, when all probabilities are powers of 1/2, the adversary can
determine a window frame with probability 1.

Adaptive Attack against ANS We assume that an adversary knows a symbol frame S =

(si)
n
i=1 together with the corresponding binary frame B and a guessed (correctly) window frame.

In other words, A knows all encodings (bi)
n
i=1 and a final state xF . Her goal is to find an

encoding function C(s, y). However, one can argue that instead of finding C(x, y), the adversary
can design (adaptively) her own ANSA, which is fully/partially “isomorphic” to the analysed
ANS. In other words, the adversary intends to find a function that translates output bits of the
original (attacked) ANS into output bits of the adversary ANSA. Note that the adversary does
not known the current state of the original ANS. In fact, the adversary does not need to know
the original ANS as long as her ANSA produces a bitstream that can be translated to bitstream
generated by the original ANS. In this sense, both ANS and ANSA are isomorphic. In other
words, we are looking for a function F such that

ANS ANSA
↓ ↓
bi

F←→ b′i for i = 1, 2, · · ·

The adaptive attack proceeds along the following steps:

1. The adversary A designs her ANSA applying the same parameters as the original ANS.
2. A chooses an initial state x′1 at random. For the first observation (s1, b1), she finds b′1 from

the encoding table of ANSA. She records

(s1, x1, b1)
F−→ (s1, x

′
1, b
′
1)

3. A continues with subsequent observations and builds the function (table) F . This process is
successful if the function fully determined for all symbols and states. If the original ANS or
ANSA contain cycles then the algorithm fails. If a cycle occurs in the original ANS, A needs
to “re-design” ANSA by introducing the cycle of an appropriate length. On the other hand,
if ANSA hits a cycle, it needs re-design to remove the cycle.

3.3 Integrity of ANS Binary Frames

ANS is normally represented by its encoding table E(xi, si). Equivalently, it can be described
by a directed graph with 2R vertices that correspond to states and edges that are labelled by
symbols. An edge s from a vertex xi to xi+1 shows transition determined by the encoding function
xi+1 = C(s,

⌊
xi
2ks

⌋
)). For a fixed symbol s ∈ S, the function C(s, ·) assigns one of Ls states. This

implies that the following sequence of transitions

xi
s−→ xi+1 = C(s,

⌊ xi
2ks

⌋
))

s−→ xi+2 = C(s,
⌊xi+1

2ks

⌋
))

s−→ · · · s−→ xi+j = C(s,
⌊xi+j−1

2ks

⌋
))

has to be periodic for j ≥ Ls. This also means that the ANS graph has to be cyclic. For each
fixed symbol s ∈ S, there may be a single cycle of up to the length Ls or a collection of shorter
ones. The cycle includes different binary encoding of s.

Consider ANS from our Example. Assume that ANS starts from an initial state x = 19 and
processes a long sequence of s2. ANS produces the following (periodic) sequence of binary stream:

(19)→

(
28
s2

)
↓
1

→

(
23
s2

)
↓
00

→

(
19
s2

)
↓
11

→

(
28
s2

)
↓
1︸ ︷︷ ︸

cycle

→

(
23
s2

)
↓
00

→

(
19
s2

)
↓
11

→ · · ·

The periodic nature of ANS has the following security and design implications.

• Cycles in ANS are unavoidable. A designer of ANS can avoid loops (cycles of the length 1)
making sure that for each state xi and any symbol s ∈ S

xi+1 = C(sj ,
⌊ xi

2ki

⌋
) 6= xi.

Getting rid of longer cycles requires more and more computation overhead as the designer has
to consider different combinations of states and symbols. This also means that the entropy of
state selection drops, which means that an adversary does not need to enumerate encoding
functions C(s, y) that have short cycles.
• Cycles are easy to identify by searching binary frame for repeating sequences. A detection

of a concatenation of two or more bit patterns allows the adversary to remove or insert
arbitrary number of times the bit pattern without detection by the receiver. This is true
as injection/removal of bit pattern repetition correspond to adding/removing a cycle with-
out disturbing decoding process for other parts of the binary frame (before and after injec-
tion/removal).
• If a ciphertext-only adversary can remove/inject binary patterns from/into the binary frame,

then a decoder recovers an incorrect symbol frame. A typical integrity check applied in ANS
that checks correctness the final state fails.
• For an observed binary cycle in B, a known-plaintext adversary can ensemble a relation for

encoding function C(s, y). This reduces entropy of the encoding function.

4 Lightweight Encryption with ANS

The analysis given in Section 3 identifies strengths and weaknesses of ANS and is a major driver
for our design of a cryptographically strengthened ANS-based compcrypt. Note that it is easy to
design a very secure compcrypt algorithm when one can use a full range of cryptographic tools.
A price to pay for increase of security is a heavy resource overhead, which discourages potential
users from using them. This is true if ANS is applied for a relatively low-security communication
(such as collecting data from IoT devices). Our constructions are guided by the following design
principles:

• Minimal application of cryptographic tools so compcrypt preserves its efficiency and com-
pression quality. In other words, our designs must be lightweight avoiding “heavy” cryptogra-
phy and encouraging potential user to adopt the designs for protection of data collected by
IoT devices.
• Secure against a ciphertext-only adversary who additionally can modify binary frames by

injecting/removing bit cycles. In other words, detection of a cycle in a binary frame is a “false
positive” with overwhelming probability.
• Repair of the existing ANS authentication/integrity checking mechanism so any bit stream

modification is detected with probability ≈ (1 − 2−R). Note that the plain ANS allows to
check equality of a (pre-agreed) encoding initial states on both communicating sides. As
discussed in Section 3, this may involve a careful selection of encoding function C(s, y) with
no short cycles.

Interestingly enough, our analysis indicates that there is no need for encryption of bit stream
under the assumption of ciphertext-only adversary. The main security feature already provided by
plain ANS is a variable length of binary encodings, which are glued together when sending to the

decoder. So any attempt to recover symbol frame amounts to guessing a correct window frame.
As shown in Section 3, probability of a successful guess is negligible even for short sequences of
symbols and decreases exponentially with the number of compressed symbols.

4.1 Compcrypt with State Jumps

The main cryptographic tool used here is a pseudorandom bit generator (PRGB), whose seed
K is a secret cryptographic key that is shared between encoder and decoder. PRGB is used
to produce sequence of integers state_cor, where 0 ≤ state_cor ≤ 2R. The integer state_cor
determines a jump from the current state x ∈ L to a new one

x := (x+ state_cor) mod 2R + 2R. (4)

The integer state_cor := PRGB(i,K) is a state correction at the ith iteration. To make im-
plementation easier, we assume that the distance between two consecutive jumps denoted by
an integer length is fixed for the duration of frame encoding. The integer should be kept se-
cret and known to the communicating parties. Below there is a pseudocode for frame coding. A
pseudocode for frame decoding can be easily reconstructed.

Algorithm 1: Frame Coding C for State Jumps
Input: A symbol frame S = (s1, s2, . . . , sn), an initial state x = xn ∈ L and a secret key K for PRGB.
Output: A binary frame B = (b1, b2, . . . , bn), where |bi| = ksi(xi) and xi is state at i-th step.
begin

offset := n mod length; (jump if offset is zero)
no_jumps := bn/lengthc; (number of jumps during the frame processing)
state_cor := PRGB(no_jumps,K); (state correction for the last jump
for i = n, n− 1, . . . , 2, 1 do

s := si; (new symbol to be compressed
if offset 6= 0 then

offset−−; (decrease the variable by 1)
else

x := (x+ state_cor) mod 2R + 2R; (state jump)
offset := length; (reset offset)
no_jumps−−; (decrease the variable by 1)
state_cor := PRGB(no_jumps,K); (next state correction)

k := ks(x) = blg(x/Ls)c; (compute the number of bits to be extracted)
bi := x mod 2k; (send k LSB of current state x = xi to the output)
x := C(s, bx/2kc); (update the state xi → xi−1)

Store the final state x0 = x;

A simple illustration of compcrypt with state jumps is given below. Note that addition for state
jump is given by Equation (4).

· · · si−1−→ xi−1
si−→ xi

jump←− xi + state_cor
si+1−→ xi+1

si+2−→ · · ·

Implementation of the algorithm seems to introduce a relatively light overhead. Few points are
relevant here.

• State jumps tend to have a negative impact on quality of compression. This implies that
jumps should not occur too often. Consequently, very short cycles of output bits may be
observable. To avoid such cycles, ANS should be carefully designed to exclude short cycles.

• Consider a state jump. Note that a binary encoding bi has to be computed for the state after
jump, i.e. xi + state_cor. Otherwise, decoding fails.
• The only cryptographic component used is PRGB. It could be as simple as a linear feedback

shift register (LFSR), whose seed (or initial state) is K. It could be also cryptographically
strong PRGB based on nonlinear feedback shift register (NFSR) or block cipher or hashing.
• Generation of integers PRGB(i,K) for state correction should be easy in both directions:

backward (for encoding where i decreases) and forward (for decoding where i increases).

4.2 Compcrypt with Double ANS

The idea is to design two copies of ANSi with their encoding functions Ci(s, y), where i = 1, 2. So
we have two symbol encoding tables Ei(x, s). Consider entries (s, xi) from E1(x, s) and E2(x, s).
They can be merged as shown below:

xi+1 = C1(s, b xi2ks
c)

bi = xi mod 2ks
+

xi+1 = C2(s, b xi2ks
c)

bi = xi mod 2ks
merge−→ xi+1

$← {C1(s, b xi2ks
c), C2(s, b xi2ks

c)}
bi = xi mod 2ks

Note that ks and bi for both ANS copies (and the merged ANSD) are the same. Compcrypt selects
the next state (pseudo) randomly from two possibilities. As before, we use a pseudorandom bit
generator controlled by a seed K that is a secret key shared by both encoder and decoder. A
pseudocode for compcrypt with double ANS is given below.

Algorithm 2: Frame Coding C for Double ANS Compcrypt
Input: A symbol frame S = (s1, s2, . . . , sn), an initial state x = xn ∈ L and a secret key K for PRGB.
Output: A binary frame B = (b1, b2, . . . , bn), where |bi| = ksi(xi) and xi is state at i-th step.
begin

for i = n, n− 1, . . . , 2, 1 do
s := si; (new symbol to be compressed
k := ks(x) = blg(x/Ls)c; (compute the number of bits to be extracted)
bi := x mod 2k; (send k LSB of current state x = xi to the output)
if PRGB(i,K) = 0 then

x := C1(s, bx/2kc); (update the state xi → xi−1 using C1)
else

x := C2(s, bx/2kc); (update the state xi → xi−1 using C2)

Store the final state x0 = x;

We assume that PRGB generates a single bit for each call PRGB(i,K). The pseudocode is
written for the case when compcrypt chooses next state from two possibilities for each symbol.
Clearly, we can allow compcrypt to run a single encoding function (single ANS) for longer
sequence of symbols before the next pseudorandom toss. Let us make the following observations.

• Intuitively, switching encoding functions should not have an impact on compression quality.
• Compared to a single ANSi, compcrypt requires larger memory (twice as much) to store two

encoding functions C1(s, y) and C2(s, y). The same size of memory is enough to store encoding
function C(s, y) for ANS with a double number of states, which allows better approximation
of symbol statistics and consequently better compression.
• It is possible to reduce storage requirements by selection of encoding functions that are the

same for least probable symbols, i.e. C1(s, y) = C2(s, y) for s ∈ S, where s is one of least
probable symbols.
• An adversary who detects a cycle in the bit stream is unlikely to succeed in injecting it into

the stream without detection.

4.3 Compcrypt with Encoding Function Evolution

Compcrypt based on two ANS can be seen a graph built from two subgraphs. Each subgraph
represents a plain ANS. Compression is done by using both subgraphs, where transition between
them is controlled by PRGB. As already noted that may be perceived as a waste of resources.
An option could be to modify a encoding function C(s, y) after a few steps of compression. To
make the presentation simpler, we assume that we modify the function after processing a single
symbol. In practice, the function modification can be done less frequently. The idea is depicted
below.

xi−1
si−1

−−−−→
C(s,y)

xi x′i = xi + PRGB(i,K)
si

−−−−→
C′(s,y)

xi+1

The symbol si−1 is processed using C(s, y), where D(x) is its inverse. Next compcrypt generates
a pseudorandom integer PRGB(i,K) that modifies xi according to the following equation

x′i = xi + PRGB(i,K) mod 2R + 2R,

where 0 ≤ PRGB(i,K) ≤ 2R. The states xi, x′i are swapped and the resulting encoding function is
denoted by C ′(s, y). Its inverseD′(xi) satisfies two relations, namelyD′(x′i) = D(xi) andD′(xi) =

D(x′i). Otherwise, D(x) = D′(x) for x /∈ {xi, x′i}. A sketch of pseudocode for compression is given
below.
Algorithm 3: Frame Coding C for Compcrypt with Encoding Function Evolution

Input: A symbol frame S = (s1, s2, . . . , sn), an initial state x = xn ∈ L and a secret key K for PRGB.
Output: A binary frame B = (b1, b2, . . . , bn), where |bi| = ksi(xi) and xi is state at i-th step.
begin

for i = n, n− 1, . . . , 2, 1 do
s := si; (new symbol to be compressed
k := ks(x) = blg(x/Ls)c; (compute the number of bits to be extracted)
bi := x mod 2k; (send k LSB of current state x = xi to the output)
xnew := x+ PRGB(i,K); (new state generated pseudorandomly)
C(s, y) with x and xnew swapped; (update encoding function)
x := C(s, bxnew/2

kc); (update the state xi → xi−1)
Store the final state x0 = x;

This variant has interesting properties. Let us discuss some of them.

• As the encoding function is constantly updated, it seems to be difficult to extend attacks,
whose goal is its recovery. Additionally, insertion/deletion of binary cycles into/from binary
frame is very likely to be detected with high probability.
• Quality of compression could suffer and this aspect needs more investigation.
• As we have already noted, the C(s, y) update does not need to be done for every symbol. It

looks reasonable to allow longer runs of compression without C(s, y) update. If the interval
between two consecutive updates is too long, then one can expect that short cycles could be
detectable. However, we do not know how this can be exploited by an adversary.
• It is possible to get rid of PRGB all together and rely on the internal structure of ANS.
C(s, y) can be stored as the following cyclic register:

−→

2R︷ ︸︸ ︷
L1︷ ︸︸ ︷
Γ1

L2︷ ︸︸ ︷
Γ2 · · ·

Ln︷ ︸︸ ︷
Γn −→x y

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The register stores all 2R ANS states. Each state is allocated to a unique symbol s by the
spread function. The above structure resembles the data structure used by the well-known
RC4 cipher [10]. We can modify the RC4 key scheduling algorithm to swap states using the
cryptographic key K only with a few instructions.

5 Security and Efficiency of Lightweight Encryption with ANS

Our goal is to strengthen a plain ANS using as little cryptography as possible. In our three
compcrypt versions we use a cryptographically strong PRGB. This is the only cryptographic
tool needed. Note that we assume that the adversary knows our ANS algorithm details except
the cryptographic key K that is applying in PRGB to extract pseudorandom bits. For security
evaluation, we normally assume that the adversary may have access to compcrypt algorithms for
compression/encryption and for decompression/decryption. For simplicity we call them encryp-
tion and decryption oracles. Recall that encryption/decryption oracles are abstract concepts that
allow the adversary to interact with cryptographic algorithms by asking an oracle to generate
outputs for given inputs.

5.1 Security against Known-Plaintext Attacks

Observe that our adversary A is able to recover the window frame with high probability. The
probability becomes 1 if different symbols are assigned to encoding with different lengths. We
assume that this is the case. This removes one of important and natural strengths of a plain
ANS. Consider our three versions.

• Compcrypt with state jumps – A may target the least probable symbols, which have been
encoded into longest binary strings. She can recover pseudorandom bits by looking up the
encoding table. To illustrate the attack, take into account example from Section 2. Assume A
observes that the i-th symbol is s0 with its encoding is 010. The next symbol is also s0 and is
compressed into 101. A knows from the ANS encoding table that the state xi = 18 ≡ 10010

and xi+1 = 29 ≡ 11101, which means that the pseudorandom string has been 01111. This
allows A to replace the symbol s0 by other most frequent symbols.
• Compcrypt with double ANS –A knows the two ANS encoding tables and as above she targets

two consecutive occurrences of the least probable symbol. She can identify a (hopefully)
unique states for both ANS copies. Now she has to consider four possible cases: (1) both
symbols are encoded by ANS1, (2) both symbols are encoded by ANS2, (3) first by ANS1
and the second by ANS2 and (4) first by ANS2 and the second by ANS1. If the tables are
“sufficiently” different, A can identify the PRGB bit.
• Compcrypt with encoding function evolution – A knows the initial ANS and her goal is to

recover the pseudorandom bits. As this compcrypt algorithm needs recalculation of encoding
table every time the states are swapped, it is reasonable to expect that the swapping is not
frequent. This assumption allows the adversary to launch the following attack. A starts from
the initial and known encoding table and identify the state just before the first swap. After
the first state swap, she guesses the second state (or equivalently PRGB bits). For each guess,
she recalculates the encoding table and checks if it is consistent with sequence of observed
symbols and their encodings. This costs her 2R−1 guesses on the average. The probability of
success depends on the number of symbols encoded between two consecutive swaps.

5.2 Security against Ciphertext-only and Integrity Attacks

Here we assume that the adversary observes outputs from an encryption oracle or she knows a
binary frame (that does not reveal window frame lengths). This time, to analyse the encryption,A
needs first to guess symbols (knowing its probability distribution) of the corresponding symbol
frame. Next for each symbol si, it has to guess the length |bi| of the corresponding output
bits bi. After correct guesses, A may apply the known-plaintextext attack scenario. To achieve
confidentiality with λ bit security, one needs to modify our algorithms so they do not generate
binary frames for small number of symbols so the probability of correct guesses of symbols and
lengths of their compressions is smaller than 2λ. Integrity checks are done on the receiving side.
In our algorithms, the receiver verifies if the final state is the prearrange one (could be determined
by both sides using PRGB). Note that probability of detecting tampering with output bit stream
is equal to 2−R.

5.3 Efficiency Evaluation

Our implementation of tabular version of ANS was written in the Go language (version 1.15.2).
Throughout our experiments, we have used an OpenBSD 6.8-current installed on a Lenovo
Thinkpad T450s with 12 GB of RAM and an i7-5600U CPU with 2 physical cores running at 2.6
GHz and hyper-threading enabled, which makes 4 threads available in total. All our compcrypt
algorithms invoke PRBG. The impact of the PRBG on the execution time of the encoding and
decoding heavily depends on its implementation. Our implementation use standard Go function
provided by math/rand.

Let us discuss briefly some implementation details of our comcrypt algorithms with:
• state jumps – our experiments assume that state jumps are performed for each input symbol.

The initial encoding/decoding tables are created precisely as in the plain ANS.
• double ANS – there are two plain ANS algorithms. The switch between the two is done by

PRBG for each input symbol. The execution time should not be much different from the
previous algorithm. A significant difference relates to an extra memory needed to store two
encoding/decoding tables. Consequently, loading time may impact overall execution time.
This may be noticeable when processing short streams of symbols.
• encoding function evolution – the algorithm is initialised to a plain ANS and then its encoding

table is modified for each symbol by swapping the current state with a random one (chosen by
PRBG). The swap might look like a computationally cheap operation but, in fact, each non-
trivial swap involves recomputation of the encoding table. This means that for each symbol,
we may expect up to 2R table operations.

Our experiments are performed for three geometric probability distributions denoted by p ∈
{0.5, 0.7, 0.9}. The number of states in ANS are 2R, where R ∈ {10, 12, 14} and the parameter
m = 10, which indicates the number of symbols in the source alphabet. For each of the above set-
ting, we have processed 1024, 2048, 4096, 8192, 16394 randomly generated symbols and counted
the output bits and execution times. Each experiment is executed 200 times with a random initial
state. Average numbers of both output bits and encoding execution time have been computed.
Figure 1 compares efficiency of our three compcrypt algorithms with the plain ANS. Clearly,
compcrypt with encoding function evolution is the least efficient. The efficiency loss is attributed
to state swaps and as expected, it is especially noticeable when processing a large number of
symbols. On the average, compared to a plain ANS, compcrypt with double tables incurs extra

10
24

20
48

40
96

81
92

16
38

40

1,000

2,000

3,000

4,000

5,000

6,000

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.5, m=10, R=10

10
24

20
48

40
96

81
92

16
38

40

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.7, m=10, R=10

10
24

20
48

40
96

81
92

16
38

40

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.9, m=10, R=10

10
24

20
48

40
96

81
92

16
38

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

·104

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.5, m=10, R=12

10
24

20
48

40
96

81
92

16
38

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·104

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.7, m=10, R=12

10
24

20
48

40
96

81
92

16
38

40

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.9, m=10, R=12

10
24

20
48

40
96

81
92

16
38

40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

·105

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.5, m=10, R=14

10
24

20
48

40
96

81
92

16
38

40

1

2

3

4

5

6

7

·104

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.7, m=10, R=14

10
24

20
48

40
96

81
92

16
38

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
·104

Number of input symbols

Ex
ec

ut
io

n
tim

e
in

m
s

ANS parameters p=0.9, m=10, R=14

Fig. 1. Execution times of plain ANS (blue) and compcrypt algorithms with: double tables (red), encoding
function evolution (green) and state jumps (brown)

overhead of 50 ms. It is caused by processing the second table. As one can expect, efficiency of
compcrypt with state jumps is comparable to the one offered by a plain ANS.

Let us consider quality of compression provided by the three compcrypt algorithms. We use
a plain ANS as a reference. Figure 2 describes our results. We observe that compcrypt with
encoding function evolution lengthens output stream by < 10% in comparison to the plain ANS.
Compcrypt with double tables increases the length of output bits by less than 1%. Compression
quality of compcrypt with state jumps is similar to the one of a plain ANS.

6 Conclusions and Future Research

The work investigates joint compression and encryption for lightweight applications, where nat-
ural behaviour of ANS is enhanced using as little cryptography as possible. Consequently, result-
ing compcrypt algorithms offer low-security level for both confidentiality and integrity (against
ciphertext-only adversaries). The only cryptographic tool used is PRBG, which can be chosen

10
24

20
48

40
96

81
92

16
38

40

0.5

1

1.5

2

2.5

3

3.5
·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.5, m=10, R=10

10
24

20
48

40
96

81
92

16
38

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.7, m=10, R=10

10
24

20
48

40
96

81
92

16
38

40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.9, m=10, R=10

10
24

20
48

40
96

81
92

16
38

40

0.5

1

1.5

2

2.5

3

3.5

·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.5, m=10, R=12

10
24

20
48

40
96

81
92

16
38

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.7, m=10, R=12

10
24

20
48

40
96

81
92

16
38

40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.9, m=10, R=12

10
24

20
48

40
96

81
92

16
38

40

0.5

1

1.5

2

2.5

3

3.5

·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.5, m=10, R=14

10
24

20
48

40
96

81
92

16
38

40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.7, m=10, R=14

10
24

20
48

40
96

81
92

16
38

40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

·104

Number of input symbols

N
um

be
r

of
ou

tp
ut

bi
ts

ANS parameters p=0.9, m=10, R=14

Fig. 2. Quality of the compression (measured by the number of output bits) for plain ANS (blue) and compcrypt
algorithms with: double tables (red), encoding function evolution (green), state jumps (brown)

depending on efficiency and security requirements. For applications that require a decent security
level, a PRBG based on a good quality stream cipher (such as Trivium [1]) is recommended. As
hinted in the work, PRBG can be removed all together and replaced by a cryptographic key
and make the encoding table dynamic (using encoding function evolution). This is an attractive
direction for future research (connection with the RC4 cipher).

We propose three compcrypt algorithms. The first one applies a single ANS with state jumps
controlled by PRBG. The second one uses two copies of ANS, where PRBG manages transition
between copies. The third compcrypt deploys encoding function evolution that modifies encod-
ing tables. Assuming a ciphertext-only adversary, the security level for confidentiality is mainly
determined by the probability of guessing input symbols. It is significant for small number of
symbols but diminishes exponentially when the number grows. This is true for all three algo-
rithms. But when the guess is correct we deal with a known-plaintext attack. Under the attack,
compcrypt with encoding function evolution offers best security. With the exception of com-

pcrypt with encoding function evolution, the algorithms offer similar efficiency and compression
quality as the plain ANS.

Note that compcrypt with encoding function evolution can be slightly modified so it preserves
good security features and has “almost” the same efficiency and compression quality as the plain
ANS. Instead of swapping states after processing any single symbol, compcrypt starts as the
original algorithm (swapping states frequently) and then it gradually increases number of symbols
between two consecutive swaps.

Acknowledgments

Paweł Morawiecki and Marcin Pawłowski have been supported by Polish National Science Cen-
ter (NCN) grant 2018/31/B/ST6/03003. Josef Pieprzyk has been supported by Australian Re-
search Council (ARC) grant DP180102199 and Polish National Science Center (NCN) grant
2018/31/B/ST6/03003.

References

[1] Christophe De Cannière. Trivium: A stream cipher construction inspired by block cipher design principles. In
Sokratis K. Katsikas, Javier López, Michael Backes, Stefanos Gritzalis, and Bart Preneel, editors, Information
Security, pages 171–186, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[2] Jarek Duda. Asymmetric numeral systems as close to capacity low state entropy coders. CoRR,
abs/1311.2540, 2013.

[3] Jarek Duda and Marcin Niemiec. Lightweight compression with encryption based on asymmetric numeral
systems, 2016.

[4] David W. Gillman, Mojdeh Mohtashemi, and Ronald L. Rivest. On breaking a Huffman code. IEEE
Transaction on Information Theory, 42(3):972–976, 1996.

[5] D.A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

[6] Donald Knuth. The art of computer programming, Vol. 2. Addison-Wesley, 1973.
[7] A. Moffat and M. Petri. Large-alphabet semi-static entropy coding via asymmetric numeral systems. ACM

Transactions on Information Systems, 38(4):1–33, 2020.
[8] J.J. Rissanen. Generalized kraft inequality and arithmetic coding. IBM Journal of Research and Develop-

ment, 20(3):198–203, 1976.
[9] Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–

423, 623–656, July, October 1948.
[10] Wikipedia. RC4. https://en.wikipedia.org/wiki/RC4. Accessed Dec 12, 2020.

