
Dumbo-MVBA: Optimal Multi-value Validated
Asynchronous Byzantine Agreement, Revisited ∗

Yuan Lu1, Zhenliang Lu2, Qiang Tang2, and Guiling Wang3

1 Institute of Software Chinese Academy of Sciences
2 The University of Sydney

3 New Jersey Institute of Technology
luyuan@iscas.ac.cn,{zhenliang.lu,qiang.tang}@sydney.edu.au,gwang@njit.edu

Abstract. Multi-value validated asynchronous Byzantine agreement (MVBA), proposed in
the seminal work of Cachin et al. (CRYPTO ’01), is fundamental for critical fault-tolerant
services such as atomic broadcast in the asynchronous network. It was left as an open problem
to asymptotically reduce its O(Ln2 + λn2 + n3) communication cost in the authenticated
setting with setup assumptions (where n is the number of parties, L is the input length, and
λ is the security parameter). Recently, Abraham et al. (PODC ’19) removed the n3 term to
partially answer the question when the input size L is small. However, in other typical cases,
e.g., building atomic broadcast through MVBA, the input length of MVBA L ≥ λn, and
thus the communication is dominated by the Ln2 term and the problem raised by Cachin
et al. remains open. We fill the gap and answer the remaining part of this open problem. In
particular, we present two MVBA protocols with expected O(Ln+λn2) communication cost,
which is asymptotically optimal when L ≥ λn. Our MVBA protocols also maintain other
benefits including optimal resilience to tolerate up to n/3 adaptive Byzantine corruptions,
asymptotically optimal O(1) expected rounds and O(n2) expected messages.
At the core of our design, we propose the notion of asynchronous provable dispersal broadcast
(APDB), in which each input can be split and dispersed to every party and later recovered
in an efficient way using only O(n) messages. In particular, the dispersal phase of APDB
can be implemented with only O(n) messages. Leveraging APDB and binary asynchronous
Byzantine agreement, we design our first optimal MVBA protocol, Dumbo-MVBA, show-
ing the feasibility of completely answering the long-standing problem of achieving expected
O(Ln+λn2)-bit and constant-round MVBA protocol. We further present another MVBA ex-
tension protocol Dumbo-MVBA?, realizing a general self-bootstrap framework that can com-
pile any MVBA protocol with quality property (here quality ensures a constant probability of
deciding some honest party’s input as MVBA output) into another communication-efficient
MVBA implementation.
Finally, we demonstrate an enticing application of our MVBA protocols to construct expected
constant-round asynchronous common subset (ACS) with only O(`n2 +λn2) communication
complexity in expect, where ` is the input length of ACS represented in bits. The resulting
ACS has asymptotically optimal communication cost when ` ≥ λ and might have a broad
array of applications like asynchronous atomic broadcasts or asynchronous multi-party com-
putation.

1 Introduction

Byzantine agreement (BA) was proposed by Lamport, Pease and Shostak in their seminal papers
[64,52] and considered the scenario that a few spacecraft controllers input some readings from a
sensor and try to decide a common output, despite some of them are faulty [73]. The original
specification of BA [64] allows input to be multi-valued, for example, the sensor’s reading in the
domain of {0, 1}L. This general case is also known as multi-valued BA [72], which generalizes the
particular case of binary BA where input is restricted to either 0 or 1 [52,60].

? An abridged version [57] of the paper appeared at ACM PODC 2020. This full version adds a new
instantiation of asymptotically optimal asynchronous common subset protocol (Sec. 7) using Dumbo-
MVBA as key component. Part of the work was done while Yuan Lu, Zhenliang Lu and Qiang Tang
were affiliated with New Jersey Institute of Technology.

Recently, the renewed attention to multi-valued BA is gathered in the asynchronous setting
[4,59,33,43], due to an unprecedented demand of deploying asynchronous atomic broadcast (ABC)
[24] that is usually instantiated by sequentially executing multi-valued asynchronous BA instances
with some fine-tuned validity [29,21].

The seminal work of Cachin et al. in 2001 [21] proposes external validity for multi-valued BA
and defines validated asynchronous BA, from which a simple construction of ABC can be achieved.
In this multi-valued validated asynchronous BA (MVBA), each party takes a value as input and
decides one of the proposed values as output, as long as the decided output satisfies the external
validity condition. Later, MVBA was used as a core building block to implement a broad array of
fault-tolerant protocols beyond ABC [50,67,20,74,31].

Cachin et al. also presented the first MVBA construction in [21]. Their construction is secure
against computationally-bounded adversaries in the authenticated setting with the random oracle
and setup assumptions (e.g., PKI and established threshold cryptosystems). The solution tolerates
maximal Byzantine corruptions up to f < n/3 and attains expected O(1) running time and O(n2)
messages, but it incurs expected O(Ln2 + λn2 + n3) bits, which is large. Here, n is the number of
parties, L represents the bit-length of MVBA input, and λ is the security parameter that captures
the bit-length of digital signatures. As such, Cachin et al. raised the open problem of reducing the
communication of MVBA protocols (and thus improve their ABC construction) [21], which can be
rephrased as:

How to asymptotically improve the communication cost of MVBA protocols by an O(n) factor?

After nearly twenty years, in a recent breakthrough of Abraham et al. [4], the n3 term in the
communication complexity was removed, and they achieved optimal O(n2) word communication,
conditioned on each system word can encapsulate a constant number of input values and some
small-size strings such as digital signatures. Their result can be directly translated to bit commu-
nication as a partial answer to the above question if the input length L is small (e.g., comparable
to cryptographic security parameter λ).

Nevertheless, both of the above MVBA constructions contain an Ln2 term in their communi-
cation complexities, which was reported in [21] as a major obstacle-ridden factor in a few typical
use-cases where the input length L is not that small. For instance, Cachin et al. [21] noticed their
ABC construction requires the underlying MVBA’s input length L to be at least O(λn), as each
MVBA input is a set of (n− f) values digitally signed by (n− f) distinct parties. In this case, the
Ln2 term becomes the dominating factor as it is cubic in n. For this reason, it was even consid-
ered in [59,33] that existing MVBA protocols are sub-optimal for constructing ABC due to their
large communication cost. It follows that, despite the recent breakthrough of [4], the long-standing
question from [21] remains open for the moderately large input size L ≥ O(λn).

1.1 Our contributions

We answer the remaining part of the open question for large inputs and present the first MVBA
protocols with expected O(Ln+ λn2) communicated bits. More precisely, we showcase:

Theorem 1. There exist protocols in the authenticated setting with setup assumptions and random
oracle, such that it solves the MVBA problem [4,21] among n parties against an adaptive adversary
controlling up to f ≤ bn−13 c parties, with expected O(Ln + λn2) communicated bits and expected
constant running time, where L is the input length and λ is a cryptographic security parameter.

Our MVBA protocols not only improve the communication complexity of earlier results [21,4]
as illustrated in Table 1, but also are optimal in the asynchronous setting regarding following
performance metrics1:

1 For communication cost, Abraham et al. [4] define a word to contain a constant number of signatures
and input values (which implicitly assumes relatively small input value size that is comparable to crypto-
graphic security parameter λ), such that word complexity is considered as their communication metric.
Our MVBA protocols also achieve optimal O(n2) word communication like [4], because (i) they attain
O(n2) message complexity and (ii) each message only contains O(1) words.

2

Table 1. Comparing the asymptotic performance of MVBA protocols among n parties with
L-bit input and λ-bit security parameter.

MVBA Protocols Comm. (Bits) Word† Round Msg.

Cachin et al. [21]‡ O(Ln2 + λn2 + n3) O(n3) O(1) O(n2)

Abraham et al. [4] O(Ln2 + λn2) O(n2) O(1) O(n2)

Guo et al. [42] O(Ln2 + λn2) O(n2) O(1) O(n2)

Duan et al. [34] O(Ln2 + λn3) O(n3) O(1) O(n3)

Our Dumbo-MVBA O(Ln + λn2) O(n2) O(1) O(n2)

Our Dumbo-MVBA? O(Ln + λn2) O(n2) O(1) O(n2)

† [4] defines a word to be O(λ) bits, so each word can contain a constant number of elements from a
cryptographically-secure group/field. This implies every word can carry a digital signature or hash digest.
Furthermore, [4] implicitly assumes that a word can encapsulate at least an MVBA input, so the counting
of word complexity is considered in a setting where MVBA input length L ≤ O(λ).
‡ [21] realizes that their construction can be generalized against adaptive adversary, when given threshold
cryptosystems with adaptive security.

1. Their executions incur O(Ln + λn2) bits on average, which coincides with the optimal com-
munication O(Ln) when L ≥ O(λn). This optimality can be seen trivially, since each honest
party has to receive the L-bit output, indicating a minimum communication of Ω(Ln) bits.

2. Same to [4], they can tolerate adaptive adversaries controlling up to bn−13 c Byzantine parties,
which achieves the optimal resilience in the asynchronous network according to the upper
bound of resilience shown in literature [71,19].

3. As same as [21,4], they can terminate in expected constant asynchronous rounds with over-
whelming probability, which is essentially asymptotically optimal for asynchronous BA [36,12].

4. Like [21,4], they attain asymptotically optimal O(n2) messages, which meets the lower bound
of the messages of optimally-resilient asynchronous BA against strong adaptive adversary with
“after-the-fact-removal” [4,1].

Table 2. Comparing the asymptotic performance of ACS protocols among n parties with `-bit
input and λ-bit security parameter.

ACS Protocols ‡ Round Comm.(Bits) Msg. Word†

HoneyBadger-ACS [59] + [30,5] O(logn) O(`n2 + λn3) O(n3) O(n3)

PACE-ACS [75] + [30,5] O(logn) O(`n2 + λn3) O(n3) O(n3)

Dumbo-ACS [43] + [30,5] O(1) O(`n2 + λn3) O(n3) O(n3)

FIN-ACS [34] + [30,5] O(1) O(`n2 + λn3) O(n3) O(n3)

CKPS-ACS [21] + CKPS-MVBA [21] O(1) O(`n3 + λn3) O(n2) O(n3)

CKPS-ACS [21] + ASM-MVBA [4] O(1) O(`n3 + λn3) O(n2) O(n3)

Our ACS instantiation ([21]+Dumbo-MVBA) O(1) O(`n2 + λn2) O(n2) O(n2)

† Similar to [4], we let a word to be O(λ) bits, and while counting the word complexity, we assume the
bit length of ACS input ` ≤ O(λ).
‡ For fair comparison, we assume that HoneyBadgerBFT, PACE, Dumbo and FIN instantiate their
reliable broadcast building blocks by the state-of-the-art results [30,5].

Furthermore, we can adopt our MVBA protocols to immediately instantiate the first asyn-
chronous common subset (ACS) protocol with expected constant round and O(`n2 +λn2) commu-
nication, as illustrated in Table 2. Here ` represents the bit-length of each ACS input, and ACS is
special variant of asynchronous Byzantine agreement, the validity of which allows every party to

3

take a value as input and decide an output that is a common subset of all parties’ inputs. Moreover,
the output common subset shall cover a sufficient number of inputs proposed by distinct parties
(usually n− f different parties). More precisely, we demonstrate:

Corollary 1. There exist a protocol in the authenticated setting with setup assumptions and ran-
dom oracle, such that it realizes ACS [14,59] among n parties against an adaptive adversary control-
ling up to f ≤ bn−13 c parties, with expected O(`n2 +λn2) communicated bits and expected constant
running time, where ` is the input length and λ is a cryptographic security parameter.

Clearly, our ACS instantiation meets the bn−13 c resilience upper bound of BA protocols in
asynchrony [19]. Its O(n2) message complexity is asymptotically optimal under strong adaptive
adversaries [1], and its expected O(1) round complexity is asymptotically optimal regarding asyn-
chronous BA problem. More importantly, our ACS instantiation is also communication-optimal for
input size ` ≥ O(λ): it costs O(λn2 + λn2) bits on average, matching the lower bound Ω(`n2) of
communication complexity when ` ≥ O(λ). The optimality of communication can be seen from
the validity definition of asynchronous common subset, where each honest party has to receive
(n− f) distinct parties’ inputs to form its output set, indicating a minimal communication cost of
Ω(`n(n− f)) = Ω(`n2).

Noticeably, ACS is a critical building block widely used in many asynchronous Byzantine fault
tolerant (BFT) systems, inferring that our MVBA and resulting ACS protocols might be beneficial
to a broader array of applications such as asynchronous atomic broadcast (i.e., distributed ledger
consensus) [21,43,39,59,42], asynchronous multi-party computation [14,56,27], and asynchronous
proactive threshold cryptosystem [20,74].

1.2 Challenges and techniques

Let us begin with a very brief tour to revisit a couple of existing MVBA constructions [21,4].
In CKPS-MVBA [21], each party Pi firstly broadcasts its input value vi to all others using a
broadcast protocol (e.g., Reiter’s consistent broadcast protocol [69] using quorum certificate made
from threshold signature to attest that n − 2f honest parties have received the common value).
Once sufficient values are received from n − f different parties’ broadcasts, each party informs
everyone else which n − f values it has received, which can be realized by broadcasting a vector
of n encoded bits (where each j-th bit represents whether the corresponding j-th broadcast is
received or not). Thus, every party Pi can locally form an O(n2) size “matrix”, in which the j-th
entry tracks that Pj has received which n − f broadcasts. Then, after the O(n2) size “matrix”
has at least n− f entries, the parties enter a random leader election protocol, uniformly selecting
a candidate party Pl, such that an asynchronous binary agreement (ABA) is further run to vote
on whether to decide the input of selected candidate party vl as output, depending on if enough
parties have already received vl. ABA protocols for random selected candidates will be repeated
until 1 is returned. Another recent study AMS-MVBA [4], instead, expands the conventional design
idea of ABA and directly constructs MVBA without black-box invocations to ABA in the following
way: first, multiple rounds of broadcasts are executed by every party to form quorum certificates
called commit proofs on their input values. Then, a random party Pl is elected. If any party
already receives a commit proof for vl, it decides to output vl; and other undecided parties use vl
as input to enter a repetition of the whole procedure. We can see that [4] can get rid of the O(n3)
communication as the phase where each party receives the O(n2) size matrix is removed.

Note that in the first phase of both CKPS-MVBA nad AMS-MVBA protocols [21,4], every
party broadcasts its own input to all parties, which already results in Ln2 communicated bits and
corresponds to the major efficiency challenge to overcome in this paper.

Using the dispersal-then-recast approach to overcome redundant input broadcasts.
Our key observation is that an MVBA protocol only outputs a single party’s input, it is thus
unnecessary for every party to send its input to all parties. Following the observation, we design
Dumbo-MVBA, a novel reduction from MVBA to ABA by using a dispersal-then-recast methodology
to reduce communication. Instead of letting each party directly send its input to everyone, we let
everyone to disperse the coded fragments of its input across the network. Later, after the dispersal

4

phase has been completed, the parties could (randomly) choose a dispersed value to collectively
recover it. Thanks to the external predicate, all parties can locally check the validity of the recovered
value, such that they can consistently decide to output the value, or to repeat random election of
another dispersed value to recover.

Remaining efficiency challenge of implementing dispersal-then-recast methodology.
However, challenges remain due to our multiple efficiency requirements. For example, the number
of messages to disperse a value shall be at most linear, otherwise n dispersals would cost more
than quadratic messages and make MVBA not optimal anymore. The requirement rules out a few
related candidates such as asynchronous verifiable information dispersal (AVID) [23,44] that needs
O(n2) messages to disperse a value. In addition, the protocol must terminate in expected constant
time, that means at most a constant number of dispersed values will be recovered on average.

More efficient MVBA protocol from O(n)-message asynchronous provable dispersal. We
set forth a new notion of asynchronous provable dispersal broadcast (APDB) to overcome the
efficiency issue of existing AVID protocols. The primitive weakens the agreement of AVID when
the sender is corrupted, but it can be implemented more efficiently with only O(n) messages. To
complement the somewhat weaker agreement property of APDB, we also introduce two succinct
“proofs” in APDB as hinted by the nice work of Abraham et al. [4]. During the dispersal of APDB,
two proofs lock and done could be produced: (i) when any honest party delivers a lock proof,
enough parties have delivered the coded fragments of the dispersed value, and thus the value can
be collectively recovered by all honest parties, and (ii) the done proof attests that enough parties
deliver lock, so all honest parties can activate ABA with input 1 and then decide 1 to jointly recover
the dispersed value. To take the most advantage of APDB, we leverage the design in [4] to let the
parties exchange their done proofs to collectively quit all dispersals, and then borrow the idea in
[21] to randomly elect a party and vote via ABA to decide whether to output the elected party’s
input value (if the value turns to be valid after being recovered). Intuitively, this idea reduces the
communication cost, because (i) each fragment has only O(L/n) bits, so n dispersals of L-bit input
incur only O(Ln) bits, (ii) the parties can reconstruct a valid value after expected constant number
of ABA and recoveries. See detailed discussions in Section 4.

Another generic MVBA extension protocol catering for large input. Finally, we present
another MVBA extension protocol Dumbo-MVBA?, which is a general self-bootstrap framework to
reduce the communication of any existing MVBA for sufficiently large input. After applying our
APDB protocol, we can use small input (i.e., the “proofs” of APDB) to invoke the underlying MVBA
to pick the dispersed value to recast, thus avoiding communication blow-up due to the broadcast
of large input. Moreover, Dumbo-MVBA? is centered around the advanced building block of MVBA
instead of the basic module of binary agreement, allowing it can better utilize MVBA to remove
the rounds generating the done proof in APDB, which further results in a much simpler modular
design.

1.3 Additional related work

Besides the closely related studies that have been discussed, we thoroughly review a few pertinent
topics that are also related to this paper in order to help unfamiliar readers better understand the
context.

Validity conditions. The asynchronous BA problem [19,14,25] was studied in diverse flavors,
depending on validity conditions.

Strong validity [37,62] requires that if an honest party outputs v, then v is input of some
honest party. This is arguably the strongest notion of validity for multi-valued BA. The sequential
execution of BA instances with strong validity gives us an ABC protocol, even in the asynchronous
setting. Unfortunately, implementing strong validity is not easy. In [37], the authors even proved
some disappointing bounds of strong validity in the asynchronous setting, which include: (i) the
maximal number of corruptions is up to f < n/(2` + 1), and (ii) the optimal running time is O(2`)
asynchronous rounds, where ` is the input size in bit.

Weak validity [51,32], only requires that if all honest parties input v, then every honest party
outputs v. This is one of most widely adopted validity notions for multi-valued BA. However, it

5

states nothing about output when the honest parties have different inputs. Weak validity is strictly
weaker than strong validity [37,62], except that they coincide in binary BA [22,55,60]. Abraham et
al. [4] argued: it is not clear how to achieve a simple reduction from ABC to asynchronous multi-
valued BA with weak validity; in particular, the sequential execution of multi-valued BA instances
with weak validity fails in the asynchronous setting, because non-default output is needed for the
liveness [21] or censorship resilience [59].

External validity was proposed by Cachin et al. [21] to circumvent the limits of above validity
notions, and it requires the decided output of honest parties to satisfy a globally known predicate.
This delicately tuned notion brings a few definitional advantages: (i) compared to strong validity,
it is easier to be instantiated, (ii) in contrast with weak validity, ABC is simply reducible to it. For
example, Cachin et al. [21] showcased a simple reduction from ABC to MVBA (with using a notion
called asynchronous common subset, i.e., ACS, as a bridge). This succinct construction sequentially
executes the ACS instances, each of which allows every party to propose an input value and then
solicits n−f input values (from distinct parties) to output. The work also instantiates ACS due to a
reduction to MVBA by centering around a specific external validity condition, namely, input/output
must be a set containing 2f + 1 valid message-signature pairs generated by distinct parties, where
each signed message is an ABC input. Although their reduction is simple, the communication cost
(per delivered bit) in their ABC was cubic (and is still amortizedly quadratic even if using the
recent technique of batching in [59]), mainly because the communication cost of the underlying
MVBA module contains a quadratic term factored by the MVBA’s input length.

Cryptography vs. information theory. We focus on the cryptographic setting with trusted
setup like many earlier studies [65,71,21,22,60,59,4] in order to realize more efficient constructions
of asynchronous BA protocols. Nevertheless, there are a few nice theoretic studies emphasizing on
designing information-theoretically (IT) secure asynchronous BA protocols in the more stringent
information-theoretic setting without trusted setup assumption.

In the most challenging IT setting without even secure private channel, Ben-Or [12] and Bracha
[19] give ABA constructions with exponential round complexity. In the same setting, Kapron et al.
[46] give an ABA construction that attains Õ(n2) bits and sub-exponential rounds against static
full information adversaries, King and Saia [48] present a full information-theoretic ABA protocol
with polynomial rounds against adaptive corruption, but their design can only tolerate f < n/500
Byzantine faults, and recently, Huang et al. [45] improve earlier results by giving an information-
theoretic polynomial-round ABA protocol with n/4 resilience against adaptive full information
adversaries. Nevertheless, there is a fundamental gap between the full information model (without
setup assumption or private channels) and our computationally-bounded cryptographic model with
setup assumptions, as pointed out in [10,6,7]. In particular, it is impossible to realize expected o(n)-
round randomized asynchronous BA protocols against an adaptive full information adversary [6,7].
Like a few earlier studies [65,71,21,22,60,59,4], we use pre-shared common coins (implemented via
unique threshold signature in the random oracle model) to overcome this lower bound and obtain
the asymptotically optimal O(1) expected rounds.

Setup-free IT ABAs are also studied with an additional assumption of secure private channel
[2,9,35]. In the setting, [35] can realize an ABA protocol with expected O(1) rounds but only
tolerates f < n/4 corruption, [2] later improves the resilience to optimal n/3 but has an expected
round complexity of O(n2), and Bangalore et al. [9] present an optimal-resilient ABA that can
terminate in expected O(n) rounds. However, none of them can achieve complexities matching the
state-of-the-art results in the cryptographic setting.

Strong vs. Weak adaptive adversaries. We consider a strong form of adaptive adversary with
“after-the-fact-removal”: the adversary can adaptively corrupt some node and then remove this
node’s undelivered messages. It is known that BA protocols need at least Ω(f2) communication
cost in the presence of such strong adaptive adversary [1], indicating Ω(n2) communication lower
bound when f < n/3. Blum et al. [16] and Cohen et al. [28] recently consider a less stringent
setting of weak adaptive adversaries that cannot perform “after-the-fact-removal” attacks, and
they present a couple of near-optimal resilient asynchronous BA protocols (achieving weak validity)
with o(n2) communication against such weak adaptive adversaries, respectively. Noticeably, those

6

o(n2)-communication results do not violate the known communication lower bound Ω(n2) under
optimal resilience against strong adaptive adversaries.

Extension protocols of BAs. In the asynchronous setting, there exist a few nice extension
protocols that can invoke Byzantine agreement with using short input to accommodate large multi-
valued input [61,63,38]. To the best of our knowledge, all the existing extension protocols focus
on weak validity, and their techniques cannot be directly borrowed to handle external validity.
The challenge in our extension MVBA protocol Dumbo-MVBA? stems from that the externally
valid output can come from one corrupt party. More specifically, in the extension protocols for
weak validity, it has to decides an output only when all honest parties share the same input value,
which can be ensured through a simple dispersal-recast technique [61] since sufficient honest parties
already share the same input; while in our case of MVBA for external validity, when the decided
output is from a malicious party, there are no sufficient honest parties share the same value as
input to assist the recovery, so we have to ensure all input values are indeed correctly dispersed
and become recoverable (which is realized via the recastability in our APDB design) by enforcing
each input dispersal to attach an extra short proof attesting its successful dissemination.

Efficiency problems of existing ACS protocols. There are mainly two paradigms to construct
ACS protocols: one is initiated by Cachin et al. [21] to reduce ACS to MVBA. The other method,
initiated by Ben-Or et al. [14] and recently improved by HoneyBadgerBFT (HBBFT) [59] and
PACE [75], builds ACS using n asynchronous binary agreements (ABAs) directly. During the past
years, the former approach (i.e., building ACS from MVBA) was considered as sub-optimal to
instantiate ABC in literature [59,33], because of the large communication complexity of existing
MVBA protocols. In a very recent work, Dumbo BFT [43], proposes a novel reduction from ACS to
MVBA, which results in an ACS protocol that attains only constant expected round; in contrast,
[59,33] have a round complexity of O(log n) with having the same communication and message
complexities. Moreover, the improvement of Dumbo BFT is achieved despite invoking existing
MVBA protocols (e.g., the first MVBA proposed by Cachin et al. two decades ago) with seemingly
large communication complexity.

Nevertheless, all existing ACS protocols still suffer from cubic communication complexity despite
the recent progress. In this paper, we directly reduce the communication complexity of MVBA
protocols for an O(n) factor. This allows us more efficiently instantiate the ACS construction due
to Cachin et al. [21], resulting in the first adaptively secure ACS protocol with only quadratic
communication overhead. The idea lets each party sign its ACS input and multicast the signed
value, then every party waits for receiving n− f signed values from different parties, and uses the
vector of n− f signed values to invoke a communication-optimal MVBA protocol, and finally the
honest parties can decide the n− f values carried by MVBA output as their ACS output. For sake
of completeness, Section 7 will present how to use our communication-optimal MVBA protocols to
efficiently instantiate ACS with expected constant round and O(`n2 + λn2) communication (i.e.,
optimal communication if ACS input length ` ≥ λ).

2 Problem Formulation

2.1 System model: asynchronous authenticated setting

We use the standard authenticated asynchronous message-passing model [4,21] to capture the
system consisting of n parties and a computationally-bounded adversary with setup assumptions.

Established identities and trusted setup. There are n designated parties denoted by {Pi}i∈[n],
where [n] is short for {1, . . . , n} through the paper. Moreover, we consider trusted setup for
threshold signature and common reference string for all necessary cryptographic primitives. Tak-
ing threshold signature as example, each party shall have obtained its own secret key share and
all public keys before the start of protocol execution. For presentation simplicity, we consider the
trusted setup for granted, while in practice it can be done via a trusted dealer or distributed key
generation protocols [53,17,47].

Adaptive Byzantine corruption. The adversary A can adaptively corrupt any party at any
time during the course of protocol execution, until A already controls f parties (e.g., 3f + 1 = n).

7

If a party Pi was not corrupted by A at some stage of the protocol, it followed the protocol and
kept all internal states secret against A, and we say it is so-far-uncorrupted. Once a party Pi is
corrupted by A, it leaks all internal states to A and remains fully controlled by A to arbitrarily
misbehave. By convention, the corrupted party is also called Byzantine fault. If and only if a party
is not corrupted through the entire execution, we say it is honest.

Computing model. Following standard cryptographic practices [21,22], we let the n parties and
the adversary A to be probabilistic polynomial-time interactive Turing machines (ITMs). A party
Pi is an ITM defined by the protocol: it is activated upon receiving an incoming message to carry
out some computations, update its states, possibly generate some outgoing messages, and wait
for the next activation. A is a probabilistic ITM bounded by polynomial time (in the number
of message bits generated by honest parties). Moreover, we explicitly require the message bits
generated by honest parties to be probabilistic uniformly bounded by a polynomial in the security
parameter λ, which was formulated as efficiency in [21,4] to rule out infinite protocol executions
and thus restrict the run time of the adversary through the entire protocol. Same to [21] and [4],
all system parameters (e.g., n) are bounded by polynomials in λ.

Fully-meshed reliable asynchronous point-to-point network. Any two parties in the system
are connected via an asynchronous reliable authenticated point-to-point channel. When a party Pi
attempts to send a message to another party Pj , the adversary A is firstly notified about the
message; then, A fully determines when Pj receives the message, but cannot drop or modify this
message if both Pi and Pj are honest. The network model also allows the adaptive adversary A
to perform “after-the-fact removal”, that is, when A is notified about some messages sent from a
so-far-uncorrupted party Pi, it can delay these messages until it corrupts Pi to drop them.

2.2 Design goal: multi-valued validated asynchronous BA

We review hereunder the definition of (multi-valued) validated asynchronous Byzantine agreement
(MVBA) due to [21,4].

Definition 1. In an MVBA protocol with an external Predicate : {0, 1}` → {true, false}, the
parties take values satisfying Predicate as inputs and aim to output a common value satisfying
Predicate. The MVBA protocol guarantees the following properties, except with negligible probability,
for any identification id, in the asynchronous authenticated model:

• Termination. If every honest party Pi is activated on identification id, with taking as input
a value vi s.t. Predicate(vi) = true, then every honest party outputs a value v for id.
• External-Validity. If an honest party outputs a value v for id, then Predicate(v) = true.
• Agreement. If any two honest parties output v and v′ for id respectively, then v = v′.
• Quality. If an honest party outputs v for id, the probability that v was proposed by the adversary

is at most 1/2.

We make the following remarks about the above definition:

1. Input length. We focus on the general case that the input length ` can be a function in n. We
emphasize that it captures many realistic scenarios. One remarkable example is to build ABC
around MVBA as in [21] where the length of each MVBA input is at least O(λn).

2. External-validity is a fine-grained validity requirement of BA. In particular, it requires the
common output of the honest parties to satisfy a pre-specified global predicate function.

3. Quality was proposed by Abraham et al. in [4], which not only rules out trivial solutions w.r.t.
some trivial predicates (e.g., output a known valid value) but also captures “fairness” to prevent
the adversary from fully controlling the output.

2.3 Quantitative performance metrics

We consider the following standard quantitative metrics to characterize the performance aspects
of asynchronous Byzantine fault tolerant protocols:

8

• Resilience. An MVBA protocol is said f -resilient, if it can tolerate an (adaptive) adversary
that corrupts up to f parties. If 3f+1 = n, the MVBA protocol is said to be optimally-resilient
[19]. Through the paper, we focus on the optimally-resilient MVBA against adaptive adversary.

• Message complexity. The message complexity measures the expected number of overall
messages generated by honest parties during the protocol execution. For MVBA protocols
with optimal resilience against adaptive adversary, the lower bound of message complexity is
expected Ω(n2) [4,1].

• Communication complexity. We consider the standard notion of communication complexity
to characterize the expected number of bits sent among the honest parties during the protocol.
For the optimally-resilient MVBA against adaptive adversary, the lower bound of communi-
cation complexity is Ω(`n + n2), where the `n term represents a trivial lower bound that all
honest parties have to deliver an externally valid value of ` bits in length [59,4,1], and the n2

terms is a reflection of the lower bound of message complexity.
• Round complexity. We follow the standard approach due to Canetti and Rabin [25] to

measure the running time of protocols by asynchronous rounds. Essentially, this measurement
counts the number of messaging “rounds”, when the protocol is embedded into a lock-step
timing model. For asynchronous BA, the expected O(1) round complexity is optimal [36,12].

The above communication, message and round complexities shall be probabilistically uniformly
bounded (see Section 3.2) independent to the adversary [21]. The complexity notions bring about
the advantage that is closed under modular composition. We thus can design and analyze protocols
in a modular way.

3 Preliminaries and Notations

3.1 Preliminary primitives

Erasure code scheme. A (k, n)-erasure code scheme [15] consists of a tuple of two deterministic
algorithms Enc and Dec. The Enc algorithm maps any vector v = (v1, · · · , vk) of k data fragments
(called message word) into an vector m = (m1, · · · ,mn) of n coded fragments (called code word),
such that any k elements in the code word m is enough to reconstruct the message word v due
to the Dec algorithm. More formally, a (k, n)-erasure code scheme has a tuple of two deterministic
algorithms:

1. Enc(v) → m. On input a vector v ∈ Bk (message word), this deterministic encode algorithm
outputs a vector m ∈ Bn (code word). Note that v contains k data fragments and m contains
n coded fragments, and B denotes the field of each fragment.

2. Dec({(i,mi)}i∈S) → v. On input a set {(i,mi)}i∈S where mi ∈ B, and S ⊂ [n] and |S| = k,
this deterministic decode algorithm outputs the message word v ∈ Bk.

We require (k, n)-erasure code scheme is maximum distance separable, namely, the original data
fragments v can be recovered from any k-size subset of the coded fragments m, which can be
formally defined as:

• Correctness of erasure code. For any v ∈ Bk and any S ⊂ [n] that |S| = k, Pr[Dec({(i,mi)}i∈S) =
v | m := (m1, · · · ,mn) ← Enc(v)] = 1. If a vector m ∈ Bn is indeed the code word of some
message word v ∈ Bk, we say the m is well-formed; otherwise, we say the m is ill-formed.

Instantiation. Through the paper, we consider a (f + 1, n)-erasure code scheme where 3f + 1 = n.
Besides, we emphasize the erasure code scheme would implicitly choose a proper field B according
to the actual length of each element in v, such that the encoding causes only constant blow-up in
size, namely, the bits of m are larger than the bits of v by at most a constant factor. There are a
few well-known instantiations of such primitive like Rabin’s [66], Reed-Solomon [68] and numerous
their variants.

Position-binding vector commitment (VC). For an established position-binding n-vector com-
mitment (VC), there is a tuple of algorithms (VCom,Open,VerifyOpen). On input a vector m of

9

any n elements, the algorithm VCom produces a commitment vc for the vector m. On input m
and vc, the Open algorithm can reveal the element mi committed in vc at the i-th position while
producing a short proof πi, which later can be verified by VerifyOpen.

Formally, a position-binding VC scheme (without hiding) is abstracted as:

1. VC.Setup(λ, n,M) → pp. Given security parameter λ, the size n of the input vector, and the
message space M of each vector element, it outputs public parameters pp, which are implicit
inputs to all the following algorithms. We explicitly require M = {0, 1}∗, such that one VC
scheme can commit any n-sized vectors.

2. VCom(m) → (vc; aux). On input a vector m = (m1, ...,mn), it outputs a commitment string
vc and an auxiliary advice string aux. We might omit aux for presentation simplicity. Note we
do not require the hiding property, and then let VCom to be a deterministic algorithm.

3. Open(vc,mi, i; aux) → πi. On input mi ∈ M, i ∈ [n], the commitment vc and advice aux, it
produces an opening string π to prove that mi is the i-th committed element. We might omit
aux for presentation simplicity.

4. VerifyOpen(vc,mi, i, πi) → 0/1. On input mi ∈ M and i ∈ [n], the commitment vc, and an
opening proof π, the algorithm outputs 0 (accept) or 1 (reject).

An already established VC scheme shall satisfy correctness and position binding:

• Correctness of VC. An established VC scheme with public parameter pp is correct, if for all
m ∈ Mn and i ∈ [n], Pr[VC.VerifyOpen(vc,mi, i,VC.Open(vc,mi, i, aux)) = 1 | (vc, aux) ←
VC.VCom(m)] = 1.

• Position binding. An established VC scheme with public parameter pp is said position bind-
ing, if for any P.P.T. adversaryA, Pr[VC.VerifyOpen(vc,m, i, π) = VC.VerifyOpen(vc,m′, i, π′) =
1 ∧ m 6= m′ | (vc, i,m,m′, π, π′) ← A(pp)] < negl(λ), where negl(λ) is a negligible function in
λ.

Instantiation. There are a few simple solutions [58,26,54] to achieve the above VC notion. An exam-
ple is hash Merkle tree [58] where the commitment vc is O(λ)-bit and the openness π is O(λ log n)-
bit. Moreover, when given computational Diffie-Hellman assumption and collision-resistant hash
function, there is a position-binding vector commitment scheme [26], s.t., all algorithms (except
setup) are deterministic, and both commitment and openness are O(λ) bits.

Relying on computational Diffie-Hellman (CDH) assumption and collision-resistant hash func-
tion, there is a construction due to Catalano et al. [26] that realizes the position-binding vector
commitment as follows:

• VC.Setup(λ, n) → pp. Let H be a collision-resistant hash function H : {0, 1}∗ → Zp. Given
λ, generate G and GT that are two bilinear groups of prime order p with a bilinear map
e : G×G→ GT ; also choose g that is a random generator of G. Randomly choose (z1, · · · , zn)
from Zp, and for each i ∈ [n], compute hi ← gzi . For each i, j ∈ [n] and i 6= j, compute
hi,j = gzizj . Set pp = (g, {hi}i∈[n], {hi,j}i,j∈[n],i6=j).

• VCom(m) → (vc; aux). Compute vc =
∏n
i=1 h

H(mi)
i and aux = (H(m1), · · · ,H(mn)). The

output aux might be omitted in the paper for simplicity.

• Open(vc,mi, i; aux) → πi. Compute πi =
∏n
j=1,j 6=i h

H(mi)
i,j = (

∏n
j=1,j 6=i h

H(mi)
j)zi . We might

omit the input aux for presentation simplicity.

• VerifyOpen(vc,mi, i, πi)→ 0/1. It checks whether e(vc/h
H(mi)
i , hi) = e(πi, g) or not.

Regarding the size of the commitment and the openness proof, it is clear that they contain only
a single group element in G, which corresponds to only O(λ) bits and is independent to the length
of each committed element. In addition, all algorithms run in polynomial time, and they (except
the setup) are deterministic.

Non-interactive threshold signature (TSIG). Given an established (t, n)-threshold signature,
each party Pi has a private function denoted by SignShare(t)(ski, ·) to produce its “partial” signa-
ture, and there are also three public functions VerifyShare(t), Combine(t) and VerifyThld(t), which
can respectively validate the “partial” signature, combine “partial” signatures into a “full” signa-
ture, and validate the “full” signature. Note the subscript (t) denotes the threshold t through the

10

paper. Formally, a non-interactive (t, n)-threshold signature scheme TSIG is a tuple of hereunder
algorithms/protocols among n parties {Pi}i∈[n]:

1. TSIG.Setup(λ, t, n) → (mpk,pk, sk). Given t, n and security parameter λ, generate a special
public key mpk, a vector of public keys pk = (pk1, · · · , pkn), and a vector of secret keys
sk = (sk1, · · · , skn) where Pi gets ski only.

2. SignShare(t)(ski,m)→ σi. On input a message m and a secret key share ski, this deterministic
algorithm outputs a “partial” signature share σi. Note that the subscript (t) denotes the
threshold t.

3. VerifyShare(t)(m, (i, ρi)) → 0/1. Given a message m, a “partial” signature ρi and an index i
(along with implicit input mpk and pk), this deterministic algorithm outputs 1 (accept) or 0
(reject).

4. Combine(t)(m, {(i, ρi)}i∈S)→ σ/⊥. Given a messagem and t indexed partial-signatures {(i, ρi)}i∈S
(along with implicit input mpk and pk), this algorithm outputs a “full” signature σ for message
m (or ⊥).

5. VerifyThld(t)(m,σ) → 0/1. Given a message m and an “aggregated” full signature σ (along
with the implicit input mpk), this algorithms outputs 1 (accept) or 0 (reject).

We require an established TSIG scheme to satisfy correctness, robustness and unforgeability:

• Correctness of TSIG. The correctness property requires that: (i) for ∀ m and i ∈ [n],
Pr[VerifyShare(t)(m, (i, ρi)) = 1 | ρi ← SignShare(t)(ski,m)] = 1; (ii) for ∀ m and S ⊂
[n] that |S| = t, Pr[VerifyThld(t)(m,σ) = 1 | ∀i ∈ S, ρi ← SignShare(t)(ski,m) ∧ σ ←
Combine(t)(m, {(i, ρi)}i∈S)] = 1.
• Robustness. No P.P.T. adversary can produce t valid “partial” signature shares, s.t. running
Combine over these “partial” signatures does not produce a valid “full” signature, except with
negligible probability in λ. Intuitively, robustness ensures any t valid “partial” signatures for
a message must induce a valid “full” signature [70].

• Unforgeability (against adaptive adversary). The unforgeability can be defined by a thresh-
old and adaptive version Existential UnForgeability under Chosen Message Attack game [53].
Intuitively, the unforgeability ensures that no P.P.T. adversary A that adaptively corrupts f
parties (f < t) can produce a valid “full” signature except with negligible probability in λ,
unless A receives some “partial” signatures produced by t− f parties that are honest.

Instantiation. The above adaptively secure non-interactive threshold signature can be realize due to
the construction in [53] assuming the hardness of symmetric external Diffie-Hellman (SXDH) in the
random oracle model. Recently, Bacho and Loss [8] demonstrates that the threshold variant [17] of
Boneh-Lynn-Shacham (BLS) signature [18] can also be adaptively secure under the assumption of
algebraic group model (AGM) and random oracle (RO). In all above instantiations, each “partial”
signature ρ and every “full” signature σ have a length of O(λ) bits. Noticeably, the mentioned non-
interactive threshold signature schemes [53,17] are also unique, namely, given any message m and
the corresponding partial signatures of all honest parties, it is still computationally infeasible for
adversaries to generate two distinct “full” signatures that are both valid. The uniqueness property
of threshold signature could be needed while implementing a threshold common coin, which is a
critical building block used by us to overcome FLP impossibility and will soon be explained in the
following paragraphs.
Note. We might also consider the notion of standard digital signature scheme, in which each party
Pi has a private function denoted by Sign(ski, ·) (parameterized by a secret signing key ski and
denoted by Signi(·) for short) to generate a signature σ on the given message m, and there is also
one public function Verify(pki, ·, ·) (parameterized by Pi’s public verification key ski and denoted
by Verifyi(·, ·) for short) to validate whether a given signature σ is indeed signed by Pi regarding
a given message m.

Threshold common coin (Coin). A (t, n)-Coin is a protocol among n parties, through which
any t honest parties can mint a common coin r uniformly sampled over {0, 1}κ. The adversary
corrupting up to f parties (where f < t) cannot predicate coin r, unless t−f honest parties invoke
the protocol. Formally, an established (t, n)-Coin scheme satisfies the following properties in the

11

asynchronous authenticated setting (as described in Section 2), except with negligible probability
in λ:

• Termination. Once t honest parties activate Coin associated to ID (denoted by Coin[ID]), each
honest party that activates Coin[ID] will output a common value r.

• Agreement. If two honest parties output r and r′ in Coin[ID] respectively, then r = r′.
• Unpredictability and Unbiasedness. A P.P.T. adversary A who can adaptively corrupt

up to f parties (e.g. f < t) cannot predicate the output of Coin[ID] better than guessing over
{0, 1}κ, unless t − f honest parties activate Coin[ID]. This also implies the unbiasedness of r,
namely, no P.P.T. adversary can bias the distribution of r.

Instantiation. (t, n)-Coin can be realized from non-interactive unique (t, n)-threshold signature in
the random oracle model, as illustrated in the seminal work of Cachin, Kursawe and Shoup [22].
Moreover, it is immediately to generalize the Coin protocol in [22] against adaptive adversary [4,55],
if being given non-interactive unique threshold signature with adaptive security [53]. In this paper,
common coin is adaptively secure and can be instantiated through the construction in [55,22],
which incurs O(λn2) bits, O(n2) messages and constant O(1) rounds.

Random identity election. In our context, a random identity Election protocol is a (2f + 1, n)-
Coin protocol that returns a common value over {1, · · · , n}. Through the paper, this particular Coin
is under the descriptive alias Election, a conventional terminology due to Ben-Or and El-Yaniv [13].

Asynchronous binary agreement (ABA). In an asynchronous binary agreement (ABA) pro-
tocol among n parties, the honest parties input a single bit, and aim to output a common bit
b ∈ {0, 1} which shall be input of at least one honest party. Formally, an ABA protocol satisfies
the properties in the asynchronous authenticated setting (c.f. Section 2), except with negligible
probability:

• Termination. If all honest parties receive binary inputs in {0, 1} to activate ABA associated
to ID (denoted by ABA[ID]), each honest party outputs a bit for ID.

• Agreement. If any two honest parties output b and b′ for ID receptively, then b = b′.
• Validity. If any honest party outputs a bit b ∈ {0, 1} for ID, then at least one honest party

inputs b for ID.

Instantiation. Given adaptively secure non-interactive threshold signature in [53], the Coin scheme
in [22] can immediately be generalized to defend against adaptive adversary [55], which further
generalizes many ABA constructions [60,21] to be adaptively secure [55]. In particular, we adopt
the ABA secure against adaptive adversary controlling up to bn−13 c parties in [55], which attains
expected O(1) running time, asymptomatic O(n2) messages and O(λn2) bits, where λ is the
cryptographic security parameter.

3.2 Other notations and definition

Notations. We use 〈x, y〉 to denote a string concatenating two strings x and y. Any message
between two parties is of the form (MsgType, ID, . . .), where ID represents the identifier that
tags the protocol instance and MsgType specifies the message type. Moreover, Π[ID] refers to an
instance of the protocol Π with identifier ID, and y ← Π[ID](x) means to invoke Π[ID] on input x
and obtain y as output.

Probabilistically uniformly bounded statistic. Here we showcase the definition of uniformly-
bounded statistic, which is a conventional notion [21,4] to rigorously describe the performance
metrics of fault-tolerant protocols under the influence of arbitrary adversary, such as the messages
sent by honest parties.

Definition 2. Uniformly Bounded Statistic. Let X be a random variable representing a pro-
tocol statistic (for example, the number of messages generated by the honest parties during the
protocol execution). We say that X is probabilistically uniformly bounded, if there exists a fixed
polynomial T (λ) and a fixed negligible function δ(k), such that for any adversary A (of the proto-
col), there exists a negligible function ε(λ) for all λ ≥ 0 and k ≥ 0,

Pr[X ≥ kT (λ)] ≤ δ(k) + ε(λ).

12

A probabilistically uniformly bounded statistic of a protocol performance metric X cannot
exceed the uniform bound except with negligible probability, independent of the adversary. More
precisely, this means, there exists a constant c, s.t. for any adversary A, the expected value of X
must be bounded by cT (k) + ε′(λ), where ε′(λ) is a negligible function.

4 APDB: Asynchronous Provable Dispersal Broadcast

The dominating O(Ln2) term in the communication complexity of existing MVBA protocols [21,4]
is because every party broadcasts its own input all other parties. This turns out to be unnecessary,
as in the MVBA protocol, only one single party’s input is decided as output. To remedy the needless
communication overhead in MVBA, we introduce a new dispersal-then-recast methodology, through
which each party Pi only has to spread the coded fragments of its input vi to every other party
instead of its entire input.

This section introduces the core building block, namely, the asynchronous provable dispersal
broadcast (APDB), to instantiate the dispersal-then-recast idea. The notion is carefully tailored to
be efficiently implementable. Especially, in contrast to related AVID protocols [23,44], APDB can
disperse a value at a cost of linear messages instead of O(n2), as a reflection of following trade-offs:

• The APDB notion weakens AVID, so upon that a party outputs a coded fragment in the dispersal
instance of APDB, there is no guarantee that other parties will output the consistent fragments.
Thus, it could be not enough to recover the dispersed value by only f + 1 honest parties, as
these parties might receive (probably inconsistent) fragments.
• To compensate the above weakenings, we let the sender to spread the coded fragments of its

input along with a succinct vector commitment of all these fragments, and then produce two
succinct “proofs” lock and done. The “proofs” facilitate: (i) the lock proof ensures that 2f + 1
parties receive some fragments that are committed in the same vector commitment, so the
honest parties can either recover the same value, or output ⊥ (that means the committed
fragments are inconsistent); (ii) the done proof ensures that 2f + 1 parties deliver valid locks,
thus allowing the parties to reach a common decision, e.g., via a (biased) binary BA [21], to all
agree to jointly recover the dispersed value, which makes the value deemed to be recoverable.

In this way, the overall communication of dispersing a value can be brought down to minimum
as the size of each fragment is only O(L/n) where L is the bit length of input v. Moreover, this
well-tuned notion can be easily implemented in light of [4] and costs only linear messages. These
efficiencies are needed to achieve the optimal communication and message complexities for MVBA.

Defining asynchronous provable dispersal broadcast. Formally, the syntax and properties
of an APDB protocol are defined as follows.

Definition 3. An APDB protocol with a designated sender Ps is equipped with a pair of predicates
(ValidateLock,ValidateDone) and consists of a provable dispersal subprotocol (PD) and a recast
subprotocol (RC), the syntax of which can be described as follows:

• PD subprotocol. In the PD subprotocol (with identifier ID) among n parties, a designated
sender Ps inputs a value v ∈ {0, 1}L, and aims to split v into n encoded fragments and disperses
each fragment to the corresponding party. During the PD subprotocol with identifier ID, each
party is allowed to invoke an abandon(ID) function. After PD terminates, each party shall
output two strings store and lock, and the sender shall output an additional string done.
Note that the lock and done strings are said to be valid for the identifier ID, if and only if
ValidateLock(ID, lock) = 1 and ValidateDone(ID, done) = 1, respectively.
• RC subprotocol. In the RC subprotocol (with identifier ID), all honest parties take the output

of the PD subprotocol (with the same ID) as input, and aim to output the value v that was
dispersed in the RC subprotocol. Once RC is completed, the parties output a common value in
{0, 1}L ∪ ⊥.

An APDB protocol (PD, RC) with identifier ID satisfies the following properties in the asynchronous
authenticated setting (as described in Section 2), except with negligible probability:

13

• Termination. If the sender Ps is honest and all honest parties activate PD[ID] without invoking
abandon(ID), then each honest party would output store and valid lock for ID; additionally,
the sender Ps outputs valid done for ID.

• Recast-ability. If all honest parties invoke RC[ID] with inputting the output of PD[ID] and at
least one honest party inputs a valid lock, then: (i) all honest parties recover a common value;
(ii) if the sender dispersed v in PD[ID] and has not been corrupted before at least one party
delivers valid lock, then all honest parties recover v in RC[ID].

Intuitively, the recast-ability captures that the valid lock is a “proof” attesting that the in-
put value dispersed via PD[ID] can be consistently recovered by all parties through collectively
running the corresponding RC[ID] instance.

• Provability. If the sender of PD[ID] produces valid done, then at least f + 1 honest parties
output valid lock.

Intuitively, the provability indicates that done is a “completeness proof” attesting that at least
f + 1 honest parties output valid locks, such that the parties can exchange locks and then vote
via ABA to reach an agreement that the dispersed value is deemed recoverable.

• Abandon-ability. If every party (and the adversary) cannot produce valid lock for ID and
f + 1 honest parties invoke abandon(ID), no party would deliver valid lock for ID.

4.1 Overview of APDB

For the PD subprotocol with identifier ID, it has a simple structure of four one-to-all or all-

to-one rounds: sender
Store−−−→ parties

Stored−−−→ sender
Lock−−→ parties

Locked−−−→ sender. Through a Store
message, every party Pi receives store := 〈vc,mi, i, πi〉, where mi is an encoded fragment of the
sender’s input, vc is a (deterministic) commitment of the vector of all fragments, and πi attests
mi’s inclusion in vc at the i-th position; then, through Stored messages, the parties would give
the sender “partial” signatures for the string 〈Stored, ID, vc〉; next, the sender combines 2f + 1
valid “partial” signatures, and sends every party the combined “full” signature σ1 for the string
〈Stored, ID, vc〉 via Locked messages, so each party can deliver lock := 〈vc, σ1〉; finally, each party
sends a “partial” signature for the string 〈Locked, ID, vc〉, such that the sender can again combine
the “partial” signatures to produce a valid “full” signature σ2 for the string 〈Locked, ID, vc〉, which
allows the sender to deliver done := 〈vc, σ2〉.

For the RC subprotocol, it has only one-round structure, as each party only has to take some
output of PD subprotocol as input (i.e., lock and store), and multicasts these inputs to all parties.
As long as an honest party inputs a valid lock, there are at least f + 1 honest parties deliver valid
stores that are bound to the vector commitment vc included in lock, so all parties can eventually
reconstruct the dispersed value that was committed in the commitment vc.

Algorithm 1 Validation func of APDB protocol, with identifier ID

function ValidateStore(i′, store): B ValidateStore verifies store commits a fragment mi in vc at
i-th position

1: parse store as 〈vc, i,mi, πi〉
2: return VerifyOpen(vc,mi, i, πi) ∧ i = i′

function ValidateLock(ID, lock): B ValidateLock validates lock contains a commitment vc
signed by 2f + 1 parties

3: parse lock as 〈vc, σ1〉
4: return VerifyThld(2f+1)(〈Stored, ID, vc〉, σ1)

function ValidateDone(ID, done): B ValidateDone validates done to attest 2f + 1 parties
receive valid lock

5: parse done as 〈vc, σ2〉
6: return VerifyThld(2f+1)(〈Locked, ID, vc〉, σ2)

14

Algorithm 2 PD subprotocol, with identifier ID and sender Ps
let S1 ← { }, S2 ← { }, stop← 0

/* Protocol for the sender Ps */

1: upon receiving an input value v do
2: m← Enc(v), where v is parsed as a f + 1 vector and m is a n vector
3: vc← VCom(m)
4: for each j ∈ [n] do
5: πj ← Open(vc,mj , j)
6: let store := 〈vc,mj , j, πj〉 and send (Store, ID, store) to Pj B multicast store

7: wait until |S1| = 2f + 1
8: σ1 ← Combine(2f+1)(〈Stored, ID, vc〉, S1)
9: let lock := 〈vc, σ1〉 and multicast (Lock, ID, lock) to all parties B multicast lock

proof

10: wait until |S2| = 2f + 1
11: σ2 ← Combine(2f+1)(〈Locked, ID, vc〉, S2)
12: let done := 〈vc, σ2〉 and deliver done B produce done proof

13: upon receiving (Stored, ID, ρ1,j) from Pj for the first time do
14: if VerifyShare(2f+1)(〈Stored, ID, vc〉, (j, ρ1,j)) = 1 and stop = 0 then
15: S1 ← S1 ∪ (j, ρ1,j)

16: upon receiving (Locked, ID, ρ2,j) from Pj for the first time do
17: if VerifyShare(2f+1)(〈Locked, ID, vc〉, (j, ρ2,j)) =1 and stop = 0 then
18: S2 ← S2 ∪ (j, ρ2,j)

/* Protocol for each party Pi */

19: upon receiving (Store, ID, store) from sender Ps for the first time do
20: if ValidateStore(i, store) = 1 and stop = 0 then
21: deliver store and parse it as 〈vc, i,mi, πi〉 B receive store
22: ρ1,i ← SignShare(2f+1)(ski, 〈Stored, ID, vc〉)
23: send (Stored, ID, ρ1,i) to Ps

24: upon receiving (Lock, ID, lock) from sender Ps for the first time do
25: if ValidateLock(ID, lock) = 1 and stop = 0 then
26: deliver lock and parse it as 〈vc, σ1〉 B receive lock
27: ρ2,i ← SignShare(2f+1)(ski, 〈Locked, ID, vc〉)
28: send (Locked, ID, ρ2,i) to Ps

procedure abandon(ID):
29: stop← 1

15

4.2 Construction of APDB

As illustrated in Algorithm 1, the APDB protocol is designed with a few functions named ValidateStore,
ValidateLock and ValidateDone to validate done, lock and store, respectively. ValidateStore checks
whether a store message sent from the party Pi includes a fragment mi that is committed in a
vector commitment vc at the i-th position, ValidateLock validates lock to verify that 2f + 1 parties
(i.e., at least f + 1 honest parties) receive the fragments that are correctly committed in the same
vector commitment vc, and ValidateDone validates done to verify that 2f + 1 parties (i.e., at least
f + 1 honest parties) have delivered valid locks (that contain the same vc).

PD subprotocol. The details of the PD subprotocol are shown in Algorithm 2. In brief, a PD instance
with session identifier ID (i.e., PD[ID]) allows a designated sender Ps to disperse a value v as follows:

1. Store-then-Stored (line 1-6, 13-15, 19-23). When the sender Ps receives an input value v to
disperse, it encodes v to generate a vector of coded fragmentsm = (m1, . . . ,mn) by an (f+1, n)-
erasure code; then, Ps commits m in a vector commitment vc. Then Ps sends store including
the commitment vc, the i-th coded fragment mi and the commitment opening πi to each party
Pi by Store messages. Upon receiving (Store, ID, store) from the sender, Pi verifies whether
store is valid. If that is the case, Pi delivers store and sends a (2f + 1, n)-partial signature ρ1,i
for 〈Stored, ID, vc〉 back to the sender through a Stored message.

2. Lock-then-Locked (line 7-9, 16-18, 24-28). Upon receiving 2f + 1 valid Stored messages from
distinct parties, the sender Ps produces a full signature σ1 for the string 〈Stored, ID, vc〉. Then,
Ps sends lock including vc and σ1 to all parties through Lock messages. Upon receiving Lock
message, Pi verifies whether σ1 is deemed as a valid full signature. If that is the case, Pi delivers
lock = 〈vc, σ1〉, and sends a (2f + 1, n)-partial signature ρ2,i for the string 〈Locked, ID, vc〉
back to the sender through a Locked message.

3. Done (line 10-12). Once the sender Ps receives 2f + 1 valid Locked messages from distinct
parties, it produces a full signature σ2 for 〈Locked, ID, vc〉. Then Ps outputs the completeness
proof done = 〈vc, σ2〉 and terminates the dispersal.

4. Abandon (line 29). A party can invoke abandon(ID) to explicitly stop its participation in this dis-
persal instance with identification ID. In particular, if f +1 honest parties invoke abandon(ID),
the adversary can no longer corrupt the sender of PD[ID] to disperse anything across the net-
work.

RC subprotocol. The construction of the RC subprotocol is shown in Algorithm 3. The input of RC
subprotocol consists of lock and store, which were probably delivered during the PD subprotocol.
In brief, the execution of a RC instance with identification ID is as:

1. Recast (line 1-5). If the party Pi inputs lock and/or store, it multicasts them to all parties.
2. Deliver (line 6-18). If the party Pi receives a valid lock message, it waits for f + 1 valid stores

bound to this lock, such that Pi can reconstruct a value v (or a special symbol ⊥).

4.3 Analyses of APDB

Here we present the detailed proofs along with the complexity analyses for APDB protocol.

Security intuition. The tuple of protocols in Algorithms 2 and 3 realize APDB among n parties
against the adaptive adversary controlling up to f ≤ bn−13 c parties, given (i) (f+1, n)-erasure code,
(ii) deterministic n-vector commitment with the position-binding property, and (iii) established
(2f + 1, n)-threshold signature with adaptive security.

The high-level intuition is: (i) if any honest party outputs valid lock, then at least f + 1 honest
parties receives the code fragments committed in the same vector commitment, and the position-
binding property ensures that the honest parties can collectively recover a common value (or the
common ⊥) from these committed fragments; (ii) whenever any party can produce a valid done,
it attests that 2f + 1 (namely, at least f + 1 honest) parties have indeed received valid locks.

Security proof of APDB. Now we prove that Algorithms 2 and 3 would satisfy the properties of
APDB as defined in Definition 3, with all but negligible probability in λ.

16

Algorithm 3 RC subprotocol with identifier ID, for each party Pi
let C ← [] B a dictionary structure C[vc] that stores the set of coded fragments committed in
vc

1: upon receiving input (store, lock) do B multicast lock and/or store
2: if lock 6= ∅ then
3: multicast (RcLock, ID, lock) to all

4: if store 6= ∅ then
5: multicast (RcStore, ID, store) to all

6: upon receiving (RcLock, ID, lock) do
7: if ValidateLock(ID, lock) = 1 then B assert: only one valid lock for each ID (c.f. Lemma 3)
8: multicast (RcLock, ID, lock) to all, if was not sent before
9: parse lock as 〈vc, σ1〉

10: wait until |C[vc]| = f + 1
11: v ← Dec(C[vc]) B interpolate to decode the erasure code
12: if VCom(Enc(v)) = vc then return v B deliver the dispersed value (c.f.

Corollary 1)
13: else return ⊥
14: upon receiving (RcStore, ID, store) from Pj for the first time do
15: if ValidateStore(j, store) = 1 then
16: parse store as 〈vc,mj , j, πj〉
17: C[vc]← C[vc] ∪ (j,mj) B record fragments committed to each vc
18: else discard the invalid message

Proposition 1 Considering a n-vector commitment scheme (VCom,Open,VerifyOpen) and a (k, n)-
erasure coding scheme (Enc,Dec), we have the following security assurances:

• Correctness. For any S ⊂ [n] that |S| = k, Pr[Dec({(i,mi)}j∈S) = v ∧ VCom(Enc(v)) =
vc | (m1, · · · ,mn) ← Enc(v) ∧ vc ← VCom((m1, · · · ,mn))] = 1. The property reveals: if
a vector of the coded fragments of a value v are committed to a vector commitment vc, then
any k-subset of the fragments can recover the original value v, whose encoded fragments can be
used to produce the same commitment vc.

• Decode binding. For any S1 ⊂ [n] and S2 ⊂ [n] that |S1| = |S2| = k and S1 6= S2, despite any
P.P.T. adversary that generates vc and {(i,mi, πi)}i∈[n] that ∀i ∈ S1 VerifyOpen(vc,mi, i, πi) =
1 and ∀j ∈ S2 VerifyOpen(vc,mj , j, πj) = 1, there is an overwhelming probability that: (i)
VCom(Enc(Dec({(i,mi)}i∈S1

))) = VCom(Enc(Dec({(j,mj)}j∈S2
))) = vc ∧ Dec({(i,mi)}i∈S1

) =
Dec({(j,mj)}j∈S2

), or (ii) VCom(Enc(Dec({(i,mi)}i∈S1
))) 6= vc ∧ VCom(Enc(Dec({(j,mj)}j∈S2

))) 6=
vc. The property indicates whenever the (probably malicious generated) coded fragments are
committed to vc, any two k-subsets of these committed fragments must: either consistently re-
cover a common value that can re-produce a vector commitment same to vc, or respectively
decode some values that re-produce some commitments that are different from vc.

Proof. This statement of correctness is trivial, because (i) the correctness of erasure coding ensures
the decoding of coded fragments must recover the original message, and (ii) erasure coding and
vector commitment are deterministically computed such that running vector commitment on the
vector of same message’s coded fragments twice would return the same commitment.

To prove the statement of decode binding, we can prove that two following bad events violating
the statement have negligible probability:

• BadEvent1: VCom(Enc(Dec({(i,mi)}i∈S1
))) = vc ∧ VCom(Enc(Dec({(j,mj)}j∈S2

))) 6= vc,
when ∀i ∈ S1 VerifyOpen(vc,mi, i, πi) = 1 and ∀j ∈ S2 VerifyOpen(vc,mj , j, πj) = 1, for
(S1, S2, vc, {πi}i∈[n], {mi}i∈[n])← A(1λ, pp) where S1 ⊂ [n] and S2 ⊂ [n] and |S1| = |S2| = k.
• BadEvent2: VCom(Enc(Dec({(i,mi)}i∈S1

))) = VCom(Enc(Dec({(j,mj)}j∈S2
))) = vc ∧ Dec({(i,mi)}i∈S1

) 6=
Dec({(j,mj)}j∈S2

), when ∀i ∈ S1 VerifyOpen(vc,mi, i, πi) = 1 and ∀j ∈ S2 VerifyOpen(vc,mj , j, πj) =
1, for (S1, S2, vc, {πi}i∈[n], {mi}i∈[n]) ← A(1λ, pp) where S1 ⊂ [n] and S2 ⊂ [n] and |S1| =
|S2| = k.

17

We now show if Pr[BadEvent1] is non-negligible, the adversary can violate the position binding
property of vector commitment. Assuming BadEvent1 occurs, it is noticed Dec({(i,mi)}i∈S1

) 6=
Dec({(i,mi)}i∈S2), so {(i,mi)}i∈[n] are ill-formed coding fragments, and there exists some i ∈ S1

s.t. Enc(Dec({(i,mi)}i∈S2))[i] 6= mi and also exists some i ∈ S2 s.t. Enc(Dec({(i,mi)}i∈S1))[i]
6= mi (otherwise, Dec({(i,mi)}i∈S2

) = Dec({(i,mi)}i∈S1
)). That means, the adversary can open

vector commitment vc at some position i ∈ S2 to two different message fragments, both of
which can have valid opening proofs (where one proof is πi for mi, and the other proof is for
Enc(Dec({(i,mi)}i∈S1))[i] 6= mi and can be computed due to the correctness of vector commit-
ment). Therefore, BadEvent1 violates the property of position binding. Thus Pr[BadEvent1] is
negligible as position binding holds with overwhelming probability.

For BadEvent2, it can be similarly argued that the bad event violates the position bind-
ing property of vector commitment. Since Dec({(i,mi)}i∈S1

) 6= Dec({(i,mi)}i∈S2
), there must

exist some i ∈ S1 s.t. Enc(Dec({(i,mi)}i∈S2
))[i] 6= mi and also must exist some i ∈ S2 s.t.

Enc(Dec({(i,mi)}i∈S1))[i] 6= mi. That means, the adversary can open vector commitment vc at
some position i ∈ S2 (and also some position i′ ∈ S1) to two different message fragments. Thus
Pr[BadEvent2] is also negligible, as position binding has only negligible probability to be violated.

Lemma 1. Termination. If the sender Ps is honest and all honest parties activate PD[ID] with-
out invoking abandon(ID), then each honest party would output store and valid lock for ID s.t.
ValidateLock(ID, lock) = 1; additionally, the sender Ps outputs valid done for ID.

Proof. In case all honest parties activate PD[ID] without abandoning, all honest parties will follow
the PD protocol specified by the pseudocode shown in Algorithm 2. In addition, since the sender
Ps is honest, it also follows the protocol.

Due to the PD protocol, the honest sender firstly sends (Store, ID, store) to Pi, where the
Store message satisfies ValidateStore(i, store) = 1; after receiving the valid Store message, all
honest parties will send Stored messages back to the sender. When Ps receiving 2f+1 (the number
of honest parties at least is 2f + 1) valid Stored messages, Ps will combine these messages to
generate valid signature σ1 by Combine(2f+1) algorithm and then obtain a valid lock. After that,
Ps will send (Lock, ID, lock) to all, where the Lock message satisfies ValidateLock(ID, lock) = 1.

Next, after receiving the valid Lock message, all honest parties will send Locked message
back to the sender. When receiving 2f + 1 valid Locked message, the sender can generate valid
signature σ2 by Combine(2f+1) algorithm. Hence, the honest sender Ps can outputs a completeness
proof done = 〈vc, σ2〉, s.t. ValidateDone(ID, done) = 1.

Lemma 2. Provability. If the sender of PD[ID] can produce done s.t. ValidateDone(ID, done) = 1,
then at least f + 1 honest parties output lock s.t. ValidateLock(ID, lock) = 1.

Proof. ValidateDone(ID, done) = 1 is equivalent to that VerifyThld(2f+1)(〈Locked, ID, vc〉, σ2) = 1
due to Algorithm 1, which means that without overwhelming probability, the sender does receive at
least 2f+1 Locked message from distinct Pj to generate σ2 (otherwise the threshold signature can
be forged). With all but negligible probability, at least f +1 honest parties send Locked messages
to the sender with attaching their “partial” signatures for 〈Locked, ID, vc〉. From Algorithm 2, we
know the honest parties sends their “partial” signatures for 〈Locked, ID, vc〉 to the sender, iff they
deliver valid lock which satisfies ValidateLock(ID, lock) = 1. So this lemma holds with overwhelming
probability, otherwise it would break the unforgeability of the underlying threshold signature.

Lemma 3. If two parties Pi and Pj deliver lock and lock′ in RC[ID] and ValidateLock(ID, lock) = 1
∧ ValidateLock(ID, lock′) = 1, then lock = lock′.

Proof. When ValidateLock(ID, lock) = 1, we can assert that VerifyThld(2f+1)(〈Stored, ID, vc〉, σ1) =
1 due to Algorithm 1. According to the Algorithm 2, σ1 was generated by combining 2f+1 distinct
parties’ partial signatures for 〈Stored, ID, vc〉. Therefore, there have at least f + 1 honest parties
produced a share signature for (Stored, ID, vc).

However, if ValidateLock(ID, lock′) = 1, VerifyThld(2f+1)(〈Stored, ID, vc′〉, σ′1) = 1 also holds,
which means that there are at least f + 1 honest parties that also produce a share signature
for (Stored, ID, vc′). Hence, at least one honest party produce two different Stored message if

18

lock 6= lock′. However, every honest parties compute the share signature for Stored message at
most once for a given identifier ID. Hence, we have lock = lock′ with overwhelming probability;
otherwise, the unforgeability of the underlying unique threshold signature would be broken.

Lemma 4. Recast-ability. If all honest parties invoke RC[ID] with inputting the output of PD[ID]
and at least one honest party inputs a valid lock, then: (i) all honest parties recover a common
value ∈ {0, 1}L ∪ ⊥; (ii) if the sender dispersed v in PD[ID] and has not been corrupted before at
least one party delivers valid lock, then all honest parties recover v in RC[ID].

Proof. To prove the conclusion (i) of the Lemma, we would prove the following two statements:
first, all honest parties can output a value; second, the output of any two honest parties would be
same.

Part 1: Since at least one honest party delivers lock satisfying ValidateLock(ID, lock) = 1,
according to the Algorithm 3, it will multicast (RcLock, ID, lock) to all. Hence, all honest parties
can receive the valid lock.

Note whenever a valid lock := 〈vc, σ1〉 can be produced, there is a valid threshold signature σ1
was generated by combining 2f + 1 distinct parties’ partial signatures for (Store, ID, vc), due to
Algorithm 2. Also notice that an honest party partially signs (Store, ID, vc), iff it delivers valid
store that is bound to the commitment vc. So there are at least f + 1 honest parties deliver the
valid store that are committed to the same commitment string vc.

Thus there have at least f + 1 honest parties Pi will multicast valid (RcStore, ID, store)
message to all, due to Algorithm 3. For each honest party, they can eventually receive a valid valid
RcLock message and f + 1 valid RcStore messages, that are corresponding to the same vc. So
all parties will always attempt the decode the received fragments carried by RcStore messages
to eventually recover some value.

Part 2: From Lemma 3, all honest parties would receive valid RcLock messages with the
same lock := 〈vc, σ1〉. Therefore, each honest party can receive f + 1 valid RcStore messages,
which contain f + 1 fragments that are committed to the same vector commitment vc. Due to
Proposition 1, either every honest party Pi have VCom(Enc(Dec(C[vc]))) = vc or every honest
party Pi have VCom(Enc(Dec(C[vc]))) 6= vc. Therefore, either all honest parties return a common
value Dec(C[vc]) in {0, 1}`, or they return a special symbol ⊥.

The conclusion (i) of the Lemma holds immediately by following Part 1 and Part 2.
For the conclusion (ii) of the Lemma, if the sender Ps has not been corrupted (so-far-uncorrupted)

before at least one party delivers valid lock and passed the value v into PD[ID] as input, the sender
would at least follow the protocol to send Store messages for dispersing v. Moreover, when the
so-far-uncorrupted Ps delivers valid lock, at least f + 1 honest parties already receive the Store
messages for dispersing v, so the adversary can no longer corrupts Ps to disperse a value v′ different
from v, as it cannot produce valid lock or valid done for v′. From the proving of conclusion (i),
we know all parties would recover the value Dec(C[vc]), which must be v due to the correctness of
erasure code and vector commitment.

Lemma 5. Abandon-ability. If every party (and the adversary) cannot produce valid lock for
ID and f + 1 honest parties invoke abandon(ID), no party would deliver valid lock for ID.

Proof. From Algorithm 2, we know it needs 2f + 1 valid Stored messages to produce a valid
lock := 〈vc, σ1〉. Since any parties (including the adversary) has not yet produced a valid lock
and f + 1 honest parties invoke abandon(ID), there are at most 2f parties are participating in
the PD[ID] instance. So there are at most 2f valid Stored messages, which are computationally
infeasible for any party to produce a valid lock; otherwise, the unforgeability of underlying unique
threshold signature would not hold.

Theorem 2. The tuple of protocols described by Algorithms 2 and 3 solves asynchronous provable
dispersal broadcast (APDB) among n parties against an adaptive adversary controlling f < n/3
parties, given (i) (f + 1, n)-erasure code, (ii) n-vector commitment scheme, and (iii) established
non-interactive (2f + 1, n)-threshold signature with adaptive security.

Proof. Lemma 1, 2, 4 and 5 complete the proof.

19

Complexity analysis of APDB. Through this paper, we consider L is the input length and λ is
cryptographic security parameter (the length of signature, vector commitment, and openness proof
for commitment), then:

• PD complexities: According to the process of Algorithm 2, the PD subprotocol has 4 one-to-
all (or all-to-one) rounds. Hence, the total number of messages sent by honest parties is at most
4n, which attains O(n) messages complexity and O(1) running time. Besides, the maximal size
of messages is O(L/n+ λ), so the communication complexity of PD is O(L+ nλ).

• RC complexities: According to the process of Algorithm 3, the message exchanges appear in
two places. First, all parties multicast the RcLock messages to all, so the first parts’ messages
complexity is O(n2); second, all parties multicast the RcStore messages to all, thus the
second parts incurring O(n2) messages. Hence, the RC incurs O(n2) messages complexity and
constant running time. Besides, each RcLock message is sized to O(λ)-bit, and the size of
each RcStore message is O(L/n+λ)-bit, so the communication complexity of RC is O(n2λ)+
O(nL+ n2λ)=O(nL+ n2λ) bits.

5 Dumbo-MVBA: An Asymptotically Optimal MVBA Protocol

We now apply our dispersal-then-recast methodology to design the optimal MVBA protocol
Dumbo-MVBA, using APDB and ABA. It is secure against adaptively corrupted bn−13 c parties
and exchanges expected O(Ln+λn2) bits, which is asymptotically better than all previous results
[4,21] and optimal for sufficiently large input when L ≥ λn. Also it attains asymptotically optimal
O(1) round and O(n2) message complexities in expect.

𝑃𝐷!𝑃!

1. PD 2. Finish 3. Elect-ID

…

𝑣! 𝑑𝑜𝑛𝑒!
𝑃! 𝑃! 𝑃!

4. RC-Vote 5. RC

𝑃"𝑃"𝑃"

𝑃#𝑃#𝑃#

𝑃$ 𝑃$ 𝑃$

l

l

𝑃!

𝑃#

𝑃$

𝑃"

𝑅𝐶"𝐴𝐵𝐴"Election

… … … … ………

𝑣"

𝑣"

𝑣"

𝑣"

Go to Elect-ID

𝑣"

𝑣"

𝑣"

𝑣"

Disperse and firmly lock 2f+1 input values Sequential retrieve few dispersed values until get an external valid one

l

𝑃𝐷#𝑃"
𝑣# 𝑑𝑜𝑛𝑒#

𝑃𝐷$𝑃$
𝑣$ 𝑑𝑜𝑛𝑒$

𝑃𝐷%𝑃#
𝑣% 𝑑𝑜𝑛𝑒%

𝑃!

𝑃"

𝑃$

𝑃#

𝑃!

𝑃"

𝑃$

𝑃#

l

Fig. 1. The execution flow of Dumbo-MVBA.

5.1 Overview of Dumbo-MVBA

As illustrated in Figure 1, the basic ideas of our Dumbo-MVBA protocol are: (i) the parties disperse
their own input values through n concurrent PD instances, until they consistently realize that
enough dones proofs for the PD instances (i.e., 2n/3) have been produced, so they can make
sure that enough honest input values (i.e., n/3) have been firmly locked across the network; (ii)
eventually, the parties can exchange dones proofs to explicitly stop all PD instances; (iii) then, the
parties can invoke a common coin protocol Election to randomly elect a PD instance; (iv) later,
the parties exchange their lock proofs of the elected PD instance and then leverage ABA to vote
on whether to invoke the corresponding RC instance to recast the elected dispersal; (v) when ABA
returns 1, all parties would activate the RC instance and might probably recast a common value
that is externally valid; otherwise (i.e., either ABA returns 0 or RC recasts invalid value), they
repeat Election, until an externally valid value is elected and collectively reconstructed.

20

5.2 Construction of Dumbo-MVBA

Our Dumbo-MVBA protocol invokes the following modules: (i) asynchronous provable dispersal
broadcast APDB := (PD,RC); (ii) asynchronous binary agreement ABA against adaptive adversary;
(iii) (f+1, n) threshold signature with adaptive security; and (iv) adaptively secure (2f+1, n)-Coin
scheme (in the alias Election) that returns random numbers over [n].

Each instance of the underlying modules can be tagged by a unique extended identifier ID. These
explicit IDs extend id and are used to distinguish multiple activated instances of every underlying
module. For instance, (PD[ID],RC[ID) represents a pair of (PD, RC) instance with identifier ID,
where ID := 〈id, i〉 extends the identification id to represent a specific APDB instance with a
designated sender Pi. Similarly, ABA[ID] represents an ABA instance with identifier ID, where
ID := 〈id, k〉 and k ∈ {1, 2, . . . }.
Protocol execution. Hereunder we are ready to present the detailed protocol description (as
illustrated in Algorithm 4). Specifically, an Dumbo-MVBA instance with identifier id proceeds as:

1. Dispersal phase (line 1-2, 13-18). The n parties activate n concurrent instances of the provable
dispersal PD subprotocol. Each party Pi is the designated sender of a particular PD instance
PD[〈id, i〉], through which Pi can disperse the coded fragments of its input vi across the network.

2. Finish phase (line 3, 19-35). This has a three-round structure to allow all parties consistently
quit PD instances. It begins when a sender produces the done proof for its PD instance and
multicasts done to all parties through a Done message, and finishes when all parties receive a
Finish message attesting that at least 2f + 1 PD instances has been “done”. In addition, once
receiving valid Finish, a party invokes abandon() to explicitly quit from all PD instances.

3. Elect-ID phase (line 5). Then all parties invoke the coin scheme Election, such that they obtain
a common pseudo-random number l over [n]. The common coin l represents the identifier of a
pair of (PD[〈id, l〉],RC[〈id, l〉]) instances.

4. Recast-vote phase (line 6-9, 36-39). Upon obtaining the coin l, the parties attempt to agree on
whether to invoke the RC[〈id, l〉] instance or not. This phase has to cope with a major limit of RC
subprotocol, that the RC[〈id, l〉] instance requires all parties to invoke it to reconstruct a com-
mon value. To this end, the recast-vote phase is made of a two-step structure. First, each party
multicasts its locally recorded lock[l] through RcBallotPrepare message, if the PD[〈id, l〉]
instance actually delivers lock[l]; otherwise, it multicasts ⊥ through RcBallotPrepare mes-
sage. Then, each party waits for up to 2f + 1 RcBallotPrepare from distinct parties, if it
sees valid lock[l] in these messages, it immediately activates ABA[〈id, l〉] with input 1, other-
wise, it invokes ABA[〈id, l〉] with input 0. The above design follows the idea of biased validated
binary agreement presented by Cachin et al. in [21], and ABA[〈id, l〉] must return 1 to each
party, when f + 1 honest parties enter the phase with valid lock[l].

5. Recast phase (line 10-12). When ABA[〈id, l〉] returns 1, all honest parties would enter this phase
and there is always at least one honest party has delivered the valid lock regarding RC[〈id, l〉].
As such, the parties can always invoke the corresponding RC[〈id, l〉] instance to reconstruct a
common value vl. In case the recast value vl does not satisfy the external predicate, the parties
can consistently go back to elect-ID phase, which is trivial because all parties have the same
external predicate; otherwise, they output vl.

5.3 Analyses of Dumbo-MVBA

Here we present the detailed proofs along with the complexity analyses for our Dumbo-MVBA
construction.

Security intuition. The Dumbo-MVBA protocol described by Algorithm 4 solves asynchronous
validate byzantine agreement among n parties against adaptive adversary controlling f ≤ bn−13 c
parties, given (i) adaptively secure f -resilient APDB protocol, (ii) adaptively secure f -resilient ABA
protocol, (iii) adaptively secure (f + 1, n)-Coin protocol (in the random oracle model), and (iv)
adaptively secure (f + 1, n) threshold signatures. We highlight here the key intuitions as follows:

• Termination and safety of finish phase. If any honest party leaves the finish phase and enters
the elect-ID phase, then: (i) all honest parties will leave the finish phase, and (ii) at least 2f+1
parties have produced done proofs for their dispersals.

21

Algorithm 4 Dumbo-MVBA protocol with identifier id and external Predicate, for each party Pi
let provens← 0, RDY ← { }
for each j ∈ [n] do

let store[j]← ∅, lock[j]← ∅, rc-ballot[j]← 0
initialize a provable dispersal instance PD[〈id, j〉]

1: upon receiving input vi s.t. Predicate(vi) = true do
2: pass vi into PD[〈id, i〉] as input B dispersal phase
3: wait for receiving any valid Finish message B finish phase
4: for each k ∈ {1, 2, 3, . . . } do
5: l← Election[〈id, k〉] B elect-id phase
6: if lock[l] 6= ∅ then multicast (RcBallotPrepare, id, l, lock) B recast-vote phase
7: else multicast (RcBallotPrepare, id, l,⊥)
8: wait for rc-ballot[l] = 1 or receiving 2f+1 (RcBallotPrepare, id, l, ·) messages from distinct

parties
9: b← ABA[〈id, l〉](rc-ballot[l])

10: if b = 1 then B recast phase
11: vl ← RC[〈id, l〉](store[l], lock[l])
12: if Predicate(vl) = true then output vl

13: upon PD[〈id, j〉] delivers store do B record store[j] for each PD[〈id, j〉]
14: store[j]← store

15: upon PD[〈id, j〉] delivers lock do B record lock[j] for each PD[〈id, j〉]
16: lock[j]← lock

17: upon PD[〈id, i〉] delivers done do B multicast completeness proof done for PD[〈id, i〉]
18: multicast (Done, id, done)

19: upon receiving (Done, id, done) from party Pj for the first time do
20: if ValidateDone(〈id, j〉, done) =1 then
21: provens← provens+ 1
22: if provens = n− f then B one honest Ready⇒ n− f Done⇒ f + 1 honest Done
23: ρrdy,i ← SignShare(f+1)(ski, 〈Ready, id〉)
24: multicast (Ready, id, ρrdy,i)

25: upon receiving (Ready, id, ρrdy,j) from party Pj for the first time do
26: if VerifyShare(f+1)(〈Ready, id〉, (j, ρrdy,j)) =1 then
27: RDY ← RDY ∪ (j, ρrdy,j)
28: if |RDY | = f + 1 then B f + 1 Ready⇒ one honest Ready
29: σrdy ← Combine(f+1)(〈Ready, id〉, RDY)
30: multicast (Finish, id, σrdy) to all, if was not sent before

31: upon receiving (Finish, id, σrdy) from party Pj for the first time do
32: if VerifyThld(f+1)(〈Ready, id〉, σrdy) = 1 then B valid Finish⇒ f + 1 Ready
33: abandon(〈id, j〉) for each j ∈ [n]
34: multicast (Finish, id, σrdy) to all, if was not sent before
35: else discard this invalid message

36: upon receiving (RcBallotPrepare, id, l, lock) from Pj do
37: if ValidateLock(〈id, l〉, lock) = 1 then
38: lock[l]← lock
39: rc-ballot[l]← 1 B rc-ballot[l] = 1⇒ lock[l] is valid ⇒ PD[〈id, j〉] is recoverable

22

• Termination and safety of elect-ID phase. Since the threshold of Election is 2f + 1, A cannot
learn which dispersals are elected to recover before f + 1 honest parties explicitly abandon all
dispersals, which prevents the adaptive adversary from “tampering” the values dispersed by
uncorrupted parties. Moreover, Election terminates in constant time.

• Termination and safety of recast-vote and recast. The honest parties would consistently obtain
either 0 or 1 from recast-vote. If recast-vote returns 1, all parties invoke a RC instance to recast
the elected dispersal, which will recast a common value to all parties. Those cost expected
constant time.

• Quality of recast-vote and recast. The probability that recast-vote returns 1 is at least 2/3.
Moreover, conditioned on recast-vote returns 1, the probability that the recast phase returns
an externally valid value is at least 1/2.

Security proof of Dumbo-MVBA. Now we prove our Algorithm 4 satisfies all properties of
MVBA with all but negligible probability.

Lemma 6. Suppose a party Pl multicasts (Done, id, done), where ValidateDone(〈id, l〉, done) =1.
If all honest parties participate in the ABA[〈id, l〉] instance, then the ABA[〈id, l〉] returns 1 to all.

Proof. If a party Pl did multicast a valid (Done, id, done), we know at least f + 1 honest parties
delivers valid lock[l] s.t. ValidateLock(ID, lock[l]) = 1, due to the Provability properties of APDB.
Then according to the pseudocode of Algorithm 4, at least f + 1 honest parties will multicast
valid (RcBallotPrepare, id, l, lock) to all. In this case, since all honest parties need to wait for
2f+1 RcBallotPrepare messages from distinct parties, then all honest parties must see a valid
(RcBallotPrepare, id, l, lock) message. Therefore, all honest parties would input 1 to ABA[〈id, l〉]
instance. From the validity properties of the ABA protocol, we know that the ABA[〈id, l〉] returns
1 to all.

Lemma 7. Suppose all honest parties participate the ABA[〈id, l〉] instance and ABA[〈id, l〉] return
1 to all. If all honest parties invoke RC[〈id, l〉], then the RC[〈id, l〉] will return a same value to
all honest parties. Besides, if Pl (sender) is an honest party, then the RC[〈id, l〉] will return an
externally validated value.

Proof. Since the ABA[〈id, l〉] returns 1, we know at least one honest party inputs 1 to ABA, due to
the validity properties of ABA. It also means that at least one honest party Pi receives a message
(RcBallotPrepare, id, l, lock) which satisfies ValidateLock(〈id, l〉, lock) = 1. According to the
Recast-ability properties of APDB, all honest parties will terminate in RC[〈id, l〉], and recover a
common value, conditioned on all honest parties invoke RC[〈id, l〉].

In addition, if Pl is an honest party, Pl always inputs an externally valid value to PD[〈id, l〉],
due to the Recast-ability properties of APDB, the RC[〈id, l〉] will return the exactly same valid value
to all parties.

Lemma 8. If an honest party invokes Election[〈id, k〉], then at least 2f + 1 distinct PD instances
have completed, and all honest parties also invoked Election[〈id, k〉].

Proof. Suppose an honest party Pi invokes Election[〈id, k〉], then it means that Pi receives a valid
Finish message. It also means that at least f+1 parties multicast valid Ready message, it implies
that at least one honest party received 2f + 1 valid Done messages from distinct parties. Since
each Done message can verify the PD instance is indeed completed, at least 2f + 1 distinct PD
instances have been completed.

In addition, for k = 1, before an honest party invokes Election[〈id, 1〉], it must multicast the
valid Finish message, if it was not sent before. For the other honest parties, they will also invoke
the Election[〈id, 1〉], upon receiving a valid Finish message. For k > 1, without loss of generality,
suppose an honest party Pi halts after invoking Election[〈id, k〉], and another honest party Pj halts
after invoking Election[〈id, k′〉], where k′ > k. However, according the agreement of ABA, all honest
parties will output the same bit 0 (not recast) or 1 (to recast); in addition, according to the recast-
ability properties of APDB, all honest parties will recover the same value if ABA returns 1. So, if

23

Pi halts after invoking Election[〈id, k〉], Pj shall also halt after invoking Election[〈id, k〉]. Hence, the
honest party Pj would not enter Election[〈id, k′〉], when another honest party Pi would not invoke
Election[〈id, k′〉].

Lemma 9. Termination. If every honest party Pi activates the protocol on identification id with
proposing an input value vi such that Predicate(vi) = true, then every honest party outputs a value
v for id in constant time.

Proof. According to Algorithm 4, the Dumbo-MVBA protocol first executes n concurrent PD in-
stances. Since all honest parties start with externally valid values and all massages sent among
honest parties have been delivered, from the termination of APDB, if no honest party abandons
the PD, any honest parties can know at least n − f PD instances have completed; if any honest
party abandons the PD instances, it means that this party has seen a valid Finish messages, which
attests at least n− f PD instances have completed.

When an honest party learns at least n − f PD instances have completed, it will invoke
Election[〈id, k〉] to elect a random number l. From Lemma 8, we know all other honest parties
also will invoke Election[〈id, k〉]. In addition, all honest parties will input a value to ABA[〈id, l〉],
from the termination and agreement properties of ABA, the ABA[〈id, l〉] will return a same value
to all. Next, let us consider three following cases:

• Case 1: ABA[〈id, l〉] returns 1 to all. According to the recast-ability properties of APDB, the
RC[〈id, l〉] instance will terminate and recover a same value to all. The recast value can be valid
and satisfy the global Predicate, then this value will be decided as output by all parties.

• Case 2: ABA[〈id, l〉] returns 1 to all. Due to the recast-ability of APDB, the RC[〈id, l〉] instance
will terminate and recover a same value to all. The value can be invalid due to the global
external Predicate, the honest parties will repeat Election, until Case 1 occasionally happens.

• Case 3: If ABA[〈id, l〉] returns 0 to all, then the honest parties will repeat Election, until Case
1 occasionally happens.

Now, we prove that the protocol terminates, after sequentially repeating ABA (and RC). Recall all
honest parties start with dispersing externally valid values, so after Election[〈id, k〉] returns l for
every k ≥ 1, the probability that Pl is honest and completes PD[〈id, l〉] is at least p = 1/3. Due to
the unbiasedness of Election, the coin L returned by Election is uniform over [n].

As such, let the event Ek represent that the protocol does not terminate when Election[〈id, k〉]
has been invoked, so the probability of the event Ek, Pr[Ek] ≤ (1− p)k. It is clear to see Pr[Ek] ≤
(1 − p)k → 0 when k → ∞, so the protocol eventually halts. Moreover, let K to be the random
variable that the protocol just terminates when k = K, so E[K] ≤

∑∞
K=1K(1−p)K−1p = 1/p = 3,

indicating the protocol terminates in expected constant time.

Lemma 10. External-Validity. If an honest party outputs a value v for id, then Predicate(v) =
true.

Proof. According to Algorithm 4, when an honest party outputs a value v, there is always Predicate(v) =
true. Therefore, the external-validity trivially holds.

Lemma 11. Agreement. If any two honest parties output v and v′ for id respectively, then v = v′.

Proof. From lemma 8, we know if an honest party invokes Election[〈id, k〉], then all honest parties
also invoke Election[〈id, k〉]. From the agreement properties of Election, all honest parties get the
same coin l. Hence, all honest parties will participate in the same ABA[〈id, l〉] instance. Besides, due
to the agreement of ABA, all honest parties will get a same bit b. Hence, upon ABA[〈id, l〉] = 1, then
all honest parties will participate in the same RC[〈id, l〉] instance. According to the recast-ability
property of APDB, all honest parties must output the same value.

Lemma 12. Quality. If an honest party outputs v for id, the probability that v was proposed by
the adversary is at most 1/2.

24

Proof. Due to Lemma 8, as long as an honest party activates Election, at least 2f + 1 distinct
PD instances have completed, which means these PD instances’ senders can produce valid com-
pleteness done proofs. Moreover, if any honest party invokes Election[〈id, k〉], all honest parties will
eventually invoke Election[〈id, k〉] as well. Suppose Election[〈id, k〉] returns l, then all honest parties
will participate in the ABA[〈id, l〉] instance. If the sender Pl has completed the PD protocol, due
to Lemma 6, the ABA[〈id, l〉] will return 1 to all.

Then, if ABA[〈id, l〉] returns 0, all parties will go to the next iteration to enter Election[〈id, k+1〉];
otherwise, ABA[〈id, l〉] returns 1, all honest parties will participate in the RC[〈id, l〉] instance, and
the RC[〈id, l〉] instance will return a common value to all parties, due to Lemma 7.

Let Pa to denote the set of the parties that are already corrupted by the adversary, when the
adversary can tell the output of Election with non-negligible probability. Due to the unpredictability
property of Election, upon the adversary can realize the output of Election, at least f + 1 honest
parties have already activated Election and therefore have abandoned all PD instances. This further
implies that, once the adversary realizes the output of Election, the adversary can no longer disperse
adversarial values by adaptively corrupting any so-far-uncorrupted senders outside Pa.

Moreover, when the adversary is able to predicate the output of Election, at least 2f + 1 PD
instances have been completed, out of which at most |Pa| instances are dispersed by the adversary.
Therefore, we consider the worst case that: (i) only f + 1 honest parties have completed their PD
instances, and (ii) |Pa| = f and these f PD instances sent by the adversary have completed. In
addition, due to the unbiasedness property of Election, the adversary cannot bias the distribution
of the output of Election. So Election[〈id, k〉] returns a coin l that is uniformly sampled over [n],
which yields the next three cases for any k ∈ {1, 2, . . . }:

• Case 1: If the sender Pl has not completed the PD instance yet, and the ABA[〈id, l〉] returns 0,
then repeats Election, the probability of this case at most is 1/3; in such the case, the protocol
would go to Election to repeat;

• Case 2: If the sender Pl has completed the PD protocol and the sender’ input was determined
by the adversary (which might or might not be valid regarding the global predicate), the
probability of this case at most is 1/3;

• Case 3: If the sender Pl has completed the PD protocol and the sender’ input was not deter-
mined by the adversary, the probability of this case at least is 1/3;

Hence, the probability of deciding an output value v proposed by the adversary is at most∑∞
k=1(1/3)k = 1/2.

Theorem 3. In random oracle model, the protocol described by Algorithm 4 (Dumbo-MVBA) real-
izes asynchronous validate byzantine agreement among n parties against adaptive adversary control-
ling f < n/3 parties, given (i) f -resilient APDB protocol against adaptive adversary, (ii) f -resilient
ABA protocol against adaptive adversary, and (iii) adaptively secure non-interactive (2f+1, n) and
(f + 1, n) threshold signatures.

Proof. Lemma 9, 10, 11 and 12 complete the proof.

Complexity analysis of Dumbo-MVBA. The Dumbo-MVBA achieves: (i) asymptotically optimal
round and message complexities, and (ii) asymptotically optimal communicated bits O(Ln+ λn2)
for any input L ≥ λn.

According to the pseudocode of algorithm 4, the breakdown of its cost can be briefly summarized
in the next five phases: (i) the dispersal phase that consists of the n concurrent PD instances; (ii)
the finish phase which is made of three all-to-all multicasts of Done, Ready and Finish messages;
(iii) the elect-ID phase where is an invocation of Election; (iv) the recast-vote phase that has one
all-to-all multicast of RcBallotPrepare messages and an invocation of ABA instance; (v) the
recast phase where is to executes an RC instance.

Due to the complexity analysis of APDB in section 4.3, we know the PD’s message complexity
is O(n) and its communication complexity is O(L + nλ); the RC’s message complexity is O(n2)
and its communication complexity is O(nL+ n2λ). So the complexities of Dumbo-MVBA protocol
can be summarized as:

25

• Round complexity: The protocol terminates in expected constant running time due to
Lemma 9.

• Message complexity: In the dispersal phase, there are n PD instances, each of which incurs
O(n) messages. In the finish phase, there are three all-to-all multicasts, which costs O(n2)
messages. In the elect phase, there is one common coin, that incurs O(n2) messages. In the rc-
vote phase, there is one all-to-all multicast and one ABA instance, which incurs O(n2) messages.
In recast phase, there is only one RC instance, thus yielding O(n2) messages. Moreover, the
elect phase, the rc-vote-phase, and the recast phase would be repeated for expected 3 times.
To sum up, the overall message complexity of the Dumbo-MVBA protocol is O(n2).

• Communication complexity: In the dispersal phase, there are n PD instances, each of
which incurs O(L + nλ) bits. In the finish phase, there are three all-to-all multicasts, which
corresponds to O(n2) λ-bit messages. In the elect-ID phase, there is one common coin, that
incurs O(n2λ) bits. In the recast-vote phase, there is one all-to-all multicast and one ABA
instance, thus incurring O(n2) messages, each of which contains at most λ bits. In the recast
phase, there is only one RC instance, thus yielding O(n2) messages, each of which contains at
most O(L + nλ) bits. Moreover, the elect phase and the rc-vote phase would be repeated for
expected 3 times, and the recast phase would be repeated for expected 2 times. Hence, the
communication complexity of the Dumbo-MVBA protocol is O(nL+ n2λ).

Note if considering L ≥ O(nλ), the Dumbo-MVBA protocol realizes optimal communication
complexity O(nL). Later in Section, we will show that L ≥ O(nλ) represents many typical appli-
cations of MVBA protocols, in particular when constructing asynchronous common subset (which is
a critical building block that can bridge MVBA to a broader array of applications like asynchronous
atomic broadcast and asynchronous multiparty computation).

6 Dumbo-MVBA?: Generic Communication-Efficient MVBA Framework

The dispersal-then-recast methodology can also be applied to bootstrap any existing MVBA
to realize optimal communication for sufficiently large input. We call this extension protocol
Dumbo-MVBA?. The key idea is to invoke the underlying MVBA with taking as input the small-size
proofs of APDB. Though Dumbo-MVBA? is a “reduction” from MVBA to MVBA itself, an advanced
module instead of more basic building block such as binary agreement, this self-bootstrap tech-
nique can better utilize MVBA to achieve a simple modular design as explained in Figure 2, and
we note it does not require the full power of APDB (and thus can potentially remove the rounds
of communication generating the done proof).

𝑃𝐷!
𝑃𝐷"
𝑃𝐷#

𝑃𝐷$

𝑃!

1. PD 2. Elect-ID

…

𝑣!

𝑣"

𝑣#

𝑣$

𝑃"

𝑃#

𝑃$

𝑙𝑜𝑐𝑘# 𝑃!

𝑃"

𝑃#

𝑃$

𝑃!

3. RC

𝑃"

𝑃$

𝑃!

𝑃"

𝑅𝐶%
𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔

MVBA… … … …

𝑣%

𝑣%

𝑣%

𝑣%

Go to 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑀𝑉𝐵𝐴

𝑣%

𝑣%

𝑣%

𝑣%

𝑃$

𝑃#

𝑙𝑜𝑐𝑘!

𝑙𝑜𝑐𝑘"

𝑙𝑜𝑐𝑘$

𝑙𝑜𝑐𝑘#

𝑙𝑜𝑐𝑘$

𝑙𝑜𝑐𝑘%

𝑙𝑜𝑐𝑘%

𝑃#

Fig. 2. The execution flow of Dumbo-MVBA?.

6.1 Overview of Dumbo-MVBA? framework

As shown in Figure 2, the generic framework still follows the idea of dispersal-then-recast: (i)
each party disperses its own input value and obtains a lock proof attesting the recast-ability of
its own dispersal; (ii) then, the parties can invoke any existing MVBA as a black-box to “elect” a

26

valid lock proof, and then recover the already-dispersed value, until all parties recast and decide
an externally valid value.

This generic Dumbo-MVBA? framework presents a simple modular design that can enhance any
existing MVBA protocol to achieve optimal communication for sufficiently large input, as long as
the underlying MVBA protocol has quality property to ensure a constant probability of deciding
some honest parties’ input as output. In particular, when instantiating the framework with using
the MVBA protocol due to Abraham et al. [4] or Guo et al. [42], we can obtain a couple of other
communication-optimal MVBA instantiations that outperform the state-of-the-art and achieve only
O(nL + n2λ) communication complexity. Moreover, our Dumbo-MVBA? framework also ensures
that the resulting MVBA instantiations can preserve asymptotically optimal round and message
complexities.

Algorithm 5 The Dumbo-MVBA? protocol with identification id and external Predicate(), for each
party Pi

let MVBAunder[〈id, k〉] to be an MVBA instance which takes as input string lockproof and is parame-
terized by the next external predicate:

PredicateElection(lockproof) ≡ (lockproof can be parsed as 〈i, locki〉) ∧
(ValidateLock(〈id, i〉, locki) ∧ i ∈ [n])

for each j ∈ [n] do
let store[j]← ∅ and initialize an instance PD[〈id, j〉]

1: upon receiving input vi s.t. Predicate(vi) = 1 do
2: pass vi into PD[〈id, i〉] as input B provable dispersal phase
3: wait for PD[〈id, i〉] delivers locki
4: for each k ∈ {1, 2, 3, . . . } do
5: 〈l, lockl〉 ← MVBAunder[〈id, k〉](〈i, locki〉) B elect a finished dispersal to recast
6: vl ← RC[〈id, l〉](store[l], lockl)
7: if Predicate(vl) = true then output vl

8: upon PD[〈id, j〉] delivers store do B record store[j] for each PD[〈id, j〉]
9: store[j]← store

6.2 Construction of Dumbo-MVBA?

Here is our generic Dumbo-MVBA? framework. Informally, a Dumbo-MVBA? instance with identi-
fication id (as illustrated in Algorithm 5) proceeds as:

1. Dispersal phase (line 1-3, 8-9). n concurrent PD instances are activated. Each party Pi is the
designated sender of the instance PD[〈id, i〉], through which Pi disperses its input’s fragments
across the network.

2. Elect-ID phase (line 4-5). As soon as the party Pi delivers locki during its dispersal instance
PD[〈id, i〉], it takes the proof locki as input to invoke a concrete MVBA instance with identifier
〈id, k〉, where k ∈ {1, 2, . . . }. The external validity of underlying MVBA instance is specified to
output a valid lockl for any PD instance PD[〈id, l〉].

3. Recast phase (line 6-7). Eventually, the MVBA[〈id, k〉] instance returns to all parties a common
lockl proof for the PD[〈id, l〉] instance, namely, MVBA elects a party Pl to recover its dispersal.
Then, all honest parties invoke RC[〈id, l〉] to recover a common value vl. If the recast vl is
not valid, every party Pi can realize locally due to the same global Predicate, so each Pi can
consistently go back the elect-ID phase to repeat the election by running another MVBA[〈id, k+
1〉] instance with still passing locki as input, until a valid vl can be recovered by an elected
RC[〈id, l〉] instance.

27

6.3 Analyses of Dumbo-MVBA?

Here we present the detailed proofs along with the complexity analyses for our Dumbo-MVBA?
construction.

Security intuition. The Dumbo-MVBA? protocol described by Algorithm 5 realizes (optimal)
MVBA among n parties against adaptive adversary controlling f ≤ bn−13 c parties, given (i) f -
resilient APDB protocol against adaptive adversary (with all properties but abandon-ability and
provability), (ii) adaptively secure f -resilient MVBA protocol. The key intuitions of Dumbo-MVBA?
as follows:

• The repetition of the phase (2) and the phase (3) can terminate in expected constant time, as
the quality of every underlying MVBA instance ensures that there is at least 1/2 probability
of electing a PD instance whose sender was not corrupted before invoking MVBA.

• As such, the probability of not recovering any externally valid value to halt exponentially
decreases with the repetition of elect-ID and recast. Hence only few (i.e., two) underlying
MVBA instances and RC instances will be executed on average.

Security proof of Dumbo-MVBA?. Now we prove that Algorithm 5 satisfies all properties of
MVBA except with negligible probability.

Lemma 13. Suppose a party Pi delivers 〈l, lockl〉 in any MVBAunder[〈id, k〉] that k ∈ [n], then
all honest parties would invoke RC[〈id, l〉] and recover a common value from RC[〈id, l〉]. Besides, if
Pl (i.e., the sender of PD[〈id, l〉]) was not corrupted before lockl was delivered, then the RC[〈id, l〉]
returns a validated value.

Proof. If any honest party delivers 〈l, lockl〉 in any MVBAunder instance, all honest parties deliver
the same 〈l, lockl〉 in this MVBAunder instance, so all honest parties would invoke RC[〈id, l〉]. More-
over, due to the specification of PredicateElection shown in Algorithm 5, all honest parties deliver
〈l, lockl〉, s.t. ValidateLock(〈id, l〉, lockl) = 1. According to the recast-ability property of APDB, all
honest parties (that invoke RC[〈id, l〉]) will terminate and output the same value (or the same ⊥).
In addition, the recast-ability property also states: conditioned on that Pl was not corrupted before
delivering lockl and it took as input a valid value vl to disperse in PD[〈id, l〉], the RC[〈id, l〉] will
return to all parties the valid value vl.

Lemma 14. Termination. If every honest party Pi activates the protocol on identification id with
proposing an input value vi such that Predicate(vi) = true, then every honest party outputs a value
v for id. Moreover, if the expected running time of the underlying MVBAunder is O(polyrt(n)),
Dumbo-MVBA? is expected to run in O(polyrt(n)) time.

Proof. According to Algorithm 5, Dumbo-MVBA? firstly executes n concurrent PD instance. From
the termination of APDB: if a sender Ps is honest and all honest parties activate PD[〈id, s〉]
without abandoning, then the honest sender Ps can deliver locks for identification 〈id, s〉 s.t.
ValidateLock(〈id, s〉, locks) = 1.

In case every honest party Pi passes an input to its PD instance, all honest parties can deliver
a lock proof lock from PD, which satisfies the PredicateElection of MVBAunder[〈id, k〉]. Hence, each
honest party Pi will pass a valid 〈i, locki〉 as input into MVBAunder[〈id, k〉] for each iteration
k ∈ [n]. Following the agreement and termination of MVBA, all honest parties can get the same
output 〈l, lockl〉 from each MVBAunder[〈id, k〉] instance.

Due to the external-validity of the underlying MVBA, the output 〈l, lockl〉 of each MVBAunder[〈id, k〉]
shall satisfy PredicateElection(id, l, lockl) = 1. After MVBAunder[〈id, k〉] returns 〈l, lockl〉, the RC[〈id, l〉]
will be invoked and return a same value vl to all in constant time due to Lemma 13. Let us consider
two cases for any k ∈ {1, 2, . . . } as follows:

• Case 1: If the value vl returned by RC[〈id, l〉] is valid, then output the value.
• Case 2: If the value vl returned by RC[〈id, l〉] is not valid, the parties will go back to the

elect-ID phase to execute MVBAunder[〈id, k + 1〉], until a valid value will be decided.

28

Now, we prove that the honest parties would terminate in expected constant time, except with
negligible probability. Due to the quality properties of the MVBA, the probability that 〈l, lockl〉
was proposed by the adversary is at most 1/2 for each MVBAunder instance with different identifi-
cation 〈id, k〉. In addition, due to the recast-ability of APDB, whenever MVBAunder[〈id, k〉]’s output
〈l, lockl〉 was not proposed by the adversary, a valid value can be collectively recovered by all honest
parties due to RC[〈id, l〉]. So the probability that an externally valid vl is recover after invoking
each MVBAunder[〈id, k〉] is at least p = 1/2. Let the event Ek represent that the protocol does not
terminate when MVBAunder[〈id, k〉] has been invoked for k times, so the probability of the event
Ek, Pr[Ek] ≤ (1 − p)k. It is clear to see Pr[Ek] ≤ (1 − p)k → 0 when k → ∞, so the protocol
eventually halts. Moreover, let K to be the random variable that the protocol just terminates when
k = K, so E[K] ≤

∑∞
K=1K(1−p)K−1p = 1/p = 2, indicating the protocol is expected to terminate

after sequentially invoking MVBAunder[〈id, k〉] twice.

Lemma 15. External-Validity. If an honest party outputs a value v for id, then Predicate(v) =
true.

Proof. According to Algorithm 5, when an honest party outputs a value, Predicate(v) = true.
Therefore, the external-validity trivially follows.

Lemma 16. Agreement. If any two honest parties output v and v′ for id respectively, then v = v′.

Proof. From the agreement property of MVBA, all honest parties get the same output 〈l, lockl〉.
Hence, all honest parties will participate in the common RC[〈id, l〉] instance. Moreover, due to the
recast-ability property of APDB, all honest parties will recover the same value from each invoked
RC[〈id, l〉]. In addition, all honest parties have the same a-priori known predicate, and they output
only when the recast value from RC[〈id, l〉] satisfying this global predicate. Thus the decided output
of any two honest parties must be the same.

Lemma 17. Quality. If an honest party outputs v for id, the probability that v was proposed by
the adversary is at most 1/2.

Proof. Due to the external-validity and agreement properties of the underlying MVBAunder, every
honest party can get the same output 〈l, lockl〉 from MVBAunder[〈id, k〉] which satisfies the external
PredicateElection, namely, locki is the valid lock proof for the sender Pl’s dispersal instance due to
ValidateLock(〈id, l〉, lockl) = true.

Then, all honest parties will participate in the same RC[〈id, l〉] instance, according to Algorithm
5. From Lemma 13, we know the RC[〈id, l〉] will terminate and output a common value vl to all.
Because of the quality properties of the MVBA, the probability that 〈l, lockl〉 was proposed by the
adversary is at most 1/2. So RC[〈id, l〉] returns a value vl that might correspond the next two cases:

• Case 1: The sender Pl was corrupted by A (before delivering lockl);

• Case 2: The sender Pl was not corrupted by A (before delivering lockl), and executing
RC[〈id, l〉] must output the valid value proposed by this sender (when it was not corrupted),
due to the recast-ability of APDB;

Due to the fairness of underlying MVBAunder, the probability of Case 1 is at most 1/2, while
the probability of Case 2 is at least 1/2, so the probability of deciding a value vl was proposed by
the adversary is at most 1/2.

Theorem 4. The protocol described by Algorithm 5 (Dumbo-MVBA?) realizes asynchronous vali-
date Byzantine agreement among n parties against adaptive adversary controlling f < n/3 parties,
given (i) f -resilient APDB protocol against adaptive adversary, and (ii) f -resilient MVBA protocol
against adaptive adversary.

Proof. Lemma 14, 15, 16, and 17 complete the proof.

29

Table 3. Asymptotic performance of MVBA when it compiles any underlying MVBA pro-
tocol with L-bit input (here the underlying MVBA has round, message and communication
complexities of O(polyrc(n)), O(polymc(n)) and O(polycc(L, λ, n)), respectively)

Round Compl. Message Compl. Comm. Compl. (bits)

underlying MVBA to compile O(polyrc(n)) O(polymc(n)) O(polycc(L, λ, n))

Dumbo-MVBA? instantiation O(polyrc(n)) O(polymc(n)) O(Ln+ λn2 + polycc(λ, λ, n))

Complexity analysis of Dumbo-MVBA?. According to the pseudocode of Algorithm 5, the
cost of Dumbo-MVBA? is incurred in the next three phase: (i) the dispersal phase consisting of
n concurrent PD instances; (ii) the elect-ID phase consisting of few expected constant number
(i.e., two) of underlying MVBA instances; (iii) the recast phase consisting of few expected constant
number (i.e., two) of RC instances.

Recall the complexities of PD and RC protocols: PD costs O(n) messages, O(L+ nλ) bits, and
O(1) running time; RC costsO(n2) messages,O(nL+n2λ) bits, andO(1) running time. Suppose the
underlying MVBA module incurs expected O(polyrt(n)) running time, expected O(polymc(n)) mes-
sages, and expected O(polycc(L, λ, n)) bits, where O(polymc(n)) ≥ O(n2) and O(polycc(L, λ, n)) ≥
O(Ln + n2) due to the lower bounds of adaptively secure MVBA. Thus, the complexities of
Dumbo-MVBA? can be summarized as:

• Running time: Since PD and RC are deterministic protocols with constant running timing,
the running time of Dumbo-MVBA? is dominated by the underlying MVBA module, namely,
O(polyrt(n)).

• Message complexity: The message complexity of n PD instances (or a RC instance) is O(n2).
The message complexity of the underlying MVBA is O(polymc(n)), where O(polymc(n)) ≥
O(n2). As such, the messages complexity of Dumbo-MVBA? is dominated by the underlying
MVBA protocol, namely, O(polymc(n)).

• Communication complexity: The communication of n concurrent PD instances (or a RC
instance) is O(nL+ n2λ). The underlying MVBA module incurs O(polycc(λ, λ, n)) bits. So the
overall communication complexity of Dumbo-MVBA? is O(Ln+ λn2 + polycc(λ, λ, n)).

As shown in Table 3, Dumbo-MVBA? reduces the communication of the underlying MVBA from
O(polycc(L, λ, n)) to O(Ln + λn2 + polycc(λ, λ, n)), which removes all superlinear terms factored
by L in the communication complexity. In particular, for sufficiently large input whose length
L ≥ max(λn, polycc(λ, λ, n)/n), Dumbo-MVBA? coincides with the asymptotically optimal O(nL)
communication.

Concrete instantiation. Dumbo-MVBA? can be instantiated by extending any existing MVBA
protocols with quality, for example, the ones due to Abraham et al. [4] and Guo et al. [42]. Moreover,
both mentioned MVBA protocols cost expected O(1) rounds, O(n2) messages, and O(n2L+ n2λ)
bits, it is clear that our Dumbo-MVBA? framework can extend them to attain O(nL + n2λ) bits
without scarifying the asymptotically optimal round and message complexities. Note if considering
O(L) ≥ O(nλ), the above instantiation of Dumbo-MVBA? also realizes asymptotically optimal
O(nL) communication complexity.

7 Application to Asymptotically Optimal ACS Instantiation

Given Dumbo-MVBA protocols at hand, it becomes straightforward to realize a communication-
efficient asynchronous common subset (ACS) protocol with only quadratic communication cost of
O(`n2 + λn2). Here ` is the bit-length of ACS input, and when ` ≥ λ, the communication cost
O(`n2) becomes asymptotically optimal, as the output syntax of ACS explicitly implies a trivial
communication lower bound of Ω(`n2) because every party has to output a (n−f)-sized subset of all
parties’ inputs. This Section would elaborate on how to achieve the result by using Dumbo-MVBA
to improve the ACS construction of Cachin et al. in [21] and discuss its further applications.

30

7.1 Asymptotically optimal ACS instantiation from Dumbo-MVBA

As discussed in Introduction, ACS is usually the intermediate “bridge” to realize ABC [21,59] and
AMPC [14,56,27]. To construct ACS, a few efficient reductions to MVBA were studied [21,43,42] and
have demonstrated real-world practicality. Hinted by those relevant studies, it becomes enticing to
improve these MVBA-based ACS protocols (e.g., CKPS-ACS in [21]) by plug in our Dumbo-MVBA
protocols to replace earlier burdensome building block, which might also cause immediate im-
provements to ABC and AMPC. Let us begin with briefly reviewing the syntax and properties of
ACS.

Definition 4. A protocol among n parties with maximal tolerance up to f adaptive corruption is
said to be an asynchronous common subset (ACS) protocol, if it allows each parties to take as input
a value and then collectively output a common subset of all the parties’ input values. In addition,
it satisfies the following properties, in the asynchronous authenticated message-passing model (c.f.
Section 2), with all but except negligible probability:

• Agreement. If any two honest parties output, then their output sets must be same;
• Validity. If an honest party outputs a set S, then |S| ≥ n− f and S contains the input values

from at least n− 2f honest parties;
• Totality. If n − f honest parties invoke the protocol with taking an input, then all honest

parties can output.

We will take the ACS construction due to Cachin et al. [21] (CKPS-ACS) as an example to
explain the application of Dumbo-MVBA to ACS. Recall that CKPS-ACS requires a bulletin public
key infrastructure, such that the corresponding public key pki of each Pi is known by everyone in
the system. Also, let Sign and Verify to be the signing and verification algorithms of some digital
signature scheme that is of existential unforgeability under adaptive chosen message attacks [41].
Then, CKPS-ACS can take advantage of MVBA’s external validity to solicit a set of n−f message-
signature pairs from distinct parties. As illustrated in Algorithm 6, the protocol has two main
phases that proceed as follows:

• Diffuse signed messages (line 1-6). Once a party receives an input value, it signs the value
and broadcasts the value-signature pair to all parties; each party would wait for 2f + 1 such
value-signature pairs sent from distinct parties;
• Decide output subset (line 7-9). Each party proposes the set Q of value-signature pairs to an

adaptively secure MVBA instance with a properly defined external predicate (e.g., denoted by
MVBAacs), and waits this MVBA instance to return a set Q′ of n − f value-signature pairs
from distinct parties; then it can output S, namely, the values in Q′.

Algorithm 6 CKPS-ACS with identifier ID (for each party Pi), excerpted from Fig 3 in [21]

let Q = ∅
let MVBAacs[ID] to be an MVBA instance which takes as input Q and is parameterized by the next
external predicate:

Predicate(Q) ≡ (Q can be parsed as {(j, vj , σj)}) ∧ (|Q| = n− f) ∧
(∀ (j, vj , σj) ∈ Q, Verifyj(σj , 〈ID, vj〉)) ∧ (∀ two (j1, vj1σj1) and (j2, vj2 , σj2) ∈ Q, j1 6= j2).

1: upon receiving input vi do
2: σi ← Signi(〈ID, vi〉)
3: multicast (Diffuse, ID, vi, σi) to all parties

4: upon receive (Diffuse, ID, vj , σj) message from Pj for the first time do
5: if Verifyj(σj , 〈ID, vj〉)=1 then
6: Q = Q ∪ (j, vj , σj)

7: upon |Q| = n− f do
8: Q′ ← MVBAacs[ID](Q) B Here MVBAacs is instantiated by one of Dumbo-MVBA protocols
9: output S = {vj | (·, vj , ·) ∈ Q′}

31

The concrete performance of CKPS-ACS heavily depends on the actual instantiation of un-
derlying MVBAacs. Prior to this study, existing MVBA protocols [21,4] have a O(Ln2)-term in
communication cost (where L is the bit length of MVBA input), thus resulting in burdensome cu-
bic communicated bits during CKPS-ACS’s execution. Nevertheless, thanks to the improvements
achieved by our Dumbo-MVBA protocols, we can use Dumbo-MVBA directly to instantiate CKPS-
ACS, realizing a better CKPS-ACS instantiation (denoted by CKPS-ACS-D for short through the
paper). CKPS-ACS-D improves the communication cost of earlier CKPS-ACS instantiations by an
O(n) factor, so only expected quadratic bits would be sent (by honest parties). Besides, CKPS-ACS-
D remains the asymptotically optimal message and round complexities and attains the maximal
tolerance against up to n/3 adaptive Byzantine corruption.

7.2 Analyses of the ACS instantiation from Dumbo-MVBA

Here we present detailed analyses of our efficient ACS instantiation CKPS-ACS-D.

Security proof of CKPS-ACS-D. Noticeably, CKPS [21] did not explicitly abstract a function-
ality of ACS and hence did not prove their implicit ACS construction satisfies the properties of ACS
according to Definition 4, we thus also give such proofs for sake of completeness.

Lemma 18. Agreement and totality. Algorithm 6 satisfies the agreement and totality properties
of ACS except with negligible probability.

Proof. We prove agreement through proof by contradiction: due to lines 8 and 9, if Algorithm 6
does not satisfy agreement, the agreement of underlying MVBAacs is also broken, which leads to a
contradiction since MVBAacs satisfies Definition 1.

Totality can also be proven by proof by contradiction. There are at least n− f parties that are
honest through the course of the protocol. Conditioned on all honest parties start ACS, every honest
party must receive a set of value-signature pairs satisfying MVBAacs’s external validity condition.
Hence, all honest parties would invoke MVBAacs with externally valid input. Assuming Algorithm 6
might not satisfy totality, it would break the termination property of underlying MVBAacs, leading
to contradiction.

Lemma 19. Validity. If an honest party outputs a set S, then |S| ≥ n− f and S contains inputs
from at least n− 2f honest parties.

Proof. Proof by contradiction: according to the external validity condition of MVBAacs and the
pseudocode of lines 8 and 9, if Algorithm 6 does not satisfy the validity property of ACS, then
either the external validity of MVBAacs or the unforgeability of digital signature is broken.

Theorem 5. In the authenticated setting, the protocol described by Algorithm 6 solves asynchronous
common subset (ACS) among n parties against adaptive adversary controlling f < n/3 parties,
given f -resilient MVBA protocol against adaptive adversary.

Proof. Lemmas 18 and 19 complete the proof.

Complexity analysis of CKPS-ACS-D. The complexity of Algorithm 6 is incurred in the follow-
ing two phases: (i) everyone multicasts its digitally signed ACS input to all parties; (ii) all parties
collectively execute a specific MVBAacs instance with taking a set of n− f message-signature pairs
as input. We let MVBAacs to be instantiated by our Dumbo-MVBA protocols. Considering the
input length of ACS to be `, the complexities of CKPS-ACS-D can be analyzed as follows:

• Round complexity: Considering that the multicasts of input values are deterministic process
with constant rounds, the round complexity of Algorithm 6 would be dominated by its under-
lying MVBAacs protocol. Recall we instantiate MVBAacs by Dumbo-MVBA protocols, which
can terminate in expected constant rounds. As such, CKPS-ACS-D enjoys expected constant
round complexity.

32

• Message complexity: The multicasts of input values need O(n2) messages, and MVBAacs
costs expected O(n2) messages if being instantiated by Dumbo-MVBA protocols. Hence, the
messages complexity of CKPS-ACS-D is O(n2).

• Communication complexity: The communication cost of input multicasts is O(λn2 + `n2).
The input length L of MVBAacs is O(nλ + n`), so the underlying MVBAacs incurs O(λn2 +
Ln) = O(λn2 +`n2) bits. The overall communication complexity of CKPS-ACS-D is, therefore,
O(λn2 + `n2).

7.3 Further applications to ABC and AMPC

Application to ABC (i.e., distributed ledger consensus). Our MVBA protocols and resulting
ACS instantiation can be found applicable in various ABC implementations to reduce their com-
munication overhead with preserving expected constant round confirmation latency. For example,
our result can immediately reduce the commutation of CKPS ABC protocol by an O(n) order. For
some more recent ACS protocols like HBBFT variants [59,33,75], they are centered around reduc-
tions from ABC to ACS, but their ACS instantiations suffers from expected O(log n) rounds and
Õ(λn3) communication overhead. Using our ACS instantiation CKPS-ACS-D, their confirmation
latency and communication overhead can be reduced to expected O(1) rounds and O(λn2) bits,
respectively.

Moreover, some very recent practical ABC protocol [39] relies on more efficient direct reduction
from ACS to MVBA without the detour to ACS, showing much better performance in term of
achieving throughput close to line rate (when the system scale n is several dozens). Nevertheless,
[39] has a scalability bottleneck that prevents it preserving throughput in larger scales: it requires
each party to take a vector of n quorum certificates as MVBA input, and when instantiating this by
earlier MVBA protocols, a large communication overhead of O(λn3) is incurred. Our Dumbo-MVBA
protocols immediately provide better building blocks, reducing the cubic communication overhead
of MVBA components in [39] to only O(λn2).

Application to the online phase of AMPC-as-a-Service. Lu et al. recently proposed the first
implementation of AMPC-as-a-Service called HoneyBadgerMPC (hbMPC) [56]. The paradigm of
hbMPC consists of an offline pre-processing phase and an online computing phase: (i) the offline
phase is continuously executed among parties to distributively generate Shamir’s secret shares of
random numbers and Beaver’s multiplication triples [11]; (ii) given the pre-processed randomness
shares and multiplication triple shares, the offline phase allows parties to solicit a common subset
of their private inputs, and then confidentially evaluate a circuit f on the solicited inputs in a
distributed manner.

The first step of hbMPC’s online phase is an ACS protocol, which solicits a sufficient number
of private inputs 2 used to evaluate f . Nevertheless, hbMPC adopts a sub-optimal ACS protocol
[59] with expected O(log n) rounds and O(λn3 log n) communication, causing an expected online
latency of O(log n+fD) rounds and an expected online communication cost of O(λn3 log n+λfM ·
n+λfD ·n2) bits, where fD is the depth of circuit f and fM represents the number of multiplication
gates of circuit f . Our ACS instantiation CKPS-ACS-D can immediately improve the latency and
communication of online phase to O(fD) and O(λn2 + λfM · n + λfD · n2), respectively. Namely,
the circuit-independent O(log n) term of online round complexity is removed, and the circuit-
independent online communication overhead is reduced to O(λn2) from O(λn3).

8 Conclusion and open problems

We present two optimal-resilient MVBA protocols that can reduce the communication cost of prior
art [4,21] by an O(n) factor, where n is the number of parties. These communication-efficient

2 Note that the input of a party can be private because: (i) the party can reconstruct a randomness
that is collectively generated and shared among all parties during the offline phase, then (ii) it uses the
reconstructed randomness as a one-time pad added to it plaintext input, thus obtaining the ciphertext
form of input.

33

MVBA protocols also attain optimal round and message complexities, asymptotically. Our result
complements the recent breakthrough of Abraham et al. at PODC ’19 [4], which solves the remain-
ing part of the long-standing open problem from Cachin et al. at CRYPTO ’01 [21] on designing
communication-efficient MVBA protocols.

Our MVBA protocols can immediately be applied to instantiation more efficient asynchronous
common subset protocol with reduced communication blow-up, thus providing better consensus
building block for asynchronous multiparty computation and asynchronous atomic broadcast.

Despite the progress, there are still a few interesting open problems left in the topic of MVBA.
First, it is interesting to explore various trade-offs in security model to further reduce the com-
munication complexity. For example, can we design MVBA protocols using only o(n2) messages in
the setting of weak adaptive adversaries and/or near-optimal resilience? Second, it is also critical
in many applications like asynchronous distributed key generation [49,3,31,40] to consider MVBA
without trusted setup. Can we design trusted-setup free MVBA protocols that can attain similar
communication complexity? Finally, our results rely on heavy public-key cryptography, and a nat-
ural question is can we extend the results into the setting using only lightweight cryptography with
taking only minicrypt assumptions?

References

1. Abraham, I., Chan, T., Dolev, D., Nayak, K., Pass, R., Ren, L., Shi, E.: Communication complexity
of byzantine agreement, revisited. In: Proc. ACM PODC 2019. pp. 317–326. ACM (2019)

2. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial protocol for asyn-
chronous byzantine agreement with optimal resilience. In: Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing. pp. 405–414 (2008)

3. Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Reaching consensus for
asynchronous distributed key generation. In: Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing. pp. 363–373 (2021)

4. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asynchronous byzantine
agreement. In: Proc. ACM PODC 2019. pp. 337–346. ACM (2019)

5. Alhaddad, N., Das, S., Duan, S., Ren, L., Varia, M., Xiang, Z., Zhang, H.: Balanced byzantine reliable
broadcast with near-optimal communication and improved computation. In: Proceedings of the 2022
ACM Symposium on Principles of Distributed Computing. pp. 399–417 (2022)

6. Aspnes, J.: Lower bounds for distributed coin-flipping and randomized consensus. Journal of the ACM
(JACM) 45(3), 415–450 (1998)

7. Attiya, H., Censor, K.: Tight bounds for asynchronous randomized consensus. Journal of the ACM
(JACM) 55(5), 1–26 (2008)

8. Bacho, R., Loss, J.: On the adaptive security of the threshold bls signature scheme. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security. pp. 193–207 (2022)

9. Bangalore, L., Choudhury, A., Patra, A.: The power of shunning: efficient asynchronous byzantine
agreement revisited. Journal of the ACM (JACM) 67(3), 1–59 (2020)

10. Bar-Joseph, Z., Ben-Or, M.: A tight lower bound for randomized synchronous consensus. In: Proceed-
ings of the seventeenth annual ACM symposium on Principles of distributed computing. pp. 193–199
(1998)

11. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Advances in Cryptology–
CRYPTO’91: Proceedings 11. pp. 420–432. Springer (1992)

12. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely asynchronous agreement
protocols. In: Proc. ACM PODC 1983. pp. 27–30. ACM (1983)

13. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant time. Distributed Com-
puting 16(4), 249–262 (2003)

14. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In:
Proc. ACM PODC 1994. pp. 183–192. ACM (1994)

15. Blahut, R.E.: Theory and practice of error control codes. Addison-Wesley (1983)
16. Blum, E., Katz, J., Liu-Zhang, C.D., Loss, J.: Asynchronous byzantine agreement with subquadratic

communication. In: Theory of Cryptography: 18th International Conference, TCC 2020, Durham, NC,
USA, November 16–19, 2020, Proceedings, Part I 18. pp. 353–380 (2020)

17. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In: PKC 2003. pp. 31–46. Springer (2003)

34

18. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: International conference
on the theory and application of cryptology and information security. pp. 514–532. Springer (2001)

19. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Computation 75(2), 130–
143 (1987)

20. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable secret sharing and
proactive cryptosystems. In: Proc. ACM CCS 2002. pp. 88–97 (2002)

21. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols.
In: Annual International Cryptology Conference. pp. 524–541. Springer (2001)

22. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practical asynchronous byzan-
tine agreement using cryptography. Journal of Cryptology 18(3), 219–246 (2005)

23. Cachin, C., Tessaro, S.: Asynchronous verifiable information dispersal. In: Proc. IEEE SRDS 2005. pp.
191–201. IEEE (2005)

24. Cachin, C., Vukolic, M.: Blockchain consensus protocols in the wild (keynote talk). In: 31st Inter-
national Symposium on Distributed Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2017)

25. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proc. ACM
STOC 1993. pp. 42–51. ACM (1993)

26. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC 2013

27. Choudhury, A., Hirt, M., Patra, A.: Asynchronous multiparty computation with linear communication
complexity. In: International Symposium on Distributed Computing. pp. 388–402 (2013)

28. Cohen, S., Keidar, I., Spiegelman, A.: Not a coincidence: Sub-quadratic asynchronous byzantine agree-
ment whp. In: 34th International Symposium on Distributed Computing (2020)

29. Correia, M., Neves, N.F., Veŕıssimo, P.: From consensus to atomic broadcast: Time-free byzantine-
resistant protocols without signatures. The Computer Journal 49(1), 82–96 (2006)

30. Das, S., Xiang, Z., Ren, L.: Asynchronous data dissemination and its applications. In: Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security. pp. 2705–2721 (2021)

31. Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias, L., Ren, L.: Practical asynchronous distributed
key generation. In: 2022 IEEE Symposium on Security and Privacy (SP). pp. 2518–2534 (2022)

32. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM Journal on Com-
puting 12(4), 656–666 (1983)

33. Duan, S., Reiter, M.K., Zhang, H.: Beat: Asynchronous bft made practical. In: Proc. ACM CCS 2018.
pp. 2028–2041. ACM (2018)

34. Duan, S., Wang, X., Zhang, H.: Practical signature-free asynchronous common subset in constant time.
Cryptology ePrint Archive (2023)

35. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: Proceedings of the twentieth
annual ACM symposium on Theory of computing. pp. 148–161 (1988)

36. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty
process. JACM 32(2), 374–382 (1985)

37. Fitzi, M., Garay, J.A.: Efficient player-optimal protocols for strong and differential consensus. In: Proc.
ACM PODC 2003. pp. 211–220. ACM (2003)

38. Ganesh, C., Patra, A.: Optimal extension protocols for byzantine broadcast and agreement. Distributed
Computing pp. 1–19 (2020)

39. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo-ng: Fast asynchronous bft consensus with
throughput-oblivious latency. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1187–1201 (2022)

40. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Efficient asynchronous byzantine agreement with-
out private setups. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). pp. 246–257 (2022)

41. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on computing 17(2), 281–308 (1988)

42. Guo, B., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Speeding dumbo: Pushing asynchronous bft closer
to practice. In: Proc. NDSS 2022 (2022)

43. Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: Faster asynchronous bft protocols. In: Proc.
ACM CCS 2020. ACM (2020)

44. Hendricks, J., Ganger, G.R., Reiter, M.K.: Verifying distributed erasure-coded data. In: Proc. ACM
PODC 2007. pp. 139–146. ACM (2007)

45. Huang, S.E., Pettie, S., Zhu, L.: Byzantine agreement in polynomial time with near-optimal resilience.
In: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. pp. 502–514
(2022)

35

46. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous byzantine agreement
and leader election with full information. ACM Transactions on Algorithms (TALG) 6(4), 1–28 (2010)

47. Kate, A., Goldberg, I.: Distributed key generation for the internet. In: Proc. IEEE ICDCS 2009. pp.
119–128. IEEE (2009)

48. King, V., Saia, J.: Byzantine agreement in polynomial expected time. In: Proceedings of the forty-fifth
annual ACM symposium on Theory of computing. pp. 401–410 (2013)

49. Kokoris Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key generation for
computationally-secure randomness, consensus, and threshold signatures. In: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. pp. 1751–1767 (2020)

50. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: International Colloquium on
Automata, Languages, and Programming. pp. 204–215. Springer (2005)

51. Lamport, L.: The weak byzantine generals problem. JACM 30(3), 668–676 (1983)

52. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 4(3), 382–401 (1982)

53. Libert, B., Joye, M., Yung, M.: Born and raised distributively: Fully distributed non-interactive
adaptively-secure threshold signatures with short shares. Theoretical Computer Science 645, 1–24
(2016)

54. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets
with short proofs. In: Theory of Cryptography Conference. pp. 499–517 (2010)

55. Loss, J., Moran, T.: Combining asynchronous and synchronous byzantine agreement: The best of both
worlds. IACR Cryptology ePrint Archive 2018, 235 (2018)

56. Lu, D., Yurek, T., Kulshreshtha, S., Govind, R., Kate, A., Miller, A.: Honeybadgermpc and asyn-
chromix: Practical asynchronous mpc and its application to anonymous communication. In: Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. pp. 887–903
(2019)

57. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-mvba: Optimal multi-valued validated asynchronous
byzantine agreement, revisited. In: Proc. PODC 2020. pp. 129–138 (2020)

58. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Eurocrypt 1987.
pp. 369–378. Springer (1987)

59. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. In: Proc. ACM
CCS 2016. pp. 31–42. ACM (2016)

60. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine consensus with t <
n/3 and o(n2) messages. In: Proc. ACM PODC 2014. pp. 2–9. ACM (2014)

61. Nayak, K., Ren, L., Shi, E., Vaidya, N.H., Xiang, Z.: Improved extension protocols for byzantine
broadcast and agreement. In: 34st International Symposium on Distributed Computing (DISC 2020)

62. Neiger, G.: Distributed consensus revisited. Information processing letters 49(4), 195–201 (1994)

63. Patra, A.: Error-free multi-valued broadcast and byzantine agreement with optimal communication
complexity. In: International Conference On Principles of Distributed Systems. pp. 34–49. Springer
(2011)

64. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. JACM 27(2),
228–234 (1980)

65. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on Foundations of Com-
puter Science (sfcs 1983). pp. 403–409. IEEE (1983)

66. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. JACM
36(2), 335–348 (1989)

67. Ramasamy, H.V., Cachin, C.: Parsimonious asynchronous byzantine-fault-tolerant atomic broadcast.
In: International Conference On Principles Of Distributed Systems. pp. 88–102. Springer (2005)

68. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the society for industrial
and applied mathematics 8(2), 300–304 (1960)

69. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in rampart. In: Proc.
ACM CCS 1994. pp. 68–80. ACM (1994)

70. Shoup, V.: Practical threshold signatures. In: Eurocrypt 2000. pp. 207–220. Springer (2000)

71. Toueg, S.: Randomized byzantine agreements. In: Proceedings of the third annual ACM symposium
on Principles of distributed computing. pp. 163–178 (1984)

72. Turpin, R., Coan, B.A.: Extending binary byzantine agreement to multivalued byzantine agreement.
Information Processing Letters 18(2), 73–76 (1984)

73. Wensley, J.H., Lamport, L., Goldberg, J., Green, M.W., Levitt, K.N., Melliar-Smith, P.M., Shostak,
R.E., Weinstock, C.B.: Sift: Design and analysis of a fault-tolerant computer for aircraft control. Proc.
the IEEE 66(10), 1240–1255 (1978)

36

74. Yurek, T., Xiang, Z., Xia, Y., Miller, A.: Long live the honey badger: Robust asynchronous {DPSS}
and its applications. In: 32nd USENIX Security Symposium (USENIX Security 23). pp. 5413–5430
(2023)

75. Zhang, H., Duan, S.: Pace: Fully parallelizable bft from reproposable byzantine agreement. In: Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. pp. 3151–3164
(2022)

37

	Dumbo-MVBA: Optimal Multi-value Validated Asynchronous Byzantine Agreement, Revisited *

