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Abstract

Symmetric password-authenticated key exchange (sPAKE) can be seen as an extension of
traditional key exchange where two parties agree on a shared key if and only if they share
a common secret (possibly low-entropy) password. We present the first sPAKE protocol to
simultaneously achieve the following properties:

• only two exponentiations per party, the same as plain unauthenticated Diffie-Hellman key
agreement (and likely optimal);

• optimal round complexity: a single flow (one message from each party that can be sent
in parallel) to achieve implicit authentication, or two flows to achieve explicit mutual
authentication;

• security in the random oracle model, rather than ideal cipher or generic group model;

• UC security, rather than game-based.

Our protocol is a generalization of the seminal EKE protocol of Bellovin & Merritt (S&P 1992).
We also present a UC-secure 1-out-of-N oblivious transfer (OT) protocol, for random pay-

loads. Its communication complexity is independent of N , meaning that N can even be expo-
nential in the security parameter. Such a protocol can also be considered a kind of oblivious
PRF (OPRF). Our protocol improves over the leading UC-secure 1-out-of-N OT construction
of Masny & Rindal (CCS 2019) for all N > 2, and has essentially the same cost for N = 2.

The new technique underlying these results is a primitive we call programmable-once
public function (POPF). Intuitively, a POPF is a function whose output can be programmed
by one party on exactly one point. All other outputs of the function are outside of any party’s
control, in a provable sense.

Update: dos Santos et al. (Eurocrypt 2023) [SGJ23] showed that our POPF definition is
not strong enough to prove security of EKE against a man-in-the-middle. See Januzelli et al.
(Eurocrypt 2025) [JRX24] for a fixed POPF abstraction and EKE security proof.

1 Introduction

Password-authenticated key exchange (PAKE) was introduced by Bellovin & Merritt [BM92]. It
extends standard key exchange to ensure that only participants who hold a common password can
successfuly establish a key. As humans are largely incapable of remembering high-entropy secure
keys, the passwords come from a low-entropy distribution and are unsuitable as cryptographic key
material. PAKE seeks to bootstrap these low entropy passwords into cryptographically secure keys.

∗Oregon State University, {mcquoidi,rosulekm,royl}@oregonstate.edu
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Because passwords are low-entropy, an adversary can simply guess the correct password with non-
negligible probability. PAKE security says, roughly, that the only way to make one password guess
is to participate in one protocol session (i.e., the transcript leaves no avenue for offline guessing).

PAKE and its variants provide a significantly improved method for password-based authenti-
cation than the usual status quo, in which a user typically sends their cleartext password to the
server over an authenticated TLS session.

1.1 PAKE Background

In this work we focus on symmetric PAKE (sPAKE), where both participants hold the password
in the clear. Since this requirement is not a good fit for client-server authentication, asymmetric
PAKE (aPAKE) has also been proposed, which allows the server to hold only a hash digest of
the password. Any sPAKE can be efficiently transformed into an aPAKE via the transformation of
[HJK+18]. However, the usual security definition for aPAKE allows an attacker to perform offline
pre-computation, so that it learns user passwords “instantly” in the event of a server compromise
(think of a rainbow table for unsalted password hashes). In response, Jarecki, Krawczyk, and
Xu [JKX18] proposed strong asymmetric PAKE (SaPAKE) that requires pre-computation to
be useless before server compromise (analogous to salting password hashing).

Security definition, model. There are two competing paradigms attempting to capture the
intuitive security behind PAKE definitions. The game-based security model for PAKE was intro-
duced by Bellare et al. [BPR00], and is called the BPR framework (and exists in an extended
form as the AFP framework [AFP05]). To deal with the low-entropy nature of passwords, the
BPR framework assumes that passwords are chosen independently from a fixed distribution. This
fails to effectively model interesting, real-life relations between password choices and entry. Game-
based PAKE definitions were eventually superseded by simulation-based security models starting
with Boyko et al. [BMP00], with the universally-composable (UC) definition of [CHK+05] being
the standard and the one we consider in this work. The simulation-based definitions allow pass-
words to be chosen by an external environment, and therefore make no assumptions about their
distribution. The UC definitions are better suited to handle dependencies between passwords such
as mistypings or using similar passwords with different severs. Additionally, allowing the passwords
to be chosen by the environment gives us forward secrecy with no additional changes. For a full
discussion of the merits of simulation-based PAKE definitions, see [CHK+05].

Implicit/explicit authentication A (symmetric) PAKE protocol can give either implicit or
explicit authentication. In Canetti et al.’s [CHK+05] original PAKE functionality, under implicit
authentication, if the two participants do not share the same password (including the case where
an honest party mistypes their password, or an attacker fails to successfully guess the password)
then each of the parties outputs a key which looks random to the other. The parties may not
receive any notification that agreement has failed until they proceed to use their respective keys
and some later task fails. Under explicit authentication, an honest party learns immediately,
at the end of the PAKE instance, whether the agreement succeeded or not. In this work we focus
mostly on implicit authentication, since explicit authentication can be easily added with an extra
flow [BPR00, ABB+20] — see also Section 4.6.

Measuring round complexity We describe round complexity in terms of flows. A flow consists
of a message from each party, which can be sent sequentially in either order, or even simultaneously
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Scheme Security Assumption Setup Flows Comp (Total) Comm (P1/P2)

implicit authentication

SPAKE2 [AP05] BPR CDH RO, CRS 1 6f 2v 1G / 1G
SPAKE2 [ABB+20] leUC Gap-CDH RO, CRS 1 6f 2v 1G / 1G
KV-SPOKE [ABP15] AFP DDH CRS 1 28 5G / 5G
PAKE-IC-DHIES [BCJ+19] UC ODH RO, IC 2 2f 2v 2ic 1G / 1G+ κ+ 128

PAKE-FO [BCJ+19] UC ODH RO, CRS 2 6f 3v 2htc 2G / 2G+ κ

This Paper UC DDH RO 1 2f 2v 4htc 1G+ 3κ / 1G+ 3κ

explicit mutual authentication

KC-SPAKE2 [Sho20] mUC Gap-CDH RO, CRS 3 4f 2v 1G+ a / 1G+ a

UCOEKE [ACCP08] UC CDH RO, IC 3 2f 2v 2ic 1G+ a / 1G+ a

GK-SPOKE [ABP15] AFP DDH CRS 3 17 2G+ a / 4G+ a

SPAKE2 [ABB+20] rUC Gap-CDH RO, CRS 2 6f 2v 1G+ a / 1G+ a

This Paper UC DDH RO 2 2f 2v 4htc 1G+ 3κ+ a / 1G+ 3κ+ a

Table 1: Comparison of PAKE protocols. “Comp” denotes computation (f = fixed-base exponen-
tiation, v = variable-base exponentiation, htc = hash to curve, ic = ideal cipher evaluation). See
Section 4.5 for discussion/comparison of these costs. “Comm” denotes communication (G = one
group element, a = authentication security parameter). rUC denotes the relaxed UC functional-
ity [ABB+20] while mUC and leUC denote a modified functionality [Sho20] and lazy-extraction
UC functionality [ABB+20] respectively.

if the communication medium allows it. In other words, the messages do not depend on each other.1

A notable example of a 1-flow protocol is unauthenticated Diffie-Hellman key agreement. While
the messages can be sent simultaneously, security does not depend on their simultaneity. When
considering security, we always allow the adversary to control the delivery of messages. Without
loss of generality, the adversary is rushing, and in every flow it chooses to see the honest party’s
message before choosing its own.

Ideal models & setup assumptions UC PAKE protocols all require some kind of assumption
outside of the plain model [CHK+05]. The strongest assumption is an ideal cipher, in which all
parties have oracle access to a family of random permutations {E(k, ·)}k and corresponding inverses
{E−1(k, ·)}. The constructions in this work rely on the weaker random oracle model. Another
possible assumption is a common reference string (CRS), in which all parties have access to
an honestly-generated public string (of polynomial length). In this realm, a random string is highly
favored over a reference string which requires particular structure.

1.2 Our sPAKE Result

We describe a new sPAKE protocol — more precisely, we describe a generic transformation from
an unauthenticated key agreement protocol (with pseudorandom messages) to an sPAKE. When
instantiated with Diffie-Hellman key agreement, we obtain an sPAKE with the following properties:

• Only two exponentiations per party — the same as unauthenticated DH. (Additional hash-
to-curve operations are required, however.)

1When a protocol requires inherent sequentiality, we can consider one of the party’s message in a flow to be empty.
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Scheme Assumption Setup Flows Exp (sender/receiver) Comm (sender/receiver)

SimplestOT [CO15] Gap-CDH RO 2 2f Nv / 1f 2v 2G / 1G
EndemicOT [MR19] DDH RO 2 N f Nv / 1f 1v NG / NG
EndemicOT [MR19] iDDH RO 1 1f Nv / 1f 1v 1G / NG
This Paper iDDH RO 1 1f Nv / 1f 1v 1G / 1G+ 3κ

Table 2: Comparison of 1-out-of-N random OT protocols. “Exp” denotes exponentiations (f =
fixed-base, v = variable-base). “Comm” denotes communication (G = one group element).

• Only one protocol flow (one message from each party, which can be sent simultaneously) to
achieve implicit authentication, or two flows for explicit mutual authentication.

• UC security, in the random oracle model.

Our protocol is a generalization of the classic EKE protocol of Bellovin & Merritt [BM92],
which uses an ideal cipher. Our main technical idea is to replace the ideal cipher with a simpler
primitive that we introduce, called a programmable-once public function (POPF). We show
that a POPF can be constructed with just 2 calls to a random oracle (compared to 8 to construct
an ideal cipher; cf [DS16]).

Our DH-instantiated protocol is the most efficient (in round complexity and exponentiations)
sPAKE in the UC model to date. A comparison of existing sPAKE protocols is given in Table 1.

Because our construction is generic, it can be instantiated with post-quantum key agreement
schemes to give efficient PQ-sPAKE. Furthermore, since EKE is actually a special case of our
protocol, our security proof is the first proof of UC security for standard EKE (although many
variants of EKE have been analyzed for UC security).

1.3 Oblivious PRF / OT Application

We also use our new POPF approach to construct an oblivious PRF (OPRF) protocol from an
unauthenticated KA protocol. Roughly speaking, an OPRF protocols allows parties to jointly
instantiate a random function that one party (the receiver) can evaluate only on a bounded number
of inputs, while the other party (the sender) can evaluate it on an unlimited number of inputs. We
achieve a variant of UC-secure OPRF with the following features:

• The receiver can evaluate the joint function on just one point. We call this variant a 1-OPRF.

• The sender does not control the “key” of the joint function. In other words, the parties
cannot run the protocol again to allow the receiver to evaluate more points of the same
random function, as is possible in some OPRF variants.

• If the sender is corrupt, then the joint function’s outputs may not be random. If the receiver
is corrupt, then the output that he receives may not be random (but all other outputs of the
joint function will be random).

This OPRF variant is not useful for all applications,2 however it is sufficient to perform 1-out-
of-N oblivious transfer, where N is large (even exponentially large). The flavor of OT that is

2One specific example is the “OPAQUE” construction of an SaPAKE [JKX18], which requires an OPRF where
the sender can choose the same random function (i.e., same “key”) for many different executions.
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achieved is analogous to the “endemic OT” variant from [MR19]. Importantly, our OT protocol
has communication independent of N .

The state of the art UC protocol for 1-out-of-N endemic OT is due to [MR19], with commu-
nication proportional to N . Our protocol has communication independent of N , and therefore
significantly improves over theirs for N ≥ 3. Even in the case of N = 2 the two protocols have
essentially the same cost. A detailed comparison is given in Table 2. To instantiate both their
protocol and our protocol with Diffie-Hellman KA, we require a variant of the DDH assumption
(denoted “iDDH” in the table), in which the adversary gets to choose one of the generators. This
assumption is equivalent to saying that standard Diffie-Hellman key agreement is secure when Alice
reuses her DH message in the presence of a malicious response from Bob (see the discussion around
Definition 5).

1.4 Other Related Work

PAKE protocols can largely be split into two different categories. The first of which are those
influenced by the EKE protocol [BM92]. These protocols exist in the Random Oracle or Ideal
Cipher models and enjoy much greater efficiency than their standard-model counterparts. The
second category of PAKEs are those that forgo the RO and IC models for the standard or plain
model. Many of the protocols in this category are built on smooth projective hash functions
introduced by [CS02] and first used in the constuction of PAKEs in [KOY01, GL06]. These protocols
are often less efficient than their RO counterparts; until this point, we are unaware of any other
protocols that achieve UC-sPAKE in a single flow using the stronger functionality of Canetti et
al. [CHK+05]. [ABP15] was chosen for comparison as an efficient, single-flow, standard-model
PAKE. We note that even in the weaker AFP model, standard PAKEs are much less efficient than
their idealized-model competitors.

As of the writing of this paper, the most efficient EKE variants are [ACCP08] which achieves
explicit authentication in 3 flows with 2 exponentiations per party (same as unauthenticated DH),
[BCJ+19] which achieves implicit authentication in 2 flows with 2 exponentiations per party, and
[Sho20] which achieves explicit/implicit authentication in a single flow with 3 exponentiations per
party. See table 1 for a more detailed comparison. Bradley et al.’s [BCJ+19] construction relies
on the Oracle Diffie-Hellman (ODH) assumption which can be summarized as a modification to
the DDH assumption where the adversary has access to a random oracle Hb(x) = H(xb) and must
distinguish (g, ga, gb, H(gab)) from (g, ga, gb, r) but is disallowed from querying the oracle on ga.
All of these protocols are very efficient, but [ACCP08, BCJ+19] require the use of an ideal cipher
and [Sho20, ABB+20] have unknown provability in the UC model with standard functionality. Our
EKE variant achieves minimal cost (communication & exponentiations), from only the random
oracle model, and achieving the standard notion of security.

2 Preliminaries

2.1 Unauthenticated Key Agreement

A 2-round unauthenticated key agreement (KA) protocol consists of the following parameters:

• KA.R: set of random tapes for a participant

• KA.K: set of output keys

• KA.M1,KA.M2: set of protocol messages for party 1 & 2, respectively
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Party 1 Party 2

a← KA.R

M1 = KA.msg1(a)
M1

b← KA.R
M2 = KA.msg2(b,M1)

M2

output KA.key1(a,M2) output KA.key2(b,M1)

Figure 1: Structure of a generic 2-round key agreement protocol

• KA.msg1,KA.msg2: protocol-message functions for party 1 & 2, respectively

• KA.key1,KA.key2: output functions for party 1 & 2, respectively

The protocol is executed as illustrated in Figure 1.

Definition 1. A 2-round KA protocol is correct if

KA.key1(a,KA.msg2(b,KA.msg1(a))) = KA.key2(b,KA.msg1(a))

with all but negligible probability when a, b← KA.R.

We have presented the syntax of 2-round KA assuming that the second message M2 depends
on M1. Our results are presented in maximum generality to allow such KA protocols. However,
some KA protocols (notably Diffie-Hellman) have M2 that doesn’t depend on M1. In that case,
we simplify notation and write KA.msg2(b) rather than KA.msg2(b,M1). Such a KA protocol is
one-flow.

Definition 2. A 2-round KA protocol is secure if the following two distributions are indistinguish-
able:

a← KA.R
b← KA.R
M1 ← KA.msg1(a)
M2 ← KA.msg2(b,M1)

K ← KA.key1(a,M2)

output (M1,M2,K)

a← KA.R
b← KA.R
M1 ← KA.msg1(a)
M2 ← KA.msg2(b,M1)

K ← KA.K
output (M1,M2,K)

We also consider a stronger notion of security in which the protocol messages are also indistin-
guishable from random:

Definition 3. A 2-round KA protocol is pseudorandom if the following two distributions are
indistinguishable:

a← KA.R
b← KA.R
M1 ← KA.msg1(a)
M2 ← KA.msg2(b,M1)
K ← KA.key1(a,M2)
output (M1,M2,K)

M1 ← KA.M1

M2 ← KA.M2

K ← KA.K
output (M1,M2,K)
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In our OPRF construction, we require a different property of KA protocols — namely, that M2

looks pseudorandom, not just to an eavesdropper, but also to the party who generated M1.

Definition 4. A 2-round KA protocol has strongly random responses if for all PPT A, the
following two distributions are indistinguishable:

(M1, state)← A()
b← KA.R
M2 ← KA.msg2(b,M1)
output (state,M2)

(M1, state)← A()

M2 ← KA.M2

output (state,M2)

Note that any pseudrandom, 1-flow KA protocol automatically has strongly random responses.
In particular, unauthenticated Diffie-Hellman KA satisfies these properties.

It is well-known that honest KA instances can safely reuse the same M1 message for several
instances. However, this property need not be true in the presence of adversarially generated M2

(see the discussion in Section 5 for more details). Our OPRF protocol requires the underlying KA
protocol to have a kind of robustness property when reusing the M1 message for many sessions,
even when one of the M2 messages is adversarially chosen.

Definition 5. A 2-round KA protocol KA is robust if for all PPT A, the following distributions
are indistinguishable:

a← KA.R
b← KA.R
M1 = KA.msg1(a)
(M∗

2 , st)← A(M1)
k∗ = KA.key1(a,M

∗
2 )

M2 = KA.msg2(b,M1)

k = KA.key1(a,M2)

output (st, k∗,M2, k)

a← KA.R
b← KA.R
M1 = KA.msg1(a)
(M∗

2 , st)← A(M1)
k∗ = KA.key1(a,M

∗
2 )

M2 = KA.msg2(b,M1)

k ← KA.K
output (st, k∗,M2, k)

Note that for Diffie-Hellman KA this is equivalent to the iDDH assumption of [MR19].
In Appendix A we show that any 2-round KA protocol can be turned into a robust KA protocol

by feeding its output into a random oracle, but with a factor q loss in the security reduction.

2.2 Symmetric PAKE

We use the definition of sPAKE from [CHK+05]. The definition is in terms of an ideal functionality,
which is shown in Figure 2.

3 Programmable-Once Public Functions

3.1 High-Level Overview

As mentioned in the introduction, our sPAKE construction can be understood as an abstraction of
the EKE protocol of Bellovin & Merritt [BM92]. EKE works as follows: Alice, with password pw1,
generates a plain KA protocol message M1 and sends ϕ1 = E(pw1,M1), where E is an ideal cipher.
Bob symmetrically sends ϕ2 = E(pw2,M2). Now, Alice interprets E−1(pw1, ϕ2) as a KA protocol
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Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter κ. It interacts with an adversary
S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

• Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or
if this is the second NewSession query and there is a record (Pj , Pi, pw

′, role′), then record
(Pi, Pj , pw, role) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

• Do nothing if there is no record of the form (Pi, Pj , pw, role).

• If pw = pw′, mark the record compromised and reply to S with “Correct Guess”.

• If pw ̸= pw′, mark the record interrupted and reply with “Wrong Guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S where |sk| = κ:

• Do nothing if there is no record of the form (Pi, Pj , pw, role), or if there has already been a
NewKey query for Pi.

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player
Pi.

• If this record is fresh, there is a record (Pj , Pi, pw
′, role′) with pw = pw′ and role ̸= role′,

a key sk′ was sent to Pj , and (Pj , Pi, pw, role) was fresh at the time, then output (sid, sk′)
to Pi.

• In any other case, pick a new random key sk′ of length κ and send (sid, sk′) to Pi.

• In all cases, mark the record (sid, Pi, Pj , pw, role) as completed.

Figure 2: Ideal functionality FpwKE from [CHK+05]

message and computes the corresponding KA output as her sPAKE output. Our contribution is to
instantiate the ideal cipher (E,E−1) with a simpler object called a programmable-once public
function (POPF). We now motivate the details of the POPF definitions by considering how the
ideal cipher is used in the EKE protocol and typical security proof.

What cipher? It is not necessary for E(pw, ·) and E−1(pw, ·) to be permutations, as they are
for an ideal cipher. The only requirement is that E−1(pw, ·) is a left inverse of E(pw, ·). This
observation opens up the possibility of E(pw, ·) being randomized and/or having longer outputs
than inputs — indeed, our POPF construction has both properties.

We adjust the notation of EKE to move away from that of a cipher. In EKE, Alice generates
a value ϕ1, into which she has “programmed” the association pw1 7→ M1. Hence we use the
notation ϕ1 = Program(pw1,M1). Symmetrically, Bob “evaluates” ϕ1 using his password to get a

corresponding KA message, which we write as M̃1 = Eval(ϕ1, pw2).
This is the sense in which ϕ1 represents a public function, which can be “evaluated” on any
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pw2, that Alice has programmed for a particular pw1 7→M1 mapping of her choice.

Honest party’s POPF acts like a random function. In classic EKE, the simulator for
an honest Alice sends a random ϕ1. Thereafter, whenever the adversary makes an ideal cipher
query of the form E−1(p̃w, ϕ1), the simulator has an opportunity to program the output. This
programmability is helpful when reducing to the security of plain KA: The simulator can receive a
KA transcript (from the KA security game) and implant its messages into the ideal cipher’s output.

In a POPF, we need an analogous property. The Eval function of a POPF makes calls to a
random oracle H. We require a simulator for honest Alice that generates ϕ1 and can program H
appropriately so that it can fix the outputs of Eval(ϕ1, ·) however it likes. In other words, we need
a simulator that can “program” all outputs of Eval(ϕ1, ·). Formally speaking, we require Eval(ϕ1, ·)
to be indifferentiable from an ideal random function.

Programmable (only) once. In classic EKE, suppose a corrupt Bob sends ϕ∗ = ϕ2. Bob may
know many pairs (pwi,Mi) such that E(pwi,Mi) = ϕ∗, but a standard argument shows that he
could have chosen at most one of the Mi values. With overwhelming probability there is at most
one forward query of the form E(pwi,Mi) = ϕ∗. The other pairs he must have learned later by
making inverse queries E−1(pwi, ϕ

∗) = Mi, meaning that he had no control over Mi. In the security
proof, this gives us two properties: (1) upon seeing ϕ∗ the simulator can identify the unique pw∗

such that Bob was able to choose E−1(pw∗, ϕ∗); (2) the simulator can program all other outputs
E−1(pw′, ϕ∗) for pw′ ̸= pw∗. Taken together, these properties formalize the idea that “Bob can
control E−1(pw, ϕ∗) for only one value of pw, but has no control over E−1(pw, ϕ∗) for all other
pw.”

Our POPF primitive slightly weakens this intuitive idea. We similarly require property (1)
above: upon seeing ϕ∗, the simulator can extract a password pw∗ such that the adversary could
have chosen Eval(ϕ∗, pw∗). However, our simulator cannot simultaneously program the outputs of
Eval(ϕ∗, ·) like it can with an ideal cipher. The problem is that the simulator must program the
outputs of Eval(ϕ∗, ·) before even seeing ϕ∗, since the adversary may already be running Eval in its
head before announcing its choice of ϕ∗ in the PAKE protocol.

Instead, our simulator can program these outputs only with 1/q probability, where q is the
number of random-oracle queries made by the adversary. It does this by “guessing” which of the
oracle queries will witness the adversary’s choice of pw∗. However, this property turns out to be
enough to prove security of the PAKE protocol, as we discuss below.

More details. Let us understand how the EKE security proof uses the ability to program
Eval(ϕ∗, ·), for the adversary’s choice of ϕ∗. The proof reduces PAKE security to KA security
in the following way: receive a KA transcript+key (M1,M2,K) from the KA security game, run
the honest party with ϕ1 = Program(pw1,M1), program Eval(ϕ∗, pw1) = M2 (in the event that
pw1 ̸= pw2), and use K as the honest party’s PAKE output. This reduction allows us to replace
the honest PAKE output K with a random output, from the usual KA security definition.

Importantly, programming the outputs of Eval(ϕ∗, ·) is used only in the intermediate hybrids of
the security proof, and not in the final UC simulation (where we simply replace real KA outputs
with random). Hence, it may not be a problem that programming a malicious POPF only succeeds
with 1/q probability.

We finally formalize this programmability property for a malicious POPF in a novel way. We
don’t need Eval(ϕ∗, ·) to be programmable with probability 1. Honest Alice computes her PAKE
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output as KA.key1(a,Eval(ϕ
∗, ·)), and we simply need to be able to argue that this output is indistin-

guishable from random. The fact that the simulator has only 1/q success in programming Eval(ϕ∗, ·)
simply introduces a factor q loss in arguing that KA.key1(Eval(ϕ

∗, ·)) is pseudorandom. But all of
the subtlety of the simulator’s guessing strategy is restricted to the proof that KA.key1(a,Eval(ϕ

∗, ·))
is pseudorandom.

Overall, this particular security property of a POPF is expressed in terms of composing Eval
with the KA.key1 algorithm of a KA scheme. It is instructive to understand what property of
KA.key1 we used here. It turns out that we only need KA.key1 to be a weak PRF (i.e., on uniform
inputs, its outputs are pseudorandom), with secret randomness a acting as the PRF seed. So in
order to make the POPF definition as general as possible, we finally formalize this security property
by saying “when an adversary outputs ϕ∗ and from it the simulator extracts a corresponding pw∗,
all outputs Fk(Eval(ϕ

∗, pw)) are pseudorandom for pw ̸= pw∗, for any weak PRF F .”

3.2 Definitions

A programmable-once public function (POPF) consists of algorithms EvalH : X×{0, 1}∗ → Y
and ProgramH : {0, 1}∗ × Y → X .H represents any global setup (such as random oracles) required
by the POPF, and will be omitted unless we need to emphasize it or provide different setups to
different instances.

Weak PRF Notion. As previously mentioned, security for a POPF is defined in terms of whether
its outputs are suitable inputs for a weak PRF. For technical reasons, we will need the weak PRF’s
outputs to be pseudorandom even in the presence of specific additional leakage on their seed.

Definition 6. Let F : {0, 1}κ × Y → Z have the syntax of a PRF. Let L be a family of functions
taking input in {0, 1}κ. We say that F is a weak PRF under leakage L (i.e., an L-wPRF) if
for any n, the following distributions are indistinguishable:

k ← {0, 1}κ
for i = 1 to n:

yi ← Y
zi := F (k, yi)

ret L(k), y1, . . . , yn, z1, . . . , zn

k ← {0, 1}κ
for i = 1 to n:
yi ← Y
zi ← Z

ret L(k), y1, . . . , yn, z1, . . . , zn

POPF Definitions. Along with the functions Eval and Program introduced above, our security
definitions will also depend on algorithms HSim and Extract which will be used by the simulator
of our UC based constructions. They are each split into stages: HSim1 and Extract1 are run before
ϕ is chosen and HSim2 and Extract2 are run after. Extract3 is a further stage used to simulate
subsequent access to H. Because state needs to be saved between the two stages, we cannot simply
use the notation AHSim1 to indicate that A’s has oracle access to HSim1. Instead, we introduce
the notation

(
A ⇄ HSim1

)
to represent the straight-line interaction between an adversary A and

HSim1, where A’s output is concatenated with HSim’s to determines the final output. This allows
both A and HSim1 to output state that can be used to continue the interaction later. We only
allow straight-line interaction (i.e. no rewinding) as later they will be used in the simulator for UC
security, which is bound by the same rule.

Syntactically, HSim1 is an interactive algorithm that takes the place of H and outputs a value
ϕ ∈ X and its internal state. HSim2 is then a second interactive algorithm that uses this state and
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an oracle Y{0,1}∗ , and again takes the place of H. Similarly, Extract1 interacts with the adversary,
taking the place of H, and outputs its internal state. Extract2 then uses this internal state along
with ϕ ∈ X chosen by the adversary to compute which x∗ ∈ {0, 1}∗ the adversary programmed.
Extract3 also uses the internal state.

We use Extract to formalize the security property that, for all but one value of x, the outputs
Eval(ϕ, x) are suitable as inputs to any weak PRF. We formalize this in two steps. First, we require
that the extractor be indistinguishable from the global setup H, and Extract2 to compute a value
x∗ from an adversarially-generated ϕ. Second, we require that F (k,Eval(ϕ, ·)) is indistinguishable
from a random function, provided that it is never queried on that input x∗.

Taken together, these two properties establish the soundness of the value x∗ output by the
attacker. If the extractor outputs the “wrong” x∗, an adversary can program Eval(ϕ, x) for some
x ̸= x∗ and cause it to be a weak input for F .

Definition 7. A tuple (Program,Eval,HSim,Extract) is a secure POPF if the following properties
hold:

1. Correctness: If ϕ← Program(x∗, y∗) then Eval(ϕ, x∗) = y∗. Note that the following implies
this property with all but negligible probability.

2. Honest Simulation: We require that for any PPTs A1, A2, the following two distributions
are indistinguishable:

(view, x∗, y∗)← AH
1

ϕ← Program(x∗, y∗)

return AEval(ϕ,·),H
2 (view, ϕ)

((view, x∗, y∗), (state, ϕ))← (A1 ⇄ HSim1)

R← Y{0,1}∗

R(x∗) := y∗

return AR,HSimR
2 (state)

2 (view, ϕ)

Note that A both has oracle access to Eval(ϕ, ·) and H, so it can check the replies for consis-
tency. The last step,

AEvalH(ϕ,·),H
2 (view, ϕ) ∼∼∼ A

R,HSimR
2 (state)

2 (view, ϕ),

is recognizable as a statement that Eval(ϕ, ·) is indifferentiable from a random function, except
on the point x∗.

This definition lets us program Eval like a random oracle when ϕ is chosen honestly, since
this is essentially an indifferentiability property. The values Eval is programmed with need
to be fixed at the moment ϕ is chosen. It also guarantees that ϕ does not leak x when y is
uniformly random, as then R is just a random function, independent of x∗.

3. Straight-line Extraction: An adversary A must not be able to distinguish between the
extractor and the global setup H. We require that for all PPT A, the following distributions
are indistinguishable:

(view, ϕ)← AH
1

out← AH
2 (view)

return out

((view, ϕ), state)← (A⇄ Extract1)
(state′, x∗)← Extract2(state, ϕ)

out← AExtract3(state′)
2 (view)

return out

Note that this only guarantees that the simulation is undetectable to A, but it doesn’t guarantee
the usefulness of Extract. This is established in the next property.
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4. Uncontrollable Outputs: Intuitively, for adversarially generated ϕ, all outputs of Eval(ϕ, x),
for x ̸= x∗, are suitable inputs for any weak PRF. The Extract algorithm is used to determine
the value of x∗.

We require that for every PPT algorithms A1,A2, any L-wPRF F : {0, 1}κ × Y → Z, and
any L ∈ L, the following distributions are indistinguishable:

k ← {0, 1}κ
((view, ϕ), state)←

(
A1(L(k)) ⇄ Extract1

)
(state′, x∗)← Extract2(state, ϕ)

out← A
F (k,Eval(ϕ, ·))!x∗ ,Extract3(state′)

2 (view)
return out

k ← {0, 1}κ
((view, ϕ), state)←

(
A1(L(k)) ⇄ Extract1

)
(state′, x∗)← Extract2(state, ϕ)

R← Z{0,1}∗

out← AR!x∗ ,Extract3(state′)
2 (view)

return out

In the above, the notation R!x denotes the oracle that aborts on input x, and acts identically
to R on all other inputs.

Note that since this must work for any L-wPRF and any leakage in L, these can be considered
to be adversarially chosen. In fact, the security of our 1-OPRF protocol will depend on putting
part of the adversary inside the leakage of a suitably chosen wPRF.

Comparison to other primitives. POPF is similar to an oblivious programmable PRF (OP-
PRF) [KMP+17]. In an OPPRF, a sender can generate a keyed function F such that F (xi) = yi
for some (xi, yi) pairs of her choice, where F is random on all other points. The receiver has some
fixed inputs x′1, . . . , x

′
n and learns F (x′i). The sender doesn’t learn which points x′i the receiver

evaluates F on, and the receiver doesn’t learn which points xi were programmed by the sender.
The main difference between our POPF and this OPPRF is that an OPPRF is itself a privately

keyed function. The receiver obtains outputs of the function F through an interactive protocol.
Our POPF is a function that Alice generates unilaterally and makes public. Both parties can
evaluate it on any input of their choice (non-interactively).

3.3 Construction Overview

In this section we describe the high-level idea behind our more efficient POPF construction. Our
construction is in the random oracle model, with H consisting of two random oracles H,H ′. We
construct a POPF with output Y = G in a group (G, ·), and H : {0, 1}∗ × {0, 1}3κ → G will
produce elements of this group. Our second random oracle, H ′ : {0, 1}∗×G→ {0, 1}3κ, will output
bit-strings that are treated as members of a group under exclusive-or. This could be generalized to
any group as well.

Let X = {0, 1}3κ ×G. Writing ϕ = (s, T ), define Eval as

Eval(ϕ, x)
def
= H(x, s⊕H ′(x, T )) · T

How does Alice program? Suppose Alice has a pair (x∗, y∗) where y∗ ∈ G. Then Program(x∗, y∗)
can be computed to get (s, T ) as follows:

1. Choose a random r ← {0, 1}3κ and query H(x∗, r).

2. Solve for T in the equation H(x∗, r) · T = y∗.
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3. Solve for s in the equation r = s⊕H ′(x, T ).

One can easily check that Eval(ϕ, x∗) = y∗ as desired.
Furthermore, if y∗ is random then both s and T are distributed randomly (in their respective

groups), and hence hide x∗.

Can extract x∗ (after seeing s, T ). Recall that upon seeing adversarially generated ϕ = (s, T ),
a simulator must be able to extract the underlying x∗ (the unique value for which the adversary
controlled Eval(ϕ, x∗)). A simulator can observe Alice’s queries to the random oracle H and H ′.

Note that for ϕ = (s, T ), the function Eval(ϕ, x) makes a query to H of the form H(x, s ⊕
H ′(x, T )), and that these same queries are made (in the opposite order) when ϕ is computed. We
will say that such an H-query is “consistent with ϕ.” When Alice finally announces ϕ, the simulator
determines x∗ as the first query (temporally) to H made by Alice that is consistent with ϕ. We call
this query Alice’s anchor query to H.

Other outputs of Eval are beyond Alice’s control. We need to show that the outputs of

F (k,Eval(ϕ, x)) = F
(
k,H

(
x, s⊕H ′(x, T )

)
· T

)
are pseudorandom (for x ̸= x∗), when F is any wPRF. A natural way to do this is to reduce to
the security of the weak PRF. We receive input-output pairs (yi, zi) where yi is random and zi
is either random or F (k, yi). The reduction algorithm should program the outputs of H so that
H(xi, s⊕H ′(xi, T )) · T = yi. If the simulator is asked to program H in this way after ϕ = (s, T ) is
known, then it is a simple matter — just program this H-output to be equal to yiT

−1.
The problem is that an adversary can make the relevant query toH before announcing ϕ = (s, T )

to the simulator. In that case, how will the simulator program the output of H? We address this
problem by having the simulator guess which value of T given to H ′ will be chosen by Alice.

Summarizing, the simulator can guess a queryH ′(x1, T ), and based on this guess, it can program
H(x2, r2) · T to be whatever it wants. Note that even if the guess of T is correct, it might be that
H(x2, r2) is not consistent with the eventual (s, T ). But in that case, the output of H(x2, r2) is not
relevant in the computation of Eval(ϕ, x2), so its value doesn’t matter.

Because this approach involves guessing a special query to H ′, the analysis incurs a factor q
loss in the reduction to weak-PRF security.

3.4 Details

We have already defined Eval and Program, and shown correctness. Next we prove the honest
simulation property.

Define HSim1 to let A1 interact with H normally, while recording the random oracle lookups
it makes, then pick (s, T ) uniformly at random from their respective sets, and output them along
with the oracle transcript. HSim2 will then run A2 with a custom oracle, defined as follows.

HS(x, r) :

if previously evaluated on (x, r):
return past value

if r = s⊕H ′(x, T ):
return R(x) · T−1

h← G
return h
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The past queries from A1 are included in “previous evaluated.” Note that although access to H
was not given to HSim, this is not significant because the random oracles H,H ′ can be emulated
by generating fresh randomness for each unique input.

Theorem 8. No PPTs A1,A2 can achieve advantage greater than q
23κ

against the honest simulation
game, where A1 and A2 together make at most q queries to H.

Proof. We provide a sequence of hybrids from the simulated distribution to the real distribution
in the honest simulation definition. The first intermediate hybrid replaces A2’s oracle access to
R with access to EvalHS ,H

′
((s, T ), ·). Since s is chosen after A1 finishes, with all but probability

q
23κ
A1 has never queried HS at (x, s⊕H ′(x, T )) for any x. Later, when such a query happens in

A2, HS(x, r) replies with R(x) · T−1. Indistinguishability then follows from EvalHS ,H
′
((s, T ), x) =

HS(x, s⊕H ′(x, T )) · T = R(x) · T−1T = R(x).
Next we replace the randomly generated (s, T ) with one generated honestly via ProgramHS ,H

′
(x∗, y∗).

Because exclusive-or is invertible, generating s uniformly at random is the same as picking r uni-
formly randomly and then setting s = r⊕H ′(x∗, T ). Then H(x∗, r) is fresh randomness, by the bad
event we proved improbable in the last hybrid, and will never be used again as H is replaced by HS

and the query H(x∗, r) is not included in the transcript from HSim1. Therefore, sampling T uni-

formly randomly is the same as setting T =
(
H(x∗, r)

)−1
y∗. Equivalently, (s, T ) = Program(x∗, y∗).

Finally we remove HSim altogether, replacing access to the custom HS with the original oracle
H. HS must return a uniformly random value for each distinct input, either directly or through
R(x)T−1, since in the latter case r is uniquely determined by x. The one exception is HS(x

∗, r)
since R(x∗) is not random, but R(x∗)T−1 = y∗T−1 = H(x∗, r), so this matches H. This shows that
HS behaves the same as H.

We are now at the real distribution.

Next, we define Extract1 to simulate the random oracles H,H ′ with independent randomness
for each unique query, while recording a transcript. Extract3 will do the same, using the transcript
to maintain consistency. This clearly satisfies the straight-line extraction property. When A1

terminates with (view, (s, T )), Extract2 uses the transcript to find the anchor query: the first query
H(x∗, r∗) such that r∗ = s⊕H ′(x∗, T ), where H ′(x∗, T ) is a query made later in the transcript. It
outputs x∗, or if no anchor query exists, ⊥.

Finally, we need to prove that our POPF satisfies uncontrollable outputs.

Theorem 9. Let (A1,A2) be an adversary against the uncontrollable outputs distinguisher game
(Definition 7), with A1,A2 making q1, q2 queries to H, and A1 making q′1 queries to H ′, where
queries made by the Eval oracle are included. Assume that no PPT adversary (with a similar
running time to the adversary) can achieve advantage C against the weak PRF distinguisher game

(Definition 6) with n = q1 + q2. Then (A1,A2) has advantage less than q′1C +
q21q

′
1+q1
23κ

.

Sketch. The full proof is given in Appendix B, and it follows the outline given in Section 3.3. The
reduction guesses which query of the form H ′(x, T ) includes the T that the adversary eventually
outputs as part of ϕ = (s, T ). This guess is correct with probability 1/q′1 and contributes the factor
q′1 to the overall advantage.

The simplified discussion above relies on guessing a H ′(x, T ) query, and as a result the reduction
further fails in the event that the “correct” such query (to H ′) is made after the H query whose
output we are trying to program. We show that this bad event happens with probability (q21q

′
1 +

q1)/2
3κ, leading to the final bounds in the theorem statement.
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4 Symmetric PAKE

4.1 Protocol Overview

As discussed previously, our protocol can be viewed as a generalization of the seminal EKE protocol,
introduced in [BM92] and analyzed in modified forms in both the game-based (BPR) and UC model
in [BPR00] and [ACCP08] respectively. These modified EKE protocols can be thought of as a
compiler that promotes an unauthenticated KA protocol into a PAKE.

Let M1,M2 be the messages of a 2-message KA protocol. In EKE, the parties run this unau-
thenticated KA protocol, but wrap/unwrap the KA protocol messages in an ideal cipher, keyed
by their PAKE password. Specifically, let Alice hold PAKE password pw1 and Bob hold PAKE
password pw2. Describing just one direction of EKE, Alice sends c = E(pw1,M1) to Bob, where E
is an ideal cipher. Bob will interpret E−1(pw2, c) as a message in the unauthenticated KA protocol.
He responds to it and similarly wraps his response in the ideal cipher. When pw1 = pw2, both
parties will see a usual instance of the underlying KA protocol and agree on a key.

Our protocol can thus be thought of as replacing the ideal cipher of EKE with our new
and simpler POPF primitive. Alice computes ϕ1 so that Eval(ϕ1, pw1) = M1, and sends ϕ1

to Bob. Bob runs Eval(ϕ1, pw2) and interprets the result as a message in the unauthenticated KA
protocol. He responds to it and likewise encodes his response in a POPF (programming it at the
point pw2).

It is not hard to see that an ideal cipher gives a natural POPF:

• Program(pw,M) = E(pw,M)

• Eval(ϕ, pw′) = E−1(pw′, ϕ)

Hence, our protocol is a strict generalization of EKE. Our security proof therefore also establishes
the UC security of the original EKE.

4.2 Protocol Details and Security

In Figure 3 we present the formal description of our sPAKE protocol. For the protocol to be
instantiated with the POPF defined in Section 3.4, the key agreement messages must be in a
group.

The ideal functionality Figure 2 considers a system of many parties, with the sPAKE interaction
happening between Pi and Pj . For simplicity we will refer to the party that sends the first flow as
Party P1, and the party that sends the second flow as Party P2. Since we are modeling a single
execution between two parties, this will not introduce any ambiguity.

The protocol requires distinct global setups (random oracles) for the two parties. Recall that
the ideal functionality FpwKE uses a session id sid for each instance and a role for each party. Given
a single random oracle H, the parties can instantiate separate oracles as H1(x) = H(sid, role, x)
and H2(x) = (sid, role, x).

Theorem 10. If KA is a pseudorandom KA protocol (Definition 3), (Program,Eval,HSim,Extract)
is a secure POPF with range Y=KA.M1 = KA.M2, and H1,H2 are two instantiations of its global
setup, then the protocol in Figure 3 UC-securely realizes the FpwKE functionality (Figure 2).

The formal proof is deferred to Appendix C. We give a sketch below.
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Party 1 (input pw1) Party 2 (input pw2)

a← KA.R
M1 = KA.msg1(a)

ϕ1 ← ProgramH1(pw1,M1)
ϕ1

b← KA.R
M̃1 = EvalH1(ϕ1, pw2)

M2 = KA.msg2(b, M̃1)

ϕ2 ← ProgramH2(pw2,M2)
ϕ2

M̃2 = EvalH2(ϕ2, pw1)

output KA.key1(a, M̃2) output KA.key2(b, M̃1)

Figure 3: Our 2-round sPAKE, from POPF. Its parameters are an unauthenticated, pseudorandom
KA protocol KA and a secure POPF construction (Program,Eval,HSim,Extract).

Corrupt P1. P1’s only protocol message is ϕ1. The security of POPF says that P1 can program
Eval(ϕ1, ·) on just a single input, and Extract can extract the identity pw1 of that point. Our sPAKE
simulator extracts pw1 in this way and makes an online password guess to the functionality.

The case where the password guess is wrong (honest P2 uses pw2 ̸= pw1) is the more interesting
one. If the underlying KA protocol has the pseudorandom property of Definition 3, then the function
M1 7→

(
KA.msg2(b,M1),KA.key2(b,M1)

)
is a weak PRF (with b as the key).3 Hence the POPF

property implies that P2’s KA message M2 and his sPAKE output key K are indistinguishable
from random. Then since M2 is random, P2’s sPAKE protocol message ϕ2 hides pw2. In summary,
when pw2 ̸= pw1, party P2’s protocol message is simulatable (as a dummy ϕ) and he outputs an
independently random key.

Corrupt P2. Now consider the case of corrupt P2. He receives a ϕ1 from honest P1. From the
honest simulatability property of POPF, this makes Eval(ϕ1, ·) a random oracle from P2’s point
of view. We can simulate each Eval(ϕ1, pw

′) to be a KA message with randomness known to the
simulator. Later, P2 will output ϕ2, from which the simulator can extract his password pw2 and use
it as an online password guess. If the password guess is correct, then the simulator can compute
the shared key (since it programs Eval(ϕ1, pw2) to a KA message with known randomness). If the
password guess is incorrect, then honest P1’s key is computed as KA.key1(a,Eval(ϕ1, pw1 ̸= pw2)).
Similar to above, KA.key1(a, ·) is a weak PRF, and hence its output is pseudorandom when composed
with the POPF. In summary, when pw1 ̸= pw2, P1 outputs an independently random key.

4.3 1-Flow Variant

Our construction builds on an underlying KA protocol that is allowed to be sequential, so that
M2 depends on M1. In some cases such as in Diffie-Hellman Key Agreement, each party’s Key
Agreement Message can be generated independently of the other party’s. In these situations, the
protocol can be collapsed from a 2-flow protocol into a 1-flow protocol by sending the KA messages
in parallel.

3Actually, this is only a weak PRF against one query. This is enough for the proof to go through. However,
technically in the proof we slightly modify this function to be a full-fledged wPRF to match our POPF definitions.
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For such 1-flow KA protocols, we may write KA.msg2(b) instead of KA.msg2(b,M1). It is clear
from the description in Figure 3 that in such cases, P2’s sPAKE protocol message can be computed
independently ofM1. But does this compromise our security proof, which assumed that P2’s sPAKE
message comes after P1’s?

If P2 is corrupt, then without loss of generality it waits for P1’s sPAKE message before sending
its own. This is already what was considered in our security proof here.

If P1 is corrupt, however, then in the 1-flow version of our sPAKE she may wait for P2’s message
before sending her own. This case was not considered in our security proof. However, the security
of 1-flow KA protocols does not depend on which party is named P1 vs P2, and our sPAKE protocol
is symmetric with respect to the parties’ roles. Hence, a corrupt P1 who waits for P2’s sPAKE
message is equivalent to a corrupt P2 waiting for P1’s message, when instantiating our sPAKE
protocol with a role-reversed KA protocol (which has all the same security properties). Hence, the
same security proof holds in that case as well.

Summarizing, for the case of a 1-flow KA we obtain a secure 1-flow sPAKE protocol.

4.4 Comparison with EKE

As mentioned, our protocol generalizes the original EKE contruction of Bellovin & Merritt [BM92],
by replacing its ideal cipher with a corresponding POPF. One of the advantages of our generalization
is that we require only the random oracle model, not an ideal cipher.

The reader may wonder whether this is a significant distinction, given that an ideal cipher can
be realized in the random oracle model [DS16]. However, note that an ideal cipher construction
in the random-oracle model requires an 8-round Feistel cipher. Interestingly, our proposed POPF
construction is a kind of 2-round Feistel cipher, with independent random oracles as the round
function, and keyed by the party’s password.

Hence, our new contributions include a 4× efficiency improvement over this part of EKE in the
random oracle model (in addition to our UC analysis of original EKE). In the bigger picture, we
find it interesting that 8 rounds of Feistel cipher are indifferentiable from an ideal cipher, but only 2
rounds are required for a kind of “one-time” ideal cipher (POPF) that has non-trivial applications.

4.5 Instantiations & Costs

Our sPAKE protocol can be instantiated with any pseudorandom KA protocol. The most natural
such KA is standard Diffie-Hellman. Instantiating our sPAKE protocol with DH yields a very
efficient symmetric PAKE protocol with only two exponentiations for each party and a single
communication flow. See Figure 4.

Hash-to-Curve Note that our construction requires a random oracle that gives outputs in the
Diffie-Hellman group; hence, our sPAKE protocol will make use of hash-to-curve operations. What
is the cost of a hash-to-curve operation, compared to other costs of our protocol (exponentiations)?

For estimation purposes, we can consider using the encoding function of Brier et al. [BCI+10],
which was extended beyond the Icart function and subsequently analyzed by [FFS+10, TK17], in
conjunction with the deterministic mappings of Elligator2 [BHKL13] for Montgomery curves, and
SSWU [BCI+09, WB19] (respectively modified SSWU) for Weierstrass curves withAB ̸= 0 (AB = 0
resp.). As the cost of evaluating these mappings is about 2 log(p) or 3 log(p) field multiplications
over a base field of order p and the cost of clearing the cofactor for many curves is small, the total
cost of evaluating a hash to curve is about 4 log(p) to 6 log(p) multiplications in the base field. For a
specific instantiation, we refer the reader to [WB19] who estimate the cost of hashing to BLS12-381
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at half a variable-base scalar multiplication in the curve; however, BLS12-381 has a relatively large
cofactor while other curves such as Curve25519 and P256 do not. For Curve25519 using Elligator2,
the cost should be closer to half that of BLS due to a much smaller cofactor and the increased
efficiency of Elligator2 over SSWU. In summary, the cost of a hash-to-curve operation in many
Elligator-compatible curves is roughly 25% that of a variable-base exponentiation.

Post-quantum Beyond Diffie-Hellman, there are many other post-quantum KA protocols that
satisfy the necessary pseudorandom property. Suitable candidates from NIST Post-Quantum Cryp-
tography Standardization include Saber [DKRV19], Kyber [SAB+19], NewHope [PAA+19], and
FrodoKEM [NAB+19]. These all rely on LWE/LWR type security assumptions, and have (uncom-
pressed) key exchange messages consisting of pseudorandom vectors of integers modulo a constant.

4.6 Implicit vs Explicit Authentication

A PAKE is said to achieve explicit authentication for a party Pi when the partnered party Pj learns,
at the end of the protocol, if the protocol succeeded or not and achieves implicit authentication
if they are not necessarily notified of successful pairing. Our protocol as presented in Figure 3
achieves implicit authentication for both parties. This means that at the end of the protocol,
neither party knows if they terminated with the same session key or not. Abdalla et al. [ABB+20]
provide a generic way to convert a UC sPAKE with implicit authentication into one with mutual
authentication using the original construction directly and appending a single key confirmation flow
at the end. This method requires both parties to evaluate a PRF on their session keys and send
the PRF outputs as authentication messages to the other party. If the parties have different session
keys, then they will be unable to authenticate to the other party. This transformation requires the
same computation expense as the original protocol but requires one additional flow.

Using this method we achieve a more flow efficient protocol than one using the OEKE [ACCP08]
method at the expense of additional hash-to-curve calls. An extension of our protocol with the
additional mutual authentication flows can be seen in Figure 4.

5 1-OPRF Construction

An OPRF protocol allows Alice & Bob to jointly instantiate a random function, that one party
(Bob) can evaluate on a bounded number of inputs, but Alice can evaluate on any number of inputs.
In this work we only consider the case where Bob evaluates the function on 1 input, which we refer
to as 1-OPRF.

5.1 OPRF Security

We present the security definition for 1-OPRF in Figure 5, in the form of an ideal UC functionality.
Several aspects are worth noting:

• When the sender evaluates the random function, the functionality does not give any notifica-
tion to the receiver. This models the fact that the sender can evaluate the random function
locally/non-interactively.

• Because the domain of the OPPRF can be exponentially large, its input/output mapping is
determined on-the-fly (in the usual way of a PRF definition). By default, the mapping is
determined by a random function.
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Party 1 (input pw1) Party 2 (input pw2)

a← Zn b← Zn

r1 ← {0, 1}ℓ r2 ← {0, 1}ℓ
T1 = ga ·H1(pw1, r1)

−1 T2 = gb ·H2(pw2, r2)
−1

s1 = r1 ⊕H ′
1(pw1, T1) s2 = r2 ⊕H ′

2(pw2, T2)
s1, T1 s2, T2

M̃2 = H2(pw1, s2 ⊕H ′
2(pw1, T2)) · T2 M̃1 = H1(pw2, s1 ⊕H ′

1(pw2, T1)) · T1

K := (M̃2)
a K ′ := (M̃1)

b

implicit authentication variant

output K output K ′

explicit mutual authentication variant

K1 = PRF(K, 1) K ′
2 = PRF(K ′, 2)

K1 K ′
2

if K ′
2 ̸= PRF(K, 2) output ⊥ if K1 ̸= PRF(K ′, 1) output ⊥

output PRF(K, 3) output PRF(K ′, 3)

Figure 4: Our 1-flow sPAKE instantiated with Diffie-Hellman KA and our POPF construction from
Section 3.4. Its parameters are a cyclic group G = ⟨g⟩ of order n, and random oracles Hb, H

′
b for

b ∈ {1, 2}.

• All outputs of the OPRF are random when the parties are honest. However, we consider a
variant where a corrupt party can choose their own outputs. A corrupt receiver can choose
the PRF’s output at x∗; a corrupt sender can choose all PRF outputs (by sending a function
that determines them).

This last property is analogous to the endemic OT definition of [MR19], who define a variant
of random oblivious transfer in which corrupt parties can choose their own outputs. They show
that this variant of OT is useful for applications like OT extension, and can easily be efficiently
transformed into other variants of OT.

1-OPRF is essentially 1-out-of-N OT, where N may be exponentially large. As such, our 1-
OPRF definition is a natural generalization of endemic OT— the only main difference is accounting
for a possibly exponential N . Instead of returning all N outputs to an honest sender, it exposes an
oracle by which the honest sender can (non-interactively) learn any output. Instead of a corrupt
sender providing to the functionality a list of all N chosen outputs, she provides a function that
computes them.

5.2 Protocol Overview

Like our sPAKE protocol, our 1-OPRF protocol also embeds key agreement protocol messages into
a POPF. Suppose Alice and Bob want to instantiate a random function that Bob can evaluate on
a single, chosen (and secret) point x∗. Let Alice send the first message M1 of a key agreement
protocol (in the clear). Bob computes his KA response M2 and programs a POPF ϕ so that
Eval(ϕ, x∗) = M2. Now for every value of x, Alice can treat Eval(ϕ, x) as a KA response, and
compute the corresponding KA output. When x = x∗ the KA output will be a key that Bob can
also compute. But Bob has no control over Eval(ϕ, x) for x ̸= x∗. From his point of view, he is an
eavesdropper to Alice’s KA sessions (with reused M1) with external parties, and so the resulting
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On input (ready, F̃ ) from the sender:

• Do nothing if there has been a previous ready query from the sender.

• If the sender is corrupt, then internally record F = F̃ . Otherwise ignore F̃ and set F to be
a random function.

• Send (ready) to the receiver and add sender ready to the sessions flags.

On input (ready, x∗, r∗) from the receiver:

• Do nothing if there has been a previous ready query from the receiver.

• If the receiver is corrupt, then store the pair (x∗, r∗) in the list C. Otherwise ignore r∗.

• Record x∗.

• Send (ready) to the sender and add receiver ready to the sessions flags.

On input (query, x) from the sender:

• If the session does not have flags sender ready and receiver ready, do nothing.

• If there is a pair (x, z) in C, send (output, z) to the sender. Otherwise, let v = F (x), store
(x, v) in C, and send (output, v) to the sender.

On input (query) from the receiver:

• If the session does not have flags sender ready and receiver ready, do nothing.

• If there is a pair (x∗, z) in C, send (output, z) to the receiver. Otherwise, let v = F (x∗),
store (x∗, v) in C, and send (output, v) to the receiver.

Figure 5: Endemic 1-OPRF functionality F1OPRF

KA output looks random.
In more detail, the random function that the parties instantiate is defined as

F̂ (x) = KA.key1(a,Eval(ϕ, x)),

where a is Alice’s random tape used to generate M1. In order to apply the security of the POPF,
we again argue that KA.key1(a, ·) is a weak PRF, in the presence of leakage M1 (which is indeed a
function of a).

5.3 Details and Security

The details of our 1-OPRF protocol are given in Figure 6.

Subtleties about use of KA Unlike in our sPAKE protocol, Alice in our 1-OPRF protocol
derives many KA outputs from the same first message M1. Under usual operations, the first
message of a KA agreement is automatically safe to reuse for many KA instances. However, such
reuse is secure only when the M2 responses are honestly generated. Let us elaborate with an
example.
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Sender Receiver (with input x∗)
a← KA.R
M1 = KA.msg1(a)

M1 b← KA.R
M2 = KA.msg2(b,M1)
ϕ = Program(x∗,M2)

ϕ
output KA.key2(b,M1)

later: on input (query, x)

output KA.key1

(
a,Eval(ϕ, x)

)
Figure 6: Our 1-OPRF protocol.

Imagine an application of our 1-OPRF protocol where Bob has input x∗, and later he convinces
Alice to send both F̂ (x∗) and F̂ (x′) for x′ ̸= x∗. In the ideal world, a corrupt Bob might be able to
choose F (x∗) but F (x′) must look indistinguishable from random to him. However, consider a key
agreement scheme that is modified so that if Bob sends M2 = ⊥ then Alice outputs a (the random
tape she used to generate M1). Such a property does not prevent the KA scheme from satisfying
the usual security definition — that definition considers only honest behaviors and an honest Bob
would never send M2 = ⊥. But when such a protocol is used in our OPRF protocol, Bob can
program Eval(ϕ, x∗) = ⊥, and then in this scenario eventually learn F (x∗) = a. Knowing a, he can
easily distinguish F (x′) from random, since he knows it was computed as KA.key1(a,Eval(ϕ, x

′)).
This issue did not arise for our sPAKE protocol simply because Alice only computes KA output

once (not twice as this example), and if she and Bob use different passwords, then she computes KA
output based on a M2 that was outside of Bob’s control. But for 1-OPRF we need a KA protocol
to be robust (Definition 5).

Theorem 11. If KA is a secure robust KA protocol (Definition 5) with strongly random responses
(Definition 4) and (Program,Eval,HSim,Extract) is a secure POPF with range Y=KA.M1=KA.M2,
then the protocol in Figure 6 UC-securely realizes the F1OPRF functionality (Figure 5) in the random
oracle model.

The details of the proof are deferred to Appendix D. We present a brief sketch here:

Corrupt sender. The goal of simulation in this case is for the simulator to provide to the
functionality a function F̂ such that if the honest receiver has input x, they will receive output
F̂ (x).

This can be achieved by letting the simulator play the role of an honest receiver but use the
honest simulation (HSim) of the POPF. The simulator programs all outputs of Eval(ϕ, x) to be equal
to a KA message (whereas the honest receiver can only program one such output). Specifically,
for each x, the simulator lets Eval(ϕ, x) equal to the KA response computed with randomness
bx = F (k∗, x), where F is a PRF. Programming Eval(ϕ, ·)’s outputs in this way is indistinguishable
to the sender if the KA responses (M2’s) look uniform to the sender (i.e., if the KA scheme has
strong random responses: Definition 4). Later if the honest receiver happens to have input x∗, it
is easy to see that they will compute output F̂ (x∗) = KA.key2(F (k∗, x∗),M1).

Corrupt receiver The simulator can easily extract the receiver’s input x∗ from ϕ, using the
extraction capabilities of the POPF. The main challenge is to argue that all other OPRF outputs
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Sender Receiver (input x∗)

a← Zn b← Zn

r ← {0, 1}ℓ
T = g−b ·H(x∗, r)
s = r ⊕H ′(x∗, T )

M1 = ga

s, T

output (M̃1)
b

later: on input (query, x):

M̃2 = H(x, s⊕H ′(x, T )) · T−1

output (M̃2)
a

Figure 7: Our 1-flow 1-OPRF protocol instantiated with Diffie-Hellman KA and our POPF con-
struction from Section 3.3. Its parameters are a cyclic group G = ⟨g⟩ of order n, and random
oracles H,H ′.

(on x ̸= x∗) that the sender generates look random to the adversary. These other outputs are
computed as KA.key1(a,Eval(ϕ, x)). We show that if KA satisfies robustness and strong random
responses, then KA.key1(a, ·) is indeed a weak PRF (in the presence of information needed to
simulate M1 and the OPRF output at x∗). Hence, the POPF uncontrollable output property
establishes that these outputs look random to the adversary.

Using 1-flow KA Figure 6 is written assuming a 2-flow, sequential KA protocol. If the KA
protocol is actually 1-flow (so M2 doesn’t depend on M1), then it is clear that the receiver’s OPRF
protocol message doesn’t depend on the sender’s. However, in order for this change to be secure, we
have to consider the case of a corrupt sender with a rushing strategy, who waits for the receiver’s
OPRF message before sending its own. The security proof does not consider this case explicitly.
However, it is easy to see that our proof describes a simulator for a corrupt sender that can simulate
the receiver’s protocol message immediately, before seeing the adversary’s protocol message. Hence
our simulator works even in this rushing case. Our OPRF protocol is therefore a secure 1-flow
protocol when the underlying KA is 1-flow.

5.4 Instantiations

Unlike our sPAKE protocol, the 1-OPRF protocol requires stronger properties of the underlying
KA — namely, strong random responses (M2 indistinguishable from random, even to the party
who generates M1) and robustness (safety of reusing M1 even in the presence of one adversarially
generated M2).

Note that all 1-flow KA protocols that are pseudorandom automatically satisfy the strong
random responses property: if M2 looks random, and it doesn’t depend on M1, then it also looks
random to the party who generatedM1. Hence, Diffie-Hellman has this property under the standard
DDH assumption.

However, it is not obvious that Diffie-Hellman key agreement has the necessary robustness
property under the standard DDH assumption. The Interactive Decisional Diffie-Hellman (iDDH)
assumption [MR19] is the assumption required to prove the robustness property to hold for the
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DH key agreement. For a group G the iDDH assumption is hard if, for any PPT adversary, the
distributions (g, ga, Xb, gab) and (g, ga, Xb, gc) are indistinguishable, for a, b, c← Zp and X chosen
by the adversary after seeing gb.

Hence our OPRF protocol can be instantiated with Diffie-Hellman key agreement under the
iDDH assumption. The result is the 1-flow OPRF protocol shown in Figure 7.

Unfortunately, we are not aware of post-quantum KA protocols that satisfy these stronger
properties. In most such protocols, M1 acts as a public key and M2 acts as a key encapsulation
(ciphertext), which the first party can distinguish from random. For example, in lattice-based
schemes, M2 is a ciphertext which looks random to an eavesdropper, but which the recipient can
recognize as having low noise. We leave it as an interesting open problem to construct a post-
quantum KA with the stronger properties that we require.
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[PAA+19] Thomas Pöppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, An-
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A Robust KA Construction

Theorem 12. Given a secure and correct KA protocol KA with exponentially large KA.K, and a
random oracle H : KA.K → KA.K, define KA′ to use the same messages as KA, but use

KA′.key1(a,M2) = H(KA.key1(a,M2))

KA′.key2(b,M1) = H(KA.key2(b,M1))

as its output functions. Then KA′ is a secure, correct, and robust key agreement, and is pseudoran-
dom or has strongly random responses if KA does.

Proof. Correctness and security are clear because the same function has been composed on to the
outputs of both key functions, and because the adversary cannot guess what input to H was used
to get the key by the security of KA. Pseudorandomness and having strongly random responses
are properties defined only using the messages of the key agreement, and since KA′ has the same
messages as KA these properties are preserved.

Finally, we prove robustness. Let A1, A2 be a PPTs making at most q queries to H that distin-
guishes the two robust KA distributions from Definition 5 with advantage A, where A1 produces
M∗

2 and A2 distinguishes the resulting (st, k∗,M2, k). In Figure 8 we define an adversary A′ against
the security of KA.

When run on the random KA security distribution, A′ returns true with probability at most
q

|KA.K| because the only way the adversary has of finding K is to guess and check preimages of k,
so has q guesses at finding a uniformly random value.

For the real KA security distribution, with probability at least 1
q+2 A

′ behaves like it is emulating
the real distribution for the robust KA security definition, because in the real distribution k = H(K)
and k∗ = H(K∗) for some K and K∗, and K∗ must be either K (matching A′ when g = 1),
something A queries (g > 1), or something else (g = 0). When A is run on the real distribution
for robust KA it must query H(K) with probability at least A, as if it does not k = H(K) is
freshly random from A’s point of view, matching the random distribution for robust KA exactly.
Therefore, A′ outputs true with probability at least A

q+2 .

Combining the two cases together, we get that A′ has advantage at least A
q+2−

q
|KA.K| against the

security of KA. Conversely, if no PPT has advantage C against the security of KA it is impossible

for any PPT to achieve advantage (q + 2)C + q2+2q
|KA.K| against the robust security of KA′.
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A′(M1,M2,K) :

i := 0
g ← {0, . . . , q + 1}
k∗ ← KA.K
H(K ′) :

if previously evaluated on K ′:
return past value

i := i+ 1
if i = g:
return k∗

h← KA.K
return h

k := H(K)
(M∗

2 , st)← AH
1 (M1)

run AH
2 (st, k∗,M2, k)

return true iff A1 or A2 queried H(K).

Figure 8: Reduction turning an adversary A for the robust KA property (Definition 5) of KA′ into
another adversary A′ attacking the security of the underlying key agreement protocol (Definition 2).

B Additional Proofs for POPF Construction

Below is the full proof of Theorem 9:

Proof. First, we give some bad events and show that they are improbable in the uncontrollable
outputs game. For each non-anchor query H(x, s⊕H ′(x, T )) consistent with the ϕ that A1 chooses,
we need T to have appeared in a query to H ′ before this query is made. In our proof we will be
programming H to make Eval(ϕ, x) take uniformly random values for x ̸= x∗, which requires
knowing T , at least from polynomially many options.

To enforce this, we require that when any query H ′(x1, T ) is made by A1, there have not
already been queries H(x1, r1), H(x2, r2), H

′(x2, T ), such that r1 ⊕ r2 = H ′(x1, T )⊕H ′(x2, T ). If
this occurred then the adversary could choose to output ϕ = (s, T ) with s = r1 ⊕H ′(x1, T ), which
would mean that these two H-queries have the form H(x1, s⊕H ′(x1, T )) and H(x2, s⊕H ′(x2, T )).
In other words, this event corresponds to an adversary querying H(x1, s ⊕ H ′(x1, T )), for a non-
anchor x1, before making the H ′(x1, T ) query. There are at most q21q

′
1 ways to trigger this event,

because the last H ′ query and the two H queries fully specify the inputs to the H ′(x2, T ) query.
Each way has probability at most 2−3κ because H ′(x1, T ) is freshly random and its output is fixed
by the other queries.

We need a similar bad event during A2’s execution, but it is simple because we already know ϕ.
For each query H ′(x, T ) made by A2, there must not have been a previous query to H(x, r) with
r = s ⊕ H ′(x, T ) during A1’s execution. The H-query and ϕ fully specify the H ′ query, so there
are at most q1 possibilities for this to trigger, each with probability 2−3κ.

Next, we assume these bad events do not occur and give a reduction in Figure 9. We argue that,
excluding bad events, when Awprf is given the real weak PRF distribution and it does not abort, it
is indistinguishable from the real POPF uncontrollable outputs distribution. Every unique query
to H or H ′ returns an independent, uniformly random value, the same as with the random oracles.
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Awprf(L, y1, . . . , yn, z1, . . . , zn) :

i := 0
g ← {1, . . . , q′1}
Z := empty assoc. array
H ′(x, T ′) :

if previously evaluated on (x, T ′):
return past value

if T ′ is the g’th unique T ′ queried and T ∗ is unassigned:
T ∗ := T ′

h← {0, 1}3κ
return h

H(x, r) :

if previously evaluated on (x, r):
return past value

i := i+ 1
if T ∗ assigned:
Z[(x, r)] := zi
return yiT

∗−1

h← G
return h
O(x) :

r := s⊕H ′(x, T )
call H(x, r) // ensures that Z[(x, r)] is defined
return Z[(x, r)]

(view, (s, T ))← AH,H′

1 (L)
x∗ := Extract2(oracle transcripts, (s, T ))
if x∗ = ⊥: T ∗ := T
else: abort if T ̸= T ∗

out← AO!x∗,H,H′

2 (view)
return out

Figure 9: Reduction converting an adversary A for the uncontrollable outputs definition into an
attack Awprf against the security of the weak PRF.

Finding x∗ just calls Extract. Finally, we need to show that O behaves the same as F (k,Eval(ϕ, ·)).
We have

F (k,Eval(ϕ, x)) = F
(
k,H(x, s⊕H ′(x, T ))T

)
= F (k, yjT

−1T ) = F (k, yj) = zi = O(x),

as long as T ∗ had been assigned before the query H(x, r) with r = s⊕H ′(x, T ) is made, as the “if
T ∗ assigned” in H would trigger.

Otherwise, if x∗ ̸= ⊥ then we argue that we must have hit one of the bad events. H(x, r) must
be a non-anchor query consistent with ϕ (O cannot be queried on x∗). The anchor query H(x∗, r∗)
must be followed by a query H ′(x∗, T ) returning s ⊕ r∗, since this is how the anchor query was
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found by Extract, and this H ′-query was also preceded by the query H(x, r). The query H ′(x, T )
was also made at some point, and if it was made during A1’s execution then one of the two H ′

queries must have come last of the four, and r ⊕ r∗ = H ′(x, T )⊕H ′(x∗, T ), so the first bad event
occurred. If it was made by A2, we instead trigger the second bad event because H(x, r) was made
by A1.

Finally, if x∗ = ⊥, we know by the second bad event that H ′(x, T ) must have been made by
A1. But this would make H(x, r) a valid candidate to be the anchor query, and since x∗ = ⊥ no
anchor query was found by Extract.

From the other direction, when Awprf is given the random weak PRF distribution and it does
not abort, it is indistinguishable from the random POPF uncontrollable outputs distribution. The
only difference from the previous case is that every zi is chosen independently at random, the same
as with the random oracle R in the definition.

In either case, the probability that Awprf does not abort is at least q
′
1
−1, as H behaves the same

as a random oracle and cannot leak i to the adversary and there is at least one possibility for i that
does not abort. Therefore if (A1,A2) has advantage A and the bad events don’t occur, Awprf has
advantage A

q′1
against the weak PRF. Using the advantage bound C, solving for A, and adding the

bad event probabilities, we get A < q′1C +
q21q

′
1+q1
23κ

.

C Security Proof for sPAKE Protocol

C.1 Weak PRFs

Recall that a POPF security is defined in terms of composing its output with a weak PRF. We
first show two wPRFs derived from unauthenticated key agreement, which are used in the security
proof of our sPAKE protocol.

Lemma 13. Let KA be a pseudorandom KA protocol (Definition 3), and let F be a (standard)
PRF. Then

M̃1 7→
(
KA.msg2(F (k, M̃1), M̃1),KA.key2(F (k, M̃1), M̃1)

)
is a wPRF (with no leakage).

Proof sketch. This lemma refers to the following distribution:

k ← {0, 1}κ
for i = 1 to n:

M1,i ← KA.M1

bi ← F (k,M1,i)
M2,i = KA.msg2(bi,M1,i)
ki ← KA.key2(bi,M1,i)

output ({M1,i}i, {M2,i}i, {ki}i)

From the fact that F is a PRF, this distribution is indistinguishable from one in which all bi’s are
uniformly random. For a pseudorandom KA, the distribution is indistinguishable from one in which
M1,i ← KA.msg1(ai) for random ai. Finally, applying the property of pseudorandom KA again, the
output is indistinguishable from random, since the output consists of n completely independent
KA protocol transcripts and corresponding keys.

Lemma 14. Let KA be a pseudorandom KA protocol (Definition 3). Then KA.key1(a, ·) is a weak
PRF, in the presence of leakage KA.msg1(a).
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Proof sketch. This lemma refers to the following distribution:

a← KA.R
M1 = KA.msg1(a)
for i = 1 to n:
M2,i ← KA.M2

ki ← KA.key1(a,M2,i)
output (M1, {M2,i}i, {ki}i)

For a pseudorandom KA, the distribution is indistinguishable from one in whichM2,i ← KA.msg2(bi,
M1) for random bi. Namely:

a← KA.R
M1 = KA.msg1(a)
for i = 1 to n:
bi ← KA.R
M2,i ← KA.msg2(bi,M1)
ki ← KA.key1(a,M2,i)

output (M1, {M2,i}i, {ki}i)

And then from the correctness of the KA protocol, the distribution is identical to the following:

a← KA.R
M1 = KA.msg1(a)
for i = 1 to n:
bi ← KA.R
M2,i ← KA.msg2(bi,M1)

ki ← KA.key2(bi,M1)

output (M1, {M2,i}i, {ki}i)

Now with a used only to generate M1, the normal definition of KA security can be used in a
straight-forward hybrid argument to replace each ki with random. Then the other M -values can
be replaced with random, from the pseudorandom KA property.

C.2 sPAKE Protocol Proofs

Lemma 15. The protocol in Figure 3 is secure against a malicious P1.

Proof. The simulator for a corrupt P1 behaves as follows:

• The simulator uses Extract1 to simulate P1’s access to H1. Then when P1 outputs ϕ1 in the
protocol, the simulator obtains a value pw1 using Extract2, then switches to using Extract3 to
emulate H1. HSim1 is used to simulate H2 throughout.

• The simulator queries FpwKE on (TestPwd, sid, P2, pw1) to test P1’s password guess.

– If the ideal functionality replies with “Correct Guess”, then the simulator carries out
the protocol as an honest P2, using pw2 = pw1, b ← KA.R, and computes sk =
KA.key2(b,Eval

Extract3(ϕ1, pw
′)). Finally, the simulator sends (NewKey, sid, P2, sk) to

FpwKE .
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– If the ideal functionality replies with “Wrong Guess”, then the simulator switches from
using HSim1 to HSim2 for programming H2. HSim1 generates a simulated ϕ2 and HSim2

programs EvalHSim2(ϕ2, ·) to be random. The simulator sends (NewKey, sid, P2,⊥) to
FpwKE .

We prove the indistinguishability of this simulation using a sequence of hybrids starting with the
real word and ending in the ideal world:

• Hybrid 0: This hybrid represents the real-word execution of the protocol, where P2 is running
honestly with input pw2 and randomness b.

• Hybrid 1: Same as the previous hybrid, except that instead of choosing uniform randomness
b, P2 instead chooses a random k ← {0, 1}κ and sets b = F (k,EvalH1(ϕ1, pw2)), where F is a
PRF. Note that P2 doesn’t act until ϕ1 is chosen.

These hybrids are indistinguishable by the PRF property.

• Hybrid 2: Same as the previous hybrid, except we simulate H1 with Extract, so that when
P1 outputs ϕ1, we obtain an extracted value pw1 with Extract2 and switch to using H3 for
simulation. The hybrids are indistinguishable by the straight-line extraction property of the
POPF.

Note that in this hybrid, honest P2 computes M2 as KA.msg2(F (k, M̃1), M̃1) and computes

their final output as sk = KA.key2(F (k, M̃1), M̃1). From Lemma 13, the function

M̃1 7→
(
KA.msg2(F (k, M̃1), M̃1),KA.key2(F (k, M̃1), M̃1)

)
is a wPRF.

• Hybrid 3: Same as the previous hybrid, except that in the case of pw1 ̸= pw2, we replace
P2’s values M2 and sk with random values. This change is indistinguishable by the POPF
uncontrollable outputs property, due the fact that the function mentioned above is a wPRF,
and it is being composed with the output of EvalExtract3(ϕ1, pw2) for pw2 ̸= pw1.

• Hybrid 4: Same as the previous hybrid, except instead of using b = F (k, M̃1), the honest
party uses a uniformly chosen b← KA.R. This change is indistinguishable by the security of
the PRF.

• Hybrid 5: Same as the previous hybrid, except we simulate H2 with HSim1 from the start. In
the case of pw1 ̸= pw2, we then replace ϕ2 with the simulated dummy generated by HSim1, and
switch to using HSim2 to program H2 like in the simulator. This change is indistinguishable by
the POPF’s honest simulation property, since ϕ2 has been being programmed with a random
M2 since Hybrid 3.

Now we argue that this final hybrid is indistinguishable from the ideal world. When P1 sends her
message in the first flow, we compute the password guess pw1. If pw1 = pw2 then we run as an
honest P2 on input pw2, and P2 computes output sk = KA.key2(b,Eval(ϕ1, pw2)). This is precisely
what will happen in the ideal world after making a (correct) password guess on pw1 and sending
(NewKey, sid, P2, sk).

If pw1 ̸= pw2 then we send a dummy ϕ1 and the honest P2 computes a uniformly random
output. This is precisely what would happen in the ideal world after making a (incorrect) password
guess on pw1 and sending (NewKey, sid, P2,⊥).
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Lemma 16. The protocol in Figure 3 is secure against a malicious P2.

Proof. The simulator for a corrupt P2 behaves as follows:

• The simulator uses HSim1 to generate a simulated ϕ1 to send on behalf of P1 (as well as
simulating past accesses to H1), then uses HSim2 to program the outputs of EvalHSim2(ϕ1, ·).
Specifically, for each query Eval(ϕ1, x), the simulator samples ax ← KA.R and programs the
output to be KA.msg1(ax).

• The simulator further runs Extract2 to find pw2, after using Extract1 to simulate P2’s access
to H2 and receiving ϕ2. Subsequently Extract3 s used to simulate H2.

• The simulator queries FpwKE on (TestPwd, sid, P1, pw2) to test P2’s password guess.

– If the ideal functionality replies with “Correct Guess”, then the simulator sets sk =
KA.key1(apw2 ,Eval

Extract3(ϕ2, pw2)). Finally, the simulator sends (NewKey, sid, P1, sk)
to FpwKE .

– If the ideal functionality replies with “Wrong Guess”, the simulator sends (NewKey,
sid, P1,⊥) to FpwKE .

We prove the indistinguishability of this simulation using a sequence of hybrids starting with the
real word and ending in the ideal world:

• Hybrid 0: This hybrid represents the real-word execution of the protocol, in which P1 runs
honestly on input pw1.

• Hybrid 1: Same as the previous hybrid, except that we use HSim1 to generate the honest
party’s protocol message ϕ1 and HSim2 to program the outputs of Eval(ϕ1, ·).
Specifically, we program Eval(ϕ1, pw1) = KA.msg1(a) and program other outputs to be uni-
formly random. These hybrids are indistinguishable from the honest simulation property of
the POPF.

• Hybrid 2: Same as the previous hybrid, except we simulate P2’s access to H2 with Extract1.
When he sends ϕ2 in the protocol, we extract a value pw2 (such that values EvalExtract3(ϕ2,
pw) are “beyond the adversary’s control” for pw ̸= pw2). These hybrids are indistinguishable
from the undetectability of extraction property of the POPF.

To summarize this interaction, we first compute KA.msg1(a) to program EvalH1(ϕ1, pw1). Then
the honest P1 finally computes their output as KA.key1(a,Eval

Extract3(ϕ2, pw1)).

• Hybrid 3: Same as the previous hybrid, except that honest P1’s output is computed as follows.
If pw1 = pw2 then compute output as KA.key1(a,Eval

Extract3(ϕ2, pw1)) as usual. Otherwise,
compute a random output.

When pw1 = pw2, this is identical to the previous hybrid, so the adversary can achieve no
advantage. Therefore we can assume without loss of generality that any adversary distin-
guishing this hybrid from the previous always sets pw1 ̸= pw2, as exactly the same advantage
can be achieved by a new adversary that is the same as the old except that he always aborts
if he was going to set pw1 = pw2.

In the case that pw1 ̸= pw2, we use the uncontrollable outputs property to show that we can
replace KA.key1(a,Eval(ϕ2, pw1)) with random, since KA.key1(a, ·) is a wPRF in the presence
of the leakage KA.msg1(a) (Lemma 14), which is leaked through EvalH1(ϕ1, pw1).
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• Hybrid 4: Same as the previous hybrid, except we rename the variable a as apw1 . We also use
HSim to program every output EvalH1(ϕ1, x) to be KA.msg1(ax), for random ax ← KA.R. The
change is indistinguishable by the fact that KA.msg1 outputs are pseudorandom. Note that
in this hybrid, the value of pw1 is not used in any special way until the honest P1 computes
their final output.

Now we argue that this final hybrid is indistinguishable from the ideal world. When P2 sends
ϕ2, we compute the password guess pw2. If pw2 = pw1 then honest P1 computes output sk =
KA.key1(apw2 ,Eval

Extract3(ϕ2, pw2)), which is exactly what happens in the ideal world after making
a (correct) password guess on pw2 and sending (NewKey, sid, P1, sk).

If pw2 ̸= pw1 then honest P1 outputs a uniformly random key, which is exactly what happens in
the ideal world after making a (incorrect) password guess on pw2 and sending (NewKey, sid, P1,⊥).

D 1-OPRF Security Proof

D.1 Weak PRFs

Since we define POPF security in reference to its composition with a weak PRF, we now introduce
the weak PRF (derived from a KA protocol) that is used in the security proof.

Lemma 17. Let KA be robust with strongly random responses (Definition 4). Then KA.key1(a, ·)
is a weak PRF, in the presence of leakage M1 = KA.msg1(a) and KA.key1(a,M2) for M2 chosen by
A(M1). That is, the family of leakage functions includes A’s logic for chosing M2.

Proof sketch. We start from the following distribution, which is equivalent to the real distribution
from the weak PRF definition because the KA has strongly random responses.

a← KA.R
M1 = KA.msg1(a)
(M∗

2 , st)← A(M1)
k∗ = KA.key1(a,M

∗
2 )

for i = 1 to n:
bi ← KA.R
M2,i = KA.msg2(bi,M1)

ki = KA.key1(a,M2,i)
output (st, k∗, {M2,i}i, {ki}i)

By KA correctness, ki = KA.key1(a,M2,i) = KA.key2(bi,M1). Using this property on all but a single
ki, we get can make only M1, k

∗, and ki use a directly, and then the robust KA property shows that
we can replace ki with random. Therefore, by a series of n hybrids this distribution is equivalent
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to the following.

a← KA.R
M1 = KA.msg1(a)
(M∗

2 , st)← A(M1)
k∗ = KA.key1(a,M

∗
2 )

for i = 1 to n:
bi ← KA.R
M2,i = KA.msg2(bi,M1)

ki ← KA.K
output (st, k∗, {M2,i}i, {ki}i)

And since the KA has strongly random responses, the distribution is indistinguishable from one in
which M2,i ← KA.M2:

a← KA.R
M1 = KA.msg1(a)
(M∗

2 , st)← A(M1)
k∗ = KA.key1(a,M

∗
2 )

for i = 1 to n:
bi ← KA.R
M2,i ← KA.M2

ki ← KA.K
output (st, k∗, {M2,i}i, {ki}i)

Which follows the definition for a weak PRF over M2,KA.key1(a,M2) with leakage k∗,M1.

D.2 1-OPRF Security Proof

Lemma 18. The protocol in Figure 6 is secure against a malicious sender in the random oracle
model.

Proof. The simulator for a corrupt sender behaves as follows:

• The simulator uses HSim1 to simulate access to H.

• When the simulator receives M1 from the sender, the simulator chooses a PRF F , samples
a random seed k∗, and then sends (Ready, F̂ ) to F1OPRF where F̂ (x) = KA.key2(F (k∗, x),
M1).

• The simulator then gets HSim1 output ϕ and switches to using HSim2 to program H. It then
gives ϕ to the sender.

• HSim2 programs EvalHSim2(ϕ, ·). For each query Eval(ϕ, x), the simulator sets the output to
be KA.msg2(F (k∗, x),M1).

We prove the indistinguishability of this simulation using a sequence of hybrids starting with the
real word and ending in the ideal world:

• Hybrid 0: This hybrid represents the real-word execution of the protocol, with the receiver
executing honestly on input x∗.
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• Hybrid 1: This hybrid is identical to the previous one, except now the simulator uses HSim1

to generate a dummy ϕ and subsequently programs outputs of Eval(ϕ, ·), using HSim2. The
output of Eval(ϕ, x) is programmed to be equal to M2 for x = x∗, and random for all other x ̸=
x∗. As this makes Eval(ϕ, x∗) the same as in hybrid 0, the two hybrids are indistinguishable
by the honest simulation property of the POPF.

• Hybrid 2: Same as the previous hybrid, except in how the outputs of Eval(ϕ, x) are pro-
grammed. Whereas the previous hybrid programmed Eval(ϕ, x) to be random for x ̸=
x∗, this hybrid samples a value bx ← KA.R and programs the output of Eval(ϕ, x) to be
KA.msg2(bx,M1). These hybrids are indistinguishable by the strong random responses prop-
erty of the KA protocol.

Also note that by renaming internal variable b = bx∗ , all outputs of Eval(ϕ, x) are programmed
in a uniform way. There is no longer a special case for x∗.

• Hybrid 3: Same as the previous hybrid, except we sample a PRF seed k∗ and replace each ran-
dom bx ← KA.R with bx = F (k∗, x), where F is a PRF. The two hybrids are indistinguishable
by the security of the PRF.

Note that the change in this hybrid also applies to the receiver’s output. It is now computed
as KA.msg2(F (k∗, x∗),M1).

Now we argue that this final hybrid is indistinguishable from the ideal world. The simulator sends
the simulated ϕ value and programs the Eval outputs to have the form Eval(ϕ, x) = KA.msg2(F (k∗,
x),M1) then in the case that the honest receiver has input x∗, they will compute their output
as KA.key2(F (k∗, x∗),M1). This is precisely how the function F̂ is defined in the description of
the simulator, so this is exactly what will happen in the ideal world when the simulator sends
(Ready, F̂ ) to the ideal functionality.

Lemma 19. The protocol in Figure 6 is secure against a malicious receiver in the random oracle
model.

Proof. The simulator for a corrupt receiver behaves as follows:

• The simulator samples a← KA.R, computes M1 = KA.msg1(a), and sends M1 to the receiver.

• The simulator runs A ⇆ Extract1 and uses Extract2 to get the OPRF input x∗ when the
receiver sends ϕ. Subsequent access to H is simulated with Extract3.

• The simulator waits to receive Ready from F1OPRF and in return sends (Ready, x∗,KA.key1(
a,EvalExtract3(ϕ, x∗))).

We prove the indistinguishability of this simulation using a sequence of hybrids starting with the
real word and ending in the ideal world:

• Hybrid 0: This hybrid represents the real-word execution of the protocol, with the sender
following the protocol honestly.

• Hybrid 1: This is the same as the real protocol interaction, except we use Extract1 to simulate
H and when P2 sends ϕ, Extract2 outputs a value x∗. Extract3 is used to emulate subsequent
access to H. This hybrid is indistinguishable from Hybrid 0 by the straight-line extraction
property of the POPF.
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• Hybrid 2: Recall that in the preceding hybrids, the sender’s query responses were computed as
KA.key1(a,Eval(ϕ, x)) for input x. In this hybrid, when the sender gets input (query, x) where
x ̸= x∗ they instead sample and output a random value z. This is indistinguishable from the
previous hybrid by the Uncontrollable Outputs property of the POPF, because KA.key1(a, ·)
is a weak PRF, in the presence of leakage M1 = KA.msg1(a) and k∗ = KA.key1(a,M2) for
A(M1) chosen M2 (Lemma 17).

Now we argue that this final hybrid corresponds to the ideal world. First note that since the sender
has no private inputs, we can perfectly simulate them. In this final hybrid: the simulator honestly
provides M1, extracts the receiver’s input x∗. When the sender has a query on x, their output
is computed as follows: if x ̸= x∗ the output is random; otherwise, the output is computed as
z∗ = KA.key1(a,Eval(ϕ, x

∗)). This is precisely how outputs are computed for the sender in the ideal
world, if the simulator sends (Ready, x∗, z∗) to the functionality.

Lemma 20. When the protocol in Figure 6 is instantiated with a 1-flow KA and modified so that
ϕ is sent before M1 (like with adversary rushing), it is still secure against a malicious sender in the
random oracle model.

Proof. In the case of a 1-flow KA, note that KA.msg2 for the reciever does not depend on the
sender’s message M1. Then our simulator for the malicious sender acts as normal, but sends ϕ first
before recieving M1. This is possible because the simulator in defined in the proof of Lemma 18
calculates ϕ independent of M1. If the sender calculates Eval(ϕ, x), then the simulator may program
as normal because of KA.msg2’s independence of M1. Then when the sender gives the reciever M1,
there still exists consistency between the sender’s calculated values and the reciever’s learned value
KA.key2(F (k∗, x),M1) and the proof follows the series of hybrids as before.
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