
On the Guaranteed Number of Activations in XS-circuits *

Sergey Agievich

Research Institute for Applied Problems of Mathematics and Informatics

Belarusian State University

agievich@{bsu.by,gmail.com}

Abstract

XS-circuits describe cryptographic primitives that utilize 2 operations on binary words

of fixed length: X) bitwise modulo 2 addition and S) substitution. The words are inter-

preted as elements of a field of characteristic 2. In this paper, we develop a model of

XS-circuits according to which several instances of a simple round circuit containing only

one S operation are linked together and form a compound circuit called a cascade. S op-

erations of a cascade are interpreted as independent round oracles. When a cascade

processes a pair of different inputs, some round oracles get different queries, these oracles

are activated. The more activations, the higher security guarantees against differential

cryptanalysis the cascade provides. We introduce the notion of the guaranteed number of

activations, that is, the minimum number of activations over all choices of the base field,

round oracles and pairs of inputs. We show that the guaranteed number of activations

is related to the minimum distance of the linear code associated with the cascade. It is

also related to the minimum number of occurrences of units in segments of binary linear

recurrence sequences whose characteristic polynomial is determined by the round circuit.

We provide an algorithm for calculating the guaranteed number of activations. We show

how to use the algorithm to deal with linear activations related to linear cryptanalysis.

Keywords: circuit, differential cryptanalysis, linear cryptanalysis, linear code, linear recurrence se-

quence.

1 Introduction

XS-circuits describe cryptographic primitives that utilize 2 operations on binary words of fixed

length: X) bitwise modulo 2 addition and S) substitution. A circuit may describe a block cipher

when instantiating S with key-dependent round functions which usually have a complicated

internal structure being circuits of the same (of smaller word length) or other types. Or a

circuit may describe an encryption or authentication mode when S is a keyed permutation of

a block cipher. One of the directions here is constructing wide-block and variable-input-length

ciphers, that is, extending the block length of the underlying cipher to some fixed or even

arbitrary length.

We interpret binary words that are processed in an XS-circuit as elements of a field of

characteristic 2. A circuit becomes arithmetic if all its operations S are instantiated using only

*Related programs and materials can be found at https://github.com/agievich/xs.
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the addition (actually, X) and multiplication in the base field. Arithmetic circuits designed for

symmetric cryptography are demanded in universal ZK-proof systems, especially if the circuits

have low multiplicative complexity (an example of the approach can be found in [2]). We see

another area of application of XS-circuits.

In this paper, we follow the model of XS-circuits proposed in [1]. According to this model,

several instances of a simple round circuit containing only one S operation are linked together

and form a compound circuit called a cascade. S operations of a cascade are interpreted as

independent round oracles. We extensively use notions and notation from [1]. In particular,

the notion of regular circuits that are in a sense the best elementary circuits and the only ones

worth considering when constructing cascades.

When a cascade processes a pair of different inputs, some round oracles get different queries,

these oracles are called activated. The more activations, the higher security guarantees against

differential cryptanalysis [4] the cascade provides.

In Section 2 we introduce the notion of the guaranteed number of activations, that is, the

minimum number of activations over all choices of the base field, round oracles and pairs of

inputs. In Section 3 we show that the guaranteed number of activations is related to the

minimum distance of the linear code associated with the target cascade. This number is also

related to the minimum number of occurrences of units in segments of binary linear recurrence

sequences whose characteristic polynomial is determined by the round circuit. This is shown in

Section 4. Finally, in Section 5 we provide an algorithm for calculating the guaranteed number

of activations. This algorithm can also be used to deal with linear activations related to linear

cryptanalysis [12].

Bringing the problem of lower bounding the number of activations to the context of coding

theory and showing how to solve it algorithmically, we introduce a systematic approach for

constructing sound cryptographic mappings. Interestingly, another systematic approach of this

kind, the so-called Wide trail strategy, also relates to coding theory. This approach was pro-

posed in [6, 7] and was implemented in numerous block ciphers including AES and Kuznyechik

(see [3] for a fairly complete list).

The Wide trail strategy allows to achieve a high activation rate, close to 1/2, when MDS

(Maximum Distance Separable) codes are used to build a diffusion layer. The drawback of the

strategy is that the layer becomes quite complicated and usually has to be implemented through

a table lookup. For comparison, the diffusion layer of an XS-circuit can be made very simple.

However, S operations of the circuit cannot be applied in parallel although this is allowed by

the Wide trail strategy.

2 Preliminaries

Let (a,B, c) be a regular XS-circuit of order n (see [1] for definitions and further details). We

assume that the circuit is in the first canonical form, that is, a is a nonzero column vector, B

is a companion matrix, c = (0, . . . , 0, 1). Denote by b the last column of B. All the vectors a,

b, c are binary of dimension n.

Instantiating the circuit over a field F of characteristic 2 and substituting an oracle S : F→ F
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for the operation S, we get the mapping

(a,B, c)[S] : Fn → Fn, (x1, x2, . . . , xn) 7→ (x2, x3, . . . , xn, xn+1),

xn+1 = (x1, x2, . . . , xn)b+ S((x1, x2, . . . , xn)a).

Let (a,B, c)t be the t-round cascade built by connecting t instances of (a,B, c). The cascade

utilizes t operations S. Instantiating these operations by oracles S1, . . . , St, we obtain the

mapping (a,B, c)t[S1, . . . , St]. It may be described algorithmically as follows: having received

an input (x1, x2, . . . , xn), the sequence

xτ+n = (xτ , . . . , xτ+n−1)b+ Sτ ((xτ , . . . , xτ+n−1)a), τ = 1, 2, . . . , t,

is calculated and the vector (xt+1, . . . , xt+n) is returned as the output.

Example 1 (GFN1). The GFN1 family of XS-circuits was introduced in [16]. The circuit of

dimension n ≥ 2 has the second canonical form: a = (1, 0, . . . , 0)T , B is a companion matrix

with b = a, c = aT . Replacing (a,B, c) with

(B−1a,B−1BB, cB) = ((0, . . . , 0, 1)T , B, (0, . . . , 0, 1)),

we obtain the first canonical form, for which

xτ+n = xτ + Sτ (xτ+n−1), τ = 1, 2, . . . . □

Let us suppose now that the cascade processes not one but two inputs simultaneously. From

there, (x1, x2, . . . , xn) is the X-difference of input vectors and (xτ+1, . . . , xτ+n) is the difference

of the τth round outputs. See [1, Section 4] for further details. There differences are denoted

using the symbol ∆ but here we simplify the notation.

The difference uτ at the input of Sτ has the form (xτ , . . . , xτ+n−1)a. The corresponding

output difference vτ can be written as (xτ , . . . , xτ+n−1)b + xτ+n. Due to the bijectivity of Sτ ,

the equality uτ = 0 holds if and only if vτ = 0. In other words,

(xτ , . . . , xτ+n−1)a = 0⇔ (xτ , . . . , xτ+n−1)b+ xτ+n = 0.

Let us construct a matrix G = G(n, a, b, t) of dimensions (t + n) × 2t. Its columns go in

pairs, the τth pair has the form:
0 0
...

...

0 0

 τ − 1

a b

0 1

}
n+ 1

0 0
...

...

0 0

 t− τ

With this,

(x1, x2, . . . , xt+n)G = (u1, v1, u2, v2, . . . , ut, vt).

We require that in each pair (uτ , vτ ) both elements are either zero or nonzero together.

Denote by W the set of all vectors

w = (u1, v1, . . . , ut, vt) = xG, x ∈ Ft+n,
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for which the requirement holds. The set W is completely determined by the base field F, the
vectors a, b and the number of rounds t. The zero vector obviously belongs to W.

We call the situation when (uτ , vτ ) ̸= (0, 0) the activation of Sτ . Let wt2(w) be the total

number of activations, that is, nonzero pairs (uτ , vτ ), in the vector w.

For t ≥ n we are interested in the quantity

d(W) = min
w∈W,w ̸=0

wt2(w).

It is the minimum number of activations when applying the mappings (a,B, c)t[S1, . . . , St] to

pairs of different vectors from Fn. Note that the minimization covers all admissible tuples

(S1, . . . , St) and all admissible input pairs.

For t < n we set d(W) = 0. This reflects the fact that as long as the number of rounds is

less than the dimension of the circuit, it is possible to avoid activations by manipulating the

initial diffirence (x1, . . . , xn) ̸= 0 (see [1, Section 8]).

The quantity d(W) can also be denoted as d(F, n, a, b, t) implying that W is uniquely deter-

mined by the parameters (F, n, a, b, t). Let

d(n, a, b, t) = min
F

d(F, n, a, b, t),

where the minimum is taken over all fields of characteristic 2. Any such field is an extension

of F2 and therefore

d(n, a, b, t) ≤ d(F, n, a, b, t) ≤ d(F2, n, a, b, t).

The cascade (a,B, c)t guarantees at least d(n, a, b, t) activations regardless of the choice of F,
round oracles and input pairs. We call d(n, a, b, t) the guaranteed number of activations.

3 Connection to the linear codes

The set W is a subset of the vector space

C = {xG : x ∈ Ft+n} ⊆ F2t.

The following lemma means that for t ≥ n the space C has dimension t + n and, therefore, it

is a linear code with the parameters [2t, t+ n].

Lemma 1. Let vectors a and b define a regular XS-circuit of the first canonical form of dimen-

sion n. If t ≥ n, then the matrix G = G(n, a, b, t) has full rank: rankG = t+ n.

Proof. Let us associate with the first two columns of G the polynomials a(λ) =
∑n−1

i=0 aiλ
i and

fB(λ) = λn +
∑n−1

i=0 biλ
i. Here ai and bi are coordinates of a and b respectively. We follow the

notation introduced in [1, Section 7]. Note that Theorem 9 of the cited paper states that for a

regular XS-circuit the polynomials a(λ) and fB(λ) are coprime.

The monomial λi in a(λ) marks the position in the first column in which the coefficient ai is

located. The same holds for fB(λ) and the second column. In general, the τth pair of columns

is described by the polynomials λτ−1a(λ) and λτ−1fB(λ).

The first 2t columns of G are linearly dependent if there exist nonzero polynomials p(λ) and

q(λ) whose degrees are less than t and which satisfy

p(λ)a(λ) + q(λ)fB(λ) = 0.
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For t = n, since a(λ) and fB(λ) are coprime, there are no suitable polynomials p(λ), q(λ)

and the matrix G has full rank.

The first linear dependence appears in G at t = n + 1 when choosing p(λ) = fB(λ) and

q(λ) = a(λ). The penultimate column becomes dependent on the previous ones. But the

last column remains independent, since it is the only one containing 1 in the last row. Thus,

rankG = 2n+ 1 = t+ n and G is again full-ranked.

The argument can be repeated: each new pair of columns adds 1 to the rank of G. Full

rank is preserved, which was to be proven. □

The minimum distance of C is the quantity

d(C) = min
w∈C,w ̸=0

wt(w),

where wt(w) is the Hamming weight of w. According to the Singleton bound (see, for exam-

ple, [11]),

d(C) ≤ 2t+ 1− (t+ n) = t− n+ 1.

Since wt(w)/2 ≤ wt2(w) ≤ wt(w) and W ⊆ C, it holds that

d(C)/2 ≤ d(W) ≤ d(C).

In particular, d(W) ≤ t − n + 1. This estimate means that over t ≥ n rounds we cannot

guarantee more than t−n+1 activations. Further we are interested in lower bounds for d(W).

Let t ≥ n and, therefore, rankG = t + n by Lemma 1. Suppose that when processing

a nonzero input difference using some round oracles, activations occur only in rounds whose

numbers belong to a set T ⊆ {1, 2, . . . , t}. We call T the activation profile. Following this

profile, let us divide G into two parts: G0 and G1. The matrix G1 consists of pairs of columns

whose numbers are in T and G0 consists of the remaining columns. By construction, there

exists a nonzero vector x ∈ Ft+n such that xG0 = 0 and xG1 does not contain zeros. This

means that the partition (G0, G1) is feasible in the sense of the following definition.

Definition. Let G0 and G1 be matrices composed of different pairs of columns of G. The

partition (G0, G1) is feasible if

1) rankG0 < t+ n;

2) rank(G0 | g) > rankG0 for each column g of G1.

Indeed, if rankG0 = t + n, then from xG0 = 0 it follows that x = 0 which contradicts the

construction. And if rank(G0 | g) = rankG0, then from xG0 = 0 it follows that xg = 0. The

latter means that xG1 contains zero, again a contradiction.

In the following lemma, we show that feasibility of a partition (G0, G1) is not only necessary

but also a sufficient condition for the feasibility of the underlying activation profile.

Lemma 2. Let vectors a and b define a regular XS-circuit of the first canonical form of dimen-

sion n. Let t ≥ n and k be the maximum number of pairs of columns in the matrix G0 where

the maximum is taken over all feasible partitions (G0, G1) of G = G(n, a, b, t). Then

d(n, a, b, t) = t− k.
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Proof. Let (G0, G1) be a feasible partition of G. It is necessary to prove that there exists an

extension F of the field F2 and a vector x ∈ Ft+n such that xG0 = 0 and xG1 does not contain

zeros.

The set

L = {xG1 : x ∈ Ft+n, xG0 = 0} ⊆ F2(t−k)

is a vector space of dimension r = t+ n− rankG0. It can be written as

L = {yP : y ∈ Fr},

where P is a binary matrix of dimensions r × 2(t− k). The matrix P does not contain a zero

column due to the second restriction on the feasibility of the partition (G0, G1).

Suppose that L does not contain a vector without zero coordinates. Then we choose an

arbitrary vector yP ∈ L, build an extension F′ of the field F and extend y to a vector y′ of

the same dimension but over F′. We construct y′ in such way that a particular zero coordinate

of yP becomes nonzero in y′P while nonzero coordinates of yP remain nonzero in y′P . After

constructing the pair (F′, y′) we interpret it as (F, y) and repeat the extension until we get the

vector yP without zeros. It remains to show how to extend y to y′.

Define F′ as an extension of F of degree 2. Without loss of generality, let elements of F′ be

(m+1)-bit words α = α1 . . . αmαm+1 and α ∈ F if and only if αm+1 = 0. Let the addition in F′

be the usual XOR. The extension of y consists in setting the last (zero) bits of its coordinates.

Let β be a vector composed of these bits. Since P does not contain zero columns, it is possible

to choose β so that a particular coordinate of βP is nonzero. The corresponding coordinate of

y′P is also nonzero. Moreover, if a certain coordinate yP is nonzero, then the corresponding

coordinate y′P remains nonzero. That was to be proven. □

Remark 1. The minimum distance of the code C = {xG} can also be defined as d(C) = t− k,

where k is the maximum number of columns in G0 and the maximum is taken over all feasible

partitions (G0, G1) of G (see, for example, [9, Theorem 1.4.5]). The difference is in changing

the partitioning restrictions. Now Gi not necessarily consists of pairs of related columns, the

requirement rankG0 < t + n is preserved, but the requirement rank(G0 | g) > rankG0 becomes

redundant.

Remark 2. Let rankG0 = t+n−1. Then in the proof above, the vector space L has dimension 1

and the matrix P becomes the row vector (1, 1, . . . , 1). This means that with F = F2 there exists

a nonzero x ∈ Ft+n such that xG0 = 0 and xG1 = (1, 1, . . . , 1). In other words, the activation

profile associated with the partition (G0, G1) is feasible over F2. Moreover, as we see below, this

profile is a segment of a linear recurrence sequence over F2.

4 The case F = F2

In the case F = F2, the condition uτ = 0⇔ vτ = 0 is eqiuvalent to uτ = vτ . With this,

xτ+n = (xτ , . . . , xτ+n−1)(a+ b), τ = 1, 2, . . . , t,

that is, the sequence (x1, . . . , xt+n) is a segment of a nonzero linear recurrence sequence (LRS)

over F2. The characteristic polynomial of the sequence is

f(λ) = λn + fn−1λ
n−1 + . . .+ f1λ+ f0, (f0, f1, . . . , fn−1) = a+ b.
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The vectors (xτ , . . . , xτ+n−1), τ = 1, 2, . . ., stand as states of the linear feedback shift register

(LFSR) associated with f(λ). When choosing the first bits of LFSR states, we get the sequence

(xτ ), and when choosing the linear combinations (xτ , . . . , xτ+n−1)a, we get the sequence (uτ ).

The latter sequence is also a LRS with the same characteristic polynomial f(λ).

The sequence (uτ ) is nonzero. Indeed, the underlying XS-circuit is regular and for any

nonzero input difference (x1, . . . , xn) at least one activation must occur over the first n rounds

(see the discussion before Theorem 10 in [1]) which means that (u1, . . . , un) ̸= (0, . . . , 0).

For the same reason, f0 = 1 and the sequences (xτ ), (uτ ) are purely periodic. Indeed, other-

wise, a nonzero input difference (x1, . . . , xn) = (1, 0, . . . , 0) induces a zero difference after n− 1

rounds, which is impossible due to the regularity.

The number of activations over t rounds is the number of nonzero elements (units) in the

segment (u1, . . . , ut). We can use known results on the number of occurrences of particular

elements in segments of LRS. Let r be the least period of (uτ ), R be the order of f (the

maximum least period of nonzero LRS with the characteristic polynomial f). Then according

to Theorems 8.82 and 8.85 from [10], the number of activation is at least

t

2
− 2n/2−1

( r

R

)1/2
(
t0 +

2

π
log r +

2

5
+

t1
r

)
.

Here t0 and t1 are respectively the quotient and remainder when dividing t by r. If t1 = 0, then

only the term t0 can be left in the last brackets.

It makes sense to apply the estimate above only for large n, t and r. In practice, these

parameters are small and the minimum number of activations can be found by exhaustive

search over all LRS profiles (u1, . . . , ut) in time of order 2nt.

Example 2 (SM4). The SM4 circuit is used in the block cipher of the same name (formerly

known as SMS4). See [8] for details of the cipher and [1] for details of the circuit.

The circuit is already in the first canonical form, its dimension is 4, the characteristic

polynomial f(λ) = λ4 + λ3 + λ2 + λ + 1. The polynomial f(λ) is irreducible of order 5.

Therefore, the least period of (uτ ) equals 5.

The minimum number of activations is achieved on the start segments of the following LRS:

0, 0, 0, 1, 1, 0, 0, 0, 1, 1, . . .

If t = 5t0 + t1, 0 ≤ t1 < 5, then this number is{
2t0, t1 = 0, 1, 2, 3,

2t0 + 1, t1 = 4. □

Example 3 (GFN1, continued). Let us continue Example 1 and consider the GFN1 circuit of

dimension n in the first canonical form. For this circuit, a = (0, 0, . . . , 0, 1)T , b = (1, 0, . . . , 0, 0)T

and f(λ) = λn + λn−1 + 1.

For n = 2, 3, 4, the polynomial f(λ) is primitive. The least period of (uτ ) equals r = 2n − 1

and every full period (u1, . . . , ur) contains exactly 2n−1 units. Therefore,

d(F2, n, a, b, 2
n − 1) = 2n−1

and the activation rate over 2n−1 rounds can potentially achieve the value 2n−1/(2n−1) > 1/2.

This value is indeed achieved for n = 2, 3 but, as we show later, not for n = 4. □
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5 The algorithm

The following algorithm summarizes our constructions and reasoning.

Algorithm GNA (the guaranteed number of activations)

Input: (n, a, b, t), where a and b are binary vectors of dimension n that define a regular XS-

circuit in the first canonical form, t is a number of rounds.

Output: d(n, a, b, t), the guaranteed number of activations over t rounds of the input circuit.

Steps:

1. If t < n, then return 0. If t = n, return 1.

2. Construct the matrix G = G(n, a, b, t) as explained in Section 3. The dimensions of G

are (t+ n)× 2t, rankG = t+ n. The columns of G are grouped in pairs.

3. Calculate d(F2, n, a, b, t) as described in Section 4 and set k ← t− d(F2, n, a, b, t).

4. Make a list of all possible partitions of G into submatrices G0 and G1 such that G0

contains exactly k + 1 pairs of columns of G.

5. For each partition (G0, G1):

(a) if rankG0 ≥ t+ n− 1, then continue (go to the end of the loop);

(b) if there is a column g in G1 such that rank(G0 | g) = rankG0, then continue;

(c) set k ← k + 1 and go to Step 4.

6. Return t− k.

Theorem. The algorithm GNA is correct.

Proof. A direct consequence of Lemma 2 and Remark 2.

In Step 5a of the algorithm, we skip the case rankG0 = t + n − 1 because in this case the

activation profile associated with the partition (G0, G1) is feasible over F2 and the initial bound

d(F2, n, a, b, t) for d(n, a, b, t) cannot be strengthened. □

Let us discuss the complexity of the algorithm. Step 3 runs in time of order 2nt. Then,

for each k = t − d(F2, n, a, b, t), . . . , t − d(n, a, b, t), GNA processes
(

t
k+1

)
partitions (G0, G1)

using linear algebra on submatrices of G. The total number of partitions is exponential in t.

Thus, GNA is exponential in both t and n and can only be used for small and moderate input

dimensions. Fortunately, these are the dimensions that are interesting in practice. Moreover, in

many cases (one of which is discussed in Example 4), iterating over partitions can be significantly

simplified.

The algorithm GNA gives us the guaranteed number of differential activations. We can

easily adapt the algorithm to deal with linear activations (see [1, Section 9]). To do this, we

pass from (a,B, c) to the dual circuit (cT , BT , aT ) and determine vectors a′ and b′ that define its

first canonical form (we only need to determine a′, since b′ = b). The quantity GNA(n, a′, b′, t)

is the guaranteed number of linear activations.
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Example 4 (SM4, continued). For SM4 its dual has the same first canonical form. So the

guaranteed numbers of differential and linear activations are the same. The outputs of GNA

against SM4 for t ≤ 32 coincide with the estimates of Example 2. Thus, the activation rate

close to 2/5 is achieved. In particular, the guaranteed number of activations over 32 rounds

(exactly the case of the block cipher SM4) is 12.

Note that here we are processing the abstract SM4 circuit, not its instantiation in SM4. In

this instantiation, S operations are constructed using round keys, table S-boxes, rotations and

XORs of binary words. Lower bounds on the number of active S-boxes (not activations / active

rounds) in SM4 can be found in [13, 14, 15].

Iterating over
(

t
k+1

)
partitions in Step 4 of GNA can be simplified. For example, in the case

of SM4, if any 4 of 5 consecutive pairs of columns fall into G0, then the corresponding partition

is not feasible and can be immediately rejected. Indeed, the 5 consecutive pairs of columns are

linearly dependent while 4 pairs are not (it follows from the same reasoning as in the proof of

Lemma 1). Therefore, a pair not included in G0 contains a column g which is linearly expressed

through the columns of G0 and, therefore, the second condition of feasibility is violated. □

Example 5 (GFN1, continued). An GFN1 circuit of arbitrary dimension is self-dual:

(a,B, c) = (cT , BT , aT ). Therefore, a bound on differential activations is also a bound on

linear activations.

For the circuit of dimension n = 4, GNA gives 7 activations over 15 rounds. It is one less

than estimated in Example 3 through LRS profiles. The optimal activation profile found by

GNA looks as follows:

000111101100100.

It differs from the related LRS profile

000111101011001

starting from the 10th round. The LRS profile gives 3 activations after the fork while the

optimal profile gives only 2 activations. □

Example 6 (activation times). The ith activation time, ρi, is the minimum number of

rounds that guarantees i activations (see [1, Section 8]). In the next table, we present the

values ρi for GFN1 of dimension n = 4 and for SM4. We calculate ρi using the GNA algorithm.

i 1 2 3 4 5 6 7 8 9 10 11 12

ρi(GFN1) 4 7 8 10 12 13 14 17 20 22 23 25

ρi(SM4) 4 5 9 10 14 15 19 20 24 25 29 30

The time ρ7(GFN1) = 14 given in the table refines Proposition 5 of [5]. □
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