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Abstract. Chameleon-hash functions, introduced by Krawczyk and Rabin (NDSS’00), are
trapdoor collision-resistant hash-functions parametrized by a public key. If the correspond-
ing secret key is known, arbitrary collisions for the hash-function can be found efficiently.
Chameleon-hash functions have prominent applications in the design of cryptographic prim-
itives, such as lifting non-adaptively secure signatures to adaptively secure ones. Recently,
this primitive also received a lot of attention as a building block in more complex crypto-
graphic applications, ranging from editable blockchains to advanced signature and encryp-
tion schemes.
We observe that, in latter applications, various different notions of collision-resistance are
used, and it is not always clear if the respective notion really covers what seems intuitively
required by the application. Therefore, we revisit existing collision-resistance notions in the
literature, study their relations, and by means of selected applications discuss which prac-
tical impact different notions of collision-resistance might have. Moreover, we provide a
stronger, and arguably more desirable, notion of collision-resistance than what is known
from the literature (which we call full collision-resistance). Finally, we present a surpris-
ingly simple, and efficient, black-box construction of chameleon-hash functions achieving
this strong notion of full collision-resistance.

1 Introduction

A chameleon-hash function (CH) is a trapdoor collision-resistant hash function parametrized by
a public key. If the corresponding secret key is known, arbitrary collisions for the hash func-
tion, i.e., distinct messages m ̸= m′ yielding the same hash value h, can be efficiently found.
Over the years, they have proven to be a very useful tool in theory, as well as in practice. Exem-
plary, CHs have been suggested by Shamir and Tauman [ST01] to construct online/offline signa-
tures [EGM89, EGM96, CZSM07] (cf. also Sect. 6). Moreover, Shamir and Tauman in [ST01]
showed that CHs can be used to generically lift non-adaptively secure signature schemes to adap-
tively secure ones, which has subsequently been used for instance by Hohenberger and Wa-
ters [HW09] to obtain short signatures under the RSA assumption in the standard model. If CHs
are tightly secure, they can be used to generically construct tightly secure signatures [BKKP15].
Likewise, CHs are used to generically construct strong one-time signatures as shown by Mo-
hassel [Moh10], inspired by a concrete construction by Groth [Gro06]. Zhang [Zha07] shows
how to construct IND-CCA secure public-key encryption from tag-based encryption (TBE) or
identity-based encryption (IBE) and CHs. Bellare and Ristov [BR08, BR14] made the interest-
ing discovery that chameleon-hashes in the sense of Krawczyk and Rabin [KR00] are equivalent
to Σ-protocols, i.e., three round public-coin honest-verifier zero-knowledge proofs of knowl-
edge. CHs are also used to construct sanitizable signatures [ACdMT05, BFF+09, CDK+17], i.e.,
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signatures where a designated entity can modify certain parts of a signed message without inval-
idating the respective signature under controlled conditions. Furthermore, CHs have been used
by Steinfeld et al. [SWP04] to extend Schnorr and RSA signatures to the universal designated-
verifier setting [SBWP03]. Also, different flavors of chameleon-hashing such as (hierarchical)
identity-based [AdM04a, BDD+11] or policy-based chameleon-hash functions [DSSS19, SS20]
have been studied.

In a more applied setting, CHs have shown to be valuable to construct integrity measure-
ment and remote attestation mechanisms (denoted chameleon attestation) [ADK10], and are
used in vehicular ad-hoc networks (VANETs) [GZX14] or handover authentication in mobile
networks [CJ10]. More recently, CHs have been used as a means to rewrite blocks in blockchains
by replacing the hash function to chain blocks and/or to hash transactions by chameleon-hashes
[AMVA17, DSSS19], to which we come back in Sect. 6. This brief discussion already shows
that chameleon-hashes are used in a wide spectrum of different applications requiring different
strength of the respective chameleon-hash. Consequently, authors often introduce some ad-hoc
notion of collision-resistance for their applications, or even ignore that applications might re-
quire a stronger notion. Subsequently, we briefly discuss the different notions which are most
commonly found in the literature.

Formalizing Chameleon-Hashes. The concept of chameleon-hashing dates back to the notion of
trapdoor commitments introduced by Brassard et al. [BCC88], and was firstly coined chameleon-
hashing by Krawczyk and Rabin [KR00] with an instantiation based on the well-known trapdoor-
commitment scheme by Pedersen [Ped91]. Later, Ateniese and de Medeiros [AdM04b] observed
that the initial collision-resistance notion (which we denote W-CollRes) is rather weak (it does
not give the adversary access to any collisions), and, more importantly, it is also satisfied by
chameleon-hashes suffering from the key-exposure problem. Namely, when seeing a single colli-
sion for some hash h, it allows to publicly extract the secret trapdoor. Thus, any further guarantees
are lost. While this is a desirable property for the initial use in chameleon signatures [KR00], and
is also sufficient for the lifting compiler to adaptively-secure signatures [ST01] (as no collision is
ever revealed), it is too weak for many other applications. The key-exposure freeness definition by
Ateniese and de Medeiros [AdM04b] is for the specific case of public-coin chameleon-hashing
(where verifying the chameleon-hash is essentially re-computing it). To address this, Ateniese
et al. [AMVA17] introduced a related notion called enhanced collision-resistance (which we de-
note E-CollRes) for the generalized case of secret-coin chameleon-hashing (which is the setting
that we also consider). The latter notion allows the adversary to see collisions, but it is not al-
lowed to see any collision for the target hash, i.e., the hash corresponding to the collision it
computes. Hence, once a single collision for a hash h is seen, an adversary can potentially find
arbitrary collisions for that particular hash h. Recently, Khalili et al. [KDS20] have pointed out
issues regarding the practicality of the concrete random-oracle model instantiation4, proposed
by Ateniese et al. in [AMVA17], and propose alternative constructions in the standard model.
In another work, Camenisch et al. [CDK+17] proposed an alternative collision-resistance notion
which allows the adversary to see arbitrary collisions also for the target hash, but not for the
target message, i.e., the message used in the collision output by the adversary has never been
queried. In other words, once a collision for a message m is seen, an adversary is allowed to find
arbitrary other hashes h′ with the queried messages. Arguably, this notion seems more realistic as
it is better compatible with practical applications (e.g., one can often make the messages unique
by appending a tag/nonce), and thus we denote it as standard collision-resistance (or S-CollRes).

Motivation and Contribution. The previous discussion already illustrates that there are many
different collision-resistance notions. While this does not necessarily point to an issue, we ob-
serve that it is not always clear whether the respective notion does really cover what is required by

4 The requirement for an invertible encoding into the group introduces an enormous efficiency penalty, and
thus their instantiation is incomplete. Moreover, it was only recently shown that the proposed chameleon-
hash fulfills our stronger definition [Cin20].



the respective application. Moreover, it is not clear if the last notion discussed above (S-CollRes)
is already the most desirable notion, or, if even stronger notions are achievable, and do have
practical relevance. Motivated by these observations, we provide the following contributions:

Relations among Properties. We discuss the different security notions of chameleon-hashes, and
rigorously study relations among them. Most importantly, we, for the first time, clarify the picture
of existing collision-resistance notions by showing implications, and separations, (cf. Fig. 1 for
an overview). In the course of showing separations, we also provide a construction of a cham-
eleon-hash satisfying the E-CollRes notion, but which clearly demonstrates weaknesses of this
notion.

F-CollRes S-CollRes W-CollRes

E-CollRes

+

\ \

\\ \

Fig. 1. Relations between CH collision-resistance properties

Stronger Notion. We find that the strongest existing collision-resistance notions, i.e., E-CollRes
and S-CollRes (which are incomparable), might still be too weak for practical applications, see,
e.g., Sect. 6. In particular, even if S-CollRes is satisfied, the hash values might still be malleable
leaving space for potential real-world attacks. Consequently, we propose a stronger notion coined
full collision-resistance (or F-CollRes for short), which enforces that the adversary cannot (except
with negligible probability) output any new collisions and covers what one intuitively expects
from collision-resistance.

Black-Box Construction. We present a simple, yet elegant, black-box construction of a chame-
leon-hash function satisfying this strong F-CollRes notion. Considering the complexity of exist-
ing constructions in [AMVA17, KDS20], this is somewhat surprising. To recall, the construc-
tion from Ateniese et al. [AMVA17] starts from a public-coin chameleon-hash function that
satisfies W-CollRes, uses an IND-CPA-secure encryption-scheme to encrypt the randomness
of the chameleon-hash and then uses a true-simulation extractable (tSE) NIZK [DHLW10]5,
which is, in turn, based on a NIZK and an IND-CCA secure public-key encryption scheme,
to prove that the ciphertext is an encryption of the randomness. The constructions by Khalili
et al. [KDS20], which avoid the aforementioned issues with [AMVA17], are based on another
new public-coin chameleon-hash function that satisfies W-CollRes and then either uses Groth-
Sahai NIZK proofs [GS08] and the IND-CCA secure Cramer-Shoup encryption scheme [CS98]
or a succinct non-interactive argument of knowledge (SNARK). Both constructions by Khalili
et al. [KDS20] basically follow the generic template in [AMVA17]. In contrast, our black-
box construction of a F-CollRes chameleon-hash is constructed from perfectly correct (multi-
challenge) IND-CPA secure encryption, e.g., ElGamal encryption, and a simulation-sound ex-
tractable non-interactive zero-knowledge proof (SSE-NIZK), e.g., applying the compiler of Faust
et al. [FKMV12] to a Fiat-Shamir transformed Σ-protocol. The basic idea is that the chameleon-
hash is the encryption c of the message m and the randomness of the chameleon-hash is a NIZK
proof s.t. either c correctly encrypts m under the pk of CH or one knows the secret key sk

5 In true-simulation extractability the simulator can only be used for statements inside the language.



corresponding to pk. Interestingly, already a perfectly-binding commitment (without any hid-
ing) is sufficient to achieve the F-CollRes notion, but instead a multi-challenge IND-CPA secure
encryption scheme as a perfectly-binding commitment is used to additionally achieve the indis-
tinguishability property of the CH, i.e., that fresh and adapted hashes are indistinguishable, a
notion that is considered standard for chameleon-hashes.

Applications. We discuss how our stronger notion allows to strengthen the security of existing ap-
plications. In particular, in Sect. 6 we discuss what problems may be caused by different notions
of collision-resistance within recent applications to redactable blockchains [AMVA17, DSSS19].
Here, either the hash function to chain blocks in a blockchain or the hash functions to aggre-
gate transactions within single blocks (usually by means of a Merkle-tree) are replaced by a
chameleon-hash function. Moreover, we take a second look at online/offline signatures and dis-
cuss how chameleon-hashes providing a stronger collision-resistance notion than the W-CollRes
notion used by Shamir and Tauman in [ST01] allows to re-use offline signatures and add more
robustness at the cost of a more expensive offline phase and a slightly more costly online phase.

Differences to the Conference Version. Compared to the conference version published at IACR
PKC 2020 [DSS20], this version in Sect. 3.3 includes a more complete treatment of indistin-
guishability and in particular stronger indistinguishability notions and their relations. Moreover,
in Sect. 4.1 it includes examples of existing chameleon-hashes providing the W-CollRes and
S-CollRes notions, and, in Sect. 4.2 the full proofs of our construction providing E-CollRes.
Finally, in Sect. 6.2 as an additional application we discuss the use of chameleon-hashes with
stronger collision-resistance notions in online/offline signatures.

Follow-up Work. Derler et al. in SCN’20 [DKSS20] show how to remove the requirement
to rely on public-key encryption from the approach presented in this paper. In particular, they
show how to construct fully collision-resistant chameleon-hashes based on SSE NIZKs and non-
interactive commitment schemes. They then present an instantiation from the discrete logarithm
(DL) problem and a concrete construction from the learning parity with noise (LPN) problem.
Latter yields the first chameleon-hash from post-quantum assumptions that provides a collision-
resistance notion stronger than W-CollRes (as, e.g., the lattice-based chameleon-hash by Cash et
al. from EC’10 [CHKP10]). In PKC’24, Li and Liu [LL23] introduce a lattice-based F-CollRes
chameleon-hash without resorting to random oracles or NIZK proofs by relying on the new no-
tion of tagged chameleon hashes. Very recently, Bellare, Riepel and Shea [BRS24] initiated the
formal study of backdoored hash functions, which are closely related to chameleon-hashes, and
introduce a notion of F-CollRes for such hash functions.

2 Preliminaries

Notation. With λ ∈ N we denote our security parameter. All algorithms implicitly take 1λ

as an additional input. We write a ←$ A(x) if the output of a probabilistic algorithm A with
input x is assigned to a and use a ← A(x) if A is deterministic. An algorithm is efficient,
if it runs in probabilistic polynomial time (PPT) in the length of its input. All algorithms are
PPT, if not explicitly mentioned otherwise. If we want to make the random coins used by an
algorithm A explicit, we use the notation a ←$ A(x; ξ). We write (a; ξ) ←$ A(x), if we need
to access the random coins ξ internally drawn by A. Most algorithms may return a special error
symbol ⊥ /∈ {0, 1}∗, denoting an exception. Returning output ends execution of an algorithm or
an oracle. To make the presentation in the security proofs more compact, we occasionally use
(a,⊥)←$ A(x) to indicate that the second output is either ignored or not returned by A. If S is
a finite set, we write a←$ S to denote that a is chosen uniformly at random from S.M denotes
a message space of a scheme, and we generally assume thatM is derivable from the scheme’s
public parameters or its public key. For a list we require that there is an injective, and efficiently
reversible, encoding, that maps the list to {0, 1}∗. A function ν : N → R≥0 is negligible, if it



vanishes faster than every inverse polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k,
∀n > n0.

2.1 Building Blocks

We now present the building blocks we require. These include key-verifiable multi-challenge
IND-CPA (mcIND-CPA) secure public-key encryption schemes Ω, digital signature schemes Σ,
and non-interactive zero-knowledge proofs Π.

Public-Key Encryption Schemes. Subsequently, we define public-key encryption schemes.

Definition 1 (Public-Key Encryption Scheme). A public-key encryption scheme Ω consists of
five algorithms {PGΩ,KGΩ,Enc,Dec,KVfΩ}, such that:

PGΩ. The algorithm PGΩ outputs the public parameters of the scheme:

ppΩ ←$ PGΩ(1
λ).

It is assumed that ppΩ is an implicit input to all other algorithms.
KGΩ. The algorithm KGΩ outputs the key pair, on input ppΩ:

(skΩ, pkΩ)←$ KGΩ(ppΩ).

Enc. The algorithm Enc gets as input the public key pkΩ, and a message m ∈ M to encrypt. It
outputs a ciphertext c:

c←$ Enc(pkΩ,m).

Dec. The deterministic algorithm Dec outputs a message m ∈ M ∪ {⊥} on input skΩ, and a
ciphertext c:

m← Dec(skΩ, c).

KVfΩ. The deterministic algorithm KVfΩ decides whether a given public key pkΩ corresponds
to a given secret key skΩ:

d← KVfΩ(pkΩ, skΩ).

Expmc-IND-CPA
A,Ω (λ):

ppΩ ←$ PGΩ(1
λ)

(skΩ, pkΩ)←$ KGΩ(ppΩ)
b←$ {0, 1}
a←$ AEnc′(pkΩ,·,·,b)(pkΩ)

where Enc′ on input pkΩ,m0,m1, b:
If m0 /∈M∨m1 /∈M∨ |m0| ≠ |m1|:
c← ⊥

Else:
c←$ Enc(pkΩ,mb)

return c
return 1, if a = b
return 0

Fig. 2. Multi-Challenge IND-CPA Security



Definition 2 (Correctness). A public key encryption scheme Ω is called correct, if for all se-
curity parameters λ ∈ N, for all ppΩ ←$ PGΩ(1

λ), for all (skΩ, pkΩ) ←$ KGΩ(ppΩ), for all
m ∈M, for all c←$ Enc(pkΩ,m), we have that m = Dec(skΩ, c) and that for all skΩ

′ we have
that KVfΩ(pkΩ, skΩ

′) = 1 =⇒ m = Dec(skΩ
′, c).

Definition 3 (Multi-Challenge IND-CPA Security). A public-key encryption scheme Ω is multi-
challenge IND-CPA secure (mcIND-CPA), if for any PPT adversary A there exists a negligible
function ν such that: ∣∣∣Pr [ExpmcIND-CPA

A,Ω (λ) = 1
]
− 1/2

∣∣∣ ≤ ν(λ).

The corresponding experiment is depicted in Fig. 2.

Bellare et al. have shown, via a hybrid argument, that mcIND-CPA is equivalent to standard,
i.e., “single-message”, IND-CPA [BBM00]. We opted for using mcIND-CPA, because it allows
writing our proofs down more compactly, improving readability.

Digital Signature Schemes. Subsequently, we define signature schemes.

Definition 4 (Digital Signatures). A digital signature scheme Σ consists of four algorithms
{PGΣ,KGΣ,SgnΣ,VrfΣ} such that:

PGΣ. The algorithm PGΣ outputs the public parameters

ppΣ ←$ PGΣ(1
λ).

We assume that ppΣ is implicit input to all other algorithms.
KGΣ. The algorithm KGΣ outputs the public and private key of the signer, where λ is the security

parameter:
(skΣ, pkΣ)←$ KGΣ(ppΣ).

SgnΣ. The algorithm SgnΣ gets as input the secret key skΣ and the message m ∈ M to sign. It
outputs a signature:

σ ←$ SgnΣ(skΣ,m).

VrfΣ. The deterministic algorithm VrfΣ outputs a decision bit d ∈ {0, 1}, indicating if the sig-
nature σ is valid, w.r.t. pkΣ and m:

d← VrfΣ(pkΣ,m, σ).

Definition 5 (Correctness). A digital signature scheme Σ is called correct, if for all security
parameters λ ∈ N, for all ppΣ ←$ PGΣ(1

λ), for all (skΣ, pkΣ)←$ KGΣ(ppΣ), for all m ∈M,
VrfΣ(pkΣ,m,SgnΣ(skΣ,m)) = 1 is true.

We require existential unforgeability under adaptively chosen message attacks (eUNF-CMA se-
curity). In a nutshell, unforgeability requires that an adversary A cannot (except with negligible
probability) come up with a signature for a message m∗ for which the adversary did not see
any signature before, even if the adversary A is allowed to adaptively query for signatures on
messages of its own choice.

Definition 6 (Unforgeability). We say a digital signature scheme Σ scheme is unforgeable, if
for every PPT adversary A, there exists a negligible function ν such that:

Pr
[
ExpeUNF-CMA

A,Σ (λ) = 1
]
≤ ν(λ).

The corresponding experiment is depicted in Fig. 3.

For Const. 3, we require that the size of signatures is independent of the size of the signed
messages.



ExpeUNF-CMA
A,Σ (λ)

ppΣ ←$ PGΣ(1
λ)

(skΣ, pkΣ)←$ KGΣ(ppΣ)
Q ← ∅
(m∗, σ∗)←$ ASgn′Σ(skΣ,·)(pkΣ)

where Sgn′Σ on input skΣ and m:
σ ←$ SgnΣ(skΣ,m)
setQ ← Q∪ {m}
return σ

return 1, if VrfΣ(pkΣ,m
∗, σ∗) = 1 ∧ m∗ /∈ Q

return 0

Fig. 3. Unforgeability

Non-Interactive Proof Systems. Let L be an NP-language with associated witness relation R,
i.e., such that L = {x | ∃w : R(x,w) = 1}. A non-interactive proof system allows to prove
membership of some statement x in the language L. More formally, such a system is defined as
follows.

Definition 7 (Non-Interactive Proof System). A non-interactive proof system Π for language
L consists of three algorithms {PGΠ,PrfΠ,VfyΠ}, such that:

PGΠ. The algorithm PGΠ outputs public parameters of the scheme, where λ is the security pa-
rameter:

crsΠ ←$ PGΠ(1
λ).

PrfΠ. The algorithm PrfΠ outputs the proof π, on input of the CRS crsΠ, statement x to be
proven, and the corresponding witness w:

π ←$ PrfΠ(crsΠ, x, w).

VfyΠ. The deterministic algorithm VfyΠ verifies the proof π by outputting a bit d ∈ {0, 1}, w.r.t.
to some CRS crsΠ and some statement x:

d← VfyΠ(crsΠ, x, π).

Definition 8 (Correctness). A non-interactive proof system is called correct, if for all λ ∈ N, for
all crsΠ ←$ PGΠ(1

λ), for all x ∈ L, for all w such that R(x,w) = 1, for all π ←$ PrfΠ(crsΠ, x,
w), it holds that VfyΠ(crsΠ, x, π) = 1.

In the context of (zero-knowledge) proof-systems, correctness is sometimes also referred to as
completeness. In addition, we require two standard security notions for zero-knowledge proofs
of knowledge: zero-knowledge and simulation-sound extractability. We define them analogously
to the definitions given in [DS19].

Informally speaking, zero-knowledge says that the receiver of the proof π does not learn
anything except the validity of the statement.

Definition 9 (Zero-Knowledge). A non-interactive proof system Π for language L is zero-know-
ledge, if for any PPT adversaryA, there exists an PPT simulator SIM = (SIM1,SIM2) such that
there exist negligible functions ν1 and ν2 such that∣∣∣∣Pr [crsΠ ←$ PGΠ(1

λ) : A(crsΠ) = 1]−

Pr
[
(crsΠ, τ)←$ SIM1(1

λ) : A(crsΠ) = 1
]∣∣∣∣ ≤ ν1(λ),



ExpZero-Knowledge
A,Π,SIM (λ)

(crsΠ, τ)←$ SIM1(1
λ)

b←$ {0, 1}
b∗ ←$ APb(·,·)(crsΠ)

where P0 on input x, w:
return π ←$ PrfΠ(crsΠ, x, w), if R(x,w) = 1
return ⊥

and P1 on input x, w:
return π ←$ SIM2(crsΠ, τ, x), if R(x,w) = 1
return ⊥

return 1, if b∗ = b
return 0

Fig. 4. Zero-Knowledge

and that ∣∣∣Pr [ExpZero-Knowledge
A,Π,SIM (λ) = 1

]
− 1/2

∣∣∣ ≤ ν2(λ),

where the corresponding experiment is depicted in Fig. 4.

Simulation-sound extractability says that every adversary who is able to come up with a proof π∗

for a statement must know the witness, even when seeing simulated proofs for adaptively chosen
statements potentially not in L. Clearly, this implies that the proofs output by a simulation-
sound extractable proof-systems are non-malleable. Note that the definition of simulation-sound

ExpSimSoundExt
A,Π,E (λ)

(crsΠ, τ, ζ)←$ E1(1λ)
Q ← ∅
(x∗, π∗)←$ ASIM(·)(crsΠ)

where SIM on input x:
obtain π ←$ SIM2(crsΠ, τ, x)
Q ← Q∪ {(x, π)}
return π

w∗ ←$ E2(crsΠ, ζ, x∗, π∗)
return 1, if VfyΠ(x

∗, π∗) = 1 ∧ R(x∗, w∗) = 0 ∧ (x∗, π∗) /∈ Q
return 0

Fig. 5. Simulation Sound Extractability

extractability of [Gro06] is stronger than ours in the sense that the adversary also gets the trapdoor
ζ as input. However, in our context this weaker notion (previously also used, e.g., in [ADK+13,
DHLW10]) suffices.

Definition 10 (Simulation-Sound Extractability). A zero-knowledge non-interactive proof sys-
tem Π for language L is said to be simulation-sound extractable, if for any PPT adversary A,



there exists a PPT extractor E = (E1, E2), such that∣∣∣∣Pr [(crsΠ, τ)←$ SIM1(1
λ) : A(crsΠ, τ) = 1]−

Pr
[
(crsΠ, τ, ζ)←$ E1(1λ) : A(crsΠ, τ) = 1

]∣∣∣∣ = 0,

and that there exist a negligible function ν so that

Pr
[
ExpSimSoundExt

A,Π,E (λ)
]
= 1 ≤ ν(λ),

where SIM = (SIM1,SIM2) is as in Definition 9 and the corresponding experiment is depicted
in Fig. 5.

3 Chameleon-Hashes, Revisited

In this section, we present the formal framework for chameleon-hashes, their security properties
with a special focus on the collision-resistance notion, and then show relations and separations
between the security properties.

3.1 Framework

We now present the framework for chameleon-hashes. We rely on the most recent comprehensive
framework by Camenisch et al. [CDK+17], which is, in turn, based upon work done by Ateniese
et al. and Brzuska et al. [AMVA17, BFF+09].

Definition 11. A chameleon-hash CH is a tuple of five PPT algorithms (CHPG,CHKG,CHash,
CHCheck,CHAdapt), such that:

CHPG. The algorithm CHPG, on input a security parameter λ outputs public parameters of the
scheme:

ppch ←$ CHPG(1λ).

We assume that ppch is implicit input to all other algorithms.
CHKG. The algorithm CHKG, on input the public parameters ppch outputs the private and public

keys of the scheme:

(skch, pkch)←$ CHKG(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a message m to hash. It
outputs a hash h, and some randomness r:6

(h, r)←$ CHash(pkch,m).

CHCheck. The deterministic algorithm CHCheck gets as input the public key pkch, a message
m, randomness r, and a hash h. It outputs a bit d ∈ {0, 1}, indicating whether the hash h is
valid:

d← CHCheck(pkch,m, r, h).

CHAdapt. The algorithm CHAdapt on input of a secret key skch, the message m, new message
m′, randomness r, and hash h outputs new randomness r′:

r′ ←$ CHAdapt(skch,m,m′, r, h).

Definition 12 (Correctness). A chameleon-hash is called correct, if for all security parameters
λ ∈ N, for all ppch ←$ CHPG(1λ), for all (skch, pkch)←$ CHKG(ppch), for all m ∈M, for all
(h, r)←$ CHash(pkch,m), for all m′ ∈M, we have for all r′ ←$ CHAdapt(skch,m,m′, r, h),
that 1 = CHCheck(pkch,m, r, h) = CHCheck(pkch,m

′, r′, h).
6 We note that the randomness r is also sometimes called “check value” [AMVA17].



ExpW-CollRes
A,CH (λ)

ppch ←$ CHPG(1λ)
(skch, pkch)←$ CHKG(ppch)

(m∗, r∗,m′∗, r′∗, h∗)←$ A(pkch)

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ ̸= m′∗

return 0

ExpE-CollRes
A,CH (λ)

ppch ←$ CHPG(1λ)
(skch, pkch)←$ CHKG(ppch)

Q ← ∅

(m∗, r∗,m′∗, r′∗, h∗)←$ A
CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch,m,m′, r, h:
return ⊥, if CHCheck(pkch,m, r, h) ̸= 1
r′ ←$ CHAdapt(skch,m,m′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {h}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ ̸= m′∗ ∧ h∗ /∈ Q
return 0

ExpS-CollRes
A,CH (λ)

ppch ←$ CHPG(1λ)
(skch, pkch)←$ CHKG(ppch)

Q ← ∅

(m∗, r∗,m′∗, r′∗, h∗)←$ A
CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch,m,m′, r, h:
return ⊥, if CHCheck(pkch,m, r, h) ̸= 1
r′ ←$ CHAdapt(skch,m,m′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {m,m′}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ ̸= m′∗ ∧ m∗ /∈ Q
return 0

ExpF-CollRes
A,CH (λ)

ppch ←$ CHPG(1λ)
(skch, pkch)←$ CHKG(ppch)

Q ← ∅

(m∗, r∗,m′∗, r′∗, h∗)←$ A
CHAdapt′(skch, ·, ·, ·, ·) (pkch)

where CHAdapt′ on input skch,m,m′, r, h:
return ⊥, if CHCheck(pkch,m, r, h) ̸= 1
r′ ←$ CHAdapt(skch,m,m′, r, h)
If r′ = ⊥, return ⊥
Q ← Q∪ {(h,m), (h,m′)}

return r′

return 1, if CHCheck(pkch,m
∗, r∗, h∗) = 1 ∧

CHCheck(pkch,m
′∗, r′∗, h∗) = 1 ∧

m∗ ̸= m′∗ ∧ (h∗,m∗) /∈ Q
return 0

Fig. 6. The ExpX-CollRes
A,CH experiment with X ∈ {W,E, S,F}.

3.2 Collision-Resistance, Revisited

In this section we revisit existing collision-resistance notions, introduce a stronger and more de-
sirable notion of collision-resistance dubbed full collision-resistance (or F-CollRes for short) and
discuss how these notions differ. The main idea behind collision-resistance in general is to argue
that an adversary that has no access to the secret key skch cannot find any collisions, i.e,. pairs
(m, r) and (m′, r′) and hash value h s.t. CHCheck(pkch,m, r, h) = CHCheck(pkch,m

′, r′, h) =
1. In the weakest case, the adversary has no access to any other collisions, whereas in stronger no-
tions the adversary is explicitly allowed to obtain collisions for arbitrary hashes via a CHAdapt′

oracle (we indicate these by using boxes). We present all the different notions in Fig. 6,
where we indicate the differences in the winning conditions by using boxes. In all the
experiments the challenger generates a key pair (skch, pkch) honestly (along with some public
parameters) and the adversary is then initialized with pkch. We now discuss the differences of
the single collision resistance notions, where in the weakest case the adversary has no access to
an CHAdapt′ oracle (which allows the adversary to adaptively ask for collisions with messages
and hashes of its own choice), but in all other cases the adversary does. To vertically align the



experiments, we insert boxes for lines which are missing in one experiment but are
present in the other.

Weak Collision-Resistance (W-CollRes) [KR00]. The adversary A wins, if it can come up
with a collision for the given public key.

Enhanced Collision-Resistance (E-CollRes) [AMVA17]. The adversary gets access to a collision-
finding oracle CHAdapt′, which outputs a collision for adversarially chosen hashes, but also
keeps track of each queried hash h using the list Q. The adversary wins, if it comes up
with a collision for the given public key for an adverserially chosen hash h∗ never input to
CHAdapt′.

Standard Collision-Resistance (S-CollRes) [CDK+17]. The adversary gets access to a collision-
finding oracle CHAdapt′, which outputs a collision for the adversarially chosen hash, but
also keeps track of each of the queried messages m and m′, using the list Q. The adversary
wins, if it comes up with a collision for the given public key for an adversarially chosen h∗

for which the message m∗ output by the adversary was never queried to the collision-finding
oracle.

Full Collision-Resistance (F-CollRes). The adversary gets access to a collision-finding oracle
CHAdapt′, which outputs a collision for the adversarially chosen hash, but also keeps track
of each of the queried hash/message pair (h,m) and (h,m′), using the listQ. The adversary
wins, if it comes up with a hash/message pair (h∗,m∗), for the given public key, never
queried to or output from the collision-finding oracle.7

Now, we formally define security with respect to all the collision-resistance notions.

Definition 13 (X Collision-Resistance). A chameleon-hash CH offers X collision-resistance
with X ∈ {W,E,S,F}, if for any PPT adversary A there exists a negligible function ν such
that

Pr[ExpX-CollRes
A,CH (λ) = 1] ≤ ν(λ),

where the corresponding experiment is depicted in Fig. 6.

Discussion of the Notions. W-CollRes is the notion introduced in the first work on chameleon-
hashes by Krawczyk and Rabin [KR00] and essentially represents the binding notion of a trapdoor-
commitment scheme. Note that due to not giving access to a collision-finding oracle it gives no
guarantees whatsoever if the adversary sees a single collision for any hash computed for the
given public key.8 The E-CollRes notion has been introduced by Ateniese et al. [AMVA17]
and we note that there exists a definition in the setting of public-coin chameleon hashes, i.e.,
where the CHCheck algorithm simply re-runs the CHash, which is called key-exposure free-
ness [AdM04b, CZK04]. It captures requirements similar to the ones captured by E-CollRes,
but it is not directly comparable as we are considering the more general secret-coin setting.
We note that the E-CollRes notion allows the adversary to come up with arbitrary collisions
for hashes it has seen a collision for. The S-CollRes notion has been introduced by Camenisch
et al. [CDK+17], and it captures all of the intuitive requirements of real-world applications of
chameleon-hashes. Yet, it still allows the hash itself to be malleable which might still be prob-
lematic in certain applications. Finally, our new F-CollRes notion enforces that the adversary
cannot (except with negligible probability) output any new collisions and seems to be the most
desirable notion for collision-resistance.

7 In the case (h′∗,m′∗) is the new hash/message pair, simply switch names.
8 A slightly stronger notion has been proposed by Zhang in [Zha07] where the adversary sees a hash on

a random message and is then given a single collision on a message of its choice. We do not cover this
notion here as it seems to be tailored to the specific applications in [Zha07] and all notions stronger than
W-CollRes considered here cover more general cases.



3.3 Indistinguishability, Revisited

In a nutshell, indistinguishability requires that an adversary cannot decide whether randomness
was obtained through CHash or CHAdapt.

We present the respective formal security games in Fig. 7. We highlight differences by using
boxes, and missing parts using boxes.

(Normal) Indistinguishability (N-Ind). Normal Indistinguishability (we sometimes refer to this
notion simply as “Indistinguishability”, as this is the standard name in the literature) requires that
the randomness r does not reveal if it was obtained through CHash or CHAdapt.

Upon setup, the challenger generates a key pair (skch, pkch) for CH (along with some public
parameters ppch), and draws a bit b ←$ {0, 1}. The challenger initializes the adversary with
the pkch and gives the adversary access to a HashOrAdapt oracle, which allows the adversary to
submit two messages m, m′. Depending on the bit b, the challenger then either hashes m′ directly
(b = 0), or first hashes m, and then adapts m to m′ (b = 1). The resulting hash/randomness pair
(h, r) (or (h′, r′′) resp.) is the oracle’s output to the adversary. The adversary’s objective is to
guess the bit b. Note that all keys are generated honestly. The adversary gets access to a collision-
finding oracle CHAdapt for arbitrary hashes, meaning that the adversary may also input hashes
generated by the HashOrAdapt-oracle.

Samelin and Slamanig recently introduced full indistinguishability [SS20], which, in turn,
generalizes the notion of strong indistinguishability by Derler et al. [DSSS19]. In their notion,
the adversary is even allowed to generate the keys which are used for hashing and adapting (in the
strong version, the adversary only knows all keys, but cannot generate them). See below for more
information. Finally, we introduce an additional notion, dubbed enhanced indistinguishability,
where the adversary not only receives the secret key generated, but the randomness r used for
generation. This notion may be useful in context where randomness leaks to the adversary.

Strong Indistinguishability (S-Ind). Strong indistinguishability requires that a randomness r
does not reveal whether it was generated using CHash or CHAdapt, even if the adversary A
additionally receives the generated secret key. This also means that the collision-finding oracle
can be dropped, as the adversary can find collisions on its own.

Enhanced Indistinguishability (E-Ind). Enhanced indistinguishability requires that a random-
ness r does not reveal whether it was generated using CHash or CHAdapt, even if the adversary
A knows the randomness ξ used to generate the secret key. Again, this also means that the
collision-finding oracle can be dropped, as the adversary can find collisions on its own.

Full Indistinguishability (F-Ind). Full indistinguishability requires that a randomness r does not
reveal whether it was generated using CHash or CHAdapt, even if the adversary A controls all
values, but the public parameters.9 Once more, this also means that the collision-finding oracle
can be dropped, as the adversary can find collisions on its own.

Definition 14 (X Indistinguishability). A chameleon-hash CH offers X indistinguishability with
X ∈ {N,S,E,F}, if for any PPT adversary A there exists a negligible function ν such that∣∣∣Pr[ExpX-Ind

A,CH(λ) = 1]− 1/2
∣∣∣ ≤ ν(λ).

The corresponding experiments are depicted in Fig. 7.

We only consider normal indistinguishability as fundamental for chameleon-hashes, but ex-
amine stronger notions to achieve a more complete picture of the relations. We also stress that
there may be scenarios where some sort of indistinguishability is not required or even hindering.

9 Lifting this definition to also cover those parameters is straightforward.



ExpN-Ind
A,CH(λ)

ppch ←$ CHPG(1λ)
(skch, pkch)←$ CHKG(ppch)
b←$ {0, 1}
a←$ AHashOrAdapt(skch,·,·,b),CHAdapt(skch,·,·,·,·)(pkch)

where HashOrAdapt on input skch,m,m′, b:
(h, r)← CHash(pkch,m

′)
(h′, r′)← CHash(pkch,m)
r′′ ← CHAdapt(skch,m,m′, r′, h′)
If r = ⊥ ∨ r′′ = ⊥, return ⊥
if b = 0: return (h, r)
if b = 1: return (h′, r′′)

return 1, if a = b
return 0

ExpS-Ind
A,CH(λ)

ppch ←$ CHPG(1λ)
(skch, pkch)←$ CHKG(ppch)
b←$ {0, 1}

b∗ ←$ AHashOrAdapt(skch,·,·,b) ( skch, pkch )

where HashOrAdapt on input skch,m,m′, b:
(h, r)←$ CHash(pkch,m

′)
(h′, r′)←$ CHash(pkch,m)
r′′ ←$ CHAdapt(skch,m,m′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

ExpE-Ind
A,CH(λ)

ppch ←$ CHPG(1λ)

(skch, pkch; ξ )←$ CHKG(ppch)

b←$ {0, 1}

b∗ ←$ AHashOrAdapt(skch,·,·,b) ( ξ )

where HashOrAdapt on input skch,m,m′, b:
(h, r)←$ CHash(pkch,m

′)
(h′, r′)←$ CHash(pkch,m)
r′′ ←$ CHAdapt(skch,m,m′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

ExpF-Ind
A,CH(λ)

ppch ←$ CHPG(1λ)

b←$ {0, 1}

b∗ ←$ A
HashOrAdapt( ·, ·, ·,·,b)

( ppch )

where HashOrAdapt on input skch, pkch,m,m′, b:
(h, r)←$ CHash(pkch,m

′)
(h′, r′)←$ CHash(pkch,m)
r′′ ←$ CHAdapt(skch,m,m′, r′, h′)
return ⊥, if r′′ = ⊥ ∨ r′ = ⊥ ∨ r = ⊥
if b = 0, return (h, r)
if b = 1, return (h′, r′′)

return 1, if b∗ = b
return 0

Fig. 7. The ExpX-Ind
A,CH experiment with X ∈ {N, S,E,F}.

3.4 Uniqueness

Camenisch et al. [CDK+17] defined a property called uniqueness. Uniqueness requires that for
each hash/message pair, exactly one randomness can be found, even if the adversary A controls
all values, but the public parameters.10

ExpUniqueness
A,CH (λ)

ppch ←$ CHPG(1λ)
(pk∗,m∗, r∗, r′∗, h∗)←$ A(ppch)
return 1, if CHCheck(pk∗,m∗, r∗, h∗) = CHCheck(pk∗,m∗, r′∗, h∗) = 1 ∧ r∗ ̸= r′∗

return 0

Fig. 8. Uniqueness

10 Lifting this definition to also cover those parameters is straightforward.



Definition 15 (Uniqueness). A chameleon-hash CH is unique, if for any PPT adversaryA there
exists a negligible function ν such that

Pr[ExpUniqueness
A,CH (λ) = 1] ≤ ν(λ).

The corresponding experiment is depicted in Fig. 8.

We do not consider uniqueness as a fundamental property, as there are only very few applications
requiring this notion [CDK+17, SS20]. However, to obtain a more complete picture with respect
to the relations of the security properties, we also investigate uniqueness.

4 Relationships between Properties of Chameleon-Hashes

Below we show relations and separations between the security properties of chameleon-hashes.
Before doing so, we recall in Sect. 4.1 examples of chameleon-hashes providing the W-CollRes
and S-CollRes notions, respectively.

4.1 Existing Constructions of Chameleon-Hashes

Instantiation of a Weakly Collision-Resistant CH. We recall the initial CH construction by
Krawczyk and Rabin [KR00] in Const. 1. Note that a collision-resistant hash-function is applied

CHPG(1λ) : Outputs the public parameters (G, g, q,H), where (G, g, q) ← GGen(1λ) is a group G of
prime order q generated by g and H : {0, 1}∗ → Z∗

q is a hash function chosen uniformly at random
from a family of collision resistant hash functions.

CHKG(ppch) : Parse ppch as (G, g, q,H) and return (skch, pkch)← (x, gx), where

x←$ Z∗
q .

CHash(pkch,m) : Return (h, r), where

r ←$ Z∗
q , and h← gH(m)pkrch.

CHCheck(pkch,m, h, r) : Return 1 if the following holds, and 0 otherwise:

h = gH(m)pkrch.

CHAdapt(skch,m,m′, h, r) : Output ⊥, if CHCheck(pkch,m, h, r) ̸= 1. Otherwise return r′, where

r′ ← H(m)+xr−H(m′)
x

.

Const. 1: DL-based chameleon-hash

to the message prior to chameleon-hashing to extend the domain, which is a standard technique.
Seeing a collision (if not resulting from the collision-resistant hash-function) allows to extract
the skch by computing x← (H(m)−H(m′))/(r′−r) mod q.
Instantiation of a Standard Collision-Resistant CH. We recall a construction by Camenisch et
al. from [CDK+17] in Const. 2. Before we do so, we recall some background on the setup the
scheme requires: Let (N, p, q, e, d) ←$ RSAKG(1λ) be an instance generator which returns an
RSA modulus N = pq, where p and q are distinct primes, e > 1 is an integer co-prime to φ(n),
and de ≡ 1 mod φ(n). The scheme requires that RSAKG always outputs moduli of the same
bit-length, based on λ, and that the one-more RSA assumption holds [BNPS03].



CHPG(1λ) : Output the public parameters ppch ← (1λ, e), where e is prime and e > N ′ with N ′ =

maxξ{N ∈ N : (N, ·, ·, ·, ·)←$ RSAKG(1λ; ξ)}.
CHKG(ppch) : Run (N, p, q, ·, ·) ←$ RSAKG(1λ), choose a hash function H : {0, 1}∗ → Z∗

N (modeled
as a random-oracle), compute d s.t. ed ≡ 1 mod φ(N), set skch ←$ d, pkch ←$ (N,H), and return
(skch, pkch).

CHash(pkch,m) : Parse pkch = (N,H) and a message m, choose r ←$ Z∗
N , compute h ← H(m)re

mod N , and output (h, r).
CHCheck(pkch,m, h, r) : Parse pkch = (N,H), compute h′ ← H(m)re mod N , and output 1 if h′ =

h and 0 otherwise.
CHAdapt(skch,m,m′, h, r) : Output ⊥, if CHCheck(pkch,m, h, r) ̸= 1. Otherwise, let x ← H(m),

x′ ← H(m′), y ← xre mod N and return r′ ← (y(x′−1))d mod N .

Const. 2: RSA-based Chameleon-Hash

4.2 Collision-Resistance Properties

We start by analyzing how the various collision-resistance notions are related.

Theorem 1. Standard collision-resistance is strictly stronger than weak collision-resistance.

Proof. We first prove that standard collision-resistance implies weak collision-resistance. Then
we give a counterexample showing that the other direction of the implication does not hold.

S-CollRes =⇒ W-CollRes: Assume A to be an adversary who breaks weak collision-resist-
ance. We now construct an adversary B which breaks standard collision-resistance. In par-
ticular, B proceeds as follows. It receives ppch and pkch from its own challenger, and uses
both to initialize A. Whenever A outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns
that tuple to its own challenger. As the collision-finding oracle was never queried, that tuple
also makes B win the standard collision-resistance game with the same probability A wins
the weak collision-resistance game.

W-CollRes ≠⇒ S-CollRes: The CH by Krawczyk and Rabin [KR00] provides a counterexam-
ple: it is weakly collision-resistant, but does not offer standard collision-resistance. Observe
that it is possible to trivially extract the secret key from a collision. That collision is obtained
from the collision-finding oracle in the standard collision-resistance game (cf. Sect. 4.1 for
more details). ⊓⊔

Theorem 2. Enhanced collision-resistance is strictly stronger than weak collision-resistance.

Proof. The proof is identical to the one of Theorem 1. ⊓⊔

Theorem 3. Full collision-resistance is strictly stronger than standard collision-resistance.

Proof. We first prove that full collision-resistance implies standard collision-resistance and then
give a counterexample showing that the other direction of the implication does not hold.

F-CollRes =⇒ S-CollRes: Assume A to be an adversary who breaks standard collision-resist-
ance. Now we construct an adversary B which breaks full collision-resistance. In particular,
B proceeds as follows. It receives ppch and pkch from its own challenger, and uses both to ini-
tializeA. All queries to the collision-finding oracle are relayed to B’s own oracle. Whenever
A outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to its own challenger.
As m∗ ̸= m′∗ must be true, and m∗ was never queried to A’s collision-finding oracle, this
also means that (h∗,m∗) was never queried to B’s oracle, thus meeting the winning condi-
tion.



S-CollRes ≠⇒ F-CollRes: The scheme by Camenisch et al. [CDK+17] (See Const. 2) provides
a counterexample: it offers standard collision-resistance, but does not offer full collision-
resistance. In particular, their construction is re-randomizable (cf. Sect. 4.1 for more de-
tails). In more detail, to show that this construction is not fully collision-resistant, con-
sider the following strategy: Receive pkch = (N,H) and ppch = e. Compute (h, r) ←$

CHash(pkch,m), with m random. Then, ask for an adaption (h, r,m) to (h, r′,m′), for
some random m′ ̸= m. Then, compute h∗ ← h2e mod N , r∗1 ← 2r mod N , and
r∗2 ← 2r′ mod N . Because no collision for h∗ was computed, this construction cannot
be fully collision-resistant. Note, this works, as H(m)(2r)e ≡ h2e (mod N) for any input.
Also note that the attack above also breaks enhanced collision-resistance (we will later use
this to derive a corollary). ⊓⊔

Theorem 4. Full collision-resistance is strictly stronger than enhanced collision-resistance.

Before we provide the proof of Theorem 4, we provide a novel construction of a chameleon-hash
satisfying the E-CollRes notion that is used to separate the notions F-CollRes and E-CollRes.
Construction. Our CH presented below provides E-CollRes, but allows to efficiently find arbi-
trary collisions for a given hash, once a single collision was seen. However, it is not possible
to find collisions for any other hash. The main idea is to encrypt a message m using a mcIND-
CPA secure encryption scheme Ω and use the ciphertext as the hash. The randomness r of the
chameleon-hash is the public key pkΩ

′ of a freshly sampled key-pair (skΩ′, pkΩ
′) of Ω, the en-

cryption c′ of a signature σ under pkΩ
′ and a SSE NIZK π for the following language:

L := {(pkΩ, pkΣ, h,m) | ∃ (σ, ξ) :

h = Enc(pkΩ,m; ξ) ∨ VrfΣ(pkΣ, h, σ) = 1}.
(1)

Informally, this language requires the prover to show that it either knows the randomness ξ
attesting that h is a well-formed encryption of m, or a valid signature σ for h. The basic idea of
the construction is that when computing a hash, the witness ξ is used. The randomness includes
an encryption of the signature (initially one on 0) under the public key pkΩ

′. Note that the trick
is that for adaption one computes a signature σ for h, uses σ as a witness, and includes an
encryption of σ under pkΩ

′ in the randomness. Clearly, now seeing a single collision allows to
compute arbitrary collisions for the hash h.

This CH can be instantiated by instantiating Σ as structure-preserving signatures (SPS) in
type-III bilinear groups (assuming SXDH), e.g., Groth’s SPS [Gro15]. Thus, Ω can be ElGa-
mal [Gam84] in one of the base-groups. The algorithm KVfΩ is simply checking whether gskΩ =
gx = pkΩ, while for Π, a suitable instantiation is a Fiat-Shamir transformed Σ-protocol in the
random-oracle model [FS86], which also works very well with ElGamal encryption and Groth’s
signature scheme.

Subsequently, we use frameboxes and ⇝ to highlight the changes we make in the algo-
rithms throughout a sequence of games (and we only show the changes).

Theorem 5. If Ω, Σ, and Π are correct, then Const. 3 is correct.

Correctness follows from inspection and the (perfect) correctness of the used primitives.
While indistinguishability is technically not needed for proving the separation we are after in

this section, we nevertheless prove it here for completeness.

Theorem 6. If Ω is mcIND-CPA secure and Π is zero-knowledge, then Const. 3 is indistinguish-
able (N-Ind).

Proof. To prove indistinguishability, we use a sequence of games:

Game 0: The original indistinguishability game.



CHPG(1λ) : Fix a public-key encryption scheme Ω, a signature scheme Σ, and a compatible NIZK proof
system for language L in (1). Return ppch = (ppΩ, ppΣ, crsΠ), where

ppΩ ←$ PGΩ(1
λ), ppΣ ←$ PGΣ(1

λ), and crsΠ ←$ PGΠ(1
λ).

CHKG(ppch) : Return (skch, pkch) = ((skΩ, skΣ), (ppch, pkΩ, pkΣ, σ0)), where

(skΩ, pkΩ)←$ KGΩ(ppΩ), (skΣ, pkΣ)←$ KGΣ(ppΣ), and σ0 ←$ SgnΣ(skΣ, 0).

0 is considered some special invalid hash value for CH.
CHash(pkch,m) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and return (h, r) = (c, (π, c′, pkΩ

′)), where

(c; ξ)←$ Enc(pkΩ,m), (skΩ
′, pkΩ

′)←$ KGΩ(ppΩ), c
′ ←$ Enc(pkΩ

′, σ0), and

π ←$ PrfΠ(crsΠ, (pkΩ, pkΣ, c,m), (⊥, ξ))

CHCheck(pkch,m, r, h) : Parse pkch as ((ppΩ, crsΠ), pkΩ) and r as (π, c′, pkΩ
′), and return 1 if the fol-

lowing holds, and 0 otherwise:

m ∈M ∧ VfyΠ(crsΠ, (pkΩ, pkΣ, h,m), π) = 1.

CHAdapt(skch,m,m′, r, h) : Parse skch as skΩ. Verify that m′ ∈ M, CHCheck(pkch,m, r, h) = 1, and
return ⊥ if not. Otherwise, return r′ = (π′, c′′, pkΩ

′), where

σ ←$ SgnΣ(skΣ, h), c
′′ ←$ Enc(pkΩ

′, σ), and

π′ ←$ PrfΠ(crsΠ, (pkΩ, pkΣ, h,m
′), (σ,⊥)).

Const. 3: Enhanced Collision-Resistant Chameleon-Hash

Game 1: As Game 0, but we modify the algorithms CHPG, CHash, and CHAdapt used within
the game as follows:

CHPG′(1λ) :

crsΠ ←$ PGΠ(1
λ
)⇝ (crsΠ, τ)←$ SIM1(1

λ) .

CHash′(pkch,m) :

π ←$ PrfΠ(crsΠ, (pkΩ, pkΣ, h,m), (⊥, ξ))⇝ π ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m))

CHAdapt′(skch,m,m′, r, h) :

π
′ ←$ PrfΠ(crsΠ, (pkΩ, pkΣ, h,m

′
), (σ,⊥))⇝ π′ ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m

′)).

Transition - Game 0→ Game 1: We bound the probability for an adversary to detect this game
change by presenting a hybrid game, which, depending on a zero-knowledge challenger Czk,
either produces the distribution in Game 0 or Game 1, respectively. In particular, assume the
following changes:

CHPG′′(1λ) :

(crsΠ, τ)←$ SIM1(1
λ
)⇝ crsΠ ←$ Czk .

CHash′′(pkch,m) :

π ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m))⇝ π ←$ Czk.Pb((pkΩ, pkΣ, h,m), (⊥, ξ)) .

CHAdapt′′(skch,m,m′, r, h) :

π
′ ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m

′
))⇝ π′ ←$ Czk.Pb((pkΩ, pkΣ, h,m

′), (σ,⊥)) .



Clearly, if the challenger’s internal bit is 0, we simulate the distribution in Game 0, whereas
we simulate the distribution in Game 1 otherwise. We have that |Pr[S0]−Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHash algorithm as follows:

CHash′′′(pkch,m) :

(c; ξ)←$ Enc(pkΩ,m)⇝ (c; ξ)←$ Enc(pkΩ, 0) .

Transition - Game 1→ Game 2: We bound the probability for an adversary to distinguish be-
tween two consecutive games by introducing a hybrid game which uses a mcIND-CPA chal-
lenger to interpolate between two consecutive games:

CHKG(ppch)
′ : Return (skch, pkch) = ((⊥, skΣ), (ppch, pkΩ, pkΣ, σ0)), where

(skΩ, pkΩ)←$ KGΩ(ppΩ)⇝ pkΩ ←$ Cmc-cpa ,

(skΣ, pkΣ)←$ KGΣ(ppΣ), and σ0 ←$ SgnΣ(skΣ, 0).

0 is considered some special invalid hash value for CH.
CHash′′′′(pkch,m) :

(c; ξ)←$ Enc(pkΩ, 0)⇝ (c;⊥)←$ Cmc-cpa.Enc′(m, 0) .

Now, depending on the challenger’s bit, we either simulate Game 1 or Game 2. Thus, we
have that |Pr[S1]− Pr[S2]| ≤ νmc-cpa(λ)

Game 3i (1 ≤ i ≤ q): As Game 3i−1 (resp. Game 2 if i = 0) but we modify the HashOrAdapt
as follows. We let q be an upper bound on the queries to the HashOrAdapt oracle. Up to
query number i, we do the following:

HashOrAdapt′′′′(skch,m,m′, b) : In CHash

c
′ ←$ Enc(pkΩ

′
, σ0)⇝ c′ ←$ Enc(pkΩ

′, 0) .

and in CHAdapt

c
′ ←$ Enc(pkΩ

′
, σ)⇝ c′ ←$ Enc(pkΩ

′, 0) .

For every query after query i we simulate HashOrAdapt as in Game 2.
Transition - Game 3i → Game 3i+1 (resp. Game 2→ 31): We bound the probability for an ad-

versary to distinguish between two consecutive games by introducing a hybrid game which
interpolates between to subsequent games. Then, up to query number i − 1, we do the fol-
lowing:

HashOrAdapt′′′′(skch,m,m′, b) : In CHash

c
′ ←$ Enc(pkΩ

′
, σ0)⇝ c′ ←$ Enc(pkΩ

′, 0) .

and in CHAdapt

c
′ ←$ Enc(pkΩ

′
, σ)⇝ c′ ←$ Enc(pkΩ

′, 0) .

In query number i we do the following:

HashOrAdapt′′′′′(skch,m,m′, b) :

(skΩ
′
, pkΩ

′
)←$ KGΩ(ppΩ)⇝ (⊥, pkΩ

′)←$ Cmc-cpa .

In CHash

c
′ ←$ Enc(pkΩ

′
, 0)⇝ c′ ←$ Cmc-cpa.Enc′(σ0, 0) .

and in CHAdapt

c
′ ←$ Enc(pkΩ

′
, 0)⇝ c′ ←$ Cmc-cpa.Enc′(σ, 0) .



For every query after query i we simulate HashOrAdapt as in Game 2. Now, depending on
the challenger’s bit, we either simulate Game i or Game i+1. Thus, we have that |Pr[S2]−
Pr[S3q ]| ≤ q · νmc-cpa(λ), where q is the overall number of queries to HashOrAdapt.11

Now, the indistinguishability game is independent of the bit b, proving indistinguishability. ⊓⊔

Theorem 7. If Ω is perfectly correct, Σ is unforgeable, and Π is zero-knowledge as well as
simulation-sound extractable, then Const. 3 provides enhanced collision-resistance.

Proof. To prove enhanced collision-resistance, we use a sequence of games.

Game 0: The original enhanced collision-resistance game.
Game 1: As Game 0, but we modify the CHPG and the CHAdapt as follows:

CHPG′(1λ) :

crsΠ ←$ PGΠ(1
λ
)⇝ (crsΠ, τ)←$ SIM1(1

λ) .

CHAdapt′(skch,m,m′, r, h) :

π
′ ←$ PrfΠ(crsΠ, (pkΩ, pkΣ, h,m

′
), (σ,⊥))⇝ π′ ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m

′)).

Transition - Game 0→ Game 1: We bound the probability for an adversary to detect this game
change by presenting a hybrid game, which, depending on a zero-knowledge challenger Czk,
either produces the distribution in Game 0 or Game 1, respectively.

CHPG′′(1λ) :

(crsΠ, τ)←$ SIM1(1
λ
)⇝ crsΠ ←$ Czk .

CHAdapt′′(skch,m,m′, r, h) :

π
′ ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m

′
))⇝ π′ ←$ Czk.Pb((pkΩ, pkΣ, h,m

′), σ) .

Clearly, if the challenger’s internal bit is 0, we simulate the distribution in Game 0, whereas
we simulate the distribution in Game 1 otherwise. We have that |Pr[S0]−Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHPG algorithm as follows:

CHPG′′′(1λ) :

(crsΠ, τ)←$ SIM1(1
λ
)⇝ (crsΠ, τ, ζ)←$ E1(1λ) .

Transition - Game 1→ Game 2: Under simulation-sound extractability, Game 1 and Game 2 are
indistinguishable. That is, |Pr[S1]− Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all hashes h previously submitted to the collision-
finding oracle which are accepted by the CHCheck algorithm.

Transition - Game 2→ Game 3: This change is conceptual, and thus, we have |Pr[S2]−Pr[S3]| =
0.

Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r′∗, h∗) output by the adversary
we observe that either (h∗,m∗, r∗) or (h∗,m′∗, r′∗) must be a “fresh” collision, i.e., h∗ /∈
Q. We assume, without loss of generality, that (m′∗, r′∗) is the “fresh” collision. We run
(sk′, σ′) ←$ E2(crsΠ, ζ, (pkΩ, h∗,m′∗), r′∗) and abort if the extraction fails. We call this
event E1.

Transition - Game 3→ Game 4: Game 3 and Game 4 proceed identically, unless E1 occurs.
Assume, toward contradiction, that event E1 occurs with non-negligible probability. We now
construct an adversary B which breaks the simulation-sound extractability property of the
NIZK proof system with non-negligible probability. We engage with a simulation-sound
extractability challenger Csse and modify the algorithms as follows:

11 Note, if unrolled, using the bounds of Bellare et al. [BBM00], |Pr[S2]−Pr[S3q ]| ≤ 2q ·νcpa(λ) follows.



CHPG′′′′(1λ) :

(crsΠ, τ, ζ)←$ E1(1
λ
)⇝ crsΠ ←$ Csse .

CHAdapt′′′(skch,m,m′, r, h) :

π
′ ←$ SIM2(crsΠ, τ, (pkΩ, pkΣ, h,m

′
))⇝ π′ ←$ Csse.SIM((pkΩ, pkΣ, h,m

′)) .

In the end, we output ((pkΣ, h
∗,m′∗), r′∗) to the challenger. This shows that we have |Pr[S3]−

Pr[S4]| ≤ νsse(λ).
Reduction to eUNF-CMA: We are now ready to construct an adversary B which breaks the

unforgeability of the underlying Σ. Our adversary B proceeds as follows. It receives ppΣ and
pkΣ from its own challenger. To generate σ0, B simply queries its signature oracle to obtain
it on the message 0. It embeds them straightforwardly inside ppch and pkch to initialize A.
For adaption, a new signature σ′ must be generated and encrypted. Those signatures are
also obtained by querying the signature oracle. Now we know that we have extracted two
witnesses (sk, σ) as well as (sk′′, σ′′) where one attests membership of (pkΣ, h

∗,m′∗) in
L, and one attests membership of (pkΣ, h

∗,m′′) for some fresh h∗ in L. By the perfect
correctness of the signature scheme, we know that at most one of them must be signature
for h∗. However, as the signature was never queried, (h∗, σ) (or (h∗, σ′′) resp.) must be a
validating signature, breaking the unforgeability of the used Σ. Now, we have that Pr[S4] ≤
νeunf-cma(λ). This concludes the proof. ⊓⊔

We are now ready to present the proof of Theorem 4.

Proof. We first prove that full collision-resistance implies enhanced collision-resistance and then
give a counterexample showing that the other direction of the implication does not hold.

F-CollRes =⇒ E-CollRes: Assume A to be an adversary who breaks the enhanced collision-
resistance. We can then construct an adversary B which breaks the full collision-resistance.
In particular, B proceeds as follows. It receives ppch and pkch from its own challenger, and
uses both to initialize A. All queries to the collision-finding oracle are relayed to B’s own
oracle. Whenever A outputs a winning tuple (m∗, r∗,m′∗, r′∗, h∗), B returns that tuple to
its own challenger. As m∗ ̸= m′∗ must be true, and h∗ was never queried to A’s collision-
finding oracle, this also means that (h∗,m∗) was never queried to B’s oracle, thus meeting
the winning condition.

E-CollRes ≠⇒ F-CollRes: The scheme presented in Const. 3 gives a counterexample: it allows
finding arbitrarily many collisions for a given hash h, if it sees a single one, but for no
other h′ ̸= h. In more detail, to show that this construction is not fully collision-resistant,
consider the following strategy. Receive pkch = (pkΩ, pkΣ) and ppch = (ppΩ, crsΠ, ppΣ).
Compute (h, r)←$ CHash(pkch,m), with m random. Also store the secret key skΩ

′. Then,
ask for an adaption (h, r,m) to (h, r′,m′), where r′ = (π, c′′, pkΩ

′), for some random
m′. Then, compute σ ← Dec(skΩ

′, c′′). Then arbitrary collisions for h are generated by
executing CHAdapt in a similar way the owner of pkch does for finding collisions, due to
the knowledge of σ for h. Because such collisions can only be generated for already seen
collisions w.r.t. h, enhanced collision-resistance holds, but full collision-resistance does not.
Also note that standard collision-resistance does not hold for Const. 3 for the same reason
(we will later use this to derive a corollary). ⊓⊔

Theorem 8. Enhanced collision-resistance and standard collision-resistance together imply full
collision-resistance.

Proof. The theorem above is proven using a sequence of games.

Game 0: The original full collision-resistance game.



Game 1: As Game 0, we abort, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗) such that the
winning conditions are met, but h∗ was never queried to the collision-finding oracle.

Transition - Game 0→ Game 1: If this is the case, we build an adversary B which breaks the
enhanced collision-resistance of the underlying scheme. Namely, B receives pkch and uses it
to initialize A. Every adaption query by A is answered by B using its own oracle. Once A
outputs (m∗, r∗,m′∗, r′∗, h∗), B returns (m∗, r∗,m′∗, r′∗, h∗) to its own challenger. As h∗

was never seen, B wins its own game. |Pr[S0]− Pr[S1]| ≤ νenh-collres(λ) follows.
Game 2: As Game 1, we abort, if the adversary A outputs (m∗, r∗,m′∗, r′∗, h∗) such that the

winning conditions are met, but m∗ was never queried to the collision-finding oracle.
Transition - Game 1→ Game 2: If this is the case, we build an adversary B which breaks the

standard collision-resistance of the underlying scheme. Namely, B receives pkch and uses it
to initialize A. Every adaption query by A is answered by B using its own oracle. Once A
outputs (m∗, r∗,m′∗, r′∗, h∗), B returns (m∗, r∗,m′∗, r′∗, h∗) to its own challenger. As m∗

was never seen, B wins its own game. |Pr[S1]− Pr[S2]| ≤ νst-collres(λ) follows.

In Game 2, the adversary can no longer win the full collision-resistance game. This proves the
theorem. ⊓⊔

The corollary below follows from the constructions used in the proofs of Theorem 3 and The-
orem 4, which provide standard collision-resistance but not enhanced collision-resistance, and
vice versa.

Corollary 1. Standard collision-resistance and enhanced collision-resistance are independent.

4.3 Relations Between Indistinguishability Notions.

We formally prove that full indistinguishability is strictly stronger than enhanced indistinguisha-
bility. Enhanced indistinguishability is strictly stronger than strong indistinguishability, which,
in turn, is strictly stronger than indistinguishability (cf. Fig. 9 for an overview).

F-Ind E-Ind S-Ind N-Ind\ \ \

Fig. 9. Relations between CH indistinguishability properties

Theorem 9. Full Indistinguishability is strictly stronger than Enhanced Indistinguishability.

Proof. We first prove that full indistinguishability implies enhanced indistinguishability and then
give a counterexample showing that the other direction of the implication does not hold.

F-Ind =⇒ E-Ind: Assume A to be an adversary who wins the full indistinguishability game
with some probability (non-negligibly) larger than 1/2. Now, we construct an adversary B
which wins the enhanced indistinguishability game with the same probability. In particular,
B proceeds as follows. It receives ppch from its own challenger, generates (skch, pkch; ξ)
honestly, and uses ppch and ξ to initialize A. All queries to the collision-finding oracle are
answered by querying B’s own oracle (with the honestly generated keys). Whenever A out-
puts a bit a, B returns that bit to its own challenger. As the simulation is perfect, B’s winning
probability equals the one of A.



E-Ind ≠⇒ F-Ind: Let CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) be a fully indistin-
guishable chameleon-hash. We define a chameleon-hash CH′ := (CHPG′,CHKG′,CHash′,
CHCheck′,CHAdapt′), which internally uses CH as presented in Const. 4.
The basic idea is that in case particular random coins ξ are drawn, at each adaption, the
message in question is augmented with a bit indicating that an adaption happened. As this
particular randomness (ξ = 0) is never drawn with overwhelming probability, knowing the
randomness does not help – being able to choose it, however, makes creating a distinguisher
trivial.

CHPG′(1λ) : Return ppch ←$ CHPG(1λ).
CHKG′(ppch) : Draw ξ ←$ {0, 1}λ. Let (skch, pk′ch)←$ CHKG(ppch). Return (skch, (pk

′
ch, 1)), if ξ = 0,

and (skch, (pk
′
ch, 0)) otherwise.

CHash(pkch,m) : Parse pkch as (pk′ch, x). Return (h, (r, 0)), where (h, r)←$ CHash(pk′ch, (m, 0)).
CHCheck(pkch,m, r, h) : Parse r as (r′, x) and pkch as (pk′ch, y). Return CHCheck(pk′ch, (m,x), r′, h).
CHAdapt(skch,m,m′, r, h) : Parse r as (r′, x) and pkch as (pk′ch, y). If y = 1, let r′′ ←$ CHAdapt(skch,

(m,x), (m′, 1), r′, h). Return (r′′, 1). Otherwise, let r′′ ←$ CHAdapt(skch, (m, 0), (m′, 0), r′, h).
Return (r′′, 0).

Const. 4: E-Ind ≠⇒ F-Ind

Clearly, if all parties generate their keys honestly (and thus a 0 is appended to the public
key with overwhelming probability), the last bit appended to the randomness is always 0
after adaption, is never appended at hashing, and is independent of the message hashed. If,
however, the adversary can choose randomness ξ, it can generate a pkch with an appended 1,
thus making adaption append a 1, while hashing still appends a 0. This trivially breaks full
indistinguishability. ⊓⊔

Theorem 10. Enhanced Indistinguishability is strictly stronger than Strong Indistinguishability.

Proof. We first prove that enhanced indistinguishability implies strong indistinguishability and
then give a counterexample showing that the other direction of the implication does not hold.

E-Ind =⇒ S-Ind: Assume A to be an adversary who wins the strong indistinguishability game
with non-negligible probability. Using A we construct an adversary B which wins the en-
hanced indistinguishability game with the same probability: B receives ppch and r from its
own challenger, generating (skch, pkch) ←$ CHKG(ppch; ξ). It uses (skch, pkch) to initial-
ize A. All queries to the collision-finding oracle are answered by querying B’s own oracle.
Whenever A outputs a bit a, B returns that bit to its own challenger. As the simulation is
perfect, B’s winning probability equals the one of A.

S-Ind ≠⇒ E-Ind: Let CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) be chameleon-hash
with enhanced indistinguishability. We define a chameleon-hash CH′ := (CHPG′,CHKG′,
CHash′,CHCheck′,CHAdapt′), which internally uses CH as presented in Const. 5.
The basic idea is that at key generation a key pair (skΩ, pkΩ) for an encryption scheme
is generated. The secret key skΩ is discarded and thus not part of skch. At each hashing,
the message is also encrypted using the public key pkΩ and the ciphertext is attached to
the randomness. Assuming the security of the encryption scheme, this does not leak any
information about the message (and notice that no decryption oracle is provided, thus IND-
CPA suffices), even if the secret key skch is known. If, however, the random coins used to
generate the key material become known, an adversary can simply generate skΩ and decrypt
the ciphertexts and compare the content with the message in question.



CHPG′(1λ) : Let ppch ←$ CHPG(1λ) and ppΩ ←$ PGΩ(1
λ). Return (ppch, ppΩ).

CHKG′(ppch) : Let (skΩ, pkΩ) ←$ KGΩ(ppΩ), and (skch, pk
′
ch) ←$ CHKG(ppch). Return

(skch, (pk
′
ch, pkΩ)).

CHash(pkch,m) : Parse pkch as (pk′ch, pkΩ). Let c ←$ Enc(pkΩ,m). Compute (h, r) ←$ CHash(pk′ch,
(m, c)). Return (h, (r, c)).

CHCheck(pkch,m, r, h) : Parse pkch as (pk′ch, pkΩ), and r as (r′, c). Return CHCheck(pk′ch, (m, c), r′, h).
CHAdapt(skch,m,m′, r, h) : Parse r as (r′, c), compute r′′ ←$ CHAdapt(skch, (m, c), (m′, c), r′, h)

and return (r′′, c).

Const. 5: S-Ind ≠⇒ E-Ind

Clearly, in the S-Ind experiment, skΩ is discarded at key generation and is thus not given to
the adversary. If, however, the adversary knows the randomness used to generate the keys, it
can re-create skΩ. Consequently, E-Ind is trivially broken by decrypting c contained in r. ⊓⊔

Theorem 11. Strong Indistinguishability is strictly stronger than (Normal) Indistinguishability.

Proof. We first prove that full indistinguishability implies indistinguishability and then give a
counterexample showing that the other direction of the implication does not hold.

S-Ind =⇒ Ind: Assume A to be an adversary who wins the indistinguishability game with
non-negligible probability. Using A we construct an adversary B which wins the strong
indistinguishability game with the same probability: B receives ppch from its own challenger,
receiving (skch, pkch), and uses ppch and pkch to initialize A. All queries to the collision-
finding oracle are answered by querying B’s own oracle. Whenever A outputs a bit a, B
returns that bit to its own challenger. As the simulation is perfect, B’s winning probability
equals the one of A.

Ind ≠⇒ S-Ind: Our scheme given in Const. 9 provides a suitable counterexample. In particu-
lar, due to the used encryption, knowledge of the secret key allows extracting the original
message m. In more detail, to show that this construction is not strongly indistinguishable,
consider the following strategy. The key pair (skch, pkch) is generated by the challenger,
but (according to the game) known to the adversary. Obtain a challenge tuple (h, r) ←$

HashOrAdapt(pkch, skch,m,m′), where m ̸= m′ are random messages. Then, let m′′ ←
Dec(skch, h). If m = m′′, return 0. Otherwise, return 1. Clearly, this strategy always allows
learning the challenger’s bit. ⊓⊔

4.4 Additional Separations

We now prove some additional separations. We note that indistinguishability is strictly weaker
than full indistinguishability (as formally shown in Sect. 3.3).

Theorem 12. Even full indistinguishability and uniqueness together do not imply weak collision-
resistance.

Proof. Consider the contrived construction given in Const. 6. The basic idea is to only make one
randomness valid for all messages.

Clearly, this construction is fully indistinguishable and unique. Finding collisions, however,
is a trivial task. ⊓⊔

Theorem 13. Even full collision-resistance and uniqueness together do not imply indistinguisha-
bility.



CHPG(1λ) : Return ∅.
CHKG(ppch) : Return ∅.
CHash(pkch,m) : Return (∅, ∅).
CHCheck(pkch,m, r, h) : Return 1, if h = ∅ ∧ pkch = ∅ ∧ r = ∅. Return 0.
CHAdapt(skch,m,m′, r, h) : Return ∅, if h = ∅ ∧ pkch = ∅ ∧ r = ∅. Return ⊥.

Const. 6: Contrived Construction 1

Proof. Assume CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a fully collision-
resistant, unique, and fully indistinguishable chameleon-hash. In Const. 7, we construct a CH′

which offers full collision-resistance and uniqueness, but is not indistinguishable. The basic idea
is to manipulate the hash to contain additional information about whether an adaption took place
by appending the message itself.

CHPG′(1λ) : Return CHPG(1λ).
CHKG′(ppch) : Return CHKG(ppch).
CHash(pkch,m) : Let (h, r)←$ CHash(pkch, (m,m)). Return ((h,m), r).
CHCheck(pkch,m, r, h) : Parse h as (h′, m̂). Return CHCheck(pkch, (m, m̂, r, h′).
CHAdapt(skch,m,m′, r, h) : Parse h as (h′, m̂). Return CHAdapt(skch, (m, m̂), (m′, m̂), r′, h′)).

Const. 7: Contrived Construction 2

Clearly, CH′ is still fully collision-resistant and unique, but looking at the appended messages
allows deciding whether an adaption has occurred. ⊓⊔

Theorem 14. Even full collision-resistance and full indistinguishability together do not imply
uniqueness.

Proof. Assume CH := (CHPG,CHKG,CHash,CHCheck,CHAdapt) to be a fully collision-
resistant, unique, and fully indistinguishable chameleon-hash. We construct CH′ as given in Con-
struction 8. The basic idea is to append a random bit to the randomness r which is ignored during
verification.

CHPG′(1λ) : Return CHPG(1λ).
CHKG′(ppch) : Return CHKG(ppch).
CHash(pkch,m) : Let (h, r)←$ CHash(pkch,m). Return (h, (r, 0)).
CHCheck(pkch,m, r, h) : Parse r as (r′, x). Return CHCheck(pkch,m, r′, h).
CHAdapt(skch,m,m′, r, h) : Parse r as (r′, x). Return CHAdapt(skch,m,m′, r′, h)).

Const. 8: Contrived Construction 3

Clearly, CH′ is still fully collision-resistant and fully indistinguishable, but changing the bit
in the randomness r is trivial, breaking uniqueness. ⊓⊔



5 Fully Collision-Resistant Chameleon-Hashes

We are now ready to present our black-box construction of fully collision-resistant chameleon-
hashes.

5.1 Construction

The main idea of our construction is to encrypt a message m using an mcIND-CPA secure
encryption scheme and use the ciphertext as the hash, i.e., it is very close to our “contrived”
construction providing enhanced collision-resistance given in Const. 3. However, it has some
important, and subtle, differences.

Namely, the randomness r is a SSE NIZK attesting membership of a tuple containing the
public key used for encryption, the hash, as well as the hashed message in the following NP-
language:

L := {(pkΩ, h,m) | ∃ (skΩ, ξ) : h = Enc(pkΩ,m; ξ) ∨ KVfΩ(pkΩ, skΩ) = 1}.

Informally, this language requires the prover to demonstrate that it either knows the randomness
ξ attesting that h is a well-formed encryption of m under the CH key pkΩ, or it knows a secret
key skΩ corresponding to pkΩ, instead of encrypting a signature and proving the verification
relation. Our construction of a fully collision-resistant CH is presented as Const. 9. We note
that compared to Ateniese et al. [AMVA17] we cannot use true-simulation extractable NIZKs
(tSE-NIZKs) [DHLW10] and need SSE NIZKs.

CHPG(1λ) : Fix a public-key encryption scheme Ω and a compatible NIZK proof system for language L
in (5.1). Return ppch = (ppΩ, crsΠ), where

ppΩ ←$ PGΩ(1
λ), and crsΠ ←$ PGΠ(1

λ).

CHKG(ppch) : Return (skch, pkch) = (skΩ, (ppch, pkΩ)), where

(skΩ, pkΩ)←$ KGΩ(ppΩ).

CHash(pkch,m) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and return (h, r) = (c, π), where

(c; ξ)←$ Enc(pkΩ,m), and π ←$ PrfΠ(crsΠ, (pkΩ, h,m), (⊥, ξ)).

CHCheck(pkch,m, r, h) : Parse pkch as ((ppΩ, crsΠ), pkΩ), and r as π. Return 1, if the following holds,
and 0 otherwise:

m ∈M ∧ VfyΠ(crsΠ, (pkΩ, h,m), π) = 1.

CHAdapt(skch,m,m′, r, h) : Parse skch as skΩ. Verify whether m′ ∈M, and CHCheck(pkch,m, r, h) =

1. Return ⊥, if not. Otherwise, return r′ = π′, where

π′ ←$ PrfΠ(crsΠ, (pkΩ, h,m
′), (skΩ,⊥)).

Const. 9: Our Construction of a Fully Collision-Resistant CH

5.2 Security

Subsequently, we prove the security of our CH in Const. 9.

Theorem 15. If Ω is correct and Π is complete, then CH in Const. 9 is correct.



Correctness follows from inspection and the (perfect) correctness of the used primitives.

Theorem 16. If Ω is mcIND-CPA secure, and Π is zero-knowledge, then CH in Const. 9 is indis-
tinguishable (N-Ind).

In the proof, we use frameboxes and ⇝ to highlight the changes we make in the algorithms
throughout a sequence of games (and we only show the changes).

Proof. To prove indistinguishability, we use a sequence of games:

Game 0: The original indistinguishability game.
Game 1: As Game 0, but we modify the algorithms CHPG, CHash, and CHAdapt used inside

the game:

CHPG′(1λ) :

crsΠ ←$ PGΠ(1
λ
)⇝ (crsΠ, τ)←$ SIM1(1

λ) .

CHash′(pkch,m) :

π ←$ PrfΠ(crsΠ, (pkΩ, h,m), (⊥, ξ))⇝ π ←$ SIM2(crsΠ, τ, (pkΩ, h,m))

CHAdapt′(skch,m,m′, r, h) :

π
′ ←$ PrfΠ(crsΠ, (pkΩ, h,m

′
), (skΩ,⊥))⇝ π′ ←$ SIM2(crsΠ, τ, (pkΩ, h,m

′)).

Transition - Game 0→ Game 1: We bound the probability for an adversary to detect this game
change by presenting a hybrid game, which, depending on a zero-knowledge challenger Czk,
either produces the distribution in Game 0 or Game 1, respectively. In particular, assume that
we use the following changes:

CHPG′′(1λ) :

(crsΠ, τ)←$ SIM1(1
λ
)⇝ crsΠ ←$ Czk .

CHash′′(pkch,m) :

π ←$ SIM2(crsΠ, τ, (pkΩ, h,m))⇝ π ←$ Czk.Pb((pkΩ, h,m), (⊥, ξ)) .

CHAdapt′′(skch,m,m′, r, h) :

π
′ ←$ SIM2(crsΠ, τ, (pkΩ, h,m

′
))⇝ π′ ←$ Czk.Pb((pkΩ, h,m

′), (skΩ,⊥)) .

Clearly, if the challenger’s internal bit is 0, we simulate the distribution in Game 0, whereas
we simulate the distribution in Game 1 otherwise. We have that |Pr[S0]−Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHash algorithm as follows:

CHash′′′(pkch,m) :

(c; ξ)←$ Enc(pkΩ,m)⇝ (c; ξ)←$ Enc(pkΩ, 0) .

Transition - Game 1→ Game 2: We bound the probability for an adversary to distinguish be-
tween two consecutive games by introducing a hybrid game which uses a multi-challenge
IND-CPA challenger to interpolate between two consecutive games.

CHKG(ppch)
′′ : Return (⊥, pkch) = (⊥, (ppch, pkΩ)), where

(skΩ, pkΩ)←$ KGΩ(ppΩ)⇝ pkΩ ←$ Cmc-cpa .

CHash′′′′(pkch,m) :

(c; ξ)←$ Enc(pkΩ, 0)⇝ (c;⊥)←$ Cmc-cpa.Enc′(m, 0) .



Now, depending on the challenger’s bit, we either simulate Game 1 or Game 2. Thus, we
have that |Pr[S1]− Pr[S2i ]| ≤ νmc-cpa(λ)

Now, the indistinguishability game is independent of the bit b, proving indistinguishability. ⊓⊔

Theorem 17. If Ω is perfectly correct and mcIND-CPA secure and Π is zero-knowledge as well
as simulation-sound extractable, then CH in Const. 9 is fully collision-resistant.

Proof. To prove full collision-resistance, we use a sequence of games.

Game 0: The original full collision-resistance game.
Game 1: As Game 0, but we modify the CHPG and the CHAdapt algorithm as follows:

CHPG′(1λ) :

crsΠ ←$ PGΠ(1
λ
)⇝ (crsΠ, τ)←$ SIM1(1

λ) .

CHAdapt′(skch,m,m′, r, h) :

π
′ ←$ PrfΠ(crsΠ, (pkΩ, h,m

′
), (skΩ,⊥))⇝ π′ ←$ SIM2(crsΠ, τ, (pkΩ, h,m

′)).

Transition - Game 0→ Game 1: We bound the probability for an adversary to detect this game
change by presenting a hybrid game, which, depending on a zero-knowledge challenger Czk,
either produces the distribution in Game 0 or Game 1, respectively.

CHPG′′(1λ) :

(crsΠ, τ)←$ SIM1(1
λ
)⇝ crsΠ ←$ Czk .

CHAdapt′′(skch,m,m′, r, h) :

π
′ ←$ SIM2(crsΠ, τ, (pkΩ, h,m

′
))⇝ π′ ←$ Czk.Pb((pkΩ, h,m

′), skΩ) .

Clearly, if the challenger’s internal bit is 0, we simulate the distribution in Game 0, whereas
we simulate the distribution in Game 1 otherwise. We have that |Pr[S0]−Pr[S1]| ≤ νzk(λ).

Game 2: As Game 1, but we further modify the CHPG algorithm as follows:

CHPG′′′(1λ) :

(crsΠ, τ)←$ SIM1(1
λ
)⇝ (crsΠ, τ, ζ)←$ E1(1λ) .

Transition - Game 1→ Game 2: Under simulation-sound extractability, Game 1 and Game 2 are
indistinguishable. That is, |Pr[S1]− Pr[S2]| = 0.

Game 3: As Game 2, but we keep a list Q of all tuples (h, r,m) previously submitted to the
collision-finding oracle which are accepted by the CHCheck algorithm, where h was never
submitted to the collision-finding oracle before.

Transition - Game 2→ Game 3: This change is conceptual, i.e., |Pr[S2]− Pr[S3]| = 0.
Game 4: As Game 3, but for every valid collision (m∗, r∗,m′∗, r′∗, h∗) output by the adver-

sary we observe that either (m∗, r∗) or (m′∗, r′∗) must be a “fresh” collision, i.e., one that
was never output by the collision-finding oracle. We assume, without loss of generality, that
(m′∗, r′∗) is the “fresh” collision. We run (sk′, ξ′) ←$ E2(crsΠ, ζ, (pkΩ, h∗,m′∗), r′∗) and
abort if the extraction fails. We call this event E1.

Transition - Game 3→ Game 4: Game 3 and Game 4 proceed identically, unless E1 occurs.
Assume, toward contradiction, that event E1 occurs with non-negligible probability. We now
construct an adversary B which breaks the simulation-sound extractability property of the
NIZK proof system with non-negligible probability. We engage with a simulation-sound
extractability challenger Csse and modify the algorithms as follows:



CHPG′′′′(1λ) :

(crsΠ, τ, ζ)←$ E1(1
λ
)⇝ crsΠ ←$ Csse .

CHAdapt′′′(skch,m,m′, r, h) :

π
′ ←$ SIM2(crsΠ, τ, (pkΩ, h,m

′
))⇝ π′ ←$ Csse.SIM(pkΩ, h,m

′) .

In the end, we output ((pkΩ, h
∗,m′∗), r′∗) to the challenger. This shows that we have |Pr[S3]−

Pr[S4]| ≤ νsse(λ).
Game 5: As Game 4, but we observe that if (m∗, r∗) does not correspond to a fresh collision

for h∗ in the above sense, then we will have an entry (h∗, r,m) ∈ Q where (m, r) is a
“fresh” collision, i.e., one computed by the adversary. We run the extractor for the fresh
collision, i.e., either obtain (sk′′, ξ′′) ←$ E2(crsΠ, ζ, (pkΩ, h∗,m∗), r∗) or (sk′′, ξ′′) ←$

E2(crsΠ, ζ, (pkΩ, h∗,m), r), respectively. In case the extraction fails, we abort. We call the
abort event E2.

Transition - Game 4→ Game 5: Analogously to the transition between Game 3 and Game 4,
we argue that Game 4 and Game 5 proceed identically unless E2 occurs which is why we
do not restate the reduction to simulation-sound extractability here. We have that |Pr[S4]−
Pr[S5]| ≤ νsse(λ).

Reduction to mcIND-CPA: We are now ready to construct an adversary B which breaks the
mcIND-CPA security of the underlying Ω. Our adversary B proceeds as follows. It re-
ceives ppΩ and pkΩ from its own challenger. It embeds them straightforwardly as ppch and
pkch to initialize A. Now we know that we have extracted two witnesses (sk, ξ) as well as
(sk′′, ξ′′) where one attests membership of (pkΩ, h

∗,m′∗) in L and one attests membership
of (pkΩ, h

∗,m′′) for some m′′ ̸= m′∗ in L. By the perfect correctness of the encryption
scheme, we know that at most one of them can be consistent with the ciphertext contained in
h∗, which implies that either sk or sk′′ will be the key for the underlying encryption scheme
(which of them we figure out by using KVfΩ). With knowledge of the key, B trivially breaks
the mcIND-CPA security of the underlying Ω by randomly sending two distinct messages to
its own challenger (for encryption), simply decrypting the returned ciphertext, and answer-
ing with the correct bit. We have that Pr[S5] ≤ νmc-cpa(λ). This concludes the proof. ⊓⊔

5.3 Concrete Instantiation

A suitable instantiation for Ω is ElGamal [Gam84]. The algorithm KVfΩ is simply checking
whether gskΩ = gx = pkΩ. Note that for Π we only need to extract a bounded number of
times (i.e., twice). To this end one may use Fiat-Shamir transformed Σ-protocols for DLOG
relations in the random-oracle model [FS86] when additionally applying the compiler by Faust
et al. [FKMV12]. In particular, Faust et al. show that such proofs are simulation-sound extractable
when additionally including the statement x upon hashing in the challenge computation and if the
Σ-protocol provides a property called quasi-unique responses. The latter is straightforward for
the statements which need to be proven in our context. See, e.g., [DS18], for a detailed discussion
of this transformation.

For the sake of completeness and to demonstrate how efficiently our approach can be instan-
tiated, we provide this concrete instantiation as Const. 10. Therefore, let (G, g, q)←$ GGen(1λ)
be an instance generator which returns a prime-order, and multiplicatively written, group G
where the DDH problem is hard, along with a generator g such that ⟨g⟩ = G. Note that an
SSE NIZK for the required L in (2) can easily be obtained as an equality proof of two discrete
logarithms together with an or composition of a proof of a discrete logarithm [CDS94] of Fiat-
Shamir transformed Σ-protocols discussed above.

L := {(y, h,m) | ∃ (x, ξ) : h = (gξ,m · yξ) ∨ y = gx}. (2)



CHPG(1λ) : Outputs the public parameters ppch = (G, g, q,H), where (G, g, q) ←$ GGen(1λ) is a
group G of prime order q generated by g, and H : {0, 1}∗ → Zq is a hash function (which we assume
to behave like a random oracle and to be implicitly available to all algorithms below).

CHKG(ppch) : Return (skch, pkch) = (x, y), where x←$ Zq and y ← gx.
CHash(pkch,m) : Parse pkch as y, choose (ξ, k1, e2, s2) ←$ Z4

q , set u1,1 ← gk1 , u1,2 ← yk1 , u2 ←
gs2 · y−e2 , e ← H((y, h,m), (u1,1, u1,2, u2)) and e1 ← e − e2 mod q. Then compute s1 ← k1 +
e1ξ mod q and finally, return (h, r) = (c, π), where

c← (c1, c2) = (gξ,m · yξ) , and π ← (e1, e2, s1, s2).

CHCheck(pkch,m, r, h) : Parse pkch as y and r as (e1, e2, s1, s2), and h as (c1, c2). Return 1 if the fol-
lowing holds, and 0 otherwise:

m ∈ G ∧ e1 + e2 = H((y, h,m), (gs1 · c−e1
1 , ys1 · (c2/m)−e1 , gs2 · y−e2)).

CHAdapt(skch,m,m′, r, h) : Parse skch as x, and h as (c1, c2). Verify whether m′ ∈ G, and
CHCheck(pkch,m, r, h) = 1. Return ⊥ if not. Otherwise, choose (k2, e1, s1) ←$ Z3

q , set u1,1 ←
gs1 · c−e1

1 , u1,2 ← ys1 · (c2/m′)−e1 , u2 ← gk2 , e ← H((y, h,m′), (u1,1, u1,2, u2)), and
e2 ← e− e1 mod q. Finally compute s2 ← k2 + e2x mod q, and return r′ = π′, where

π′ ← (e1, e2, s1, s2).

Const. 10: Concrete instantiation of a Fully Collision-Resistant CH

5.4 Comparison

Subsequently, in Table 1 we compare existing constructions of chameleon-hashes providing the
W-CollRes, E-CollRes and S-CollRes notions with instantiations of our approach (in the random
oracle and standard model) providing the stronger F-CollRes notion. Here E denotes an expo-
nentiation in the respective algebraic structure, “?” denotes that it is unclear how efficient this
can be realized due to requirement of an invertible onto mapping into the used group (cf. the
discussion in [KDS20]). SM and RO denote the standard and the random oracle model respec-
tively. Furthermore, DDH, SXDH, PKoE, and OM-RSA denote the decisional Diffie-Hellman,

Scheme CR |h| |h|bit |r| |r|bit CHash CHAdapt Ass. Model

[KR00] W 1G 256 1Zq 256 2EG 0EG DLOG SM
[AMVA17] (1) E 1G 256 12G+7Zq 4876 17EG ? DDH ROM
[AMVA17] (2) E 1G1 382 6G1+13G2 12211 51EG1 ? SXDH SM
[KDS20] (1) E 1G1 382 9G1+4G2 6490 25EG1 1EZq SXDH SM
[KDS20] (2) E 1G1 382 3G1 1164 6EG1 1EZq PKoE SM
[CDK+17] S 1ZN 3072 1ZN 3072 1EZN 1EZN OM-RSA ROM
Ours F 2G 514 4Zq 1024 6EG 5EG DDH ROM
Ours F 2G1 764 ≈ 1-2k G1/2 - - - SXDH SM

Table 1. Comparison of different chameleon-hash functions. | · |bit refers to the bit size of the respective
value which is currently believed to provide 128 bit security. We use 256bit elliptic curves for standard
known order groups (|G| = 257, |Zq| = 256), 3072bit RSA modulus for the RSA setting (|ZN | = 3072),
and 381bit BLS12 curves for the SXDH setting (|G1| = 382, |G2| = 763, |Zq| = 256).

the symmetric DDH, the power knowledge of exponent [HT98], and the one-more RSA inver-
sion [BNPS03] assumptions. We also stress that for constructions relying on SXDH, for typical



instantiations of type-III bilinear groups, we have that |G2| = 2(|G1|−1)+1 (where | · | denotes
the size of the representation of a group element). Regarding our construction in the standard
model, e.g., using SSE NIZKs based on Groth-Sahai NIZKs, one can use the compiler in [DS19]
to efficiently achieve simulation-sound extractability. We, however, note that a naive instantiation
of our template in the standard model would still require to include bit-wise proofs of the parts
of the witness which are in Zq , which would, all in all, require a number of group elements in
the order of 1k − 2k (a very rough estimate; thus we also omit the remaining costs which is
indicated by “−” in Table 1). It seems that switching to a variant of ElGamal in the target group
(and maybe some other tweaks) would help to work around the requirement of having bit-wise
proofs. While we are not able to provide a more efficient instantiation, we hope that future work
will be able to do so. Finally, we note that we omit comparing our scheme given in Const. 3 as it
is contrived and its sole purpose is to prove a separation result.

6 Applications

In this section we discuss (stronger) collision-resistance notions of chameleon-hashes in context
of two applications, namely redactable blockchains as well as online/offline signatures.

6.1 Redactable Blockchains

While one of the major goals of blockchains is their immutability and in particular their use as
an immutable append-only log, recently, starting with the work of Ateniese et al. [AMVA17],
there has been an increasing interest in blockchains that allow some controlled after-the-fact
modification of their content. This is motivated by illegal content that was shown to be included
into the Bitcoin blockchain [MHH+18], which represents a significant challenge for law en-
forcement agencies [Tzi18], as well as legislations like the European General Data Protection
Regulation (GDPR) and the associated “right to be forgotten”. Solutions to this problem may
either be for the permissioned- or permissionless-blockchain setting and cryptographic in na-
ture [AMVA17, DSSS19, SS20] or non-cryptographic, where in the latter case it is based on the
consensus layer of the blockchain [DMT19].

We are considering the former and focus on block-level rewriting (change entire blocks) of
blockchains instead of transaction-level rewriting (change single transactions within a block)
in a permissionless setting (such as Bitcoin), as this illustrates the problem with much wider
implications. In the following we are using the notation used in [AMVA17], and describe a block
as triple of the form B = ⟨s, x,ctr⟩, where s ∈ {0, 1}λ, x ∈ {0, 1}∗ and ctr ∈ N and a block
is valid if

validblockD
q (B) := (H(ctr, G(s, x)) < D) ∧ (ctr < q) = 1.

Here, H : {0, 1}∗ → {0, 1}2λ and G : {0, 1}∗ → {0, 1}2λ are collision-resistant hash functions,
and the parameters D ∈ N and q ∈ N are the difficulty level of the block and the maximum
number of hash queries that a user is allowed to make in any given round of the protocol, re-
spectively. The chaining of blocks is now done by requiring that when attaching a (valid) block
B′ = ⟨s′, x′,ctr’⟩ we have that s′ = H(ctr, G(s, x)). Now to make blocks redactable, one
changes the description of blocks to B = ⟨s, x,ctr, (h, r)⟩ where the new component is a
chameleon-hash (h, r) and the validation predicate changes to

validblockD
q (B) :=(H(ctr, h) < D) ∧ CHCheck(pkch, (s, x), r, h) = 1 ∧

(ctr < q) = 1.

Chaining is now done by requiring that when attaching a (valid) block B′ = ⟨s′, x′,ctr’⟩ we
have that s′ = H(ctr, h). Observe that now computing a collision in the chameleon-hash gives
very much power as it basically allows to rewrite the entire history of the blockchain.



Ateniese et al. in [AMVA17] discuss different ways to control this power to actually compute
collisions (i.e., run CHAdapt) where 1) either skch may be available to some fully trusted single
party only, or 2) skch is generated using a multi-party computation (MPC) protocol and CHAdapt
is also performed in a distributed way by some set of parties. We will discuss the implications of
different collision-resistance notions to this setting, which is independent of which of these two
approaches is going to be used.

We recall that Ateniese et al. [AMVA17], who introduced this application, rely on E-CollRes
and Derler et al. in more recent work in [DSSS19] rely on S-CollRes. Now, note that in such a
permissionless setting as discussed above, where everybody is allowed to participate, it is rea-
sonable to assume that an adversary sees the collisions computed for any blocks over some time
in the system (as they will be broadcasted). Now let us discuss the single notions:

Weak Collision-Resistance (W-CollRes). A chameleon-hash providing this notion of collision-
resistance provides absolutely no guarantees, as after seeing a single collision all guarantees
are lost. A prime example is the Pedersen CH due to Krawczyk and Rabin [KR00] (cf.
Sect. 4.1), where a single seen collision exposes the secret key skch to everybody. Clearly,
this has significant consequences in the above scenario as then everybody can arbitrarily alter
the blockchain.

Enhanced Collision-Resistance (E-CollRes). Recall that an adversary, when attacking some
hash h∗, must have never input h∗ to CHAdapt′. Now, this means that if an adversary targets
a specific hash and then happens to see a collision for this hash (for some reason), suddenly
all guarantees are lost and arbitrary collisions could be computed. Note that our construction
in Sect. 4 clearly demonstrates potential problems with CHs only satisfying this notion. This
still represents a significant problem with this application.

Standard Collision-Resistance (S-CollRes). Recall, that an adversary is only restricted to not
query message m∗ (which is associated to the computed collision h∗) was never queried to
the collision-finding oracle. While this still might be problematic in the redactable blockchain
setting, messages can very likely be made unique by perpending a large enough random
tag/nonce (note that in this could easily be done in the block format of e.g., the Bitcoin
block structure). So, this notion seems suitable if the aforementioned constrained may, under
certain circumstances, be guaranteed to be met, but is far away from being ideal.

Full Collision-Resistance (F-CollRes). We recall that, here, only the collision (h∗,m∗) was not
generated by the collision-finding oracle, but there is no other restriction whatsoever. Conse-
quently, this collision-resistance notion seems the “right” notion as no issues on higher levels
need to be considered and very strong guarantees are already provided by the notion itself.

6.2 Online/Offline Signatures

Online/offline signatures (OOS) [EGM89, EGM96] are signatures which run in two phases, a
potentially computationally expensive offline phase and a more efficient online phase. Latter
clearly should be more efficient than the full signing algorithm. Thus, if the online phase is then
run by a resource constrained signer, this allows such signers to compute signatures even if it
might be too expensive to run the full signing algorithm of the respective signature scheme.
Hash-sign-switch OOS. In [ST01], Shamir and Tauman introduced the so called hash-sign-
switch paradigm for OOS. Here, the key pair of any signature scheme is extended by the key pair
of a chameleon-hash. The offline phase represents computing a signature on a chameleon hash
value h of a random message m′ (the hash part). The online phase then represents computing a
collision for h with the message m to be signed (the switch part). Shamir and Tauman in [ST01]
propose (among an instantiation based on factoring) the use of the W-CollRes by Krawczyk and
Rabin [KR00]. Note that this requires that for every offline signature, a new signature for a fresh
chameleon-hash needs to be computed. Otherwise, due to the key-exposure of the chameleon-
hash the so obtained OOS gets insecure, i.e., one can forge signatures for arbitrary messages after
seeing two signatures.



Key-exposure in OOS. Chen et al. in [CZSM07] observe that this key-exposure problem in
OOS following this “hash-sign-switch” paradigm might impose a huge storage overhead due to
the number of precomputed signatures in the offline phase. They then suggest to fix this problem
by introducing a special double-trapdoor hash family based on the discrete logarithm assumption
combined with a one-time trapdoor/hash key pair for each message signing. Although this re-
moves a part of the problem, this is still not entirely generic and imposes an additional overhead.

We want to stress, that besides the storage overhead pointed out by Chen et al. [CZSM07],
constructing such OOS using a chameleon-hash providing only W-CollRes might be even more
problematic when it comes to what we informally call robustness. Imagine that due to a fault or
some behavior triggered by an adversary, one of the signatures precomputed in the offline phase
gets reused in the online phase. Then, the OOS is immediately completely broken. Note that this
is somewhat reminiscent of the problem of secret key leakage when reusing the randomness in
Schnorr-type signatures as repeatedly seen in case of ECDSA in practice (cf. [JSSS20]).
F-CollRes CH in OOS. Now, when instantiating OOS on the “hash-sign-switch” paradigm based
on a F-CollRes chameleon-hash instead, this immediately resolves the above robustness issue and
yields a completely generic solution. More so, in the offline phase only a single signature needs
to be precomputed, which can be reused for all online signing operations while allowing the ad-
versary to query signatures for arbitrary messages. Clearly, when it comes to concrete efficiency,
it needs to be guaranteed that the online part remains more efficient than the signing operation
of the underlying signature scheme. Taking for instance the concrete instantiation in Sect. 5.3,
precomputing all the message-independent values of the Adapt algorithm except for u2 (which is
critical to robustness) in the offline phase, then the online phase requires two exponentiations. So
while this does not yield a benefit when building OOS on Schnorr-type signatures, it will so for
instance when using the BLS signature scheme [BLS01] (where an estimate of signing including
the hashing to the curve [WB19] requires a cost of strictly more than two exponentiations).12

Relying on a F-CollRes chameleon-hash thus provides a fully generic construction of OOS
with this robustness feature (in contrast to [CZSM07] which is based on the discrete logarithm
assumption), and using the recent results in [DKSS20] even immediately yields a construction
from post-quantum assumptions.
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