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ABSTRACT

Mersenne number schemes are a new strain of potentially quantum-

safe cryptosystems that use sparse integer arithmetic modulo a

Mersenne prime to encrypt messages. TwoMersenne number based

schemes were submitted to the NIST post-quantum standardization

process: Ramstake and Mersenne-756839. Typically, these schemes

admit a low but non-zero probability that ciphertexts fail to decrypt

correctly. In this work we show that the information leaked from

failing ciphertexts can be used to gain information about the secret

key. We present an attack exploiting this information to break the

IND-CCA security of Ramstake. First, we introduce an estimator

for the bits of the secret key using decryption failures. Then, our

estimates can be used to apply the Slice-and-Dice attack due to

Beunardeau et al. at significantly reduced complexity to recover

the full secret. We implemented our attack on a simplified version

of the code submitted to the NIST competition. Our attack is able to

extract a good estimate of the secrets using 2
12

decryption failures,

corresponding to 2
74

failing ciphertexts in the original scheme.

Subsequently the exact secrets can be extracted in 2
46

quantum

computational steps.
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• Security and privacy→ Cryptanalysis and other attacks.
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1 INTRODUCTION

The development of quantum computing poses a significant threat

to the current public key infrastructure, as Shor’s algorithm breaks

cryptographic primitives such as RSA and ECC. To replace these

primitives, there is an urgent need for cryptography that is secure

against quantum computers, i.e. post-quantum cryptography. This

need has been recognized by several standardization bodies such as

ETSI andNIST, the latter of which organized theNIST post-quantum

standardization process [2] to select one or more post-quantum

replacements for the current public key cryptographic primitives.

Two of the submissions to this process based their primitives

on a relative new security assumption involving Mersenne num-

bers. Initially Aggarwal et al. [4] introduced a single bit encryption

scheme which was later picked up, refined and submitted to the

NIST post-quantum standardization project independently by Ag-

garwal et al. [3] and Szepieniec [24] in 2017. The schemes compute

a shared noisy secret using sparse integers modulo a Mersenne

prime and employ an error correcting code to remedy transmis-

sion noise. The proposals were not selected into the second round,

partly because the underlying hard problem is relatively new and

did not yet receive a lot of cryptanalysis. On the other hand, there

is currently no indication that these schemes are insecure even in

the event of large scale quantum computers.

Various proposals in the NIST post-quantum competition are

prone to a small decryption failure probability, for which the two

communicating parties fail to agree on a common message after the

execution of the protocol. As these decryption failures also depend

on the secret key, they contain information on the secret key. These

failures occur in the Mersenne number schemes such as Ramstake

(with failure probability 2
−64

) or Mersenne-756839 (with failure

probability 2
−239

). Likewise many other NIST proposals admit such

failures, as in the family of lattice based (e.g. FrodoKEM [23] with

2
−252

, Kyber [8] with 2
−160

, Saber [10] with 2
−136

) or code based

schemes (e.g. HQC [22] with 2
−128

, LEDAcrypt [5] with 2
−64

, or

Rollo [21] with 2
−42

).

For lattice based schemes, Jaulmes and Joux [20] introduced

a chosen ciphertext attack leveraging decryption failures, which

was later refined and extended by Gamma, Nguyen and Howgrave-

Graham [19]. These attacks are countered by schemes that obtain

IND-CCA security using an appropriate transformation. D’Anvers

et al. [9] provided a technique to increase the failure probability

and subsequently recover the secret key of IND-CCA secure LWE

based schemes, a technique which was extended in subsequent

works [12][17][11]. Guo, Johansson and Stankovski [16] provided

a similar attack on IND-CCA secure code based schemes.

Our Contribution. In this work we developed a new attack break-

ing the IND-CCA security of Mersenne number cryptosystems by

exploiting decryption failures. We present a method that takes as in-

put a set of failing ciphertexts and outputs a good estimation of the

secret key. The estimates are sufficiently close to the secret vector

such that one may employ a technique introduced by Beunardeau

et al. [7] to extract these secrets. Several notations and algorithms

used throughout this work are introduced in Section 2. In Section 3

we define heuristics that allow us to quantify the probability dis-

tribution of the secrets. Based on these heuristics we present our

method on estimating the secret vectors. In the next section we

show that our estimates allow to derive additional knowledge about

the secret key and how that information can be used to speed up the

attack by Beunardeau et al. significantly. In Section 5 we describe

our implementation of the attack on the Ramstake cryptosystem.



The empirical results, which can be verified using our implementa-

tion
1
, obtained good estimates of the secret using 2

12
decryption

failures. These may be extracted from the original Ramstake scheme

in about 2
74

decapsulations queries. The derived estimates allow

to apply a reduced variant of the Slice-and-Dice attack that can

recover the secret key using about 2
46

quantum computational

steps.

2 PRELIMINARIES

2.1 Notation

A Mersenne number is a number that can be written in the form

𝑝 = 2
𝑛 − 1, with 𝑛 an integer. Let Z𝑝 = Z/𝑝Z denote the ring of

integers modulo a Mersenne prime 𝑝 . The integers in this ring will

sometimes be expressed as a binary string, using the LSB repre-

sentation of their representants in [0, 𝑝). Subsequently all binary

representation of integers in the ring have bit length at most 𝑛.

When computing modulo a Mersenne prime the multiplication by

a power of two is equivalent to a rotational shift, i.e., performing

2
𝑖𝑥 mod 𝑝 is equivalent to rotating the binary representation of

𝑥 by 𝑖 positions. Another property is that the bitwise Hamming

weight does not increase when performing a modular operation

with a Mersenne prime.

For any integer 𝑥 ∈ Z𝑝 the 𝑖th bit of the binary representation

will be expressed as 𝑥 [𝑖] or in shorthand 𝑥𝑖 , and the bits in the range
from 𝑖 to, but not including 𝑗 , will be written as 𝑥 [𝑖 : 𝑗]. The bitwise
Hamming weight of an integer 𝑥 ∈ Z𝑝 will be denoted by hw(𝑥),
returning the number of ones in the binary representation of 𝑥 .

Likewise, the bytewise Hamming weight of a binary string 𝑥 will

be written as hw
8 (𝑥), which returns the number of nonzero bytes

in 𝑥 . Counting the Hamming weight of the substring 𝑥 [𝑖 : 𝑗] will
be abbreviated as hw[𝑖:𝑗 ] (𝑥) and likewise hw

8

[𝑖:𝑗 ] (𝑥) for bytewise
Hamming weights. Given two integers 𝑥,𝑦 ∈ Z𝑝 the xor operation

⊕ will be defined so that 𝑧 = 𝑥 ⊕𝑦 if 𝑧 [𝑖] = (𝑥 [𝑖] +𝑦 [𝑖]) mod 2 for

all 𝑖 ∈ [0, 𝑛). Let |𝑥 | denote the length of a bit string x and 𝑠𝑝𝑙𝑖𝑡 (𝑥)
denote splitting the input into two equally sized substrings, e.g.

𝑥 = 𝑥1 |𝑥2.
The functionU({0, 1}𝑛) describes the process of drawing uni-

formly random values from the distribution {0, 1}𝑛 , while the func-
tionHW𝜔 (Z𝑝 ; 𝑟 ) generates a uniformly random integer 𝑥 in Z𝑝
that satisfies hw(𝑥) = 𝜔 . When 𝑟 is specified, the output is gener-

ated pseudorandomly from 𝑟 .

2.2 Cryptographic definitions

Akey encapsulationmechanism (KEM) is a triplet of PPT algorithms

E = (KeyGen, Encaps, Decaps), where KeyGen() takes as input the
security parameter and outputs the public key 𝑝𝑘 and the secret key

𝑠𝑘 , where Encaps(𝑝𝑘) takes as input the public key and outputs

the key 𝑘 and the ciphertext 𝑐 and where Decaps(𝑠𝑘, 𝑐) takes as
input the ciphertext and the secret key and outputs either the key

𝑘 or ⊥ in case of a decryption failure.

The security of a KEM is defined using the notion of indistin-

guishability under chosen ciphertext attacks (IND-CCA). The ad-

vantage of an adversary winning an IND-CCA security game can

1
Our implementation is available at: https://github.com/mtiepelt/ramstake-failure-

attack

be expressed using the following definition from Bellare, Hofheinz

and Kiltz [6]:

𝐴𝑑𝑣IND−CCA𝐾𝐸𝑀 (𝐴) := (1)�������𝑃𝑟
b=b’ :

(𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆);𝑏 $←− {0, 1}
(𝑘0, 𝑐) ← Encaps(𝑝𝑘);𝑘1

$←− K
𝑏′ ← 𝐴Decaps (𝑝𝑘, 𝑐, 𝑘𝑏 )

 −
1

2

������� (2)

A KEM is said to be secure if the advantage of the adversary 𝐴 is

negligible in the security parameter 𝜆:

𝐴𝑑𝑣IND−CCA𝐾𝐸𝑀 (𝐴) ≤ 𝑛𝑒𝑔𝑙 (𝜆) . (3)

2.3 Mersenne prime schemes

In this section we will define a generalized Mersenne prime en-

cryption scheme, which can be used to build an IND-CCA secure

KEM. Afterwards, we go into detail on the specific design choices

of Ramstake.

Choose 𝑝 as a Mersenne prime and let 𝑔𝑒𝑛𝐺 () be a pseudo-

random generator that expands sd𝐺 into a uniformly random ele-

ment in Z/𝑝Z. Let G andH be hash functions modeling random

oracles and let Encode and Decode be a pair of error correcting

code functions that respectively encode a binary string𝑚 into an

encoded binary string𝑚ecc, and decode a noisy version of the latter

string back into the original such that up to 𝑡 errors can be corrected.

Given these functions, a generalized Mersenne prime scheme can

be formalized as given in Algorithms 1 to 3. The scheme is secure

if the Mersenne Low Hamming Combination (LHC) Assumption

from [3] in Definition 2.1 holds.

Definition 2.1 (Mersenne Low Hamming Combination (LHC) As-

sumption). Let 2
𝑛 − 1 be a Mersenne prime and 𝜔 an integer such

that 4𝜔2 < 𝑛 ≤ 16𝜔2
. The advantage of a PPT adversary to distin-

guish the two tuples( [
𝐺1

𝐺2

]
,

[
𝐺1

𝐺2

]
· 𝑎 +

[
𝑏1
𝑏2

] )
𝑜𝑟

( [
𝐺1

𝐺2

]
,

[
𝑅1
𝑅2

] )
,

where𝐺1,𝐺2, 𝑅1 and 𝑅2 are chosen uniformly random inZ/𝑝Z and

𝑎, 𝑏1 and 𝑏2 are random elements in Z/𝑝Z with Hamming weight

𝜔 , is at most 𝑂 (2−𝜔 ).

FO-transformation. The IND-CPA secure encryption scheme can

be compiled into an IND-CCA secure KEM using a post-quantum

version (e.g., [18]) of the Fujisaki-Okamoto [14] transformation as

given in Appendix A.

2.4 Mersenne-756839

The Mersenne-756839 KEM implements a repetition code where

each bit of the message𝑚 is repeated 𝜒 = 2048 times. During the

encryption an additional error term
ˆ𝑑 is added to the (shared) noisy

secret resulting in an overall error of

(𝑎𝑐𝐺 + 𝑎𝑑) ⊕ (𝑎𝑐𝐺 + 𝑏𝑐 + ˆ𝑑) . (4)

A decryption failure occurs if more than 𝜒/2many bits of any single

encoded bit are erroneous.

https://github.com/mtiepelt/ramstake-failure-attack
https://github.com/mtiepelt/ramstake-failure-attack


Algorithm 1: KeyGen()
1 sd𝐺 ←U

(
{0, 1}256

)
2 𝐺 ← gen𝐺 (sd𝐺 )
3 𝑎, 𝑏 ←HW𝜔 (Z𝑝 ) × HW𝜔 (Z𝑝 )
4 𝑃𝐷 ← 𝑎𝐺 + 𝑏 mod 𝑝

5 return (𝑝𝑘 := (sd𝐺 , 𝑃𝐷 ), 𝑠𝑘 := (𝑎, 𝑏, sd𝐺 ))

Algorithm 2: Encrypt(
𝑝𝑘 := (sd𝐺 , 𝑃𝐷 ), 𝑟 ;ℎ𝑟 )
1 𝑟1, 𝑟2 ← 𝑠𝑝𝑙𝑖𝑡 (ℎ𝑟 )
2 𝑐, 𝑑 ←HW𝜔 (Z𝑝 ; 𝑟1) × HW𝜔 (Z𝑝 ; 𝑟2)
3 𝐺 ← gen𝐺 (sd𝐺 )
4 𝑃𝐸 ← 𝑐𝐺 + 𝑑 mod 𝑝

5 𝑆 ← 𝑐𝑃𝐷 mod 𝑝

6 𝑟ecc, ℎ = Encode(𝑟 )
7 encr = 𝑟ecc ⊕ 𝑆 [0 : |𝑟ecc |]
8 return (𝑐𝑡 := (encr, 𝑃𝐸 , ℎ))

Algorithm 3: Decrypt(
𝑐𝑡 := (encr, 𝑃𝐸 , ℎ), 𝑠𝑘 := (𝑎, 𝑏, sd𝐺 ))
1 𝐺 ← gen𝐺 (sd𝐺 )
2 𝑆 ′ ← 𝑎𝑃𝐸 mod 𝑝

3 𝑟 ′𝑒𝑐𝑐 = 𝑒𝑛𝑐𝑟 ⊕ 𝑆 ′ [0 : |𝑒𝑛𝑐𝑟 |]
4 𝑟 ′ = Decode(𝑟 ′𝑒𝑐𝑐 , ℎ)
5 return 𝑟 ′

Table 1: Parameter sets for the two security levels of Ramstake.

𝑝 𝜔 𝜈 𝑡 𝑃 [𝐹 ] security

Ramstake-216091 216091 64 4 111 ≤ 2
−64

128

Ramstake-756839 756839 128 6 111 ≤ 2
−64

256

2.5 Ramstake

Ramstake employs an error correcting code based on repetitive

Reed-Solomon encodings. The Reed-Solomon code maps a 256-bit

message onto a 2040-bit (255 byte) codeword, which can correct

up to 𝑡 byte errors. We will denote the bit length of the codeword

with 𝑙𝑐 . This codeword is repeated 𝜈 times. Furthermore, a hash of

the message ℎ is included in the ciphertext. During decoding, the

Reed-Solomon codes are decrypted iteratively and then checked

for correctness by comparingH(𝑟 ) with ℎ. More information on

the design of Ramstake can be found in [24], the parameters of the

Ramstake instantiations can be found in Table 1. In this paper we

will focus on the high security variant Ramstake-756839.

2.6 Failures

Both Mersenne-756839 and Ramstake have a small probability of

decryption failures, in which the keys are not transmitted correctly.

A ciphertext is rejected if the number of errors introduced by the

xor operations with consecutively 𝑆 [0 : |𝑟𝑒𝑐𝑐 |] and 𝑆 ′ [0 : |𝑟𝑒𝑐𝑐 |]
cannot be corrected by the error correcting code.

In the case of Ramstake, a failure occurs when none of the

𝜈 codewords could be decoded. The 𝑘th codeword cannot be

decoded if hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (𝑒) > 𝑡 , where 𝑒 = 𝑆 ⊕ 𝑆 ′ =

((𝑎𝑐𝐺 + 𝑎𝑑) ⊕ (𝑎𝑐𝐺 + 𝑏𝑐)).

Algorithm 4: Ramstake.Encode(𝑚)
1 𝑒 = enc𝑅𝑆 (𝑚)
2 𝑚ecc = 0

3 for 𝑖 = 0 to 𝜈 − 1 do
4 𝑚ecc += 𝑒 · 2𝑖 𝑙𝜈
5 ℎ = H(𝑚)
6 return𝑚ecc, ℎ

Algorithm 5: Ramstake.Decode(𝑚ecc, ℎ)
1 for 𝑖 = 0 to 𝜈 − 1 do
2 𝑚 = dec𝑅𝑆

(
𝑚ecc [𝑖 𝑙𝜈 : (𝑖 + 1) 𝑙𝜈 − 1]

)
3 if ℎ == H(𝑚) then
4 return𝑚

5 return ⊥

2.7 Slice-and-Dice attack

The Slice-and-Dice attack, introduced by Beunardeau et al. [7], is a

method where the secret key is partitioned into random parts from

which a lattice is constructed. If the partitioning fulfills a certain

property, then the secrets can be found using the shortest vectors in

the lattice. The bottleneck is guessing a partitioning which fulfills

this property, and requires a number of guesses exponential in the

Hamming weight of the secrets. The approach was later analyzed

and refined by De Boer et al. [13].

The original procedure by Beunardeau et al. was applied to

a single-bit encryption scheme. We assume as input the public

key 𝑝𝑘 := (𝐺,𝐻 = 𝑎𝐺 + 𝑏 mod 𝑝). Consider the binary string

representation of the sparse integer 𝑎. One can partition this string

into multiple parts, each representing a substring starting at bit

position 𝑝𝑖 . Interpreting the 𝑖th substring 𝑎[𝑝𝑖 : 𝑝𝑖+1] as an integer

𝑋𝑖 gives a representation of the sparse integer as 𝑎 =
∑
𝑖 2
𝑝𝑖𝑋𝑖 .

Consider a balanced partition, i.e., all parts have similar bit length,

𝑃 := {𝑝1, 𝑝2, ..., 𝑝𝑘 }, 𝑝𝑖 < 𝑝𝑖+1, 𝑝𝑖 ∈ [0, 𝑛) of 𝑎 (respectively 𝑄 =

{𝑞1, 𝑞2, ..., 𝑞𝑙 } of 𝑏). Then we consider the following lattice:

L𝑎,𝑏,𝐻 =

{
(𝑋1, ..., 𝑋𝑘 , 𝑌1, ..., 𝑌𝑙 )

���� (5)∑︁𝑘

𝑖=1
2
𝑝𝑖𝑋𝑖𝐺 −

∑︁𝑙

𝑗=1
2
𝑞 𝑗𝑌𝑗 ≡ 𝐻 mod 𝑝

}
. (6)

The lattice defined in Equation (5) contains vectors representing

the secrets. Furthermore it contains malicious vectors of the form

(0, .., 2𝑝𝑖+1−𝑝𝑖 ,−1, 0, 𝑌1, ..., 𝑌𝑘 , ..., 0) , such that

∑𝑘
𝑗 𝑌𝑗 = 𝐻 . De Boer

et al. show that these vectors have norm about 2
|𝑃𝑖 | , 2 |𝑄𝑖 |

for parts

𝑃𝑖 , 𝑄𝑖 . They use an heuristic due to Gamma and Nguyen [15] to

show that the malicious vectors are not the shortest vector, if and

only if the size of the parts is larger than 𝑛/𝑑 + Θ(log𝑛), where
𝑑 ≈ 2𝜔 is the rank of the lattice. Consider a balanced partition of

size𝜔 where each part has bit length 𝑛/𝜔 . Since the malicious vector

has length only 𝑛/2𝜔 + 𝜃 (log𝑛), the shortest vector represents the
secrets only, if all ones in the binary expansion fall into the lower

𝑛/2𝜔 bits of each part. Therefore, an intuitive argument suggests,

that sampling random partitions results in a successful attack if

all ones of the secret fall into the lower half of each part. In the

following we denote a part as correct, if it represents a subset of the



binary expansion of a secret and if all its ones are positioned in the

lower half of the part. A partition is correct, if all parts are correct.

De Boer et. al gave a precise analysis and bound the fraction 𝑟

of the part containing positions of ones that would allow to extract

the secret using a lattice reduction. The exact value depends on the

rank of the reduced lattice and is omitted here (see [13] for details).

For the sake of simplicity assume this fraction to be 𝑟 ≈ 𝑛/2𝜔.
Let 𝑘 = 𝑙 = 𝜔 be the number of parts, then the number of correct

positions is 𝑘𝑟/𝑛 for 𝑎 and 𝑙𝑟/𝑛 for 𝑏. For a randomly chosen partition

the probability of being correct is about:(
𝑘𝑟

𝑛

)𝜔
·
(
𝑙𝑟

𝑛

)𝜔
≈
(
𝑘𝑙

(2𝜔)2

)𝜔
=

(
1

2

)
2𝜔

. (7)

It follows that the expected number of guesses to perform the attack

is𝑂 (22𝜔 ). The groverization of the Slice-an-Dice attack, as initially

suggested by Beunardeau et al. [7] and later refined by Tiepelt and

Szepieniec [25], may improve the number of required guesses by a

square root to 𝑂 (2𝜔 ).
Beunardeau et al. [7, Sec 2.2, Remark 1] generalized the approach

to imbalanced partitions tolerating parts with larger norms and oth-

ers with smaller norm. This can be achieved by scaling all parts rela-

tive to their size. Let𝐾max =𝑚𝑎𝑥𝑖 ( |𝑅𝑖 |) , 𝑅𝑖 ∈ {𝑃1, ..., 𝑃𝑘 , 𝑄1, ..., 𝑄𝑙 }
denote the bit length of the largest part. Then the scaling parameter

is defined as 𝜅𝑃𝑖 = 𝐾max − |𝑃𝑖 | (respectively for𝑄𝑖 ). A scaled vector

in the lattice is of the form (𝜅𝑃1𝑋1, ..., 𝜅𝑃𝑘𝑋𝑘 , 𝜅𝑄1
𝑌1, ..., 𝜅𝑄𝑙

𝑌𝑙 ). Con-
sider the norm of a malicious vector resulting from a part of small

bit length. The technique ensures that its norm is scaled to exceed

the norm of vector resulting from a part with large bit length which

has is ones only in the lower half.

In general, the attack in Algorithm 6 aims to find a partitioning

for 𝑎, 𝑏 such that the norm of the resulting vectors is small (e.g.

Figure 1), in particular such that each one of the secret falls into

the lower half of a part. For the analyzed variant of Ramstake this

results in about 2
256

guesses to find a correct partition. We will show

that our cryptanalytic approach is able to identify the positions of

the secrets sufficiently good to construct a correct partitioning in

about 2
92) classical guesses and thus about 2

46
quantum guesses.

Algorithm 6: SliceAndDice(𝑝𝑘,𝐺, 𝑝)
1 while True do

2 𝑃,𝑄
$←− Z2𝜔

𝑛

3 𝐵 ← construct basis for L𝑎,𝑏,𝐻 from 𝑃,𝑄

4 𝐵∗ ← 𝐿𝐿𝐿(𝐵)
5 if ∃𝑏∗𝑎, 𝑏∗𝑏 ∈ 𝐵

∗
s.t. 𝑏∗𝑎𝐺 + 𝑏∗𝑏 = 𝑝𝑘 then

6 return 𝑏∗𝑎, 𝑏
∗
𝑏

3 FAILURE ATTACK

In the following section, we will focus our attention to Ramstake.

We assume that the adversary has obtained 𝑁 decryption failures

and their corresponding integers (𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) ), 1 ≤ 𝑗 ≤ 𝑁 , corre-

sponding to a fixed secret key (𝑎, 𝑏). A failure indicates that all 𝜈

codewords in a ciphertext are decoded incorrectly. We will denote

the number of errors in the 𝑘th codeword of the 𝑗 th ciphertext with

msblsb

66 · 217130 · 2966 · 20

msblsb

1 · 2245 · 2179 · 262 · 20

Figure 1: Partitioning of binary string resulting in either short or

large vectors.

Table 2: Probabilities of values of hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐 )

hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐) 0 1 2 3 4

probability 70.67% 24.67% 4.16% 0.44% 0.04%

𝐹 𝑗,𝑘 , where

𝐹 𝑗,𝑘 = hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ]

(
(𝑎𝑐 ( 𝑗 )𝐺 + 𝑎𝑑 ( 𝑗 ) ) ⊕ (𝑎𝑐 ( 𝑗 )𝐺 + 𝑏𝑐 ( 𝑗 ) )

)
,

so that a codeword is incorrectly decoded if 𝐹 𝑗,𝑘 > 𝑡 .

In the following derivation, we will first show that

hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐
( 𝑗 ) ) is a reasonable indicator for the

value of 𝐹 𝑗,𝑘 when one only has knowledge of 𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) and 𝑏𝑖 .
Then, we will use this to construct a maximum likelihood estimator

to estimate the probability of the bits of 𝑎 and 𝑏.

3.1 Properties of the error bits

We will assume that 𝑏𝑖 = 𝑥 and that we know 𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) . We will

split the value of 𝐹 𝑗,𝑘 into a term that depends on 𝑏𝑖 and a term

with no dependency on 𝑏𝑖 .

Heuristic 3.1. The number of errors 𝐹 𝑗,𝑘 for a uniform random

𝐺 ←U(Z𝑝 ) and low Hamming weight (𝑎, 𝑏, 𝑐, 𝑑) ← HW𝜔 (Z𝑝 )
is approximately the same as the sum of errors for (0, 2𝑖𝑏𝑖 , 𝑐, 𝑑) and
(𝑎, 𝑏 − 2𝑖𝑏𝑖 , 𝑐, 𝑑), or:

𝐹 𝑗,𝑘 = hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] ((𝑎𝑐𝐺 + 𝑎𝑑) ⊕ (𝑎𝑐𝐺 + 𝑏𝑐)) (8)

≈ ©­«
hw

8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐)

+ hw8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ]

(
(𝑎𝑐𝐺 + 𝑎𝑑) ⊕ (𝑎𝑐𝐺 + (𝑏 − 2𝑖𝑏𝑖 )𝑐)

)ª®¬
(9)

We justify the heuristic as follows: one can easily see that for

𝑏𝑖 = 0, this heuristic is exact. For𝑏𝑖 = 1, the heuristic is exact if none

of the nonzero bytes in (2𝑖𝑏𝑖𝑐) coincides with the nonzero bytes of(
(𝑎𝑐𝐺 + 𝑎𝑑) ⊕ (𝑎𝑐𝐺 + (𝑏 − 2𝑖𝑏𝑖 )𝑐)

)
in the range [𝑘𝑙𝑐 : (𝑘 + 1)𝑙𝑐 ]. In

the following reasoning, we will estimate the distribution of hw
8

for both terms, from which we will argue that overlaps are rare.

First, the number of nonzero bits of (2𝑖𝑏𝑖𝑐) is 128 out of 756,839
bits, which results in an average byte hamming weight of under

0.345 bytes per codeword. More precisely, the distribution of Ham-

ming weights was determined experimentally as given in Table 2.

Secondly, we estimated the average byte Hamming weight of(
(𝑎𝑐𝐺 + 𝑎𝑑) ⊕ (𝑎𝑐𝐺 + (𝑏 − 2𝑖𝑏𝑖 )𝑐)

)
empirically by generating 1024

samples and obtained an average Hamming weight of 80.68, mean-

ing that on average 80.68 out of 255 bytes, or 31%, are erroneous.

The probability of one collision, and thus an error of one in our

heuristic, can then be roughly approximated as the probability of

having a certain number of bits in the first term, times the prob-

ability of a collision due to the second term, which can be made

explicit as:



∑︁
𝑖

0.31 · 𝑖 · 𝑃
[
hw

8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐) = 𝑖

]
(10)

This gives roughly an error in 10% of the cases. However, the

heuristic will only be off with a small number.

Heuristic 3.2. For estimating 𝐹 𝑗,𝑘 calculated using a uniform

random 𝐺 ← U(Z𝑝 ) and low Hamming weight (𝑎, 𝑏, 𝑐, 𝑑) ←
HW𝜔 (Z𝑝 ) , knowledge of the tuple (0, 2𝑖𝑏𝑖 , 𝑐, 𝑑) is as good as knowl-
edge of the Hamming weight hw

8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐) , or:

𝑃

[
𝐹 𝑗,𝑘 | 𝑏𝑖 = 𝑥, {𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) } 𝑗=1..𝑁

]
(11)

≈ 𝑃
[
𝐹 𝑗,𝑘 | hw8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑥𝑐)

]
(12)

Following Heuristic 3.1, 𝐹 𝑗,𝑘 can be split in two parts:

hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐) and hw8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] ((𝑎𝑐𝐺 +𝑎𝑑) ⊕ (𝑎𝑐𝐺 + (𝑏−
2
𝑖𝑏𝑖 )𝑐)). Information about the tuple (0, 2𝑖𝑏𝑖 , 𝑐, 𝑑) can be used to

fully determine the first part, while the latter part has an unknown

term 𝑎 or 𝑏 − 2𝑖𝑏𝑖 in each of its terms. We argue that for this reason

the tuple (0, 2𝑖𝑏𝑖 , 𝑐, 𝑑) does contain negligible information about

the second term. From this assumption follows that knowledge of

the tuple (0, 2𝑖𝑏𝑖 , 𝑐, 𝑑) gives the same information as knowledge

about the Hamming weight hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑏𝑖𝑐).

While these heuristics are clearly not exact, we will see that they

are sufficiently close for our purposes.

3.2 Maximum likelihood estimation

We will derive an estimator for the probability that the 𝑖th bit of 𝑏

equals 𝑥 , which can be expressed as follows:

𝑃

[
𝑏𝑖 = 𝑥 | {𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) } 𝑗=1..𝑁 , {𝐹 𝑗,𝑘 > 𝑡} 𝑗=1..𝑁 ,𝑘=1..𝜈

]
. (13)

To obtain this estimator, we will first split the influence of the

various error terms 𝐹 𝑗,𝑘 using Bayes’ theorem. Then we will derive

an expression which can be used to estimate 𝑏𝑖 using the value 𝑦 =

hw
8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑥𝑐 ( 𝑗 ) ) for each decoding failure. Finally we use

experimental measurements to calculate the required probability

distributions.

The first step proceeds as follows:

𝑃

[
𝑏𝑖 = 𝑥 | {𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) } 𝑗=1..𝑁 , {𝐹 𝑗,𝑘 > 𝑡} 𝑗=1..𝑁 ,𝑘=1..𝜈

]
(14)

=𝑃 [𝑏𝑖 = 𝑥] ·
𝑃
[
{𝐹 𝑗,𝑘 > 𝑡} 𝑗=1..𝑁 ,𝑘=1..𝜈 | 𝑏𝑖 = 𝑥, {𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) } 𝑗=1..𝑁

]
𝑃
[
{𝐹 𝑗,𝑘 > 𝑡} 𝑗=1..𝑁 ,𝑘=1..𝜈 | {𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 ) } 𝑗=1..𝑁

]
(15)

=𝑃 [𝑏𝑖 = 𝑥]
𝑁∏
𝑗=1

𝜈∏
𝑘=1

𝑃
[
𝐹 𝑗,𝑘 > 𝑡 | 𝑏𝑖 = 𝑥, 𝑐 ( 𝑗 ) , 𝑑 ( 𝑗 )

]
𝑃
[
𝐹 𝑗,𝑘 > 𝑡

] . (16)

In the last equation, we assume that individual failures are indepen-

dent, and that knowledge of 𝑐 ( 𝑗 ) and 𝑑 ( 𝑗 ) without any knowledge

of 𝑎 or 𝑏 does not help in determining the failure probability of a

codeword.

Figure 2: Functionmapping bit positions to the ratio 𝑃𝑟 [𝑏𝑖=1]/𝑃𝑟 [𝑏𝑖=0].

In the second step we use Heuristic 3.2, which gives:

=𝑃 [𝑏𝑖 = 𝑥]
𝑁∏
𝑗=1

𝜈∏
𝑘=1

𝑃

[
𝐹 𝑗,𝑘 > 𝑡 | hw8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑥𝑐 ( 𝑗 ) ) = 𝑦

]
𝑃
[
𝐹 𝑗,𝑘 > 𝑡

]
(17)

Looking at the last term, we can use Bayes’ again to get the follow-

ing:

=𝑃 [𝑏𝑖 = 𝑥]
𝑁∏
𝑗=1

𝜈∏
𝑘=1

𝑃

[
hw

8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑥𝑐 ( 𝑗 ) ) = 𝑦 | 𝐹 𝑗,𝑘 > 𝑡

]
𝑃 [hw8

[𝑘𝑙𝑐 :(𝑘+1)𝑙𝑐 ] (2
𝑖𝑥𝑐 ( 𝑗 ) ) = 𝑦]

(18)

Both probabilities in the fraction can be estimated for each possible

𝑦 by generating enough sample ciphertext with the right property

and reconstructing the probability distribution experimentally.

A similar derivation can be made for estimating the bits of 𝑎𝑖 , by

replacing the 𝑏 and 𝑐 ( 𝑗 ) terms with 𝑎 and 𝑑 ( 𝑗 ) terms respectively

and assuming that knowledge of 𝑎𝑖 does not give any practical

knowledge of 𝑎𝑐𝐺 .

4 PARTITIONING

We will use the estimates 𝑃 [𝑏𝑖 = 𝑥], 𝑥 ∈ {0, 1} for all bit positions
of each secret 𝑎, 𝑏 to derive intervals that contain positions of a one

with high probability. The intervals will be classified and serve as

additional input for a reduced version of the Slice-and-Dice attack

to significantly improve the complexity. Subsequently we analyze

the success probability of the reduced attack.

Throughout this section we will denote bit ranges as 𝛽𝑖 = [𝑏𝑠,𝑖 :
𝑏𝑒,𝑖 ], where 𝑏𝑠,𝑖 denotes the least and 𝑏𝑒,𝑖 the most significant bit.

The intervals are distinct and numbered in ascending order with

respect to the starting positions. Each bit range will be labeled based

on some properties, i.e. 𝛽𝜁
𝜑,𝑖

, where 𝜁 ∈ {correct, sample, empty}
represents a classification label. The subscript 𝜑 ∈ {𝑃,𝑄} will
denote the association with a partition 𝑃 for secret 𝑎 and 𝑄 for

secret 𝑏. The set of intervals of a certain type will be denoted as 𝐵𝜁𝜑 .

The label ·may be used to as a placeholder associated with a generic

set or bit range. Finally, we consider the value 𝛿𝑖 := 𝑏𝑠,𝑖+1 − 𝑏𝑒,𝑖 as
the empty space between the intervals 𝛽𝑖 and 𝛽𝑖+1.



4.1 Extraction of bit ranges

First, we identify bit ranges over the estimated probabilities using a

heuristic procedure andmerge bit ranges that are close to each other.

Then we classify each range based on their width and label them

accordingly. Each step is performed individually for the estimates

of the secret 𝑎, 𝑏.

Identification. We consider a function that maps a bit position 𝑏𝑖
to the fraction 𝜚𝑖 = 𝑃𝑟 [𝑏𝑖=1]/𝑃𝑟 [𝑏𝑖=0]. Figure 2 shows an example of

the output of such a function for a subset of bits overlaid with the

positions of ones in the secret 𝑎. The positions where 𝜚𝑖 is large

are close to a position of a one with high probability. We apply

a heuristic procedure to extract bit ranges around these maxima:

First, we segment the function image by identifying all peaks over

a certain threshold. Then we join all peaks in the neighborhood

of a local maxima to a single bit range. In order to reflect that

the positions of ones are closer to higher peaks, all bit ranges are

reduced in width relative to their height. As a result, bit ranges

featuring higher peaks are more narrow, bit ranges of lower peaks

are wider. The following steps describe the procedure in detail:

(1) Threshold segmentation: Let 𝑇 be the average of all proba-

bility ratios 𝜚𝑖 . We identify all positions 𝑖 such that the ratio

is larger than the threshold: 𝜚𝑖 ≥ 𝑇 . Applying this step to

all estimates results in segmented peaks of the function as

shown in Figure 8 of the Appendix.

(2) Bit ranges:We join all peakswith an offset of at most 𝑛/(10𝜔 )
to form a single interval 𝛽𝑖 , beginning at the least and end-

ing at the most significant peak. The value 𝑛/(10𝜔 ) has been
chosen due to the average size 𝑛/𝜔 of a balanced partition.

(3) Width reduction: We reduce the width of all bit ranges

relative to the height of their local maxima. Let 𝑇𝑖 = 𝜏 ·∑𝑏𝑒,𝑖

𝑗=𝑏𝑠,𝑖
𝜚 𝑗/|𝛽𝑖 | be a local threshold for 𝛽𝑖 . The bounds 𝑏𝑠,𝑖 , 𝑏𝑒,𝑖

of each bit range are shifted towards the local maxima until

the respective 𝜚𝑖 ≥ 𝑇𝑖 . This step reduces the overall area

covered by the bit ranges and gives more accurate intervals

around the local maxima. We chose 𝜏 = 1/32 as a heuristic
value. Smaller values may give better partitioning results

but increase the risk of excluding a potential position of a

one.

We note that if a position of a one in the secret is outside of

the derived bit range, e.g. as a result of a incorrect estimation,

the approximation of the parts and the following application of

the reduced Slice-and-Dice attack will not be successful with high

probability. However, our empirical results in Section 5.2 suggest

that the heuristic values have been chosen conservatively enough

to circumvent this possibility.

Merging. As an intermediate step to reduce the overall number

of bit ranges, we merge two intervals 𝛽𝑖 , 𝛽𝑖+1 if the later is followed
by a large empty space. Specifically, if the trailing space 𝛿𝑖+1 is

larger than the range covered by the combination of 𝛽𝑖 , 𝛿𝑖 and 𝛽𝑖+1,
which corresponds to 𝑏𝑒,𝑖+1 − 𝑏𝑠,𝑖 ≤ 𝛿𝑖+1, then both intervals are

merged into a single bit range 𝛽new,𝑖 = [𝑏𝑠,𝑖 , 𝑏𝑒,𝑖+1]. An example

for this procedure is shown in Figure 3.

msblsb

𝛿𝑖+1𝛽𝑖+1𝛿𝑖𝛽𝑖

msblsb

new 𝛿𝑖new 𝛽𝑖

Figure 3: Merging process for bit ranges. White boxes denote posi-

tions that are zero and gray box mark ranges that enclose a one.

Algorithm 7: ReducedSnD(𝑝𝑘,𝐺, 𝑝, 𝐵𝑃 , 𝐵𝑄 )

1 𝐵correct
𝑃

, 𝐵sample

𝑃
, 𝐵empty

𝑃
← 𝐵𝑃

2 𝐵correct
𝑄

, 𝐵sample

𝑄
, 𝐵empty

𝑄
← 𝐵𝑄

3 𝑃 ← [𝑝𝑠,𝑖 for 𝑝 ∈ 𝐵correct𝑃
]

4 𝑄 ← [𝑞𝑠,𝑖 for 𝑞 ∈ 𝐵correct𝑄
]

5 while True do

6 𝑃 ′
$←−
{
𝑥 | 𝑥 ∈ (𝐵empty

𝑃
∪ 𝐵sample

𝑃
)
}𝑘−𝑘 ′

7 𝑄 ′
$←−
{
𝑥 | 𝑥 ∈ (𝐵empty

𝑄
∪ 𝐵sample

𝑄
)
}𝑙−𝑙 ′

8 𝐵 ← construct basis for L𝑎,𝑏,𝐻 from 𝑃 ∪ 𝑃 ′, 𝑄 ∪𝑄 ′
9 𝐵∗ ← 𝐿𝐿𝐿(𝐵)

10 if ∃𝑏∗𝑎, 𝑏∗𝑏 ∈ 𝐵
∗
s.t. 𝑏∗𝑎𝐺 + 𝑏∗𝑏 = 𝑝𝑘 then

11 return 𝑏∗𝑎, 𝑏
∗
𝑏

Classification. The bit ranges are classified based on their width

relative to the trailing empty space and labeled accordingly. Further-

more, we identify a set of intervals 𝐵empty
. Consider the bit ranges

𝛽𝑖 , 𝛽𝑖+1. If |𝛽𝑖 | ≤ 𝛿𝑖 , then the interval [𝑏𝑠,𝑖 : 𝑏𝑒,𝑖 + |𝛽𝑖 |] contains
positions of ones only in its lower half. It is classified as correct and

added to the set 𝐵correct· . The space proceeding the 𝑖th and preced-

ing the (𝑖 + 1)th interval, [𝑏𝑒,𝑖 + |𝛽𝑖 | : 𝑏𝑠,𝑖+1] does not contain any

one with high probability and is added to set 𝐵empty

· . If |𝛽𝑖 | > 𝛿𝑖 ,

then we can not identify an interval that contains ones only in its

lower half. Therefore, the bit range is added to the set 𝐵sample

· . Its

proceeding empty space is 0. This classification is performed for all

intervals 𝛽𝑖 for both secrets.

4.2 Reduced Slice-and-Dice Attack

We consider a variant of the Slice-and-Dice attack that uses the addi-

tional knowledge from the sets 𝐵correct𝜑 , 𝐵sample

𝜑 , 𝐵empty

𝜑 , 𝜑 ∈ {𝑃,𝑄}
to derive partitions of size 𝑘, 𝑙 for the secrets 𝑎, 𝑏. The first sets of

intervals 𝐵correct𝜑 resembles correct parts as introduced in Section 2.7.

The second set of intervals 𝐵sample

𝜑 alongside the intervals 𝐵empty

𝜑

enclose an open space, e.g. contains ones in its upper and lower

half and thus needs to be partitioned in the attack. Therefore, a

partition is constructed from fixed correct parts, and from randomly

sampling the remaining parts in the open space. The explicit algo-

rithm for the reduced variant of the Slice-and-Dice attack is given

in Algorithm 7.

We define a partition as follows: Assume |𝐵correct
𝑃

| = 𝑘′. Then
𝐵correct
𝑃

defines a set of 𝑘′ correct parts, i.e. the starting positions of

the intervals 𝛽correct
𝑖

∈ 𝐵correct
𝑃

, which contain positions of ones only

in their lower half. The remaining𝑘−𝑘′ parts are sampled uniformly

random from the intervals 𝐵empty

𝑃
∪ 𝐵sample

𝑃
. Because the intervals

enclose all secret positions this procedure guarantees the existence

of a correct partition. Note that since the intervals are distinct and

the parts derived from the correct intervals do not interfere with the
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[𝑏 : 𝑏 + 𝛿𝑖 ]𝛽
sample

𝑖 𝑏1
𝛽
𝑒𝑚𝑝𝑡𝑦

𝑖−1−𝑒𝑝

correct part

#correct pos: 𝑗 + 𝑒𝑝 = 𝑒𝑝 + 1

msblsb

[𝑏 : 𝑏 + 𝛿𝑖 ]
𝑒 + 𝑏𝛽

sample

𝑖 𝑏1
𝛽
empty

𝑖−1

correct part

#correct pos: 𝑒 + 𝑏 − 𝑗 = 𝑒

Figure 4: Number of correct positions for 𝑗 = 1 and 𝑗 = 𝑏 for a

successful Slice-and-Dice attack.

others, every partition features at least 𝑘′ correct parts. As in the

original attack the partition is correct if the remaining 𝑘 − 𝑘′ parts
are correct too. The same procedure can be applied to the intervals

for partition 𝑄 .

In general, the exact number 𝑘 −𝑘′ (resp. 𝑙 − 𝑙 ′) of enclosed ones
is unknown, thus one may start with sampling a low number of

random parts, e.g., |𝐵sample

𝑃
| (resp. |𝐵sample

𝑄
|) many, and gradually

increase these until the secrets are recovered. A similar approach

was suggested by De Boer et al. [13, Sec 5.3] in the original attack.

4.3 Analysis

In the followingwe examine the success probability that a uniformly

random partition is correct. To that end, we give a formula to count

the expected number of correct starting positions for a generic

sampling range and determine the optimal width for sampling in

the empty interval. Finally, we instantiate our result to derive the

overall success probability of the attack.

Number of correct positions. For the sake of simplicity consider

an interval 𝛽sample

𝑖
:= [1 : 𝑏] of width 𝑏 and let 𝛽empty

𝑖−1 := [−𝑒𝑝 : 0]
be the preceding empty interval of width 𝑒𝑃 . Let 𝑝𝑖 be a starting

position and suppose 𝑗 is the position of a one. Then 𝑗 is in the lower

half of the part if the offset to 𝑝𝑖 is at most as large as the trailing

space, hence if 𝑗−𝑝𝑖 ≤ 𝑏− 𝑗 +𝑒 . Since the maximal offset is 𝑗 +𝑒𝑝 the
number of correct positions can be bounded by𝑚𝑖𝑛( 𝑗 +𝑒𝑝 , 𝑏− 𝑗 +𝑒).

Bounding 𝑒𝑝 . Large values of 𝑒 and 𝑒𝑝 result in a larger number

of correct positions 𝑚𝑖𝑛( 𝑗 + 𝑒𝑝 , 𝑒 + 𝑏 − 𝑗). However, the trailing
empty space is bounded as 𝑒 < 𝑏 where as 𝑒𝑝 may be significantly

larger. Therefore, we bound the maximal width of the preceding

empty space to be sampled as 𝑒𝑝 < 2𝑏: Consider the number of

correct positions 𝑝𝑖 for all possible values 𝑗 . This amount is maximal

if 𝑗 is located in the center of the interval [−𝑒𝑝 : 𝑏 + 𝑒], resulting
in (𝑏+𝑒𝑝+𝑒 )/2 correct positions. Vice versa, the value is minimal on

the boundaries of the interval [1 : 𝑏]. In example, for 𝑗 = 1 the

correct starting positions are [−𝑒𝑝 : 1], their number is bounded as

𝑚𝑖𝑛(𝑒𝑝 +1, 𝑏 +𝑒 +1) ≤ 𝑚𝑖𝑛(𝑒𝑝 +1, 2𝑏). For 𝑗 = 𝑏 a part is correct if it
starts in the interval [𝑏−𝑒 : 𝑏], resulting in𝑚𝑖𝑛(𝑒𝑝 +𝑏, 𝑒) = 𝑒 correct
starting positions. Therefore, the maximal number of preceding

positions to be sampled can be bounded by 𝑒𝑃 ≤ 2𝑏. The two

minimal cases are shown in Figure 4.

Expected number of guesses. The expected number of cor-

rect positions for the 𝑖th interval is 𝐸 [#correct positions|𝑖] =

1/𝑏∑𝑏𝑗=1𝑚𝑖𝑛( 𝑗 + 𝑒𝑝 , 𝑏 − 𝑗 + 𝑒). The success probability to sample a

msblsb

#correct positions

index

𝑏/23𝑏/47𝑏/83𝑏/4𝑏/2𝑏/4

𝑏 + 𝑏/2𝑏3𝑏/45𝑏/8𝑏/2𝑏/41−𝑏/4

Figure 5: Distribution of correct positions for 𝑗 ∈ [1 : 𝑏 ] with 𝑒 = 𝑏/2
and 𝑒𝑝 = 𝑏/4.

correct partition follows as

𝜌 =

∑
𝑖 𝐸 [#correct positions|𝑖]∑
𝑖 ( |𝛽

sample

𝑖
| + |𝛽empty

𝑖−1 |)
. (19)

Finally, suppose𝜔𝑎+𝜔𝑏 are the numbers of ones located in 𝐵sample

𝑃
∪

𝐵sample

𝑄
. Then the expected number of guesses is 1/𝜌𝜔𝑎+𝜔𝑏

.

Instantiating. We examine the success probability for the average

size of 𝑒 and 𝑒𝑝 that result from our empirical results in Section

5, with 𝑒 ≈ 𝑏/2 and 𝑒𝑝 ≈ 𝑏/4. Such an interval has a sampling

range of |𝛽empty

𝑖+1 | + |𝛽sample

𝑖
| = (5𝑏 )/4 bits. The number of correct

starting positions for 𝑗 are distributed over the range [1 : 𝑏] as
𝑏/4...3𝑏/4...7𝑏/8...3𝑏/4...𝑏/2, depicted in Figure 5. The probability for a

uniformly random part to be correct follows as:

𝐸

[
#

correct

positions

����𝑖] = 1

𝑏

©­­«
𝑏
2
−1∑︁

𝑗=𝑏
4

𝑗 + 2
3𝑏
4
−1∑︁

𝑗=𝑏
2

𝑗 + 2
7𝑏
8
−1∑︁

𝑗= 6𝑏
8

𝑗 + 7𝑏

8

ª®®¬ (20)

=
39𝑏

80

+ 3

8

(21)

𝜌𝑖 =
39𝑏/80 + 3/8

5𝑏/4 =
39

80

+ 3

10𝑏
(22)

This results in an overall success probability of about (39/80)𝜔𝑎+𝜔𝑏
.

5 ATTACK ON RAMSTAKE

We demonstrate the feasibility of our maximum likelihood estima-

tion by applying our attack to the Ramstake-756839 KEM given in

Section 2.5. The attack is split into a precomputation phase, collect-

ing the decryption failures, estimating the secrets and evaluating

the success probability of the reduced Slice-and-Dice attack. All

phases can be computed in a few dozens of hours. However, our

code was not optimized for speed and many parts can be paral-

lelized.

The implementation
2
utilizes the Ramstake code submitted to the

first round of the NIST post-quantum competition [1]. We modified

the error correcting code by reducing the number of codewords to

𝜈 = 1 to artificially increase the probability of a decryption failure.

The increased failure probability is about 2
−13

for the simplified

Ramstake KEM. This simplification does not, to the best of our

knowledge, give any advantage to an adversary except for the

efficient generation of failures. Finally, the implementation also

generates diagrams visualizing the attack, of which we present a

selection in this work.

5.1 Implementation

The demonstrator takes as input the public key 𝑝𝑘 := (𝑃𝐷 , sd𝐺 )
and outputs an estimation of the secret key 𝑠𝑘 := (𝑎, 𝑏) as well
as the evaluation of the partitioning procedure. To collect failing

ciphertexts the demonstrator has access to a decryption oracle in

2
Our implementation is available at: https://github.com/mtiepelt/ramstake-failure-

attack

https://github.com/mtiepelt/ramstake-failure-attack
https://github.com/mtiepelt/ramstake-failure-attack


Figure 6: Partitioning of 𝐵correct
𝑃

parts as solid lines and sampling

range to guess the remaining parts from 𝐵sample
𝑃

∪ 𝐵empty
𝑃

.

Table 3: Empirical results for estimating secrets with 64 precompu-

tation samples.

decryp.

failures

𝐸 [#ones]
in 𝐵correct

𝐸 [#𝑝𝑎𝑟𝑡𝑠 ] 𝐸 [𝑃𝑟 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ] ]
per sampled part

quantum

steps

2
9

131 125 0.474 ≈ 2
68

2
10

161 95 0.477 ≈ 2
52

2
11

167 89 0.482 ≈ 2
48

2
12

169 88 0.482 ≈ 2
46

form of the modified Ramstake code that returns a ⊤ in case of

a successful key exchange and ⊥ in case of a decoding error or a

re-encryption failure. The latter cases are indistinguishable.

Precomputation. First, we generate a set of random decryption

failures and successes. The samples allow to estimate the probabili-

ties that a given bit position in 𝑎, 𝑏 causes more than 𝑡 error bytes in

the shared noisy secret 𝑆 resulting from the encryption with 𝑐, 𝑑 as

described in Equation (18). This step results in a look-up table map-

ping bit positions in 𝑐, 𝑑 to failure probabilities for each bit position

in the secret. The precomputation can be performed without access

to the decryption oracle and only needs to be computed once.

Collecting Decryption Failures. Next, we collect a set of decryp-

tion failures for the attacked secret key by querying the oracle with

random ciphertexts and keep those that lead to a decryption failure.

Estimation of secret bits. This step takes the decryption failures

and the table from the precomputation step as input and computes

the probability that a certain bit position in 𝑎, 𝑏 is zero or one. The

computation is following Equation (18) for different pairs of values

𝑎, 𝑑 ( 𝑗 ) and 𝑏, 𝑐 ( 𝑗 ) . The result are the probabilities 𝑃𝑟 [𝑏𝑖 = 1] and
𝑃𝑟 [𝑏𝑖 = 0] for each bit position 𝑖 .

Application of reduced Slice-and-Dice attack. The final step takes

as input the estimates and follows the procedure in Section 4.1 to

derive the sets of intervals 𝐵correct𝜑 , 𝐵sample

𝜑 and 𝐵empty

𝜑 . Our demon-

strator does not perform the actual lattice reduction. Instead it

takes the secret key 𝑎, 𝑏 as an additional input to evaluate if the

approximated intervals allow to derive a correct partitioning and

computes the respective success probability.

Figure 7: Outline of expected quantum steps to extract the secrets

from our estimates.

5.2 Empirical results

We applied our attack to multiple secrets generated pseudo-

randomly to allow deterministic verification. The precomputation

phase has been performed using 64 samples generated from the

seed c0ffee. An excerpt of our results is summarized in Table 3,

showing the average number of positions located in the intervals

𝐵correct, the expected number of parts to be sampled and the ex-

pected success probability for each part. Subsequently we give the

number of quantum steps to recover the secret key. Table 4 in the

Appendix gives a detailed overview.

Throughout our experiments all secret ones could be identified

either in correct or sample intervals. An example of the partitioning

is shown in Figure 6, where the correct parts are solid vertical

lines with the lower half is marked as dashed horizontal lines. The

sample range is enclosed by the numbered solid vertical lines. The

positions of the ones in the secret are added as vertical dashed lines

for verification purposes.

Complexity. The attack requires 2
64 · 212/6 = 2

74
decryption

queries to collect the failing ciphertexts. The factor 1/6 for the num-

ber of decryption failures arises from the existence of 6 failed code-

words in the original cipher while our estimates from the simplified

implementation use only a single codeword for each failure.

The precomputation and estimation of the secret grows linear in

the number of sample and decryption failures and can be neglected.

Our estimates allow to capture an average of 168 secret positions

in correct intervals, suggesting that at most 88 random parts have

to be sampled. For the average value of the preceding empty space

we have 𝐸 [𝑒𝑝 ] ≈ 𝐵/4, for the trailing empty space 𝐸 [𝑒] ≈ 𝐵/2,
thus supporting our analysis. The success probability follows as

𝜌 ≈ 0.484 resulting in an expected number of 2
92

classical guesses

or 2
46

quantum computational steps to extract the secret. Figure 7

shows the relation between the number of collected failures and

the quantum steps required to find the secret. In summary, we can

break the IND-CCA security of Ramstake using 2
74

classical queries

and 2
46

quantum computational steps.



It should be noted that this might be an infeasible number of

queries, which is why for evaluation in the NIST process, the at-

tacker is generally constrained to a maximum of 2
64

queries. Tech-

niques such as failure boosting [9], which increase the failure prob-

ability of ciphertexts and which have been applied to encryption

schemes based on the learning with errors problem, might reduce

the number of required decryption queries. Moreover, recent re-

sults [11] for these schemes show that information about previous

failures can be used to bootstrap the search for new failures. We

did not investigate if these techniques are applicable to Mersenne

prime schemes.

Implications on Mersenne-756839. The scheme diverges by the

error term
ˆ𝑑 , which introduces 𝜔 := 128 additional error positions.

We consider those insignificant compared to large number of about

2𝜔2
byte errors in each encoding. Therefore we assume that a

similar heuristic can be constructed allowing efficient estimation

of the secrets given access to decryption failures.

However, the error correcting code deployed by the Mersenne-

756839 cryptosystem has a failure probability of 2
−239

, thus making

it significantly more difficult to find decryption failures. While the

precomputation phase may be adapted with a smaller repetition

value 𝜒 , the actual attack phase seems infeasible.

6 CONCLUSION

In this work we developed a new cryptanalytic approach of ex-

ploiting decryption failures of Mersenne number cryptosystems.

In particular, we showed that failing ciphertexts can be used to

estimate the bit positions of the ones in the secret. We presented an

attack leveraging those failures and used our estimation to break

the IND-CCA security of the Ramstake cryptosystem. The anal-

ysis is based on two heuristic arguments which were supported

by empirical evaluations and allowed to derive a maximum like-

lihood estimator for the private key. Based on the estimator we

derive information about the secret to perform a Slice-and-Dice

attack with significantly reduced complexity. Our implementation

demonstrates the feasibility of the attack and shows that we can

reconstruct the secret key with approximately 2
74

queries to the

decryption oracle and about 2
46

quantum computational steps.
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Figure 8: Segmentation of function images based on a threshold.
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A FO-TRANSFORMATION

Using a post-quantum version [18] of the Fujisaki-Okamoto [14]

transformation, one can compile the IND-CPA secure encryption

e.g. described in Algorithms 1 to 3, into a IND-CCA secure KEM.

Let G,H ′ model random oracles, and let Encrypt(𝑝𝑘, 𝑟 ;ℎ𝑟 ) des-
ignate encrypting message 𝑟 using the public key 𝑝𝑘 where ℎ𝑟 is

used as a seed for all randomness, so that the Encryption function

becomes deterministic. Then, the key generation step remains the

same, while the Encapsulation and Decapsulation are described in

Algorithms 8 and 9 respectively.

Algorithm 8: FOEncaps(𝑝𝑘)

1 𝑟 ←U({0, 1}𝜆)
2 ℎ𝑟 ← G(𝑟 )
3 𝑐 ← Encrypt(𝑝𝑘, 𝑟 ;ℎ𝑟 )
4 𝐾 ←H ′ (𝑟 )
5 return (𝑐, 𝐾)

Algorithm 9: FODecaps(𝑠𝑘, 𝑝𝑘, 𝑐)
1 𝑟 ′ ← Decrypt(𝑠𝑘, 𝑐)
2 ℎ′𝑟 ← G(𝑟 ′)
3 if 𝑐 == Encrypt(𝑝𝑘, 𝑟 ′;ℎ′𝑟 ) then
4 𝐾 ←H ′ (𝑟 ′)
5 return ⊥

B RESULTS

Table 4 shows the complete list of empirical results of our attack for

multiple secret keys. For a growing number of decryption failures

the number of correct intervals decreases. However, the number of

position of ones in these intervals increases. Moreover the width of

the empty spaces increases, which improves the success probability

of the attack. The size of the set 𝐵sample
is significantly lower than

the number of enclosed positions of ones, suggesting that each

range encloses multiple secret bit positions.
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Table 4: Empirical results for estimating secrets with 64 precomputation samples.

seed

decryption

failures

|𝐵correct | |𝐵sample | #secret ones

in correct
𝐸 [ |𝛽𝑖 | ] 𝐸 [𝑒 ] 𝐸 [𝑒𝑝 ] 𝐸 [𝑃𝑟 [𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ] ]

per part

expected quantum

steps

𝑐14532 2
9

144 54 125 5036 2240 959 0.458 ≈ 2
74

𝑐14532 2
10

112 35 164 5019 2315 1167 0.4654 ≈ 2
51

𝑐14532 2
11

92 28 174 5467 2743 1249 0.4655 ≈ 2
46

𝑐14532 2
12

89 29 176 5098 2542 1206 0.4622 ≈ 2
45

195𝑏𝑐2 2
9

131 47 142 5140 2408 1325 0.4689 ≈ 2
62

195𝑏𝑐2 2
10

111 33 172 5078 2405 1238 0.4679 ≈ 2
46

195𝑏𝑐2 2
11

98 33 166 5261 2487 1386 0.464 ≈ 2
50

195𝑏𝑐2 2
12

91 33 168 5182 2482 1422 0.4695 ≈ 2
48

0𝑑86𝑎4 2
9

144 53 136 4506 2256 1113 0.4729 ≈ 2
65

0𝑑86𝑎4 2
10

111 43 155 4620 2580 1137 0.4869 ≈ 2
53

0𝑑86𝑎4 2
11

90 42 154 4760 2924 1261 0.4942 ≈ 2
52

0𝑑86𝑎4 2
12

89 42 154 4650 2971 1118 0.4924 ≈ 2
52

170784 2
9

134 53 120 5140 2726 1268 0.4905 ≈ 2
70

170784 2
10

117 41 151 4884 2502 1346 0.4878 ≈ 2
55

170784 2
11

101 32 171 4962 2837 1584 0.5049 ≈ 2
42

170784 2
12

102 30 177 4835 2822 1676 0.5042 ≈ 2
39
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