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Abstract

Many web-based and mobile applications and services allow users to indicate their preferences
regarding whether and how their personal information can be used or reused by the application
itself, by the service provider, and/or by third parties. The number of possible configurations
that constitute a user’s preference profile can be overwhelming to a typical user. This report
describes a practical, privacy-preserving technique for reducing the burden users face when
specifying their preferences by offering users data-driven recommendations for fully-specified
preference profiles based on their inputs for just a few settings. The feasibility of the approach
is demonstrated by a browser-based prototype application that relies on secure multi-party com-
putation and uses the web-compatible JIFF library as the backbone for managing communica-
tions between the client application and the recommendation service. The principal algorithms
used for generating proposed preference profiles are k-means clustering (for privacy-preserving
analysis of preference profile data across multiple users) and k-nearest neighbors (for selecting
a proposed preference profile to recommend to the user).

1 Introduction

It is common practice (and increasingly a regulatory requirement) to include within web-based
and mobile applications facilities that allow users to express their preferences regarding whether
and how their information will be collected, stored, processed, or shared with third parties. This
flexibility leads to an overwhelmingly large space of configurations that users may find difficult to
navigate. We propose a solution that allows users to specify their preferences for only a small subset
of an overall profile. This small subset is then used in conjunction with a data set of preference
profiles collected from other users to assemble a complete preference profile. This complete profile
can then be proposed to the user for their approval or further modification.

The design of our proposed protocol and its implementation as a web-based application is
informed by the following criteria.

e Choosing a privacy profile should be simple.

e No one other than the original user (not even the service) should have access to a user’s
preference profile data.

e Users should be able to receive helpful suggested profiles after specifying only a few initial
preferences.

Adhering to these criteria, the implementation of our protocol relies on privacy-preserving secure
computation techniques to classify a user’s preferences based on the similarity of their partial profile
to those of other users and to generate a proposal for the remaining portion of their profile. Our
approach is able to satisfy the data privacy criterion by leveraging secure multi-party computation



(MPC) [16], 19], which enables workflows and web services that operate on encrypted data without
decrypting it. Use of MPC makes it possible to offer the benefits of workflows and services to users
while reducing or eliminating the need to store their sensitive data [5, [12].

2 Background and Related Work

There is a growing awareness among consumers of how organizations protect users’ personal data,
and new regulations such as the General Data Protection Regulation in the European Union [7] and
the California Consumer Privacy Act [1] in the United States are being introduced. These factors
are creating a marketplace for technological solutions that can allow organizations to continue
offering their services while (1) being more transparent with users about how their data is stored
and used, (2) giving users control over how their data can be used and shared with third parties,
(3) leveraging traditional cybersecurity techniques such as instituting access controls to enforce
data access policies within workflows involving multiple partner organizations, and (4) minimizing
or eliminating storage and use of user data in a decrypted form by employing secure computation
techniques such as multi-party computation.

The usability of cryptographic tools and techniques has been an active area of study for at
least two decades [15, [I8]. In parallel, there is a growing body of work on ways to measure user
perceptions of how (and how well) systems protect user privacy [8] and ways to design and manage
privacy features in complex user-facing applications and services [20]. The motivation for our work
partially overlaps with the goals of these ongoing efforts: to offer users features such as control over
their data while mitigating the burden of actually utilizing these features.

Another aspect of our work relates to the privacy-preserving properties both (1) of the web
service or application itself and (2) of the underlying infrastructure and algorithms that are used
to enhance usability. Proposed solutions for the first issue fall on a spectrum that ranges from
dedicated runtime environments that can enforce data access policies [I7] to secure computation
techniques that can scale across contemporary web service and mobile application infrastructures
[6]. In relying on secure multi-party computation, our work falls closer to the latter side of this
spectrum. With regard to the second issue, a common approach to measuring and enhancing
the usability of services and applications is to collect data about how users behave and then to
use that data to drive improvements or to aid users automatically [I3]. This approach may seem
to be in conflict with the goal of improving the privacy-preserving characteristics of those same
services and applications by limiting the extent to which user data can be utilized and exposed.
However, secure computation resolves this conflict by allowing organizations to collect such data for
evaluation purposes [14] and to use such data within usability-enhancing features (as demonstrated
by the work described in this report).

3 Protocol Design and Definition

The protocol involves three stages in the flow of data: (1) submission of user preferences profiles,
(2) processing of user preference profiles, and (3) derivation and sharing of recommended profiles
with users. We define an individual preference as a single integer representing one of several choices,
and define a preference profile as a collection of such choices. There are two types of parties in
this design: (1) the recommendation servers, and (2) the users who submit preferences and receive
recommendations. All servers symmetrically employ the same MPC algorithm, with one server
designated as being responsible for coordination and for returning user recommendations.
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Figure 1: Architecture and workflow diagram.

3.1 Preference Profile Submission Stage

After a user builds a partial profile, the app submits that partial profile to the recommendation
servers. To protect the privacy of the user’s chosen preferences, the protocol uses Shamir’s Secret
Sharing scheme [16] to locally split up the preferences into secret shares. Increased security can
be provided by introducing additional servers (with a minimum of two); the privacy of the data is
guaranteed even if up to n — 1 of n servers collude [16]. Next, the protocol distributes the sets of
secret shares of all of these preferences to the servers such that no server has more than one secret
share. At this point, each server has a database of effectively encrypted profiles stored as serialized
arrays of secret shares. Once the servers collect enough of these user profiles (a minimum value k
that can be configured at the time of deployment), the processing stage can commence.

3.2 Processing Stage

Recommendations are generated by aggregating the collection of all user profiles into a fixed set
of generic representative profiles. These are recomputed and updated at regular intervals as new
users specify their preferences and submit new profile data to the servers. The algorithm used for
aggregation is an oblivious variant of the standard k-means clustering algorithm, adapted for use by
multiple parties employing MPC. Each profile in the k-means algorithm is represented by a point
in an n-dimensional space, where n is the number of preferences that make up one profile. The
method for choosing initial cluster centers is an important distinction between this and the setup
stages of other cluster analysis techniques. In a privacy-preserving scheme, choosing clusters by
simple random selection introduces risks associated with choosing a cluster center with no nearby
points.

In Figure 2] the leftmost mean was chosen outside the bounding box and has a weight of zero,
which is problematic because we divide by the weight during the update step of k-means. We
require that the points and weight values must remain secret, and MPC doesn’t have capable
divide-by-zero protection. We now briefly outline (later elaborated in an alternative way to
agree upon the initial means. All parties first compute a secret share of both the minimum and
maximum point coordinate for each dimension. Next, they jointly compute the secret share of a
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Figure 2: Clusters and initial means such that not every mean is assigned to a point.

random number, repeating this and using oblivious rejection sampling until a suitable initial mean
coordinate has been generated for each dimension. This process ensures that all means are within
the bounding box of the data, and we end up with k distinct clusters.

Execution of the two iterative steps of the clustering algorithm is relatively simple. Each point
is assigned to its nearest mean by computing the pairwise Euclidean distances. Tie-breaking is not
an issue from an implementation perspective, and choosing the minimum Euclidean distance does
not require computing square roots because distances are only compared to other distances. Every
mean is updated by computing a component-wise sum of all of the data points assigned to it and
then dividing by the total weight of those points. These steps are repeated until there is reasonable
confidencd] that the means have converged.

3.3 Derivation and Delivery of Proposed Preference Profiles to Users

The newly calculated means (representing generic user profiles) are maintained by each server,
and the one designated to give recommendations can use k-nearest neighbors to pick the mean
closest to a particular partially completed preference profile submitted by a user. Note that the
partial user profile is not revealed to the server during this process. The complete preference profile
corresponding to that mean can then be sent as a recommendation to the user.

4 Implementation

In this section, we discuss in greater detail some of the challenges associated with implementing
the overall service using MPC, and propose a suitable protocol for each component. A complete
sample implementation for two servers, available online,ﬂ leverages the JIFF library [2].

4.1 Sampling within Secret Bounds.

When implementing efficient MPC protocols, it is helpful to minimize the number of special cases
that must be tracked because MPC protocols cannot employ control flow or make branching de-
cisions based on private data (without introducing exponential performance overheads). To avoid

'Because k-means clustering is executed at regular intervals and the means from each execution are maintained
and reused for the next one, few iterations are necessary to generate satisfactory cluster means.
2A prototype implementation is available at |https://github. com/multiparty/user—privacy—preferencesl




the case of a mean without any assigned points, we require that all initial means are chosen within
the bounding box of the data. One way to ensure this is with a rejection sampling algorithm such
as the one in Figure

label rejection__sample

share candidate = generate_random_ share(length) // share of random wvalue
share range = secret_subtract (upper_bound, lower_bound) // compute range
share lteq = secret_lteq(candidate, range) // less than range

bool inbounds = await lteq.open() // reveal wvalidity

if inbounds

return secret_add (lower_bound, candidate)
else

goto rejection__sample

Figure 3: Rejection sampling algorithm.

Rejection Sampling Algorithm. This algorithm takes advantage of the ability to open/reveal
whether a random candidate is in the bounding box, under the assumptions that (1) the initial
means are only selected once before new data is added, and (2) it is intractableﬂ to reconstruct the
geometric random variable G(p) defined by the number of trials during sampling. The parameter
p= m would reveal the size of the bounding box if it were known.
Precompute-then-Choose. An alternative without the limitations outlined above is to precom-
pute a random share of an integer for every potential upper boundE] The range can be computed as
a secret share locally and then compared to each candidate range via equality computations under
MPC. The result of each comparison is then multiplied by its corresponding candidate share and
these products are summed and added to the lower bound to yield the final result. This approach
costs a total of |Z,| equality and multiplication operations (in parallel) and is only practical for
applications in which the field Z, used for secret shares is reasonably small. If the range is pro-
vided by only one of the parties (instead of existing only as a secret share), that party can share
the range as a unit VGCtOI"E] and the equality operations can be replaced with much cheaper dot
product operations.

Additional Considerations. It is important to note that given only the ability to generate
random integers in [0,p) (easily done via Shamir’s Secret Sharing), it is impossible to write a
terminating algorithm that emits random numbers within another range [0, n) where n < p without
knowing any additional information about n (such as p mod n) [I1]. This is unfortunate because
in order to keep the input private, the running time of the algorithm must be the same across all
possible inputs. An upper bound of infinity is obviously impractical, so we must depend on other
techniques to generate a random integer in the range [0, n) directly. Methods for generating random

3 A malicious server would not be able to confidently guess the range of the data from the number of trials

4The distinction in this approach is that we can use regular rejection sampling because the upper bounds are
public.

®As an example, if p = 5 and range = 4 then the shared vector is (0,0, 0, 1,0).



integers in a nearly-uniform distribution exist that rely on secret modulo reduction. However,
whether this option is reasonable varies according to the details of each use case and practical
methodsﬁ to do so seem unjustifiably complicated for cases such as choosing initial means. Future
research may lie in investigating discrete distribution generating (DDG) trees and hidden Markov
models [10].

4.2 Split Databases

Servers must be online to receive new shares but only need to load past shares into memory when
performing a joint secure computation to determine new means. Each secret share object created
by JIFF has a party identifier and value (one point on the secret polynomial), a list of owners, and
helper methods. All of these attributes (except for the value attribute) stay the same between each
session in which means are recomputed, and are trivial to recreate. We take the share values of a
received preference profile in the form of an array and store them in a JSON file. Before clustering,
servers deserialize their partial databases into larger share objects.

4.3 k-Means Clustering

Our implementation of k-means achieves nearly the same resultsE] as the standard non-secure version
that operates on plaintext data. However, several intermediate steps require minor adjustments.
Arithmetic operations on secret-shared values behave the same way in our protocol as they would on
plaintext data, and for the averaging step we use a field that is at least large enough to accommodate
p?d distinct points with d preferences (i.e., dimensions) and a maximum of p choices for any
individual preference.

share distance, share[] distances
for mean in means
for d in dimensions
share half = mean[d].subtract(point [d])
share full = half.multiply (half)
distance = distance.add(full)
distances.push(distance)

share min = distances [0]
share point.id = 0 // init as constant until if—else
for (i = 1; i < k; i++4)
share cmp = min.less__than(distances[i])
min = cmp.if__else(min, distances[i])
point.id = cmp.if__else(i, point.id) // same as ecmpx(x—y)+y

Figure 4: Point assignment algorithm.

Point Assignment. The assignment step shown in Figure {4 stores for each point p the value
>a(pa— md)2 for each dimension d of each mean m in an array and computes the minimum of
this array to determine which mean is closest to the point. The operations involved are addition,

6 Algesheimer et al. [3] requires computations that involve three different secret sharing schemes to improve cost
beyond simple bit decomposition and long division.
"Division in our scheme has to be integer division, and final means can have minor rounding differences.



subtraction, and multiplication of secret-shared values. The oblivious ternary operator if _else is
equivalent in cost to one multiplication.

share weight
for point in points
for (i = 0; i < k; i++)
share cmp = point.id.equals(i)
weight = weight .add (cmp)
for d in dimensions
mean [d] = mean[d].add(cmp.multiply (point[d]))

for d in dimensions
mean [d] = mean[d]. div(weight)

Figure 5: Algorithm that updates cluster centers.

Recalculation of Means. The update step shown in Figure |5( computes the coordinate sum of
all the points assigned to each mean and divides each sum by the total weight of those points to
determine the new mean for the cluster. The operations involved are addition, subtraction, multi-
plication, and division of secret-shared values.

4.4 k-Nearest Neighbors

The k-nearest neighbors (k-NN) algorithm is conceptually straightforward to implement, especially
in the discrete case where it is only necessary to count the number of equalities point-by-point and
choose the maximum. However, this implementation has significant performance overheads because
its cost is linear in the number of points and because equality operations are particularly inefficient
under Shamir’s Secret Sharing scheme (where even comparing a secret value to a constant value is
expensive). By clustering the data in advance, we can reduce the amount of comparisons needed
to use k-NN.

5 Evaluation

The four main factors that affect the running time of the k-means clustering stage are the number
of data points (i.e., profiles), the number of cluster means (i.e., generic profiles), the number of
iterations of the k-means algorithm, and the number of dimensions (i.e., the maximum number of
preferences in a profile).



Scalability of User Profiles (3 Iterations, 3 Means)
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Figure 6: k-means clustering stage cost by number of profiles (3 iterations, 3 means).

As shown in Figure [6] the clustering cost is a little under 300 secret multiplication operations
per poin‘[ﬁ while the number of means and iterations remain constant (here, at 3 each). A graph
of the actual running time in seconds for each number of profiles would exhibit the same general
pattern. In our prototype implementation, this corresponds to around 0.3 seconds per point when
the protocol is executed between two servers that are communicating over the internet.
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Figure 7: k-means clustering stage cost by number
of profile dimensions (n=20, r=3).

Figure 8: k-means clustering stage cost by number
of k-means iterations (k = 3).

All other metrics (Figures [7| and [8)) follow a linear trend. The relationship between the cost and
the number of means appears to be linear, as well, based on the data in Figure [7]

5.1 Practical Performance Considerations

Take note that if the number of users who have submitted completed preference profiles is large,
the cluster servers need not process all profiles after every submission, nor all old profiles after
any submission. One option for reducing the amount of work performed by servers would be to
treat the current means as wholly representatives of their respective clusters, and removing all old
profiles assigned to those clusters. This is only necessary, however, after the data set becomes large
enough to be a burden on the servers.

8See Section for a discussion of an improvement on this bound.



Furthermore, all phases of the protocol are independent of each other. Once the first few users
supply their profile data, anyone can receive a recommendation independently of when the data was
last clustered (more recent data is preferable, but this is flexible). The servers can keep updating
the cluster means while accepting new profiles, and users can submit their completed preferences
at any time after receiving a recommendation.

The protocol also scales flexibly to n servers. However, do note that introducing more compu-
tation servers slows the computation overalﬂ and is only useful for reducing the risk of collusion.
As long as the servers remain separate from one another (and, ideally, are maintained by distinct
organizations), the two-server configuration is the best option.

5.2 Speed-Up via Hybrid Protocols

For the purposes of this section, we define the cost as the number of multiplications involving two
secret-shared multiplicandﬂ and separate these multiplications (called the “Total Unit Cost” in
Figure @ into two categories: those called explicitly by the k-means algorithm and those called
implicitly (i.e., used internally) by the equality, comparison, or division operations on secret-shared
values. The green plot in Figure [6] shows the number of multiplications not computed as part
of higher-level operations, whereas the plots in Figures [7] and [§ only show the total number of
multiplications of any kind. The sample implementation provided is the naive implementation of
k-means on data that is secret-shared via Shamir’s Secret Sharing scheme and a multiplication
oracld™]

Hybrid MPC frameworks such as JIFF, which we employ in our prototype implementation,
provide the option to combine arithmetic circuits (computation over a prime field such as Z,) with
Boolean circuits. JIFF implements the GMW [9] protocol, which lets an application developer
implement algorithms using logical AND gates (or, in terms of arithmetic, multiplications) that
have input and output values in Zy. JIFF’s modular and extensible design allows it to leverage
capabilities such as faster multiplication algorithms for Z, via hybrid computation in ZQE

Because k-means requires computing the Euclidean distance for each point, all explicit multi-
plications are necessary and independent—only the implicit multiplications in the comparisons or
division can be reduced in number. This means that when there are exactly two clustering servers,
the best running time we could hope to achieve is somewhere between the red and green dotted
lines in Figure [f] Comparisons in Shamir’s scheme have a running time that is quadratic in the
number of parties, but yet scales linearlyﬁ on an array of bit shares. Thus, when there are more
than two parties, GMW combined with arithmetic MPC can help flatten this growth in the number
of comparison operations (as the number of comparisons does not remain linear in the scenarios
with more than two servers). This optimization does not appear to have significant benefits in the
two-party case, at least based on the data presented in the figures.

9Multiplication requires a number of rounds that is proportional to the number of parties, and comparisons take
quadratically longer in purely polynomial schemes (see the discussion in Section .

10\Multiplication by a constant, secret addition, and secret subtraction are implemented via a homomorphism in
Shamir’s Secret Sharing scheme, and thus are implemented using local computations that occur at each server. These
do not require the servers to be online and to communicate, and so are not included in the cost calculations.

' Usually, this is implemented either using Beaver triples from a third party or via a BGW [4] protocol

12JIFF implements this optimization via composition of arithmetic shares into bit-wise GMW shares, followed by
binary multiplication, and finally conversion from Zs back into arithmetic shares within Z,.

13This is incorporated into a development version of JIFF, with a cost of 1 AND gate per bit per party to compose
GMW shares into arithmetic shares.



6 Conclusions and Future Work

Our evaluation and associated benchmarks support the conclusion that the recommendation pro-
tocol can scale to a large number of users and preference choices while remaining practical to
operate. Although our use case involved helping users navigate the process of specifying their
privacy preferences, this type of protocol can easily be generalized to fit a much wider array of
scenarios where it may be beneficial to generate data-driven recommendations automatically but
in a privacy-preserving way. The specific problem of generating uniformly random integers within
secret bounds as discussed in Section is of interest in its own right and efficient solutions would
be useful in a variety of other algorithms that might be implemented to run under MPC. Broader
topic areas for future work include exploration of alternative privacy-preserving machine learn-
ing approaches, implementation of other privacy-preserving clustering algorithms, introduction of
better support for common linear algebra algorithms within MPC frameworks such as JIFF, and
construction of frameworks that make it possible to perform tasks such as solving satisfiability
problems under MPC.
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