
Indistinguishability Obfuscation
from Simple-to-State Hard Problems:

New Assumptions, New Techniques, and
Simplification

Romain Gay* Aayush Jain† Huijia Lin‡ Amit Sahai§

Abstract

In this work, we study the question of what set of simple-to-state assumptions suf-
fice for constructing functional encryption and indistinguishability obfuscation (iO),
supporting all functions describable by polynomial-size circuits. Our work improves
over the state-of-the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multi-
ple dimensions.
NEW ASSUMPTION: Previous to our work, all constructions of iO from simple as-
sumptions required novel pseudorandomness generators involving LWE samples and
constant-degree polynomials over the integers, evaluated on the error of the LWE
samples. In contrast, Boolean pseudorandom generators (PRGs) computable by constant-
degree polynomials have been extensively studied since the work of Goldreich (2000).1

We show how to replace the novel pseudorandom objects over the integers used in
previous works, with appropriate Boolean pseudorandom generators with sufficient
stretch, when combined with LWE with binary error over suitable parameters. Both
binary error LWE and constant degree Goldreich PRGs have been a subject of exten-
sive cryptanalysis since much before our work and thus we back the plausibility of
our assumption with security against algorithms studied in context of cryptanalysis
of these objects.
NEW TECHNIQUES: we introduce a number of new techniques:

• We show how to build partially-hiding public-key functional encryption, sup-
porting degree-2 functions in the secret part of the message, and arithmetic NC1

functions over the public part of the message, assuming only standard assump-
tions over asymmetric pairing groups.

*IBM Research Zurich. Email: romain.rgay@gmail.com.
†UCLA, Center for Encrypted Functionalities, and NTT Research. Email: aayushjain@cs.ucla.edu.
‡UW. Email: rachel@cs.washington.edu.
§UCLA, Center for Encrypted Functionalities. Email: sahai@cs.ucla.edu.
1Goldreich and follow-up works study Boolean pseudorandom generators with constant-locality,

which can be computed by constant-degree polynomials.

• We construct single-ciphertext and single-secret-key functional encryption for all
circuits with long outputs, which has the features of linear key generation and
compact ciphertext, assuming only the LWE assumption.

SIMPLIFICATION: Unlike prior works, our new techniques furthermore let us con-
struct public-key functional encryption for polynomial-sized circuits directly (without
invoking any bootstrapping theorem, nor transformation from secret-key to public
key FE), and based only on the polynomial hardness of underlying assumptions. The
functional encryption scheme satisfies a strong notion of efficiency where the size of
the ciphertext is independent of the size of the circuit to be computed, and grows
only sublinearly in the output size of the circuit and polynomially in the input size
and the depth of the circuit. Finally, assuming that the underlying assumptions are
subexponentially hard, we can bootstrap this construction to achieve iO.

2

Contents

1 Introduction 1
1.1 Our Results . 4

2 Technical Overview 5
2.1 Overview of Our FE Construction . 6
2.2 Instantiating Our Assumption . 11
2.3 Single Ciphertext Functional Encryption with Linear Key Generation 13
2.4 Overview: Our (arith-NC1,deg-2) Partially Hiding Functional Encryption . . 14

3 Preliminaries 16

4 Functional Encryption Definitions 18
4.1 Security Definition . 19
4.2 Efficiency Features . 21
4.3 Structural Properties . 22

5 ε-simulation Secure FE to Fully Secure FE 23
5.1 Homomorphic Secret Sharing . 23
5.2 Transformation . 24

6 Definition of Structured-Seed PRG 28
6.1 Construction of sPRG and Our New Assumption 30

7 Single Ciphertext Functional Encryption with Linear KeyGen from LWE 32
7.1 GVW Preliminaries . 32
7.2 Setting Parameters . 35
7.3 Construction of ε-1LGFE . 36
7.4 Single-Ciphertext ε-simulation security . 38

8 Our (arith-NC1, deg 2)-PHFE from Pairings 42
8.1 Ingredients: Inner-Product FE . 43
8.2 Modular Construction of the Partially-Hiding FE 44
8.3 Constructing Inner-Product FE . 54

9 Construction of ε-Simulation Secure FE 57

10 Summing Up: Construction of iO 63

11 Acknowledgements 64

12 References 65

3

A Cryptanalysis of Our Assumption 72
A.1 A Survey of the PRG Candidates . 72
A.2 The XORMAJ`,` Predicate . 74
A.3 Low-Degree High-Locality Predicates . 75
A.4 Justifying Security of the Combined Assumptions 77

A.4.1 Binary LWE Security . 77
A.4.2 Algebraic Attacks on the Combined Assumption 78

A.5 Summary: Our Assumptions . 79

B Lattice Preliminaries 80

1 Introduction

This paper studies the notion of indistinguishability obfuscation (iO) for general pro-
grams computable in polynomial time [BGI+01, GKR08, GGH+13], and develops several
new techniques to strengthen the foundations of iO. The key security property for iO
requires that for any two equivalent programs P0 and P1 modeled as circuits of the same
size, where “equivalent” means that P0(x) = P1(x) for all inputs x, we have that iO(P0) is
computationally indistinguishable to iO(P1). Furthermore, the obfuscator iO should run
in probabilistically polynomial time.

This notion of obfuscation was coined by [BGI+01] in 2001. However, until 2013, there
was not even a single candidate construction known. This changed with the breakthrough
work of [GGH+13]. Soon after, the floodgates opened and a flurry of over 100 papers were
published reporting applications of iO (e.g. [SW14, BFM14, GGG+14, HSW13, KLW15,
BPR15] [CHN+16, GPS16, HJK+16]). Not only did iO enable the first constructions of
numerous important cryptographic primitives, iO also expanded the scope of cryptogra-
phy, allowing us to mathematically approach problems that were previously considered
the domain of software engineering. A simple example along these lines is the notion
of crippleware [GGH+13]: Alice, a software developer, has developed a program P using
powerful secrets, and wishes to sell her work. Before requiring payment, Alice is willing
to share with Bob a weakened (or “crippled”) version of her software. Now, Alice could
spend weeks developing this crippled version P̃ of her software, being careful not to use
her secrets in doing so; or she could simply disable certain inputs to cripple it yielding
an equivalent P′, but this would run the risk of Bob hacking her software to re-enable
those disabled features. iO brings this problem of software engineering into the realm of
mathematical analysis. With iO, Alice could avoid weeks of effort by simply giving to
Bob iO(P′), and because this is indistinguishable from iO(P̃), Alice is assured that Bob
can learn no secrets.

Not only has iO been instrumental in realizing new cryptographic applications, it has
helped us advance our understanding of long-standing theoretical questions. One such
recent example is that of the first cryptographic evidence of the average-case hardness of
the complexity class PPAD (which contains of the problem of finding Nash equilibrium).
In particular, [BPR15] constructed hard instances for the End Of the Line (EOL) problem
assuming subexponentially secure iO and one-way functions.

Our Contributions. In this work, we show how to simplify, both technically and con-
ceptually, the task of constructing secure iO schemes. Notably, the ideas we develop in
this work helped pave the way for the recent first construction of iO from well-studied
assumptions [JLS20], resolving the central open question in the area of iO.

We now discuss the contributions of our paper in detail.

What hardness assumptions suffice for constructing iO? Given its importance, a cru-
cial question is to identify what hardness assumptions, in particular, simple ones, suffice
for constructing iO. While it is hard to concretely measure simplicity in assumptions, im-
portant features include i) having succinct description, ii) being falsifiable and instance

1

independent (e.g., independent of the circuit being obfuscated), and iii) consisting of only
a constant number of assumptions, as opposed to families of an exponential number of
assumptions. However, research on this question has followed a tortuous path over the
past several years, and so far, despite of a lot of progress, before our work, no known
iO constructions [GGH+13, BGK+14, BR14, AGIS14, BMSZ16, GMM+16, CVW18, Lin16,
AS17, GLSW14, PST14, LV16, Lin17, LT17, GJK18, BIJ+20, Agr19, AP20, AJL+19, JLMS19,
BDGM20] were based on assumptions that have all above features.

Our new assumption. In this work, building upon assumptions introduced in [AJL+19,
JLMS19], we introduce a new simple-to-state assumption, that satisfies all the features
enumerated above. We show how to provably achieve iO based only on our new as-
sumption combined with standard assumptions, namely subexponentially secure Learn-
ing With Errors (LWE) problem [Reg05], and subexponentially secure SXDH and bilateral
DLIN assumptions over bilinear maps [Jou00, BF01]. Let us now describe, informally, our
new assumption. In this introductory description, we will omit discussion of parameter
choices; however, they are crucial (even for standard assumptions), and we discuss them
in detail in our technical sections. We start by describing the ingredients that will go into
the assumption.

Constant-degree2 Boolean PRGs generalize constant-locality Boolean PRGs, as for Boolean
functions, locality upper bounds the degree. The latter is tightly connected to the funda-
mental topic of Constraint Satisfaction Problems (CSPs) in complexity theory, and were
first proposed for cryptographic use by Goldreich [Gol00] 20 years ago. The complex-
ity theory and cryptography communities have jointly developed a rich body of litera-
ture on the cryptanalysis and theory of constant-locality Boolean PRGs [Gol00, MST03,
ABR12, BQ12, App12, OW14, AL16, CDM+18]. Our new assumption first postulates
that there exists a constant d-degree Boolean PRG, G : {0, 1}n → {0, 1}m with suffi-
cient stretch m ≥ nd

d
2
e·(0.5+ε)+ρ for some constants ε, ρ > 0, whose output r = G(x)

should satisfy the standard notion of pseudorandomness. Furthermore, our assumption
postulates that the pseudorandomness holds even when its Boolean input x ∈ {0, 1}n
is embedded in LWE samples as noises, and the samples are made public. The latter
is known as Learning With Binary Errors (LWBE), which has been studied over the last
decade [MP13, AG11, CTA19, CSA20]. Our new assumption, combining Boolean PRGs
and LWBE, is as follows:

The G-LWEleak-security assumption (informal). For a prime modulus p that is sub-
exponentially large in the security parameter.(

{ai, 〈ai, s〉+ ei mod p}i∈[n], G,G(e)
)
//e = (e1, . . . , en)← {0, 1}n, ai, s← Zn0.5+ε

p

≈
(
{ai, 〈ai, s〉+ ei mod p}i∈[n], G, r

)
//r ← {0, 1}m

As is evident here, this assumption is quite succinct, is falsifiable and instance-independent,
does not involve an exponential family of assumptions, and does not use multilinear

2throughout this work, unless specified, by degree of boolean PRGs, we mean the degree of the poly-
nomial computing the PRG over the reals.

2

maps. Furthermore, the ingredients that make up the assumption – Constant-degree
Boolean PRGs and LWBE – have a long history of study within cryptography and com-
plexity theory. As we discuss in detail in Section A.4, this assumption avoids attacks by all
known cryptanalytic techniques. We note that the parameter n of LWBE samples is chosen
to be sub-quadratic in the length |s| of the secret. This is needed in order to avoid Arora-
Ge attacks on LWBE [AG11], and also avoid all known algebraic attacks [CTA19]. Indeed,
the parameter choices we make are not possible using the previous work of [JLMS19],
and the parameters used in [JLMS19] would render LWBE insecure.

Comparison of our assumption with the subsequent follow-up work of [JLS20]. Our
shift to considering Boolean PRGs in the context of the approach of [JLMS19] provided
a conceptual starting point for the subsequent work of [JLS20], which finally achieved
iO from four well-founded assumptions: LPN over Fp, LWE, Boolean PRGs in NC0, and
SXDH. Indeed, the work of [JLS20] essentially succeeds in “separating” the two ingredi-
ents in our assumption above — that is, basing iO on LWBE and the security of Goldre-
ich’s PRG with appropriate parameters separately, through a novel leveraging of the LPN
over Fp assumption. Indeed, their work goes further and actually eliminates the need for
the LWBE assumption entirely, and also eliminates the parameter requirements that we
needed for Goldreich’s PRG.

Complexity and clarity in iO constructions. Another motivation for our work is to ad-
dress the complexity of existing iO constructions. Current constructions of iO are rather
complex in the sense they often rely on many intermediate steps, each of which incur a
complexity blow up, both in the sense of computational complexity and in the sense of
difficulty of understanding. Ideally, for the sake of simplicity, iO schemes would mini-
mize the number of such transformations, and instead aim at a more direct construction.
In our case, we solely rely on the generic transformation of [AJ15, BV15], which shows
that iO can be build from Functional Encryption [SW05], a primitive that was originally
formulated by [BSW11, O’N10]. Roughly speaking, FE is a public-key or secret-key en-
cryption scheme where users can generate restricted decryption keys, called functional
keys, where each such key is associated with a particular function f . Such a key allows
the decryptor to learn from an encryption of a plaintext m, the value f(m), and nothing
beyond that.

Previous constructions fell short in directly constructing a full-fledged FE needed for
the implication of iO [AJ15, BV15]. For example, the work of [JLMS19] first obtain a
“weak” FE that: i) is secret-key, ii) only generates function keys associated with function
computable only by NC0 circuits, iii) only ensures weak security, and iv) is based on subex-
ponential hardness assumptions. Then, generic transformations are applied to “lift” the
function class supported and the security level, which inevitably makes the final FE and
iO schemes quite complex.

This state of affairs motivates simplifying iO constructions, for efficiency and sim-
plicity itself, but also for making a technically deep topic more broadly accessible to the
community. That is also one of the goals of this paper.

3

1.1 Our Results

Our main result is a simpler and more direct iO construction from the following assump-
tions.

Theorem 1.1. There is a construction of iO for obfuscating all polynomial-sized circuits based on
the following assumptions:

• There exists a constant-degree d Boolean PRG G : {0, 1}n → {0, 1}m with sufficient stretch
m ≥ nd

d
2
e·(0.5+ε)+ρ for some constant ε, ρ > 0, and satisfies subexponential G-LWEleak-

security,

• the subexponential LWBE assumption, and

• the subexponential bilateral DLIN and SXDH assumption over asymmetric pairing groups.

Our techniques and additional results. Our construction of FE and iO are enabled by
our new assumption and a number of new techniques designed to enable basing the se-
curity of iO on simple-to-state assumptions. We briefly summarize them here, but we
elaborate on how they are used in the iO construction in the technical overview section
immediately following this introduction.

Single-Ciphertext Functional Encryption with Linear Key Generation. We construct, assuming
only LWE, a single-ciphertext secret-key functional encryption scheme able to give func-
tional keys associated with any polynomial-sized circuit with depth bounded by λ, whose
key generation and decryption algorithms have certain simple structures: i) The key gen-
eration algorithm computes a linear function on the master secret key and randomness,
and ii) the decryption algorithm, given a ciphertext ct, a functional secret key skf associ-
ated with a function f and the description of f itself, first performs some deterministic
computation on the ciphertext to get an intermediate ciphertext ctf , followed by simply
subtracting the skf from it, and then rounds to obtain the outcome. This object is previ-
ously known as special homomorphic encryption in the literature [AR17a, Agr19, LM18].
However, prior constructions only handles functional keys associated with NC0 circuits
(for those based on LWE) or NC1 circuits (for those based on ring LWE). In this work,
we view it through the FE lens, and construct it from LWE for all functions computable
by polynomial-size circuits with any depth bounded by the security parameter λ. (Theo-
rem 7.2). Constructing such single-ciphertext (or single-key) FE (that do not have compact
ciphertexts) from standard assumptions is a meaningful goal on its own. In the literature,
there are constructions of single-ciphertext FE from the minimal assumption of public-key
encryption [SS10a, GVW12a], and several applications (e.g., [ABSV15]). However, they
do not have the type of simple structures (e.g., linear key generation algorithm) our con-
struction enjoys, and consequently cannot be used in our iO construction. These simple
structural properties may also find uses in other applications.

Partially-Hiding Functional Encryption for NC1 Public Computation and Degree-2 Private Com-
putation. Partially-hiding Functional Encryption (PHFE) schemes involve functional se-
cret keys, each of which is associated with some 2-ary function f , and decryption of a ci-
phertext encrypting (x,y) with such a key reveals f(x,y), x, f , and nothing more about

4

y. Since only the input y is hidden, such an FE scheme is called partially-hiding FE.
The notion was originally introduced by [GVW12b] where it was used to bootstrap FE
schemes. A similar notion of partially-hiding predicate encryption was proposed and
constructed by [GVW15]. PHFE beyond the case of predicate encryption was first con-
structed by [AJS18] for functions f that compute degree-2 polynomials on the input y and
degree-1 polynomials in x, under the name of 3-restricted FE, in the secret-key setting. In
this work, we construct a PHFE scheme from standard assumptions over bilinear pairing
groups, that is public-key and supports functions f that have degree 2 in the private input
y, while performs an arithmetic NC1 computation on the public input x (Theorem 8.1).
More precisely, f(x,y) = 〈g(x), q(y)〉 where g is computable by an arithmetic log-depth
circuit and q is a degree-2 polynomial. The previous best constructions of partially-hiding
FE were secret-key, and could only handle NC0 computation on the public input [JLMS19].

This contribution is interesting in its own right, as a step forward towards broadening
the class of functions supported by FE schemes from standard assumptions. In particular,
it can be used to combine rich access-control and perform selective computation on the
encrypted data. In that context, the public input x represents some attributes, while the
private input y is the plaintext. Functional secret keys reveal the evaluation of a degree-
2 polynomial on the private input if some policy access, represented by an NC1 arith-
metic circuit evaluates to true on the attributes. This is the key-policy variant of a class
of FE with rich access-control introduced in [ACGU20]. In the latter, the authors build an
FE scheme where ciphertexts encrypt a Boolean formula (the public input) and a vector
(the private input). Functional secret keys are associated with attributes and a vector of
weights, and decryption yields the weighted sum of the plaintexts if the formula embed-
ded in the ciphertext evaluates to true on the attributes embedded in the functional secret
key. Their construction, as ours, rely on standard pairing assumptions, but only permits
computation of degree-1 polynomials on the private input. They also give a lattice-based
construction, which is limited to identity-based access structures.

Independently of our work, [Wee20a] builds a public-key FE which support the same
class of functions as our scheme (namely, NC1 computation on the public input, and
degree-2 on the private input), from standard assumptions in pairing groups. His con-
struction has the notable advantage of have ciphertext size independent of the length of
the public input.

2 Technical Overview

Below, we will use several different encryption schemes, and adopt the following notation
to refer to ciphertexts and keys of different schemes. For a scheme x (e.g., a homomor-
phic encryption scheme HE, or a functional encryption scheme FE), we denote by xct, xsk
a ciphertext, or secret key of the scheme x. At times, we write xct(m), xsk(f) to make it ex-
plicit what is the encrypted message m and the associated function f ; and write xct(k,m),
xsk(k, f) to make explicit what is the key k they are generated from. We omit these details
when they do not matter or are clear from the context.

5

2.1 Overview of Our FE Construction

Basic template of FE construction in prior works. We start with reviewing the basic
template of FE construction in recent works [Agr19, AJL+19, JLMS19]. FE allows one to
generate so-called functional secret key fesk(f) associated with a function f that decrypts
an encryption of a plaintext x, fect(x) to f(x). Security ensures that beyond the evaluation
of the function f on x, nothing is revealed about x. For constructing iO, it suffices to
have an FE scheme whose security is guaranteed against adversaries seeing only a single
functional secret key, for a function with long output f : {0, 1}n → {0, 1}m and where
the ciphertexts are sublinearly-compact in the sense that its size depends sublinearly in the
output length m.

Towards this, the basic idea is encrypting the message using a Homomorphic Encryp-
tion scheme HE, which produces the ciphertext hect(s,x), where s is the secret key of HE.
It is possible to publicly evaluate homomorphically any function f directly on the cipher-
text to obtain an so-called output ciphertext hect(s, f(x))← HEEval(hect, f), that encrypts
the output f(x). Then, we use another much simpler FE scheme to decrypt hect(s, f(x)) so
as to reveal f(x) and nothing more. Using this paradigm, the computation of the function
f is delegated to HE, while the FE only computes the decryption of HE. This is motivated
by the fact that HE for arbitrary functions can be built from standard assumptions, while
existing FE schemes is either not compact, in the sense that the ciphertext grows with the
output size of the functions [SS10b, GKP+13], or are limited to basic functions — namely,
degree-2 polynomials at most, [BCFG17, Gay20] for the public-key setting, [Lin17, AS17]
for the private-key setting3Furthermore, known HE schemes have very simple decryp-
tion — for most of them, it is simply computing an inner product, then rounding. That
is, decryption computes 〈hectf , s〉 = p/2 · f(x) + ef (mod p) for some modulus p, where
s is the secret key of HE, and ef is a small, polynomially bounded error (for simplicity,
in this overview, we assume w.l.o.g that f(x) ∈ {0, 1}). While there are FE schemes that
support computing inner products [ABDP15, ALS16], sublinearly compact FE that also
computes the rounding are currently our of reach. Omitting this rounding would reveal
f(x), but also ef , which hurts the security of HE. Instead, we will essentially realize an
approximate version of the rounding — thereby hiding the noise ef .

A natural approach to hide the noises ef is to use larger, smudging noises. Since ef
depends on the randomness used by HEEnc, and the function f , the smudging noises
must be fresh for every ciphertext. Hard-wiring the smudging noise in the ciphertext,
as done in [AR17b], leads to non-succinct ciphertext, whose size grows linearly with the
output size of the functions. Instead, we generate the smudging noises from a short seed,
using a PRG. The latter must be simple enough to be captured by state of the art FE
schemes.

Previous constructions use a weak pseudo-random generator, referred to as a noise
generator NG, to generate many smudging noises r = NG(sd) for hiding ef . To see how
it works, suppose hypothetically that there is a noise generator computable by degree-2
polynomials. Then we can use 2FE, an FE scheme that support the generation of func-

3As mentioned in the introduction, partially hiding functional encryption allows to further strengthen
the function class supported, by essentially adding computation on a public input, however computation
on the private input is still limited to degree 2.

6

tional key for degree-2 polynomials, to compute p/2 · f(x) + ef + NG(sd), which reveals
only f(x) as desired. This gives a basic template of FE construction summarized below.

Basic Template of FE Construction (Intuition only, does not work)

fesk(f) contains : 2fsk(g)
fect(x) contains : hect(s,x), 2fct(s||sd)

The basic idea is using HE with a one-time secret key s to perform the computation and
using a simple FE for degree-2 polynomials, 2FE, to decrypt the output ciphertext and add
a smudging noise generated via a noise generator NG. That is, we would like g(s||sd) =
(p/2 · f(x) + ef +NG(sd)). However, there are many challenges to making this basic idea
work.

Unfortunately, to make the above basic idea work, we need to overcome a series of
challenges. Below, we give an overview of the challenges, how we solve them using
new tools, new techniques, and new assumptions, and how our solutions compare with
previous solutions. In later subsections 2.2,2.3,2.4, we give more detail on our solutions.

Challenge 1: No Candidate Degree-2 Noise Generator. Several constraints are placed
on the structure of the noise generators NG which renders their instantiation difficult.

• MINIMAL DEGREE. To use degree-2 FE to compute NG, the generator is restricted to
have only degree 2 in the secret seed sd.

• SMALL (POLY-SIZED) OUTPUTS. Existing degree-2 FE are implemented using pair-
ing groups: They perform the degree-2 computation in the exponent of the groups,
and obtain the output in the exponent of the target group. This means the output
p/2 · f(x) + ef + NG(sd) resides in the exponent, and the only way to extract f(x) ∈
{0, 1} is via brute force discrete logarithm to extract the whole p/2·f(x)+ef+NG(sd).
This in particular restricts NG to have polynomially bounded outputs.

Previous works [AJL+19, JLMS19] used new assumptions that combine LWE with
constant-degree polynomials over the integers (see discussion in the introduction) to in-
stantiate the noise generator. The resulting generator do not have exactly degree 2, but
“close” to degree 2 in following sense:

Degree “2.5” Noise Generator: NG(pubsd, privsd) is a polynomial in a public seed pubsd
and a private seed privsd both of length n′, and has polynomial stretch. The seeds
are jointly sampled (pubsd, privsd) ← Dsd from some distribution and pubsd is made
publc. Degree 2.5 means that NG has constant degree in pubsd and degree 2 in privsd.

Previous degree-2.5 noise generators produce small integer outputs, and can only satisfy
certain weak pseudo-randomness property (as opposed to standard pseudorandomness).
To get a flavor, consider the fact that the outputs of previous candidates are exactly the
outputs of some constant-degree polynomials computed over the integers. Individual

7

output elements are not uniformly distributed in any range, and two output elements
that depend on the same seed element are noticably correlated. Hence, they are not pseu-
dorandom or even pseudo-independent. In this work, our new assumption combines
Learning With Binary Errors (LWBE) and constant-degree Boolean PRGs, and gives new
degree-2.5 noise generators with Boolean outputs as follows:

• pubsd = {ci = (ai,ais+ ei)}i∈[n]: LWBE samples where s,ai ← Zn0.5+ε

p , ei ← {0, 1}.

• privsd = ⊗(s|| − 1)d
d
2
e: tensoring (s|| − 1) for dd

2
e times.

• PRG(pubsd, privsd) = G(· · · ||ei = 〈ci, (s|| − 1)〉|| · · ·) = G(e), where G is a constant
degree Boolean PRG.

When the PRG G has sufficient stretch m ≥ nd
d
2
e·(0.5+ε)+ρ for some constant ε, ρ > 0, our

new generator has polynomial stretchm = |pubsd||privsd|1+ε′ for some ε′ depending on ε, ρ.
Constant-degree Boolean PRGs are qualitatively different from constant-degree polyno-
mials over the integers and have been extensively studied. Furthermore, our new as-
sumption implies that the outputs of our generator are pseudo-random – in other words,
we obtain a degree-2.5 Boolean PRG.

Not surprisingly, the stronger security property of degree-2.5 PRG lets us significantly
simplify the construction and security proof.

Challenge 2: How to Evaluate Degree 2.5 Polynomials? To evaluate our degree-2.5
Boolean PRG, we need an FE scheme that is more powerful than 2FE. The notion of
Partially-Hiding Functional Encryption PHFE, originally introduced by [GVW15] in the
form of Partially Hiding Predicate Encryption (PHPE), fits exactly this task. As men-
tioned in introduction, PHFE strengthens the functionality of FE by allowing the cipher-
text phfct(x,y) to encode a public input x, in addition to the usual private input y. De-
cryption by a functional key phfsk(f) reveals x and f(x,y) and nothing else. The works
of [AJL+19, JLMS19] constructed private-key PHFE for computing degree-2.5 polynomials
(i.e., constant degree in x and degree 2 in y) from pairing groups. (Like 2FE, the output is
still computed in the exponent of the target group.) This suffices for evaluating degree-2.5
noise generator or PRG in the FE construction outlined above. The only drawback is that
since PHFE is private-key, the resulting FE is also private-key.

In this work, we give a new construction of PHFE from pairing groups that is 1) public-
key and 2) supports arithmetic NC1 computation on the public input — more specifically,
f(x,y) = 〈g(x), q(y)〉 where g is computable by an arithmetic log-depth circuit and q is a
degree-2 polynomial.

Theorem 2.1 (Public-key (NC1,deg-2)-PHFE, Informal). There is a construction of a public-
key PHFE for arithmetic NC1 public computation and degree-2 private computation from standard
assumptions over asymmetric pairing groups.

This new construction allows us to obtain public key FE directly. Furthermore, our
construction supports the most expressive class of functions among all known FE schemes
from standard assumptions; we believe this is of independent interests.

8

Challenge 3: How to Ensure Integrity? Now that we have replaced 2FE with PHFE to
compute degree-2.5 polynomials, the last question is how to ensure that PHFE decrypts
only the right evaluated ciphertext hectf (instead of any other ciphertext)? The function g
we would like to compute via PHFE is g(s, pubsd, privsd) = 〈hectf , s〉 + NG(pubsd, privsd).
The difficulty is that hectf is unknown at key-generation time or at encryption time (as
it depends on both f and hect(s,x)), and is too complex for PHFE to compute (as the
homomorphic evaluation has high polynomial depth). To overcome this, we replace ho-
mormophic encryption with a single-ciphertext secret-key FE for polynomial size circuits
with depth λ with linear key generation, denoted as 1LGFE, which has the following special
structure.

Single Ciphertext FE with Linear Key Generation

PPGen(1λ) : generate public parameters pp
Setup(1λ, pp) : generate master secret key s ∈ Zλp
Enc(pp, s) : generates a ciphertext 1LGFE.ct
KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,

output f and secret key,
1LGFE.sk(f) = 〈ppf , s〉 − r

Dec(1LGFE.ct, (f, 1LGFE.sk)) : 1LGFE.ctf ← EvalCT(1LGFE.ct, f)
output q

2
y + ef + r ← 1LGFE.ct− 1LGFE.sk,

|ef |∞ ≤ B′

The single-ciphertext FE has i) a key generation algorithm that is linear in the master secret key s
and randomness r, and ii) decryption first performs some computation on the ciphertext 1LGFE.ct
to obtain an intermediate ciphertext 1LGFE.ctf , and then simply subtracts the secret key from
1LGFE.ctf , and obtains the output y perturbed by a polynomially-bounded noise.

We replace the ciphertext hect(s,x) now with a ciphertext 1LGFE.ct(s,x) of 1LGFE. By
the correctness and security of 1LGFE, revealing 1LGFE.sk(f) only reveals the output f(x).
Hence, it suffices to use PHFE to compute the secret key. Thanks to the special structure
of the key generation algorithm, this can be done in degree 2.5, using pseudoradnomness
r expanded out via our degree-2.5 PRG. More concretely, PHFE computes the following
degree-2.5 function g.

g(s||pubsd||privsd) = 〈ppf , s〉+ r = 1LGFE.sk(f), // g has degree 2.5

where rj =

logB−1∑
k=0

2kPRG(j−1) logB+k(pubsd, privsd) .

One more technical caveat is that known pairing-based PHFE schemes actually compute
the secret key 1LGFE.sk in the exponent of a target group element, which we denote by
[1LGFE.sk]T , where for any exponent a ∈ Zp, [a]T = gaT for a generator gT . Thanks to the
special structure of the decryption algorithm of 1LGFE — namely, it is linear in 1LGFE.sk
— these group elements are sufficient for decryption. A decryptor can first compute

9

1LGFE.ctf from 1LGFE.ct(s,x) and f in the clear, then perform the decryption by sub-
tracting [1LGFE.ctf − 1LGFE.sk]T in the exponent. This gives [p/2 · f(x) + ef + r]T , whose
exponent p/2 · f(x) +ef + r can be extracted by enumrating all possible ef + r, which are
of polynomial size, and f(x) ∈ {0, 1}.

Our single-ciphertext FE with linear key generation is essentially the same notion as
that of Special Homomorphic Encryption (SHE) used in [Agr19, LM18]. SHE are homo-
morphic encryption with a special decryption equation hectf − 〈ppf , s〉 = p/2 · f(x) + ef
where ppf (as in 1LGFE) can be computed efficiently from public parameters pp and f . We
think it is more accurate to view this object as a functional encryption scheme, since what
the special decryption equation gives is exactly a functional key 〈ppf , s〉 + r where r are
smudging noises for hiding ef to guarantee that only p/2 · f(x) is revealed.

Viewing this through the lens of FE brought us a significant benefit. Previous works
constructed SHE by modifying the Brakerski-Vankuntanathan FHE scheme [BV11], but
are limited to supporting NC1 computations based on RLWE [AR17b], and NC0 based
on LWE [AR17b, LM18]. Instead, the FE lens led us to search for ideas in the predi-
cate encryption literature. We show how to construct 1LGFE for polynomial sized cir-
cuits with depth bounded by λ from LWE by modifying the predicate encryption scheme
of [GVW15]. This new construction allowed us to construct FE for polynomial sized cir-
cuits with depth bounded by λ directly without invoking any bootstrapping theorem
from weaker function classes. More generally, we our 1LGFE can handle polynomial-
sized circuits of any depth d and the ciphertext size grows polynomially with the input
length n and the depth d.

Theorem 2.2 (1LGFE from LWE, informal). There is a construction of a single-key single-
ciphertext secret-key FE for polynomial size circuits with linear key generation as described above,
from LWE. The ciphertext size is poly(λ, n, d) where λ is the security parameter, n the input
length, and d the depth of the circuit (independent of the circuit size size and the output length
`). The construction is parameterized with a positive constant ε > 0 and satisfies single-key
single-ciphertext ε-simulation security as defined in Definition 4.3.

Above, the notion of ε-simulation security is a weakening of the standard simulation
security of FE, which we discuss below.

Putting Pieces Together In summary, putting all the pieces together, our construction
of FE for polynomial size circuits with depth λ is depicted below. Comparing with pre-
vious constructions, it enjoys several features: 1) it is public key, 2) it can be based on the
polynomial-hardness of underlying assumptions, 3) it has simpler proofs (e.g., no boot-
strapping theorem).

10

Our FE Construction

fesk(f) contains : phfsk(g)
fect(x) contains : 1LGFE.ct(s,x) phfct(s||pubsd||privsd)

FEDec(fect, (f, fesk)) : [1LGFE.sk]T ← PHFEDec(phfct, phfsk)
1LGFE.ctf ← EvalCT(1LGFE.ct, f)
[y + ef + r]T = 1LGFE.ctf − [1LGFE.sk]T
extract y + ef + r and round to recover y

The basic idea is using PHFE to compute a 1LGFE secret key 1LGFE.sk(f) in the exponent
of the target group, and then decrypting the ciphertext 1LGFE.ct(s,x) to reveal f(x) only.

ε-Simulation Security. The only aspect of our construction that we have not discussed
explicitly is the security guarantee achieved by our 1LGFE scheme. In particular, it does
not achieve the standard notion of indistinguishability or simulation security of FE; in-
stead, it achieves a weaker notion called ε-simulation security, where ε is a constant in
(0, 1). The weaker security guarantee stems from the fact that the pseudorandom smudg-
ing error r used in the secret key 1LGFE.sk(f) is only of polynomial magnitude, and there-
fore reveals nontrivial information about the error ef in the output ciphertext 1LGFE.ctf .
Fortunately, we can still show that r hides ef except for some 1/ poly probability, which
allows us to prove that the public key, secret key, and ciphertext can be simulated using
only the output of the computation with ε probability, and with probability 1− ε, all bets
are off and the encrypted input may be revealed — hence the name ε-simulation security.
This weak security guarantee is then inherited by the FE construction described above.

Therefore, we need to amplify security. But amplifying ε-simulation security to full
security turns out to be easy. We are able to achieve this amplification in a simple and
direct construction (see Section 5) that avoids any need to use hard-core measures or any
other such sophisticated and/or delicate amplification technology.

2.2 Instantiating Our Assumption

To instantiate our assumption, we need to choose a degree d PRG with a stretch more than
nd

d
2
e·(0.5+δ)+ρ. The good news is that there is a rich body of literature on both ingredients

of our assumption that existed way before our work to guide the choice. Binary LWE was
first considered by [AG11] and then by [MP13, ACF+15, BGPW16, CTA19]. Goldreich
PRGs have been studied even before that. There are many prior works spanning areas
in computer science devoted to cryptanalysis of these objects from lattice reduction algo-
rithms and symmetric-key cryptanalysis, to algebraic algorithm tools such as the Gröbner
basis algorithm and attacks arising from the Constraint Satisfaction Problem and Semi-
Definite Programming literature. Guided by them, we list three candidates below. In
Section A.4, we survey many of these attack algorithms, and we compute approximate
running times of the attacks arising out of these algorithms on our candidates. For the
parameters we choose, all those attacks are subexponential time.

11

A Goldreich’s PRG G is defined by a predicate P : {0, 1}`′ → {0, 1}, where `′ is the
locality of the PRG, and a bipartiate input-output dependency graph Λ, which specifies
for every output index j ∈ [m], the subset Λ(j) ⊂ [n] of input indexes of size `′ it depends
on – the j’th output bit is simply set to G(j) = P (Λ(j)). Hence the degree of the PRG G is
identical to the degree of the predicate P . Usually, the input-output dependency graph Λ
is chosen at random, and the non-trivial part lies in choosing the predicate P .

Instantiation 1. The first instantiation is that of the predicate XORMAJ, which is a poplu-
lar PRG predicate [AL16, CDM+18].

XORMAJ`,`(x1 . . . , x2`) = ⊕i∈[`]xi ⊕MAJ(x`+1, . . . , x2`).

The predicate above has a degree of 2 · `; thus, our construction require expansion m >

n
`
2

+`δ+ρ. The predicate is ` + 1 wise independent and thus it provably resists subexpo-
nential time SoS refutation attacks when m(n) ≤ n

`+1
2
−c for c > 0 [KMOW17]. All other

known attacks that we consider and even the algebraic attacks when instantiated in our
combined assumption require subexponential time. We refer the reader to Section A.4 for
a detailed discussion.

Instantiation 2. An slightly unsatisfactory aspect of the XORMAJ predicate is that the
lower bound on the stretch of the PRG instantiated by XORMAJ for it to be useful in our
FE construction is > n

`
2

+δ′ , whereas the upper bound on the stretch to withstand existing
attacks is very close ≤ n

`+1
2
−c, leaving only a tiny margin to work with. This motivates

us to we consdier predicates with degree lower than the locality. One such predicate was
analyzed in [LV17] for stretch upto n1.25−c for c > 0:

TSPA(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ ((x2 ⊕ x4) ∧ (x3 ⊕ x5)) .

What is nice about this predicate is that, it has locality 5 but only degree 3; thus, our
construction only require expansion m > nd

3
2
e(0.5+ε)+ρ = n1+2ε+ρ. In [LV17], it was proven

that the PRG istantiated with TSPA resists subexponential time F2 linear and SoS attacks.
We present analysis against other attacks in Section A.4, all taking subexponential time.

Instantiation 3. We present a degree reduction transformation that takes as input a non-
linear predicate g : {0, 1}k → {0, 1} and constructs a predicate P.

Pg(x1 . . . , x2k+1) = ⊕i∈[k+1]xi ⊕ g(xk+2 ⊕ x2, . . . , x2k+1 ⊕ xk+1).

We show in Section A.3, that the predicate above has a locality of 2k+1 but a degree equal
to k + 1; thus, our construction requires expansion m > nd

k+1
2
e(0.5+ε)+ρ. The predicate is

also k + 1 wise independent. We show that all known attacks run in subexponential time
even when the stretch is bounded by m ≤ n

k+1
2
−δ for some δ > 0. Thanks to the gap

between the locality and degree, we now have a very large margin between the lower

12

and upper bounds on the stretch. Hence, our work motivates the interesting question of
studying such predicates.

Please refer to Table 1 for a summary of attacks on all these predicates as well as the
combined assumption.

2.3 Single Ciphertext Functional Encryption with Linear Key Genera-
tion

We describe our construction of a single-ciphertext (secret-key) FE scheme for all polynomial-
sized circuits with depth bounded by λ, that have the simple structure outlined in Sec-
tion 2, denoted as ε-1LGFE, from LWE. In particular, the key generation and decryption
algorithms have the following form, where s is the master secret key and pp is the public
parameters.

KeyGen(pp, s, f) : ppf ← EvalPP(pp, f) , r ← ([0, B − 1] ∩ Z)m,
output f and secret key ε-1LGFE.sk(f) = 〈ppf , s〉 − r

Dec(ε-1LGFE.ct, (f, ε-1LGFE.sk)) : ε-1LGFE.ctf ← EvalCT(ε-1LGFE.ct, f)
output q

2
y + ef + r ← ε-1LGFE.ct− ε-1LGFE.sk, |ef |∞ ≤ B′

Importantly, decryption recovers a perturbed output where the error ef + r is poly-
nomially bounded. As mentioned before, this object is essentially the same as the notion
of Special Homomorphic Encryption (SHE) in the literature [AR17b, LM18]. Previous
SHE schemes are constructed by modifying existing homomorphic encryption schemes
of [BV11, BGV12]. These constructions are recursive and quite complex, and the overhead
due to recursion prevents them from supporting computations beyond NC1. In this work,
viewing through the FE lens, we search the literature of predicate encryption, and show
how to modify the predicate encryption scheme of [GVW15] (GVW) to obtain single-
ciphertext FE with the desired structure. The GVW predicate encryption provide us with
a single-ciphertext encryption scheme with the following properties:

• The public parameter generation algorithm PPGen samples a collection of random
LWE matricesAi,Bj ← Zn×mp , and sets the public parameters to pp = ({Ai}, {Bj}).

• The setup algorithm Setup samples a master secret key constaining an LWE secret
s← χn drawn from the noise distribution χ.

• The encryption algorithm to encrypt x, generates a ciphertext hect(x) containing
two sets of LWE samples of form ci = sTAi + x̂iG + ei and dj = sTBj + k̂jG +
e′j , where G ∈ Zn×mp is the gadget matrix, vk is a freshly sampled secret key of a
homomorphic encryption scheme, and ei, e′j ← χm are LWE noises. Furthermore,
x̂i is the i’th bit of a homomorphic encryption ciphertext of x under key k.

• The predicate encryption scheme of [GVW15] provides two homomorphic proce-
dures: The EvalCT procedure homomorphically evaluate f on {ci,Ai} and {dj,Bj}
to obtain cf , and the EvalPP seperately homormorphically evaluates on {Ai} and
{Bi} to obtainAf .

13

• The homomorphic evaluation outcomes cf ,Af , has the property that the first co-
ordinate cf,1 of cf and the first column Af,1 of Af satisfy the special decryption
equation.

cf,1 − sTAf,1 = f(x)bp/2e+ ef mod p

The above described encryption scheme almost gives the FE scheme we want except for
the issue that it has super-polynomially large decryption error ef . Thus, we turn to re-
ducing the norm of the decryption error, by applying the rounding (or modulus switch)
technique in the HE literature [BGV12]. Namely, to reduce the error norm by a factor of
p/q for a q < p, we multiply cf,1 and Af,1 with q/p over the reals and then round to the
nearest integer component wise. The rounding results satisfy the following equation

bq
p
cf,1e − sT b

q

p
Af,1e = f(x)bq/2e+ bq

p
efe+ error mod p

where the rounding error error is bounded by |hesk|1+O(1), which is polynomially bounded
as the secret is sampled from the LWE noise distribution instead of uniformly.

We are now ready to instantiate the FE scheme we want. It uses the same public pa-
rameter generation, setup, and encryption algorithm. Now to generate a functional key
for f , it first computesAf ← EvalPP({Ai}, {Bj}) and sets ppf = b q

p
Af,1e, and then outputs

a functional key ε-1LGFE.sk = 〈ppfs〉 − r where r is a random vector of smudging noises
of sufficiently large but still polynomially bounded magnitude. The decryption algorithm
decrypts a ciphertext ε-1LGFE.ct = ({ci}, {dj}) using a functional key ε-1LGFE.sk as fol-
lows: It first computes cf ← EvalPP({Ai, ci}, {Bj,dj}), and sets ε-1LGFE.ctf = b q

p
cf,1e, it

then subtracts ε-1LGFE.sk from it, yielding f(x)bq/2e+ b q
p
efe+ error + r as desired.

2.4 Overview: Our (arith-NC1,deg-2) Partially Hiding Functional En-
cryption

We construct 1-key PHFE with fully compact ciphertext of size linear in the input length n,
for functions F (x,y, z) of the following form, from standard assumptions on asymmetric
pairings. F maps three vectors x,y, z ∈ Znp to a (potentially longer) output vector in
Zmp (our construction can handle any (polynomial) unbounded m), where each output
element is computed by a function f = Fk for k ∈ [m] as the following matrix product:

f(x,y, z) = f 0f 1(x)f 2(x) · · · f `(x)f `+1(y ⊗ z), (1)

where f 0 ∈ Z1×w
p , for all i ∈ [`], f i takes as input a vector x ∈ Zn and outputs a matrix

f i(x) ∈ Zw×wp , the function f `+1 takes as input the vector y ⊗ z ∈ Zn2 and outputs a
vector f `+1(y⊗ z). Here, w denotes the width of the branching program, ` its length. The
function f i are affine, for all i ∈ [` + 1]. Such functions f can express computations such
as L(g(x),y ⊗ z), where g is a Boolean circuit in NC1, and L is a bilinear function, with
degree one in y ⊗ z.

14

Computing degree-2 polynomials on the private inputs.

Roughly speaking, we encrypt the private inputs y and z using encryption schemes with
homomorphic properties that lets users manipulate the ciphertexts to obtain a new ci-
phertext, which encrypts the value f `+1(y ⊗ z), under a public key pkf`+1 that depends
on the function f `+1. This manipulation can be performed publicly for arbitrary linear
function f `+1. At this point, providing the secret key associated to pkf`+1 would reveal the
value f `+1(y ⊗ z), and nothing else about the private inputs y, z. Otherwise stated, this
would constitute a valid functional encryption scheme for degree-2 polynomials.

We implement this paradigm using cyclic groups G1, G2, GT equipped with a pairing
e : G1 ×G2 → GT , and respectively generated by g1, g2, and e(g1, g2). For any exponent
a ∈ Zp, we denote by [a]T = e(g1, g2)a ∈ GT . To encrypt y and z, we make generic use of a

function-hiding inner product FE: the encryption of y comprises IPFE.Enc

(
gyi1

gr·αi1

)
for all

coordinates of y, where gαi1 is a random group elements from G1 that is part of the public
key, r ←R Zp is some fresh randomness, sampled at encryption time, and IPFE.Enc is the

encryption algorithm of IPFE. The encryption of z comprises IPFE.KeyGen

(
g
zj
2

g
βj
2

)
for all

coordinate of z, where gβj2 is a random group elements from G2 that is part of the public
key, and IPFE.KeyGen is the key generation algorithm of IPFE. Correctness of IPFE yields
the products [yizj + rαiβj]T for all i, j ∈ [n]. Because IPFE is secure and function-hiding,
these products are the only information revealed on the private inputs y and z. It is
possible to compute for any linear function f `+1 the elements: [f `+1(y⊗z)+rf `+1(α⊗β)]T ,
which can be seen as an encryption of the value f `+1(y⊗z) under the public key pkf`+1 =
[f `+1(α ⊗ β)]T . Because the parameters of the scheme IPFE are generated freshly during
the encryption, even if IPFE is private-key —this is necessary for all function-hiding FE—
the PHFE is public-key.

Computing branching programs on the public input.

We want to additionally force a specific computation on the public input x ∈ Zn before
decryption. To do so, we produce re-encryption tokens, each of which computes one step
of the matrix branching program directly on the ciphertext. That is, the token associ-
ated with the i-th product transform an encryption of f i+1(x) · · · f `(x)f `+1(y ⊗ z) under
pkf i+1···f`+1 into an encryption f i(x) · · · f `(x)f `+1(y⊗ z) under pkf i···f`+1 , which we denote
by cti. Finally, we release the secret key associated with the public key pkf0···f`+1 . To re-
cover a meaningful information on the encrypted data, decryption is forced to perform
the computation that precisely corresponds to the function f 1 · · · f `+1 encoded in the se-
cret key.

The challenge is to realize these re-encryptions without blowing up the size of the ci-
phertext exponentially with the length `. Concretely, the public keys will be of the form
pkf i···f`+1 = [f i(ui) · · · f `(u`)f `+1(α⊗β)]T , where the vectors ui ←R Znp are part of the mas-
ter secret key. These keys encode the last ` − i steps of the computation. Crucially, these
keys do not grow with the length of the branching program, only its width. So is the case
of the corresponding re-encryptions: we can handle polynomially large length efficiently.

15

The i-th re-encryption token is of the form: [r(f i(ui) − f i(x))f i+1(ui+1) · · · f `+1(α ⊗ β)]T ,
which allows the decryption to transition from cti−1 to cti. Ultimately, the final ciphertext
ct` = [f 0f 1(x) · · · f `+1(y ⊗ z) + rf 0f 1(u1) · · · f `+1(α ⊗ β)]T , is obtained. To decrypt it, we
simply need a mechanism to recover the mask [rf 0f 1(u1) · · · f `+1(α⊗ β)]T . Providing [r]1
on the encryption side, and [f 0f 1(u1) · · · f `+1(α ⊗ β)]2 as the functional secret key would
already give a scheme secure in the generic-group model (and idealized model that cap-
tures attacks that do not rely on the algebraic structure of the underlying group). To obtain
security from standard assumptions, we encrypt [r]1 using an inner-product FE. The func-
tional key is the inner product FE key associated with the value [f 0f 1(u1) · · · f `+1(α⊗β)]2.
This way, decrypting the inner-product FE yields the mask to decrypt the PHFE. Note that
the function is described as [f 0f 1(u1) · · · f `+1(α ⊗ β)]2 in G2, and not in Z; revealing the
value in Z would be detrimental for the security of the PHFE.

Remains to find a way to generate these re-encryption tokens. To do so, we provide an
encoding of the public input x as part of the PHFE ciphertext — note that we choose the
word encoding rather than encryption, since the input xmust not be hidden. This encod-
ing is used with the functional secret key to produce the tokens. We leverage the simple
structure of each computational step of the branching program. Namely, we use the fact
that all the functions f i are affine. Thus, we can use an inner-product FE encryption to
generate the tokens. The encoding of x is an inner-product FE encryption of [r, rx]1, and
the keys are associated with the appropriate functions depending on the f i and the vec-
tors [ui]2, [α]2, [β]2. The challenging part is to prove security even when the values [ui]2,
[α]2, [β]2 are revealed. Indeed, such is the case when using a vanilla inner-product FE, as
opposed to function-hiding FE, where these values would be hidden, but which would
intrinsically be private-key.

Putting things together.

Each PHFE ciphertext contains IPFE.Enc

(
gyi1

gr·αi1

)
and IPFE.KeyGen

(
g
zj
2

g
βj
2

)
for all i, j ∈ [n],

from which can be computed the encryption of f `+1(y ⊗ z) under an associated pub-
lic key pkf`+1 , for all linear functions f `+1. The scheme IPFE is function-hiding, and is
generated freshly by the encryption. The PHFE ciphertext also contains another inner-
product FE encryption of the values [r, r · x]1. These are used with functional secret keys
associated with f i, [ui]2, [α]2 and [β]2, to generate tokens. The latter transform the en-
cryption of f `+1(y ⊗ z) into and encryption of f(x,y, z) under a public key that encodes
the matrix branching program. This transformation is performed step by step. At last,
the mask of the form [rf 0f 1(u1) · · · f `(u`)f `+1(α ⊗ β)]T is recovered exactly as the to-
kens, using the inner-product FE encryption of [r]1 with a functional key associated with
[f 0f 1(u1) · · · f `+1(α⊗ β)]2.

3 Preliminaries

In this section, we describe preliminaries that are useful for rest of the paper. We denote
the security parameter by λ. For any distribution X , we denote by x← X (or x←R X) the

16

process of sampling a value x from the distribution X . Similarly, for a set X we denote by
x ← X (or x ←R X) the process of sampling x from the uniform distribution over X . For
an integer n ∈ N we denote by [n] the set {1, .., n}. A function negl : N→ R is negligible if
for every constant c > 0 there exists an integer Nc such that negl(λ) < λ−c for all λ > Nc.

By≈c we denote the standard polynomial time computational indistinguishability. We
say that two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are (s(λ), ε(λ))− indistinguishable
if for every adversary A (modeled as a circuit) of size bounded by s(λ) it holds that:∣∣∣∣Prx←Xλ [A(1λ, x) = 1]− Pry←Yλ [A(1λ, y) = 1]

∣∣∣∣ ≤ ε(λ) for every sufficiently large λ ∈ N.

For a field element a ∈ Fprmtr represented in [−p/2, p/2], we say that a ∈ [−B,B] for
some positive integer B if its representative in [−p/2, p/2] lies in [−B,B].

Throughout, when we refer to polynomials in security parameter, we mean constant
degree polynomials that take positive value on non negative inputs. We denote by poly(λ)
an arbitrary polynomial in security parameter satisfying the above requirements of non-
negativity.

Pairing groups.

Throughout the paper, we use a sequence of asymmetric prime-order pairing groups:

G = {(pλ, Gλ,1,Gλ,2,Gλ,T , Pλ,1, Pλ,2, Pλ,T , eλ)}λ∈N,

where for all s ∈ {1, 2, T}, (Gλ,s,+) is an cyclic group (for which we use additive notation)
of order pλ = 2λ

Θ(1) . Gλ,1 and Gλ,2 are generated by Pλ,1 and Pλ,2 respectively, and e :
Gλ,1 ×Gλ,2 → GT is a non-degenerate bilinear map, that is, satisfying eλ(aPλ,1, bPλ,2) =
abPT for all integers a, b ∈ Zp, where PT = e(Pλ,1, Pλ,2) is a generator of Gλ,T .

Remark 3.1. We require the group operations as well as the pairing operation to be effi-
ciently computable. The rest of the paper will refer to this sequence of bilinear pairing
groups, and the corresponding sequence of prime orders of the groups {pλ}λ∈N.

When clear from context, we omit the subscript λ. We also use implicit representation
of group elements. That is, for s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the
implicit representation of a in Gs. More generally, for a matrix A = (aij) ∈ Zn×mp we
define [A]s as the implicit representation of A in Gs:

[A]s :=

a11Ps ... a1mPs

an1Ps ... anmPs

 ∈ Gn×m
s .

Given [a]1 and [b]2, one can efficiently compute [a · b]T using the pairing e. For matrices
A and B of matching dimensions, define e([A]1, [B]2) := [AB]T . For any matrix A,B ∈
Zn×mp , any group s ∈ {1, 2, T}, we denote by [A]s + [B]s = [A + B]s.

For any prime p, we define the following distribution. The DDHp distribution over Z2
p:

Sample a ←R Zp, output a :=
(

1
a

)
. The DLINp distribution over Z3×2

p : a, b ←R Zp, outputs

A :=

a 0
0 b
1 1

.

17

Definition 3.1 (DDH assumption). For any adversary A, any sequence of asymmetric prime-
order pairing groups G, any s ∈ {1, 2, T} and any security parameter λ, let

advDDH
G,s,A(λ) := |Pr[1← A(1λ, [a]s, [ar]s)]− Pr[1← A(1λ, [a]s, [u]s)]|,

where the probabilities are taken over a ←R DDHpλ , r ←R Zpλ , u ←R Z2
pλ

, and the random coins
of A. Note that the adversary A also gets a description of the groups Gλ,1, Gλ,2, Gλ,3, and the
bilinear map eλ.

We say DDH holds for a group G in Gs for s ∈ {1, 2, T} if for all PPT adversaries A, there
exists a negligible function negl such that advDDH

G,s,A(λ) < negl(λ).

Definition 3.2 (SXDH assumption). For any sequence of asymmetric prime-order pairing groups
G, we says the SXDH assumption holds for G if DDH holds for Gλ,1 in Gs for both s = 1 and
s = 2.

Definition 3.3 (Bilateral DLIN assumption). For any adversaryA, any sequence of asymmetric
prime-order pairing groups G, any security parameter λ, let

advDLIN
G,A (λ) :=

∣∣Pr
[
1← A

(
1λ, {[A]s, [Ar]s}s∈[1,2]

)]
− Pr

[
1← A

(
1λ, {[A]s, [u]s}s∈[1,2]

)]∣∣ ,
where the probabilities are taken over A←R DLINpλ , r ←R Z2

pλ
, u←R Z3

pλ
, and the random coins

of A. Note that the adversary A also gets a description of the groups Gλ,1, Gλ,2, Gλ,3, and the
bilinear map eλ. We say bilateral DLIN holds in G if for all PPT adversaries A, there exists a
negligible function negl such that advDLIN

G,A (λ) < negl(λ).

4 Functional Encryption Definitions

We denote byF = ∪n,d,`,size∈poly
(
{Fλ,n(λ),d(λ),`(λ),size(λ)}λ∈N

)
an abstract function class, which

is parameterised by λ ∈ N and four polynomials n(λ), d(λ), `(λ), size(λ)). We call prmtr the
tuple (n, d, `, size). In this abstract class, every function f ∈ Fλ,prmtr takes an input from
Xλ,prmtr × Yλ,prmtr and outputs in Zλ,prmtr. We will specify what this exactly denotes in the
exact constructions. Two specific instantiations of those classes are described below:

• The function classFCIRC
λ,prmtr: Here Yλ,prmtr consists of {0, 1}n,Xλ,prmtr is empty,Zλ,prmtr =

{0, 1}`. This family consists of Boolean circuits of depth d and size size.

• The function class FPHFE
λ,prmtr: Here Xλ,prmtr = Yλ,prmtr = Zn(λ)

pλ where pλ is the prime
order for the group Gλ (see Remark 3.1), and Z = Gλ,T , which denotes the target
group of Gλ. The class consists of arithmetic circuits NC1 circuits on the input that
belongs to Xλ,prmtr, and degree-2 polynomials on the input that belongs to Yλ,prmtr.
We describe the exact class later when we need it.

Here we provide the relevant definition regarding functional encryption (FE) and
partially-hiding FE (PHFE) along with several notions of efficiency and security proper-
ties. FE corresponds to the particular case where the public part of the message (referred
to as Xλ,prmtr below) is empty.

18

Definition 4.1. (Syntax of a PHFE Scheme.) A partially-hiding functional encryption scheme,
PHFE, for a functionality {Fλ,prmtr : Xλ,prmtr×Yλ,prmtr → Zλ,prmtr}λ,prmtr, consists of the following
PPT algorithms:

• PPGen(1λ, prmtr) : Given as input the security parameter 1λ and additional parameters
prmtr = (n, d, `, size), it outputs a string pp. We assume that pp is implicitly given as input
to all the algorithms below.

• Setup(pp): Given as input pp, it outputs a public key pk and a master secret key msk.

• Enc(pk, (x, y)): Given as input the public key pk and a message (x, y) with public part
x ∈ Xλ,prmtr and private part y ∈ Yλ,prmtr, outputs the ciphertext ct along with the input x.

• KeyGen(msk, f): Given as input the master secret key msk and a function f ∈ Fλ,prmtr, it
outputs a functional decryption key skf .

• Dec(skf , (x, ct)): Given a functional decryption key skf and a ciphertext (x, ct), it deter-
ministically outputs a value z in Zλ,prmtr, or ⊥ if it fails.

Remark 4.1. (On Secret Key Schemes.) An FE scheme is said to be secret-key is pk is
empty, and the encryption algorithm takes as additional input the master secret key msk.

Remark 4.2. (On FE vs PHFE.) The syntax of FE is identical to PHFE described above
except that for all λ ∈ N, the set Xλ,prmtr = ∅, that is, all the input remains private.

Definition 4.2. (Correctness.) A Partially hiding FE scheme PHFE for the functionality F =
{Fλ,prmtr}λ,prmtr is correct if for security parameter λ ∈ N and every polynomials n, d, `, size there
exists a negligible function negl(λ) such that for all messages (x, y) ∈ Xλ,prmtr × Yλ,prmtr and all
functions f ∈ F , we have:

Pr

pp← PPGen(1λ, prmtr)

(pk, sk)← Setup(pp)
(x, ct)← Enc(pk, (x, y))
skf ← KeyGen(sk, f)

Dec(skf , x, ct)) 6= f(x, y)

 ≤ negl(λ).

Now we give the security notions for PHFE and FE.

4.1 Security Definition

We discuss two security notions. First, for any constant ε ∈ (0, 1], we present the notion
of ε-simulation security below:

Definition 4.3 (ε-simulation security). For all ε ∈ (0, 1], we say a PHFE scheme for the func-
tionality F = {Fλ,prmtr}λ,prmtr denoted by PHFE is ε-simulation secure if there exists a (possibly
stateful) PPT simulator S = (S̃etup, Ẽnc, K̃eyGen) such that for all stateful PPT adversaries

19

A = (A1,A2), there exists a negligible function negl such that for all security parameters λ ∈ N,
all polynomials prmtr = (n, d, `, size), we have:

advSIMPHFE,A(1λ, prmtr) := |Pr[1← RealPHFEA (1λ, prmtr)]−Pr[1← IdealPHFEA,S (1λ, prmtr)]| < negl(λ),

where the experiments RealPHFEA (1λ) and IdealPHFEA,S (1λ) are defined below. The differences between
these two experiments are highlighted in red.

RealPHFE
A (1λ, prmtr):

(x∗, y∗) ∈ Xλ,prmtr × Yλ,prmtr, (fj ∈ Fλ,prmtr)j∈[Qsk] ← A1(1λ)
pp← PPGen(1λ, prmtr)
(pk,msk)← Setup(pp)
(x∗, ct∗)← Enc(pk, (x∗, y∗))
∀j ∈ [Qsk]: skfj ← KeyGen(msk, fj)
α← A2(pp, pk, (skfj)j∈Qsk

, x∗, ct∗)
Output α.

IdealPHFEA,S (1λ, prmtr):
(x∗, y∗) ∈ Xλ,prmtr × Yλ,prmtr, (fj ∈ Fλ,prmtr)j∈[Qsk] ← A1(1λ)
pp← PPGen(1λ, prmtr)

(p̃k, td)← S̃etup(pp), ω ← Sample(x∗, y∗, (fj)j∈[Qsk])

(x∗, c̃t∗)← Ẽnc(td, ω)

∀j ∈ [Qsk] : s̃kfj ← K̃eyGen(td, fj, ω)

α← A2

(
pp, p̃k, (s̃kfj)j∈Qsk

, x∗, c̃t∗
)

Output α.

The algorithm Sample, given as input the tuple
(
x∗, (fj, fj(x

∗, y∗))j∈[Qsk]

)
, flips a biased coin.

If the outcome is tails (which happens with probability ε over the coin flip), then it outputs ω =(
x∗, (fj, fj(x

∗, y∗))j∈[Qsk]

)
. If the outcome is heads (which happens with probability 1− ε over the

coin flip), then it outputs ω =
(
x∗, y∗(fj)j∈[Qsk]

)
.

Remark 4.3 (Standard simulation security). If ε = 1, the algorithm Sample always out-
puts ω = (x∗, (fj, fj(x

∗, y∗))j∈[Qsk]), which corresponds to the standard simulation security
definition.

Remark 4.4 (Secret-Key schemes). This definition can be easily adapted to a secret-key
scheme simply by having the encryption algorithm get the additional input msk.

Remark 4.5 (Subexponential security). If ε = 1, and the negl above is 2−λ
Ω(1) , then the

scheme is said to satisfy subexponential security.

Remark 4.6 (Number of functional decryption keys). We say a a scheme is many-key
secure if security holds for any polynomial Qsk, and one-key secure if Qsk = 1. When we
do not specify it explicitly, we mean one-key security.

We also give an indistinguishability-based security definition.

20

Definition 4.4 (IND security). We say an FE scheme FE for functionality F = {Fλ,prmtr}λ∈N is
IND secure if for all stateful PPT adversaries A, all polynomial parameters prmtr = (n, d, `, size)
there exists a negligible function negl such that , we have:

advINDFE,A(λ) := 2 · |1/2− Pr[1← INDFE
A (1λ, prmtr)]| < negl(λ),

where the experiment INDFE
A (1λ, prmtr) is defined below.

INDFE
A (1λ, prmtr):

{xi0, xi1}i∈[Qct], {f j}j∈[Qsk] ← A(1λ)
pp← PPGen(1λ, prmtr)
Where ∀i ∈ [Q]: xi0, xi1 ∈ Yλ,prmtr, ∀j ∈ [Qsk]: f j ∈ Fλ,prmtr

(pk,msk)← Setup(pp), b←R {0, 1}
∀i ∈ [Qct] : cti ← Enc(pk, xib), ∀j ∈ [Qsk] : skj ← KeyGen(msk, f j)
b′ ← A({cti}i∈[Qct], {skj}j∈[Qsk], pk)
Return 1 if b = b′ and ∀ i ∈ [Qct], j ∈ [Qsk], f

j(xi0) = f j(xi1), 0 otherwise.

As for simulation security, we say that FE satisfies subexponential security if negl(λ) = 2−λ
Ω(1) .

We also define secret-key function hiding FE as follows.

Definition 4.5 (Function Hiding Indistinguishability security). We say a secret-key FE scheme
FE for functionality F = {Fλ,prmtr}λ,prmtr is IND-FH secure if for all stateful PPT adversaries A,
and all polynomial paramters prmtr = (n, d, `, size) there exists a negligible function negl such
that, we have:

advIND−FHFE,A (λ) := 2 · |1/2− Pr[1← IND− FHFE
A (1λ, prmtr)]| < negl(λ),

where the experiment IND− FHFE
A (1λ, prmtr) is defined below.

IND− FHFE
A (1λ, prmtr):

{xi0, xi1}i∈[Qct], {f
j
0 , f

j
1}j∈[Qsk] ← A1(1λ)

pp← PPGen(1λ, prmtr)
msk← Setup(pp), b←R {0, 1}
∀i ∈ [Qct] : cti ← Enc(msk, xib), ∀j ∈ [Qsk] : skj ← KeyGen(msk, f jb)
b′ ← A({cti}i∈[Qct], {skj}j∈[Qsk])

Return 1 if b = b′ and ∀ i ∈ [Qct], j ∈ [Qsk], f
j
0 (xi0) = f j1 (xi1), 0 otherwise.

Remark 4.7 (Subexponential Security). In both the definitions above, we say that the
schemes satisfy subexponential security if negl = 2−λ

Ω(1) .

4.2 Efficiency Features

We now define various efficiency notions for PHFE (which are straightforward to adapt
to FE).

21

Definition 4.6 (Linear efficiency). We say a PHFE for the functionality F = {Fλ,prmtr}λ,prmtr

satisfies linear efficiency if there exists a polynomial poly such that for all security parameters λ ∈
N and all polynomial parameters prmtr = (n, d, `, size), all messages (x, y) ∈ Xλ,prmtr × Yλ,prmtr,
all pp in the support of PPGen(1λ, prmtr), all (pk,msk) in the support of Setup(pp) the size of
the circuit computing Enc(pk, ·) on the input (x, y) is at most (|x| + |y|) · poly(λ), for some fixed
polynomial poly where |x| and |y| denote the size of x and y, respectively.

Now we define the notion of sublinearity for FE scheme for the functionality F (i.e. all
polynomial circuits, defined in Section 3). It was shown in a series of works [AJ15, BV15,
BNPW16] that such FE schemes for P/poly imply obfuscation (assuming subexponential
security).

Definition 4.7 (Sublinearity). Let FE be an FE scheme for the functionalityF = {Fλ,prmtr}λ,prmtr.
If there exists ε ∈ (0, 1) and a polynomial poly such that for all tuple of polynomials prmtr =
(n, d, `, size), all λ ∈ N, all pp in the support of PPGen(1λ, prmtr), all (pk,msk) in the support of
Setup(pp):

• if the size of the circuit Enc(pk, ·) is at most size1−ε · poly(n, λ) then FE is said to be sublin-
early efficient. It is said to be compact if ε = 1.

• if for all x ∈ {0, 1}n, all ciphertexts ct in the support of Enc(pk, x), the size of ct is at most
size1−ε · poly(n, λ) then FE is said to be sublinearly ciphertext-efficient.

• if for all x ∈ {0, 1}n, all ciphertexts ct in the support of Enc(pk, x), the size of ct is at most
`1−ε · poly(n, λ) then FE is said to be sublinearly output-efficient.

Remark 4.8 (levelled linear efficiency, compactness, and sublinearity). More generally,
we say that the scheme satisfies levelled linear efficiency or levelled compactness, or lev-
elled sublinearity if the multiplicative factor poly(n, λ) in Definition 4.6 or Definition 4.7
is replaced by poly(λ, n, d), i.e. the polynomial also depends on the depth bound d.

4.3 Structural Properties

Now we define some structural properties that are very specific to our construction. First
we define the notion of special structure which captures the property of a function key
can be generated just by applying a linear function of the master secret key over some
field along with the fact that the decryption of a ciphertext is “almost linear” (specified
below).

Definition 4.8. (Special Structure*.) We say that a functional encryption scheme FE for FCIRC =
{FCIRC

λ,prmtr}λ,prmtr satisfies special structure* if there exist polynomials h1, h2, h3, h4 such that the
following holds. Recall FCIRC

λ,prmtr for prmtr = (n, d, `, size) consists of all Boolean circuits with n
bits of input, ` bits of output, depth d and size size.

• (PP Syntax.) The pp generated by the PPGen(1λ, prmtr) algorithm contains a h1(λ)-bit
prime modulus p.

22

• (Linear secret key Structure.) The master secret key is a vector in s ∈ Zh2(λ)
p . For any func-

tion f ∈ Fλ,prmtr, let f = {fi}i∈[`] denote the circuit computing ith bit of f . The functional
secret key is of the form skf = {skfi}i∈[`] where each skfi = 〈ppfi , s〉 + ei mod p where
ei ←R {0, . . . , h3(λ, n, `, d)} and ppfi is some deterministic polynomial time computable
function of pp and fi.

• (Linear + Round Decryption with polynomial decryption error.) There exists a determin-
istic poly-time algorithm such that given an encryption ct of m ∈ {0, 1}n and a function
f = (f1, . . . , f`) ∈ Fλ,prmtr, for every i ∈ [`], computes ctfi such that |ctfi − 〈ppfi , s〉 −
fi(m)dp

2
e| ≤ h4(λ, d, `, size). Given the secret-key for a function f = (f1, . . . , f`), this can

be used to recover f(m) = (f1(m), . . . , f`(m)).

5 ε-simulation Secure FE to Fully Secure FE

In this section, we show how to construct an IND secure FE scheme for all circuits from a
ε-simulation secure FE for all circuits for any ε ∈ (0, 1) (as per Definition 4.3), additionally
assuming LWE. The IND secure FE (see Definition 4.4) that results from our transforma-
tion inherits the sublinear efficiency property of the underlying ε-simulation secure FE.

5.1 Homomorphic Secret Sharing

We first recall the notion of a Homomorphic-Secret Sharing (HSS) scheme for circuits that
will be used as one of the tools for our construction. We recall that for λ ∈ N, and polyno-
mial parameters prmtr = (n, d, `, size), FCIRC

λ,prmtr consists of all boolean circuits with n bits of
inputs, ` bits of outputs, depth d and size size.

Definition 5.1 (Syntax of a HSS Scheme). An HSS scheme for circuitsFCIRC = {FCIRC
λ,prmtr}λ,prmtr

consists of the following PPT algorithms:

• Share(1λ, prmtr, 1t, x) : Given as input the security parameter 1λ, the tuple of polynomials
prmtr = (n, `, d, size), a threshold 1t, and an input x ∈ {0, 1}n, the sharing algorithm
outputs t shares (sh1, . . . , sht).

• Eval(f, shi): Given as input a function f ∈ FCIRC
λ.prmtr and a share shi, the evaluation algorithm

deterministically outputs an evaluation ŝhi.

• Decode({ŝhi}i∈[t]): Given as input evaluations evaluations ŝhi for all i ∈ [t], the decoding
algorithm deterministically outputs z ∈ {0, 1}` or ⊥ if it fails.

Correctness. An HSS scheme is said to be correct if for all λ ∈ N, all polynomials
prmtr = (n, d, `, size), t ∈ N, all f ∈ FCIRC

λ,prmtr, all shares sh1, . . . , sht in the support of
Share(1λ, prmtr, 1t, x), all evaluations ŝh1, . . . , ŝht in the support of Eval(f, sh1), . . . ,Eval(f, sht)

respectively, we have Decode({ŝhi}i∈[t]) = f(x).

23

Definition 5.2 (IND security). An HSS scheme for circuits HSS is said to be IND-secure if for
all admissible stateful ppt adversaries A, there exists a negligible function negl, such that for all
tuple of polynomials prmtr = (n, d, size, `) and t:

advIndHSS,A(1λ) := |Pr[1← Expt0A(1λ)]− Pr[1← Expt1A(1λ)]| < negl(λ),

where the experiments ExptbA(1λ) for b ∈ {0, 1} are defined below. We say an adversary A is ad-
missible if S is not equal to [t] and f(x0) = f(x1). Further, the scheme is subexponentially secure
if negl(λ) = 2−λ

Ω(1) .

ExptbA(1λ):
(x1, x0, f) ∈ ({0, 1}n)2 ×Fλ,prmtr ← A(1λ)
S ([t]← A(1λ)
({shi}i∈[t])← Share(1λ, prmtr, 1t, xb)

∀i ∈ [t] : ŝhi ← Eval(f, shi)

α← A({shi}i∈S, {ŝhi}i∈[t])
Output α.

We now list the efficiency properties we require from the HSS scheme.

Efficiency Properties. There exist polynomials h1, h2, h3, h4, h5 such that for all polyno-
mials n, d, `, size, t and all security parameters λ, the following holds:

• The circuit computing the function Share(1λ, prmtr, 1t, ·) is of size h1(n, d, t, λ). The
length of each share is n · h2(λ, d)

• For any function f ∈ FCIRC
λ,prmtr, the circuit computing the function Eval(f, ·) is of size

size · h3(λ, d) and of depth d · h4(λ).

• The output length of Eval(f, ·) is ` · h5(λ, d)

As shown in [MW16, DHRW16, BGG+18], if there exists a constant ρ > 0 such that the
LWE assumption with modulus-to-noise ratio 2dimρ

holds, then there exists an IND-secure
HSS scheme for circuits.

5.2 Transformation

We now present our transformation.

Theorem 5.1. Let ε ∈ (0, 1), FE be a (single-key) ε-simulation secure FE for FCIRC, and HSS be a
IND-secure HSS for FCIRC. Then, FEamp defined below satisfies (single-key) indistinguishability
security. Further, if FE and HSS are subexponentially secure, then so is FE.

Let HSS be an HSS for circuits and FE be an FE for circuits. Below is our construction
FEamp from HSS and FE.

24

• PPGen(1λ, prmtr) : It takes as input the security parameter 1λ and the tuple of poly-
nomials prmtr = (n, `, d, size). Let h1, h2, h3, h4, h5 be the polynomials associated
with HSS (see the efficiency properties above). The algorithm sets the polynomi-
als t(λ) = λ, n′(λ) = n · h2(λ, d), size′ = size · h3(λ, d), d′ = d · h4(λ), `′ = ` · h5(λ, d)
and prmtr′ = (n′, `′, size′, d′). Run FE.pp←R FE.PPGen(1λ, prmtr′). Output pp = FE.pp.

• Setup(pp) : For all i ∈ [t], run (FE.pki,FE.mski) ←R FE.Setup(pp). Output pk =
(FE.pk1, . . . ,FE.pkt) and msk = (FE.msk1, . . . ,FE.mskt).

• Enc(pk,m) : Run HSS.Share(1λ, prmtr, 1t,m)→ {shi}i∈[t]. Parse pk = (FE.pk1, . . . ,FE.pkt).
Compute ct[i] = FE.Enc(FE.pki, shi) for all i ∈ [t]. Output ct = (ct[1], . . . , ct[t]).

• KeyGen(msk, f) : Parse msk = (FE.msk1, . . . ,FE.mskt). LetF be the function HSS.Eval(f, ·).
For all i ∈ [t], compute skF [i]← FE.KeyGen(FE.mski, F). Output skf = (skF [1], . . . , skF [t]).

• Dec(sk, ct) : Parse skf = (skF [1], . . . , skF [t]) and ct = (ct[1], . . . , ct[t]). Compute ŝhi =

FE.Dec(skF [i], ct[i]) for all i ∈ [t]. Output z = HSS.Decode(ŝh1, . . . , ŝht).

Correctness. The correctness of the scheme follows immediately from the correctness of
FE and HSS.

Sublinear-Efficiency. We show that the transformation preserves (levelled) sublinear
(output) effiency. Namely, we have:

• If FE satisfies (levelled) ciphertext sublinearity, then, the length of the ciphertext
of FEamp is O(t · size′1−ρ poly(n′, d′, λ)) for some ρ > 0. Observe that t = λ, size′ =
size · h3(λ, d), and d′ = d · h4(λ) and n′ = n · h2(λ, d). Thus, the size of the ciphertext
is O(size1−ρ poly′(n, d, λ)). Thus, the resulting scheme is also (levelled) ciphertext
sublinear.

• If FE is (levelled) sublinearly efficient, then the following happens. The size of the
circuit computing the encryption is O(h1(n, d, t, λ) + t · size′1−ρ poly(λ, d′, n′)). The
first part comes from the size of the circuit computing the HSS share, and the second
part comes from the size of the circuit computing FE encryptions. Thus, this is
O(size1−ρ poly′(n, d, λ)) and FEamp is (levelled) sublinearly efficient.

• If FE satisfies (levelled) output-sublinearity, then the following happens. The size of
the circuit computing the encryption is O(h1(n, d, t, λ) + t · `′1−ρ poly(λ, d′, n′)). The
first part comes from the size of the circuit computing the HSS share, and the second
part comes from the size of the circuit computing FE encryptions. Thus, this is
O(`1−ρ poly′(n, d, λ)) and FEamp is (levelled) output-sublinearly efficient.

Security Proof. We complete the proof of Theorem 5.1, namely we prove the IND secu-
rity of FEamp from the ε-simulation security of FE and the IND security of HSS. Note that
if the underlying FE and HSS are subexponentially secure, then so is FEamp. We first list
the hybrids and then argue indistinguishability between them inline. The first hybrid the

25

challenge bit is b←R {0, 1}, whereas the last hybrid is independent of b.

Hybrid0 :

• A outputs (m0,m1), and a function f .

• Sample b←R {0, 1}. Compute (sh1, . . . , sht)←R Share(1
λ, prmtr, 1t,mb).

• Run pp ←R FE.PPGen(1λ, prmtr′) and sample (FE.pki,FE.mski) ←R Setup(pp) for i ∈
[t]. Set pk = (FE.pk1, . . . ,FE.pkt).

• Compute ct[i]← FE.Enc(pki, shi) for i ∈ [t]. Let ct = (ct[1], . . . , ct[t]).

• Compute skF [i] ← FE.KeyGen(FE.mski, F) where F = HSS.Eval(f, ·) for i ∈ [t]. Let
skf = (skF [1], . . . , skF [t]).

• Output (pp, pk, ct, skf)

Hybrid1 :

• A outputs (m0,m1), and a function f .

• Sample b←R {0, 1}. Compute (sh1, . . . , sht)←R Share(1
λ, prmtr, 1t,mb).

• Run pp←R FE.PPGen(1λ, prmtr′) and run (FE.p̃ki,FE.tdi)←R S̃etup(pp) for i ∈ [t]. Set
pk = (FE.p̃k1, . . . ,FE.p̃kt).

• Let γi ← Sample(shi, F).

• Compute ct[i]← FE.Ẽnc(FE.tdi, γi) and skF [i]← FE.K̃eyGen(FE.tdi, F, γi) for i ∈ [t].

• Let ct = (ct[1], . . . , ct[t]) and skf = (skF [1], . . . , skF [t]).

• Output (pp, pk, ct, skf)

The hybrids above are computationally indistinguishable due to ε-simulation security
of FE. The only difference between these hybrids is how ct[i], skF [i] is generated for all
i ∈ [t]. In Hybrid0 is generated using honest Enc and KeyGen algorithms and in Hybrid1

they are generated using the simulation algorithms.

Hybrid2 :

• A outputs (m0,m1), and a function f .

• Sample b←R {0, 1}. Compute (sh1, . . . , sht)←R Share(1
λ, prmtr, 1t,mb).

• Run pp←R FE.PPGen(1λ, prmtr′) and run (FE.p̃ki,FE.tdi)←R S̃etup(pp) for i ∈ [t]. Set
pk = (FE.p̃k1, . . . ,FE.p̃kt).

26

• Sample α ∈ {0, 1}t. Each is independently sampled where αi = 1 with probability
ε, and 0 otherwise. If αi = 1, set γi = (F, F (shi)), otherwise γi = (shi, F).

• Compute ct[i]← FE.Ẽnc(FE.tdi, γi) and skF [i]← FE.K̃eyGen(FE.tdi, F, γi) for i ∈ [t].

• Let ct = (ct[1], . . . , ct[t]) and skf = (skF [1], . . . , skF [t]).

• Output (pp, pk, ct, skf)

Hybrid1 and Hybrid2 are identical as we just expanded how the Sample operates. We
now describe Hybrid3, where we abort when α = 0t.

Hybrid3 :

• A outputs (m0,m1), and a function f .

• Sample b←R {0, 1}. Compute (sh1, . . . , sht)←R Share(1
λ, prmtr, 1t,mb).

• Run pp←R FE.PPGen(1λ, prmtr′) and run (FE.p̃ki,FE.tdi)←R S̃etup(pp) for i ∈ [t]. Set
pk = (FE.p̃k1, . . . ,FE.p̃kt).

• Sample α ∈ {0, 1}t. Each is independently sampled where αi = 1 with probability
ε, and 0 otherwise. If αi = 1, set γi = (F, F (shi)), otherwise γi = (shi, F). Abort if
α = 0t.

• Compute ct[i]← FE.Ẽnc(FE.tdi, γi) and skF [i]← FE.K̃eyGen(FE.tdi, F, γi) for i ∈ [t].

• Let ct = (ct[1], . . . , ct[t]) and skf = (skF [1], . . . , skF [t]).

• Output (pp, pk, ct, skf)

Hybrid2 and Hybrid3 are statistically indistinguishable with the statistical distance be-
ing Pr[α = 0t] = (1 − ε)t. If ε ∈ (0, 1] is a constant then this is 2−λ

Ω(1) . In the next hybrid,
we share m0 instead of mb.

Hybrid4 :

• A outputs (m0,m1), and a function f .

• Compute (sh1, . . . , sht)←R Share(1
λ, prmtr, 1t,m0).

• Run pp←R FE.PPGen(1λ, prmtr′) and run (FE.p̃ki,FE.tdi)←R S̃etup(pp) for i ∈ [t]. Set
pk = (FE.p̃k1, . . . ,FE.p̃kt).

• Sample α ∈ {0, 1}t. Each is independently sampled where αi = 1 with probability
ε, and 0 otherwise. If αi = 1, set γi = (F, F (shi)), otherwise γi = (shi, F). Abort if
α = 0t.

• Compute ct[i]← FE.Ẽnc(FE.tdi, γi) and skF [i]← FE.K̃eyGen(FE.tdi, F, γi) for i ∈ [t].

27

• Let ct = (ct[1], . . . , ct[t]) and skf = (skF [1], . . . , skF [t]).

• Output (pp, pk, ct, skf)

The only difference between Hybrid3 and Hybrid4 is that we now share m0 instead
of mb. We can formally show that if there is an attacker that distinguishes between these
hybrids, then, it should break the security of HSS scheme. We can design the reduction as
follows. Let A′ be the adversary for distinguishing the hybrids.
ReductionR

• A outputs (m0,m1), and a function f .

• Sample α ∈ {0, 1}t. Each αi for i ∈ [t] is sampled independently to be 1 with proba-
bility ε and 0 with probability 1− ε. Abort if α = 0t, otherwise proceed. Let S be the
set of indices where αi = 0. Note, S 6= [t].

• Sample b ←R {0, 1}. Send f, S, (mb,m0) to the HSS challenger. The reduction gets
back {shi}i∈S and {F (γi)}i/∈S . If i ∈ S, set γi = (shi, F) otherwise γi = (F (shi), F).

• Run pp←R FE.PPGen(1λ, prmtr′) and sample (FE.p̃ki,FE.tdi)←R S̃etup(pp) for i ∈ [t].
Set pk = (FE.p̃k1, . . . ,FE.p̃kt).

• Compute ct[i]← FE.Ẽnc(FE.tdi, γi) and skF [i]← FE.K̃eyGen(FE.tdi, F, γi) for i ∈ [t].

• Give (pp, pk, ct, skf) to A′. Output whatever it outputs.

Note that the view of A′ is exactly as in Hybrid3 if mb is shared, and it is exactly as
Hybrid4 if m0 is shared. If A′ indeed succeeds in distinguishing these two hybrids, then
our Reduction will succeed in the HSS game with the same advantage.

6 Definition of Structured-Seed PRG

Definition 6.1 (Syntax of Structured-Seed Pseudo-Random Generators (sPRG)). Let τ be a
positive constant. A structured-seed Boolean PRG, sPRG, with stretch τ that maps (n · poly(λ))-
bit binary strings into (m = nτ)-bit strings, where poly is a fixed polynomial, is defined by the
following PPT algorithms:

• PPGen(1λ, 1n) takes as input the security parameter λ, and an input length 1n, which is a
polynomial in λ. It outputs public parameters pp, which amongst other things contains an
odd prime modulus p(λ) which is poly(λ) bit prime for some polynomial independent of n.

• IdSamp(pp) samples a function index I .

• SdSamp(I) jointly samples two binary strings, a public seed and a private seed, sd = (P, S).
These are vectors over Zp. The combined dimension of these vectors is n · poly(λ).

• Eval(I, sd) computes a string in {0, 1}m.

28

Remark 6.1 (The modulus p(λ)). The size of the modulus p(λ) is some fixed polynomial
in the security parameter λ independent of n.

Remark 6.2 (Polynomial Stretch.). We say that an sPRG has polynomial stretch if τ > 1
for some constant τ .

Remark 6.3 (Linear Efficiency.). We say that an sPRG has linear-efficiency if the time to
sample sd is n · poly(λ).

Remark 6.4 (On poly(λ) multiplicative factor in the seed length.). As opposed to a stan-
dard Boolean PRG definition where the length of the output is set to be nτ where n is
the seed length, we allow the length of the seed to increase multiplicatively by a fixed
polynomial poly in a parameter λ. Looking ahead, one should view n as an arbitrary large
polynomial in λ, and hence sPRG will be expanding in length.

Definition 6.2 (Security of sPRG). A structured-seed Boolean PRG, sPRG, satisfies

Pseudorandomness: Let λ ∈ N be the security parameter, let n(λ) be a polynomial in λ. Then,
following distributions are indistinguishable.

(pp, I, P, Eval(I, sd))

(pp,I, P, r)

where pp← PPGen(1λ, 1n), I ← IdSamp(pp), sd← SdSamp(I), r ← {0, 1}m.

Definition 6.3 (Complexity and degree of sPRG). Let D ∈ N, let λ ∈ N and n = n(λ)
be arbitrary positive polynomial in λ, and p = p(λ) denote a prime modulus which is sampled
during PPGen. Let C be a complexity class. A sPRG has complexity C in the public seed and
degree D in private seed over Zp, denoted as, sPRG ∈ (C, deg D), if for every I in the support
of IdSamp(1λ, 1n), there exists an algorithm ProcessI in C and an m(n)-tuple of polynomials QI

that can be efficiently generated from I , such that for all sd in the support of SdSamp(I), it holds
that:

Eval(I, sd) = QI(P
′, S) over Zp , P′ = ProcessI(P) ,

where QI has degree 1 in P and degree D in S.

We remark that the above definition generalizes the standard notion of families of
PRGs in two aspects: 1) the seed consists of a public part and a private part, jointly sam-
pled and arbitrarily correlated, and 2) the seed may not be uniform. Therefore, we obtain
the standard notion as a special case.

Definition 6.4 (Pseudo-Random Generators, degree, and locality). A (uniform-seed) Boolean
PRG (PRG) is an sPRG with a seed sampling algorithm SdSamp(I) that outputs a public seed P
that is an empty string and a uniformly random private seed S ← {0, 1}n, where the polynomial
poly is fixed to be 1.

Let D, Loc ∈ N. The PRG has multilinear degree D if for every n ∈ N and I in the support
of IdSamp(1n), we have that Eval(I, sd) can be written as an m(n)-tuple of degree-D polynomials
over Z in S. It has constant locality Loc if for every n ∈ N and I in the support of IdSamp(1n),
every output bit of Eval(I, sd) depends on at most Loc bits of S.

29

6.1 Construction of sPRG and Our New Assumption

Our New Assumption. In this section, we describe our new assumption. Our new as-
sumption is stronger than the one described next. The assumption is widely known in
cryptography as the LWE with binary error assumption.

Definition 6.5 (LWBEε,ρ Assumption). For any constants ε > 0 and ρ > 0, we say that the
assumption LWBEε,ρ holds if for every odd prime modulus p = O(2n

ρ
) the following happens.

We define two distributions below. The assumption requires that the following distributions are
computationally indistinguishable:

PseudoRA(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;
ei ← {0, 1} ∀ i ∈ [n];
Output

(
{ai, 〈ai, s〉+ ei mod p}i∈[n]

)
RandomA(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;
ri ← Zp∀ i ∈ [n];
Output

(
{ai, ri}i∈[n]

)
Formally, we say that LWBEε,p holds if for any ppt distinguisher A:

adv
LWBEε,p
A (1n) := |Pr[A(z1) = 1]− Pr[A(z2) = 1]| < negl(n),

where z1 ← PseudoRA(1n) and z2 ← RandomA(1n).

We discuss the state of this assumption in Section A.4. Next, we describe our main new
assumption which can be seen as an assumption arising from the interplay between the
two assumptions described above (the assumption of LWBE and that of a pseudorandom
generator with large enough stretch). We discuss the plausibility of this assumption too
in Section A.4.

Definition 6.6 (G-LWEleakd,ε,ρ Security). For any constant integer D > 0, constants ε > 0
and ρ ∈ (0, 0.5), we say that a degree D pseudorandom generator G of stretch at least m(n) ≥
nd

D
2
e·(0.5+ε)+ρ satisfies G-LWEleakd,ε,ρ-security if for any odd prime modulus p = O(2n

ρ
), the fol-

lowing two distributions are computationally indistinguishable:

PseudoRGA(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;
ei ← {0, 1} ∀ i ∈ [n];

Output
(
{ai, 〈ai, s〉+ ei mod p}i∈[n],G(e)

)
RandomG

A(1n):

s← Zn0.5+ε

p ; ai ← Zn0.5+ε

p ;
ei ← {0, 1} ∀ i ∈ [n];
r ← {0, 1}m;
Output

(
{ai, 〈ai, s〉+ ei mod p}i∈[n] , r

)

30

Formally, we say that G satisfies LWEleakd,ε,p if for any ppt distinguisher A:

adv
LWEleakd,ε,ρ
G,A (1n) := |Pr[A(z1) = 1]− Pr[A(z2) = 1]| < negl(n),

where z1 ← PseudoRG
A(1n) and z2 ← RandomG

A(1n).

Further, we say the assumption is subexponetially secure if negl = 2−n
Ω(1) .

Construction of sPRG. We now describe our construction using the assumption above
for parameters D ∈ N, ε, ρ > 0, and then argue properties. Consider the following setting
of parameters:

• λ is the security parameter,

• n(λ) is an arbitrary polynomial in λ which is the length parameter,

• n′ = n
1

(0.5+ε)·dD2 e ,

• m(n′) ≥ n′d
D
2
e·(0.5+ε)+ρ = n1+γ where γ = ρ

(0.5+ε)dD
2
e . Let τ = 1 + γ > 1. This will be

the stretch of our sPRG.

sPRG.PPGen(1λ, 1n) : Run Bilinear map generator on input λ to sample Gλ = (G1,G2,
GT , p, P1, P2, e). Output pp = (Gλ, p, 1n). The modulus p is implicitly a part of Gλ and
is a poly(λ) bit modulus.

sPRG.IdSamp(pp) : Sample ai ← Zn′0.5+ε

p for i ∈ [n′]. Output I = ({ai}i∈[n′],G).

sPRG.SdSamp(I) : Sample s ←R Zn′0.5+ε

p . For every i ∈ [n′], sample ei ← {0, 1}. Set
bi = 〈ai, s〉 + ei mod p for i ∈ [n′]. Set P = b where b = (b1, . . . , bn′). Compute
S = (1, s)⊗d

D
2
e. Output sd = (P, S).

sPRG.Eval(I, sd) : Output σ = G(b1 − 〈a1, s〉, . . . , bn′ − 〈an′ , s〉) ∈ {0, 1}m(n′). Note that
every bit σi is computable by a polynomial map QI(P, S)→ Zm(n′)

p which is a degree
D map in P and degree 2 map in S over Zp.

We now argue properties associated with it.

Stretch. Note that the length of the output is nτ , where as the length of the seed is
O(n′ log2 p + n′(0.5+ε)dD

2
e log2 p) = O(n poly(λ)), because p is a poly(λ) bit prime for some

polynomial independent of n. Thus the sPRG has a stretch of τ .

Linear Efficiency. We now compute the run time to sample sd. It computes n′ LWE

samples, each of dimension n′0.5+ε. This can be done in time n′1.5+ε poly(λ) = n
1

dD2 e ·

n
1

(0.5+ε)dD2 e poly(λ) = O(n) poly(λ) if D ≥ 5. It also computes S, which also takes linear
time as: O(n′(0.5+ε)dD

2
e poly(λ)) = O(n poly(λ)). Thus, it satisfies linear efficiency if D ≥ 5.

31

Pseudorandomness. The adversary gets to see P = b along with σ = G(e). The Pseu-
dorandomness property follows immediately from the assumption LWEleakd,ε,ρ.

Theorem 6.1. Let ε, ρ > 0 and D ∈ N. If the assumption LWEleakD,ε,ρ holds for some PRG
G, then there exists τ > 1 such that the construction sPRG above is a secure structured seed
PRG with stretch τ , with complexity (arith-NC0, deg 2). If D ≥ 5, the sPRG also satisfies linear
efficiency.

7 Single Ciphertext Functional Encryption with Linear Key-
Gen from LWE

In this section, for any constant ε ∈ (0, 1), we construct a variant of secret key functional
encryption satisfying the following specifications. We denote this primitive by ε-1LGFE.

• (Function Class.) The function class for ε-1LGFE is FCIRC = {FCIRC
λ,prmtr}λ,prmtr which

consists of all polynomial sized Boolean circuits that takes n bit inputs, produces `-
bit outputs, has depth bounded by d, and size bounded by size. Here all parameters
n, `, d, size are polynomially related to the security parameter, and can be arbitrary
polynomials.

• (Security.) Satisfy 1-key single ciphertext ε-simulation security as in Definition 4.4.
Single ciphertext specifies that the number of ciphertexts is 1 and 1-key specifies that
the number of secret keys is also 1 (i.e., Qsk = 1 in Definition 4.4). Note however that
the functions supported directly have many output bits.

• (Efficiency.) Satisfy levelled compactness as in Definition 4.7 and Remark 4.8. In
particular, ciphertext size is poly(λ, n, d), independent of the function size size and
output length `.

• Also admits Special Structure* defined in Definition 4.8.

We will construct such a scheme relying on the GVW predicate encryption scheme
[GVW15]. Below we recall some preliminaries from there and then we construct ε-1LGFE.

7.1 GVW Preliminaries

Predicate Encryption. Now we recall the definition of predicate encryption scheme. A
predicate encryption is a functional encryption scheme as described in Section 4, with the
following differences.

• Encryptor encrypts messages of the form (attr,m) where attr ∈ {0, 1}n and m is a
bit.

• The functions supported has special form CP , where P is a predicate in the class
FCIRC
λ,n,d,1,size which on input (attr,m) outputs m if P (attr) = 1 and 0 otherwise.

32

• (Selective) indistinguishability security of PE states that given the public key PK, the
adversary cannot distinguish encryption of (attr0,m0) from encryption of (attr1,m1),
even if it can ask for any number of functional keys corresponding to predicates
P1, ..., Pη, as long as for all i ∈ [η], Pi(attr0) = Pi(attr1) = 0. In the security exper-
iments, the challenges attributes attr0 and attr1 are chosen selectively at the begin-
ning.

For a complete definition, please refer to [GVW15]. For our construction, we require
some special properties from the predicate encryption scheme, such as efficiency, circuit
homomorphism, etc. All these properties are satisfied by the construction of [GVW15],
and we recall them next. The text below is a very succinct summary of the [GVW15]
scheme, and will assume familiarity with some lattice preliminaries described in Section
B.

Properties of GVW Predicate Encryption Scheme. We first describe various algorithms
and associated properties of the GVW predicate encryption scheme PE.

Setup. The setup algorithm takes as input the security parameter λ, and outputs a pub-
lic key PK and a secret key SK. Namely, Setup(1λ, prmtr = (n, `, d, size))→ (PK, SK), where
PK contains the following parameters:

• A polynomial-length modulus p1. p1 is of magnitude 2poly(λ,d) and is set below.

• LWE matrix dimensions dim1 = poly2(λ, d) and dim2 = poly3(λ, d) which are some
fixed polynomials in the security parameter.

• Uniform matrices B1,,Bn′ ,A,D where n′ = n · poly(λ, d) for some polynomial
poly determined below. Each matrix is in Fdim1× dim2

p1
. This is also the space of the

gadget matrix G.

Encryption. The encryption algorithm takes as input public key PK, attribute attr ∈
{0, 1}n and a message m ∈ {0, 1} and outputs a two-part ciphertext, Enc(PK, attr,m) →
(ct1, ct2), which we describe in more detail below.

• The encryption algorithm first samples a secret vector s from χdim1×1. Here χ is an
LWE error distribution that is bounded by a fixed polynomial polyχ(λ, d).

• Then, it encodes attr into âttr = (âttrp, âttrs) ∈ Fn′p1
of length n′, where âttrp can and

will be released in public and âttrp must be kept secret. In the [GVW15] scheme, âttrs
is an FHE secret key and âttrp is an FHE encryption of attr under that secret key. Be-
low, we will only use the fact that the size of |âttrp|+ |âttrs| = n′ = poly(λ, n, d) log p1,
and will not rely on other details of (âttrp, âttrs).

• Now ct1 is constructed using algorithm Enc1(PK, s, attr) which does:

– Compute bi = sT (Bi + âttriG) + ei for i ∈ [n′]. Here ei ← χ1×dim2 .

33

– Output ct1 = (b1, . . . , bn′ , âttrp)

• Now ct2 is constructed as follows.

– Compute a = sTA + e1. Here e1 ← χ1×dim2 .

– Compute d = sTD + e2 +mbp1/2c[1, 0, ..., 0]. Here e2 ← χ1×dim2 .

– Output ct2 = (a,d).

Without loss of security we can assume s[1] = 1 (first component of vector s). This ensures
that v = sTG satisfies v[1] = 1.

Note: Looking ahead, in our construction of ε-1LGFE, we will only use the Enc1 algorithm in-
stead of the encryption algorithm, thereby not computing ct2 at all. This does not hamper security
as we are just giving less information.

Evaluation. There are two algorithms: EvalPK operates only on the public key PK and
EvalCT operates on both PK and ct1.

• EvalPK(C,B1, ...,Bn′) → BC : EvalPK on input B1, . . . ,Bn′ contained in PK, and a
predicate C ∈ Fn,d,1,size, deterministically outputs BC ∈ Fdim1× dim2

p1
.

• EvalCT(PK, C, ct1)→ bC : EvalCT on input ct1 containing âttrp, b1, . . . , bn′ and a pred-
icate C, output a scalor bC ∈ Fp1 , that satisfies the following important identity: Let
BC [?, 1] denotes the first column of B;

bC = sT (BC [?, 1] + (C(attr)bp1/2c+ e′C)G) + eC [1]

= sTBC [?, 1] + C(attr)bp1/2c+ eC (2)

The second identity above follows from the fact that (sTG)[1] = 1 and setting eC = e′C +
eC [1]. It satisfies that |eC |/p1 < 2−λ

c for some constant c > 0. (For readers familiar with
the [GVW15] PE scheme, e′C is an error resulted from the homomorphic evaluation of the
FHE scheme, which is polynomially bounded, and eC [1] is the error resulted from the
homomorphic evaluation of the ABE scheme, which is exponentially large. These details
are not important for our ε-1LGFE construction, which only relies on Equation (2).)

Remark 7.1. The algorithms described above are already close enough to imply a con-
struction of ε-1LGFE where the encryption is simply Enc1 producing ct1 as above, the
master secret key is s, and the function key for any function C could just be computed as
skC = 〈s,B[?, 1]〉 + e, where e is chosen freshly from some bounded smudging distribu-
tion. This leads to the evaluation-decryption equation:

EvalCT(PK, C, ct1)− skC = C(attr) · dp1/2e+ eC − e

The only problem is that eC is not polynomially bounded, and thus this does not fit in the
requirements for an ε-1LGFE scheme, which requires both e and eC− e to be polynomially
bounded. To fix this issue, we introduce the following algorithm, which rounds bC ∈
Fp1 to another modulus p so that the rounded version of the error e′C is polynomially
bounded.

34

Rounding-Evaluation. We now describe a procedure of rounding evaluation, RoundEval,
which can be done publicly. RoundEval(PK, C, ct1, p), takes as input PK, ct1 = (âttrp, b1, . . . , bn′),
a predicate C, and a modulus p < p1, and does the following:

1. Run EvalCT(PK, C, ct1)→ bC .

2. Compute b′C = dp/p1 · bCc. Namely multiply bC with p/p1 over the reals and then
take the nearest integer. Output b′C ∈ Fp.

Now we observe the structure of b′C , relying on the lemma proven about rounding in
[BGV12] (see lemma 1 of the paper).

Theorem 7.1. For any primes p and p1 > p, given that

• bC = sTBC [?, 1] +C(attr)bp1/2c+ eC where s is sampled from the distribution χdim1 , and

• χ is a polynomially bounded distribution, bounded by, polyχ(λ, d),

b′C = sT · dC + C(attr)bp/2c+ e′C + ernd (3)
where dC = Roundp1→p(BC [?, 1]), e′C = Roundp1→p(eC)

where Roundp1→p(v) = dp·v/p1c and ernd is the rounding error satisfying |ernd| < dim1 · polyχ(λ, d)+
5.

Below, we will refer to b′C as the output ciphertext from the RoundEval procedure, and
error = (e′C + ernd) the noise or error in this output ciphertext.

7.2 Setting Parameters

Now we set the parameters that will be used in our constructions of ε-1LGFE. All these
parameters can be realized using standard LWE assumption with subexponential approx-
imation factors.

• dim1 and dim2 are chosen as in the [GVW15] predicate encryption scheme.

• The error distribution χ is a truncated discrete Gaussian distribution bounded by
polyχ(λ, d).

• The prime p is exactly the order of a prime-order bilinear pairing group, which is
sub-exponentially large in the security parameter. (More precisely, {pλ} is exactly
the order of a sequence of prime-order bilinear pairing groups.)

• The prime modulus p1 is so that part of the error e′C as shown in Equation (3) in the
output ciphertext from the RoundEval procedure is bounded by λ.

35

By the properties of the PE scheme of [GVW15], the error resulted by evaluating a
predicate grows exponentially with the security parameter λ and the depth d of the
predicate.

|eC | ≤ (dim1 + dim2)polyPE(λ,d) · polyχ(λ, d)

where polyPE is a fixed polynomial decided by the PE scheme.

Thus p1 must satisfy:

|e′C | ≤

⌈
p · (dim1 + dim2)polyPE(λ,d) · polyχ(λ, d)

p1

⌉
≤ λ

Set p1 to any prime satisfying the above inequality, of magnitude:

p1 = Θ
(
p(dim1 + dim2)polyPE(λ,d) · polyχ(λ, d)

)
,

The bit length of the prime p1 is log p+ poly(λ, d) = poly′(λ, d).

By the above way of setting parameters, we have that the error in the output cipher-
texts by RoundEval is bounded by a fixed polynomial in λ.

Claim 7.1. Under the above way of setting parameters, there is a universal polynomial Bnd(·),
such that, for every λ ∈ N, predicate C ∈ Fn,d,1,size, every input x ∈ {0, 1}n, every PK in
the support of Setup(1λ, prmtr = (n, `, d, size)), ciphertext ct1 in the support of Enc1, and every
output ciphertext b′C in the support of RoundEval(PK, C, ct1, p), the error error in b′C satisfies
|error| ≤ Bnd(λ, d).

Proof. The claim follows from the fact that error = e′C + ernd, where the former is bounded
by λ due to how the modulus p1 is set, and the latter is bounded by dim1 · polyχ(λ, d) + 5
by Theorem 7.1. Therefore, we set simply Bnd = λ+ dim1 · polyχ(λ, d) + 5.

Efficiency: We particularly remark about the ciphertext size |ct1| of the PE scheme, which
will dictate the ciphertext size of our ε-1LGFE below. The ct1 = (b1, · · · , bn′ , âttrp), where
each bi ∈ Z1×dim2

p1
. By our parameter setting above p1 has poly(λ, d) bits. Therefore

n′ = |âttrp| + |âttrs| = poly(λ, n) log p1 = poly(λ, n, d). Since further dim2 = poly(λ, d),
the total size of ct1 is bounded by poly(λ, n, d).

7.3 Construction of ε-1LGFE

We adapt the predicate encryption of [GVW15] with additional rounding to our the con-
struction of ε-1LGFE, which is described in Figure 7.3. To avoid confusion, every algo-
rithm X of the PE scheme will be denoted as PE.X.

Observe that correctness and syntactic properties are immediate due to the properties
of the predicate encryption scheme. For completeness, we sketch these below.

36

ε-1LGFE.PPGen(1λ, prmtr = (n, d, `, size)) :

• Set p to be the prime order of a fixed bilinear pairing group for security parame-
ter λ.

• Run PE.Setup(1λ, prmtr) → (PK, SK), where PK = ((B1, ...,Bn′), p1). Set pp =
(p, prmtr,PK) (and discard SK.)

ε-1LGFE.Setup(pp) : Sample s← χdim1×1. Set msk = s.

ε-1LGFE.Enc(s,m): Run PE.Enc1(PK, s,m)→ ct. Output ct.

ε-1LGFE.KeyGen(s, C) : C has `-bit outputs. For every j ∈ [`],

• set Cj to be the depth d circuit that computes the j’th output bit,

• compute PE.EvalPK(PK, Cj) → BCj , and dCj = Roundp1→p(BCj [?, 1]), the
rounded version of the first column of BCj ,

• compute skCj = 〈dCj , s〉 + ej mod p where ej ← [−Bnd′,Bnd′] ∩ Z and Bnd′ =
Bnd′(λ) is a fixed polynomial set to: Bnd′(λ) = dBnd·`

1−ε e.

Output secret key skC = {skCj}j∈[`]

ε-1LGFE.Dec(skC , ct) : For every j ∈ [`], compute PE.RoundEval(PK, Cj, ct, p) → b′Cj ,
and if zj = (b′Cj − skCj) mod p ∈ [−p/4, p/4], set yj = 0, and otherwise set yj = 1.
Output y.

Figure 1: Construction of ε-1LGFE.

37

Correctness: If the setup, encryption, and the key generation are done honestly, then
from the properties of the PE scheme, the following happens. Let ct denote a ciphertext
encrypting m ∈ {0, 1}n, and let skC = {skCj} be a function secret key for a circuit C ∈
FCIRC
λ,prmtr. Then, for every j ∈ [`],

b′Cj = PE.RoundEval(PK, Cj, ct, p) = sT · dCj + Cj(m)bp/2c+ errorj

skC = sT · dCj + ej, where dCj = Roundp1→p(BCj [?, 1]) .

Moreover, ej is bounded by a polynomial Bnd′, and by Claim 7.1, errorj is bounded by
another polynomial Bnd. Decryption computes

zj = b′Cj − skCj mod p = Cj(m)dp/2e+ error′j, error′j = ej − errorj .

Because p is subexponentially large and error′j is polynomially bounded, if Cj(m) = 0 then
z ∈ [−p/4, p/4] and otherwise not. Therefore, the decryption algorithm recovers every bit
of the output correctly.

Special Structure*. It is easy to verify that our ε-1LGFE has the special structure*: We
have four polynomials q1, dim1, Bnd′, Bnd + Bnd′, such that, all required properties are
satisfied.

• (PP Syntax.) The pp contains modulus p, which is a q1 = poly(λ)-bit prime.

• (Linear secret key Structure.) The master secret key is a vector in s ∈ Zdim1
p1

. For any
function C ∈ FCIRC

λ,n,`,d,size, the functional secret key skC = {skCj} and each skCj satisfies
the special form of skCj = 〈dCj , s〉+ ej mod p where ej ←R [−Bnd′,Bnd′] ∩ Z. Finally,
dCj is deterministically and efficiently computed from the PK contained in pp and f .

• (Linear + Round Decryption with polynomial decryption error.) The procedure
PE.RoundEval(PK, Cj, ct, p) computes output ciphertext b′Cj , such that, |b′Cj−〈dCj , s〉−
Cj(m)bp/2c〉| ≤ Bnd′ + Bnd.

Remark 7.2. Note that above we consider ej to be sampled from [−Bnd′,Bnd′] but equiva-
lently we could have considered it being sampled from [0, 2Bnd′] (which was the require-
ment in Definition 4.8). This is because the keys can be transformed from one into other
by adding a fixed constant Bnd′.

Leveled Compactness: Observe that the ciphertext ct for a message m is exactly the ct1
generated by PE.Enc1(PK, s,m), which as analyzed in Section 7.1 is poly(λ, n, d).

7.4 Single-Ciphertext ε-simulation security

For any fixed constant ε ∈ (0, 1), we now prove that the construction in Figure 7.3 is 1-key
single-ciphertext ε-simulation secure.

Theorem 7.2. Assuming LWE assumption holds for the parameters described in Section 7.2, the
construction ε-1LGFE in Figure 7.3 satisfies 1-key single-ciphertext ε-simulation security.

38

Realε-1LGFEA (1λ):

1. Challenge: (m, C) ← A1(1λ, prmtr = (n, d, `, size)) (where n, d, `, and size are
polynomials, m ∈ {0, 1}n, and C ∈ FCIRC

λ,n,`,d,size). Below n = n(λ), ` = `(λ), d =
d(λ), size = size(λ), and prmtr = (n, `, d, size).

2. Generate pp: pp← ε-1LGFE.PPGen(1λ, prmtr), where pp = (p, prmtr,PK) and PK =
((B1, ...,Bn′), p1).

3. Generate master secret key: s← ε-1LGFE.Setup(pp), where s← χdim1×1.

4. Generate the challenge ciphertext: ct ← ε-1LGFE.Enc(s,m), where ct is generated
using PE.Enc1(PK, s,m).

5. Generate the challenge secret key: skC ← ε-1LGFE.KeyGen(s, C), where skC =
{skCj}j∈[`], and skCj = 〈dCj , s〉 + ej mod p, for BCj ← PE.EvalPK(PK, Cj), dCj =
Roundp1→p(BCj [?, 1]), and ej ← [−Bnd′,Bnd′] ∩ Z.

Output β ← A2({pp, ct, skC}).

Figure 2: The real-world ε-simulation security game of ε-1LGFE.

Proof. By definition 4.3, to prove single ciphertext ε-simulation security, we need to show
a PPT simulator S, such that for all stateful PPT adversaries A = (A1,A2), there is a
negligible function negl, such that, for any security parameters λ ∈ N,

advSIMε-1LGFE,A(1λ) := |Pr[1← Realε-1LGFEA (1λ)]− Pr[1← Idealε-1LGFEA,S (1λ)]| < negl(λ),

where the Real experiment is described in Figure 7.4, and the ideal experiment Ideal de-
fined in figure 7.4, which also defines out simulator S. We show that the view of A in the
real and ideal experiments are indistinguishable (and hence has the same probability of
outputting 1) through two intermediate hybrids:

Hybrid H1: This hybrid is identical to the real world experiment except for how skC is
generated: by construction of ε-1LGFE, it holds that

b′Cj = PE.RoundEval(PK, Cj, ct, p) = sT · dCj + yjbp/2c+ errorj

skC = sT · dCj + ej

where dCj = Roundp1→p(BCj [?, 1]) and by Claim 7.1 |errorj| < Bnd .

Therefore, H1 replace Step 5 in the real world by the following equivalent way of
generating skC :

5’. For every j, compute b′Cj = PE.RoundEval(PK, Cj, ct, p), then figure out the
noise errorj in b′Cj using the master secret key s, and set

skCj = b′Cj − yjbp/2c+ error′j , where error′j = (ej − errorj), ej ← [−Bnd′,Bnd′] ∩ Z .

39

Idealε-1LGFEA,S (1λ):

1. Challenge: (m, C) ← A1(1λ, prmtr = (n, d, `, size)) (where n, d, `, and size are
polynomials, m ∈ {0, 1}n, and C ∈ FCIRC

λ,n,`,d,size). Below n = n(λ), ` = `(λ), d =
d(λ), size = size(λ), and prmtr = (n, `, d, size).

2. Generate pp: pp← ε-1LGFE.PPGen(1λ, prmtr), where pp = (p, prmtr,PK) and PK =
((B1, ...,Bn′), p1).

3. Sampling Bernouli Variables: Sample Bernouli random variable v as follows. For
each j ∈ [`], sample vj ← Bernouli(σ) for σ = 2(Bnd′−Bnd)+1

2Bnd′+1
; vj indicates whether

the good event goodj occurs:

Event goodj : ej − errorj ∈ GoodRng, where GoodRng = [−Bnd′ + Bnd,Bnd′ − Bnd] .

Then set v := minj∈[`](vj), indicating whether goodj occurs for all j.

By Claim 7.2, the probability σ of goodj occurring is at least σ ≥ 1 − (1−ε)
`

. Thus
the probability that v is 1 is at least Pr[v = 1] ≥ 1− `(1− σ) ≥ ε.

Next, the simulator S = (Ẽnc, K̃eyGen) simulates the ciphertext and secret keys:
If v = 1, S receives from the oracle w = (C,C(m)), and otherwise w = (C,m).
Sample s← χdim1×1. Let td = s.

4. Simulate the challenge ciphertext Ẽnc(td, w): If) v = 1, simulate the ciphertext
ct ← PE.Enc1(PK, s, 0), and If) v = 0, generate the ciphertext of m honestly
ct← PE.Enc1(PK, s,m).

5. Simulate the challenge secret key K̃eyGen(td, w, C): skC = {skCj}, where for every
j ∈ [`],

b′Cj = PE.RoundEval(PK, Cj, ct, p) , skCj = b′Cj − yjdp/2e+ error′j ,

and the noise error′j is sampled as below:

• If vj = 1, error′j ← GoodRng;

• if vj = 0 (which implies v = 0), first figure out the error in b′Cj ,

b′Cj = 〈dCj , s〉+ yjdp/2e+ errorj, |errorj| < Bnd ,

set error′j = ej − errorj , by rejection sampling ej ← [−Bnd′,Bnd′] ∩ Z condi-
tioned on error′j 6∈ GoodRng.

Output β ← A2({pp, ct, skC}).

Figure 3: The ideal-world ε-simulation security game of ε-1LGFE, and the definition of
simulator S. The red steps are steps that are different from the real execution.

40

By construction of ε-1LGFE, H1 and the real world generate identically distributed
secret keys. Therefore the probabilities that A outputs 1 are identical in these two
worlds.

Next, we observe two properties of the noise error′j = ej − errorj that will be instru-
mental later. Denote by goodj the event that error′j ∈ GoodRng = [−Bnd′+Bnd,Bnd′−
Bnd]. We show that the probability that goodj occurs is independent of the value of
errorj , and the distribution of errorj conditioned on goodj is uniform over GoodRng.

Claim 7.2. Let Bnd′ > Bnd be positive integers and GoodRng = [−Bnd′+Bnd,Bnd′−Bnd].
For every error ∈ [−Bnd,Bnd],

Pr[error′ = e− error ∈ GoodRng] =
2(Bnd′ − Bnd) + 1

2Bnd′ + 1
= σ ≥ 1− 1− ε

`

where e← [−Bnd′,Bnd′]∩Z, and the distribution of error′ conditioned on error′ ∈ GoodRng
is uniform over GoodRng.

Proof. The probability of error′ ∈ GoodRng is the same as the probability of e ∈
[−Bnd′ + Bnd + error,Bnd′ − Bnd − error] ⊆ [−Bnd′,Bnd′] ∩ Z. Since e is uniformly
distributed in [−Bnd′,Bnd′] ∩ Z, this probability is exactly σ.

Furthermore, for any value y ∈ GoodRng, Pr[error′ = y|error′ ∈ GoodRng] is the same
as Pr[e = y+error|e ∈ [−Bnd′+Bnd+error,Bnd′−Bnd−error]] = 1/(2(Bnd′−Bnd)+1).
Therefore, the conditional distribution is uniform.

Finally, the lower bound on the probability follows immediately from the way that
Bnd′ is set in the construction; see Figure 7.3.

Second, observe that given errorj , we can efficiently sample error′j conditioned on
goodj not occurring using rejection sampling: Keep sampling ej ← [−Bnd′,Bnd′]∩Z
till error′j = ej − errorj 6∈ GoodRng. This rejection sampling is efficient since the prob-
ability of goodi not occurring is 2Bnd

2Bnd′+1
which is polynomial. Given these properties,

we are now ready to present the next hybrid.

Hybrid H2: This hybrid is identical to H1, except that when generating skC , the noise
error′j is sampled in two cases:

5”. For every j, compute b′Cj = PE.RoundEval(PK, Cj, ct, p), and set

skCj = b′Cj − yjbp/2c+ error′j .

Here, error′j is sampled as follows: Sample indicator random variable vj ←
Bernouli(σ).

• If vj = 1, error′j ← GoodRng;

• if vj = 0, figure out the noise errorj in b′Cj using the master secret key s,
and set error′j = ej − errorj , by rejection sampling ej ← [−Bnd′,Bnd′] ∩ Z
conditioned on error′j 6∈ GoodRng.

It follows from our observations above that the H1 and H2 generate the same dis-

41

tribution of errors errorj’s and hence the probability that A outputs 1 is identical in
these two hybrids. Furthermore, also note that H2 is efficient since rejection sam-
pling is efficient.

The simulation world: The simulation world Ideal described in Figure 7.4 is identical to
H2 except that i) it samples all indicator variables vj in Step 3, and set v = minj(vj) to
be the indicator variable for the event that all vj’s are 1. ii) the main difference is that
when v = 1, we switch the challenge ciphertext ct from encrypting m to encrypting
0. The first change does not change the distribution of the simulated secret key and
ciphertext. The second change produces an indistinguishable ciphertext since when
v = 1, every vj = 1 and error′j is sampled uniformly from GoodRng without using the
master secret key s. Therefore, changing the encrypted value is indistinguishable.

Finally, we observe that the simulator is well-formed: Whenever v = 1, it simulates
using only y = C(m), and when v = 0, it simulates using C,m. Furthermore, the
probability that v = 1 is at least 1− `(1− σ) ≥ ε as required.

Remark 7.3 (On Subexponential Security). Above, we proved polynomial security of
ε-1LGFE, that is the real and ideal worlds are indistinguishable to polynomial-sized ad-
versaries with negligible distinguishing advantage. If relying on the subexponential in-
distinguishability of LWE, we can prove that real and ideal worlds are subexponentially
indistinguishable. This is because the views of A in the real world, hybrid H1, and H2

are identically distributed; and the views in H2 and ideal worlds are subexponentially
indistinguishable by subexponential LWE.

8 Our (arith-NC1, deg 2)-PHFE from Pairings

In Fig.8.2 we present a Partially-Hiding FE (PHFE) for the functionalityFPHFE = dn,`,w∈poly{FPHFE
λ,n(λ),`(λ),w(λ)}λ,

where for all λ ∈ N, FPHFE
λ,n(λ),`(λ),w(λ) denotes the set of all functions defined relative a se-

quence of pairing group Gλ of the form Gλ = (G1,G2,GT , p, P1, P2, e) (see the definition
of pairing group in Section 3) as follows. Each function inFPHFE

λ,prmtr is represented by a tuple

(f 0, . . . , f `+1) such that for all inputs (x,y, z) ∈ (Znp)3, it outputs
[
f 0
∏`

i=1 f
i(x)f `+1(y ⊗ z)

]
T
∈

GT , where f 0 ∈ Z1×w
p , f i(x) ∈ Zw×wp for all i ∈ [d], f `+1(y ⊗ z) ∈ Zwp , and all functions f i

for i > 0 are linear maps. The computation is performed in the exponent of a generator
of the cyclic group GT , of order p. This model of computation captures functions f of the
form: f(x,y, z) = w(g(x),y ⊗ z), where w is a multilinear degree two polynomial (with
degree one in y⊗z) and g is a matrix branching program of width w and length ` over Zp.
By Barrington’s theorem, for sufficiently large `, w, log(p) = poly(λ), it also contains the
case when g is a Boolean NC1 circuit (x being restricted to be a binary vector in this case).
Note that to realize Boolean NC1 circuits, we need each function f i to be affine, which can
be ensured by setting, say, x1 = 1.

We give a modular construction of PHFE for the functionality FPHFE
prmtr in Section 8.2

that builds upon inner-product FE, defined in Section 8.1. Our construction is linearly

42

efficient as per Definition 4.6. That is, the ciphertext is computed by a circuit of size at
mostn · poly(λ) for a fixed polynomial, where λ denotes the security parameter and n
is dimension of the vectors being encrypted. As such, our PHFE can be used to build
general purpose FE in Section 9. Finally, we build the concrete inner-product FE scheme
that underlies our PHFE in Section 8.3. The security of all of our constructions rely on
standard assumptions in pairing groups.

8.1 Ingredients: Inner-Product FE

We define the functionality F IPFE =
⋃

dim∈poly{F IPFE
dim,λ}λ where for all dimensions dim ∈

poly(λ), all λ ∈ N, F IPFE
dim,λ is the set of function f : Gdim

1 → GT , described by a vector
[y]2 ∈ Gdim

2 , such that given as input [x]1 ∈ Gdim
1 , outputs [x>y]T ∈ GT . We define the

functionality F ipfe′ similarly except the inputs x are in Zdim instead of Gdim
1 . To build an

FE for FPHFE, we rely on a private-key IND-function-hiding FE ÎPFE for the functional-
ity F IPFE and an FE IPFE for the functionality F IPFE′ . We only require that the scheme
IPFE satisfies a simulation security that is slightly weaker than defined Definition 4.3, in
the sense that the simulator generates the functional secret keys for a function [y]2 only
knowing the output [x>y]2 in G2 or [x>y]1 in G1, as opposed to GT , where x denotes the
challenge (see Definition 8.1).

Definition 8.1 (Weak simulation security). Let FE be an FE scheme for the functionalityF IPFE′

defined above. We say that FE is weakly simulation secure if there exists a PPT simulator S :=

(S̃etup, Ẽnc, K̃eyGen1, K̃eyGen2) such that for all dim ∈ poly, λ ∈ N, all prmtr = (w, `, n), all
pp in the support of PPGen(1λ, prmtr), all (p̃k, m̃sk) in the support of S̃etup(1λ), all y ∈ Zdim

p ,
v ∈ Zp, the following are identically distributed:

K̃eyGen1(m̃sk, [y]1, [v]1) and K̃eyGen2(m̃sk, [y]2, [v]2).

Moreover, for all stateful PPT adversaries A, there exists a negligible function negl such that for
all λ ∈ N, all prmtr = (n, `, w), we have:

advweak-SIMFE,A (λ, prmtr) := |Pr[1← RealFEA (1λ, prmtr)]− Pr[1← IdealFEA,S(1λ, prmtr)]| = negl(λ),

where the experiments are defined below.

RealFEA (1λ, prmtr):
[x]1 ← A(1λ)
pp← PPGen(1λ, prmtr)
(pk,msk)← Setup(pp)
ct← Enc(pk, [x]1)
α← AOKeyGen(·)(ct, pk)

IdealFEA,S(1λ, prmtr):
[x]1 ← A(1λ)
pp← PPGen(1λ, prmtr)

(p̃k, m̃sk)← S̃etup(pp)

ct← Ẽnc(m̃sk)

α← AOKeyGen(·)(ct, p̃k)

In the real experiment, the key generation oracle OKeyGen, when given as input [y]2 ∈ Gdim
2 , re-

turns KeyGen(msk, [y]2). In the ideal experiment, the key generation oracle OKeyGen, when given
as input [y]2 ∈ Gdim

2 , computes [x>y]2, and returns K̃eyGen2(m̃sk, [y]2, [x
>y]2). Note that this

differs from Definition 4.3, where the algorithm K̃eyGen gets as input [x>y]T ∈ GT , not in G2.

43

8.2 Modular Construction of the Partially-Hiding FE

In Fig.8.2 we present a modular construction of PHFE for the functionality FPHFE, which
relies on an IND-function-hiding FE for the functionality F IPFE and weakly simulation-
secure FE for the functionality F IPFE′ . The simulation security of our PHFE relies on the
security of the underlying building blocks and the SXDH assumption in G.

Linear efficiency:

The ciphertexts cti and ct′j for all i, j ∈ [n] are encryptions and functional keys associated
with vectors of constant dimension (in particular, independent of n). Moreover, the order
of the group is also independent of n. Thus, by the sheer fact that the encryption and
functional key algorithm are polynomial-time, there exists a polynomial p1 such that the
circuit that outputs all the ciphertexts cti and ct′j is of size n · p1(λ). By linear efficiency
of IPFE, there exists a polynomial p2 such that the circuit that outputs ct is of size at most
n · p2(λ). Overall, the size of the encryption algorithm Enc is n · (p1(λ) + p2(λ)), that is, the
scheme has linear efficiency.

Correctness:

By correctness of ÎPFE, for all i, j ∈ [n], we have:

[θi,j]T = [yizj + rsa>i bj]T and [θ]T = f(x,y, z) + rsf(x,a, b),

where f(x,a, b) = f 0
∏

i∈[`] f
i(x)f `+1(a⊗ b), with a⊗ b = (a>i bj)i,j∈[n] ∈ Zn2 .

By correctness of IPFE, for all t ∈ [`], we have:

[wt]T =

[
rs
(
f t(ut)− f t(x)

) ∏
t<i≤`

f i(ui)f
`+1(a⊗ b)

]
T

.

Besides, we have:

[θ`+1]T =

rsf 0
∏
i∈[`]

f i(ui)f
`+1(a⊗ b)

T

.

Thus, the telescoping sum is of the form:∑
t∈[`]

f 0
∏

0<i<t

f i(x)wt

T

= [θ`+1 − rsf(x,a, b)]T .

Consequently, we have:

[θ]T +

∑
t∈[`]

f 0
∏

0<i<t

f i(x)wt

T

− [θ`+1]T = [f(x,y, z)]T .

44

PPGen(1λ, prmtr = (n,w, `)):

Compute p̂p ← P̂PGen(1λ,dim = 3), pp ← PPGen(1λ,dim = n + 1). These parameters are
both defined relative to the same sequence of groups {Gλ = (G1,G2,GT , p, P1, P2, e)}λ. Set
pp = (p̂p, pp).

Setup(pp):
Compute (pk,msk) ← Setup(1λ,dim = n + 1). For all i, j ∈ [n]: ai, bj ←R DDH, for all k ∈ [`],
uk ←R Znp . Return pk :=

(
pk, {[ai]1, [bj]2}i,j∈[n]

)
and msk :=

(
msk, {ai, bj ,uk}i,j∈[n],k∈[`]

)
.

Enc(pk,x,y, z ∈ (Zp)3):

r, s ←R Zp, (p̂k, m̂sk) ← Ŝetup(1λ, dim = 3), ct ← Enc

(
pk,

(
rsx
rs

))
. For all i, j ∈ [n]:

cti ← Ênc

(
m̂sk,

[
yi
air

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
zj
bjs

]
2

)
. Return

(
ct, {cti, ct′j}i,j∈[n]

)
.

KeyGen
(
msk, (f0, . . . , f `+1)

)
:

For all t ∈ [`], we write [Mt]2 ∈ G
(n+1)×w
2 , the linear function such that for all[

v
α

]
1

∈ Gn+1
1 ,

[
M>t

(
v
α

)]
T

=
[(
α · f t(ut)− f t(v)

)∏
t<i≤` f

i(ui)f
`+1(a⊗ b)

]
T
∈ Gw

T ,

and [m`+1]2 ∈ Gn+1
2 the linear function such that for all

[
v
α

]
1

∈ Gn+1
1 ,

[
m>`+1

(
v
α

)]
T

=[
α · f0

∏
i∈[`] f

i(ui)f
`+1(a⊗ b)

]
T
∈ GT , where a ⊗ b = (a>i bj)i,j∈[n] ∈ Zn2

. For all t ∈ [`],

skt ← KeyGen(msk, [Mt]2), and sk`+1 ← KeyGen(msk, [m`+1]2). Return {skt}t∈[`+1].

Dec(ct, sk):

Parse ct =
(
ct, {cti, ct′j}i,j∈[n]

)
and sk = {skt}t∈[`+1]. For all i, j ∈ [n]: [θi,j]T ← D̂ec(cti, ct

′
j) ∈ GT .

[θ]T =
[
f0
∏
i∈[`] f

i(x)f `+1(θi,j)i,j∈[n]

]
T
∈ GT . For all t ∈ [`], [wt]T ← Dec(ct, skt) ∈ Gw

T ,

[θ`+1]T ← Dec(ct, sk`+1) ∈ GT . Return [θ]T +
[∑

t∈[`] f
0
(∏

0<m<t f
m(x)

)
wt

]
T
− [θ`+1]T .

Figure 4: This is PHFE, a simulation-secure FE scheme for the functionality Fphfe. Here,
ÎPFE := (Ŝetup, Ênc, K̂eyGen, D̂ec) is an IND-function-hiding FE for the functionality F IPFE,
and IPFE := (Setup,Enc,KeyGen,Dec) is a weakly simulation-secure FE for the functional-
ity F IPFE′ .

45

Theorem 8.1 (Simulation security). The scheme presented in Fig.8.2 is simulation secure (as per
Definition 4.3), provided the underlying ÎPFE is indistinguishability function-hiding secure (as
defined in Definition 4.4), and IPFE is simulation secure as per Definition 8.1, which is implied by
the notion given in Definition 4.3. Namely, for any PPT adversaryA, there exist PPT adversaries
B1, B2, B3 and B4 such that:

advSIMPHFE,A(λ) ≤ advweak-SIM
IPFE,B1

(λ) + (`+ 1) · advDDH
G2,B2

(λ) + 3 · advDDH
G1,B3

(λ) + advIND-FH
ÎPFE,B4

(λ) +
2

p
.

Proof. The proof proceeds using a series of hybrid games, described below. Let A be a
PPT adversary against the simulation security of the scheme. For any game Hybridi, we
denote by advi := Pr[1← Hybridi(A)] the probability that Hybridi returns 1 when inter-
acting with A.

•Hybrid0: is the real experiment as given in Definition 4.3.

• Hybrid1: is the same as Hybrid0, except we replace the scheme (Setup,Enc,KeyGen)

by its simulator (S̃etup, Ẽnc, K̃eyGen2). That is, we sample (p̃k, m̃sk) ← S̃etup(pp), instead
of (pk,msk)← Setup(pp).

The challenge ciphertext is generated using ct← Ẽnc
(
m̃sk

)
instead of ct← Enc

(
pk,

(
rsx
rs

))
.

The functional secret keys are generated using, for all t ∈ [`]:

skt ← K̃eyGen2

m̃sk, [Mt]2 ,

[
rs
(
f t(ut)− f t(x)

) ∏
t<i≤`

f i(ui)f
`+1(a⊗ b),

]
2

and

sk`+1 ← K̃eyGen2

m̃sk, [m`+1]2,

rsf 0
∏
i∈[`]

f i(ui)f
`+1(a⊗ b)

2

 ,

where a⊗ b = (a>i bj)i,j∈[n] ∈ Zn2 .
This transition is justified by the simulation security of IPFE. Namely, there is a PPT

adversary B0 such that:
|adv0 − adv1| ≤ advweak-SIM

IPFE,B0
(λ).

•Hybrid2: is the same as Hybrid1, except we replace the vectors {uk}k∈[`] by {uk+x}k∈[`].
These values are identically distributed, since the vectors uk are sampled uniformly over
Znp , independently of the challenge x, which is chosen beforehand. Consequently, the
functional secret keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen2

m̃sk, [Mt]2 ,

[
rsf t(ut)

∏
t<i≤`

f i(ui + x)f `+1(a⊗ b),

]
2

and

sk`+1 ← K̃eyGen2

m̃sk, [m`+1]2,

rsf 0
∏
i∈[`]

f i(ui + x)f `+1(a⊗ b)

2

 .

46

Here, we use the fact that the functions f i for all i > 0 are linear. We have:

adv1 = adv2.

•Hybrid3: is the same as Hybrid2, except we replace the vectors [suk]2 by fresh [sk]2 ←R

Gn
2 for all k ∈ [`], using the DDH assumption in G2. Consequently, the functional secret

keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen2

m̃sk, [Mt]2 ,

[
rf t(st)

∏
t<i≤`

f i(ui + x)f `+1(a⊗ b),

]
2

and

sk`+1 ← K̃eyGen2

(
m̃sk, [m`+1]2, [v]2

)
,

where

[v]2 =

rsf(x,a, b) + r
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(a⊗ b)

2

.

We proceed via a hybrid argument, switching the vector [suk]2 to uniformly random
[sk]2 ←R Znp one index k ∈ [`] at a time. That is, we define Hybrid2.ρ for all ρ ∈ [0, d] as
Hybrid2, except the first ρ-th functional keys are computed as in Hybrid3. For all ρ ∈ [`],
we show there exists a PPT adversary B2.ρ such that |adv2.ρ−1 − adv2.ρ| ≤ advDDH

G2,B2.ρ
(λ).

The adversary B2.ρ takes as input a tuple ([s]2, [uρ]2, [sρ]2) where the value [sρ]2 is either
of the form [suρ]2 (case 1), or uniformly random over Gn

2 (case 2). The adversary B2.ρ

samples r ←R Zp, ai, bj ←R DDH for all i, j ∈ [n], um ←R Znp for all m 6= ρ, st ←R Znp for all

t < ρ, (m̃sk, p̃k) ← S̃etup(pp), upon which it can simulate the view of the adversary A. In
case 1, B2.ρ simulates Hybrid2.ρ−1 to A, whereas it simulates Hybrid2.ρ in case 2.

Putting everything together, we have the existence of a PPT adversary B2 such that:

|adv2 − adv3| ≤ ` · advDDH
G2,B2

(λ).

• Hybrid4: is the same as Hybrid3, except that we replace the values [bjs]2 used for
generating functional secret keys by fresh [wj]2 ←R G2

2 for all j ∈ [n], using the DDH
assumption in G2.

Consequently, the challenge ciphertext now contains:

ct′j ← K̂eyGen

(
m̂sk,

[
zj
−wj

]
2

)
.

Moreover, the functional secret keys are now generated using:

sk`+1 ← K̃eyGen2

(
m̃sk, [m`+1]2, [v]2

)
,

47

where

[v]2 =

rf(x,a,w) + r
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(a⊗ b)

2

.

We show there exists a PPT adversary B3 such that:

|adv3 − adv4| ≤ advDDH
G2,B3

(λ).

The adversary B1 takes as input a tuple ([s]2, {[bj]2, [wj]2}j∈[n]) where the values [wj]2
are either of the form [bjs]2 (case 1), or uniformly random over G2

2 (case 2). The adversary
B3 samples r ←R Zp, (m̃sk, p̃k) ← S̃etup(pp), ai ←R DDH for all i ∈ [n], uk, sk ←R Znp for all
k ∈ [`], upon which it can simulate the view of the adversaryA straightforwardly. In case
1, it simulates Hybrid3 to A, whereas it simulates Hybrid4 in case 2.

•Hybrid5: is the same as Hybrid4, except we use the key generation algorithm K̃eyGen1,

which takes inputs from G1 instead of K̃eyGen2, which takes inputs from G2. Namely, the
secret keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

[
rf t(st)

∏
t<i≤`

f i(ui + x)f `+1(a⊗ b),

]
1

and

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

rf(x,a,w) + r
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(a⊗ b)

1

.

By definition of the weak simulation security (cf Definition 8.1), the output of K̃eyGen1

and K̃eyGen2 are identically distributed, thus:

adv4 = adv5.

• Hybrid6: is the same as Hybrid5, except that we replace the values [air]1 by fresh
[vi]1 ←R G2

1 for all i ∈ [n], using the DDH assumption in G1. Consequently, the challenge
ciphertext now contains:

cti ← K̂eyGen

(
m̂sk,

[
yi
vi

]
1

)
.

48

Moreover, the secret keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤`

f i(ui + x)f `+1(v ⊗ b),

]
1

and

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

f(x,v,w) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v ⊗ b)

1

.

We show there exists a PPT adversary B5 such that:

|adv5 − adv6| ≤ advDDH
G1,B5

(λ).

The adversary B5 takes as input a tuple
(
[r]1, {[ai]1, [vi]1}i∈[n]

)
where the values [vi]1

are either of the form [air]1 (case 1), or uniformly random over G2
1 (case 2). The adversary

B5 samples (m̃sk, p̃k) ← S̃etup(pp), bj ←R DDH, wj ←R Z2
p for all j ∈ [n], uk, sk ←R Znp for

all k ∈ [`], upon which it can simulate the view of the adversary A straightforwardly. In
case 1, it simulates Hybrid5 to A, whereas it simulates Hybrid6 in case 2.

•Hybrid7: is the same as Hybrid6, except we replace the values {vi}i∈[n] by {vi+yih}i∈[n],
where h ←R Z2

p. These values are identically distributed, since the vi are sampled uni-
formly over Z2

p, independently of the challenge {yi}i∈[n], which is chosen beforehand.
Therefore, we have:

adv6 = adv7.

Consequently, the challenge ciphertext now contains:

cti ← K̂eyGen

(
m̂sk,

[
yi

vi + yih

]
1

)
.

Moreover, the secret keys are now generated using for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤`

f i(ui + x)f `+1((v + y ⊗ h)⊗ b),

]
1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =

f(x,v + y ⊗ h,w) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v + y ⊗ h)⊗ b)

1

,

49

where y ⊗ h = (yj · h)j∈[n] ∈ Z2n, and (v + y ⊗ h)⊗ b = ((vi + yih)>bj)i,j∈[n] ∈ Zn2 .

• Hybrid8: is the same as Hybrid7, except that we replace the values [vi + yih]1 by
[dri + yih]1 with d ← DDH and ri ←R Zp for all i ∈ [n], using the DDH assumption in
G1. Consequently, the ciphertexts now contains:

cti ← K̂eyGen

(
m̂sk,

[
yi

dri + yih

]
1

)
.

Moreover, the secret keys are now generated using for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤`

f i(ui + x)f `+1((r ⊗ d+ y ⊗ h)⊗ b),

]
1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =
[
f(x, r⊗d+y⊗h,w)+

∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj+x)
)
f `+1(r⊗d+y⊗h)⊗b)

]
1
,

where r ⊗ d = (ri · d)i∈[n] ∈ Z2n, and (r ⊗ d+ y ⊗ h)⊗ b = ((dri + yiv)>bj)i,j∈[n] ∈ Zn2 .
We show there exists a PPT adversary B7 such that:

|adv7 − adv8| ≤ advDDH
G1,B7

(λ).

The adversaryB7 takes as input a tuple ([d]1, {[vi]1}i∈[n]) where the values [vi]1 are either of
the form [dri]1 (case 1), or uniformly random over G2

1 (case 2). The adversary B7 samples
h ←R Z2

p, (m̃sk, p̃k) ← S̃etup(pp), ai, bj ←R DDH, wj ←R Z2
p for all i, j ∈ [n], uk, sk ←R Znp

for all k ∈ [`], upon which it can simulate the view of the adversary A straightforwardly.
In case 1, it simulates Hybrid8 to A, whereas it simulates Hybrid7 in case 2.

• Hybrid9: is the same as Hybrid8, except 1) we change the distribution of h from
uniformly random over Z2

p to uniformly random over Z2
p \ Span(d), which only induces

a statistical change of 1/p, given Span(d) is of size at most p; 2) we replace the values
{wj}j∈[n] by {wj + zid

⊥}j∈[n], where d⊥ ∈ Z2
p is such that d>d⊥ = 0 and h>d⊥ = 1 (note

that such a vector exists as long as h /∈ Span(d)). These values are identically distributed,
since the wj are sampled uniformly over Z2

p, independently of the challenge {zj}j∈[n],
which is chosen beforehand. Therefore, we have:

|adv8 − adv9| ≤
1

p
.

Consequently, the ciphertexts now contains:

ct′j ← K̂eyGen

(
m̂sk,

[
zj

−wj − zjd⊥
]

1

)
.

50

Moreover, the secret keys are now generated using:

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =
[
f(x, r ⊗ d+ y ⊗ h,w) + f(x,y, z)+∑

i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1

(
(r ⊗ d+ y ⊗ h)⊗ b)

)]
1
.

•Hybrid10: is the same as Hybrid9, except the challenge ciphertext contains:

cti ← Ênc

(
m̂sk,

[
0

dri + yih

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
0
−wj

]
1

)
instead of

cti ← Ênc

(
m̂sk,

[
yi

dri + yih

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
zj

−wj − zjd⊥
]

1

)
.

This transition is justified by the function-hiding IND security of ÎPFE, which can be used
since for all i, j ∈ [n], we have

(
yi

dri+yih

)>(zj
−wj−zjd⊥

)
=
(

0
dri+yih

)>(0
−wj

)
. The equality uses

the fact that d>d⊥ = 0 and h>d⊥ = 1.
There exists a PPT adversary B9 such that:

|adv9 − adv10| ≤ advIND-FH
ÎPFE,B9

(λ).

The adversary B9 first samples d←R DDH, h←R Z2
p \Span(d), d⊥ ∈ Z2

p such that d>d⊥ = 0

and h>d⊥ = 1, (m̃sk, p̃k)← S̃etup(pp), ri ←R Zp, ai, bj ←R DDH, wj ←R Z2
p for all i, j ∈ [n],

uk, sk ←R Znp for all k ∈ [`]. It sends the challenge{[
yi

dri + yih

]
1

,

[
0

dri + yih

]
1

}
i∈[n]

,

{[
zj

−wj − zjd⊥
]

1

,

[
0
−wj

]
1

}
j∈[n]

to its own experiment, upon which it receives {cti}i∈[n], encryptions of the left or right
challenges; together with {ct′j}j∈[n], functional secret keys associated with the left or right
challenges. In the left case, B9 simulates Hybrid9 to A, whereas it simulates Hybrid10 in
the right case.

• Hybrid11: is the same as Hybrid10, except 1) we change the distribution of h from
uniformly random over Z2

p \ Span(d) to uniformly random over Z2
p; this introduces a sta-

tistical distance of 1/p since the size of Span(d) is at most p; 2) we replace the values
{[dri + yih]1}i∈[n] by {[vi + yih]1}i∈[n], where vi ←R Z2

p for all i ∈ [n], using the DDH as-
sumption in G1. This transition is the reverse to the transition from Hybrid5 to Hybrid6.

51

Consequently, the challenge ciphertext now contains:

cti ← Ênc

(
m̂sk,

[
0

vi + yih

]
1

)
,

and the secret keys are now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤`

f i(ui + x)f `+1((v + y ⊗ h)⊗ b),

]
1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

where

[v]1 =
[
f(x,v + y ⊗ h,w) + f(x,y, z)+∑

i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1

(
(v + y ⊗ h)⊗ b

)]
1
.

We show there exists a PPT adversary B10 such that:

|adv10 − adv11| ≤ advDDH
G1,B10

(λ) +
1

p
.

The adversary B10 takes as input a tuple ([d]1, {[vi]1}i∈[n]) where the vectors [vi]1 are ei-
ther of the form [dri]1 (case 1), or uniformly random over G2

1 (case 2). The adversary
B10 samples h ←R Z2

p, (m̃sk, p̃k) ← S̃etup(pp), ai, bj ←R DDH, wj ←R Z2
p for all i, j ∈ [n],

uk, sk ←R Znp and for all k ∈ [`], upon which it can simulate the view of the adversary A
straightforwardly. In case 1, it simulates Hybrid11 to A, whereas it simulates Hybrid10

in case 2.

• Hybrid12: is the same as Hybrid11, except we replace the values {vi + yih}i∈[n] by
{vi}i∈[n]. These values are identically distributed, since the vi are sampled uniformly over
Z2
p, independently of the challenge {yi}i∈[n], which is chosen beforehand. Therefore, we

have:
adv11 = adv12.

This transition is the reverse of the transition from Hybrid6 to Hybrid7. The secret keys
are now generated using, for all t ∈ [`]:

skt ← K̃eyGen1

m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤`

f i(ui + x)f `+1(v ⊗ b),

]
1

 ,

and
sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
,

52

where

[v]1 =

f(x,v,w) + f(x,y, z) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v ⊗ b)

1

.

In Hybrid13, the challenge ciphertext
(
ct, {cti, ct′j}i,j∈[n]

)
is as follows. ct← Ẽnc

(
m̃sk

)
.

For all i, j ∈ [n]: cti ← Ênc

(
m̂sk,

[
0
vi

]
1

)
, ct′j ← K̂eyGen

(
m̂sk,

[
0
−wj

]
2

)
, ct← Ẽnc

(
m̃sk

)
.

This exactly corresponds to the experiment IdealFEA,S(1λ) for the simulator S = (S̃etup, Ẽnc,

K̃eyGen) defined in Fig.8.2.
Summing up, we have PPT adversaries B1, B2, B3 and B4 such that:

advSIMPHFE,A(λ) ≤ advweak-SIM
IPFE,B1

(λ) + (`+ 1) · advDDH
G2,B2

(λ) + 3 · advDDH
G1,B3

(λ) + advIND-FH
ÎPFE,B4

(λ) +
2

p
.

S̃etup(pp):

(p̃k, m̃sk) ← S̃etup(pp). For all i, j ∈ [n]: ai, bj ←R DDH, vi,wj ←R Z2
p. For all k ∈ [`]: uk ←R Znp .

p̃k :=
(
p̃k, {[ai]1, [bj]2}i,j∈[n]

)
, m̃sk :=

(
m̃sk, {ai, bj ,vi,uk}i,j∈[n],k∈[`]

)
. Return p̃k, m̃sk.

Ẽnc(m̃sk):

(p̂k, m̂sk) ← Ŝetup(p̂p), ct ← Ẽnc
(
m̃sk

)
. For all i, j ∈ [n]: cti ← Ênc

(
m̂sk,

[
0
vi

]
1

)
,

ct′j ← K̂eyGen

(
m̂sk,

[
0
−wj

]
2

)
. Return

(
ct, {cti, ct′j}i,j∈[n]

)
.

K̃eyGen(m̃sk, (f0, . . . , f `+1), f(x,y, z),x):

For all t ∈ [`], skt ← K̃eyGen1

(
m̃sk, [Mt]1 ,

[
f t(st)

∏
t<i≤` f

i(ui + x)f
`+1(v ⊗ b),

]
1

)
,

sk`+1 ← K̃eyGen1

(
m̃sk, [m`+1]1, [v]1

)
, where

[v]1 =

f(x,v,w) + f(x,y, z) +
∑
i∈[`]

(∏
j<i

f j(x)
)
f i(si)

(∏
j>i

f j(uj + x)
)
f `+1(v ⊗ b)

1

.

Return {skt}t∈[`+1].

Figure 5: Simulator for the FE scheme depicted in Fig.8.2 for the functionality FPHFE.

53

8.3 Constructing Inner-Product FE

Here, we build a public-key FE inner products, that is, the functionalityF IPFE′ = ddim∈poly{Fλ,dim(λ)}λ
defined with respect to the sequence of groups G = {Gλ}λ where for all dim ∈ poly, all
λ ∈ N, the set of function Fλ,dim(λ) is the set of all functions f : Gdim

1 → GT , described
by a vector [y]2 ∈ Gdim

2 , such that given as input x ∈ Zdim
p , it outputs [x>y]T ∈ GT . Our

scheme is presented in Fig.8.3.
It builds upon the inner-product FE from [ALS16], that relies on the DDH assumption

in pairing-free cyclic groups. We instead use a pairing group Gλ = (G1,G2,GT , p, P1, P2, e),
where the ciphertexts will consist of group elements in G1, and the ALS functional secret
key are embedded in G2, instead of Zp. Decryption now yields the inner product in GT .

This simple modification of ALS scheme already satisfies a simulation-security where
the simulator needs to know the values [x>y]2 ∈ G2 and [y]2 ∈ Gdim

2 in order to simulate
the challenge ciphertext that encrypts [x]1 ∈ Gdim

1 and the functional secret key associated
to [y]2 ∈ Gdim

2 . This security property is inherited from the ALS scheme, which was
proven simulation-secure in [Wee17] (see also [AGRW17, Appendix A]). Note that this is
weaker than the standard simulation security notion, given in Definition 4.3, where the
simulator gets the output of the function, which in this case, is [x>y]T ∈ GT , not [x>y]2.

For our purposes, we want it to be possible for the simulator to choose whether it
simulates the adversary’s view from the values [x>y]2, [y]2 or [x>y]1, [y]1. We achieve this
by giving two copies of the encryption, one in G1, one G2, and splitting each functional
secret key in two additive secret shares summing up to the actual key, one in G2 and one
in G1. This simulation security relies on the fact that it is possible to produce both of these
shares knowing the secret either in G1 or G2.

Setup(pp):
Given pp = dim ∈ poly, it computes a ←R DDH, W ←R Zdim×2

p , Return
pk := {[a]s, [Wa]s}s∈[1,2] and msk = W.

Enc(pk,x ∈ Zdim):

r ←R Zp, c =

(
ar

x+ War

)
. Return ([c]1, [c]2).

KeyGen(msk,y ∈ Zdim):

u←R Z2+dim
p , k =

(
−W>y
y

)
. Return ([u]1, [k − u]2).

Dec(ct, sk):
Parse ct = ([c1]1, [c2]2) and sk = ([k1]1, [k2]2). Return [c>1 k1 + c>2 k2]T .

Figure 6: This is IPFE, an FE scheme for the functionality F IPFE′ , with weak-simulation
security.

54

Linear efficiency.

Observe that the encryption time of any vector x ∈ Zdim is proportional to dim.

Correctness.

For any x,y ∈ Zdim:
[c>1 k1 + c>2 k2]T = [c>k]T = [x>y]T .

Theorem 8.2 (Weak-simulation security). The scheme presented in Fig.8.3 is weakly-simulation
secure (as per Definition 8.1) assuming the bilateral DLIN assumption. Namely, for any PPT ad-
versary A, there exists a PPT adversary B such that:

advweak-SIMIPFE,A (λ) ≤ advDLIN
PG,B(λ) +

1

p
.

Proof. The proof proceeds using a series of hybrid games, described below. LetA be a PPT
adversary against the weak simulation security of the scheme. For any game Hybridi, we
denote by advi := Pr[1← Hybridi(A)] the probability that Hybridi returns 1 when inter-
acting with A.

•Hybrid0: is the real experiment as given in Definition 8.1.

• Hybrid1: is the same as Hybrid0, except the challenge ciphertext is computed using

c =

(
u

x+ Wu

)
with u ←R Z2

p instead of c =

(
ar

x+ War

)
with r ←R Zp, using the

bilateral DLIN assumption. We show there exists a PPT adversary B such that:

|adv0 − adv1| ≤ advDLIN
PG,B(λ).

The adversary B takes as input a tuple ([A]s, [z]s)s∈[1,2], where the vectors [z]s are of the
form [Ar]s with r ←R Z2

p (case 1) or uniformly random over G2
s (case 2). The adversary B

samples W ←R Zdim×3
p , upon which it can simulate the view of the adversary A straight-

forwardly. In case 1, it simulate Hybrid0, whereas it simulates Hybrid1 in case 2.

• Hybrid2: is the same as Hybrid1, except the challenge ciphertext is computed using
u←R Z3

p \ Span(A) instead of u←R Z3
p. This only induces a statistical change of 1/p since

the size of Span(A) is at most p2. Thus:

|adv1 − adv2| ≤
1

p
.

•Hybrid3: is the same as Hybrid2, except the challenge ciphertext is computed using:

c =

(
u

Wu

)
,

55

where u←R Z3
p \ Span(A). Besides, the functional keys are computed using:

k =

(
x>y −W>y

y

)
.

We show that these two games are identically distributed, using the fact that for any
x ∈ Zdim and a⊥ ∈ Z3

p, the following are identically distributed:

W and W − x(a⊥)>,

with W←R Zdim×3
p . We use that fact with x the challenge chosen by the adversary, which

is chosen beforehand, and therefore, independently of msk = W; and a⊥ ∈ Z3
p such that

A>a⊥ = 0 and u>a⊥ = 1. Note that such a vector exists since u /∈ Span(A). The leftmost
distribution corresponds to Hybrid2, whereas the rightmost distribution corresponds to
Hybrid3. Thus:

adv2 = adv3.

It is clear hat Hybrid3 corresponds to IdealIPFEA,S (1λ) with the simulator S described in
Fig.8.3. Consequently, we have:

advweak-SIMIPFE,A (λ) ≤ advDLIN
PG,B(λ) +

1

p
.

S̃etup(pp):
A ←R DLIN, W ←R Zdim×3

p , u ←R Z3
p \ Span(A), a⊥ ∈ Z3

p such that A>a⊥ = 0 and
u>a⊥ = 1. Return p̃k = {[A]s, [WA]s}s∈[1,2]} and m̃sk = (W,u,a⊥).

Ẽnc(m̃sk):

c =

(
u

Wu

)
. Return ([c]1, [c]2).

For all s ∈ [1, 2], K̃eyGens(m̃sk, [x>y]s, [y]s):

Return
[
x>y · a⊥ −W>y

y

]
s

.

Figure 7: Simulator for the FE scheme from Fig.8.3 for the functionality F IPFE′ .

56

9 Construction of ε-Simulation Secure FE

In this section, we construct a ε-simulation secure public-key functional encryption scheme
FE for circuits FCIRC = {FCIRC

λ,prmtr}λ,prmtr for some ε ∈ (0, 1). FCIRC
λ,prmtr is the function class

where for all λ and all polynomials prmtr = (n, d, `, size) it denotes the set of Boolean
circuits with input length n(λ), depth at most d(λ), output length `(λ), and size at most
size(λ). It uses the following ingredients:

• ε-1LGFE: a secret-key FE scheme for the function class FCIRC defined above, satisfy-
ing the following properties:

– (Security.) 1-key single ciphertext ε-simulation security as in Definition 4.4 for
some constant ε ∈ (0, 1) specified later. Note that although the scheme is for a
single key, it however allows circuits with multiple output bits.

– (Efficiency.) levelled compactness as in Definition 4.6. In particular, ciphertext
size as well as the size of encryption circuit is poly(λ, n, d), independent of the
function size size and output length `.

– (Structural property.) Special Structure* as per Definition 4.8. Recall, it says
that:

* (PP Syntax.) The pp generated by the PPGen(1λ, prmtr) algorithm contains
a h1(λ)-bit prime modulus which is the modulus of the bilinear map Gλ, p.

* (Linear secret key Structure.) The master secret key is a vector in s ∈ Zh2(λ)
p .

For any function f ∈ Fλ,prmtr, let f = {fi}i∈[`] denote the circuit computing
ith bit of f . The functional secret key is of the form skf = {skfi}i∈[`] where
each skfi = 〈ppfi , s〉 + ei mod p where ei ←R {0, . . . , h3(λ, n, `, d)} and ppfi
is some deterministic polynomial time computable function of pp and fi.
For our construction below we require that h3(λ, n, `, d) = 2t − 1 for some
natural number t = O(log(n·d·`·size)). We can always choose an a constant
ε ∈ (0, 1) for the construction in Section 7 such that there exists an ε-1LGFE
scheme with this property, satisfying ε-simulation security. We use that
value of ε.

* (Linear + Round Decryption with polynomial decryption error.) There ex-
ists a deterministic poly-time algorithm such that given an encryption ct
of m ∈ {0, 1}n and a function f = (f1, . . . , f`) ∈ FCIRC

λ,prmtr, for every i ∈ [`],
computes ctfi such that |ctfi − 〈ppfi , s〉 − fi(m)dp

2
e| ≤ h4(λ, d, `, size). Given

the secret-key for a function f = (f1, . . . , f`), this can be used to recover
f(m) = (f1(m), . . . , f`(m)).

Such a scheme is constructed in Section 7.

• PHFE: a public-key PHFE for the class of functions FPHFE defined with respect to
bilinear groups of order p (which is the same as the modulus of ε-1LGFE) and is in
fact the order of group Gλ. FPHFE = {FPHFE

λ,n′ }λ,n′ for every polynomial n′ consists
of all functions f that takes an input of the form (x,y) ∈ Zn′p × Zn′p , and computes
f(x,y) = [

∑
j,k fj,k(x) ·yj ·yk]T ∈ GT where fj,k is a constant degree polynomial over

57

x (i.e. an arithmetic circuit in NC0), and GT denotes the target group (see pairing
groups in Definition 3). The scheme PHFE satisfies the following properties:

– (Security.) 1-simulation security for unbounded key queries.

– (Efficiency.) Linear run-time as per Definition 4.6.

Such a scheme is constructed in Section 8 (in fact the scheme in Section 8 handles
even a larger class of function, namely arithmetic NC1 on the public part of the in-
put). We set n′ later.

• sPRG: a structured-seed PRG with stretch τ > 1, linear efficiency as per Defini-
tion 6.1. This sPRG works with the modulus p(λ) of the bilinear map Gλ. The
evaluation algorithm of sPRG computes an arithmetic NC0 circuit on the public
part of the seed, and a degree-2 polynomial on the secret part of the seed, that is,
sPRG ∈ (arith-NC0, deg 2). This sPRG is implementable by FPHFE.

We now describe the construction.

Parameters: For sPRG, we set the length parameter to be `
1
τ · λ. Thus, `sPRG = `

1
τ poly(λ)

is the number of Zp elements in the sPRG seed for some polynomial poly independent of
the `. Define n′ = h2(λ, d) + `sPRG. Let t = log2(h3(λ, n, `, d) + 1).

Construction: Please refer to the construction in Figure 9.

Correctness: Consider a message m ∈ {0, 1}n, a circuit C ∈ Fprmtr, an encryption of m,
of the form ct = (ct1, ct2), and a functional decryption key skC = (skC1 , . . . , skC`). Recall
that decryption computes the following:

• It computes [wi]T ← PHFE.Dec(skCi , ct2). By correctness of PHFE, we have [wi]T =
[〈ε-1LGFE.ppCi ,msk′〉+

∑
j∈[t] 2j−1 · r(i−1)·t+j]T , where the bits r(i−1)·t+j denote the out-

put of sPRG.

• By the special structure* property of ε-1LGFE, there exists a polynomial h4, and a
deterministic polynomial time algorithm that given ct1 and Ci, outputs cti such that
cti = 〈ε-1LGFE.ppCi ,msk′〉+ ei + Ci(m) · dp/2e, where |ei| ≤ h4(λ, n, d, `).

• Then, the decryption computes [zi]T = [ctCi − wi]T . By the first observation above,
we have wi = 〈ε-1LGFE.ppCi ,msk′〉+ e′i, where |e′i| ≤ h3(λ, n, d, `). Thus, if Ci(m) = 0,
|zi| ≤ h3(λ, n, d, `) + h4(λ, n, d, `), otherwise it is large in absolute value. Thus the
decryption suceeds.

Sublinearity: We now bound the size of the ciphertext and the size of the encryption
circuit. We do that in two cases. This is our theorem:

Theorem 9.1. If PHFE satisfies linear efficiency and ε-1LGFE satisfies (levelled) output sublin-
earity, and sPRG has a stretch of τ > 1, then the FE scheme above satisfies ciphertext sublinearity.
In addition, if sPRG satisfies linear efficiency then FE satisfies output sublinearity.

58

FE.PPGen(1λ, prmtr) :

Given 1λ and the tuple of polynomials prmtr = (n, size, d, `), it samples
PHFE.pp ← PHFE.PPGen(1λ, 1n

′
), ε-1LGFE.pp ← ε-1LGFE.PPGen(1λ, prmtr) and

sPRG.pp ← sPRG.PPGen(1λ, 1`
1
τ ·λ), I ← sPRG.IdSamp(sPRG.pp). Let p denote the

prime modulus of Gλ. Output pp = (PHFE.pp, ε-1LGFE.pp, sPRG.pp, I, p).

FE.Setup(pp) : Run PHFE.Setup(PHFE.pp) → (PHFE.pk,PHFE.msk). Set and output
FE.pk = PHFE.pk and FE.msk = PHFE.msk.

FE.Enc(FE.pk,m ∈ {0, 1}n) :

• msk′ ← ε-1LGFE.Setup(ε-1LGFE.pp)

• ct1 ← ε-1LGFE.Enc(msk′,m).

• (P, S)← SdSamp(I).

• ct2 ← PHFE.Enc(PHFE.pk, (P, (S,msk′))).

It returns ct = (ct1, ct2).

FE.KeyGen(FE.msk, C) : Given as input a circuit C ∈ Fprmtr, denote C = (C1, . . . , C`)

where each Ci is the circuit computing the ith output bit of C. For every i ∈ [`], do the
following:

• let ε-1LGFE.ppCi be the vector computed deterministically from ε-1LGFE.pp and Ci
such that skCi ≈ 〈msk′, ε-1LGFE.ppCi〉 (see the linear secret key structure in Defini-
tion 4.8).

• Compute skCi ← PHFE.KeyGen(PHFE.msk, fi) where fi takes as input (P, (S,msk′))
and outputs 〈msk′, ε-1LGFE.ppCi〉 +

∑
j∈[1,t] 2j−1 · r(i−1)·t+j , where for all θ ∈ [m], rθ

denotes the θ’th bit output by sPRG.Eval(I, sd) ∈ {0, 1}m.

It returns skC = (skC1 , . . . skC`).

FE.Dec(skC , ct) : Parse skC = (skC1 , ..., skC`) and ct = (ct1, ct2). For every i ∈ [`], do
the following:

• By the special structure* of ε-1LGFE, compute ctC,i using the ciphertext ct1.

• Compute [wi]T ← PHFE.Dec(skCi , ct2).

• Compute [zi]T = [ctCi − wi]T .

• Check if |zi| ≤ h3(λ, n, d, `)+h4(λ, n, d, `) (by brute-force). If so set yi = 0. Otherwise,
set yi = 1. Output (y1, ..., y`).

Figure 8: Construction of Functional Encryption Scheme FE.

59

We first find out the size of an encryption. The ciphertext consists of two components:
ct1 and ct2. The size of ct1 is `1−γ1 poly(λ, n, d) for some γ1 > 0 and some polynomial poly
due to (levelled) output sublinear efficiency of ε-1LGFE. The size of ct2 is n′ · poly(λ) for
some polynomial poly due to the linear efficiency of PHFE. Note that n′ = p2(λ, d) + `

1
τ λ.

Thus, overall the size of the ciphertext is `max{1−γ1,
1
τ
} · poly(λ, n, d) for some polynomial

poly.
Now, assume that sPRG in addition has linear efficiency. The size of the circuit com-

puting ct is the size of the circuit computing ct1 and ct2. ct1 can be computed by a circuit
of size `1−γ1 poly(λ, n, d) for some constant γ1 > 0 and some polynomial poly due to output
sublinearity of ε-1LGFE. The size of the circuit computing ct2 is n′ poly(λ) due to linear
efficiency of PHFE and sPRG. Thus, combined, the size of the circuit computing ct is also
O(`max{1−γ1,

1
τ
} poly(λ, n, d)) for some polynomial poly.

Security: We now prove security. Let the parameters be set as described in the construc-
tion. Then, we prove the following:

Theorem 9.2. If ε-1LGFE is (single-key) ε-simulation secure, PHFE is many-key 1-simulation
secure, sPRG is a secure structured seed PRG and parameters are set as described above, then FE
is (single-key) ε-simulation secure.

We now list hybrids. The first hybrid corresponds to the real security game, whereas
the last hybrid is our ideal security game. This hybrid implicitly defines the simulated al-
gorithms S̃etup, Ẽnc and K̃eyGen. We argue indistinguishability between each one of them.
The differences between hybrids are highlighted in red.

Hybrid0 :

• Adversary outputs a circuit C ∈ FCIRC
λ,prmtr along with a message m ∈ {0, 1}n.

• Run PPGen as in the scheme to compute pp.

• Run PHFE.Setup(PHFE.pp)→ (PHFE.pk,PHFE.msk). Set FE.pk = PHFE.pk and FE.msk =
PHFE.msk. Send FE.pk to the adversary.

• To encrypt the message m:

– msk′ ← ε-1LGFE.Setup(ε-1LGFE.pp)

– ct1 ← ε-1LGFE.Enc(msk′,m).

– (P, S)← SdSamp(I).

– ct2 ← PHFE.Enc(PHFE.pk, (P, (S,msk′))).

– Give (ct1, ct2) to the adversary.

• For generating the secret key for the circuit C, do the following steps. Denote C =
(C1, . . . , C`) where each Ci is the circuit computing the ith output bit of C. For every
i ∈ [`], do the following:

60

– Let ε-1LGFE.ppCi be the vector computed deterministically from ε-1LGFE.pp and
Ci such that skCi ≈ 〈msk′, ε-1LGFE.ppCi〉 (see the linear secret key structure in
Definition 4.8).

– Compute skCi ← PHFE.KeyGen(PHFE.msk, fi) where fi takes as input (P, (S,msk′))
and outputs 〈msk′, ε-1LGFE.ppCi〉 +

∑
j∈[1,t] 2j−1 · r(i−1)·t+j , where for all θ ∈ [`],

rθ denotes the θ’th bit output by sPRG.Eval(I, sd) ∈ {0, 1}`.

• Give to the adversary skC = (skC1 , . . . skC`).

In the next hybrid, we use the simulator for the PHFE scheme. These two hybrids are
indistinguishable due to the security of the PHFE scheme.

Hybrid1 :

• Adversary outputs a circuit C along with a message m.

• Run PPGen as in the scheme to compute pp.

• Run PHFE.S̃etup(PHFE.pp)→ (PHFE.pk,PHFE.td). Set FE.pk = PHFE.pk and FE.msk =
PHFE.td.

• Compute msk′ ← ε-1LGFE.Setup(ε-1LGFE.pp)

• Compute (P, S)← SdSamp(I).

• Compute ct1 ← ε-1LGFE.Enc(msk′,m).

• For i ∈ [`] let vi = 〈msk′, ε-1LGFE.ppCi〉+
∑

j∈[1,t] 2j−1·r(i−1)·t+j where r = sPRG.Eval(I, sd).

• Compute ct2 ← PHFE.Ẽnc(td, w) where w = (P, {fi}i∈[`], {vi}i∈[`]). Let ct = (ct1, ct2).

• For all j ∈ [`], compute skCj ← PHFE.K̃eyGen(td, fj, w). Let skC = (skC1 , . . . , skC`).

• Give to the adversary FE.pk, ct = (ct1, ct2) and skC = (skC1 , . . . , skC`).

In the next, hybrid, we replace r with a random string. These two hybrids are indis-
tinguishable due to the security of sPRG. For this to happen we need ` · t to be less than
kτ where k is length parameter of sPRG. Note that the length parameter of sPRG is set as
`

1
τ λ, thus kτ = λτ · `. Since t = O(log(λ · n · ` · d · size)), this holds.

Hybrid2 :

• Adversary outputs a circuit C along with a message m.

• Run PPGen as in the scheme to compute pp.

• Run PHFE.S̃etup(PHFE.pp)→ (PHFE.pk,PHFE.td). Set FE.pk = PHFE.pk and FE.msk =
PHFE.td.

61

• Compute msk′ ← ε-1LGFE.Setup(ε-1LGFE.pp)

• Compute (P, S)← SdSamp(I).

• Compute ct1 ← ε-1LGFE.Enc(msk′,m).

• For i ∈ [`] let vi = 〈msk′, ε-1LGFE.ppCi〉+
∑

j∈[1,t] 2j−1 · r(i−1)·t+j where r ←R {0, 1}`λ
τ .

• Compute ct2 ← PHFE.Ẽnc(td, w) where w = (P, {fi}i∈[`], {vi}i∈[`]). Let ct = (ct1, ct2).

• For all j ∈ [`], compute skCj ← PHFE.K̃eyGen(td, fj, w). Let skC = (skC1 , . . . , skC`).

• Give to the adversary FE.pk, ct = (ct1, ct2) and skC = (skC1 , . . . , skC`).

Finally in the last hybrid, we simulate ct1, v1, . . . , v` using ε-1LGFE.Sim. Note that this
is possible since the values v1, . . . , v` exactly correspond to ε-1LGFE functional decryption
keys (see the special structure* property in Definition 4.8) . These two hybrids are indis-
tinguishable due to ε-simulation security of the ε-1LGFE scheme.

Hybrid3 :

• Adversary outputs a circuit C along with a message m.

• Run PPGen as in the scheme to compute pp.

• Run PHFE.S̃etup(PHFE.pp)→ (PHFE.pk,PHFE.td). Set FE.pk = PHFE.pk and FE.msk =
PHFE.td.

• Compute td← ε-1LGFE.S̃etup(ε-1LGFE.pp)

• Compute (P, S)← SdSamp(I).

• Let γ = ε-1LGFE.Sample(C,m).

• Compute ct1 ← ε-1LGFE.Ẽnc(td, γ) and for i ∈ [`], vi ← ε-1LGFE.K̃eyGen(td, Ci, γ).

• Compute ct2 ← PHFE.Ẽnc(td, w) where w = (P, {fi}i∈[`], {vi}i∈[`]). Let ct = (ct1, ct2).

• For all j ∈ [`], compute skCj ← PHFE.K̃eyGen(td, fj, w). Let skC = (skC1 , . . . , skC`).

• Give to the adversary FE.pk, ct = (ct1, ct2) and skC = (skC1 , . . . , skC`).

In Hybrid3, only the value γ is needed to simulate the adversary’s view, which is equal
to C,C(m) with probability ε and equal to C,m with remaining probability. Namely,
the simulator for FE does the following. Given as input the parameters pp, it samples
FE.pk, ε-1LGFE.pk, using the simulator for PHFE and ε-1LGFE. Then it samples (P, S) ←
SdSamp(I). It then simulates ct1 and ε-1LGFE keys {vi}i∈[`] using the simulator for ε-1LGFE.
This uses γ as an input. Then, it generates PHFE ciphertext ct2 and keys {skCj}j∈[`]. This
is done using simulator for PHFE scheme. This uses {vi}i∈[`] as an input, alongside P and
function descriptions fj . This gives us the simulator for the scheme FE.

62

10 Summing Up: Construction of iO
We obtain the following main result:

Theorem 10.1. Assuming the following assumptions hold:

• SXDH and bilateral DLIN assumptions over bilinear maps.

• Learning with Error assumption.

• A structured seed PRG sPRG exists (can be instantiated using a pseudorandom generator
PRG, G satisfying G − LWEleakD,ε,ρ security for some constants D ≥ 3 and constants
ε, ρ ∈ (0, 0.5).)

There exists a (levelled) sublinearly efficient public-key functional encryption scheme for all poly-
nomial sized circuits. Further, the scheme is subexponentially secure if each of these assumptions
are subexponentially secure.

Since subexponentially secure sublinearly-efficient public key encryption scheme im-
plies iO [AJ15, BV15, KNT18], we obtain the following result:

Theorem 10.2. Assuming the subexponential versions of the following assumptions hold:

• SXDH and bilateral DLIN assumptions over bilinear maps.

• Learning with Error assumption.

• A structured seed PRG, sPRG exists (can be instantiated using a pseudorandom generator G
satisfying G−LWEleakD,ε,ρ security for some constantsD ≥ 3 and constants ε, ρ ∈ (0, 0.5).)

Then, there exists an iO scheme for all circuits.

We show the above by combining many theorems.
First, use Theorem 8.1 to construct a PHFE scheme from SXDH and Bilateral DLIN as-

sumptions. Then, use Theorem 6.1 to construct a structured seed PRG from G−LWEleakD,ε,ρ
assumption. Then, for any constant ε′ ∈ (0, 1) use LWE to construct an ε′-simulation se-
cure, (levelled) compact, single ciphertext, secret-key FE scheme satisfying special struc-
ture* as described in Theorem 7.2.

Then, combine the above three ingredients to build a sublinearly efficient, public-key,
single key ε′′-simulation secure functional encryption scheme as described in Theorem 9.2
for some constant ε′′ ∈ (0, 1).

Finally use Theorem 5.1, to construct a public-key sublinearly efficient FE with IND
security. Observe that, if each of the assumptions are subexponentially secure, then the
final result is also subexponentially secure.

We also observe that subsequent to the initial publication of our work, Wee [Wee20b]
showed how to construct a PHFE scheme from only the Bilateral DLIN assumption. By
using Wee’s theorem in place of Theorem 8.1, we obtain:

Theorem 10.3. Assuming the following assumptions hold:

63

• Bilateral DLIN assumption over bilinear maps (immediately implied by the DLIN assump-
tion over symmetric bilinear groups).

• Learning with Error assumption.

• A structured seed PRG sPRG exists (can be instantiated using a pseudorandom generator
PRG, G satisfying G − LWEleakD,ε,ρ security for some constants D ≥ 3 and constants
ε, ρ ∈ (0, 0.5).)

There exists a (levelled) sublinearly efficient public-key functional encryption scheme for all poly-
nomial sized circuits. Further, the scheme is subexponentially secure if each of these assumptions
are subexponentially secure.

and

Theorem 10.4. Assuming the subexponential versions of the following assumptions hold:

• Bilateral DLIN assumption over bilinear maps (immediately implied by the DLIN assump-
tion over symmetric bilinear groups).

• Learning with Error assumption.

• A structured seed PRG, sPRG exists (can be instantiated using a pseudorandom generator G
satisfying G−LWEleakD,ε,ρ security for some constantsD ≥ 3 and constants ε, ρ ∈ (0, 0.5).)

Then, there exists an iO scheme for all circuits.

11 Acknowledgements

This work was partly carried out while Romain Gay was a postdoctoral researcher at
UC Berkeley, then a postdoctoral research at Cornell Tech. Aayush Jain was partially
supported by grants listed under Amit Sahai, a Google PhD fellowship and a DIMACS
award. This work was partly carried out during a research visit conducted with support
from DIMACS in association with its Special Focus on Cryptography.

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CA-
REER), the Defense Advanced Research Projects Agency (DARPA) and Army Research
Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002
through Galois.

Amit Sahai was supported in part from DARPA SAFEWARE and SIEVE awards, NTT
Research, NSF Frontier Award 1413955, and NSF grant 1619348, BSF grant 2012378, a
Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant
from Intel, and an Okawa Foundation Research Grant. This material is based upon
work supported by the Defense Advanced Research Projects Agency through Award
HR00112020024 and the ARL under Contract W911NF-15-C- 0205. Amit Sahai is also
grateful for the contributions of the LADWP to this effort.

The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, DARPA, ARO, Simons, Intel, Okawa Foundation,
ODNI, IARPA, DIMACS, BSF, Xerox, the National Science Foundation, NTT Research,
Google, or the U.S. Government.

64

12 References
[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple

functional encryption schemes for inner products. In Jonathan Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 733–751. Springer, Heidelberg, March / April 2015.

[ABR12] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages
600–617. Springer, Heidelberg, March 2012.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
657–677. Springer, Heidelberg, August 2015.

[ACF+15] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Lu-
dovic Perret. Algebraic algorithms for LWE problems. ACM Commun. Comput. Alge-
bra, 49(2):62, 2015.

[ACGU20] Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product func-
tional encryption with fine-grained access control. Cryptology ePrint Archive, Report
2020/577, 2020. https://eprint.iacr.org/2020/577.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In
Luca Aceto, Monika Henzinger, and Jiri Sgall, editors, ICALP 2011, Part I, volume
6755 of LNCS, pages 403–415. Springer, Heidelberg, July 2011.

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfusca-
tion: Avoiding Barrington’s theorem. In ACM CCS, pages 646–658, 2014.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input
inner-product functional encryption from pairings. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages
601–626. Springer, Heidelberg, April / May 2017.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indis-
tinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva
and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
284–332. Springer, Heidelberg, August 2019.

65

https://eprint.iacr.org/2020/577

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness.
IACR Cryptology ePrint Archive, 2018:615, 2018.

[AL16] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. In Daniel Wichs and Yishay Mansour, editors, 48th
ACM STOC, pages 1087–1100. ACM Press, June 2016.

[ALS16] Shweta Agrawal, Benoı̂t Libert, and Damien Stehlé. Fully secure functional en-
cryption for inner products, from standard assumptions. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362.
Springer, Heidelberg, August 2016.

[AP20] Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without
maps: Attacks and fixes for noisy linear FE. In Anne Canteaut and Yuval Ishai, edi-
tors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part I, volume 12105 of Lecture Notes in Computer Science, pages
110–140. Springer, 2020.

[App12] Benny Applebaum. Pseudorandom generators with long stretch and low locality
from random local one-way functions. In Howard J. Karloff and Toniann Pitassi,
editors, 44th ACM STOC, pages 805–816. ACM Press, May 2012.

[AR17a] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In TCC, pages 173–205, 2017.

[AR17b] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions,
revisited. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 173–205. Springer, Heidelberg, November 2017.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Prac-
tical functional encryption for quadratic functions with applications to predicate en-
cryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, vol-
ume 10401 of LNCS, pages 67–98. Springer, Heidelberg, August 2017.

[BDGM20] Zvika Brakerski, Nico Dottling, Sanjam Garg, and Guilio Malavolta. Candidate io
from homomorphic encryption schemes. In EUROCRYPT, 2020.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pair-
ing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229.
Springer, Heidelberg, August 2001.

[BFM14] Christina Brzuska, Pooya Farshim, and Arno Mittelbach. Indistinguishability obfus-
cation and UCEs: The case of computationally unpredictable sources. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 188–205. Springer, Heidelberg, August 2014.

66

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homo-
morphic encryption. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture
Notes in Computer Science, pages 565–596. Springer, 2018.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, Au-
gust 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 221–238. Springer,
Heidelberg, May 2014.

[BGPW16] Johannes A. Buchmann, Florian Göpfert, Rachel Player, and Thomas Wunderer. On
the hardness of LWE with binary error: Revisiting the hybrid lattice-reduction and
meet-in-the-middle attack. In David Pointcheval, Abderrahmane Nitaj, and Taj-
jeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages 24–43.
Springer, Heidelberg, April 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. In Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pages 309–325, 2012.

[BIJ+20] James Bartusek, Yuval Ishai, Aayush Jain, Fermi Ma, Amit Sahai, and Mark Zhandry.
Affine determinant programs: A framework for obfuscation and witness encryption.
In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages
82:1–82:39. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BMSZ16] Saikrishna Badrinarayanan, Eric Miles, Amit Sahai, and Mark Zhandry. Post-
zeroizing obfuscation: New mathematical tools, and the case of evasive circuits. In
Advances in Cryptology - EUROCRYPT, pages 764–791, 2016.

[BNPW16] Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania
to obfustopia through secret-key functional encryption. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 391–418. Springer,
Heidelberg, October / November 2016.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of find-
ing a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages 1480–
1498. IEEE Computer Society Press, October 2015.

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way func-
tion. Comput. Complex., 21(1):83–127, 2012.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

67

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 505–524. Springer, Heidelberg, August
2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE
Computer Society Press, October 2015.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella.
On the concrete security of Goldreich’s pseudorandom generator. In Thomas Peyrin
and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS,
pages 96–124. Springer, Heidelberg, December 2018.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In STOC, 2016.

[CSA20] Mehdi Tibouchi Chao Sun and Masayuki Abe. Revisiting the hardness of binary error
lwe. Cryptology ePrint Archive, Report 2020/666, 2020. https://eprint.iacr.
org/2020/666.

[CTA19] Sun Caho, Mehdi Tibouchi, and Masayuki Abe. Sample-time trade-off for the arora-
ge attack on binary lwe. Symposium on Cryptography and Information Theory, 2019.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permuta-
tion branching programs: Proofs, attacks, and candidates. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
577–607. Springer, Heidelberg, August 2018.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky en-
cryption and its applications. In Matthew Robshaw and Jonathan Katz, editors,
CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122. Springer, Heidelberg,
August 2016.

[Gay20] Romain Gay. A new paradigm for public-key functional encryption for degree-2
polynomials. In PKC 2020, Part I, LNCS, pages 95–120. Springer, Heidelberg, 2020.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GJK18] Craig Gentry, Charanjit S. Jutla, and Daniel Kane. Obfuscation using tensor products.
Electronic Colloquium on Computational Complexity (ECCC), 25:149, 2018.

68

https://eprint.iacr.org/2020/666
https://eprint.iacr.org/2020/666

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption.
In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 555–564. ACM Press, June 2013.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In
David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 39–56. Springer,
Heidelberg, August 2008.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology
ePrint Archive, 2014:309, 2014.

[GMM+16] Sanjam Garg, Eric Miles, Pratyay Mukherjee, Amit Sahai, Akshayaram Srinivasan,
and Mark Zhandry. Secure obfuscation in a weak multilinear map model. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages
241–268. Springer, Heidelberg, October / November 2016.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. Electronic
Colloquium on Computational Complexity (ECCC), 7(90), 2000.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016.

[GVW12a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings, pages 162–179, 2012.

[GVW12b] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer,
Heidelberg, August 2012.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark
Zhandry. How to generate and use universal samplers. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages
715–744. Springer, Heidelberg, December 2016.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (lev-
eled) multilinear maps and identity-based aggregate signatures. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 494–512.
Springer, Heidelberg, August 2013.

69

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
251–281. Springer, Heidelberg, May 2019.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003, 2020. https:
//eprint.iacr.org/2020/1003.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In Wieb Bosma,
editor, Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Leiden, The
Netherlands, July 2-7, 2000, Proceedings, volume 1838 of Lecture Notes in Computer Sci-
ence, pages 385–394. Springer, 2000.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, 2015.

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of
squares lower bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie,
and Valerie King, editors, 49th ACM STOC, pages 132–145. ACM Press, June 2017.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-
key functional encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 603–648. Springer, Heidelberg,
April / May 2018.

[Las01] Jean B. Lasserre. New positive semidefinite relaxations for nonconvex quadratic pro-
grams. In Advances in convex analysis and global optimization (Pythagorion, 2000), vol-
ume 54 of Nonconvex Optim. Appl., pages 319–331. Kluwer Acad. Publ., Dordrecht,
2001.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and
locality-5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LM18] Huijia Lin and Christian Matt. Pseudo flawed-smudging generators and their appli-
cation to indistinguishability obfuscation. IACR Cryptology ePrint Archive, 2018:646,
2018.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,
August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-
like assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th
FOCS, pages 11–20. IEEE Computer Society Press, October 2016.

70

https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003

[LV17] Alex Lombardi and Vinod Vaikuntanathan. Minimizing the complexity of goldreich’s
pseudorandom generator. IACR Cryptology ePrint Archive, 2017:277, 2017.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 700–718. Springer, Heidelberg, April 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with small parame-
ters. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of
LNCS, pages 21–39. Springer, Heidelberg, August 2013.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0.
In 44th FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[Nes00] Yurii Nesterov. Squared functional systems and optimization problems. In High per-
formance optimization, volume 33 of Appl. Optim., pages 405–440. Kluwer Acad. Publ.,
Dordrecht, 2000.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal
polynomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12. IEEE Computer Society, 2014.

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, Citeseer, 2000.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 500–517. Springer, Heidel-
berg, August 2014.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In STOC, pages 84–93, 2005.

[Sch94] Claus-Peter Schnorr. Block reduced lattice bases and successive minima. Comb.
Probab. Comput., 3:507–522, 1994.

[Sho87] N. Z. Shor. Quadratic optimization problems. Izv. Akad. Nauk SSSR Tekhn. Kibernet.,
(1):128–139, 222, 1987.

[SS10a] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Proceedings of the 17th ACM conference on Computer and communi-
cations security, pages 463–472. ACM, 2010.

[SS10b] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 2010, pages 463–472. ACM Press, October 2010.

71

[Ste] Damien Stehlé. Slides: The lwe problem from lattices to cryptography.
https://summerschool-croatia.cs.ru.nl/2015/Lattice-based%20crypto.pdf.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidel-
berg, May 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, STOC, pages 475–484. ACM, 2014.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In
Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages
206–233. Springer, Heidelberg, November 2017.

[Wee20a] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In
TCC 2020, Part I, LNCS, pages 210–228. Springer, Heidelberg, March 2020.

[Wee20b] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In
Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part I,
volume 12550 of Lecture Notes in Computer Science, pages 210–228. Springer, 2020.

A Cryptanalysis of Our Assumption

A.1 A Survey of the PRG Candidates

We consider Goldreich PRG candidates [Gol00]. We recall the definition of a hypergraph
first.

Definition A.1. We define an (n,m, d)−hypergraph H to be a hypergraph with n vertices and
m hyperedges of cardinality d. Each hyperedge σi for i ∈ [m] is of the form σi = {σi,1, . . . , σi,d}
where each σi,j1 ∈ [n] is distinct from σi,j2 ∈ [n] for every i ∈ [m] and j1 6= j2. Also, we assume
that each σi is an ordered set.

We now define Goldreich PRG candidates.

Definition A.2. Goldreich’s candidate d-local PRG GH,P forms a family of local PRG candidates
where GH,P : {0, 1}n → {0, 1}m is parameterized by an (n,m, d)−hypergraph H = (σ1, . . . , σm)
and a boolean predicate P : {0, 1}d → {0, 1}. The functionality is defined as follows: On input
x ∈ {0, 1}n, GH,P return m-bit strings: (P(xσ1,1 , . . . , xσ1,d

), . . . ,P(xσm,1 , . . . , xσm,d)).

Typically P is some predicate satisfying some nice properties, d is a constant integer
greater than equal to 5, and H is a randomly chosen graph from some distribution. The
security should hold with high probability over the choice of this graph.

Coming back to our assumption, intuitively, our assumption suggests that as long as
other parameters are chosen appropriately, any Goldreich PRG predicate of constant de-
gree d admitting a stretch of Ω(n

1
2
·d d

2
e+c) for any constant c > 0 can potentially form a nice

choice to instantiate our assumption. Traditionally Goldreich’s PRG has been a subject

72

of extensive study (For example, see [Gol00, MST03, ABR12, BQ12, App12, OW14, AL16,
CDM+18].). The standard complexity measure for a Goldreich’s PRG is locality of the
predicate (and not the Z−degree.). Locality of the predicate is the number of bits that the
predicate takes as input. Since the predicate in a Goldreich PRG is a boolean function, the
locality of the predicate forms an upper bound on the Z-degree of the predicate. We now
survey some known results below and we will remark about both locality and Z−degree
of the predicate. Analysis of the PRG predicates in literature has focused mainly, on the
following broad classes of attacks:

• F2 linear bias distinguishing attacks.

• Attacks from optimization literature such as (e.g. SoS based SDP algorithms.).

• Algebraic attacks that include, e.g. Gröbner Basis Attacks.

• Guess and Determine Attacks.

It is known from the work of [MST03], that in order to construct a PRG with polyno-
mial stretch the minimum locality needs to be 5. For such a locality, [OW14] proved an
optimal stretch of m(n) = n1.5−ε for the Goldreich PRG instantiated with the TSA predi-
cate4, for any constant ε > 0, against subexponential SDP adversaries and F2 linear bias
adversaries.

This understanding can be generalized.

SoS Attacks. In fact for attacks relying on Semi-Definite Programming (SDP), there is a
very powerful infrastructure to prove systematic lower bounds. This is captured by the
sum-of-squares (SoS) hierarchy [Sho87, Par00, Nes00, Las01]. It was proven in [KMOW17]
that the Goldreich PRG with a stretch m(n) = n1+(k

2
−1)(1−δ) for some constant δ > 0,

when instantiated using a random hypergraph and a predicate P that is k−wise indepen-
dent5, will require an SoS program of level O(nδ) for deriving refutations. This translates
(very roughly) to an SDP that requires 2O(nδ) time to solve. This shows that for the TSA
predicate with stretch of n1.5−c, the SDP approach will take at least 2O(n2c) time perform
refutations/inversion.

F2 Linear Bias. These attacks are distinguishing attacks. F2 linear bias security consists
of proving the following. For outputs y1, . . . , ym of the PRG, it requires that for every
non-empty set S ⊆ [n], it holds that

∣∣E[⊕i∈Syi] − 0.5
∣∣ ≤ 2−n

ε for some constant ε > 0.
Usually this is a very hard property to prove in general. In fact, we only have sound
analysis of very few predicates [MST03, ABR12, OW14, AL16]. The analysis in [AL16] is
the first incident where a general degree d of the predicate is considered. Unfortunately,
the analysis there can’t be applied in our case because the parameters they achieve are
not good enough for our setting. Unless a theorem already exists, we won’t be discussing
about these attacks for most of our candidates.

4Recall, TSA(x1, . . . , x5) = x1 ⊕ x2 ⊕ x3 ⊕ AND(x4, x5).
5A predicate is k−wise independent if for any set S of size at most k− 1, E[P (x1, . . . , xd)⊕i∈S xi] = 0.5.

73

Algebraic Attacks / Guess and Determine Attacks. Algebraic attacks consists of reso-
lution style attacks where some equations are set up and then they are manipulated until
a search or refutation is made. This class of attacks capture the Gröbner Basis Attacks. In
order to avoid the algebraic attacks with the stretch m(n) = ns, as outlined by [AL16], the
predicate should have a rational degree 6 greater than s. The reason for that is that, if the
rational degree is lower than s, then the following happens. Write P · Q = R where Q and
R are degree e < s functions. Given samples (y1, . . . , ym) one can write yi ·Q(xSi) = R(xSi)
where Si is the corresponding indices on which the predicate P was applied to obtain
yi. Note that these are m degree e equations. This system can be linearized if s > e. In
[AL16], the authors also prove lower bounds for subexponential algorithms in this model
but unfortunately they are too weak to be applied here. However, in a very interesting
work [CDM+18], this attack was further improved where the authors considered ratio-
nal degrees of predicates obtained by fixing some bits of the input called the bit-fixing
algebraic immunity (hence the name Guess and Determine.). Thereby, under reasonable
heuristic assumptions fine-tuned trade-offs of stretch vs running time were obtained. Re-
fer to Proposition 5, 7 and 8 in [CDM+18] for details. The paper is also an excellent source
on the concrete security of various candidates and a survey of state-of-the-art attacks. For
our candidates, we estimate running times of these algorithms by relying on the theorems
from this work. All known attacks for our candidates and required parameters require
subexponential time. We discuss the state of some of the major known algorithms and
how they fare against our candidates in Table 1.

We now discuss our candidates below and how each of the attacks discussed above
fare for these candidates.

A.2 The XORMAJ`,` Predicate

As suggested earlier, for a general degree, there is a gap between provable security against
the classes of attacks discussed above and actual attacks known in practice. While for a
general degree d, the best known analysis in [AL16] only constructs a PRG predicate that
has a provable stretch 7 of Ω(nd/38). As pointed out it in Corollary 2, and Proposition
8 in [CDM+18], any Goldreich PRG instantiated with a predicate of the form (e.g. the
XOR`MAJk predicates.)

P(x1 . . . , x`+k) = ⊕i∈[`]xi ⊕ g(x`+1, . . . , x`+k).

for a non-linear balanced predicate g of locality k, can be broken in polynomial time (un-
der a heuristic assumption) if the stretch of the PRG is more than Õ(nd

k
2
e+1). The predicate

above if g is balanced, is (` + 1)−wise independent. Thus, in light of these attacks and
the SDP atttacks, to design a predicate of this form in general, one needs `+1

2
> 1

2
· dk+`

2
e,

because of the SDP condition, and dk
2
e+ 1 > 1

2
· dk+`

2
e because of the attacks in [CDM+18].

This leaves us with a tight margin to develop predicates in this manner. One might choose

6Recall that the rational degree of P is the minimum degree e such that there exist degree e predicates
Q and R such that PQ = R. Rational Degree is also known as algebraic immunity.

7Actually the result holds for locality.

74

k = `, where ` is odd. Then, in the first equation `+1
2

> `
2

and in the second equation,
`+3

2
> `

2
. Thus, for an odd ` ≥ 3 define:

XORMAJ`,`(x1 . . . , x2`) = ⊕i∈[`]xi ⊕MAJ(x`+1, . . . , x2`).

This predicate above has been widely studied, and has been regarded as the gold
standard PRG predicate owing to the fact that Majority has the optimal rational degree
[AL16].

SoS Attacks. We consider a stretch of n
`+1

2
−c for some constant c > 0. Under such cir-

cumstances we can show an SoS lower bound relying on the result of [KMOW17] against
subexponential sized SoS programs. The exact parameters are computed in Table 1.

Algebraic Attacks. Unfortunately, we can’t use the theorems in [AL16] to argue prov-
able security against such attacks, we show that these as well as the improved attacks in
[CDM+18] approximately take subexponential time for our parameter setting. The exact
parameters are computed in Table 1. In the table we rely on Proposition 5, 7 and 8 in
[CDM+18] to populate the parameters.

A.3 Low-Degree High-Locality Predicates

As pointed out in the previous section, in general, we just have small room of parameters
to build predicates with the stretch n

`
4

+ε where ` is the locality in the way described above.
That points us to the following issue. Much of the research has been done in optimiz-

ing locality of the PRG predicates vs the stretch. However, in this work, we actually do
not care much about the locality. For us, it is the degree of the predicate of the integers
that is crucial. This allows us to design clever predicates that has much lower degree than
the locality.

For example, consider the predicate proposed by Lombardi and Vaikunthanathan
[LV17] that has a locality of 5, but a degree of just 3!

TSPA(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ ((x2 ⊕ x4) ∧ (x3 ⊕ x5)) .

At first sight, it does not appear to have a degree of 3, but on careful examination we
can indeed show this. We also extend this observation and design a family of predicates
that have much lower Z degree than the locality. We now discuss the status of known
attacks for this particular predicate.

• SoS Attacks. Since the predicate is 3−wise independent, relying on the result of
[KMOW17] it can be shown that for a stretch of m(n) ≤ n1.5−c for any constant
c ∈ (0, 0.5), the predicate provably resists attacks via the sum-of-squares paradigm
running in time O(2n

2c
).

75

• Linear Bias Attacks. In [LV17] it was proven that for a stretch of n1.25−c for any
c > 0, the predicate provably resists linear bias distinguishing attacks relying on
the dichotomy theorem of [ABR12]. Also, authors conjecture, that for this candidate
by a tighter analysis even a stretch of n1.5−c should be possible against linear bias
attacks.

• Algebraic and [CDM+18] Style Attacks. First observe that the rational degree of
TSA and TSPA is the same because the variables are just related by an invertible
linear transformation. Namely,

TSPA(x1, . . . , x5) = TSA(x1, x2, x3, x4 ⊕ x2, x3 ⊕ x5).

Thus many of the ideas used to analyze TSA can be applied here. We work out
the running time of the known attacks as a function of stretch in Table 1 for these
attacks.

Next, we consider the following instantiation inspired by the TSPA predicate above.
We suggest a general approach using which we construct a predicate of locality 2 · k + 1,
and a Z−degree of just k + 1 for any constant integer k > 0. The predicate additionally
satisfies (k + 1)−wise independence. Further, the non-linear part will have an F2 degree
of k. This allows us to enlarge the margin in parameters for constructing useful predicates
as discussed above. Consider g, a non-linear boolean function of F2 degree k. Then, the
predicate is simply:

Pg(x1 . . . , x2k+1) = ⊕i∈[k+1]xi ⊕ g(xk+2 ⊕ x2, . . . , x2k+1 ⊕ xk+1).

Put it simply, this can also be written in the template above:

Pg(x1 . . . , x2k+1) = x1 ⊕ g′(x2, . . . x2k+1),

where,

g′(x2 . . . , x2k+1) = x2 ⊕ . . .⊕ xk+1 ⊕ g(xk+2 ⊕ x2, . . . , xk+1 ⊕ x2k+1).

Now we argue (k+1)−wise independence. The predicate above is (k+1)−wise indepen-
dent.

The reason for that is that in Fourier notation8:

P̂g(X1 . . . , X2k+1) = Πi∈[k+1]Xi · g(Xk+2 ·X2, . . . , X2k+1 ·Xk+1).

8Recall that for any boolean function f : {0, 1}n → {0, 1}, f(x1, . . . , xn), the fourier expansion of f ,
denoted by f̂ : {−1,+1}n → {−1,+1}, is related as:

f̂(X1, . . . , Xn) =
∑
S⊆[n]

f̂S · χS(X1, . . . , Xn).

Here f̂(X1, . . . , Xn) = 1−2·f(x1, . . . , xn) and eachXi = 1−2·xi. For any set S, χS(X1, . . . , Xn) =
∏

i∈S Xi.

76

Also observe that in the Fourier expansion:

ĝ(Y1 . . . , Yk) =
∑
S⊆[k]

ĝSχS(Y1, . . . , Yk).

We substitute Yi = Xi+1 ·Xk+i+1. Thus, we get:

P̂g(X1 . . . , X2k+1) = Πi∈[k+1]Xi ·
∑
S⊂[k]

ĝSχS(X2 ·Xk+2, . . . , X2k+1 ·Xk+1).

Thus, the Fourier expansion of Pg is a homogeneous polynomial of degree k + 1. Hence,
the predicate is (k + 1)−wise independent. From the above, it is also clear that Z degree
of Pg is also k + 1. Infact, TSPA is obtained as a special case of this compiler where g is
just the AND function. For an odd k ≥ 3, we consider PMAJk as one of our candidate. For
this candidate, consider:

• SoS Attacks. Since the predicate is (k+1)−wise independent, relying on the result of
[KMOW17] it can be shown that for a stretch of m(n) ≤ n

k+1
2
−c for any constant c >

0), the predicate provably resists attacks via the sum-of-squares paradigm running in
subexponential time.

• Algebraic and [CDM+18] Style Attacks. First observe that the rational degree of
PMAJk and XORMAJk+1,k is same because the variables are just related by an invert-
ible linear transformation. Thus many of the ideas used to analyze XORMAJ can be
applied here. We work out the running time of the known attacks as a function of
stretch in Table 1 for these attacks.

A.4 Justifying Security of the Combined Assumptions

We now discuss the plausibility of our assumptions along with the binary LWE leakage
part. The first category of attacks we discuss consists of attacks targeting the binary LWE
part alone. Since the standalone PRG security has been discussed above, we do not dis-
cuss it here. Then we discuss the third category of attacks that consists of algebraic attacks
over Fp that utilize both the LWE samples and the PRG leakage on the error of the LWE
samples.

A.4.1 Binary LWE Security

Binary LWE has been a subject of study in quite a few number of works [MP13, ACF+15,
AG11, CTA19]. Let n denote the dimension of the secret. While the problem is prov-
ably hard, and backed by a security reduction from worst case lattice problems, when
the the number of samples m(n) = n(1 + Ω(1

log2 n
)) [MP13], the problem is easy when

m(n) ≥ Ω(n2), as shown by [AG11]. We work in the regime when the number of samples
m(n) = ns for some s ∈ (1, 2). Under this regime, there are two kinds of algorithms that
are studied.

77

Gröbner Basis Attacks: Arora-Ge algorithm [AG11] is a special case of a whole family
of algebraic algorithms that consider all degree D algebraic constraints implied by the
given equations for some large enough D so that the ideal generated by the unique so-
lution can be recovered. Depending on the constraints, the degree defines the running
time of the algorithm. The running time of these algorithm typically roughly grows like
nO(D). In [CTA19], it was proven that Gröbner basis algorithm require 2O(nε) time to run
assuming that the number of samples are given by m(n) = n2−ε for some ε > 0. We will
discuss this aspect again when we talk about the third category of attacks.

Lattice Attacks: The only attacks based on lattice reduction techniques that we are aware
of apply to LWE more generally, and not just to binary-error LWE. The most relevant at-
tack reduces the LWE instance to a BDD problem and then use the BKZ algorithm [Sch94]
to solve it (see, e.g., [Ste] for details). With our setting of parameters, the time complexity
of this attack would be Ω(2n

0.5+ε−ρ
). Because ρ < 0.5, this yields at best a subexponential

attack.

A.4.2 Algebraic Attacks on the Combined Assumption

A natural approach to combine the information from both the PRG and LWE samples can
be to form all equations that one can and then compute the Gröbner basis of the system
generated by the equations. Recall a typical instance of our assumption contains:

• LWE samples {ai, bi = 〈ai, s〉 + ei mod p} for i ∈ [n]. Here, s has dimension n0.5+ε

for some ε > 0.

• Degree-d PRG evaluations: y = G(e1, . . . , en) = (Gn,1(e), . . . ,Gn,m(n)(e)) wherem(n) =

nd
d
2
e·(0.5+ε)+ρ.

This means, that one can form the following equations.

(bi − 〈ai, s〉)2 = (bi − 〈ai, s〉) ∀i ∈ [n],

yi = Gn,i(b1 − 〈a1, s〉, . . . , bn − 〈an, s〉) ∀i ∈ [m].

Here, the first equation is result of booleanity of the errors ei. We now consider an ex-
ample of this case when d = 3, and G is the Goldreich PRG instantiated with the TSPA

predicate. We set ε = 0.1, ρ = 0.04 and m = n1.24 = nd
3
2
e·(0.5+ε)+ρ. This enforces the di-

mension to be n0.6 = n0.5+ε. Thus we have ` = m + n equations. m of them are degree 3
equations and n of them are degree 2. Let us denote these equations as {qi(s) = 0}i∈[`]. A
quick and dirty way to approximately gauge the performance of Gröbner basis algorithm
is to fix a degree D, and then collect all equations of the form:

h(s) · qi(s) = 0,

78

for all monomials h of degree upto D − deg(qi). Finally, if degree D is large enough,
and there exists a unique solution, there will exist a D at which point, we can perform
gaussian elimination in n0.6·O(D) variables (variables corresponding to all monomials of
degree less than or equal to D generated by s) to recover the secret s.

For this strategy to succeed we want that the number of monomials of degree less than
or equal to D in s to be lesser than the number of equations formed. This happens when:

n ·
(
n0.6 +D − 2

D − 2

)
+ n1.24 ·

(
n0.6 +D − 3

D − 3

)
≥
(
n0.6 +D

D

)
.

Which means that D ≥ n0.1. We can also do a similar analysis for a general degree d,
which will require:

n ·
(
n0.5+ε +D − 2

D − 2

)
+m(n) ·

(
n0.5+ε +D − d

D − d

)
≥
(
n0.5+ε +D

D

)
.

Here, m = nd
d
2
e·(0.5+ε)+ρ. This requires D ≥ O(min(nε, n

1
d
·(b d

2
c−ρ))). In fact, the above

approach is really simplified and ignores many subtle issue but gives a lower bound on
the actual degree D that should be considered. For a brief discussion about this, please
refer [CTA19]. We will use this calculation to denote running times for various predicates
under the column GB in Table 1.

A.5 Summary: Our Assumptions

We start with a table of comparison of our three instantiations where we list four kinds
of attacks. SoS represent the sum-of-squares attacks applicable only to the PRG part of
the instance. BKZ represent the running time obtained by using BKZ algorithm only the
binary LWE part of the instance. GB represent an approximation of the running time of the
algebraic attacks over Fp on the combined assumption discussed in the previous section.
Finally in the last column we compute the running time for attacks on the PRG predicates
using Propositions 5, 7 and 8 in [CDM+18]. We make the following assumption:

Assumption A.1 (TSPA-LWEleak Assumption). The Goldreich pseudorandom generator con-
struction instantiated with the TSPA predicate satisfies TSPA-LWEleak3,ε,ρ security for some con-
stants ε > 0 and ρ > 0.

Similarly, we make the following assumptions:

Assumption A.2 (XORMAJ`,`-LWEleak Assumption). The Goldreich pseudorandom genera-
tor construction instantiated with the XORMAJ`,` predicate for an odd integer ` ≥ 3 satisfies
XORMAJ-LWEleak2·`,ε,ρ security for some constants ε > 0 and ρ > 0.

Assumption A.3 (PMAJk-LWEleak Assumption). The Goldreich pseudorandom generator con-
struction instantiated with the PMAJk predicate for an odd integer k ≥ 3 satisfies PMAJk-LWEleakk+1,ε,ρ

security for some constants ε > 0 and ρ > 0.

79

P d m1 m2 SoS BKZ GB CDMRR

TSPA 3 n1.45 n1+c n0.10 n0.71 n0.22 n0.4

XORMAJ5,5 10 n2.95 n2.5+c n0.025 n0.582 n0.082 n0.5125

PMAJ5 6 n2.95 n1.5+c n0.025 n0.97 n0.48 n0.51

Table 1: Running time for various known inversion attacks. Above P is a predicate of
degree d. m1 denotes the considered stretch, m2 is the minimum stretch required in order
to construct obfuscation via our assumption. c > 0 is arbitrary constant. SoS denotes the
attacks known via the Sum-of-Squares paradigm. BKZ denotes the running time of the
attacks via the BKZ lattice reduction algorithm. GB denotes the algebraic attacks on the
combined assumption based on the Gröbner Basis algorithm. The last column denotes
the running time from the subexponential time algorithm in [CDM+18] (Propositions 5,7
and 8). The cells represent Õ(log2(·)) of the running times where we hide logarithmic
factors. The value of ρ is chosen to be 0.01, and so the modulus is p = O(2n

0.01
). We set ε

so that, m1 = nd
d
2
e·(0.5+ε)+ρ.

B Lattice Preliminaries

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose
linear span is Rm. The basis of Λ is a linearly independent set of vectors whose integer
linear combinations are exactly Λ. Every integer lattice is generated as the Z-linear com-
bination of linearly independent vectors B = {b1, ..., bm} ⊂ Zm. For a matrix A ∈ Zd×m

p ,
we define the “p-ary” integer lattices:

Λ⊥p = {e ∈ Zm|Ae = 0 mod p}, Λu
p = {e ∈ Zm|Ae = u mod q}

It is obvious that Λu
p is a coset of Λ⊥p .

Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter
σ ∈ R, let ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c
and parameter σ. Next, we let ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over

Λ, and let DΛ,σ,c(y) := ρσ,c(y)

ρσ,c(Λ)
. We abbreviate this as DΛ,σ when c = 0. We note that DZm,σ

is
√
mσ-bounded.

Let Sm denote the set of vectors in Rm whose length is 1. The norm of a matrix R ∈
Rm×m is defined to be supx∈Sm||Rx||. The LWE problem was introduced by Regev [Reg05],
who showed that solving it on average is as hard as (quantumly) solving several standard
lattice problems in the worst case.

Definition B.1 (LWE Assumption). For an integer p = p(d) ≥ 2, and an error distribution
χ = χ(d) over Zp, the Learning With Errors assumption LWEd,m,p,χ holds if it is hard to
distinguish between the following pairs of distributions:

{A, sTA + xT} and {A,uT}

80

where A←Zd×m
q , s←Zd

p, u←Zmp , and x← χm.

Gadget matrix. The gadget matrix described below is proposed in [MP12].

Definition B.2. Let m = d · dlog pe, and define the gadget matrix G = g ⊗ Id ∈ Zd×m
p , where

the vector g = (1, 2, 4, ..., 2blog pc) ∈ Zdlog pe
p . We will also refer to this gadget matrix as “powers-

of-two” matrix. We define the inverse function G−1 : Zd×m
p → {0, 1}m×m which expands each

entry a ∈ Zp of the input matrix into a column of size dlog pe consisting of the bits of binary
representations. We have the property that for any matrix A ∈ Zd×m

p , it holds that G ·G−1(A) =
A.

81

	Introduction
	Our Results

	Technical Overview
	Overview of Our FE Construction
	Instantiating Our Assumption
	Single Ciphertext Functional Encryption with Linear Key Generation
	Overview: Our (arith-NC1, deg-2) Partially Hiding Functional Encryption

	Preliminaries
	Functional Encryption Definitions
	Security Definition
	Efficiency Features
	Structural Properties

	-simulation Secure FE to Fully Secure FE
	Homomorphic Secret Sharing
	Transformation

	Definition of Structured-Seed PRG
	Construction of sPRG and Our New Assumption

	Single Ciphertext Functional Encryption with Linear KeyGen from LWE
	GVW Preliminaries
	Setting Parameters
	Construction of -1LGFE
	Single-Ciphertext -simulation security

	Our (arith-NC1,deg2)-PHFE from Pairings
	Ingredients: Inner-Product FE
	Modular Construction of the Partially-Hiding FE
	Constructing Inner-Product FE

	Construction of -Simulation Secure FE
	Summing Up: Construction of iO
	Acknowledgements
	References
	Cryptanalysis of Our Assumption
	A Survey of the PRG Candidates
	The XORMAJ, Predicate
	Low-Degree High-Locality Predicates
	Justifying Security of the Combined Assumptions
	Binary LWE Security
	Algebraic Attacks on the Combined Assumption

	Summary: Our Assumptions

	Lattice Preliminaries

