
Beyond Honest Majority: The Round Complexity
of Fair and Robust Multi-party Computation

Arpita Patra and Divya Ravi ?

Indian Institute of Science, India
{arpita,divyar}@iisc.ac.in

Abstract. Two of the most sought-after properties of Multi-party Com-
putation (MPC) protocols are fairness and guaranteed output delivery
(GOD), the latter also referred to as robustness. Achieving both, how-
ever, brings in the necessary requirement of malicious-minority. In a gen-
eralised adversarial setting where the adversary is allowed to corrupt both
actively and passively, the necessary bound for a n-party fair or robust
protocol turns out to be ta+tp < n, where ta, tp denote the threshold for
active and passive corruption with the latter subsuming the former. Sub-
suming the malicious-minority as a boundary special case, this setting,
denoted as dynamic corruption, opens up a range of possible corruption
scenarios for the adversary. While dynamic corruption includes the entire
range of thresholds for (ta, tp) starting from (dn

2
e − 1, bn

2
c) to (0, n− 1),

the boundary corruption restricts the adversary only to the boundary
cases of (dn

2
e − 1, bn

2
c) and (0, n− 1). Notably, both corruption settings

empower an adversary to control majority of the parties, yet ensuring
the count on active corruption never goes beyond dn

2
e − 1.

We target the round complexity of fair and robust MPC tolerating dy-
namic and boundary adversaries. As it turns out, dn

2
e+1 rounds are nec-

essary and sufficient for fair as well as robust MPC tolerating dynamic
corruption. The non-constant barrier raised by dynamic corruption can
be sailed through for a boundary adversary. The round complexity of 3
and 4 is necessary and sufficient for fair and GOD protocols respectively,
with the latter having an exception of allowing 3 round protocols in the
presence of a single active corruption. While all our lower bounds assume
pair-wise private and broadcast channels and are resilient to the pres-
ence of both public (CRS) and private (PKI) setup, our upper bounds
are broadcast-only and assume only public setup. The traditional and
popular setting of malicious-minority, being restricted compared to both
dynamic and boundary setting, requires 3 and 2 rounds in the presence
of public and private setup respectively for both fair as well as GOD
protocols.

Keywords: Fairness · Guaranteed Output Delivery · MPC · Round
Complexity · Dynamic · Boundary

? This article is a full and extended version of an earlier article to appear in ASI-
ACRYPT 2019.

1 Introduction

Secure multi-party computation (MPC) [GMW87, CDG87, Yao82], which is ar-
guably the most general problem in cryptography, allows a group of mutually
distrustful parties to compute a joint function on their inputs without reveal-
ing any information beyond the result of the computation. While the distrust
amongst the parties is modelled by a centralized adversary A who can corrupt a
subset of the parties, the security of an MPC protocol is captured by a real-world
versus ideal-world paradigm. According to this paradigm, adversarial attacks in
a real execution of the MPC protocol can be translated to adversarial attacks in
the ideal-world where the parties interact directly with a trusted-third party who
accepts private inputs, computes the desired function and returns the output to
the parties; thereby trivially achieving correctness (function output is correctly
computed on parties’ inputs) and privacy (A learns nothing about the private
inputs of honest parties, beyond what is revealed by the output).

Two of the most sought-after properties of MPC protocols are fairness and
robustness (alternately, guaranteed output delivery a.k.a. GOD). The former en-
sures that adversary obtains the output if and only if honest parties do, while
the latter guarantees that the adversary cannot prevent honest parties from ob-
taining the output. Both these properties are trivially attainable in the presence
of any number of passive (semi-honest) corruption where the corrupt parties
follow the protocol specifications but the adversary learns the internal state of
the corrupt parties. However, in the face of stringent active (malicious) corrup-
tion where the parties controlled by the adversary deviate arbitrarily from the
protocol; fairness and GOD can be achieved only if the adversary corrupts at
most a minority of the parties (referred to as malicious minority) [Cle86].

Opening up the possibility of corrupting parties in both passive and active
style, the generalized feasibility condition for a n-party fair or robust protocol
turns out to be ta+tp < n, where ta, tp denote the threshold for active and passive
corruption, with the latter subsuming the former [HLM13]. We emphasize that
tp is a measure of the total number of passive corruptions that includes the
actively corrupt parties; therefore the feasibility condition ta + tp < n implies
ta ≤ dn/2e − 1. In its most intense and diverse avatar, referred as dynamic-
admissible, the adversary can take control of the parties in one of the ways
drawn from the entire range of admissible possibilities of (ta, tp) starting from
(dn2 e−1, bn/2c) to (0, n−1)

1. In a milder setting, referred as boundary-admissible,
the adversary is restricted only to the boundary cases, namely (dn/2e−1, bn/2c)
and (0, n−1). Subsuming the traditional malicious-minority and passive-majority
(majority of the parties controlled by passive adversary) setting for achieving
fairness and GOD as special cases, both dynamic as well as boundary setting give
the adversary more freedom and consequently more strength to the protocols.

1 We refer to the dynamic-admissible adversary as dynamic adversary, which is not to
be confused with the notion of adaptive adversaries who are allowed to dynamically
choose which parties to corrupt during the protocol execution.

2

Notably, both empower an adversary to control majority of the parties, yet
ensuring the count on active corruption never goes beyond dn2 e − 1.

The study of protocols in dynamic and boundary setting is well motivated
and driven by theoretical and practical reasons. Theoretically, the study of gen-
eralized adversarial corruptions gives deeper insight into how passive and active
strategies combine to influence complexity parameters of MPC such as efficiency,
security notion achieved and round complexity. Practically, the protocols in dy-
namic and boundary setting offer strong defence and are more tolerant and
better-fit in practical scenarios where the attack can come in many unforeseen
ways. Indeed, deploying such protocols in practice is far more safe than tradi-
tional malicious-minority and passive-majority protocols that completely break
down in the face of boundary adversaries, let alone dynamic adversaries. For
instance, consider MPC in server-aided setting where instead of assuming only
actively corrupt clients and honest servers, the collusion of client-server is per-
mitted where some of the servers can be passively monitored. This model is
quite realistic as it does not contradict the reputation of the system (since the
passive servers follow protocol specifications and can thereby never be exposed
/ caught). The option of allowing corruption in both passive and active styles is
quite relevant in such scenarios. Driven by the above credible reasons and extend-
ing the study of exact round complexity of fair and robust protocols beyond the
traditional malicious-minority setting [GIKR02, GLS15, PR18a], in this work,
we aim to settle the same for the regime of dynamic and boundary corruption.

Related Work. We begin with outlining the most relevant literature of round
complexity of fair and robust MPC protocols in the traditional adversarial set-
tings involving only single type of adversary (either passive or active). To begin
with, 2 rounds are known to be necessary to realize any MPC protocol, regard-
less of the type of adversary, no matter whether a setup is assumed or not as
long as the setup (when assumed) is independent of the inputs of the involved
parties [HLP11]. A 1-round protocol is susceptible to “residual function attack"
where an adversary can evaluate the function on multiple inputs by running
the computation with different values for his inputs with fixed inputs for the
honest parties. The result of [GIKR02] shows necessity of 3 rounds for fairness
in the plain and CRS setting (assumes parties have access to a common refer-
ence string), when the number of malicious corruptions is at least 2 (i.e. t ≥ 2),
irrespective of the number of parties, assuming the parties are connected by
pairwise-private and broadcast channels. Complementing this result, the lower
bound of [PR18a] extends the necessity of 3 rounds for any t (including t = 1) as
long as n/3 ≤ t < n/2. The work of [GLS15] shows 3 to be the lower bound for
fairness in the presence of CRS, assuming broadcast-only channels (no private
channels).

In terms of the upper bounds, the works of [GS18, BL18] showed that 2-
rounds are sufficient to achieve robustness in the passive-majority setting. In
accordance with the impossibility of [Cle86] and sufficiency of honest-majority
shown by classical result of [RB89], the upper bounds in the malicious setting
involve t < n/2 parties. These include the 3-round constructions of [GLS15,

3

ACGJ18, BJMS18] based on tools such as Zaps, multi-key FHE, dense crypto-
systems. The protocol of [GLS15] can be collapsed to two rounds given access to
a PKI (public-key infrastructure). In the information-theoretic setting involving
t < n/4 malicious corruptions, the work of [ABT19] presents a 3-round perfectly-
secure robust protocol. In the domain of small-number of parties, round optimal
protocols achieving fairness and robustness appear in [IKKP15, PR18a].

Moving on to the setting of generalized adversary, there are primarily two
adversarial models that are most relevant to us. The first model initiated by
[DDWY93] consider a mixed adversary (referred to as graceful degradation of
corruptions) that can simultaneously perform different types of corruptions. Fea-
sibility results in this model appeared in the works of [FHM98, FHM99, HMZ08,
BFH+08]. The dynamic-admissible adversary considered in our work is consis-
tent with this model since it involves simultaneous active and passive corrup-
tions. The second model proposed by [Cha89] concerns protocols that are secure
against an adversary that can either choose to corrupt a subset of parties with
particular corruption type (say, passively) or alternately a different subset (typ-
ically smaller) of parties with a second corruption type (say, actively), but only
single type of corruption occurs at a time. Referred to as graceful degradation
of security [Cha89, LRM10, FHHW03, FHW04, IKLP06, Kat07, IKK+11], such
protocols achieve different security guarantees based on the set of corrupted par-
ties; for instance robustness/information-theoretic security against the smaller
corruption set and abort/computational security against the larger corruption
set. We note that the boundary-admissible adversary when n is odd, involves
either purely active (since ta = tp holds when (ta, tp) = (dn/2e − 1, bn/2c))
corruptions or purely passive corruptions (where (ta, tp) = (0, n − 1)); thereby
fitting in the second model (In fact, boundary-admissible adversary for odd
n degenerates to the adversarial model studied in “best-of-both-worlds" MPC
[IKK+11]). However, in case of even n, the boundary-admissible adversary with
(ta, tp) = (dn/2e − 1, bn/2c) would involve simultaneous passive and active cor-
ruption as tp = ta+1 and fit in the prior model. Lastly, both graceful degradation
of security and corruptions were generalized in the works of [HLMR11, HLM13].
To the best of our knowledge, the interesting and natural question of round
complexity has not been studied in these stronger adversarial models.

1.1 Our Results

In this work, we target and resolve the exact round complexity of fair and ro-
bust MPC protocols in both dynamic and boundary setting. This is achieved
via 3 lower bounds that hold assuming both CRS and PKI setup and 5 upper
bounds that assumes CRS alone. Notably, the lower bounds in PKI (private)
setup extend to a model with arbitrary correlated randomness. In terms of net-
work setting, while our lower bounds hold assuming both pairwise-private and
broadcast channels, all our upper bounds use broadcast channel alone. All our
upper bounds are generic compilers that transform a 2-round protocol achieving
unanimous abort (either all honest parties obtain output or none of them do) or

4

identifiable abort (corrupt parties are identified in case honest parties do not ob-
tain the output) against malicious majority to a protocol achieving the stronger
guarantees of fairness/robustness against stronger adversaries (namely, dynamic
and boundary adversaries). The need for CRS in our constructions stems from
the underlying 2-round protocol achieving unanimous or identifiable abort. We
leave open the question of constructing tight upper bounds or coming up with
new lower bounds in the plain model. We elaborate on the results below.

Dynamic Adversary. We recall that in this challenging setting, the adversary
has the freedom to choose from the entire range of thresholds for (ta, tp) start-
ing from (dn/2e − 1, bn/2c) to (0, n− 1). Our first lower bound establishes that
dn/2e + 1 rounds are necessary to achieve fairness against dynamic adversary.
Since robustness is a stronger security notion, the same lower bound holds for
GOD as well. This result not only rules out the possibility of constant-round
fair protocols but also gives the exact lower bound. We give two matching upper
bounds, one for fairness and the other for robustness, where the former is sub-
sumed by and acts as a stepping stone to the latter. These results completely
settle the round complexity of this setting in the CRS model.

Boundary Adversary. The leap in round complexity ebb in the milder bound-
ary adversarial setting where adversary is restricted to the boundary cases of
(dn/2e−1, bn/2c) and (0, n−1). Our two lower bounds of this setting show that 4
and 3 rounds are necessary to achieve robustness and fairness respectively against
the boundary adversary. Our first 4-round lower bound is particularly interest-
ing, primarily due to two reasons. (1) As mentioned earlier, when n is odd, the
boundary cases reduce to pure active (ta = tp when (ta, tp) = (dn/2e−1, bn/2c))
and pure passive ((ta, tp) = (0, n−1)) corruptions. We note that security against
malicious-minority and passive-majority are known to be attainable indepen-
dently in just 2 rounds assuming access to CRS and PKI [GLS15, GS18, BL18].
Hence, our 4-round lower bound encapsulates the difficulty in designing protocols
tolerant against an adversary who can choose among his two boundary corrup-
tion types arbitrarily. (2) This lower bound can be circumvented in case of single
malicious corruption i.e. against a special-case boundary adversary restricted to
corruption scenarios (ta, tp) = (1, bn/2c) and (ta, tp) = (0, n − 1). (We refer to
such an adversary as special-case boundary adversary with ta ≤ 1). This ob-
servation augments the rich evidence in literature [PCRR09, BKP11, IKKP15]
which show the impact of single corruption on feasibility results. With respect
to our second lower bound for fairness against boundary adversary, we first note
that the 3-round lower bound for fairness in the presence of CRS is trivial given
the feasibility results of [GIKR02, GLS15, PR18a]. However, they break down
assuming access to PKI. Thus, the contribution of our second lower bound is to
show that the 3-round lower bound holds for boundary adversary even in the
presence of PKI.

We complement these two lower bounds by three tight upper bounds. The
upper bounds achieving robustness include a 4-round protocol for the general
case and a 3-round protocol for the special-case of one malicious corruption that

5

demonstrates the circumvention of our first lower bound. Lastly, our third upper
bound is a 3-round construction achieving fairness, demonstrating the tightness
of our second lower bound.

Our results appear in the table below with comparison to the round com-
plexity in the traditional settings of achieving fairness and robustness. Since
PKI (private) setup subsumes CRS (public) setup which further subsumes plain
model (no setup), the lower and upper bounds are specified with their maximum
tolerance and minimum need respectively amongst these setup assumptions. The
results provide us further insights regarding how disparity in adversarial setting
affects round complexity. Note that the round complexity of fair protocols in
the CRS model against an adversary corrupting minority of parties maliciously,
remains unaffected in the setting of boundary adversary; which is a stronger vari-
ant of the former. On the other hand, this switch of adversarial setting causes
the lower bound of robust protocols in the model assuming both CRS and PKI to
jump from 2 to 4. Lastly, the gravity of dynamic corruption on round complexity
is evident in the leap from constant-rounds of 3, 4 in the boundary corruption
case to dn/2e+ 1.

Adversary Security Rounds Lower bound Upper Bound

Passive-majority Fair, GOD 2 [HLP11] (private) [GS18, BL18] (plain)

Malicious-minority Fair, GOD 3 [GLS15, PR18a] (public) [ACGJ18, BJMS18] (plain)
Fair, GOD 2 [HLP11] (private) [GLS15] (private)

Boundary Fair 3 [This, Thm. 5] (private) [This, Thm. 8] (public)
GOD 4 (3 when ta ≤ 1) [This, Thm. 4, 5] (private) [This, Thm. 6,7] (public)

Dynamic Fair, GOD dn2 e+ 1 [This, Thm. 1] (private) [This, Thm. 2, 3] (public)

1.2 Techniques

In this section, we give a glimpse into the techniques used in our lower bounds
and matching upper bound constructions.

Lower Bounds. We present 3 lower bounds, all of which hold assuming access to
both CRS and PKI– (a) dn/2e+1 rounds are necessary to achieve fairness against
dynamic adversary. (b) 4 rounds are necessary to achieve robustness against a
boundary adversary. (c) 3 rounds are necessary to achieve fairness against a
boundary adversary.

The first lower bound (a) effectively captures the power of dynamic corrup-
tion stemming from the ambiguity caused by the total range of thresholds (ta, tp)
starting from (dn/2e − 1, bn/2c) to (0, n− 1). The proof navigates through this
sequence starting with maximal active corruption and proceeds to scenarios of
lesser active corruptions one at a time. An inductive argument neatly captures
how the value of tp growing alongside decreasing values of ta can be exploited
by adversarial strategies violating fairness, eventually dragging the round com-
plexity all the way upto dn/2e+1. The lower bounds (b) and (c) are shown by
considering a specific set of small number of parties and assume the existence of
a 3 (2) round robust (fair) protocol for contradiction respectively. Subsequently,

6

inferences are drawn based on cleverly-designed strategies exploiting the prop-
erties of GOD and fairness. These inferences and strategies are interconnected
in a manner that builds up to a strategy violating privacy, thereby leading to a
final contradiction.

Upper Bounds. We present 5 upper bounds, in the broadcast-only setting com-
prising of two upper bounds each for fairness and GOD against dynamic and
boundary adversary respectively and lastly, an additional 3-round upper bound
for GOD against the special case of single malicious corruption by boundary
adversary in order to demonstrate the circumvention of lower bound (b). Tight-
ness of this upper bound follows from lower bound (c) (that holds for single
malicious corruption) as GOD implies fairness. Our upper bounds can be viewed
as “compiled" protocols obtained upon plugging in any 2-round broadcast-only
protocols [GS18, BL18] achieving unanimous abort against malicious majority.
While the fair upper-bounds do not require any additional property from the
underlying 2-round protocol, our robust protocols demand the property of iden-
tifiable abort and function-delayed property i.e. the first round of the protocol is
independent of the function to be computed and the number of parties. Looking
ahead, this enables us to run many parallel instances of the round 1 in the
beginning and run the second round sequentially as and when there is a failure,
to compute a new function (that gets determined based on the identities of the
corrupt parties). Assumption wise, all our upper bound constructions rely on 2-
round maliciously-secure oblivious transfer (OT) in common random/reference
string models. We now give a high-level overview of the specific challenges we
encounter in each of our upper bounds and the techniques we use to tackle them.

Dynamic adversary: The two upper bounds against dynamic adversary show
sufficiency of dn/2e + 1 rounds to achieve fairness and robustness against dy-
namic admissible adversary. The upper bound for fairness is built upon the
protocol of [HLM13] that introduces a special-kind of sharing, which we refer
to as levelled-sharing where a value is divided into summands (adding upto the
value) and each summand is shared with varying degrees. The heart of the pro-
tocol of [HLM13] lies in its gradual reconstruction of the levelled-shared output
(obtained by running an MPC protocol with unanimous abort), starting with the
summand corresponding to the highest degree down to the lowest. The argument
for fairness banks on the fact that the more the adversary raises its disruptive
power in an attempt to control reconstruction of more number of summands, the
more it looses its eavesdropping capability and consequently learns fewer number
of summands by itself and vice versa. This discourages an adversary from misbe-
having as using maximal disruptive power reduces its eavesdropping capability
such that he falls short of learning the next summand in sequence without the
help of honest parties. The innovation of our fair protocol lies in delicately fixing
the parameters of levelled-sharing in a manner that optimal round complexity
can be attained whilst maintaining fairness.

Next, we point that since the fair protocol consumes the optimal round com-
plexity of dn/2e+ 1 even in the case of honest execution, the primary hurdle in

7

our second upper bound is to be able to carry out re-runs when an adversary
disrupts computation to achieve robustness without consuming extra rounds.
Banking on the player-elimination technique, we use identifiability to bar the
corrupt parties disrupting computation from participating thereafter. Having
parallel execution of Round 1 of all the required re-reruns helps us get closer
to the optimal bound. While these approaches aid to a great extent, the final
saviour comes in the form of a delicate and crucial observation regarding how
the thresholds of the levelled-sharing can be manipulated carefully, accounting
for the cheaters identified so far. This trick exploits the pattern of reduced cor-
ruption scenarios obtained upon cheater identification and helps to compensate
for the rounds consumed in subprotocols that were eventually disrupted by the
adversary. The analysis of the round complexity of the protocol being subtle, we
use an intricate recursive argument to capture all scenarios and show that the
optimal lower bound is never exceeded. Lastly, we point that both upper bound
constructions against dynamic adversary assume equivocal non-interactive com-
mitment (such as Pedersen commitment [Ped91]).

Boundary adversary: The three upper bounds against boundary-admissible
adversary restricted to corruption scenarios either (ta, tp) = (dn/2e − 1, bn/2c)
or (ta, tp) = (0, n − 1) show that (a) 4 rounds are sufficient to achieve ro-
bustness against boundary-admissible adversary (b) 3 rounds are sufficient to
achieve robustness against special-case boundary-admissible adversary when
ta ≤ 1 i.e. adversary corrupts with parameters either (ta, tp) = (1, bn/2c)
or (ta, tp) = (0, n − 1) (c) 3 rounds are sufficient to achieve fairness against
boundary-admissible adversary.

At a high-level, all the three upper bounds begin with a 2-round protocol se-
cure against malicious majority that computes threshold sharing of the output.
Intuitively, this seems to serve as the only available option as protocols cus-
tomized for malicious minority typically breach privacy when views of majority
of the parties are combined (thereby will break down against tp < n semi-honest
corruptions). On the flip side, protocols customized for exclusively passive ma-
jority may violate correctness/privacy in the presence of even single malicious
corruption. Subsequently, this natural route bifurcates into two scenarios based
on whether the adversary allows the computation of the threshold sharing of
output to succeed or not. In case of success, all the three upper bounds proceed
via the common route of reconstruction which is guaranteed to be robust by the
property of threshold sharing. The distinctness of the 3 settings (accordingly
the upper bounds) crops up in the alternate scenario i.e. when the computation
of threshold sharing of output aborts. While in upper bound (c), parties sim-
ply terminate with ⊥ maintaining fairness enabled by privacy of the threshold
sharing; the upper bounds (a) and (b) demanding stronger guarantee of ro-
bustness cannot afford to do so. These two upper bounds exploit the fact that
the corruption scenario has now been identified to be the boundary case having
active corruptions, thereby protocols tolerating malicious minority can now be
executed.

8

While the above outline is inspired by the work of [IKK+11], we point that we
need to tackle the exact corruption scenarios as that of the protocols of [IKK+11]
only when n is odd. On the other hand when n is even, the extreme case for active
corruption accommodates an additional passive corruption (tp = ta + 1). Apart
from hitting the optimal round complexity, tackling the distinct boundary cases
for odd and even n in a unified way brings challenge for our protocol. To overcome
these challenges, in addition to techniques of identification and elimination of
corrupt parties who disrupt computation, we employ tricks such as parallelizing
without compromising on security to achieve the optimum round complexity.
Lastly, we point that the upper bound (a) assumes Zaps (2-round, public-coin
witness-indistinguishable protocols) and public-key encryption.

2 Preliminaries

We consider a set of parties P = {P1, . . . , Pn}. Our upper bounds assume the
parties communicate over a broadcast channel and a setup where parties have
access to a common reference string (CRS). Our lower bounds hold even when
the parties are additionally connected by pairwise-secure and authentic channels
and for a stronger setup, namely assuming access to CRS as well as public-key
infrastructure (PKI). Each party is modelled as a probabilistic polynomial-time
(PPT) Turing machine. We assume that there exists a PPT adversary A, who
can corrupt a subset of these parties.

We consider two kinds of adversarial settings in this work. In both settings,
the adversary A is characterised by two thresholds (ta, tp), where he may corrupt
upto tp parties passively, and upto ta of these parties even actively. Note that tp is
the total number of passive corruptions that includes the active corruptions and
additional parties that are exclusively passively corrupt. We now define dynamic
and boundary admissible adversaries.

Definition 1 (Dynamic-admissible Adversary). An adversary attacking an
n-party MPC protocol with threshold (ta, tp) is called dynamic-admissible as long
as ta + tp < n and ta ≤ tp.

Definition 2 (Boundary-admissible Adversary). An adversary attacking
an n-party MPC protocol with threshold (ta, tp) is called boundary-admissible as
long as he corrupts either with parameters (a) (ta, tp) = (dn2 e − 1, bn/2c) or (b)
(ta, tp) = (0, n− 1).

In our work, we also consider a special-case of boundary adversary with
ta ≤ 1 where the adversary corrupts either with parameters (ta, tp) = (1, bn/2c)
or (ta, tp) = (0, n− 1).

Notation. We denote the cryptographic security parameter by κ. A negligible
function in κ is denoted by negl(κ). A function negl(·) is negligible if for every
polynomial p(·) there exists a value N such that for all m > N it holds that
negl(m) < 1

p(m) . Composition of two functions, f and g (say, h(x) = g(f(x)))

9

is denoted as g � f . We use [n] to denote the set {1, . . . n} and [a, b] to denote
the set {a, a+ 1 . . . b} when a ≤ b or the set {a, a− 1, . . . b} when a > b. Lastly,
for dynamic-admissible adversary, we denote the set of actively and passively
corrupt parties by D and E respectively, where |D| = ta and |E| = tp .

Security definition and the functionalities. The security definition (based on the
standard real/ideal world paradigm) and the functionalities appear in Appendix
A. Since we consider deterministic functionalities, the security guarantees of
correctness and privacy are analyzed separately [Lin17] in all our security proofs.

Road map. Our lower and upper bounds for dynamic and boundary corruption
appear in Sections 3-4 and in Sections 5-6 respectively.

3 Lower Bounds for Dynamic Corruption

In this section, we show that dn2 e + 1 rounds are necessary to achieve MPC
with fairness against a dynamic-admissible A with threshold (ta, tp). This result
shows impossibility of constant-round fair and robust protocols against dynamic
adversary, assuming access to CRS and PKI. Notably, this lower bound extends
to a model with arbitrary correlated randomness.

We begin with a high-level description of the proof. Towards a contradiction,
we assume that there exists a dn2 e-round n-party MPC protocol π computing
any function f that achieves fairness against a dynamic-admissible A in the
presence of a setup with CRS and PKI. Next, we define a sequence of hybrids of π,
that navigate through all the possible admissible corruption scenarios assuming
ta+tp = n−1 and starting with the maximum admissible value of ta = dn/2e−1.

Our first hybrid under the spell of a dynamic-admissible adversary, corrupting
dn/2e − 1 parties actively and stopping their communication in the last round,
lets us conclude that the joint view of the honest and passively-corrupted parties
by the end of penultimate round must hold the output in order for π to satisfy
fairness. If not, while ceasing communication in the last round does not prevent
A from getting all the messages in the last round and thereby the output, the
honest parties do fail to compute the output due to the non-cooperation of ta
parties, violating fairness. The views of the passively corrupt parties need to be
taken into account as they follow protocol steps correctly and assist in output
computation.

Leveraging the fact that drop of ta leads to rise of tp, we then propose a
new hybrid where ta is demoted by 1 and consequently tp grows big enough to
subsume the list of honest and passive-corruption from the previous hybrid. As
the view of the adversary in this hybrid holds the output by the end of penulti-
mate round itself, its actively-corrupt parties need not speak in the penultimate
round. Now fairness in the face of current strategy of the actively-corrupted par-
ties needs the joint view of the honest and passively-corrupted parties by the
end of dn/2e−2 round to hold the output. This continues with the set of honest
and passively-corrupted parties growing by size one between every two hybrids.

10

Propagating this pattern to the earlier rounds eventually lets us conclude that
an adversary with threshold (ta, tp) = (0, n− 1) (no active corruption case) can
obtain the output at the end of Round 1 itself. This leads us to a final strategy
that violates privacy of π via residual attack. This completes the proof sketch
which we formalize below.

Theorem 1. No dn2 e-round n-party MPC protocol can achieve fairness toler-
ating a dynamic-admissible adversary A with threshold (ta, tp) in a setting with
pairwise-private and broadcast channels, and a setup that includes CRS and PKI.

Proof. We prove the theorem by contradiction. Suppose there exists a dn2 e-round
n-party MPC protocol π computing any function f(x1, . . . , xn) (where xi denotes
the input of party Pi) that achieves fairness against a dynamic-admissible ad-
versary A with corruption threshold (ta, tp) and in the presence of a setup with
CRS and PKI.

Consider an execution of π where xi denotes the input of Pi. We analyze
a sequence of hybrids. In each hybrid, the adversary uses honest inputs for
corrupted parties who execute the protocol honestly but may abort i.e. drop
messages after a particular round in the protocol. Following is the description
of the hybrids, where D` (E`) denotes the set of actively (passively) corrupt
parties in hybrid hyb` (where D` ⊆ E`).

hyb1: A chooses corruption threshold (ta, tp) = (dn2 e − 1, bn/2c) and does the
following. The set of actively corrupt parties D1 behave honestly upto (and
including) Round dn2 e − 1 and simply remain silent in the last round i.e. the
dn2 e

th round.

hyb2: A chooses corruption threshold (ta, tp) = (dn2 e − 2, bn/2c + 1) where
E2 = P \ D1 and does the following. The set of actively corrupt parties D2

behave honestly upto (and including) Round dn2 e − 2 and simply remain silent
from Round (dn2 e − 1) onwards.

We generalize the above description to define the remaining sequence i.e. hyb3

to hybdn/2e.

hyb`: A chooses corruption threshold (ta, tp) = (dn2 e − `, bn/2c+ `− 1) where
E` = P \ D`−1 and does the following. The set of actively corrupt parties D`
behave honestly upto (and including) Round dn2 e − ` and simply remain silent
from Round (dn2 e − `+ 1) onwards.

We present a sequence of lemmas to complete the proof. Let p = 1−negl(κ)
denote the overwhelming probability with which security of π holds, where the
probability is defined over the choice of setup and the random coins used by the
parties.

Lemma 1. In hyb1, A obtains the output y = f(x1, x2, . . . , xn) with probability
at least p.

11

Proof. Consider hyb1. Since A receives all the desired communication through-
out the protocol, its view is identically distributed to the view of an honest party
in an execution where everyone behaves honestly. Hence, it follows directly from
correctness of π (which must hold with probability at least p) that A must be
able to compute the output, with probability at least p. ut

Lemma 2. Suppose A obtains the output y = f(x1, x2, . . . , xn) with probability
at least q in hyb`−1, where ` ∈ [2, dn/2e]. Then, in hyb`, A must obtain y at
the end of Round (dn2 e − `+ 1), with probability at least q× p .

Proof. Firstly, we analyze hyb`−1. Fairness of π dictates that wheneverA obtains
the output in hyb`−1 (which occurs with probability at least q), the honest
parties must also be able to compute the output even though parties in D`−1
stopped communicating from Round (dn2 e− `+2) onwards. Since fairness holds
with probability at least p, the combined view of parties in P \D`−1 at the end
of Round (dn2 e−`+1) itself must suffice to compute the output with probability
at least q×p. Next, we note that the view of A in hyb` is identically distributed
to the combined view of parties in P \ D`−1 in hyb`−1. We can thus conclude
that in hyb`, A can compute the output at the end of Round (dn2 e− `+1) with
probability at least q× p.

ut

Lemma 3. In hyb` (` = 1 to dn/2e), A obtains the output y = f(x1, x2, . . . , xn)
at the end of Round (dn2 e − `+ 1), with probability p`.

Proof. The proof follows from Lemma 1 and Lemma 2. ut

Lemma 4. There exists an adversarial strategy that breaches privacy of protocol
π with overwhelming probability.

Proof. Let δ = dn/2e. It follows from Lemma 3 that when hybδ occurs,A obtains
the output y at the end of Round 1 itself, with probability pδ = (1−negl(κ))δ ≥
1−δ×negl(κ) = 1−dn/2e×negl(κ) (using binomial expansion (1−x)δ ≥ 1−δx
when 0 < δx < 1) which is overwhelming.

Thus, A corrupting a set of tp = n − 1 parties passively in hybδ, say
Eδ = {P1, . . . , Pn−1}, can execute the residual attack as follows. Compute mul-
tiple evaluations of the function f by locally plugging in different values for
{x1, . . . , xn−1} while honest Pn’s input xn remains fixed. This residual function
attack which can be executed with overwhelming probability, violates privacy
of Pn. As a concrete example, let f be a common output function computing
x1 ∧ xn, where xi (i ∈ {1, n}) denotes a single bit. During the execution of π,
A behaves honestly with input x1 = 0 on behalf of P1. However, the passively-
corrupt P1 can locally plug-in x1 = 1 and learn xn (via the output x1∧xn) with
overwhelming probability. This is a clear breach of privacy, as in the ideal world,
A participating honestly with input x1 = 0 on behalf of P1 would learn nothing
about xn; in contrast to the execution of π where A learns xn with overwhelming
probability regardless of his input. This completes the proof. ut

12

We have thus arrived at a contradiction to our assumption that π securely com-
putes f and achieves fairness. This completes the proof of Theorem 1.

ut
For better understanding, we illustrate the adversarial strategies and implica-
tions derived with respect to the specific case of n = 7 and 4-round (dn/2e = 4)
protocol π in the Table below.

Table 1: Illustration of the lower bound with respect to n = 7 and 4-round
protocol π. The last column (S, r) indicates the implication that the combined
view of parties in S (= P \D) at the end of Round number r suffices to compute
the output with overwhelming probability.
(ta, tp) D E Strategy of A S, r
(3, 3) D1 = {P1, P2, P3} E1 = {P1, P2, P3} Stop D1 after R3 {P4, P5, P6, P7}, R3
(2, 4) D2 = {P6, P7} E2 = {P4, P5, P6, P7} (i.e. P \ D1) Stop D2 after R2 {P1, P2, P3, P4, P5}, R2
(1, 5) D3 = {P1} E3 = {P1, P2, P3, P4, P5} (i.e. P \ D2) Stop D3 after R1 {P2, P3, P4, P5, P6, P7}, R1
(0, 6) D4 = ∅ E4 = {P2, P3, P4, P5, P6, P7} (i.e. P \ D3) Residual attack −−−−

4 Upper bounds for Dynamic Corruption

In this section, we describe two n-party upper bounds tolerating a dynamic-
admissible adversary A with threshold (ta, tp). The first upper bound achieves
fairness and is a stepping stone to the construction of the second upper bound
that achieves guaranteed output delivery. Both the upper bounds comprise of
dn/2e+1 rounds in the presence of CRS, tightly matching our lower bound result
of Section 3. We start with an important building block needed for both the fair
and GOD protocols.

4.1 Levelled-sharing of a secret

Our protocols in the dynamic corruption setting involve a special kind of shar-
ing referred as levelled sharing, which is inspired by and a generalized variant of
the sharing defined in [HLM13]. The sharing is parameterized with two thresh-
olds, α and β with α ≥ β, that dictate the number of levels as α − β + 1. To
share a secret in (α, β)-levelled-shared fashion, α−β+1 additive shares (levels)
of the secret, indexed from α to β are created and each additive share is then
Shamir-shared [Sha79] using polynomial of degree that is same as its assigned in-
dex. Further each Shamir-sharing is authenticated using a non-interactive com-
mitment scheme, to ensure detectably of correct reconstruction. For technical
reasons in the simulation-based security proof, we need an instantiation of com-
mitment scheme that allows equivocation of commitment to any message with
the help of trapdoor and provides statistical hiding and computational binding.
Denoting such a commitment scheme by eNICOM (Equivocal Non-Interactive
Commitment), we present both the formal definition and an instantiation based
on Pedersen’s commitment scheme [Ped91] in Appendix A.1. While the sharing
will involve the entire population P in our fair protocol, it may be restricted to

13

many different subsets of P, each time after curtailing identified actively corrupt
parties. The definition therefore is formalized with respect to a set Q ⊆ P.

Definition 3 ((α, β)-levelled sharing). A value v is said to be (α, β)-levelled-
shared with α ≥ β amongst a set of parties Q ⊆ P if every honest or passively
corrupt party Pi in Q holds Li as produced by fα,βLSh (v) given in Fig.1.

Function fα,βLSh (v)

1. Choose uniformly random summands sα, sα−1, . . . sβ with
∑α
i=β sj = v

2. For j ∈ [α, β], do the following:
- Choose a random polynomial gj(x) of degree j with gj(0) = sj .
- Sample the public parameter for eNICOM (Section A.1) as (epp, t) ←
eGen(1κ). For each share sjk = gj(k), run (cjk, ojk)← eCom(epp, sjk; rjk)
(Pk ∈ Q) where rjk denotes randomness.

3. Set Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
for Pi ∈ Q.

Fig. 1: Function fα,βLSh for computing (α, β)-levelled sharing

In our protocols the function fα,βLSh will be realized via an MPC protocol,
whereas, given the (α, β)-levelled-sharing, we will use a levelled-reconstruction
protocol LRecα,β that enforces reconstruction of the summands one at a time
starting with sα. This levelled reconstruction ensures a remarkable property
tolerating any dynamic-admissible adversary– if the adversary can disrupt re-
construction of si, then it cannot learn si−1 using its eavesdropping power.
This property is instrumental in achieving fairness against the strong dynamic-
admissible adversary. The protocol is presented in Fig. 2. Its properties and
round complexity are stated below. Note that starting with the feasibility con-
dition ta+ tp < n = |P|, expelling a set of actively corrupt parties, say B, makes
the following impact on ta, tp and P: ta = ta − |B|, tp = tp − |B| and P = P \ B.
Consequently, the updated ta, tp and P continue to satisfy ta + tp < |P|. Below,
we will therefore use the fact that ta + tp < |Q|, where Q denotes the relevant
set of parties (i.e. the set of parties remaining after possibly expelling a set of
identified actively corrupt parties).

Lemma 5. LRecα,β satisfies the following properties–

i. Correctness. Each honest Pi participating in LRecα,β with input Li as gen-
erated by fα,βLSh (v), outputs either v or ⊥ except with negligible probability.

ii. Fault-Identification. If an adversary disrupts the reconstruction of sj, then
|B| ≥ |Q| − j.

iii. Fairness. If an adversary disrupts the reconstruction of sj, then it does not
learn sj−1.

iv. Round Complexity. It terminates within α− β + 1 rounds.

Proof.

14

Protocol LRecα,β

Inputs: Each Pi (Pi ∈ Q) has input Li =
(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
.

Output: Secret v or ⊥ with set B constituting indices of the identified actively
corrupt parties.

- For j = α down to β, Pi does the following round-by-round:
- Broadcasts (sji, oji) and receive (sjk, ojk) from all Pk ∈ Q where k 6= i.
- Initialize Zj = i and populate Zj in order to compute sj as follows:

- For each k 6= i, if commitment cjk opens to sjk via opening ojk, then
add k to Zj .

- If |Zj | ≥ j+1, interpolate a j-degree polynomial gj(x) satisfying gj(k) =
sjk for k ∈ Zj and compute sj = gj(0). Else output ⊥, set B = Q\Zj
and terminate.

- Output v = sα + . . . sβ .

Fig. 2: Protocol LRecα,β

i. Consider an honest Pi participating with input Li =(
{sji, oji}j∈[α,β], {cjk}j∈[α,β],Pk∈Q

)
. We observe Pi outputs v′ 6= {v,⊥} only

if at least one of the summands, say sj(j ∈ [α, β]) is incorrectly set. This
can happen only if Pi adds at least one index k to Zj such that Pk sends
an incorrect share s′jk 6= sjk. This occurs when (s′jk, o

′
jk) received from Pk

is such that cjk opens to s′jk via o′jk but s′jk 6= sjk. It now follows directly
from the binding of eNICOM that this violation occurs with negligible
probability. This completes the proof.

ii. Firstly, it follows from the property of Shamir-secret sharing and binding
property of eNICOM that reconstruction of sj would fail only if |Zj | ≤ j.
Next, note that as per the steps in Fig 2, each honest Pi would output
B = Q \ Zj if reconstruction of sj fails. We can thus conclude that |B| =
|Q| − |Zj | ≥ |Q| − j.

iii. To prove fairness, we first prove that if an adversary can disrupt the re-
construction of sj , then it cannot learn sj−1 using its eavesdropping power.
Since as per the protocol, the honest parties do not participate in the recon-
struction of sj−1 when they fail to reconstruct sj , the security of sj−1 follows
from the information-theoretic security of Shamir-sharing and the statistical
security (hiding) of eNICOM.
An adversary can disrupt reconstruction of sj only if |Zj | ≤ j. It is easy to
check that Zj would constitute the non-actively corrupt parties (honest and
purely passive parties) i.e. Q \ D ⊆ Zj . Thus, |Q \ D| = |Q| − ta ≤ |Zj | ≤ j.
Lastly, to maintain ta+ tp < |Q|, it must hold that tp ≤ |Q|− ta− 1 ≤ j− 1.
Thus, the adversary corrupting tp ≤ j − 1 parties cannot learn sj−1 using
its eavesdropping power.

iv. The proof of the round complexity is straightforward. LRecα,β involves re-
construction of summands sα down to sβ , each of which consumes one round;
totalling upto α− β + 1.

ut

15

4.2 Upper bound for Fair MPC

The key insight for this protocol comes from [HLM13] that builds on an MPC
protocol achieving security with abort to compute the function output in (n −
1, 1)-levelled-sharing form, followed by levelled-reconstruction to tackle dynamic
corruption. Fairness is brought to the system by relying on the fairness of the
levelled-reconstruction. In particular, the adversary is disabled to reconstruct
(i − 1)th summand, as a punitive action, when it disrupts reconstruction of
the ith summand for the honest parties. In the marginal case, if the adversary
disrupts the MPC protocol for computing the levelled-sharing and does not let
the honest parties get their output, we disable it to reconstruct the (n − 1)th
summand itself.

In a (α, β)-levelled-reconstruction, the parameters α and β dictate the round
complexity. The closer they are the better round complexity we obtain. The α
and β in [HLM13] are n− 2 apart, shooting the round complexity of reconstruc-
tion to n− 1. We depart from the construction of [HLM13] in two ways to build
a (dn2 e+1)-round fair protocol. Firstly and prominently, we bring α and β much
closer, cutting down bn2 c summands from the levelled-secret sharing and bringing
down the number of levels to just n−1−bn2 c from n−1 of [HLM13]. Second, we
plug in the round-optimal (2-round) MPC protocol of [GS18, BL18] achieving
unanimous abort against malicious majority in the CRS model for computing the
levelled-sharing of the output, making overall a (dn2 e + 1)-round fair protocol.
We discuss the first departure in detail below.

Our innovation lies in fixing the best values of α and β without flouting fair-
ness. The value of α and β, in essence determines the indispensable summands
that we cannot do without. Every possible non-zero threshold for active corrup-
tion maps to a crucial summand that the adversary using its corresponding ad-
missible passive threshold cannot learn by itself, whilst the pool of non-disruptive
set of parties, i.e. the set of honest and passive parties, can. This unique sum-
mand, being the ‘soft spot’ for the adversary, forces him to cooperate until the
reconstruction of the immediate previous summand. As soon as the adversary
does so, the honest parties turn self-reliant to compute the output, upholding
fairness. We care only about the non-zero possibilities for the threshold of active
corruption, as an all-passive adversary holds no power at its disposal to dis-
rupt, leading to robust output reconstruction by all. For the minimum non-zero
value of 1 active corruption, the unique summand is sn−2 that the adversary
cannot learn using its admissible eavesdropping capacity of n − 2, yet the set
of non-disruptive parties, which is of size n− 1, can. On the other extreme, for
the maximum value of dn2 e − 1, the unique summand is sbn2 c that the adversary
cannot learn using its admissible eavesdropping capacity of bn2 c, yet the set of
non-disruptive parties, which is of size bn2 c+1, can. This sets the values of α and
β as n − 2 and bn2 c respectively, making the number of crucial summands only
dn2 e − 1. The distance between these two parameters also captures the number
of possible corruption scenarios with non-zero active corruption.

In the table below, we display for each admissible adversarial corruption (this
set subsumes the crucial summands that we retain), whether the adversary and

16

the set of non-disruptive parties respectively by themselves, can learn the sum-
mand, using its maximum eavesdropping capability and putting together their
shares respectively. The pattern clearly displays the following feature: irrespec-
tive of the corruption scenario that the adversary follows, its maximum power
to disrupt and eavesdrop remains one summand apart i.e. if it can disrupt ith
summand with its maximum disruptive capability (and fall short of its power
for failing the (i − 1)th one), then its maximum eavesdropping capability does
not allow it to learn (i− 1)th summand by itself.

Table 2: Levelled-reconstruction where (a = Y/N, b = Y/N) under si indicates if
A and non-active parties respectively can reconstruct si or not (Y = Yes, N =
No)

(ta = |D|, tp = |E|) |P \ D| sn−2 sn−3 sn−4 sn−i−1 sbn/2c+1 sbn/2c
(0, n− 1) n (Y, Y) (Y, Y) (Y, Y) (Y, Y) (Y, Y)
(1, n− 2) n− 1 (N, Y) (Y, Y) (Y, Y) (Y, Y) (Y, Y)
(2, n− 3) n− 2 (N, N) (N, Y) (Y, Y) (Y, Y) (Y, Y)
. .
(i, n− i− 1) n− i (N, N) (N, N) (N, N) . . . (N, Y) . . . (Y, Y) (Y, Y)
. .
(dn/2e − 1, bn/2c) bn/2c+ 1 (N, N) (N, N) (N, N) (N, N) (N, Y)

Our fair protocol πdyn
fair in the FLSh

ua -hybrid model appears in Fig. 4, where FLSh
ua

(Fig. 3) denotes the ideal functionality computing (n − 2, bn2 c)-levelled shar-
ing of the output securely with abort. Assumption wise, πdyn

fair relies on 2-round
maliciously-secure OT in the common random/reference string model (when
FLSh

ua is realized using protocols of [GS18, BL18]) and eNICOM (used in LRecα,β

and instantiated using Pedersen commitment scheme).

Functionality FLSh
ua

Input: Receive message (Input, xi) from Pi (i ∈ [n]). If such a message was re-
ceived from Pi earlier, then ignore. Otherwise record it internally. If xi is out-
side of the domain for Pi or Pi does not send an input, consider xi = abort.
We require that if xi = abort, then the adversary corrupts Pi actively.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send
(Output,⊥) to all the parties. Else, compute y = f(x1, . . . , xn) and compute
(L1, . . . Ln) = f

n−2,bn
2
c

LSh (y) (Fig. 1). Send (Output, Li) to Pi for every Pi ∈ E .
Output to honest parties: Receive either continue or abort from A. In case of

continue, send (Output, Li) to each honest Pi, whereas in case of abort send
(Output,⊥) to all honest parties. We require that an adversary that corrupts
no party actively sends continue.

Fig. 3: Ideal Functionality FLSh
ua

We state the formal theorem below.

17

Protocol πdyn
fair

Inputs: Party Pj has xj for j ∈ [n]
Model: FLSh

ua -hybrid model (Fig. 3)
Building blocks: Protocol LRecα,β for reconstructing a (α, β)-levelled-shared

value (Fig. 2)
Output: y = f(x1, . . . , xn) or ⊥

Round 1 – 2: Each Pj interacts with FLSh
ua with input xj to compute the function

f
n−2,bn

2
c

LSh � f and obtain Lj as the output. If Lj = ⊥, it outputs ⊥ and halts.
Round 3 – (dn/2e+ 1): Each Pj participates in LRecn−2,bn

2
c with input Lj and

outputs the outcome of LRecn−2,bn
2
c.

Fig. 4: Fair MPC against dynamic-admissible adversary

Theorem 2. Protocol πdyn
fair in the FLSh

ua -hybrid model with n parties satisfies –

– Correctness: computes the correct output.
– Security: realizes Ffair (Fig. 15) against a dynamic-admissible A with thresh-
old (ta, tp).

– Round complexity: runs in dn/2e+ 1 rounds.

Proof. Correctness of πdyn
fair follows directly from correctness of FLSh

ua and
LRecn−2,b

n
2 c (Lemma 5). Regarding the round complexity, we note that FLSh

ua

can be realized using the 2-round protocols of [GS18, BL18]. Next, LRecn−2,b
n
2 c

comprises of
(
n − 2 − bn2 c + 1

)
= dn/2e − 1 rounds (Lemma 5). Therefore, the

round complexity of πdyn
fair totals upto 2 + dn/2e − 1 = dn/2e+ 1 rounds. ut

The security proof of πdyn
fair in the FLSh

ua -hybrid model appears in Appendix
B.1. Standard composition theorems [Can00, Gol04] implies that πdyn

fair is secure
when access to FLSh

ua is emulated using 2-round protocols of [GS18, BL18].

4.3 Upper Bound for GOD MPC

At a broad level, robustness is achieved by rerunning our fair protocol as soon
as failure occurs which can surface either in the underlying MPC or during
reconstruction of any of the summands of the output. Taking inspiration from
the player-elimination framework [HMP00, HM01], we maintain a history of
deviating/disruptive behaviour across the runs and bar the identified parties
from further participating. Such a paradigm calls for sequential runs and brings
great challenge when round complexity is the concern. We hit the optimal round
complexity banking on several ideas and interesting observations. First, we turn
the underlying MPC protocol for computing (α, β)-levelled-sharing of the output
to achieve identifiability so that any disruptive behaviour can be brought to
notice. The recent work of [CGZ20] showed that the 2-round broadcast-only
construction of [GS18] can be equipped with identifiability, without inflating
the round complexity. Second, we leverage the function-delayed property of a

18

modified variant of the protocol of [GS18] (proposed by [ACGJ18]) where the
first round messages are made independent of the function to be computed and
the number of parties. This enables us to run many parallel instances (specifically
dn/2e) of the round 1 in the beginning and run the second round sequentially as
and when there is a failure, to compute a new function each time as follows– (a)
it hard codes default input for the parties detected to be disruptive so far and
(b) the output now is levelled-shared with new thresholds α and β each of which
are smaller than the previous run by a function of the number of fresh catch,
say δ. The latter brings the most crucial impact on the round complexity. Recall
that the distance between α and β that impacts the round complexity, is directly
coupled with the number of possible corruption scenarios with non-zero active
corruption. Starting with the initial value of dn2 e − 1, each catch by δ reduces
the number of possible corruption scenarios (with non-zero active corruption)
and the distance between α and β by δ.

In the protocol, we maintain a number of dynamic variables which are up-
dated during the run– (a) L: the set of parties not identified to be actively corrupt
and thus referred as alive; this set is initialized to P; (b) C: the set of parties
identified as actively corrupt; this set initialized to ∅; (c) n: the parameter that
dictates the number of corruption scenarios as dn2 e and the possible corruption
cases as {(0, n− 1), . . . , (dn/2e − 1, bn/2c)}; this is initialized to n that dictates
the initial number of corruption cases as dn2 e and the possible corruption cases as
{(0, n− 1), . . . , (dn/2e− 1, bn/2c)}. After every failure and a fresh catch of a set
B of active corruptions, the sets L, C and n are updated as L = L\B, C = C ∪B
and n = n− 2|B|. The reduction of n by 2|B| denotes counting the reduction for
active as well as passive corruptions. For every value of n, the formula for the
total number of corruption scenarios, the values for (α, β) (that speaks about
the indispensable summands as discussed in the fair protocol) and the number of
corruption scenarios with non-zero active corruption (which denotes the distance
between (α, β)) remain the same– namely dn2 e, (n−2, bn/2c) and dn2 e−1. In the
marginal case, n becomes either 1 or 2, the former when n is odd and all active
corruptions are exposed making (ta, tp) = (0, 0) and the latter when n is even
and (ta, tp) = (0, 1). With no active corruption in L, the Round 2 of the MPC
can be run to compute the output itself (instead of its levelled-sharing) robustly
in both the marginal cases.

As the protocol follows an inductive behaviour based on n, to enable better
understanding, we present below a snapshot of how the corruption scenarios
shrinks after every catch of δ active corruption. The first column indicates a set
of possible corruption scenarios, with (ta, tp) varying from (0, n− 1) to (dn/2e−
1, bn/2c). If δ cheaters are identified, the first δ rows can simply be discarded as
it is established that ta ≥ δ. The number of feasible corruptions is thus slashed
by δ. Next, these δ identified cheaters are eliminated, which reduces each (ta, tp)
of the rows that sustained (ta = δ onwards) by δ as shown by column 2. Finally,
the column 3 displays column 2 with n updated as n− 2δ.

The formal description of the protocol πdyn
god appears in Fig 5. While πdyn

fair (Fig.
4) was analyzed in the FLSh

ua -hybrid model, such an analysis was not possible for

19

πdyn
god. This is because π

dyn
god uses several instances of the 2-round subprotocol πidua

such that their Round 1 is always executed (in parallel with Round 1 of πdyn
god)

but Round 2 is run only when needed; based on the adversarial behaviour during
the protocol. Therefore, our round-optimizing tricks do not allow us to analyze
this protocol in a hybrid model as it is not possible to substitute these instances
of πidua with an ideal functionality (or oracle call).

Assumption wise, πdyn
god relies on 2-round maliciously-secure OT in the com-

mon random/reference string model (when πidua is instantiated with function-
delayed variant of the protocol of [GS18] satisfying identifiability) and eNICOM
(used in LRecα,β() and instantiated using Pedersen commitment scheme).

(ta, tp) (ta, tp) (ta, tp)
after δ cheater identification after updating n = n− 2δ

(0, n− 1) – –
(1, n− 2) – –
.
(δ, n− δ − 1) (0, n− 2δ − 1) (0, n− 1)
(δ + 1, n− δ − 2) (1, n− 2δ − 2) (1, n− 2)
.
(dn/2e − 1, bn/2c) (dn/2e − 1− δ, bn/2c − δ) (dn/2e − 1, bn/2c)

We now analyze the round-complexity and security of πdyn
god below.

Lemma 6. πdyn
god terminates in dn/2e+ 1 rounds.

Proof. Consider an execution of πdyn
god (initialized with n = n). The outline of

the proof is as follows: We give an inductive argument to prove the following
- ‘If Step 2 is executed with parameter n, then Step 2 terminates within dn2 e
rounds’. Assuming this claim holds, it follows directly that during the execution
with n = n, Step 2 would terminate within dn2 e rounds; thereby implying that
the round complexity of πdyn

god is at most dn2 e+ 1 (adding the round for Step 1).
We now prove the above claim by strong induction on n ≥ 1.

Base Case (n = 1, 2): It follows directly from description in Fig. 5 that Step 2
terminates in dn/2e = 1 round when n = 1, 2.

Induction Hypothesis (n ≤ `): Assume Step 2 terminates in dn/2e rounds for
n ≤ `.

Induction step (n = ` + 1): Consider an execution of Step 2 with parameter
n = `+1. We analyze the following 3 exhaustive scenarios - (1) Suppose neither
πidua nor LRecn−2,b

n
2 c fails. (2) Suppose πidua aborts. (3) Suppose πidua does not

abort but LRecn−2,b
n
2 c fails. We show that in each of them, Step 2 terminates

within dn/2e = d `+1
2 e rounds; thereby completing the induction step.

- Suppose neither πidua nor LRecn−2,b
n
2 c fails. Then Step 2 involves the following

number of rounds– one round (corresponding to Round 2 of πidua) plus the

20

Protocol πdyn
god

Inputs: Party Pi has xi for i ∈ [n]
Building blocks: (a) Protocol πidua achieving unanimous abort with identifiabil-

ity (i.e. realizing functionality Fidua, refer Fig 14) against malicious majority
and having function-delayed property; (b) Protocol LRecα,β for reconstructing
a (α, β)-levelled-shared value (Fig. 2); (c) Function fα,βLSh (Fig. 1).

Output: y = f(x1, . . . , xn)

Step 1: Pi runs dn/2e parallel instances of Round 1 of πidua, each using input
xi and independent randomness. Note that this round is independent of the
function to be computed and number of parties. Initialize k = 1.

Step 2: Initialize, L = P, C = ∅, n = n. Let fC denote the function that is same
as f except that the inputs of parties in C are hard coded with default inputs.
Pi executes the following steps:
2.1 If n = 1, 2, then run Round 2 of πidua (considering kth instance of Round

1) among parties in L using input xi to compute fC and output the out-
put of πidua and terminate. (This corresponds to the case of no active
corruptions.)

2.2 Run Round 2 of πidua (considering kth instance of Round 1) among parties
in L using input xi to compute f

n−2,bn
2
c

LSh �fC and obtain Li. If Li = ⊥ and
B is set of parties identified to be corrupt, update C = C ∪ B, L = L \ B,
n = n − 2|B|, k = k + 1 and repeat this step using updated value of
n. Otherwise, participate in LRecn−2,bn

2
c with input Li. If (⊥,B) is the

output, then update L, C, n, k as above and repeat this step using updated
value of n. Otherwise, output the output of LRecn−2,bn

2
c and terminate.

Fig. 5: Robust MPC against dynamic-admissible adversary

number of rounds in LRecn−2,b
n
2 c (where round complexity of LRecα,β with

α = n − 2 and β = bn2 c is α − β + 1 = n − 2 − bn2 c + 1 = dn/2e − 1). This
totals upto 1 + (dn/2e − 1) = dn/2e.

- Suppose πidua aborts. Then B must comprise of at least one active party,
implying that δ ≥ 1, where δ = |B| and subsequently n is updated to
n = (n − 2δ) ≤ (` + 1 − 2) = (` − 1). Note that Step 2 now involves fol-
lowing number of rounds– 1 (for Round 2 of πidua) + number of rounds in
which Step 2 terminates when re-run with updated parameter n i.e. dn/2e
by induction hypothesis. Thus, the total number of rounds in Step 2 is
(1 + dn/2e) ≤ (1 + d `−12 e) = d

`+1
2 e.

- Suppose πidua does not abort but reconstruction LRecn−2,b
n
2 c fails. Say adver-

sary disrupts reconstruction of summand sn−r in Round r of Step 2 (Round
r−1 of LRecn−2,bn/2c), where r ∈ [2, dn/2e]. It follows from fault identification
property of Lemma 5 that |B| ≥ |L|−(n−r) ≥ r (since |L| ≥ n always holds).
Consequently, δ = |B| ≥ r and updated parameter n = n− 2δ ≤ `+ 1− 2r.
We now analyze the round complexity. Note that Step 2 involves following
number of rounds– r (Reconstruction failed in Round r ≥ 2 of Step 2 run
with n = `+1) + number of rounds in which Step 2 terminates when re-run

21

with updated parameter n i.e. dn/2e by induction hypothesis. Thus total
number of rounds in Step 2 is (r + dn/2e) ≤ (r + d `+1−2r

2 e) = d `+1
2 e.

We point that induction hypothesis for n = n − 2δ with δ ≥ 1 can be applied
as n ≥ 1 holds always in πdyn

god due to the following: the maximal value of δ is
dn/2e − 1 i.e. the maximum possible number of actively corrupt parties. This
completes the proof. ut

Theorem 3. Assuming the presence of a 2-round protocol πidua realizing func-
tionality Fidua (Fig 14) against malicious majority and having function-delayed
property; protocol πdyn

god with n parties satisfies–

– Correctness: computes the correct output.
– Security: realizes Fgod (Fig. 16) against a dynamic-admissible A with thresh-
old (ta, tp).

– Round complexity: runs in dn/2e+ 1 rounds.

Proof. Correctness of πdyn
god follows directly from correctness of πidua and correct-

ness of LRecn−2,b
n
2 c (Lemma 5). Round complexity follows from Lemma 6. ut

The formal security proof appears in Appendix B.2.

5 Lower Bounds for Boundary Corruption

In this section, we present two lower bounds for MPC protocol tolerating
boundary-admissible adversaries and in the presence of CRS and PKI setup.
Notably, both lower bounds extend to a model with arbitrary correlated ran-
domness.

Recall that the boundary adversary is restricted to corruption scenarios either
(ta, tp) = (dn/2e − 1, bn/2c) or (ta, tp) = (0, n − 1). We show that three and
four rounds are necessary to achieve fairness and GOD respectively against a
boundary-admissible adversary. It is to be noted that GOD is the de facto notion
achieved in the pure passive corruption setting of (ta, tp) = (0, n− 1).

5.1 Impossibility of 3-round Robust MPC

In this section, we show that it is impossible to design a 3-round robust
MPC protocol against boundary-admissible adversary with threshold (ta, tp)
assuming both CRS and PKI. Notably, this lower bound is indeed surpris-
ing as the individual security guarantees translate to GOD against malicious-
minority [GLS15] and passive-majority [GS18, BL18] for odd n (as ta = tp wrt
(ta, tp) = (dn/2e−1, bn/2c)), both of which are known to be attainable in just 2
rounds in the presence of CRS and PKI. Furthermore, it turns out interestingly
that this lower bound does not hold against a boundary-admissible adversary
with ta ≤ 1 (i.e. boundary adversary corrupting with either (ta, tp) = (1, bn/2c)
or (ta, tp) = (0, n−1)), and can be circumvented for this special case. In fact, we

22

demonstrate a 3-round robust protocol in Section 6.3, against this special-case
boundary-admissible adversary.

We first present a high-level description of the proof. Towards a contradiction,
we assume that there exists a 3-round 5-party protocol π computing a common
output function f that achieves GOD against a boundary-admissible adversary,
who may corrupt either with parameters (ta, tp) = (2, 2) or (ta, tp) = (0, 4). Since
our lower bound argument demands the presence of at least two active corrup-
tions, we choose the minimal n for which this holds i.e. n = 5. The argument
can also be extended for n > 5 as elaborated later.

The argument involves three adversarial strategies A1,A2 and A3, where Ai
is launched in an execution Σi of protocol π. While A1,A2 involve the case of
active corruption of {P1} and {P1, P2} respectively, A3 deals with the strat-
egy of pure passive corruption of {P1, P3, P4, P5}. The executions are assumed
to be run for the same input tuple (x1, x2, x3, x4, x5) and the same random
inputs (r1, r2, r3, r4, r5) of the parties. Let x̃i denote the default input of Pi.
(Same random inputs are considered for simplicity and without loss of general-
ity. The same arguments hold for distribution ensembles as well.) First, when
A1 is launched in Σ1 we conclude that the output ỹ at the end of the execu-
tion should be based on default input of P1 and actual inputs of the remaining
parties i.e. ỹ = f(x̃1, x2, x3, x4, x5). Next, strategy Σ2 involving actively cor-
rupt {P1, P2} is designed such that corrupt P2 obtains the same view in Σ2

as an honest P2 in Σ1 and therefore computes the output ỹ at the end of Σ2.
Lastly, a carefully designed strategy A3 by semi-honest parties {P1, P3, P4, P5}
allows A to obtain ỹ = f(x̃1, x2, x3, x4, x5), in addition to the correct output i.e.
y = f(x1, x2, x3, x4, x5) at the end of execution Σ3. This is a contradiction as
it violates the security of π and can explicitly breach the privacy of honest P2.
This completes the proof overview which we formalize below.

Theorem 4. Assume parties have access to pairwise-private and broadcast
channels, and a setup that includes CRS and PKI. Then, there exist functions
f for which there is no 3-round protocol computing f that achieves guaranteed
output delivery against boundary-admissible adversary.

Proof. We prove the theorem for n = 5 parties. Let P = {P1, . . . P5} denote
the set of parties, where the adversary A may corrupt either with parameters
(ta, tp) = (2, 2) or (ta, tp) = (0, 4). Here, the corruption scenarios translate to
upto 2 active corruptions or upto 4 pure passive corruptions. We prove the
theorem by contradiction. Suppose there exists a 3-round protocol π comput-
ing a common output function f that achieves GOD against such a boundary-
admissible adversary. We assume that the communication done in Round 2 and
Round 3 of π is via broadcast alone. This holds without loss of generality since
the parties can engage in point-to-point communication by exchanging random
pads in the first round and then use these random pads to unmask later broad-
casts.

We use the following notation: Let p1i→j denote the pairwise communication
from Pi to Pj in round 1 and bri denotes the broadcast by Pi in round r, where

23

r ∈ [3], {i, j} ∈ [5]. These values may be function of CRS and the PKI setup as
per the protocol specifications. Let V`i denotes the view of party Pi at the end
of execution Σ` (` ∈ [3]) of π. Here, view of Pi includes its input xi, randomness
ri, the messages received during π and the knowledge related to CRS and PKI
setup. Below we describe the strategies A1,A2 and A3, where Ai is launched in
an execution Σi of protocol π. The executions are assumed to be run for the same
input tuple (x1, x2, x3, x4, x5) and the same random inputs (r1, r2, r3, r4, r5) of
the parties.

A1: A corrupts {P1} actively here. P1 behaves honestly in Round 1 and simply
remains silent in Round 2 and Round 3.

A2: A corrupts {P1, P2} actively here. The active misbehavior of P1 is same as in
A1 i.e. P1 behaves honestly in Round 1 and stops communicating thereafter.
On the other hand, P2 participates honestly upto Round 2 and remains silent
in Round 3.

A3: A corrupts {P1, P3, P4, P5} passively here. The semi-honest parties behave
as per protocol specification throughout the execution Σ3 to obtain the cor-
rect output. The passive strategy of {P1, P3, P4, P5} is to ignore the Round
3 message from honest P2 and locally compute the output based on the sce-
nario of execution Σ2 i.e. imagining that P1 stopped after Round 1 and P2

stopped after Round 2.

We present a table depicting the views of the parties in executions Σ1 and Σ2

in Table 3. Here b3i for i ∈ {2, 3, 4, 5} denotes the message broadcast by honest
Pi (as per its next-message function) in Round 3 in case P1 behaves honestly in
Round 1 but is silent in Round 2. The views of parties in Σ3 which is as per
honest execution (since it involves only purely passive corruptions) appears in
Table 4.

Table 3: Views of P1, P2, P3, P4, P5 in Σ1 and Σ2

Σ1 Σ2

V1
1 V1

2 V1
3 V1

4 V1
5 V2

1 V2
2 V2

3 V2
4 V2

5

Input (x1, r1) (x2, r2) (x3, r3) (x4, r4) (x5, r5) (x1, r1) (x2, r2) (x3, r3) (x4, r4) (x5, r5)

R1

p12→1, p11→2, p11→3, p11→4, p11→5, p12→1, p11→2, p11→3, p11→4, p11→5,
p13→1, p13→2, p12→3, p12→4, p12→5, p13→1, p13→2, p12→3, p12→4, p12→5,
p14→1, p14→2, p14→3, p13→4, p13→5, p14→1, p14→2, p14→3, p13→4, p13→5,
p15→1, p15→2, p15→3, , p15→4 , p14→5 p15→1, p15→2, p15→3, p15→4, p14→5,
b12, b13, b11, b13, b11, b12, b11, b12, b11, b12, b12, b13, b11, b13, b11, b12, b11, b12, b11, b12,
b14, b15 b14, b15 b14, b15 b13, b15 b13, b14 b14, b15 b14, b15 b14, b15 b13, b15 b13, b14

R2 b22, b23, –, b23, –, b22, –, b22, –, b22, b22, b23, –, b23, –, b22, –, b22, –, b22,
b24, b25 b24, b25 b24, b25 b23, b25 b23, b24 b24, b25 b24, b25 b24, b25 b23, b25 b23, b24

R3 b32, b33, –, b33, –, b32, –, b32, –, b32, –, b33, –, b33, –, –, –, –, –, –,
b34, b35 b34, b35 b34, b35 b33, b35 b33, b34 b34, b35 b34, b35 b34, b35 b33, b35 b33, b34

Table 4: Views of P1, P2, P3, P4, P5 in Σ3

24

Σ3

V1
1 V1

2 V1
3 V1

4 V1
5

Input (x1, r1) (x2, r2) (x3, r3) (x4, r4) (x5, r5)

R1

p12→1, p
1
3→1 p11→2, p

1
3→2, p11→3, p

1
2→3, p11→4, p

1
2→4, p11→5, p

1
2→5,

p14→1, p15→1 p14→2, p15→2 p14→3, p15→3 p13→4, p15→4 p13→5, p14→5

b12, b13, b14, b15 b11, b13, b14, b15 b11, b12, b14, b15 b11, b12, b13, b15 b11, b12, b13, b14

R2 b22, b23, b24, b25 b21, b23, b24, b25 b21, b22, b24, b25 b21, b22, b23, b25 b21, b22, b23, b24

R3 b32, b33, b34, b35 b31, b33, b34, b35 b21, b32, b34, b35 b31, b32, b33, b35 b31, b32, b33, b34

We now present a sequence of lemmas to complete the proof. Let p = 1 −
negl(κ) denote the overwhelming probability with which security of π holds,
where the probability is defined over the choice of setup and the random coins
used by the parties.

Lemma 7. At the end of Σ1, parties compute output ỹ = f(x̃1, x2, x3, x4, x5)
with overwhelming probability, where x̃1 denotes the default input of P1.

Proof. Firstly, since Σ1 involves active behavior only by P1, it follows directly
from security of π (which holds with overwhelming probability p) that the output
computed at the end of Σ1, say y′ should be based on actual inputs xi for
i ∈ {2, 3, 4, 5}. Now, there are two possibilities with respect to input of P1 i.e. y′
is based on either x1 (i.e. the input used by P1 in Round 1 of Σ1) or x̃1 (default
input). In case of the latter, the lemma holds directly. We now assume the former
for contradiction.

Suppose the output y′ (computed with overwhelming probability p) is based
on x1 rather than x̃1. Since P1 stops communicating after Round 1, we can
conclude that the combined views of {P2, P3, P4, P5} must suffice to compute
the output y′ = f(x1, . . . , x5) at the end of Round 1 itself. If this holds, we
argue that π cannot be secure as follows: Suppose π is such that when all parties
participate honestly in Round 1, the combined view of {P2, P3, P4, P5} suffices
to compute the output at the end of Round 1 itself, with overwhelming prob-
ability p. Then, in an execution of π, an adversary corrupting {P2, P3, P4, P5}
purely passively (corresponding to (ta, tp) = (0, 4)) can learn the output with
overwhelming probability p, on various inputs of its choice, keeping x1 fixed.
This residual attack breaches privacy of honest P1 (A concrete example of such
an f appears at the end of this section). We have thus arrived at a contradic-
tion. This completes the proof that y′ must be based on x̃1, rather than x1 and
consequently y′ = ỹ = f(x̃1, x2, x3, x4, x5) must be the output computed at the
end of Σ1 with overwhelming probability p. ut

Lemma 8. At the end of Σ2, parties compute output ỹ = f(x̃1, x2, x3, x4, x5)
with overwhelming probability, where x̃1 denotes the default input of P1.

Proof. Recall thatA2 is similar toA1 involving active P1, except that P2 is active
as well with the strategy of behaving honestly upto Round 2 and remaining silent
in Round 3. Since the executions Σ1 and Σ2 proceed identically upto Round 2,

25

it is easy to check that the view of corrupt P2 in Σ2 is same as honest P2 in Σ1

(refer to Table 3). It now follows directly from Lemma 7 that P2 can learn the
output ỹ = f(x̃1, x2, x3, x4, x5) with overwhelming probability p. By security of
π (which holds with overwhelming probability p) computing the common output
function f , it must hold that when P2 obtains ỹ, all parties must output ỹ at
the end of Σ2 with overwhelming probability p× p = p2. ut

Lemma 9. The combined view of parties {P3, P4, P5} at the end of Round 2 of
Σ2 suffices to compute the output of Σ2 i.e. ỹ with overwhelming probability.

Proof. We note that as per A2, both {P1, P2} do not communicate in Round
3; implying that the combined view of honest parties {P3, P4, P5} at the end of
Round 2 of Σ2 must suffice to compute the output of Σ2 i.e. ỹ with overwhelming
probability p2 (Lemma 8). ut

Lemma 10. An adversary executing strategy A3 obtains the value ỹ =
f(x̃1, x2, x3, x4, x5), in addition to the correct output y = f(x1, x2, x3, x4, x5)
at the end of Σ3, with overwhelming probability.

Proof. Firstly, Σ3 must lead to computation of correct output i.e. y =
f(x1, x2, x3, x4, x5) by all parties with overwhelming probability p since A3 in-
volves only semi-honest corruptions. Next, it is easy to check from Tables 3 and 4
that the combined view of adversary corrupting {P1, P3, P4, P5} passively at the
end of Round 2 of Σ3 subsumes the combined view of honest parties {P3, P4, P5}
at the end of Round 2 of Σ2. It now follows directly from Lemma 9 that the
adversary can obtain the output ỹ as well with overwhelming probability p2.

In more detail, A launching A3 in Σ3 can compute the output as per the
scenario of Σ2 as follows- Let b3i for i ∈ {2, 3, 4, 5} denotes the message broadcast
by honest Pi (as per its next-message function) in Round 3 in case P1 behaves
honestly in Round 1 but is silent in Round 2. Locally compute {b33, b34, b35} (b3i is
a function of Pi’s (i ∈ {3, 4, 5}) view at the end of Round 2) by imagining that
P1 did not send Round 2 message and compute ỹ by ignoring the message sent
by honest P2 in Round 3. Thus, by following strategy A3, A obtains multiple
evaluations of f i.e. both y and ỹ with overwhelming probability, which violates
the security of π. (We give a concrete example of such an f below that breaches
privacy of honest P2.) This completes the proof of the lemma. ut

Thus, we have arrived at a contradiction to our assumption that π is secure.
While the above proof was shown specifically for n = 5, it can be extended to
any n > 5 in the following natural manner: The strategies A1,A2 remain the
same (feasible as at least two active corruptions are allowed when n > 5) and let
us conclude that the combined view of {P3, P4 . . . , Pn} at the end of Round 2
suffices to compute ỹ = f(x̃1, x2 . . . , xn) with overwhelming probability. Accord-
ingly, strategy A3 involving passive corruption of {P1, P3, P4 . . . , Pn} would lead
to the adversary obtaining multiple evaluations of the function with overwhelm-
ing probability leading to the final contradiction. This completes the proof of
Theorem 4. ut

Next, we give a concrete example of f to elaborate on how the residual attack
can be executed to breach privacy.

26

Concrete Example of f : Let f(x1, x2, x3, x4, x5) with x1 = (α, β), x2 =
(b,m0,m1) (where α, β, b are single bit values) and x3 = x4 = x5 = ⊥ be
defined as below for Pi’s input xi:

f(x1, x2, x3, x4, x5) =

{
mα if b = 0

mα⊕β otherwise

Using this function f , we describe explicitly how multiple evaluations of f
breaches privacy of P1 and P2 in the argument of Lemma 7 and Lemma 9 respec-
tively. Consider the adversary corrupting {P2, P3, P4, P5} passively ((ta, tp) =
(0, 4)) that can learn the output on various inputs of its choice, keeping x1 fixed
(in Lemma 7). By locally plugging in inputs b = 0 and b = 1 on behalf of passive
P2, it is easy to check that the adversary can learn both α and β. This violates
privacy of honest P1 as its input β is never revealed as per the ideal function-
ality. Next, consider the adversary of Lemma 9 corrupting {P1, P3, P4, P5} who
obtains both y = f(x1, x2, x3, x4, x5) and ỹ = f(x̃1, x2, x3, x4, x5). We claim
this breaches privacy of honest P2 as follows: As per the ideal functionality, the
adversary would learn exactly only one among m0,m1. Next, suppose the de-
fault value of x̃1 = (0, 0). Then by participating in Σ3 with input x1 = (1, 0),
the adversary would obtain both y = m1 and ỹ = m0 (irrespective of b) which
compromises the security of honest P2’s input.

Before concluding this section, we give quick intuition of why the above lower
bound argument does not hold when malicious corruption ta ≤ 1. Note that the
strategy A3 carried out by the adversary corrupting {P1, P3, P4, P5} purely pas-
sively was feasible only since the output on default input of P1 could be computed
without any dependency on honest P2’s message in Round 3. Had it been the
case that honest P2’s Round 3 message was crucial for output computation, then
the semi-honest parties {P1, P3, P4, P5} would have obtained only the output on
the combination of actual inputs and would be unable to breach security. Trac-
ing back, recall that the partnership of malicious {P1, P2} together in A2 was
crucial in implying this non-dependency on Round 3 message of P2 (which led
us to the conclusion of view of {P3, P4, P5} being sufficient to compute output
on P1’s default input). It is thereby evident that without such a partnership of
two malicious parties, it would not be possible to arrive at such a contradiction.
This intuition is further substantiated by our 3-round upper bound achieving
GOD in case of single active corruption (Section 6.3).

5.2 Impossibility of 2-round Fair MPC

We begin with the observation that the existing 3-round lower bounds of
[GIKR02, GLS15, PR18a] for fair malicious-minority MPC do not carry over
in our setting. The lower bound of both [GIKR02, GLS15] break down when the
parties have access to a PKI (as acknowledged/demonstrated in their work). The
result of [PR18a], assuming access to pairwise-private and broadcast channels,
also breaks down when parties have access to a PKI. The proof, originally given
without the mention of CRS, seems to withstand a CRS. The proof approach of

27

[PR18a] is via contradiction i.e. derives a series of implications assuming that
2-round fair MPC protocol π exists and eventually builds up to a contradiction.
A crucial lemma in their proof (Lemma 24 in their full version [PR18b]) states
that π must be such that a single party, say P1, is able to compute the output at
the end of Round 1. The argument for this claim relies on the fact that (a) the
adversary’s communication stops after Round 1 and (b) the Round 2 messages
of honest parties do not hold any potential useful information to aid P1’s output
computation. Roughly speaking, (b) follows since the honest party’s messages
are fully determined by the information available to P1 at the end of Round 1
itself and can therefore be locally computed by P1. This information includes
the broadcast communication by the adversary in Round 1. While the above
argument regarding (b) holds in the plain model and even in the presence of
public setup such as CRS, it does not hold in the presence of private setup like
PKI. In this case, an honest party may hold some private information unknown
to P1 at the end of Round 1, such as the decryption of the adversary’s Round 1
broadcast using its exclusive secret key; which may aid in output computation
by P1. Consequently, this claim of [PR18a] and their proof are not resilient to
the presence of PKI.

Before presenting our lower bound formally, we present the proof sketch.
Towards a contradiction, we assume π is a 3-party protocol computing f that
achieves fairness against a boundary-admissible adversary A. We first exploit
fairness of π to conclude that the combined view of a set of 2 parties suffices for
output computation at the end of Round 1. (Here, view of Pi includes its input xi,
its randomness ri, the messages received during π and the knowledge related to
CRS and PKI setup.) Next, considering a strategy where the adversaryA corrupts
this set of 2 parties purely passively leads us to conclude that A can compute
the output at the end of Round 1 itself; leading upto a final contradiction.

Theorem 5. There exist functions f for which there is no 2-round n-party MPC
protocol that achieves fairness against boundary-admissible adversary, in a set-
ting with pairwise-private and broadcast channels, and a setup that includes CRS
and PKI.

Proof. We prove the theorem for n = 3 parties, where boundary-admissible
adversary A chooses corruption parameters either (ta, tp) = (1, 1) or (ta, tp) =
(0, 2). Here, the corruption scenarios translate to either upto 1 active corruption
or upto 2 purely passive corruptions. Let {P1, P2, P3} denote the set of par-
ties with Pi having input xi. Suppose by contradiction, π is an MPC protocol
computing f that achieves fairness against A. To be more specific, π is fair if
(ta, tp) = (1, 1) and achieves GOD otherwise (as GOD is the de-facto security
guarantee in case of no active corruptions i.e. (ta, tp) = (0, 2)).

We now present the sequence of claims. Let p = 1 − negl(κ) denote the
overwhelming probability with which security of π holds, where the probability
is defined over the choice of setup and the random coins used by the parties.

Lemma 11. Protocol π must be such that the combined view of {P2, P3} at the
end of Round 1 suffices for output computation with overwhelming probability.

28

Proof. The proof of the lemma is straightforward. Assume A corrupting P1

actively (with (ta, tp) = (1, 1)) with the following strategy: P1 behaves honestly
in Round 1 and simply remains silent in Round 2. It is easy to check that P1

would obtain the output with overwhelming probability p, due to correctness
of π, as he receives the entire protocol communication as per honest execution.
Since π is fair (with overwhelming probability p), when P1 obtains the output,
the honest parties {P2, P3} must also obtain the output at the end of π with
overwhelming probability p × p = p2. Note that {P2, P3} compute the output
without P1’s communication in Round 2. Thus, we conclude that the combined
view of {P2, P3} at the end of Round 1 suffices for output computation with
overwhelming probability p2. ut

Lemma 12. There exists an adversarial strategy such that the adversary obtains
the output at the end of Round 1, with overwhelming probability.

Proof. The proof follows directly from Lemma 11– A corrupting {P2, P3} purely
passively ((ta, tp) = (0, 2)) would obtain the output at the end of Round 1, with
overwhelming probability p2. ut

Lemma 13. There exists an adversarial strategy that enables A to breach pri-
vacy of the protocol π with overwhelming probability.

Proof. It is implied from Lemma 12 that A corrupting {P2, P3} purely passively
can obtain multiple evaluations of the function f with overwhelming probability,
by locally plugging in different values for {x2, x3} while honest P1’s input x1
remains fixed. This ‘residual function attack’ violates privacy of P1. We refer to
the argument in Lemma 4 for a concrete example. ut

We have arrived at a contradiction, concluding the proof of Theorem 5. It is
easy to check that this argument can be extended for higher values of n. ut

6 Upper bounds for Boundary Corruption

In this section, we describe three upper bounds with respect to the boundary-
admissible adversary A with threshold (ta, tp). We first present a robust upper
bound in 4 rounds for the general case. Next, we present a 3-round robust proto-
col for the special case of single active corruption, which circumvents our lower
bound of Section 5.1. Finally, we present our fair 3-round upper bound that can
be arrived at by simplifying the robust general-case construction. Note that even
the fair construction is robust in the corruption scenario of no active corruptions
i.e. (ta, tp) = (0, n− 1). The security guarantees differ only in case of corruption
scenario involving malicious corruptions. All the above three constructions are
round-optimal, following our lower bound results of Section 5.1 and 5.2. We start
with a building block commonly used across all our constructs.

29

6.1 Authenticated Secret Sharing

We introduce the primitive of Authenticated Secret Sharing [IKP+16, IKK+11]
used in our upper bounds against the boundary-admissible A.

Definition 4 (α-authenticated sharing). A value v is said to be α-
authenticated-shared amongst a set of parties P if every honest or passively
corrupt party Pi in P holds Si as produced by fαASh(v) given in Fig.6.

Function fαASh(v)

1. α shamir-sharing of secret v: Choose random a1, a2 . . . aα ∈ F, where F denotes
a finite field. Build the α-degree polynomial A(x) = a0 + a1x+ a2x

2 + a3x
3 +

· · ·+ aα−1x
α−1 + aαx

α, where a0 = v. Let shi = A(i) for i ∈ [n].
2. Authentication of shares: For all i, j ∈ [n], choose random one-time message-

authentication codes (MAC) [Gol04] keys kij ∈ {0, 1}κ and compute tagij =
Mackij (shi).

3. Output Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
for i ∈ [n].

Fig. 6: Authenticated secret-sharing

In our upper bounds, the function fαASh is realized via MPC protocols. The
reconstruction will be done via protocol ARecα (Fig 7) amongst the parties. We
prove the relevant properties below:

Protocol ARecα

Inputs: Pi participates with Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
Output: Secret v′

Each Pi does the following:

1. Broadcast
(
shi, {tagij}j∈[n]

)
and receive

(
sh′j , tag

′
ji

)
from j 6= i.

2. Each Pi outputs v′ as follows:.
- Initialize Val to {i}. For j 6= i, if Mackji(sh

′
j) = tag′ji, set shj = sh′j and

add j to Val; else set shj = ⊥.
– If |Val| ≥ α+1, interpolate a α degree polynomial A′(x) satisfying A′(γ) =

shγ for γ ∈ Val. Output ⊥ if the above fails, else output v′ = A′(0).

Fig. 7: Protocol for Reconstruction of an authenticated-secret

Lemma 14. The pair (fαASh,ARec
α) satisfies the following:

i. Privacy. For all v ∈ F, the output (S1, . . . , Sn) ← fαASh(v) satisfies the
following– ∀{i1, . . . iα′} ⊂ [n] with α′ ≤ α, the distribution of {Si1 , . . . , Siα′}
is statistically independent of v.

30

ii. Correctness. For all v ∈ F, the value v′ output by all honest parties at
the end of ARecα(S′1, . . . S′n) satisfies the following– For all (S1, . . . , Sn) ←
fαASh(v) and (S′1, . . . , S

′
n) such that S′i = Si corresponding to at least α + 1

parties Pi, it holds that Pr[v′ 6= v] ≤ negl(κ) for a computational security
parameter κ.

iii. Round complexity. ARecα terminates in one round.

Proof.

i. Privacy: It is easy to check from the description of fαASh that privacy follows
directly from the fact that v is Shamir-shared with degree α.

ii. Correctness: Firstly, we note that since at least α+1 parties Pi participate
with S′i = Si in ARecα(S′1, . . . S

′
n), the Val set of each honest party comprises

of at least (α+ 1) correct shares shi. These shares suffice to uniquely recon-
struct the α-shared secret v. We can thus conclude that an honest Pi would
output ⊥ only if the interpolation of the α-degree polynomial fails, which in
turn occurs if there is an incorrect share, say sh′j , such that j is added to
Val. This would imply that a corrupt Pj broadcasts sh′j 6= shj and tag′ji but
satisfied the condition Mackji(sh

′
j) = tag′ji, with respect to the MAC-key kji

(present in Si) available to honest Pi (not to Pj). However, security of MAC
ensure that the above cannot happen except with negligible probability. This
completes the proof of correctness.

iii. Round complexity. The proof is self-evident.
ut

6.2 Upper bound for Robust MPC: The general case

In a setting where either at most n− 1 passive corruption or at most (dn2 e − 1)
active corruption takes place, [IKK+11] presents a protocol relying on two types
of MPC protocol. An actively-secure protocol against malicious majority is used
to compute an authenticated-sharing of the output with threshold (dn2 e − 1).
When this protocol succeeds, the output is computed via reconstruction of the
authenticated-sharing. On the other hand, a failure is tackled via running a
robust honest-majority (majority of the parties are honest) actively-secure pro-
tocol, relying on the conclusion that the protocol is facing a malicious-minority.
When n is odd, we need to tackle the exact corruption scenarios as that of the
protocols of [IKK+11]. On the other hand when n is even, the extreme case for
active corruption accommodates an additional passive corruption. Apart from
hitting optimal round complexity, tackling the distinct boundary cases for odd
and even n in a unified way brings challenge for our protocol.

We make the following effective changes to the approach of [IKK+11]. First,
we invoke a 2-round actively-secure protocol πidua with identifiable abort against
malicious majority (can be instantiated with the protocol of [GS18], as shown by
[CGZ20]) to compute bn2 c-authenticated sharing of the output. When we expel
the identified corrupt parties in case of failure (which may occur in corruption
scenario (ta, tp) = (dn/2e− 1, bn/2c)), the remaining population always displays

31

honest-majority, no matter whether n is odd or even (For instance, elimination
of 1 corrupt party results in t′ ≤ (tp − 1) = bn/2c − 1 total corruptions among
n′ = (n− 1) remaining parties which satisfies n′ ≥ 2t′ + 1.). The robust honest-
majority protocol πgod is then invoked to compute the function f where the
inputs of the identified parties are hard-coded to default values. The change
in the degree of authenticated sharing ensures that an adversary choosing to
corrupt in the boundary case of dn2 e − 1 active corruption and zero (when n
is odd) or one (when n is even) purely passive corruption, cannot learn the
output by itself collating the information it gathers during πidua. Without the
change, the adversary could ensure that πidua leads to a failure for the honest
parties and yet could learn outputs from both πidua and πgod with different set
of adversarial-inputs. Lastly, the function and input independence property of
Round 1 of the 3-round honest-majority protocol of [GLS15, ACGJ18] allows us
to superimpose this round with the run of πidua. Both these instantiations of πgod
are also equipped to tackle the probable change in population for the remaining
two rounds (when identified corrupt parties are expelled) and the change in
the function to be computed (with hard-coded default inputs for the identified
corrupt parties).

We present our protocol πbou
god in the FASh

idua -hybrid model in Fig. 9, where
FASh

idua (Fig. 8) denotes the ideal functionality (realized by πidua) computing the
authenticated sharing of the output securely with identifiable abort. Note that
the hybrid model does not involve an ideal functionality corresponding to the
3-round subprotocol πgod, as Round 2 - 3 of the instance of πgod is executed only
if needed, depending on the adversarial behaviour.

Assumption wise, πbou
god relies on 2-round maliciously-secure OT in the com-

mon random/reference string model (when πidua is instantiated with function-
delayed variant of the protocol of [GS18] satisfying identifiability) and Zaps and
public-key encryption (when πgod is instantiated with the protocol of [ACGJ18]).

We state the formal theorem below.

Theorem 6. Assuming the presence of a 3-round protocol πgod realizing Fgod in
the presence of honest majority (with special property of Round 1 being function
and input-independent), the 4-round MPC protocol πbou

god (Figure 9) in the FASh
idua -

hybrid model satisfies:

– Correctness: computes the correct output.
– Security: realizes Fgod (Fig 16) against boundary-admissible A

Proof. Correctness of πbou
god follows directly from that of FASh

idua , πgod and ARecbn/2c

(Lemma 14). ut
The security proof of πbou

god in the FASh
idua -hybrid model appears in Appendix

C.1. Standard composition theorems [Can00, Gol04] implies that πbou
god is secure

when access to FASh
idua is emulated using the 2-round function-delayed variant of

the protocol of [GS18] satisfying identifiability.
We conclude this section with a simplification to πbou

god that can be adopted if
additional access to PKI is assumed. In such a case, parallelizing Round 1 of πgod

32

Functionality FASh
idua

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if
such a message was received from Pi earlier, then ignore. Otherwise record it
internally. If xi is outside of the domain for Pi or Pi sends no input, consider
xi = (abort, i). We require that if xi = (abort, i), then the adversary corrupts
Pi actively.

Output to adversary: If there exists a set I with |I| ≥ 1 such that xi =
(abort, i) for Pi ∈ I, send (Output, (⊥, I)) to all the parties. Else, compute
y = f(x1, . . . , xn) and (S1, . . . Sn) = f

bn/2c
ASh (y) (Fig. 6). Send (Output, Si) to

Pi for every Pi ∈ E .
Output to honest parties: Receive either continue or (abort, I) from adver-

sary where I with |I| ≥ 1 is a subset of actively corrupt parties chosen by the
adversary. In case of continue, send (Output, Si) to each honest Pi, whereas
in case of abort send (Output, (⊥, I)) to all honest parties. We require that
an adversary that corrupts no party actively sends continue.

Fig. 8: Ideal Functionality FASh
idua

Protocol πbou
god

Inputs: Party Pi has xi for i ∈ [n]
Model: FASh

idua -hybrid model (Fig. 8)
Building Blocks: (a) 3-round honest-majority actively-secure robust protocol

πgod (realizing functionality Fgod, refer Fig 16) with additional property of
Round 1 being function and input independent; (b) Protocol ARecbn/2c for
reconstructing an bn/2c-authenticated-shared secret (Fig 7)

Output: y = f(x1, . . . , xn)

Round 1–2: Each Pi interacts with FASh
idua using input xi to compute the function

f
bn/2c
ASh � f and obtain output (Si =

(
shi, {kji}j∈[n], {tagij}j∈[n]

)
,B), where B

denotes the set of identified cheaters. Additionally, the parties run (input-
independent and function-independent) Round 1 of πgod.

Round 3–4: If Si = ⊥, the parties in P \B run Round 2 and 3 of πgod computing
fB (f with the inputs of parties in B are hardcoded to default values) and
output y as the outcome of πgod. Else, participate in ARecbn/2c with input Si
and output the outcome of ARecbn/2c.

Fig. 9: Robust MPC against boundary-admissible adversary

with Round 1 of πidua (realizing FASh
idua) can be avoided and the 2-round honest-

majority protocol of [GLS15] achieving GOD assuming CRS and PKI setup can
be used to instantiate πgod (which would be run in Rounds 3-4 of πbou

god). Both
our 4-round constructions with CRS (Figure 9) and its simplified variant with
CRS and PKI are tight upper bounds, in light of the impossibility of Section 5.1
that holds in the presence of CRS and PKI.

33

6.3 Upper bound for Robust MPC: The single corruption case

Building upon the ideas of Section 6.2 and Section 4.3, a 3-round robust MPC
πbou,1
god against the special-case boundary-admissible adversary can be constructed

as follows. Similar to πbou
god , Round 1 and 2 involve running protocol πidua realizing

bn/2c-authenticated secret-sharing of the function output. When πidua does not
result in abort, πbou,1

god proceeds to reconstruction of output; identical to πbou
god and

thereby terminating in 3 rounds. However, when πidua results in output ⊥, we
exploit the advantage of at most one malicious corruption by noting that once the
single actively-corrupt party is expelled, the parties involved thereafter comprise
only of the honest and purely passive parties. We adopt the idea of Section
4.3 and re-run Round 2 of πidua among the remaining parties to compute the
function output directly, with input of the expelled party substituted with default
input. This step demands the function-delayed property of πidua i.e. Round 1 is
independent of the function to be computed and the number of parties. In order
to accommodate this re-run, two instances of Round 1 of πidua are run in Round
1 of πbou,1

god . It is easy to see that robustness is ensured as πidua is robust in the
absence of actively-corrupt parties. Lastly, we point that similar to Section 4.3,
we use the modified variant of the 2-round protocol of [GS18] to instantiate πidua
that is function-delayed and achieves identifiability.

The formal description of πbou,1
god appears in Fig 10. πbou,1

god is not analyzed in
the hybrid model as it is not possible to substitute the second instance of πidua
with its corresponding ideal functionality in the hybrid model. This is because
only Round 1 of the second instance of πidua is always executed, but its Round
2 is run only if needed, depending on adversarial behaviour.

This upper bound πbou,1
god is tight, following the impossibility of 2-round fair

MPC (that holds for single malicious corruption) proven in Section 5.2 as GOD
implies fairness. Assumption wise, πbou,1

god relies on 2-round maliciously-secure OT
in the common random/reference string model (when πidua is instantiated with
function-delayed variant of the protocol of [GS18] satisfying identifiability).

We state the formal theorem below.
Theorem 7. Assuming the presence of a 2-round protocol πidua realizing func-
tionality Fidua (Fig 14) against malicious majority and having function-delayed
property, the 3-round MPC protocol πbou,1

god (Figure 10) satisfies:

– Correctness: computes the correct output.
– Security: realizes Fgod (Fig 16) against special-case boundary-admissible A

with corruption parameters either (ta, tp) = (1, bn/2c) or (ta, tp) = (0, n−1).

Proof. Correctness of πbou,1
god follows directly from correctness of πidua, and cor-

rectness of ARecbn/2c (Lemma 14). ut
The security proof is deferred to Appendix C.2.

6.4 Upper bound for Fair MPC

The 4-round robust protocol πbou
god (Section 6.2) can be simplified as follows to

yield a 3-round fair MPC protocol πbou
fair . Similar to πbou

god , Round 1 and 2 involve

34

Protocol πbou,1
god

Inputs: Party Pi has xi for i ∈ [n]
Building Blocks: (a) 2-round protocol πidua achieving identifiable abort against

malicious majority (realizing functionality Fidua, refer Fig. 14) and having
function-delayed property; (b) Protocol ARecbn/2c for reconstructing an bn/2c-
authenticated-shared secret (Fig. 7); (c) Function fbn/2cASh (Fig. 6).

Output: y = f(x1, . . . , xn)

Round 1: Pi does the following: Run 2 instances of Round 1 of πidua, each using
input xi and independent randomness. Note that this round is independent of
the function to be computed and the number of parties.

Round 2: Pi does the following: Run Round 2 of πidua (based on first instance of
Round 1 of πidua) among P computing the function fbn/2cASh � f using input xi
to obtain output (Si =

(
shi, {kji}j∈[n], {tagij}j∈[n]

)
,B), where B denotes the

set of identified cheaters.
Round 3: If Si = ⊥, the parties in P \ B run Round 2 of πidua (based on second

instance of Round 1 of πidua) computing fB (where the inputs of the party in
B is hard-coded to default value) and output y as the outcome of this (second)
instance of πidua. Else, participate in ARecbn/2c with input Si and output the
outcome of ARecbn/2c.

Fig. 10: Robust MPC against special-case boundary-admissible adversary

execution of πua (instantiated by [GS18, BL18] in the CRS model) achieving
unanimous abort against malicious-majority (identifiability is not needed) in
order to compute bn/2c-authenticated sharing of the output. If πua does not
result in abort, the honest parties proceed to reconstruction of output in Round
3. Else, the honest parties simply output ⊥. It is easy to check that fairness is
preserved due to privacy of bn/2c-authenticated secret-sharing (Lemma 14).

Protocol πbou
fair in the FASh

ua -hybrid model appears in Fig 12, where FASh
ua (Fig.

11) denotes the ideal functionality computing the authenticated sharing of the
output securely with abort. When FASh

ua is realized using the 2-round protocols
of [GS18, BL18], πbou

fair is round-optimal, in view of the lower bound of Section 5.2
and relies on 2-round maliciously-secure OT in the common random/reference
string model.

We state the formal theorem below.

Theorem 8. The 3-round MPC protocol πbou
fair (Figure 12) in the FASh

ua -hybrid
model satisfies:

– Correctness: computes the correct output.
– Security: realizes against (ta, tp) boundary-admissible A (1) Ffair (Fig. 15)

when (ta, tp) = (dn/2e−1, bn/2c) (2) Fgod (Fig. 16) when (ta, tp) = (0, n−1).

Proof. Correctness of πbou
fair follows directly from correctness of FASh

ua and the
correctness of ARecbn/2c (Lemma 14). ut

35

Functionality FASh
ua

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if
such a message was received from Pi earlier, then ignore. Otherwise record it
internally. If xi is outside of the domain for Pi or Pi does not send an input,
consider xi = abort. We require that when xi = abort, the adversary corrupts
Pi actively.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send
(Output,⊥) to all the parties. Else, compute y = f(x1, . . . , xn) and
(S1, . . . , Sn) = f

bn/2c
ASh (y). Send (Output, Si) to Pi for every Pi ∈ E .

Output to honest parties: Receive either continue or abort from adversary.
In case of continue, send (Output, Si) to each honest Pi, whereas in case of
abort send (Output,⊥) to all honest parties. We require that an adversary
that corrupts no party actively sends continue.

Fig. 11: Ideal Functionality FASh
ua

Protocol πbou
fair

Inputs: Party Pi has xi for i ∈ [n]
Model: FASh

ua -hybrid model (Fig. 11)
Building Blocks: Protocol ARecbn/2c for reconstructing an bn/2c-authenticated-

shared secret (Fig. 7)
Output: y = f(x1, . . . , xn) or ⊥.

Round 1–2: Pi interacts with FASh
ua with input xi to compute the function fbn/2cASh �

f and obtains Si as output.
Round 3: If Si = ⊥, the parties output ⊥. Else, participate in ARecbn/2c with

input Si =
(
shi, {kji}j∈[n], {tagij}j∈[n]

)
) and output the outcome of ARecbn/2c.

Fig. 12: Fair MPC against boundary-admissible adversary

The security proof of πbou
fair in the FASh

ua -hybrid model appears in Appendix C.3.
Standard composition theorems [Can00, Gol04] implies that πbou

fair is secure when
access to FASh

ua is emulated using the 2-round protocols of [GS18, BL18].

36

References

ABT19. Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is com-
plete for the round-complexity of malicious MPC. In Advances in Cryp-
tology - EUROCRYPT 2019 - 38th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Darmstadt, Ger-
many, May 19-23, 2019, Proceedings, Part II, pages 504–531, 2019.

ACGJ18. Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek
Jain. Round-optimal secure multiparty computation with honest majority.
In Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part II, pages 395–424, 2018.

BFH+08. Zuzana Beerliová-Trubíniová, Matthias Fitzi, Martin Hirt, Ueli M. Maurer,
and Vassilis Zikas. MPC vs. SFE: perfect security in a unified corruption
model. In Theory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008., pages 231–250,
2008.

BJMS18. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sa-
hai. Secure MPC: laziness leads to GOD. IACR Cryptology ePrint Archive,
2018:580, 2018.

BKP11. Michael Backes, Aniket Kate, and Arpita Patra. Computational verifiable
secret sharing revisited. In Advances in Cryptology - ASIACRYPT 2011
- 17th International Conference on the Theory and Application of Cryp-
tology and Information Security, Seoul, South Korea, December 4-8, 2011.
Proceedings, pages 590–609, 2011.

BL18. Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from
k-round oblivious transfer via garbled interactive circuits. In Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part II, pages 500–532, 2018.

Can00. R. Canetti. Security and Composition of Multiparty Cryptographic Proto-
cols. J. Cryptology, 13(1):143–202, 2000.

CDG87. David Chaum, Ivan Damgård, and Jeroen Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and
Applications of Cryptographic Techniques, Santa Barbara, California, USA,
August 16-20, 1987, Proceedings, pages 87–119, 1987.

CGZ20. Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal two-
round MPC. In Advances in Cryptology - EUROCRYPT 2020 - 39th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part
II, pages 828–858, 2020.

Cha89. David Chaum. The spymasters double-agent problem: Multiparty compu-
tations secure unconditionally from minorities and cryptographically from
majorities. In Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings, pages 591–602, 1989.

CL14. Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output deliv-
ery in secure multiparty computation. In Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and Applica-

37

tion of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, pages 466–485, 2014.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors
are faulty (extended abstract). In Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, Califor-
nia, USA, pages 364–369, 1986.

DDWY93. Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly
secure message transmission. J. ACM, 40(1):17–47, 1993.

FHHW03. Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger.
Two-threshold broadcast and detectable multi-party computation. In Ad-
vances in Cryptology - EUROCRYPT 2003, International Conference on
the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003, Proceedings, pages 51–67, 2003.

FHM98. Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. Trading correctness for
privacy in unconditional multi-party computation (extended abstract). In
Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 23-27, 1998,
Proceedings, pages 121–136, 1998.

FHM99. Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries in
unconditional multi-party computation. In Advances in Cryptology - ASI-
ACRYPT ’99, International Conference on the Theory and Applications
of Cryptology and Information Security, Singapore, November 14-18, 1999,
Proceedings, pages 232–246, 1999.

FHW04. Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party
computation with hybrid security. In Advances in Cryptology - EURO-
CRYPT 2004, International Conference on the Theory and Applications
of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Pro-
ceedings, pages 419–438, 2004.

GIKR02. Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round
secure multiparty computation. In Advances in Cryptology - CRYPTO
2002, 22nd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 2002, Proceedings, pages 178–193, 2002.

GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with
fairness and guarantee of output delivery. In Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II, pages 63–82, 2015.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
1987, New York, New York, USA, pages 218–229, 1987.

Gol01. Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Tech-
niques. Cambridge University Press, 2001.

Gol04. Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Ap-
plications. Cambridge University Press, 2004.

GS18. Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. In Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part II, pages 468–499, 2018.

38

HLM13. Martin Hirt, Christoph Lucas, and Ueli Maurer. A dynamic tradeoff be-
tween active and passive corruptions in secure multi-party computation. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
II, pages 203–219, 2013.

HLMR11. Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Graceful
degradation in multi-party computation (extended abstract). In Informa-
tion Theoretic Security - 5th International Conference, ICITS 2011, Am-
sterdam, The Netherlands, May 21-24, 2011. Proceedings, pages 163–180,
2011.

HLP11. Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on
the web: Computing without simultaneous interaction. In Advances in
Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 132–150, 2011.

HM01. Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional
multi-party computation. In Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, pages 101–118, 2001.

HMP00. Martin Hirt, Ueli M. Maurer, and Bartosz Przydatek. Efficient secure
multi-party computation. In Advances in Cryptology - ASIACRYPT 2000,
6th International Conference on the Theory and Application of Cryptology
and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings,
pages 143–161, 2000.

HMZ08. Martin Hirt, Ueli M. Maurer, and Vassilis Zikas. MPC vs. SFE : Uncon-
ditional and computational security. In Advances in Cryptology - ASI-
ACRYPT 2008, 14th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Melbourne, Australia, De-
cember 7-11, 2008. Proceedings, pages 1–18, 2008.

IKK+11. Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez
Petrank. On achieving the "best of both worlds" in secure multiparty
computation. SIAM J. Comput., 40(1):122–141, 2011.

IKKP15. Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-
Cherniavsky. Secure computation with minimal interaction, revisited. In
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
II, pages 359–378, 2015.

IKLP06. Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On com-
bining privacy with guaranteed output delivery in secure multiparty com-
putation. In Advances in Cryptology - CRYPTO 2006, 26th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August
20-24, 2006, Proceedings, pages 483–500, 2006.

IKP+16. Yuval Ishai, Eyal Kushilevitz, Manoj Prabhakaran, Amit Sahai, and Ching-
Hua Yu. Secure protocol transformations. In Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 430–
458, 2016.

Kat07. Jonathan Katz. On achieving the "best of both worlds" in secure multi-
party computation. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007,
pages 11–20, 2007.

39

Lin17. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof
technique. In Tutorials on the Foundations of Cryptography., pages 277–
346. 2017.

LRM10. Christoph Lucas, Dominik Raub, and Ueli M. Maurer. Hybrid-secure MPC:
trading information-theoretic robustness for computational privacy. In Pro-
ceedings of the 29th Annual ACM Symposium on Principles of Distributed
Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 219–
228, 2010.

PCRR09. Arpita Patra, Ashish Choudhary, Tal Rabin, and C. Pandu Rangan. The
round complexity of verifiable secret sharing revisited. In Advances in Cryp-
tology - CRYPTO 2009, 29th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 487–504,
2009.

Ped91. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In Advances in Cryptology - CRYPTO ’91, 11th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings, pages 129–140, 1991.

PR18a. Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. In Advances in Cryptology - CRYPTO 2018
- 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part II, pages 425–458, 2018.

PR18b. Arpita Patra and Divya Ravi. On the exact round complexity of secure
three-party computation. IACR Cryptology ePrint Archive, 2018:481, 2018.

RB89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In Proceedings of the
21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washigton, USA, pages 73–85, 1989.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-

stract). In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 160–164, 1982.

40

A Security Model

We prove the security of our protocols based on the standard real/ideal world
paradigm. Essentially, the security of a protocol is analyzed by comparing what
an adversary can do in the real execution of the protocol to what it can do in
an ideal execution, that is considered secure by definition (in the presence of an
incorruptible trusted party). In an ideal execution, each party sends its input to
the trusted party over a perfectly secure channel, the trusted party computes the
function based on these inputs and sends to each party its respective output.
Informally, a protocol is secure if whatever an adversary can do in the real
protocol (where no trusted party exists) can be done in the above described
ideal computation. We refer to [Can00, Gol01, Lin17, CL14] for further details
regarding the security model.

The “ideal" world execution involves n parties {P1 . . . , Pn}, an ideal adversary
S who may corrupt some of the parties, and a functionality F . The “real" world
execution involves the PPT parties {P1 . . . , Pn}, and a real world PPT adversary
A who may corrupt some of the parties. We let idealF,S(1κ, z) denote the
output pair of the honest parties and the ideal-world PPT adversary S from the
ideal execution with respect to the security parameter 1κ and auxiliary input z.
Similarly, let realΠ,A(1κ, z) denote the output pair of the honest parties and
the adversary A from the real execution with respect to the security parameter
1κ and auxiliary input z.

Definition 5. For n ∈ N, let F be a functionality and let Π be a n-party pro-
tocol. We say that Π securely realizes F if for every PPT real world adversary
A, there exists a PPT ideal world adversary S, corrupting the same parties,
such that the following two distributions are computationally indistinguishable:
idealF,S

c
≈ realΠ,A.

Target Functionalities. Taking motivation from [CL14, GLS15], we define
ideal functionalities Fua, Fidua,Ffair,Fgod in Figures 13, 14, 15, 16 for secure
MPC of a function f with unanimous abort, identifiable abort, fairness and
guaranteed output delivery respectively.

A.1 Equivocal Non-interactive Commitment Schemes (eNICOM)

We present the formal definition and properties of Equivocal Non-interactive
Commitment Schemes (eNICOM) in this section. This primitive is used in our
upper bound constructions against dynamic-admissible adversary.

An equivocal non-interactive commitment scheme (eNICOM) consists of al-
gorithms (eGen, eCom, eOpen,Equiv) defined as follows.

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t),
where epp is used by both eCom and eOpen. The trapdoor t is used for
equivocation.

41

Fua

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if
such a message was received from Pi earlier, then ignore. Otherwise record it
internally. If xi is outside of the domain for Pi or Pi sends no input, consider
xi = abort. We require that if xi = abort, then the adversary corrupts Pi
actively.

Output to adversary: If there exists i ∈ [n] such that xi = abort, send
(Output,⊥) to all the parties. Else, send (Output, y) to the adversary, where
y = f(x1, . . . , xn).

Output to honest parties: Receive either continue or abort from adversary.
In case of continue, send (Output, y) to honest parties, whereas in case of
abort, send them (Output,⊥). We require that an adversary that corrupts no
party actively sends continue.

Fig. 13: Ideal Functionality for unanimous abort

Fidua

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if
such a message was received from Pi earlier, then ignore. Otherwise record it
internally. If xi is outside of the domain for Pi or Pi sends no input, consider
xi = (abort, i). We require that if xi = (abort, i), then the adversary corrupts
Pi actively.

Output to adversary: If there exists a set I with |I| ≥ 1 such that xi =
(abort, i) for Pi ∈ I, send (Output, (⊥, I)) to all the parties. Else, send
(Output, y) to the adversary, where y = f(x1, . . . , xn).

Output to honest parties: Receive either continue or (abort, I) from adver-
sary where I with |I| ≥ 1 is a subset of actively corrupt parties chosen by the
adversary. In case of continue, send (Output, y) to honest parties, whereas in
case of abort send (Output, (⊥, I)) to all honest parties. We require that an
adversary that corrupts no party actively sends continue.

Fig. 14: Ideal Functionality for identifiable abort

Ffair

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if
such a message was received from Pi earlier, then ignore. Otherwise record it
internally. If xi is outside of the domain for Pi or Pi sends no input, consider
xi = abort. We require that if xi = abort, then the adversary corrupts Pi
actively.

Output: If there exists i ∈ [n] such that xi = abort, send (Output,⊥) to all
the parties. Else, send (Output, y) to party Pi for every i ∈ [n], where y =
f(x1, . . . , xn).

Fig. 15: Ideal Functionality for fairness

– eCom(epp, x; r) returns a commitment c and corresponding opening informa-
tion o (where inputs are the common parameter epp, message x and random
coins r).

42

Fgod

Input: On message (Input, xi) from a party Pi (i ∈ [n]), do the following: if
such a message was received from Pi earlier, then ignore. Otherwise record it
internally. If xi is outside of the domain for Pi or Pi sends no input, set xi to
be some predetermined default value.

Output: Compute y = f(x1, . . . , xn) and send (Output, y) to party Pi for every
i ∈ [n].

Fig. 16: Ideal Functionality for guaranteed output delivery

– eOpen(epp, c, o) returns the message x.
– Equiv(c, o′, x, t) is invoked on commitment c and its corresponding open-

ing o′, given message x and the trapdoor t and returns o such that x ←
eOpen(epp, c, o).

Informally, the algorithms should satisfy correctness, binding (i.e. it must
be hard for an adversary to come up with two different openings of any c with
respect to uniformly chosen epp) and hiding (a commitment must not leak in-
formation about the underlying message) properties. The hiding property of
eNICOM is slightly changed compared to that of standard non-interactive com-
mitments taking the equivocation property into account. This new definition
implies the usual hiding definition.

Properties.

– Correctness: For all (epp, t) ← eGen(1κ), x ∈ M and r ∈ R, if (c, o) ←
eCom(x; r) then eOpen(c, o) = x.

– Binding: For all (epp, t)← eGen(1κ) and for all PPT adversaries A, it is with
negligible probability that A(epp) outputs (c, o, o′) such that eOpen(c, o) 6=
eOpen(c, o′) and ⊥ /∈ {eOpen(c, o), eOpen(c, o′)}

– Hiding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, and all
x, x′ ∈M, the following difference is negligible:∣∣Pr(c,o)←eCom(x)[A(c, o) = 1]− Pr(c,o′)←eCom(x′),o←Equiv(c,o′,x,t)[A(c, o) = 1]

∣∣
Instantiation. We present the instantiation based on Pedersen commitment
scheme [Ped91].

Theorem 9. Let p, q denote large primes such that q divides (p − 1), Gq is
the unique subgroup of Z∗p of order q and g is a generator of Gq. Consider the
following algorithms:

- eGen(1κ): set (epp, t) = ((g, h), α) where α ∈ Zq; h = gα

- eCom(epp = (g, h), x; r): set c = gxhr; set o = (r, x).
- eOpen(epp = (g, h), c, o = (r, x)): return x if c = gxhr; otherwise return ⊥.
- Equiv((c = eCom(x′; r′)) , (x′, r′), x, t): return o = (r, x) where r = r′ + x′−x

t

43

Assume that the discrete logarithm problem in Gq is hard. Then
(eGen, eCom, eOpen,Equiv) is an equivocal commitment scheme.

Proof. It is easy to check that correctness holds. We prove the remaining prop-
erties below.

- Binding. Assume towards a contradiction that there exist a PPT adversary
A such that A(epp) outputs (c, o, o′) such that eOpen(c, o) 6= eOpen(c, o′)
and ⊥ /∈ {eOpen(c, o), eOpen(c, o′)} with non-negligible probability. We
show that A can be used to construct an adversary A′ to find the dis-
crete logarithm. A′ forwards its input (g, h) to A as epp who returns
(c, o, o′). Let x = eOpen(c, o) and x′ = eOpen(c, o), where o = (r, x) and
o′ = (r′, x′). If A′ succeeded in breaking the binding property, it must
hold that c = gxhr = gx

′
hr

′
. Therefore, A′ can compute the discrete

logarithm of h as logg h = x′−x
r−r′ . We can thus conclude that A′ succeeds

in computing the discrete logarithm, provided A succeeds in breaking the
binding property, which occurs with non-negligible probability. This is a
contradiction to our assumption that the discrete logarithm problem is hard.

- Hiding. The commitment scheme is perfectly hiding i.e. c = gxhr reveals no
information about x. This holds, because hr has a uniform distribution over
Gq, independently of the choice of x (as r is chosen uniformly at random
from Zq).

ut

B Proofs for Upper Bounds for Dynamic Corruption

B.1 Security Proof of πdyn
fair (Theorem 2)

Proof. We analyze the protocol πdyn
fair in a FLSh

ua -hybrid model where the parties
have access to a trusted party FLSh

ua (Fig. 3). Standard composition theorems
[Can00, Gol04] implies that πdyn

fair is secure when access to FLSh
ua is emulated using

2-round protocols of [GS18, BL18]. Let A be a dynamic adversary with threshold
(ta, tp) that controls tp parties passively and upto ta among them actively in the
FLSh

ua -hybrid model execution of πdyn
fair .

We prove Theorem 2 by describing a simulator for each admissible corruption
scenario (ta, tp) of A, running an ideal-world evaluation of the functionality Ffair

(refer Figure 15) computing f whose behaviour simulates the behaviour of A.
While the Simulator Sdyn,0fair corresponding to the case of ta = 0 appears in Fig.
17, the Simulator Sdyn,tafair (parameterized by ta, where ta ≥ 1) in Fig. 18 describes
the simulation steps corresponding to all corruption scenarios where ta ≥ 1.

In order to complete the proof, we argue how each of them maintain that
the view of A is the ideal world is indistinguishable from its view in FLSh

ua -hybrid
model execution of πdyn

fair (hybrid-world).

44

Simulator Sdyn,0
fair

Let H and Corr denote the set of indices of honest parties (in P \ E) and parties
in E respectively. Sdyn,0

fair does the following:

– Interaction with FLSh
ua : Receive (Input, {xj}j∈Corr) sent by A to FLSh

ua .
– Output of FLSh

ua to A: Invoke Ffair on behalf of A with {xj}j∈Corr to receive
an output value y in return. Compute (L1, . . . Ln) = f

n−2,bn
2
c

LSh (y) (Fig. 1) and
return {Lj}j∈Corr to A as output from FLSh

ua . Receive continue sent by A to
FLSh

ua .
Note: Recall that in Round r (r ∈ [3, dn/2e+1]), summand sn−r+1 is attempted

to be reconstructed (in Round r − 2 of LRecn−2,bn
2
c).

– Round 3 to Round dn/2e+ 1 : Sdyn,0
fair does the following in Round r′, where

r′ = [3, dn/2e+ 1]: Let i = n− r′ + 1. Send (sil, oil) ∈ Ll on behalf of honest
Pl ∈ H.

Fig. 17: Simulator Sdyn,0fair

Simulator Sdyn,0fair corresponding to ta = 0. It is straightforward to see that the
view of A is identical in the ideal and hybrid-world.

Simulator Sdyn,tafair corresponding to ta ≥ 1. The simulation is divided into 4
parts: Computation of FLSh

ua (comprising Rounds 1-2 when realized by 2-round
protocols of [GS18, BL18]), Rounds 3 to n − tp, Round n − tp + 1 and finally
Rounds n− tp + 1 to Round dn/2e+ 1.

Computation of FLSh
ua . The only difference between the ideal and hybrid-world

is that the output obtained by adversary from FLSh
ua in the ideal world when

ta ≥ 1, comprises of commitments on dummy values corresponding to shares
of honest parties. This is in contrast to the hybrid world where the com-
mitments are computed on the levelled-shares of the function output. We
note that when ta ≥ 1, tp ≤ n − 2 holds; thereby A has access to at most
n − 2 shares of the summand sn−2 (which is shared with threshold n − 2).
Indistiguishability of the view of A in the ideal world and hybrid world fol-
lows directly from the property of Shamir-Sharing and hiding property of
eNICOM.

Rounds 3 to Round n− tp. The only difference in the ideal and the hybrid-
model is the following: In the hybrid-model, the share of a party Pj , say sij
(i = [n − 2, tp + 1]) is discarded during LRecn−2,bn/2c() if the correspond-
ing commitment cij (output from FLSh

ua) does not open successfully using
the given opening o′ij obtained from Pj . However, in the ideal world, the
share of Pj is discarded if Pj does not send (sij , oij), same as output from
FLSh

ua . It follows from the binding property of the equivocal commitment
eNICOM that Pj will not be able to send (s′ij , o

′
ij) 6= (sij , oij) such that

eOpen(epp, cij , o
′
ij) = s′ij , except with negligible probability. Thus, indistin-

guishability holds.
Round n− tp + 1. Since this constitutes the crux of the simulation, we first

briefly describe the logic behind this simulation step - Note that if recon-
structions of summands upto stp+1 were successful, in the hybrid-world, A

45

Simulator Sdyn,ta
fair

Let H and Corr denote the set of indices of honest parties (in P \ E) and parties
in E respectively. Sdyn,ta

fair (where ta ≥ 1) does the following.

– Interaction with FLSh
ua : Receive (Input, {xj}j∈Corr) sent by A to FLSh

ua .
– Output of FLSh

ua to A:
– If for any Pj , xj is outside of domain of input, send ⊥ as output of FLSh

ua to A
and send ⊥ as input to Ffair on behalf of A. This completes the simulation.

– Else, let α′ = n − 2 and β′ = bn/2c. For j ∈ Corr, return
Lj =

(
{sij , oij}i∈[α′,β′], {cil}i∈[α′,β′],l∈[n]

)
where sij are randomly cho-

sen, (cij , oij) ← eCom(sij ; rij) (with trapdoor t) computed as per proto-
col specifications and {cil}i∈[α′,β′],l∈H are computed as commitments on
dummy values, say involving {s′il, o′il}i∈[α′,β′],l∈H.

– If A invokes FLSh
ua with abort, invoke Ffair with input ⊥ on behalf of A; which

completes the simulation. Else, continue to execute the remaining steps.
Note: Recall that in Round r (r ∈ [3, dn/2e+1]), summand sn−r+1 is attempted

to be reconstructed (in Round r − 2 of LRecn−2,bn
2
c).

– Round 3 to Round (n− tp) : Sdyn,ta
fair does the following in Round r′, where

r′ = [3, n− tp]
- Let i = n− r′ + 1. Send {s′il, o′il}l∈H on behalf of honest parties and receive
{s′ij , o′ij}j∈Corr from A.

- Initialize Vali = P \ E . Add Pj ∈ E to Vali if Pj sends (s′ij , o
′
ij) = (sij , oij)

(consistent with Lj returned as output of FLSh
ua to Pj). If |Vali| < i+1, then

abort and invoke Ffair with input ⊥ on behalf of A; thereby completing
simulation. Else, continue to r′ = r′ + 1.

– Round (n− tp + 1) : This round involves reconstruction of summand stp .
Sdyn,ta
fair does the following:

- Invoke Ffair on behalf of A with {xj}j∈Corr to receive output y.
- Note that reconstruction of summands stp+1, . . . , sn−2 has been completed

and the summands si, where i ∈ [bn/2c, . . . , tp − 1] is already fully
determined by {sij}j∈Corr returned as output of FLSh

ua to A. Compute
stp = y −

∑tp−1

i=bn/2c si −
∑n−2
i=tp+1 si.

- Let µ = tp. Interpolate a µ-degree polynomial gµ(x) satisfying gµ(0) = sµ
and gµ(j) = sµj for j ∈ Corr. Let sµl = gµ(l) for l ∈ H. Compute oµl ←
Equiv(cµl, (s

′
µl, o

′
µl), sµl, t) (Section A.1). Broadcast (sµl, oµl) on behalf of

Pl, l ∈ H.
– Round (n− tp + 2) to Round (dn/2e+ 1) : In Round r′ (r′ ∈ [n − tp +

2, dn/2e+ 1]), broadcast (s′il, o
′
il) on behalf of Pl, l ∈ H; where i = n− r′ + 1.

Fig. 18: Simulator Sdyn,tafair

can deduce the output in Round n − tp + 1 involving reconstruction of stp
(Summands sbn/2c, . . . , stp−1 are already fully determined by output of A
received from FLSh

ua). To maintain indistiguishability between the ideal and
hybrid-world, Sdyn,tafair invokes Ffair to obtain output y and sets stp accordingly
so that

∑n−2
i=bn/2c si = y. To argue indistinguishability, we note that the only

difference between the ideal and hybrid-world is the following: In the hybrid
world, for i = tp, the commitments {cil}l∈H correspond to {sil, oil} computed

46

as per output y. However in the ideal world, {cil}l∈H were commitments on
dummy values that were later equivocated to appropriate values of shares of
honest parties as per the computed stp (set such that the summands add upto
y). Indistinguishability follows from the properties of equivocal commitment
schemes (Section A.1).

Round n− tp + 2 to Round (dn/2e+ 1). It is easy to check that the view of
A is identical in the ideal and hybrid-world.

This completes the proof of Theorem 2. ut

B.2 Security Proof of πdyn
god (Theorem 3)

Proof. Let A be a dynamic-admissible adversary with threshold (ta, tp) that
controls tp parties passively and upto ta among them actively during an execution
of πdyn

god.
We prove Theorem 3 by describing a simulator for each admissible corruption

scenario (ta, tp) of A, running an ideal-world evaluation of the functionality Fgod

(refer Figure 16) computing f whose behaviour simulates the behaviour of A.
While the Simulator Sdyn,0god corresponding to the case of ta = 0 appears in

Fig. 19, the Simulator Sdyn,tagod (parameterized by ta, where ta ≥ 1) in Fig. 20-21
describes the simulation steps corresponding to all corruption scenarios where
ta ≥ 1. These simulators invoke the simulator of the subprotocol πidua, say Sπidua

(running an ideal-world evaluation of functionality Fidua, refer Fig 14).
To complete the proof, we argue how each of the simulators maintain that the

view of A in the ideal world is indistinguishable from its view in the real-world.

Simulator Sdyn,0god corresponding to ta = 0. The only difference between the real
and the ideal world is that the messages of Round 1 and 2 of first instance of
πidua and Round 1 of the other instances of πidua are obtained via the Sπidua

. To
argue indistinguishability, we define a sequence of intermediate hybrids.
hyb0: Same as realπdyn

god,A
.

hyb1: Same as hyb0 except that the messages in Round 1 and 2 of the first
instance of πidua are simulated using Sπidua

.
hyb` (` = 2 to dn/2e) is defined as -
hyb`: Same as hyb`−1 except that the Round 1 message of the `th instance of
πidua is simulated using Sπidua

.

Note that hybdn/2e = idealFgod,Sdyn,0
god

. Indistinguishability between each con-
secutive pair of hybrids follows from security of πidua, proving indistinguishability
of A’s view in the real-world and ideal-world.

Simulator Sdyn,tagod corresponding to ta ≥ 1. We argue that the view of A in the
ideal world is indistinguishable from its view in the real-world via a series of
intermediate hybrids.
hyb0: Same as realπdyn

god,A
.

47

Simulator Sdyn,0
god

Let H and Corr denote the set of indices of honest parties (in P \ E) and parties
in E respectively.
Let Sπidua denote the simulator of the function-delayed protocol πidua realizing Fidua

which comprises of the following algorithms: (a) S1,i
πidua

(ri) to compute the Round
1 simulated message sent on behalf of an honest Pi using randomness ri and (b)
S2,i
πidua

(T′1, y
′, f ′,L′; ri) to compute the Round 2 simulated message sent on behalf

of an honest Pi where T′1 denotes the transcript of Round 1, y′ denotes the output
obtained from the ideal functionality Fidua computing f ′ and L′ denotes the set of
participants. The following steps are carried out by Sdyn,0

god :

– Step 1: For k = 1 to dn/2e, let msg1,ki ← S1,i
πidua

(rki) (i ∈ H) correspond to
the Round 1 message of Pi for the kth instance obtained by invoking Sπidua

with fresh independent randomness rki . Note that this message is independent
of the function to be computed by πidua and the number of parties. Send
{msg1,ki }k∈[dn/2e] on behalf of Pi to A. Receive {msg1,kj }k∈[dn/2e] sent by Pj
(Pj ∈ E).

– Step 2: Let T1
1 = {msg1,1j }Pj∈E , using which Sπidua returns the extracted input

{x1j}Pj∈E and invokes the ideal functionality Fidua on behalf of A.
Step 2.1: If n = 1, 2, invoke Fgod with {x1j}Pj∈E on behalf of the adversary.

Receive an output value y in return, which is forwarded to Sπidua as response
from Fidua. Send msg2,1i ← S2,i

πidua
(T1

1, y, f,P; r1i) (i ∈ H) on behalf of Pi to A.
This completes the simulation for this case.

Step 2.2: Else, the following steps are run:
- Invoke Fgod with {x1j}Pj∈E on behalf of the adversary. Receive an output

value y in return. Compute (L1, . . . Ln) = fα
′,β′

LSh (y) (Fig 1) where α′ =
n, β′ = bn/2c. Return y′ = {Lj}Pj∈E as response of Fidua to Sπidua . Send
msg2,1i ← S

2,i
πidua

(T1
1, y, f,P; r1i) (i ∈ H) on behalf of Pi to A.

- Recall that in Round r of LRecn−2,bn
2
c (r ∈ [1, dn/2e−1]), summand sn−r−1

is attempted to be reconstructed. Sdyn,0
god does the following in Round r

(r ∈ [1, dn/2e − 1]) of LRecn−2,bn
2
c: Send (sil, oil) ∈ Ll on behalf of Pl,

l ∈ H, where i = n− r − 1.

Fig. 19: Simulator Sdyn,0god

hyb1: Same as hyb0 except that the following is done w.r.t messages sent in
instance k = 1. Messages in Round 1 and 2 of πidua are simulated using Sπidua

and the steps of LRecn−2,b
n
2 c() is simulated identical to corresponding steps in

Sdyn,tafair .
More generally, hyb` for ` = 1 to dn/2e is defined as:
hyb`: Same as hyb`−1 except that the following is done w.r.t messages sent in
instance k = `. Messages in Round 1 and 2 of πidua are simulated using Sπidua

and the steps of LRecn−2,b
n
2 c() is simulated identical to corresponding steps in

Sdyn,tafair .
Since hybdn/2e = idealFgod,Sdyn,ta

god
, we show that every two consecutive hy-

brids are computationally indistinguishable to complete the proof. We claim that
hyb`−1 ≈ hyb` holds for ` = 1 to dn/2e. Following are the differences between

48

Simulator Sdyn,ta
god

Let H and Corr denote the set of indices of honest parties (in P \ E) and parties
in E respectively.
Let Sπidua denote the simulator of the function-delayed protocol πidua realizing Fidua

which comprises of algorithms S1,i
πidua

(ri) and S2,i
πidua

(T′1, y
′, f ′,L′; ri) as described in

Fig 19. The following steps are carried out by Sdyn,ta
god (where ta ≥ 1).

– Step 1: For k = 1 to dn/2e, let msg1,ki ← S1,i
πidua

(rki) (i ∈ H) correspond to
the Round 1 message of Pi for the kth instance obtained by invoking Sπidua

with fresh independent randomness rki . Note that this message is independent
of the function to be computed by πidua and the number of parties. Send
{msg1,ki }k∈[dn/2e] on behalf of Pi to A. Receive {msg1,kj }k∈[dn/2e] sent by Pj
(Pj ∈ E).

– Step 2: Initialize k = 1, L = P, C = ∅, n = n, t′a = ta, t
′
p = tp. Let fC denote

the function same as f except with default inputs hardcoded for parties in
C. Let Tk1 = {msg1,kj }Pj∈L∩E , using which Sπidua returns the extracted input
{xkj }Pj∈L∩E and invokes the ideal functionality Fidua on behalf of A. If xj = ⊥,
return (⊥,B = Pj) as output of Fidua.

Step 2.1: If n = 1, 2, invoke Fgod with {xkj }Pj∈L∩E on behalf of corrupt parties
that are alive and default inputs on behalf of identified actively corrupt parties
in C. Receive an output value y in return, which is forwarded to Sπidua as
response from Fidua. Send msg2,ki ← S2,i

πidua
(Tk1 , y, f

C,L; rki) (i ∈ H) on behalf of
Pi to A. This completes the simulation for this case.

Step 2.2: Else, we have two cases. Let α′ = n− 2 and β′ = bn/2c.
- If t′a = 0, invoke Fgod with {xkj }Pj∈L∩E on behalf of corrupt parties that are

alive and default inputs on behalf of identified actively corrupt parties in
C. Receive an output value y in return. Compute (L1, . . . Lq) = fα

′,β′

LSh (y)
(Fig 1) among parties in L (where q = |L|) and return y′ = {Lj}Pj∈L∩E
as response of Fidua to Sπidua .

- Else, for Pj ∈ E , set Lj =
(
{sij , oij}i∈[α′,β′], {cil}i∈[α′,β′],Pl∈L

)
where sij (i ∈

[α′, β′]) are randomly chosen and (cij , oij)← eCom(sij ; rij) (with trapdoor
t) computed as per protocol specifications. {cil}i∈[α′,β′],l∈H are computed
as commitments on dummy values, say involving {s′il, o′il}i∈[α′,β′],l∈H. Re-
turn y′ = {Lj}Pj∈L∩E as response of Fidua to Sπidua .

- Send msg2,ki ← S2,i
πidua

(Tk1 , y
′, fα

′,β′

LSh � fC ,L; rki) (i ∈ H) on behalf of Pi to A.
Let Tk2 = {msg2,kj }Pj∈L∩E denote the messages received in Round 2 from
Pj .

Fig. 20: Simulator Sdyn,tagod

these hybrids: (a) While in hyb`−1, Round 1 - 2 messages of the `th instance of
πidua are generated using honest parties’ inputs; they are generated via Sπidua

in
hyb`. (b) The steps of LRecn−2,b

n
2 c() in instance ` are simulated as per Sdyn,tafair

in hyb`. Indistinguishability follows from security of πidua and the security ar-
gument in Appendix B.1, which holds except with negligible probability. Since
there are only polynomially-many hybrids (i.e. dn/2e) between realπdyn

god,A
and

49

Simulator Sdyn,ta
god (Contd)

There are 2 cases based on whether A aborts the computation of πidua.

- If either (a) Sπidua invokes Fidua with (abort,B) with |B| ≥ 1 upon using
(Tk1 ,T

k
2) or (b) (⊥,B) had been returned as output of Fidua to A, then Sdyn,ta

god

does the following - Update C = C ∪ B, L = L \ B, n = n − 2|B|, k = k + 1,
t′a = t′a − |B|, t′p = t′p − |B| and repeat this simulation of step 2 using updated
value of n, k, t′a, t′p and the updated sets.

- Else, if Sπidua invokes Fidua with continue upon using (Tk1 ,Tk2), run the following
steps to simulate LRecn−2,bn

2
c. Recall that in Round r of LRecn−2,bn

2
c (r ∈

[1, dn/2e − 1]), summand sn−r−1 is attempted to be reconstructed. If t′a = 0,
send (sil, oil) ∈ Ll on behalf of Pl, l ∈ H, where i = n − r − 1 in Round r
(r ∈ [1, dn/2e−1]); completing the simulation. Else, (when t′a 6= 0) Sdyn,ta

god does
the following in Round r of LRecn−2,bn

2
c.

1. If r ≤ n− t′p − 2: Let i = n− r − 1. Send {s′il, o′il}l∈H on behalf of honest
parties and receive (s′ij , o

′
ij) from each Pj ∈ L ∩ E . Initialize Vali = L \ E .

Add Pj ∈ Vali if Pj ∈ E sends (s′ij , o
′
ij) = (sij , oij) (consistent with Lj

returned as output of Fidua to Pj). If |Vali| < i+ 1, then let B = L \ Vali.
Update C = C ∪ B, L = L \ B, n = n − 2|B|, k = k + 1, t′a = t′a − |B|,
t′p = t′p − |B| and repeat the simulation of step 2 using these updated
values.

2. If r = n − t′p − 1 : This round involves reconstruction of summand st′p .
Sdyn,ta
god does the following:
◦ Invoke Fgod with {xkj }Pj∈L∩E on behalf of corrupt parties that are alive

and default inputs on behalf of identified actively corrupt parties in
C. Receive output value y in return.

◦ Note that reconstruction of summands st′p+1 . . . sn−2 has been com-
pleted and the summands si, where i ∈ [bn/2c, . . . t′p − 1] is already
fully determined by values returned as output of Fidua. Compute
st′p = y −

∑t′p−1

i=bn/2c si −
∑n−2
i=t′p+1 si.

◦ Let µ = t′p. Interpolate a µ-degree polynomial gµ(x) satisfying gµ(0) =
sµ and gµ(j) = sµj for Pj ∈ E ∩L. Let sµl = gµ(l) for l ∈ H. Compute
oµl ← Equiv(cµl, (s

′
µl, o

′
µl), sµl, t). Send (sµl, oµl) on behalf of Pl, l ∈ H.

3. If r ∈ [(n − t′p), dn/2e − 1] : Send (s′il, o
′
il) on behalf of Pl, l ∈ H, where

i = n− r − 1.

Fig. 21: Simulator Sdyn,tagod (Contd)

idealFgod,Sdyn,ta
god

, we conclude that the view of A in the real-world is computa-
tionally indistinguishable from its view in the ideal world.

ut

50

C Proofs of Upper Bounds for Boundary Corruption

C.1 Proof of Security of πbou
god (Theorem 6)

Proof. We prove Theorem 6 by presenting two separate simulators Sshgod and
Smal
god for the case of pure passive corruption (ta, tp) = (0, n − 1) and (ta, tp) =

(dn/2e − 1, bn/2c) involving active corruptions respectively. The protocol πbou
god

is analyzed in a FASh
idua - hybrid model where the parties have access to a trusted

party computing FASh
idua (Fig. 8). Additionally, the simulator of the subprotocol

πgod, say Sπgod
is also invoked.

Simulator Sshgod wrt (ta, tp) = (0, n− 1): Let A be a boundary-admissible adver-
sary with parameters (ta, tp) = (0, n − 1) in the FASh

idua -hybrid model execution
of πbou

god (hybrid-world). The simulator Sshgod, running an ideal-world evaluation of
the functionality Fgod (refer Fig 16) computing f whose behaviour simulates the
behaviour of A is described in Figure 22. It is straightforward to see that the
view of A in the ideal world is indistinguishable from the view of A in the FASh

idua -
hybrid model execution of πbou

god . The only difference is that in the ideal world,
Round 1 of πbou

god is obtained via Sπgod
, whose simulation is independent of the

parties’ inputs. We can thus conclude that Sshgod outputs a view indistinguishable
to the view of A in the hybrid-world.

Simulator Ssh
god

Let Corr ⊂ [n] and H be the set of indices of corrupt and honest parties respec-
tively. Suppose Sπgod denote the simulator of the subprotocol πgod. Let S1,i

πgod
(ri)

denote the algorithm to compute the Round 1 simulated message of honest Pi
using randomness ri. The following steps are carried out by Ssh

god:

– Simulation of Round 1 of πgod: Send msg1i ← S1,i
πgod

(ri) (i ∈ H) on behalf of Pi.
Recall that this step is independent of parties’ inputs. Receive msg1j as Round
1 message of πgod sent by Pj (j ∈ Corr).

– Invoking Fgod: Receive {xi}i∈Corr corresponding to the parties controlled by pas-
sive adversary A. Invoke Fgod on behalf of A with {xi}i∈Corr to receive an
output value y in return.

– Output of FASh
idua to A: Compute the authenticated secret-sharing of value y

with threshold bn/2c as (S1 . . . Sn) = f
bn/2c
ASh (y) (Figure 6) and send Sj =(

shj , {kij}i∈[n], {tagji}i∈[n]
)
as output of FASh

idua to Pj (j ∈ Corr).
– Round 3: For each i ∈ H, send (shi, tagij) (j 6= i) on behalf of Pi.

Fig. 22: Simulator Sshgod

Simulator Smal
god wrt (ta, tp) = (dn/2e−1, bn/2c): Let A be a boundary-admissible

malicious adversary with corruption parameters (ta, tp) = (dn/2e − 1, bn/2c) in

51

Simulator Smal
god

Let Corr ⊂ [n] and H = [n] \ Corr be the set of indices of the parties controlled by
adversary and the honest parties respectively.
Let Sπgod denote the simulator of the 3-round subprotocol πgod whose Round 1 is
function and input independent. Let S1,i

πgod
(ri),S2,i

πgod
(T1, f

′; ri) and S3,i
πgod

(T2, y
′; ri)

denote the algorithms to compute simulated message of honest Pi (using random-
ness ri) corresponding to Round 1, 2 and 3 respectively. Here, T1,T2, f ′, y′ refer to
protocol transcript of Round 1, protocol transcript until Round 2, function to be
computed and the output from its ideal functionality respectively. The following
steps are carried out by Smal

god :

– Simulation of Round 1 of πgod: Send msg1i ← S1,i
πgod

(ri) (i ∈ H) on behalf of Pi.
Recall that this step is independent of parties’ inputs. Receive msg1j as Round
1 message of πgod sent by Pj (j ∈ Corr) and set T1 = {msg1j}j∈Corr.

– Interaction of A with FASh
idua : Receive {xi}i∈Corr sent by A to FASh

idua . If for any
i ∈ Corr, xi is outside of domain of input, return B = Pi (identified cheater)
as output of FASh

idua to A and skip to simulation step of Handling Abort. Else
run the following steps.
– Output of FASh

idua to A: Choose random shj for j ∈ Corr and compute its
authentication (Step 2, 3 of fbn/2cASh in Fig 6). The resulting values Sj =
{shj , {kij}i∈[n], {tagji}i∈[n]} are given to A as the outputs of the corrupted
parties from functionality FASh

idua . Note that functionality Fgod computing f
has not been invoked yet.

– If A invokes FASh
idua with (abort,B), proceed to simulation step of Handling

Abort.
– Round 3 in case of no abort: Else, if A invokes FASh

idua with continue, then
invoke Fgod with {xj}j∈Corr on behalf ofA to obtain output y. The following
steps are used to simulate Round 3:
1. Interpolate a bn/2c-degree polynomial A(x) with A(j) = shj for j ∈

Corr and A(0) = y.
2. Set shi = A(i) for i ∈ H. Using kij (consistent with output of FASh

idua),
compute tagij = Mackij (shi). Send (shi, tagij) (j 6= i) on behalf of Pi
in Round 3.

– Handling Abort. Smal
god does the following:

– Round 3: Send msg2i ← S2,i
πgod

(T1, f
B; ri) (i ∈ H) on behalf of Pi. Receive

msg2j as Round 2 message of πgod sent by Pj (j ∈ Corr). When Sπgod

returns the extracted input {x′j}j∈Corr of the corrupt party to invoke its
ideal functionality Fgod, Smal

god invokes Fgod with input {x′j}j∈Corr\B on behalf
of corrupt Pj (not identified among set of cheaters) and default input on
behalf of parties in B. Then, forward the obtained output y′ as response
to Sπgod .

– Round 4: Send msg3i ← S3,i
πgod

(T2, y
′; ri) (i ∈ H) on behalf of Pi where

T2 = {msg1j ,msg2j}j∈Corr.

Fig. 23: Simulator Smal
god

52

the FASh
idua -hybrid model execution of πbou

god . The simulator Smal
god , running an ideal-

world evaluation of the functionality Fgod (refer Figure 16) computing f whose
behaviour simulates the behaviour of A is described in Figure 23.

There are 2 different scenarios based on whether A aborts the computation
of FASh

idua . In case abort doesn’t occur, it follows directly from the properties of
privacy of authenticated sharing (Lemma 14) that the view in the ideal world
is indistinguishable to the view of A in the hybrid-world (FASh

idua -hybrid model
execution of πbou

god). Regarding Round 1 of πgod which is computed using honest
inputs in the hybrid world but obtained via Sπgod

in the ideal world, indistin-
guishability follows from security of πgod. Lastly, in this abort case, we note that
the only difference between the ideal and hybrid-execution is that the messages
of πgod are obtained via the simulator Sπgod

in the former. Indistinguishability
thus follows from the security of subprotocol πgod. This completes the proof.

ut

C.2 Proof of Security of πbou,1
god (Theorem 7)

Proof. We prove Theorem 7 by presenting two separate simulators Ssh,1god and
Smal,1
god for the case of (ta, tp) = (0, n − 1) and (ta, tp) = (1, bn/2c) respectively.
Ssh,1god and Smal,1

god invoke the simulator of the subprotocol πidua, say Sπidua
(running

an ideal-world evaluation of functionality Fidua, refer Fig 14).

Simulator Ssh,1god wrt (ta, tp) = (0, n − 1): Let A be a boundary-admissible pas-
sive adversary with parameters (ta, tp) = (0, n − 1) in the execution of πbou,1

god .
The simulator Ssh,1god , running an ideal-world evaluation of the functionality Fgod

(refer Figure 16) computing f whose behaviour simulates the behaviour of A is
described in Figure 24.

To argue indistinguishability, we note that the only difference between the
real and the ideal world is that in the ideal world, the simulator Sπidua

is invoked
to simulate messages of honest parties in both rounds of the first instance of πidua
and Round 1 of the second instance of πidua. We define an intermediate hybrid
between the real and ideal world, where only the messages of the first instance
of πidua is simulated using Sπidua

. It is easy to see that each pair of consecutive
hybrids is indistinguishable, following security of πidua. We can thus conclude
that the view of A in the ideal world is indistinguishable to the view of A in the
real world execution of πbou,1

god .

Simulator Smal,1
god wrt (ta, tp) = (1, bn/2c): Let A be a malicious adversary con-

trolling at most 1 party actively and upto bn/2c parties passively in an exe-
cution of πbou,1

god . The simulator Smal,1
god , running an ideal-world evaluation of the

functionality Fgod (refer Figure 16) computing f whose behaviour simulates the
behaviour of A is described in Figure 25.

There are 2 different scenarios based on whether A aborts the computation
in first instance of πidua. In case abort doesn’t occur, simulation proceeds similar

53

Simulator Ssh,1
god

Let Corr,H be the set of indices of corrupt and honest parties respectively.
Suppose Sπidua denote the simulator of the subprotocol πidua. Let S1,i

πidua
(ri) and

S2,i
πgod

(T1, y
′, f ′,P ′; ri) denote the algorithms to compute simulated message of hon-

est Pi (using randomness ri) corresponding to Round 1 and 2 respectively. Here,
T1, y′, f ′ and P ′ refer to protocol transcript of Round 1, output from its ideal func-
tionality Fidua, function to be computed and the set of participants respectively.
The following steps are carried out by Ssh,1

god :

– Invoking Fgod: Receive {xi}i∈Corr corresponding to the parties controlled by semi-
honest adversary A. Invoke Fgod on behalf of A with {xi}i∈Corr to receive an
output value y in return.

– Interaction with Sπidua : Compute the authenticated secret-sharing of value y with
threshold bn/2c as (S1 . . . Sn) = f

bn/2c
ASh (y) (Figure 6).

Round 1: For k = 1, 2, let msg1,ki ← S1,i
πidua

(rki) (i ∈ H), where r1i , r2i are sampled
independently. Send {msg1,ki }k∈[2] on behalf of Pi. Receive {msg1,kj }k∈[2] sent
by Pj (j ∈ Corr).
When Sπidua invokes its ideal functionality Fidua computing f

bn/2c
ASh � f with

input xi, send output Sj =
(
shj , {kij}i∈[n], {tagji}i∈[n]

)
corresponding to Pj

(j ∈ Corr) as response from Fidua.
Round 2: Send msg2,1i ← S2,i

πidua
(T1, y

′, f
bn/2c
ASh � f,P; r1i) (i ∈ H) on behalf of

Pi, where T1 = {msg1,1j }j∈Corr and y
′ = {Sj}j∈Corr i.e. output of Fidua. Receive

msg2,1j sent by Pj (j ∈ Corr).
– Round 3: For each i ∈ H, send (shi, tagij) (j 6= i) on behalf of Pi.

Fig. 24: Simulator Ssh,1god

to Smal
god (Figure 23) except that instead of analysis in FASh

idua - hybrid model, the
simulator Sπidua

is invoked for simulation in Round 1 and Round 2. Another
difference is that an additional instance of Round 1 of πidua is simulated. Thus,
in case of no abort, it follows from the security argument of Smal

god and the security
of πidua that the view of A in the ideal world is indistinguishable to the view of
A in the execution of πbou,1

god .

Consider case of abort which returns the identity of cheater, say singleton set
B. The difference between the ideal and the real execution is that the messages
of honest parties are obtained via Sπidua

in the ideal world for both instances of
πidua. We define an intermediate hybrid between the real and ideal world, where
only the messages of the first instance of πidua is simulated using Sπidua

. It is
easy to see that each pair of consecutive hybrids is indistinguishable, following
security of πidua. We can thus conclude that the view of A in the ideal world is
indistinguishable to the view of A in the execution of πbou,1

god . This completes the
proof. ut

54

Simulator Smal,1
god

Let Corr ⊂ [n] and H = [n] \ Corr be the set of indices of the corrupt parties and
the honest parties respectively.
Suppose Sπidua denote the simulator of the subprotocol πidua. Let S1,i

πidua
(ri) and

S2,i
πgod

(T1, y
′, f ′,P ′; ri) denote the algorithms to compute simulated message of hon-

est Pi (using randomness ri) corresponding to Round 1 and 2 respectively. Here,
T1, y′, f ′ and P ′ refer to protocol transcript of Round 1, output from its ideal func-
tionality Fidua, function to be computed and the set of participants respectively.
The following steps are carried out by Smal,1

god :

– Round 1: For k = 1, 2, let msg1,ki ← S1,i
πidua

(rki) (i ∈ H), where r1i , r2i are sampled
independently. Send {msg1,ki }k∈2 on behalf of Pi to A. Receive {msg1,kj }k∈[2]
sent by Pj (j ∈ Corr).

– Round 2: Send msg1,1j to Sπidua on behalf of Pj for j ∈ Corr. When Sπidua re-
turns the extracted input {xj}j∈Corr of the corrupt party to invoke its ideal
functionality Fidua computing fbn/2cASh � f , Smal,1

god does the following:
- If there exists a j ∈ Corr such that xj = ⊥, send y′ = (⊥, Pj) to A as output

response of Fidua.
- Else choose random shj for j ∈ Corr and compute its authentica-

tion (Step 2, 3 of f
bn/2c
ASh () of Fig 6). The resulting values Sj =

{shj , {kij}i∈[n], {tagji}i∈[n]} for each j ∈ Corr are given to A as the output
from functionality Fidua.

Send msg2,1i ← S2,i
πidua

(T1
1, y
′, f
bn/2c
ASh � f,P; r1i) (i ∈ H) on behalf of Pi to A,

where T1
1 = {msg1,1j }j∈Corr and y′ = {Sj}j∈Corr. Receive msg2,1j sent by Pj

(j ∈ Corr) and send it to Sπidua on behalf of Pj .
– Round 3: We now have 2 cases -

- If Sπidua invokes Fidua with (abort,B), do the following: Send msg1,2j to Sπidua

on behalf of A (Pj ∈ E) corresponding to second instance of πidua. Suppose
{xj}j∈Corr is the extracted input returned by Sπidua , then invoke Fgod with
{xj}j∈Corr and substituting default input of party in B; on behalf of A
to obtain output y. Send msg2,2i ← S2,i

πidua
(T2

1, y, f
B,P \ B; r2i) (i ∈ H) on

behalf of Pi to A, where T2
1 = {msg1,2j }j∈Corr.

- If Sπidua invokes Fidua with continue, run the same steps as Round 3 simu-
lation in case of no abort of Smal

god (Fig 23).

Fig. 25: Simulator Smal,1
god

C.3 Proof of Security of πbou
fair (Theorem 8)

We prove Theorem 8 by presenting two separate simulators Sshfair and Smal
fair for the

case of corruption scenarios (ta, tp) = (0, n− 1) and (ta, tp) = (dn/2e− 1, bn/2c)
respectively. The protocol πbou

fair is analyzed in a FASh
ua -hybrid model where the

parties have access to a trusted party computing FASh
ua (Fig 11).

Simulator Sshfair wrt (ta, tp) = (0, n−1): LetA be the boundary-admissible passive
adversary controlling upto (n−1) parties in the FASh

ua -hybrid model execution of
πbou
fair . The simulator Sshfair, running an ideal-world evaluation of the functionality

55

Fgod (refer Fig 16) computing f whose behaviour simulates the behaviour of A
is described in Figure 26. It is straightforward to see that the view of A in the
ideal world is identical to the view of A in the FASh

ua -hybrid model execution of
πbou
fair .

Simulator Ssh
fair

Let Corr ⊂ [n], H denote the set of indices of corrupt and honest parties respectively.
The following steps are carried out by Ssh

fair:

– Invoking Fgod: Receive {xj}j∈Corr corresponding to the parties controlled by
passive adversary A. Invoke Fgod on behalf of A with {xj}j∈Corr to receive an
output value y in return.

– Output of FASh
ua to A: Compute the authenticated secret-sharing of value y with

threshold t = bn/2c (Figure 6) as (S1 . . . Sn) = f
bn/2c
ASh (y) and send Sj =(

shj , {kij}i∈[n], {tagji}i∈[n]
)
as output of FASh

ua to Pj (j ∈ Corr).
– Round 3: Send (shi, tagij) on behalf of Pi for each i ∈ H, j 6= i.

Fig. 26: Simulator Sshfair

Simulator Smal
fair

Let Corr ⊂ [n] and H = [n] \ Corr be the set of indices corrupt and honest parties
respectively. The following steps are carried out by Smal

fair :

– Interaction of A with FASh
ua : Receive {xj}j∈Corr sent by malicious A to FASh

ua . If
for any j ∈ Corr, xj is outside of domain of input, send ⊥ as output of FASh

ua

to A and send ⊥ as input to Ffair on behalf of A; completing the simulation.
Else run the following steps.

– Output of FASh
ua to A: Choose random shj for j ∈ Corr and compute its

authentication (Step 2, 3 of fbn/2cASh in Fig 6). The resulting values Sj =
{shj , {kij}i∈[n], {tagji}j∈[n]} are given to A as the outputs of the corrupted
parties from functionality FASh

ua .
– Invoking Ffair: We have 2 cases based on whether A invokes FASh

ua with abort or
continue.
- abort: Send ⊥ as input to Ffair on behalf of A; thereby completing the

simulation.
- continue: Invoke Ffair with {xj}j∈Corr on behalf of A to obtain y.

– Round 3: The following steps are used to simulate Round 3 -
- Interpolate a bn/2c-degree polynomial A(x) with A(j) = shj for j ∈ Corr

and A(0) = y.
- Set shi = A(i) for i ∈ H. Using kij (consistent with the output of FASh

ua sent
to A), compute tagij = Mackij (shi).

- Send (shi, tagij) (i ∈ H) on behalf of Pi (j 6= i).

Fig. 27: Simulator Smal
fair

56

Simulator Smal
fair wrt (ta, tp) = (dn/2e−1, bn/2c): Let A be a malicious adversary

with corruption parameters (ta, tp) = (dn/2e − 1, bn/2c) parties in the FASh
ua -

hybrid model execution of πbou
fair . The simulator Smal

fair , running an ideal-world
evaluation of the functionality Ffair (Figure 15) computing f whose behaviour
simulates the behaviour of A is described in Figure 27.

There are 2 different scenarios based on whether A aborts the computation
of FASh

ua . In case of abort, it follows from privacy of sharing function fbn/2cASh that
the view of A in the ideal world is indistinguishable to the FASh

ua -hybrid model
execution of πbou

fair . In case of no abort, the simulation proceeds similar to Smal
god

(Fig 23, no abort case). We can thus conclude based on the security arguments
of Smal

god that the view of A in the ideal world is indistinguishable to the FASh
ua -

hybrid model execution of πbou
fair . This completes the proof.

57

