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Abstract

The Fiat-Shamir transform is an incredibly powerful technique that uses a suitable hash function to
reduce the interaction of general public-coin protocols. Unfortunately, there are known counterexamples
showing that this methodology may not be sound (no matter what concrete hash function is used). Still,
these counterexamples are somewhat unsatisfying, as the underlying protocols were specifically tailored
to make Fiat-Shamir fail. This raises the question of whether this transform is sound when applied to
natural protocols.

One of the most important protocol for which we would like to reduce interaction is Kilian’s four-
message argument system for all of NP, based on collision resistant hash functions (CRHF) and prob-
abilistically checkable proofs (PCPs). Indeed, an application of the Fiat-Shamir transform to Kilian’s
protocol is at the heart of both theoretical results (e.g., Micali’s CS proofs) as well as leading practical
approaches of highly efficient non-interactive proof-systems (e.g., SNARKs and STARKs).

In this work, we show significant obstacles to establishing soundness of (what we refer to as) the
“Fiat-Shamir-Kilian-Micali” (FSKM) protocol. More specifically:

• We construct a (contrived) CRHF for which FSKM is unsound for a very large class of PCPs and
for any Fiat-Shamir hash function. The collision-resistance of our CRHF relies on very strong but
plausible cryptographic assumptions. The statement is “tight” in the following sense: any PCP
outside the scope of our result trivially implies a SNARK, eliminating the need for FSKM in the
first place.

• Second, we consider a known extension of Kilian’s protocol to an interactive variant of PCPs called
probabilistically checkable interactive proofs (PCIP) (also known as interactive oracle proofs or IOPs).
We construct a particular (contrived) PCIP for NP for which the FSKM protocol is unsound no
matter what CRHF and Fiat-Shamir hash function is used. This result is unconditional (i.e., does
not rely on any cryptographic assumptions).

Put together, our results show that the soundness of FSKM must rely on some special structure of
both the CRHF and PCP that underlie Kilian’s protocol. We believe these negative results may cast
light on how to securely instantiate the FSKM protocol by a synergistic choice of the PCP, CRHF, and
Fiat-Shamir hash function.
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1 Introduction

The Fiat-Shamir heuristic [FS87] is an extremely influential approach for eliminating or reducing interaction
in a wide variety of cryptographic protocols. First proposed as a practical method for constructing digital
signature schemes from identification protocols, it was later generalized to reduce interaction of arbitrary
(public-coin) protocols. In a nutshell, the idea is to replace the messages from the public-coin verifier (which
are uniformly random strings) with a suitable hash of all preceding prover messages.

Identifying whether and when the Fiat-Shamir heuristic is sound has been a focus of cryptographic
research for decades. It has been known for over 25 years that security holds in an idealized model where the
hash function is modeled as a random oracle [PS96]. While the random oracle is often a useful methodology
for designing heuristically secure protocols [BR94], it does not provide any guarantees when the random
oracle is replaced with any explicit hash function family. As a matter of fact, results of Barak [Bar01]
and Goldwasser and Kalai [GK03] give a strong negative indication. Specifically, these works exhibit sound
protocols which become totally insecure after the application of the Fiat-Shamir transform using any hash
function.

Still, the protocols designed by [Bar01, GK03] were, in a sense, specifically tailored to make the Fiat-
Shamir fail. Thus, it is important to understand whether this methodology can be soundly applied to
protocols with additional natural structure that we care about. A prominent example for such a protocol
is Kilian’s [Kil92] beautiful 4-message argument-system for any NP language. Remarkably, this protocol
(which relies on a relatively mild cryptographic assumption) can be used to prove the correctness of any NP
language with an extremely short proof and with a super efficient verification procedure. A main drawback
of Kilian’s protocol is that it requires back and forth interaction between the prover and verifier (which is
undesirable for some applications) and so this protocol is (arguably) the prime example of a protocol for
which we would like to apply Fiat-Shamir.

Indeed, this very idea was advocated by Micali [Mic00] in his construction of CS proofs, which are now
more commonly referred to as SNARGs (an abbreviation for Succinct Non-interactive ARGuments). SNARGs
are an incredibly powerful and versatile tool that are currently being implemented and adopted in practice
(especially in the domain of blockchain technology and cryptocurrencies [BGG17, BGM17, BBB+18]). Some
leading SNARG implementation efforts are closely following the basic approach of applying Fiat-Shamir to
(suitable extensions of) Kilian’s protocol [BCS16, BBC+17, BBHR18a, BBHR18b, BCR+19]. For conve-
nience, throughout this work we refer to the candidate SNARG obtained by applying Fiat-Shamir to Kilian’s
protocol as the FSKM protocol.

Thus, a basic question that we would like to understand (and was posed explicitly by [GK03]) is the
following:

Do there exist hash functions with which the FSKM protocol is sound?

Jumping ahead, we show that the FSKM protocol can potentially be insecure when instantiated with any
Fiat-Shamir hash function family. However, to explain our results more precisely, we first recall some details
of Kilian’s original protocol and the resulting FSKM protocol.

1.1 Kilian’s Protocol and FSKM

First and foremost, Kilian’s protocol relies on probabilistically checkable proofs (PCPs). Recall that PCPs
can be thought of as a way to encode a witness w so that the encoded witness π can be verified by only
reading a few of its bits. The celebrated PCP Theorem [ALM+98] shows that such PCPs exist for all NP
languages.

Consider some language L ∈ NP and let ΠPCP = (PPCP,VPCP) be a PCP proof-system for L. To establish
that x ∈ L, and given a witness w, the prover PKilian engages in the following protocol with the verifier VKilian:

1. VKilian samples a collision-resistant hash function hCRHF ← HCRHF, and sends hCRHF to PKilian.

2. PKilian constructs a PCP π for x’s membership in L, and sends a Merkle hash (using hCRHF) of π to
VKilian.
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3. VKilian chooses random coins r for the PCP verifier VPCP and sends them to PKilian.

4. PKilian computes the locations i1, . . . , iq that VPCP would query on randomness r and input x, and
“decommits” to the values of (πi1 , . . . , πiq ).

1

5. VKilian checks that the decommitments are valid and that the values that were opened make the PCP
verifier accept using the random string r.

We denote by FSKM[ΠPCP,HCRHF,HFS] the protocol that results from applying Fiat-Shamir with hash
family HFS to the above 4 message argument. Observe that FSKM[ΠPCP,HCRHF,HFS] can be implemented
using only 2 messages: in the first message the verifier specifies the collision resistant hash function and
the Fiat-Shamir hash function hFS ← HFS, and in the second message the prover reveals the root rt of the
Merkle tree together with the relevant decommitments with respect to r = hFS(rt).

We will also consider a variant of the FSKM protocol that uses a generalization of PCPs called proba-
bilistically checkable interactive proofs or PCIPs [BCS16, RRR16].2 A PCIP is a type of proof system that
combines the locally checkable aspect of PCPs with the multi-round aspect of interactive proofs, thereby
generalizing both. More precisely, in a PCIP the prover first sends a PCP proof to the verifier, which can
make some queries to this proof string (as in standard PCPs). The difference however is that now the verifier
is allowed to respond with a random challenge and the prover sends an additional PCP proof string - this
process can continue for several rounds.

One of the key benefits of PCIPs (advocated by [BCS16]) is that they can allow for practical efficiency
benefits over standard PCPs. As observed by [BCS16], Kilian’s protocol can be readily extended to handle
PCIPs, by having the prover send a Merkle hash of its entire message in every round, and eventually decom-
miting to the desired bits as in Kilian’s original protocol. It is natural therefore to apply Fiat-Shamir to the
resulting protocol and this was shown to be sound by [BCS16] in the random oracle model. We extend our
notation of FSKM to the more general setting of PCIPs in the natural way (see Section 2.3.2 for details).

As briefly mentioned above, the FSKM protocol, when combined with highly efficient PCIPs is at the
heart of current successful implementations of SNARGs [BCS16, BBC+17, BBHR18a, BBHR18b, BCR+19].

1.2 Our Results

Loosely speaking, we show that the FSKM protocol can be insecure when instantiated with any Fiat-Shamir
hash function unless security relies on specific properties of both (1) the collision resistant hash function,
and (2) the underlying PCP (or more precisely PCIP). This is established by our two main results which are
described next.

Our first main result shows that there exists a collision-resistant hash family H̃CRHF such that for any “rea-
sonable” PCP ΠPCP and all candidate Fiat-Shamir hash families HFS, the protocol FSKM[ΠPCP, H̃CRHF,HFS]
is not sound. We refer to such a CRHF as being FSKM-incompatible. The existence of such an FSKM-
incompatible CRHF shows that soundness of the FSKM protocol cannot be based on a generic CRHF. Loosely
speaking, by “a reasonable PCP,” we mean one where it is possible given the verifier’s randomness to compute
a proof string that the verifier would accept.

Unreasonable PCPs may exist. For instance, if SNARGs exist, then any PCP for an NP language L can
be modified (in a contrived way) to be an unreasonable PCP for L: Honest proof strings for x ∈ L are
modified by appending a SNARG πSNARG attesting that x ∈ L; the verifier is modified so that in addition to
performing the original PCP verifier’s checks, it also verifies that πSNARG is a valid SNARG. However there
is a sense in which such PCPs (already having an embedded SNARG) are the only unreasonable PCPs. We
formalize this in Theorem 3.5.

The collision-resistance of our FSKM-Incompatible CRHF relies on a strong cryptographic assumption: the
existence of Succinct Non-Interactive ARguments of Knowledge (SNARKs) with “computationally unique”

1A succinct decommitment to the value πij can be accomplished by having PKilian reveal the hash values of all vertices in
the tree that are either on, or adjacent to, the path from πij to the root in the Merkle tree.

2PCIPs are also called interactive oracle proofs IOPs.
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proofs. By computationally unique we mean that it should be infeasible to find two different proofs corre-
sponding to the same NP witness.

Our result implies that under this assumption, FSKM[ΠPCP,HCRHF,HFS] cannot be proven to be sound
when HCRHF is a generic collision-resistant hash family — even if the PCP ΠPCP and Fiat-Shamir hash
function HFS are carefully engineered.

Theorem 1 (Informally Stated, see Theorem 3.5). Assume the existence of collision resistant hash functions
and (publicly verifiable) SNARKs with computationally unique proofs. Then, there exists a collision-resistant

hash family H̃CRHF such that for every “reasonable” PCP ΠPCP and every hash family HFS, the protocol
FSKM[ΠPCP, H̃CRHF,HFS] is not sound.

We instantiate this theorem with a SNARK constructed in the works of [BCI+13, BCCT13], whose
soundness follows from a knowledge of exponent assumption in bilinear groups (along with a more standard
“power” discrete log assumption, see Assumption A.3). Such knowledge assumptions are very strong (and are
not known to be falsifiable), but are still plausible, and in particular can be proven to hold in the generic group
model [Nec94, Sho97, Mau05].3 In Appendix A, we show that under the same set of assumptions (we need
collision resistant hashing as well, but this follows from either of the assumptions on groups), this SNARK has
computationally unique proofs. However, as discussed in [BCCT13], the soundness notion satisfied by this
SNARK is slightly weaker than standard soundness. We overcome this difficulty by additionally assuming
the existence of injective one-way functions that are exponentially hard.

Moving on, Theorem 1 still leaves open the possibility that a careful choice of HCRHF and HFS suffices to
establish soundness of FSKM[ΠPCP,HCRHF,HFS]. Our second main result shows a significant obstacle to this
possibility. Specifically, we show that there exists a PCIP such that for any collision-resistant hash function
CRHF and any Fiat-Shamir hash function, the resulting FSKM protocol is not sound. We refer to such a
PCIP as being an FSKM-incompatible PCIP. The existence of FSKM-incompatible PCIPs implies that the
soundness of any FSKM protocol must rely on specific properties of the underlying PCIP. In contrast to
Theorem 1, this result is unconditional (i.e., does not rely on any cryptographic assumptions).

Theorem 2 (Informally Stated, see Theorem 4.1). There exists a PCIP Π̃PCIP such that for all hash families

HCRHF and HFS, the protocol FSKM[Π̃PCIP,HCRHF,HFS] is not sound.

Actually, in the proof of Theorem 2, we show that the soundness of FSKM[Π̃PCIP,HCRHF,HFS] is broken
in an extremely strong sense. Namely, there exists a polynomial-time adversary that convinces the FSKM
verifier to accept any input x 6∈ L with probability 1.

Interpretation of Our Results. We emphasize that our construction of CRHF (in Theorem 1) and PCIP
(in Theorem 2) are highly contrived. Thus, it certainly remains a possibility that some special structure
of known CRHFs and PCPs/PCIPs might be identified that will allow for the FSKM protocol to be securely
instantiated. Indeed, we hope that our results will lead to the identification of special structure that can be
leveraged to securely instantiate FSKM.

In fact, we give some initial progress towards this goal. In Section 5, we give a sound instantiation
(under standard assumptions) of the FSKM protocol when the underlying PCP is a specific PCP for the
empty language. In order to bypass our impossibility, we make use of a collision-resistant hash function
with special structure: the somewhere statistically binding hash function of Hubáček and Wichs [HW15b].
For the Fiat-Shamir hash function, we use a correlation-intractable hash function for efficiently searchable
relations, recently constructed under the Learning with Errors assumption by Peikert and Shiehian [PS19].
Needless to say, SNARK constructions for the empty language are not particularly interesting. However,

3The work of [BCPR14] showed that if indistinguishability obfuscation exists, then SNARKs where extraction holds with
respect to arbitrary unbounded polynomial length auxiliary input do not exist. We therefore rely on a version of the [BCI+13]
knowledge of exponent assumption which only requires extraction to hold with respect to auxiliary input from a “benign”
distribution (e.g. a uniform distribution); a similar approach was taken in [CFH+15, FFG+16, Gro16, BCC+17]. We are able
to rely on this relaxed version since the auxiliary input in our construction essentially just consists of the key for some arbitrary
collision resistant hash function. We discuss this issue in further detail in Appendix A.1.
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we hope that this blueprint will be useful in the future for proving instantiations of FSKM sound when the
underlying PCP is defined for more expressive languages.

1.3 Additional Prior Work

Goldwasser and Kalai [GK03] showed that the original application of the Fiat-Shamir heuristic is not sound;
there exists a contrived identification protocol such that no matter what hash function is used in the Fiat-
Shamir transform, the resulting digital signature scheme is insecure. Since they use a very particular protocol,
their result does not yield a negative result for applying Fiat-Shamir to the FSKM protocol (indeed, as
mentioned above, finding such a negative result was posed as an open problem in [GK03]).

Another very related work is that of Gentry and Wichs [GW11], who showed a substantial barrier to
constructing SNARGs. Our work is incomparable to that of [GW11]. On the one hand [GW11] rule out a
very general class of SNARG constructions whereas we focus on a very particular approach (i.e., applying
Fiat-Shamir to FSKM with a generic CRHF). On the other hand, when restricting to the foregoing approach,
we overcome some significant limitations of [GW11]. First, in contrast to [GW11], our result is not limited to
SNARGs whose security holds under a black-box reduction from a falsifiable assumption. Second, it applies
also to constructions based on non-falsifiable assumptions. Third, it rules out protocol achieving standard
(i.e., non-adaptive) soundness, whereas [GW11] only rules out adaptively sound protocols. And fourth, our
work applies to any NP language whereas [GW11] only rules out SNARGs for particular (extremely) hard
NP languages.

A recent line of work [KRR17, CCRR18, HL18, CCH+19, PS19] constructs hash functions that are
compatible with Fiat-Shamir, when applied to statistically sound interactive proofs. Still, the question of
whether the Fiat-Shamir transform can be securely applied to preserve the computational soundness of
Kilian’s argument scheme has remained open.

1.4 Technical Overview

We proceed to an overview of our two main results. First, in Section 1.4.1 we give an overview of our
FSKM-incompatible CRHF and then, in Section 1.4.2, we give an overview of our FSKM-incompatible PCIP.

1.4.1 An FSKM-incompatible CRHF

For simplicity, in this overview we describe a weaker result. Specifically, we construct an FSKM-incompatible
CRHF for a particular choice of the language L and for a PCP for L (rather than handling all languages
L and all “reasonable” PCPs). Nevertheless, this weaker result demonstrates the main ideas that go into
the proof of Theorem 1. Specifically, we focus on the empty language L = ∅. While this language has a
trivial PCP ΠPCP (of length 0) in which the verifier always rejects, we will consider a different PCP Π̃PCP for
L (parameterized by a security parameter λ): the PCP proof string is expected to have length 2λ and the
verifier uses a random string of length λ, and accepts if the first λ bits of the PCP are equal to its random
string.4 Completeness holds in an empty sense whereas the soundness error is clearly 2−λ. We construct
a contrived collision-resistant hash function H̃CRHF such that FSKM[Π̃PCP, H̃CRHF,HFS] is not sound for any
hash family HFS.

We will construct H̃CRHF = {H̃(λ)
CRHF : {0, 1}2λ → {0, 1}λ} so that it satisfies the following property:

Given h̃CRHF ← H̃
(λ)
CRHF and any efficiently computable function f , it is possible to efficiently find (x0‖x1) ∈

{0, 1}2λ such that x0 = f(h̃CRHF(x0‖x1)). This property immediately allows us to break the soundness of

FSKM[Π̃PCP, H̃CRHF,HFS] as follows. We view hFS ← HFS as the function f , and so a cheating prover can
produce a valid commitment rt to a string (x0‖x1) such that the verifier’s randomness is hFS(rt) = x0. The
prover sends rt as the Merkle root but can now decommit to x0, which makes the PCP verifier accept. We
refer to a CRHF having the foregoing property as a circular tractable (CT-) CRHF.

4Note that this is not the same empty language PCP that we use in Section 5 - our result in Section 5 holds for a more
general class of empty language PCPs.
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A CT-CRHF from Ideal Obfuscation. We first illustrate how it is possible to construct a CT-CRHF
assuming ideal Turing-machine obfuscation. For readability, we will use collision-resistant hash functions
(rather than ensembles) in this section.

We will start with any CRHF h′CRHF : {0, 1}2λ → {0, 1}λ−1, and we construct a CT-CRHF hash function

h̃CRHF : {0, 1}2λ → {0, 1}λ. The hash function h̃CRHF will have two types of outputs: normal outputs, which
end in a 1, and special outputs, which end in 0λ/2. On almost all inputs x0‖x1, we will have

h̃CRHF(x0‖x1) = h′CRHF(x0‖x1)‖1.

However, we will guarantee that for every x0 and special output y‖0λ/2, x0 can be extended into a (not

efficiently computable) “special” x0‖x1 such that h̃CRHF(x0‖x1) = y‖0λ/2. This is easy to achieve if we

augment the description of h̃CRHF to include a verification of a (public-key) digital signature scheme, and

h̃CRHF is defined as

h̃CRHF(x0|x1) =

{
y‖0λ/2 if x1 = y‖σ, for σ a valid signature of (x0, y).

h′CRHF(x0‖x1)‖1 otherwise.

In order to actually (efficiently) use the added structure of h̃CRHF, we will also augment the description

of h̃CRHF to include an obfuscation P̂ of a program P that has the signature signing key hard-wired, and on
input the description 〈f〉 of a function f acts as follows:

1. Computes y = h′′CRHF(〈f〉), where h′′CRHF : {0, 1}∗ → {0, 1}λ/2 is a generic CRHF.

2. Compute x0 = f(y‖0λ/2).

3. Compute a signature σ of (x0, y).

4. Output (x0, y, σ).

It is clear that the inclusion of P̂ in the description of h̃CRHF makes h̃CRHF circular tractable, but why is
h̃CRHF collision-resistant?

Suppose that an efficient adversary A were to output a colliding pair (x0‖x1) and (x′0‖x′1) of h̃CRHF.

The only new collisions that h̃CRHF has compared to h′CRHF (and thus that A might possibly output) are
collisions for special outputs (standard outputs can never collide with special outputs due to their last bit
being different). That is, we may assume that x1 = y‖σ and x′1 = y‖σ′. The security of the signature scheme

and of the ideal obfuscator imply that if A produced such a collision, it must have queried P̂ on two distinct
inputs 〈f〉, 〈f ′〉 such that P (〈f〉) = (x0, y, σ) and P (〈f ′〉) = (x′0, y, σ

′). But this would in particular imply
that h′′CRHF(〈f〉) = h′′CRHF(〈f ′〉) = y, meaning that A found a collision in h′′CRHF, which is a contradiction.

A CT-CRHF from Unique-Proof SNARKs. The above construction is tantalizing, but unfortunately we
do not know how to prove security (collision-resistance) from any general-purpose notion of obfuscation
security (e.g., indistinguishability obfuscation) that is not known to be unachievable. Instead, we show
how to use similar ideas to obtain a CT-CRHF using special SNARKs that can be constructed based on a
knowledge of exponent assumption.

Taking a closer look at the obfuscation-based construction, we observe that ideal obfuscation was used
to ensure that if an adversary A could come up with an input x0‖x1 such that h̃CRHF(x0‖x1) is the special
output y‖0λ/2, then A must “know” an f such that h′′CRHF(〈f〉) = y (and x0‖x1 are a fixed function of f).

With this observation in mind, an alternative way of defining special inputs is as the set of x0‖x1 that
contain a SNARK of this fact. That is, let special inputs be strings x of the form x0‖y‖π, where π is a valid

proof of knowledge of f satisfying h′′CRHF(〈f〉) = y ∧ x0 = f(y), and on such inputs let h̃CRHF(x) = y‖0λ/2.

Is the resulting h̃CRHF collision-resistant? There are two types of collisions that we need to consider. The
first type is collisions of the form x0‖y‖π, x′0‖y‖π′ with x0 6= x′0. The second type is collisions in which
x0 = x′0 (but π 6= π′).
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The first type of collision is ruled out by the standard SNARK proof-of-knowledge property. If an ad-
versary produces such a collision, then there is an extractor that produces 〈f〉, 〈f ′〉 such that h′′CRHF(〈f〉) =
h′′CRHF(〈f ′〉) = y but f(y) = x0 6= x′0 = f ′(y). The latter inequality implies that 〈f〉 6= 〈f ′〉, which means
that the extractor is finding a collision in h′′CRHF.

To rule out the second type of collision, we require a new “unique proofs” property for the SNARK to
ensure that the extracted 〈f〉, 〈f ′〉 are distinct. Informally, this property says that for any adversary A that
comes up with two distinct valid SNARK-proofs of the same NP claim, there is an extractor E that comes
up with two distinct NP witnesses for the same claim.

1.4.2 An FSKM-incompatible PCIP

For every language L ∈ NP and collision resistant hash function ensemble HCRHF, we present a contrived
PCIP Π̃PCIP, such that for any choice of Fiat-Shamir hash function ensemble HFS, the resulting protocol
FSKM[Π̃PCIP,HCRHF,HFS] is not sound.

The PCIP construction is inspired by and builds on Barak’s [Bar01] beautiful protocol, while taking
steps to make the approach compatible with Kilian’s protocol. Roughly speaking, our approach is to take
an arbitrary PCP for L (say the one established by the classical PCP theorem) and “tweaking” it so as to
maintain its soundness while enabling an attack on the resulting FSKM protocol. Since the tweaking of the
PCP will add an additional round, we only obtain a FS-incompatible PCIP rather than a PCP.

In more detail, the first message sent by the honest PCIP prover is π′ = b‖π where b is a single bit and π
is a string. The honest PCIP prover always sets the bit b to 0 but we add the option of having a malicious
prover set b to 1 to facilitate the attack on FSKM.

The PCIP verifier, given this string, first reads the value of b. In case b = 0, the verifier simply treats π as a
PCP proof string and runs the underlying PCP verifier while redirecting its proof queries to π. This concludes
the entire interaction and the PCIP verifier accepts if and only if the PCP verifier accepts. Completeness of
the entire protocol as well as soundness for the case that b = 0 follow immediately from the construction.

Note however that a malicious prover may indeed send the value b = 1. While the verifier could imme-
diately reject in this case, we intentionally make our PCIP verifier do something different. Ignoring π for
a moment, the verifier now chooses a random string r ∈ {0, 1}λ and sends r to the PCIP prover. The key
observation is that when the protocol is compiled via FSKM using a CRHF hCRHF and FS hash function hFS,
in the resulting non-interactive argument the value r is fully determined. More specifically, it will always be
the case that r = hFS(MerkleCom(hCRHF, π

′)), where MerkleCom simply computes a Merkle tree of the string
π′ using the hash function hCRHF and outputs its root. Thus, in order to facilitate the attack, we would like
to design our PCIP verifier to accept if it happens to be the case that r = hFS(MerkleCom(hCRHF, π

′)).
What may seem initially problematic is that it is unclear how the PCIP verifier can know which CRHF

and FS hash functions will be used in the FSKM protocol. We handle this by simply letting the PCIP prover
specify these functions as part of π = (hCRHF, hFS). Thus, after sampling r, we would like for our PCIP
verifier to check that π = (hCRHF, hFS) such that r = hFS(MerkleCom(hCRHF, π

′)). Suppose for now that the
PCIP verifier does this explicitly (i.e., by reading all of π′). Observe that the PCIP remains sound since r is
chosen after the value hFS(MerkleCom(hCRHF, π

′)) is fully determined (and so the probability that r is equal
to this value is exponentially vanishing).

On the other hand, we can now demonstrate an attack on the resulting FSKM protocol. Consider a
cheating FSKM prover that works as follows. Recall that the FSKM verifier gives the prover descriptions of
a CRHF hCRHF and an FS hash function hFS. The prover now sets π = (hCRHF, hFS) and continues as in the
FSKM protocol while using π′ = (1, π) as the first PCIP message. In more detail, it computes and sends a
Merkle root MerkleCom(hCRHF, π

′) to the verifier. By design, the prover and verifier now agree to use the
“random” string r = hFS(MerkleCom(hCRHF, π

′)) which makes all of the verifier’s tests pass.
A final difficulty that we need to overcome is that the PCIP verifier as described so far has linear query

complexity since in case b = 1 it reads the entire message π. We resolve this by replacing the explicit test
done by the verifier with another round of interaction. In more detail, when b = 1, after receiving r, the
prover is expected to send an additional PCP proving that r = hFS(MerkleCom(hCRHF, π

′)) holds. Actually,
a standard PCP will not suffice since a PCP verifier reads its entire input (which in our case is the first PCIP
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message π). Rather, we will use a PCP of proximity (PCPP) [BGH+06, DR06] which is a PCP in which the
verifier only reads a few bits of its input and is required to reject inputs that are far from the language. To
make this approach work, the prover will actually send π encoded under an error-correcting code. We defer
further details to the technical sections.

1.5 Organization

In Section 2 we give preliminaries. The proof of Theorem 1, via a construction of an FSKM-Incompatible
CRHF is presented in Section 3. The proof of Theorem 2, via a construction of an FSKM-Incompatible PCIP
is presented in Section 4. In Section 5, we give a sound instantiation of the FSKM protocol for a specific
PCP for the empty language. Lastly, in Appendix A we give the candidate construction of a SNARK with
computationally unique proofs.

2 Preliminaries

We let λ denote the security parameter. Let [n] = {1, . . . , n}. Throughout, we will use 〈P 〉 to denote the
description of a function/machine/program P . A function ε(λ) is said to be negligible, if for every c ∈ N it
holds that ε(λ) = O(λ−c).

We let H = {H(λ)}λ, where H(λ) = {h : {0, 1}n(λ) → {0, 1}m(λ)}h denote a hash function ensemble,
where hash functions h : {0, 1}n(λ) → {0, 1}m(λ) are sampled as h← H(λ).

The relative distance between strings x, y ∈ Σ` is ∆(x, y) = |{i | xi 6= yi}|/`. The relative distance of a
string x ∈ Σ` from a (non-empty) set S ⊆ Σ` is ∆(x, S) = min

y∈S

(
∆(x, y)

)
.

2.1 Proof Systems

In this work we adhere to the convention in which all proof systems (as well as other cryptographic primitives)
are relative to a security parameter λ (given in unary representation to all parties) and with soundness error
that is negligible in λ.

2.1.1 Argument Systems (aka Computationally Sound Proofs)

The interaction between a prover P, on input x and security parameter 1λ, and a verifier V, with input y
and the same security parameter λ, is denoted by 〈P(x, λ) ↔ V(y, λ)〉 and includes a polynomial number
of rounds in which each party sends the other a message. The interaction terminates when the verifier V
decides whether to accept or reject its input y. The result of the interaction is the bit b ∈ {0, 1} returned by
V indicating whether it accepted, which is denoted by 〈P(x)↔ V(y)〉. If b = 1, then we say that V accepts.

Definition 2.1 (Argument system). An argument system for a language L ∈ NP, with soundness error
s : N→ [0, 1] is a pair of probabilistic polynomial-time algorithms P and V such that:

1. Completeness: If x ∈ L and w is a corresponding witness, then for every security parameter λ it
holds that

Pr
[
〈P(x,w, 1λ)↔ V(x, 1λ)〉 = 1

]
= 1.

2. Computational soundness: If x /∈ L, then for every probabilistic polynomial-time malicious prover
P∗ and all sufficiently large security parameters λ, it holds that

Pr
[
〈P∗(x, 1λ)↔ V(x, 1λ)〉 = 1

]
≤ s(λ).

An argument system (P,V) is said to be public-coin if all messages sent by the verifier V are random-coin
tosses, and V does not toss any additional random coins.
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2.1.2 Probabilistically Checkable Proofs (PCPs)

Roughly speaking, a probabilistically checkable proof (PCP) is an encoding of an NP witness that can be
verified by reading only a few of its bits. More formally:

Definition 2.2 (Probabilistically checkable proof). A probabilistically checkable proof (PCP) for a language
L ∈ NP consists of a polynomial-time algorithm P, which receives a main input x and witness w, and a
probabilistic polynomial-time oracle machine V, which receives x and a security parameter 1λ as explicit
inputs, and oracle access to a proof π. The PCP has soundness-error s : N→ [0, 1] if:

1. Completeness: If x ∈ L and w is a corresponding witness, then for π = P(x,w) and every λ holds
that

Pr
[
Vπ(x, 1λ) = 1

]
= 1.

2. Soundness: If x /∈ L, for every proof π∗ and security parameter λ it holds that

Pr
[
Vπ
∗
(x, 1λ) = 1

]
< s(λ).

In order to query π, the verifier V tosses r = r(|x|, λ) random coins and generates q = q(|x|, λ) queries.
It will often be convenient to view V as two separate algorithms (V0,V1). The first, V0(x; r), runs on the
instance x and randomness r and outputs the set of queries {qi}i that V makes to π. The second algorithm,
V1({bi}i, x; r), takes the corresponding responses {bi}i as input (as well as the instance x and the same
randomness r as V0), and decides whether to accept or reject.

The following celebrated theorem by [ALM+98] establishes the expressive power of PCPs.

Theorem 2.3 (PCP theorem). Every language L ∈ NP has a PCP with soundness error 1
2 , constant query

complexity, and logarithmic randomness complexity.

Note that a PCP with negligible soundness error can be easily obtained from Theorem 2.3 by having the
verifier generate polylog(λ) independent query sets.

2.1.3 Probabilistically Checkable Proofs of Proximity (PCPP)

In a standard PCP, the verifier is explicitly given the entire input x along with access to an oracle that encodes
a “probabilistically checkable” witness. In contrast, in a PCP of proximity (PCPP) [BGH+06, DR06] the goal
is for the verifier to decide without even reading the entire input. Thus, the verifier is given oracle access to
the input and we count the total number of queries to both the input and the proof.

Since the verifier cannot even read the entire input, the notion of soundness in PCPP is relaxed: the
verifier must only reject inputs that “far” from the language (i.e. where distance is measured in Hamming
distance).

Following [BGH+06], we define PCPPs with respect to pair-languages, which are simply a subset of
{0, 1}∗ × {0, 1}∗. The projection of a pair-language L on x is L(x) = {y | (x, y) ∈ L}.

In our context, we view the first component x of a pair (x, y) ∈ L as an explicit input for the verifier
whereas the second component, y, is an implicit input (i.e., the verifier only has oracle access to y). We
count the total number of queries to the oracle y, as well as the proof string π. The soundness requirement
is that the verifier has to reject words in which the implicit input is far from the projection of L onto x.

Definition 2.4 (PCPP). A probabilistically checkable proof of proximity (PCPP) for a pair-language L ∈
NP consists of a polynomial-time prover P that gets as input a pair (x, y) as well as a witness w, and a
probabilistic polynomial-time oracle machine V that receives x as an explicit input, oracle access to y and
oracle access to a proof string π. The verifier also receives (explicitly) a proximity parameter δ > 0 and
security parameter 1λ. The PCPP has soundness error s : N → [0, 1] if for every proximity parameter
δ ∈ [0, 1], security parameter λ > 0 and input (x, y):
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1. Completeness: If (x, y) ∈ L and w is the corresponding witness, for π = P((x, y), w) it holds that

Pr[Vy,π(x, |y|, |π|, 1λ, δ) = 1] = 1.

2. Soundness: If ∆(y,L(x)) > δ and oracle π∗, it holds that

Pr[Vy,π
∗
(x, |y|, |π∗|, 1λ, δ) = 1] < s(λ).

The verifier V generates r = r(|x|, λ) random coins and makes q = q(|x|, λ) queries for both oracles. We
omit the lengths of the implicit input y and the proof π from the input of the verifier when these are clear
from the context.

Ben-Sasson et al. [BGH+05] give a construction of PCPP for all of NP (with a suitably efficient verifier).

Theorem 2.5 ([BGH+05]). For every language L ∈ NTIME(T ) and every constant δ ∈ [0, 1], there exists
a PCPP for L with respect to proximity parameter δ, soundness-error of 1

2 and proof length poly(T ). The
verifier runs in time polylog(T ) and the prover runs in time poly(T ) (i.e., the PCPP proof can be generated
in time poly(T ) given the NP witness).

2.1.4 Probabilistically Checkable Interactive Proofs

Probabilistically checkable interactive proofs (PCIPs) [BCS16, RRR16] (also known as interactive oracle
proofs) are generalizations of both interactive proofs and PCPs. They allow for multi-round interactions, in
which the prover provides the verifier with oracle access to long proof strings, but we only count the number
of bits that were actually queried by the verifier. In this work, we will only consider public-coin PCIPs.

Definition 2.6 (Probabilistically checkable interactive proof). A probabilistically Checkable Interactive
Proof (PCIP) for a language L ∈ NP consists of a pair of interactive probabilistic machines (P,V). The
prover P is a deterministic polynomial-time algorithm, which gets as input x a witness w and a security
parameter λ, and the verifier V is a PPT algorithm, which gets as input x and λ. The interaction consists
of the following 3 phases:

1. Communication phase: The two parties interact for k = k(|x|, λ) rounds, in which V only sends
random strings of total length r = r(|x|, λ) and P sends proofs strings π1, ..., πk(|x|,λ), where πi is sent
in the i-th round.

2. Query phase: In which V sends makes a total of q = q(|x|, λ) queries to the messages sent by P in
the communication phase.

3. Decision phase: Based on its random messages in the communication phase, and the answers to its
queries in the query phase, the verifier V decides whether to accept or reject.

The PCIP (P,V) has soundness s : N→ [0, 1] if:

1. Completeness: If x ∈ L and w is the corresponding witness, then for every security parameter λ it
holds that

Pr [〈P(x,w, λ)↔ V(x, λ)〉 = 1] = 1.

2. Soundness: If x /∈ L, then ∀P∗ and security parameters λ, it holds that

Pr [〈P∗(x, λ)↔ V(x, λ)〉 = 1] < s(λ).

2.2 Kilian’s Protocol

Before describing Kilian’s protocol, we first recall the definition of collision resistant hash functions and
Merkle trees.
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2.2.1 CRHF and Merkle Trees

An efficiently computable hash function ensemble H = {H(λ)}λ where H(λ) = {h : {0, 1}2λ → {0, 1}λ} is
collision resistant (CRHF), if there exists a key generation algorithm Gen that on input 1λ samples h from
H(λ) such that for every PPT adversary A it holds that

Pr
h←Gen(1λ)
(x,x′)←A(h)

[h(x) = h(x′) ∧ x 6= x′] ≤ negl(|λ|).

Remark 2.7. The above definition of CRHF is sometimes referred to as a private-coin CRHF [HR04] since
security is not guaranteed if the adversary sees the coins used by Gen. Nevertheless, for sake of conciseness
we will sometimes avoid mentioning Gen explicitly and simply write h← H(λ).

We will use the following syntax to describe Merkle tree commitments, which can be built from any CRHF
family H =

{
H(λ)

}
λ
. For each of the following algorithms, the input hash function h is drawn uniformly at

random from H(λ). For any d ≥ 1, a Merkle tree commitment allows us to commit to a message s ∈ {0, 1}m
where m := λ · 2d. That is, we view s as 2d blocks of λ bits.

• MerkleCom(h, s ∈ {0, 1}m). Write s as (`1‖`2‖ . . . ‖`2d) where each `j ∈ {0, 1}λ. Build a binary tree of
hash evaluations, starting from the 2d leaves (`1‖`2‖ . . . ‖`2d). Output the root com ∈ {0, 1}λ of the
resulting tree.

A commitment to s can be locally opened to the reveal the bits in the ith block by revealing the siblings
along the root-to-ith-leaf path:

• MerkleOpen(h, s ∈ {0, 1}m, i ∈ [2d]). Write s as (`1‖`2‖ . . . ‖`2d) where each `j ∈ {0, 1}λ. Determine the
path from `i to the root in the tree of hash evaluations under h, denoted {ĉj}j∈[d] where ĉd = `i. For
each i ∈ [d], determine the sibling sibi of ĉi. Output open = {(ĉi, sibi, pi)}i∈[d] where pi ∈ {left, right}
denotes whether sibi is a left or right sibling of ĉi.

For I ⊆ [2d] we define MerkleOpen(h, s ∈ {0, 1}m, I) as (MerkleOpen(h, s ∈ {0, 1}m, i))i∈I .

These openings can easily be verified by verifying the hash computations with h:

• MerkleVer(h, com, open) first writes open as {(ĉi, sibi, pi)}i∈[d]. Let ĉ0 = com. For each i ∈ [d], check
that h(sibi‖ĉi) = ĉi−1 if pi = left or that h(ĉi‖sibi) = ĉi−1 if pi = right. Output 1 (accept) if all checks
pass, otherwise output 0.

2.2.2 Kilian’s Protocol

While Kilian’s original protocol relied on PCPs, a natural generalization to PCIPs was suggested by Ben-
Sasson et al. [BCS16]. This extension proceeds by having the prover repeatedly commit to each of its oracles
(rather than sending the entire oracle). At the end of the interaction, the verifier can specify which locations
to open and the prover can use the Merkle tree structure to succinctly decommit to these specific locations.

Construction 2.8. Let (P,V) be a public-coin k-round PCIP for L ∈ NP. Consider the following argument
system for L, denoted by (P ′,V ′) = Kilian[(P,V),H], as described in Fig. 1, w.r.t. a CRHF H.

Theorem 2.9 (Kilian’s protocol). If (P, V ) is a PCIP and H is a CRHF family, then Construction 2.8
is a computationally sound argument system with negligible soundness error, communication complexity
poly(λ, log|x|). The verifier runs in time O(|x| · poly(λ, log|x|)) and the prover runs in time poly(|x|, |w|, λ).

Completeness follows from the correctness of the Merkle tree commitment scheme and the completeness
of the PCIP for L.

Soundness follows from the binding property of the commitment scheme and the soundness of the PCP.
Note that the soundness of the PCIP was not enough on its own, as without committing to the PCIP proof
strings, the prover could have engineered proof strings to make the verifier accept according to its queries.
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Protocol 1: Kilian’s protocol

Common input: x, 1λ

Prover’s auxiliary input: w
1 V ′ generates a hash function h← H(λ) and sends h to P ′.
2 for j = 1, ..., k do
3 P ′ sends comj = MerkleCom(h, πj), where πj is the message sent by P in (P(x,w, 1λ),V(x, 1λ)) on

the j-th round.
4 V ′ sends rj , where rj is the message sent by V on the j-th round of (P(x,w, 1λ),V(x, 1λ)).
5 P ′ sends openj to V ′ where openj = MerkleOpen(h, πj , Qj), where Qj is the set of queries

generated by V on round j with randomness rj .
6 V ′ computes vj ∈ {0, 1} where vj = MerkleVer(h, comj , openj).

7 end

8 V ′ accepts if and only if
∧
j

vj = 1 and V(x,
{
bi11
}
i1
, ...,

{
bikk
}
ik

) = 1, where
{
b
ij
j

}
ij

is the set result of

the queries revealed in openj .

Figure 1: Kilian’s protocol.

2.3 Fiat-Shamir

2.3.1 The Fiat-Shamir Heuristic

The Fiat-Shamir heuristic [FS86] is a method for reducing the number of rounds in public-coin interactive
proofs. Loosely speaking, the idea is that instead of having the verifier send their random coins, the prover
uses a hash function in order to generate the verifier’s randomness.

Definition 2.10 (Fiat-Shamir transform). Let HFS =
{
H(λ)

FS : {0, 1}∗ → {0, 1}∗
}
λ∈N

be a hash-function

ensemble, Π = (P,V) be a public-coin protocol, and

(α1, β1, ..., αm, βm)

be the set of exchanged messages between (P,V), where {αi}mi=1 are messages sent by the prover and {βi}mi=1

the messages sent by the verifier. The Fiat-Shamir transform of Π, denoted by (PFS,VFS) = FS[Π,HFS] is
defined in Fig. 2.

Protocol 2: Fiat-Shamir transform

Common input: x, 1λ

Prover’s auxiliary input: w

1 VFS generates a key hFS ← H(λ)
FS and sends it to PFS.

2 PFS sends the following, all in a single message

α1, β1 = hFS(τ1), α2, β2 = hFS(τ2), ..., αm, βm = hFS(τm)

where τi = (α1‖β1‖...‖αi) is the transcript thus far.
3 VFS checks that ∀i ∈ [m] : βi = hFS(τi), and accepts iff V(x, α1, β1, ..., αm, βm) accepts.

Figure 2: The Fiat-Shamir transform.
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2.3.2 The FSKM Protocol

The FSKM protocol is obtained by applying the Fiat-Shamir transform to Kilian’s protocol (or rather to its
extension to PCIPs), to create succinct non-interactive argument systems for NP.

Recall that the FSKM protocol emulates Kilian’s protocol, and replaces the verifier’s randomness with the
application of a FS hash function on the transcript thus far. Regardless of whether it is applied on a PCP
or PCIP, the FSKM protocol is a two-round argument system.

Definition 2.11 (FSKM Protocol). Given a PCIP Π, a CRHF ensemble HCRHF, and FS hash function
ensemble HFS, we define

FSKM[Π,HCRHF,HFS] , FS
[
Kilian

[
Π,HCRHF

]
,HFS

]
.

3 An FSKM-Incompatible CRHF

In this section, we obtain our first main result by constructing a specific CRHF family H̃CRHF, for which,
loosely speaking, FSKM is not sound. Our CRHF will make use of a publicly-verifiable succinct non-interactive
argument of knowledge (pv-SNARK) with an additional “unique proofs” property that we formalize in Sec-
tion 3.1.1. For completeness, we start by providing some background on SNARKs.

3.1 Background on SNARKs

We first define the universal relation [BG08] relative to random-access machines.

Definition 3.1 (Universal Relation). The universal relation is the set RU of instance-witness pairs (y, w) =((
〈M〉, x, t

)
, w
)

, where |y|, |w| ≤ t and 〈M〉 is the description of a random-access machine M , such that M

accepts (x,w) after at most t steps. We denote by LU the universal language corresponding to RU .

We next define publicly-verifiable succinct non-interactive arguments of knowledge (pv-SNARKs), follow-
ing [BCCT13]. The following definition is taken verbatim from Bitansky et al. [BCCT13], and for more
in-depth discussion on SNARKs we refer the reader to [BCCT13].

Definition 3.2 (pv-SNARKs). A triple of algorithms (G,P,V), where G is probabilistic and V is determin-
istic, is a pv-SNARK if the following conditions are satisfied:

• Completeness: For every large enough security parameter λ ∈ N, every time bound B ∈ N, and every
instance-witness pair (y, w) = ((〈M〉, x, t), w) ∈ RU with t ≤ B,

Pr

[
V(crs, y, π) = 1 :

crs← G(1λ, B)
π ← P(crs, y, w)

]
= 1.

• Adaptive Proof of Knowledge: For every polynomial-sized prover P∗ there exists a polynomial-sized
extractor EP∗ such that for every auxiliary input z ∈ {0, 1}poly(λ), every time bound B ∈ N,

Pr

 V(crs, y, π) = 1
(y, w) /∈ RU

:
crs← G(1λ, B)

(y, π)← P∗(z, crs)
w ← EP∗(z, crs)

 ≤ negl(λ),

• Efficiency: There exists a universal polynomial p such that, for every large enough security parameter
λ ∈ N, every time bound B ∈ N, and every instance y = (〈M〉, x, t) with t ≤ B,

– the generator G(1λ, B) runs in time

{
p(λ+B) for a preprocessing SNARK

p(λ+ log(B)) for a fully-succinct SNARK
,
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– the prover P(crs, y, w) runs in time

{
p(λ+ |M |+ |x|+ t+B) for a preprocessing SNARK

p(λ+ |M |+ |x|+ t+ log(B)) for a fully-succinct SNARK
,

– the verifier V(crs, y, π) runs in time p(λ+ |M |+ |x|+ log(B)),

– and an honestly generated proof has size p(λ+ log(B)).

Note that in a fully-succinct SNARK, we can remove the time bound by, e.g., setting B = λlog(λ). Then
G will run in time p(λ), an honestly generated proof will have size p(λ), and so on.

3.1.1 Computationally Unique SNARKs

In this work we introduce a new security property of SNARKs which we refer to as computationally unique
proofs (which can be thought of as a particular computational variant of unambiguous proofs [RRR16]). The
requirement here is that if a computationally bounded prover P can generate two valid proofs π1 6= π2 for
the same instance y, it must be possible to extract from P two distinct witnesses w1 6= w2 for y.

Definition 3.3 (SNARKs with computationally unique proofs). A SNARK with computationally unique
proofs is defined as in Definition 3.2, but with one additional requirement:

• Computationally Unique Proofs: For every polynomial-sized adversary A∗, there exists a polynomial-
sized “extractor” EA∗ such that for every auxiliary input z ∈ {0, 1}poly(k), every time bound B ∈ N,

Pr


V(crs, y, π1) = 1
V(crs, y, π2) = 1

π1 6= π2
(y, w1) /∈ RU ∨ (y, w2) /∈ RU ∨ w1 = w2

:
crs← G(1λ, B)

(y, π1, π2)← A∗(z, crs)
(w1, w2)← EA∗(z, crs)

 ≤ negl(λ).

In Appendix A, we prove that a preprocessing pv-SNARK constructed in Bitansky et al. [BCI+13] from
a knowledge of exponent assumption satisfies our notion of computationally unique proofs. We then show
that the generic transformation of [BCCT13] from a preprocessing pv-SNARK to fully-succinct pv-SNARK
maintains the computationally unique proofs property. Thus, we obtain a fully-succinct pv-SNARK with
computationally unique proofs from a knowledge of exponent assumption (and additionally the existence of
exponentially-secure one-way functions to address a subtlety in the definition of adaptive proof of knowledge).

3.2 An FSKM-Incompatible CRHF

To formally state our result, we first define a trivial PCP-based 2-message protocol — a protocol that,
intuitively, should not be sound. Jumping ahead, at a high level, our main result shows that there exists a
collision-resistant hash family H̃CRHF such that for any ΠPCP and any HFS, the corresponding FSKM protocol
is no more secure than the corresponding trivial protocol.

The first message of the trivial protocol will be a random string r drawn from some distribution S, which
will serve as VPCP’s randomness. The prover takes r as input and outputs a PCP proof π that will be then
verified by VPCP using randomness r. Intuitively, since a cheating prover is aware of the verifier’s randomness,
it can answer queries adaptively, so we do not expect the trivial protocol to be sound.

Suppose we have some PCP ΠPCP = (PPCP,VPCP). It will be convenient for us to split the verifier VPCP
into two algorithms: V(0)

PCP (which outputs the set of query locations) and V(1)
PCP (which decides whether or

not to accept after seeing the prover responses).

Construction 3.4 (Trivial Protocol). Let Trivial[ΠPCP,S] = (PTrivial,VTrivial) be the following 2-message

protocol, for some PCP ΠPCP = (PPCP,V(0)
PCP,V

(1)
PCP) for a language L, and some sampling algorithm S.

The verifier VTrivial generates a random string r from S and sends r to the prover. The prover PTrivial, on

input (x,w, r) for x ∈ L runs V(0)
PCP(x; r) to obtain a set of query locations {qi}i. PTrivial then computes bi ←

PPCP(x,w, qi) for each i and sends {bi} to the verifier VTrivial. The verifier VTrivial computes V(0)
PCP(x; r) = {qi}i

and accepts if and only if V(1)
PCP

(
x, {(qi, bi)}i; r

)
accepts.
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In what follows, we will sometimes view S as an algorithm that explicitly takes its randomness u as input,
and outputs r = S(u).

For non-contrived choices of a PCP and sampling algorithm we do not expect Construction 3.4 to be
sound. For example, consider H̊astad’s PCP [H̊as01] in which the verifier queries 3 bits of the proof and
checks whether their parity is some known fixed value b. Soundness of the trivial protocol can now be
violated by having the prover send the answers (0, 0, b).5

Recall (see Section 2.3.2) that FSKM[ΠPCP,HCRHF,HFS] denotes the 2-message argument that results
from applying the Fiat-Shamir transform with hash function ensemble HFS to Kilian[ΠPCP,HCRHF].

The main theorem of this section is the following.

Theorem 3.5. Assume the existence of a fully-succinct pv-SNARK with computationally unique proofs, where
honestly generated proofs have size at most p(λ), and collision resistant hash functions. Define m := 2λ·p(λ).

Then, there exists a collision resistant hash family H̃CRHF =
{
H̃(λ)

CRHF : {0, 1}2m → {0, 1}m
}
λ∈N

such that

for any PCP ΠPCP = (PPCP,VPCP) with proof length at most 2λ, and any hash function ensemble HFS, if

FSKM[ΠPCP, H̃CRHF,HFS] is computationally sound, then Trivial[ΠPCP,HFS] is computationally sound.

We believe that for natural choices of PCPs, the trivial protocol will not be sound which, by Theorem 3.5,
means that the corresponding FSKM protocol is not sound. However, actually proving that the trivial
protocol is not sound seems to be difficult in case the sampling algorithm generates a peculiar distribution
of random strings.6

Nevertheless, we can exhibit a specific (trivial) PCP for which the trivial protocol is provably not sound.
The immediate implication is that for every FS hash function, there exists a PCP and a bounded size CRHF
for which soundness of the corresponding FSKM is violated. This is formalized in the following corollary.

Corollary 3.6. Assume the existence of a fully-succinct pv-SNARK with computationally unique proofs.
There exists a language L ∈ NP, a PCP for L (with polylog(λ) query complexity) and a fixed polynomial
p(·) such that for all efficiently computable hash function ensembles HFS, there exists a CRHF ensemble

HCRHF =
{
H(λ)

CRHF : {0, 1}2s(λ) → {0, 1}s(λ)
}
λ∈N

with s(λ) ≤ p(λ), such that FSKM[ΠPCP,HCRHF,HFS] is not

sound.

We first prove Corollary 3.6 and then go back to the main part — proving Theorem 3.5.

Proof of Corollary 3.6. We exhibit a contrived PCP Π∅ for the empty language for which the statement

holds. Specifically, consider a PCP verifier that samples at random r ∈ {0, 1}log2(λ) and checks whether the
log2(λ)-long prefix of the proof is exactly equal to r (by making log2(λ) queries).

Completeness holds vacuously, and this PCP is sound since the proof must be specified before r was
sampled. However, the protocol Trivial[Π∅,HFS] for any sampler HFS is clearly not sound, since the cheating
prover receives the verifier randomness r as input and simply returns r as its proof.

In Section 5, we actually give a secure instantiation of FSKM for a variant of the PCP Π∅ that was used
to prove Corollary 4.3. This does not contradict our impossibility, which only rules out security of FSKM
with a generic CRHF. In particular, our instantiation requires the collision-resistant hash function to also
be somewhere statistically binding [HW15a]. Unfortunately, we do not know how to instantiate the FSKM
protocol to construct an argument scheme for a non-trivial language.

The remainder of this section will be devoted to a proof of Theorem 3.5. As described in Section 1.4,
our strategy centers on a carefully-designed hash function family H̃CRHF, built using two CRHFs and a fully-
succinct pv-SNARK with computationally unique proofs (Definition 3.3). The result then follows immediately

from combining Lemma 3.7, which states that H̃CRHF is a CRHF family, and Lemma 3.8, which establishes
the soundness implication.

5Note that H̊astad’s PCP only has constant soundness. Nevertheless, the attack can be generalized to the sequential repetition
of H̊astad’s PCP as long as the sampler S generates random query sets.

6One would assume that a random choice of FS hash function from the collection would produce a uniformly random string
for the verifier. However, since we want to deal with arbitrary candidate FS hash functions, we cannot assume that this is the
case.
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3.3 CRHF Construction

Throughout this construction we will use the notation from the statement of Theorem 3.5; recall that p(λ) is
a bound on the proof size of our pv-SNARK, m := 2λ · p(λ), and c > 0 is an arbitrary constant independent
of p(λ).

We prove Theorem 3.5 by carefully constructing a CRHF family H̃CRHF = {H̃(λ)
CRHF : {0, 1}2m → {0, 1}m}λ∈N.

Our construction requires the following:

• A fully-succinct pv-SNARK S = (G,P,V) with computationally unique proofs (Definition 3.3), where
honestly generated proofs have size exactly p(λ) (assume that shorter proofs are appropriately padded
with zeros).

• A CRHF family Hrt = {H(λ)
rt : {0, 1}∗ → {0, 1}m/2−λ−log(λ)−2}λ∈N.

• A CRHF family Htree = {H(λ)
tree : {0, 1}2m → {0, 1}m−2}λ∈N.

Construction Overview. Before giving the full details of the construction, we continue the discussion
from Section 1.4.1 and explain the various aspects of our CRHF. Essentially, our goal is to design a CRHF
H̃CRHF such that for any PCP ΠPCP = (PPCP,VPCP) and HFS, an adversary ATrivial that breaks the soundness

of Trivial[ΠPCP,HFS] enables a cheating prover P∗ to break the soundness of FSKM[ΠPCP, H̃CRHF,HFS]. Recall
that in the Trivial[ΠPCP,S] protocol, VPCP’s randomness r is fixed to be the output of sampling algorithm S.
Letting S explicitly take its randomness u as input, we can write r = S(u). In order to break soundness, the

adversary ATrivial must produce a statement x and a series of answer bits {bi}i such that V(0)
PCP(x; r) = {qi}i

and V(1)
PCP(x, {(qi, bi)}i; r) accepts. So, in the Trivial[ΠPCP,HFS], protocol, the verifier’s randomness is fixed

to be hFS(u), for a uniformly random u, and hFS ← HFS. On the other hand, in the FSKM protocol, VPCP’s
randomness is computed by applying hFS to the prover’s Merkle hash, which we denote by rt.

Thus, in order to enable P∗ to make use of ATrivial’s functionality, we would like to design H̃CRHF in such
a way that allows P∗ to produce a uniformly random commitment rt, which it can then later open to an
arbitrary PCP proof string π of its choice. If this were possible, P∗ could feed r = hFS(rt) toATrivial, andATrivial

will return some x and {bi}i. The prover P∗ could then compute query locations {qi}i = VPCP(x; r) with the

guarantee that VPCP(x, {(qi, bi)}i; r) will accept. Thus, to violate the soundness of FSKM[ΠPCP, H̃CRHF,HFS],
we would only need that rt is a valid commitment to the proof string π that contains the bit bi at location
qi, for each i (and is 0 elsewhere). We denote this string by π{(qi,bi)}i .

Unfortunately, designing H̃CRHF such that rt will be a valid commitment to any such π{(qi,bi)}i will clearly
violate collision resistance. Instead, we will determine the value of the cheating prover’s commitment based on
the Fiat-Shamir hash function hFS. In particular, we will hash its description 〈hFS〉, using a collision resistant
hash function hrt,

7 to obtain a string α. We then form the commitment rt by XORing α with a uniformly
random string $rt that will be fixed in the hash key of h̃CRHF. That is, we set rt = $rt ⊕ hrt(〈hFS〉) = $rt ⊕ α.

We allow P∗ to produce rt as a valid commitment to the proof string π{(qi,bi)}i by augmenting H̃CRHF with
the ability to recognize and behave differently on “special” inputs, which will correspond to the right-most
path of hash computations in P∗’s Merkle tree. The rest of the tree will hash π{(qi,bi)}i with standard Merkle
hashing using some collision resistant hash function htree. However, the special path will allow P∗ to “bubble
up” the value of α, from a leaf up to the root, at which point it triggers h̃CRHF to output the root $rt ⊕ α.
The input to a hash computation along this path consists of two parts (left, right), where left corresponds
to the Merkle hash of (a substring of) π{(qi,bi)}i , and right contains α and some other information. This
additional information includes a depth parameter d and a succinct proof of knowledge of some hFS such that

hFS($rt⊕α) = r, ATrivial(r) = (x, {bi}i), V(0)
PCP(x; r) = {qi}i, and V(1)

PCP(x, {(qi, bi)}i; r) accepts. At a high level,
collision resistance of our construction follows from the fact that as long as the SNARK has computationally

7Looking ahead, the function hrt will play a crucial role in the proof of the collision resistance of H̃CRHF, as finding certain
types of collisions for H̃CRHF will imply the ability to find collisions for Hrt.
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unique proofs, finding a collision among “special” inputs implies the knowledge of two different 〈h(1)FS 〉, 〈h
(2)
FS 〉

that hash to the same α under hrt (which we had assumed to be collision resistant).
In order to clearly differentiate the hash outputs (which will be useful for showing collision resistance), we

introduce three distinct 2-bit prefixes prert, prepath, and pretree, where prert prefixes the special root computed
by a cheating prover, prepath prefixes any node on the right-most special path, and pretree prefixes any internal
node in the rest of the Merkle tree computed by htree. We will also draw a uniform $path to include in special
path inputs, in order to ensure that with overwhelming probability, non-special inputs are not accidentally
parsed as special inputs. Finally, we include a set of Merkle commitments under htree to all zero strings of
varying lengths, which will be useful for efficiently generating particular nodes in the Merkle tree of π{(qi,bi)}i .

3.4 CRHF Key Generation.

We sample a hash function h̃CRHF ← H̃(λ)
CRHF as follows.

1. Sample uniformly random $rt ← {0, 1}m.

• Let prert denote the first two bits of $rt.

• Define pretree := prert ⊕ 10 and prepath := prert ⊕ 01.

2. Sample uniformly random $path ← {0, 1}λ.

3. Sample hrt ← H(λ)
rt and htree ← H(λ)

tree.

4. Define h′tree : {0, 1}2m → {0, 1}m such that h′tree(x) = (pretree‖htree(x)).

5. Sample crs← G(1λ).

6. For each j ∈ [λ], compute com
(zero)
j = MerkleCom(h′tree, 0

m·2j ).

7. Output

($rt, $path, pretree, prepath, hrt, h
′
tree, crs, {com

(zero)
j }j∈[λ]),

as the description (hash key) of h̃CRHF.

3.4.1 CRHF Evaluation

Before we describe how to compute h̃CRHF(x), we need to introduce some specialized notation and definitions.

Notation. We will assume without loss of generality that m = 2m
′

is a power of 2, and that the PCP
ΠPCP in fact has proof length bounded by 2λ −m. Throughout, {(qi, bi)}i will denote a set of (index, bit)
pairs (representing PCP query/response pairs) where for each i, qi ∈ [2λ −m] and bi ∈ {0, 1}. We assume
without loss of generality that no index appears more than once.

For any set {(qi, bi)}i satisfying these conditions, we let π{(qi,bi)}i denote the length 2λ − m bitstring
defined bit-wise for each j ∈ [2λ −m] as:

(π{(qi,bi)}i)j :=

{
b if (j, b) ∈ {(qi, bi)}i,
0 else.

In other words, π{(qi,bi)}i is a PCP proof string that consists of the responses in {(qi, bi)}i and 0s
everywhere else.

We divide π{(qi,bi)}i into 2λ−m
′−1 words `k of m = 2m

′
bits each, i.e. π{(qi,bi)}i = (`1‖`2‖ . . . ‖`2λ−m′−1),

where each word `k is in {0, 1}m. Next, group the words as follows. The first 2λ−m
′−1 words will form the
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first block L1, the next 2λ−m
′−2 words will form the second block L2, and so on until the last block only

consists of only 1 word. We can now write π{(qi,bi)}i as(
L1

∣∣∣∣∣∣ . . . ∣∣∣∣∣∣Lλ−m′) :=
(

(`1‖ . . . ‖`2λ−m′−1)
∣∣∣∣∣∣ (`2λ−m′−1+1‖ . . . ‖`2λ−m′−1+2λ−m′−2

) ∣∣∣∣∣∣ . . . ∣∣∣∣∣∣ (`2λ−m′−1) ),
where the jth block Lj is exactly twice the length of the (j + 1)th block Lj+1.

We define the helper functions t(q) and s(q) for any q ∈ [2λ −m] so that the qth bit in π{(qi,bi)}i is the
t(q)th bit in block Ls(q).

Now define

• block-com(h′tree, {(qi, bi)}i, j) := MerkleCom(h′tree, Lj), and

• block-open(h′tree, {(qi, bi)}i, i) := MerkleOpen(h′tree, Ls(qi), t(qi)).

Note that given {com(zero)
j }j∈[λ], if |{(qi, bi)}i| = poly(λ), it is easy to compute block-com(h′tree, {(qi, bi)}i, j)

and block-open(h′tree, {(qi, bi)}i, i) in time poly(λ).

Language. We also define a language L$rt,hrt,h′tree
based on $rt, hrt, and h′tree (all given in the CRHF de-

scription h̃CRHF). Throughout, we use bitλ(j) to denote the log(λ)-bit binary representation of an integer
j.
L$rt,hrt,h′tree

will be defined by relation R$rt,hrt,h′tree
, which consists of all (instance, witness) pairs of the form(

(α‖bitλ(j)‖sib), (〈hFS〉‖〈ATrivial〉‖〈VPCP〉)
)
,

which satisfy all of the following conditions:

1. 〈hFS〉 and 〈ATrivial〉 can be parsed as descriptions of the (deterministic) circuits hFS and ATrivial. When
used in the proof of Lemma 3.7, hFS will correspond to the Fiat-Shamir hash function hFS ← HFS, and
ATrivial will correspond to the adversary breaking the soundness of Trivial[ΠPCP,HFS].

2. 〈VPCP〉 can be parsed as the description of a two-part PCP verifier V(0)
PCP,V

(1)
PCP, where V(0)

PCP outputs a

set of query locations, and V(1)
PCP takes the query responses and outputs a bit indicating accept/reject

(see the discussion in Section 2.1.2).

3. α = hrt
(
〈hFS〉‖〈ATrivial〉‖〈VPCP〉

)
.

4. sib = block-com(h′tree, {(qi, bi)}i, j) where j is the integer represented by bitλ(j), and for

r := hFS(rt) where rt := $rt ⊕ (0λ+log(λ)+2‖α‖0m/2),

{(qi, bi)}i satisfies the requirements

• ATrivial

(
r) = x, {bi}i,

• V(0)
PCP(x; r) = {qi}i,

• V(1)
PCP(x, {bi}i; r) = 1.

Since α is the result of applying the CRHF hrt to the witness 〈hFS〉‖〈ATrivial〉‖〈VPCP〉, an efficient adversary
will only be able to find a single witness corresponding to any given α. The string α fully determines rt
and r, which also determines {(qi, bi)}i (where {qi} is the set of PCP indices that VPCP would check when
running on randomness r, and {bi}i are the PCP responses output by ATrivial which cause VPCP to accept).
This specifies a unique “cheating” PCP proof string consisting of 0’s in almost every position, except with
bi’s in indices corresponding to the qi’s. sib then corresponds to the label of the off-path node at level j for
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the rightmost root-to-leaf path in the Merkle tree, and is obtained by applying h′tree to this cheating PCP
proof string.

In the proof of Lemma 3.8, we will rely on the fact that for any j and any witness 〈hFS〉‖〈ATrivial〉‖〈VPCP〉,
a cheating prover can efficiently compute α, sib such that ((α‖bitλ(j)‖sib), (〈hFS〉‖〈ATrivial〉‖〈VPCP〉)) is in

the relation (by simply applying hFS,ATrivial,V(0)
PCP, h

′
tree in the specified way). In the proof of Lemma 3.7,

we use the fact that for each (α, j) pair, an efficient adversary can only find one (sib, w) pair such that
((α‖bitλ(j)‖sib), w) is in the relation (due to the collision-resistance of hrt).

Hash Computation. Parse input x ∈ {0, 1}2m as(
sib
∣∣∣∣∣∣ (pre‖$‖bitλ(j)‖α)

∣∣∣∣∣∣ (π1‖ . . . ‖πj‖z)
)
,

where

• sib ∈ {0, 1}m,

• (pre‖$‖bitλ(j)‖α) ∈ {0, 1}m/2 (pre ∈ {0, 1}2, $ ∈ {0, 1}λ, bitλ(j) ∈ {0, 1}log(λ), and α ∈ {0, 1}m/2−λ−log(λ)−2),

• and (π1‖ . . . ‖πj‖z) ∈ {0, 1}m/2 (πi ∈ {0, 1}p(λ) and z ∈ {0, 1}m/2−jp(λ)).

If pre = prepath, $ = $path, and z = 0m/2−jp(λ), run the SNARK verifier for language L$rt,hrt,h′tree
on (τ, (α‖bitλ(j)‖sib), πj).

If j ≥ 1 and the verifier accepts, then

• if j ≥ 2, output(
(prepath‖$path‖bitλ(j − 1)‖α)

∣∣∣∣∣∣ (π1‖ . . . ‖πj−1‖0m/2−(j−1)p(λ))
)
∈ {0, 1}m,

• and if j = 1, output (
$rt ⊕ (0λ+log(λ)+2‖α‖0m/2)

)
∈ {0, 1}m.

Otherwise, if the input does not parse as above, or the verifier does not accept, output h′tree(x).

3.5 Proof of Theorem 3.5

Lemma 3.7. Assuming Hrt and Htree are CRHF families and that S = (G,P,V) is a fully-succinct SNARK

with computationally unique proofs, then the above construction of H̃CRHF is a CRHF family.

Proof. Every hash function output begins with pretree, prepath, or prert. We show separately that an adversary
cannot find a collision for an image with each of these three prefixes.

First, an adversary that finds a collision whose image begins with pretree immediately breaks the collision-
resistance of Htree.

Next, consider the case where the adversary produces a collision whose image begins with prepath. In full
generality, the image point can be written as,(

(prepath‖$path‖bitλ(j − 1)‖α)
∣∣∣∣∣∣ (π1‖ . . . ‖πj−1‖0m/2−(j−1)p(λ))

)
,

for some j ∈ [λ]. The collision must therefore be of the form(
sib(1)

∣∣∣∣∣∣ (prepath‖$path‖bitλ(j)‖α)
∣∣∣∣∣∣ (π1‖ . . . ‖πj−1‖π(1)

j ‖0
m/2−jp(λ))

)
,(

sib(2)
∣∣∣∣∣∣ (prepath‖$path‖bitλ(j)‖α)

∣∣∣∣∣∣ (π1‖ . . . ‖πj−1‖π(2)
j ‖0

m/2−jp(λ))
)
,
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where (sib(1), π
(1)
j ) 6= (sib(2), π

(2)
j ), and the SNARK verifier accepts π

(1)
j as a proof that (α‖bitλ(j)‖sib(1)) ∈

L$rt,hrt,h′tree
and accepts π

(2)
j as a proof that (α‖bitλ(j)‖sib(2)) ∈ L$rt,hrt,h′tree

.

Suppose that sib(1) 6= sib(2). We can view the adversary as a prover P∗ that produces proofs for two
different instances (α‖bitλ(j)‖sib(1)) and (α‖bitλ(j)‖sib(2)), and can thus run the SNARK extractor EP∗ twice

to produce two valid witnesses w1 = (〈h(1)FS 〉, 〈A
(1)
Trivial〉, 〈V

(1)
PCP〉) and w2 = (〈h(2)FS 〉, 〈A

(2)
Trivial〉, 〈V

(2)
PCP〉). It must be

the case that w1 6= w2 since given α, j, and a single witness w = (〈hFS〉, 〈ATrivial〉, 〈VPCP〉), there is only one
possible sib that would satisfy the relation R$rt,hrt,h′tree

(by definition). Thus EP∗ produces w1 6= w2 such that
hrt(w1) = α = hrt(w2), breaking the collision resistance of Hrt.

We must therefore have sib(1) = sib(2) but π
(1)
j 6= π

(2)
j . But then the adversary can be viewed as a prover

P∗ that produces two different accepting proofs for the same statement. Since S has computationally unique
proofs, EP∗ also produces w1 6= w2 such that hrt(w1) = α = hrt(w2), which breaks the collision resistance of
Hrt.

The last case to consider is when the adversary produces a collision whose image begins with prert. The
collision must be of the form(

sib(1)
∣∣∣∣∣∣ (prepath‖$path‖bitλ(1)‖α)

∣∣∣∣∣∣ (π(1)‖0m/2−p(λ))
)
,(

sib(2)
∣∣∣∣∣∣ (prepath‖$path‖bitλ(1)‖α)

∣∣∣∣∣∣ (π(2)‖0m/2−p(λ))
)
,

where (sib(1), π(1)) 6= (sib(2), π(2)). Exactly the same argument strategy used for the previous case applies
here.

Lemma 3.8. For any PCP ΠPCP = (PPCP,VPCP) and HFS, if Trivial[ΠPCP,HFS] is not sound, then

FSKM[ΠPCP, H̃CRHF,HFS] is not sound.

Proof. By assumption, there exists a deterministic (by fixing the best randomness) poly-time ATrivial, such

that on input r = hFS(u) for hFS ← HFS and uniform u, A outputs x, {bi}i such that V(0)
PCP(x; r) = {qi}i, and

V(1)
PCP(x, {(qi, bi)}i; r) accepts with noticeable probability.

The prover P∗ that violates soundness of FSKM[ΠPCP, H̃CRHF,HFS] takes as input

h̃CRHF = ($rt, $path, pretree, prepath, hrt, h
′
tree, crs, {com

(zero)
j }j∈[λ]),

and 〈hFS〉. P∗ does the following.

1. Compute α = hrt(〈hFS〉‖〈ATrivial〉‖〈VPCP〉).

2. Compute rt = $rt ⊕ (0λ+log(λ)+2‖α‖0m/2).

3. Compute r = hFS(rt).

4. Run ATrivial on r to produce x, {bi}i.

5. Compute {qi}i = V(0)
PCP(x; r).

6. Compute {sibj = block-com(h′tree, {(qi, bi)}i, j)}j∈[λ−m′] and {open′i = open(h′tree, {(qi, bi)}i, i)}i.

7. For each j ∈ [λ − m′], compute πj = P
(
crs,

(
α‖bitλ(j)‖sibj

)
, (〈hFS〉‖〈A〉‖〈VPCP〉)

)
, where P is the

SNARK prover.

8. For each i, let di be the highest level reached by the partial opening open′i. Complete each opening{
openi = open′i ∪

{
sibj ,

(
(prepath‖$path‖bitλ(j)‖α)

∣∣∣∣∣∣ (π1‖ . . . ‖πj‖0 . . . 0)
)}

j∈[di−1]

}
i

.

21



9. Output
(
rt, r, {openi}i

)
as an argument that x ∈ L.

By definition of ATrivial (noting that rt is a uniformly random string), the verifier will accept this argument

with noticeable probability as long as the Merkle openings are valid. By definition of H̃CRHF, we know that
the second part of each opening openi \open′i will verify properly, since each input will parse with the special
structure and contain valid SNARK proofs. The only remaining difficulty is that an input in open′i (where
all hashes are computed by h′tree) might accidentally parse with the special structure, meaning that the
verifier would not use h′tree to check consistency. However, this is only possible at a leaf, since all hashes at
higher levels will start with pretree. Moreover, since $path is chosen uniformly at random, the probability of a
wrong parse at any given leaf is at most 1/2λ. Thus, by a union bound, the verifier will fail to accept with
probability at most poly(λ)/2λ = negl(λ).

4 An FSKM-Incompatible PCIP

In this section we show that for every language in NP there exists a probabilistically checkable interactive
proof such that for every Fiat-Shamir hash function and every collision-resistant hash function, the resulting
FSKM protocol is not sound.

Theorem 4.1. Let L ∈ NP. There exists a PCIP Π for L with negligible soundness error such that for every
collision resistant hash function family HCRHF and every Fiat-Shamir hash function family HFS, the protocol
FSKM[Π,HCRHF,HFS] is not sound.

As a matter of fact, our attack breaks soundness of FSKM[Π,HCRHF,HFS] in an extremely strong sense
— it is a poly(n, λ)-time attack that causes the verifier to accept any input x /∈ L, with probability 1.

4.1 Proof of Theorem 4.1

Let L ∈ NP and let HCRHF =
{
H(λ)

CRHF

}
λ
, H(λ)

CRHF =
{
hCRHF : {0, 1}2λ → {0, 1}λ

}
be a collision resistant hash

family. The proof will take the following steps.

1. First, we construct a sound PCIP (P,V) for L. The PCIP will be constructed in a contrived manner
(to facilitate the attack in Step 3). This step is done in Section 4.1.1.

2. We briefly describe the argument system (PKilian,VKilian) = Kilian[PCIP,HCRHF]. Its soundness follows
from [Kil88, BCS16] (since we are instantiating Kilian’s protocol with a sound PCIP and a CRHF).
This step is done in Section 4.1.2.

3. Finally, for every hash family HFS, we present the protocol FSKM[PCIP,HCRHF,HFS] and show an
attack that causes the verifier to accept every possible input x 6∈ L with probability 1. This last step
is done in Section 4.1.3.

4.1.1 A Contrived PCIP for L

We next construct our PCIP (P,V) for the language L. Before doing so, we first set up some tools that we
be used in the construction.

Some Useful Ingredients. Since L ∈ NP, by the PCP Theorem (Theorem 2.3), there exists a PCP
(PL,VL) for L with soundness error εL(λ) = neg(λ), query complexity qL = polylog(λ) and randomness
complexity rL = poly(log(n), log(λ)).

Recall that MerkleCom(h, s) is the Merkle tree root generated from s using the hash function h (see
Section 2.2.1). Let C be an efficiently computable and decodable error correcting code ensemble with
constant rate and constant δ0 > 0 relative distance (for more background on codes and the fact that such
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codes exist, see Appendix B and specifically Theorem B.3). We define an auxiliary pair language L′ as
follows:

L′ =

(r, π = C
(
〈hCRHF〉‖〈hFS〉

))
:
r ∈ {0, 1}λ,
〈hCRHF〉 and 〈hFS〉 are Boolean circuits, and
hFS
(
MerkleCom(hCRHF, (1‖π))

)
= r


In other words, L′ ⊆ {0, 1}∗ × {0, 1}∗ is a pair language, in which the first part of the input r is a binary
string of length λ (which will be the security parameter in the upcoming PCIP), and the second part of the
input π is an encoding under C of two Boolean circuits. Jumping ahead, the first circuit hCRHF will play
the part of the CRHF used in Kilian’s protocol, while the circuit hFS will be the FS hash function. For such
(r, π), it holds that (r, π) ∈ L′ if and only if hFS

(
MerkleCom(hCRHF, (1‖π))

)
= r.

Observe that L′ can be decided by a polynomial time Turing machine (i.e., polynomial in the input length
|r| + |π|). Therefore, by Theorem 2.5 there exists a PCPP proof-system for L′, denoted by (PL′ ,VL′) such
that for input (r, π) and every proximity parameter δ > 0, the soundness error is εL′(λ) = neg(λ), query
complexity qL′ = poly(log(λ), 1δ ) and randomness complexity rL′ = poly(log(λ), log(t)/δ), where t = |r|+ |π|.
Furthermore, the prover PL′ runs in time poly(t, log(λ)), and VL′ runs in time poly(log(t), log(λ), 1δ ).

PCIP for L. With these tools in hand, we are ready to present the PCIP. Intuitively (and as hinted on in
Section 1.4), the verifier V will accept input x in one of two possible scenarios: The first scenario (denoted
by having the prover initially send a bit b = 0), is that the prover provides V with an honest PCP proof for
x ∈ L, thus allowing the honest prover P to convince the verifier with probability 1. The second scenario
(denoted by having the prover send b = 1), is that the prover manages to pass the following test (which will
act as a backdoor once we compile the PCIP with FSKM):

The prover P is required to send a description of a Fiat-Shamir hash function hFS which manages to
accurately predict r1, the random coins of V, which have yet to be sampled. A cheating PCIP prover has
2−|r1| = negl(λ) probability of passing the challenge.

In contrast, once the FSKM transform is applied, the challenge becomes easy to beat. A malicious prover
will simply commit to the FS hash function provided by the verifier, as described in the FSKM transform.
Therefore, the malicious prover will be able to predict the randomness of the verifier, thus passing the test.

In order to make the number of queries by V polylogarithmic in λ, we shall have the prover send its
messages via an error-correcting code and run a PCPP checking that the verifier would have accepted had it
explicitly read all of π1.

The PCIP (P,V) is formally described in Fig. 3. In the protocol we use the convention that messages
received by the verifier from the prover, which might be maliciously crafted, are denoted with a tilde.

We emphasize that while the honest prover always sends b = 0 and π2 as the empty string, a cheating
prover might not. Indeed, we added the possibility of sending different values here as a kind of backdoor. As
we shall show, this backdoor does not violate the soundness of (P,V) as a PCIP (see Lemma 4.2) but com-
pletely breaks the soundness of the construction after applying Kilian and Fiat-Shamir (see Corollary 4.3).

Lemma 4.2. The protocol (P,V) is a PCIP for L with negligible soundness error.

Proof. We show that the protocol satisfies the required complexity restrictions and that completeness and
soundness hold.

Complexity. The verifier V first reads b. This means that 1 bit is queried, in addition to the bits queried
by both of the verifiers VL and VL′ .8 Therefore the total query complexity is O(qL + qL′) = polylog(λ).

The verifier V only uses randomness to simulate VL and VL′ , therefore its randomness complexity is
O(rL + rL′) = polylog(n, λ).

Both verifiers VL and VL′ run in time polylog(n, λ) and so V runs in time polylog(n, λ) as well. The prover
P also runs in time poly(n, log(λ)), as simulating PL(x,w, 1λ) takes time poly(n, log(λ)).

8The verifier can be easily made non-adaptive by having it make both query sets and (at most) doubling its query complexity.
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Protocol 3: PCIP for L ∈ NP

Common input: Input x ∈ {0, 1}n and security parameter 1λ

Prover’s auxiliary input: Witness w
1 P sends (b‖π1), where b = 0 and π1 = PL(x,w) is the PCP proof.

2 V receives (b̃‖π̃1), where b̃ ∈ {0, 1}. If b̃ = 0, V generates r1 ∈R {0, 1}rL (i.e., randomness for the PCP

verifier VL). Otherwise, (i.e., b = 1) V chooses uniformly r1 ∈R {0, 1}λ.a

3 V sends r1 to P.
4 P sends an empty string π2.
5 V receives the string π̃2.

6 If b = 0, then V runs V π̃1

L (x, 1λ), and accepts iff VL accepted.

7 Otherwise, (i.e., b = 1) the verifier V runs V π̃1,π̃2

L′
(
r1, 1

λ, δ0/2
)
, where π̃1 is used as the implicit input,

π̃2 is used as the proof, and δ0/2 is the proximity parameter. The verifier V accepts iff VL′ accepted.

aFormally, for the protocol to be public coin, we need r1 to be completely random and not depend on prior messages. This
can be achieved by first having the prover send b in a separate message, which the verifier will then query (thus learning the
value of b̃), and having the verifier pad r1 to be of length max {rL, λ}. Indeed, we only make this distinction to highlight the
different role played by r1 when b = 0 and when b = 1.

Figure 3: (P,V) a PCIP for L.

Completeness. Let x ∈ L. By the completeness of the PCP (PL,VL) for π1 = PL(x,w, 1λ) it holds that
Pr[Vπ1

L (x, 1λ) = 1] = 1. By construction, since VL accepts, the verifier V will also accept.

Soundness. Let x /∈ L and P∗ be a malicious prover. Without loss of generality we can assume that P∗
is deterministic (by fixing the best possible choice of random string). Denote the first message sent by P∗
on input x by (b̃, π̃1), where b̃ ∈ {0, 1}.

Assume first that b̃ = 0. Note that since P∗ provides π̃1 before V sends its queries, by the soundness of
the PCP (PL,VL) and the fact that x /∈ L, it holds that

Pr
[
V π̃1

L (x, 1λ) = 1
]

= negl(λ),

and so in this case V accepts with negligible probability as required.
Consider now the case that b̃ = 1. We now further distinguish between two cases. First, let us assume

that ∆(π̃1, C) ≥ δ0/2, where recall that δ0 is the relative distance of the code C. Given r1, by the definition
of L′, the projection of L′ on r1 is

L′(r1) =
{
π s.t. π = C(〈hCRHF〉‖〈hFS〉) and hFS(com) = r1, for com = MerkleCom(hCRHF, (1‖π))

}
.

In particular, L′(r1) ⊆ C, which means that ∆(π̃1,L′(r1)) ≥ ∆(π̃1, C) ≥ δ0/2. Therefore, by the
soundness of (PL′ ,VL′), it holds that

Pr
[
V π̃1,π̃2

L′ (r1, 1
λ, δ0/2) = 1

]
= negl(λ),

as desired.
Thus, we may now assume that ∆(π̃1, C) < δ0/2. Since C has relative distance δ0, there exists a unique

codeword w ∈ C such that ∆(π̃1, w) < δ0/2.
The codeword w can be parsed as w = C(〈hCRHF〉‖〈hFS〉) for 〈hCRHF〉 the circuit description of a CRHF and

〈hFS〉 the circuit description of a FS hash function. Let com = MerkleCom(hCRHF, (1‖w)). The probability
that the malicious adversary P∗ can choose hFS such that hFS(com) = r1, before r1 was even sampled is
2−|r1| = 2−λ. Assuming hFS(com) 6= r1, by the relative distance of the code C it holds that ∆

(
π̃1,L′(r1)

)
≥

∆
(
C(〈hCRHF〉‖〈hFS〉),L′(r1)

)
≥ δ0 > δ0/2. Therefore, by the soundness of (PL′ ,VL′) it holds that

Pr
[
V π̃1,π̃2

L′
(
r1, 1

λ, δ0/2
)

= 1|hFS(com) 6= r1

]
= negl(λ).

24



Protocol 4: Kilian of (P,V)

Common input: Input x ∈ {0, 1}n and security parameter 1λ

Prover’s auxiliary input: Witness w

1 VKilian generates a hash function hCRHF ← H(λ)
CRHF and sends 〈hCRHF〉 to PKilian.

2 PKilian sends com1 = MerkleCom
(
hCRHF, (b‖π1)

)
, where b = 0 and π1 = PL(x,w).

3 VKilian generates r1 as defined by V, and sends r1 to PKilian.
4 PKilian reveals the queried values, by sending open1 = MerkleOpen(hCRHF, π1, Q1), where Q1 is the set

of queries generated by the verifier V with input x randomness r1.
5 PKilian sends com2 = MerkleCom(hCRHF, π2) where π2 is an empty string.
6 VKilian sends r2 as described by V.
7 PKilian sends open2 = MerkleOpen(hCRHF, π2, Q2), where Q2 is the set of queries generated by the

verifier V with explicit input r1 and randomness r2.
8 VKilian first computes vj = MerkleVer(hCRHF, comj , openj) for j ∈ {1, 2}. If v1 ∧ v2 6= 1, then VKilian

rejects.
VKilian extracts the following values from the openings open1 and open2:

• b̃ the first bit of (b̃‖π̃1), as committed to in com1, and revealed in open1.

•
{
b
(i1)
1

}
i1

the answers to the queries to π̃1, as specified by r1, and revealed in open1.

•
{
b
(i2)
2

}
i2

the answers to the queries to π̃2, as specified by r2, and revealed in open2.

If b̃ = 0, then VKilian emulates VL(x, 1λ) provided the answers
{
bi11
}
i1

to the queries in Q1, and accepts
if and only if VL accepted.
Otherwise, (for b̃ = 1) VKilian emulates VL′(r1, 1λ, δ0/2) provided the answers

{
bi11
}
i1
,
{
bi22
}
i2

to the
queries in Q1 and queries in Q2, respectively, and accepts if and only if VL′ accepted.

Figure 4: (PKilian,VKilian), an argument system for L.

Hence, by the soundness of (PL′ ,VL′)

Pr[V π̃1,π̃2

L′
(
r1, 1

λ, δ0/2
)

= 1] ≤ Pr[V π̃1,π̃2

L′
(
r1, 1

λ, δ0/2
)

= 1|hFS(com) = r1] · Pr[hFS(com) = r1]

+ Pr[V π̃1,π̃2

L′
(
r1, 1

λ, δ0/2
)

= 1|hFS(com) 6= r1] · Pr[hFS(com) 6= r1]

≤ 1 · 2−λ + negl(λ) · 1
= negl(λ).

Thus, in all cases the verifier V has a negligible probability of accepting.

4.1.2 Applying Kilian’s Protocol to (P,V)

As our next step (the second step in the outline), we present the protocol resulting from applying Kilian’s
protocol to the PCIP (P,V). The resulting protocol (PKilian,VKilian) is presented in Fig. 4.

Ben-Sasson et al. [BCS16] showed that applying Kilian’s protocol to any sound PCIP results in a sound
interactive argument. Thus, we obtain the following result as an immediate corollary of Lemma 4.2:

Corollary 4.3. The argument system (PKilian,VKilian) has negligible soundness error.

4.1.3 Attack on Fiat-Shamir of (PKilian,VKilian)

Lastly, consider (PFS,VFS), as presented in Fig. 5, the result of applying Fiat-Shamir to the previous protocol

for hash function ensemble HFS =
{
H(λ)

FS

}
λ
:
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Protocol 5: FSKM for L ∈ NP

Common input: Input x ∈ {0, 1}n and security parameter 1λ

Prover’s auxiliary input: Witness w

1 VFS generates hash functions hCRHF ← H(λ)
CRHF and hFS ← H(λ)

FS and sends their description to PFS.
2 PFS sends the following in a single message:

3 com1 = MerkleCom(hCRHF, (b‖π1)), where b = 0 and π1 = PL(x,w, 1λ).
4 r1 = hFS(com1).
5 open1 = MerkleOpen(hCRHF, (b‖π1), Q1), where Q1 is the set of queries generated by the verifier V

with input x randomness r1.
6 com2 = MerkleCom(hCRHF, π2), where π2 is an empty string.
7 r2 = hFS(com1‖r1‖open1‖com2).
8 open2 = MerkleOpen(hCRHF, π2, Q2), where Q2 is the set of queries generated by the verifier V with

explicit input r1 and randomness r2.
9 VFS first checks that r1 = hFS(com1) and r2 = hFS(com1‖r1‖open1‖com2), if not, it rejects.
VFS computes vj = MerkleVer(hCRHF, comj , openj) for j ∈ {1, 2}. If v1 ∧ v2 6= 1, then VFS rejects.
Lastly, VFS extracts the following values from the openings open1 and open2:

• b̃ the first bit of (b̃‖π̃1), as committed to in com1, and revealed in open1.

•
{
bi11
}
i1

the answers to the queries to π̃1, as specified by r1, and revealed in open1.

•
{
bi22
}
i2

the answers to the queries to π̃2, as specified by r2, and revealed in open2.

If b̃ = 0, then VFS emulates VL(x, 1λ) provided the answers
{
bi11
}
i1

to the queries in Q1, and accepts if
and only if VL accepted.
Otherwise, (for b̃ = 1) VFS emulates VL′(r1, 1λ, δ0/2) provided the answers

{
bi11
}
i1
,
{
bi22
}
i2

to the
queries in Q1 and Q2, respectively, and accepts if and only if VL′ accepted.

Figure 5: Fiat-Shamir of (PKilian,VKilian).
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Lemma 4.4. There exists a malicious prover P∗ such that for every input x ∈ {0, 1}n and security parameter
λ, it holds that P∗ runs in time poly(n, λ) and

Pr
[
〈P∗(x, 1λ)↔ VFS(x, 1λ)〉 = 1

]
= 1.

Proof. Let x ∈ {0, 1}n and λ be a security parameter. Consider the following construction of a malicious
prover P∗:

1. Upon receiving 〈hCRHF〉 and 〈hFS〉 from VFS, the prover P∗ computes π1 = C(〈hCRHF〉‖〈hFS〉). The
prover P∗ sends com1 = MerkleCom

(
hCRHF, (b‖π1)

)
, with b = 1 (indeed b = 1 indicated that we are

using the “backdoor”).

2. P∗ generates r1 = hFS(com1) in accordance with the Fiat-Shamir transform.

3. P∗ reveals the first commitment by sending open1 = MerkleOpen(hCRHF, (1‖π1), r1).

4. For the second message, P∗ sets π2 = PL′((r1, π1), 1λ).

5. Once more, by the Fiat-Shamir transform, r2 = hFS(com1‖r1‖open1‖com2).

6. P∗ reveals the second commitment by sending open2 = MerkleOpen(hCRHF, π2, r2).

Note that r1 = hFS(com1), r2 = hFS(com1‖r1‖open1‖com2) as P ∗ generated randomness according to the
FS transform, and that v1 = v2 = 1 as P ∗ performs the decommitments honestly.

Since π1 = C(〈hCRHF〉‖〈hFS〉), and for com1 = MerkleCom(hCRHF, (1, π)) it holds that hFS(com1) =
r1, it implies that (r1, π1) ∈ L′. Therefore, by the completeness of (PL′ ,VL′) and the choice of π2 =
PL′((r1, π1), 1λ), it holds that

Pr[V π̃1,π̃2

L′ (r1, 1
λ, δ0/2) = 1] = 1

which by the definition of VFS implies that

Pr[〈P∗(x, 1λ)↔ VFS(x, 1λ)〉 = 1] = 1.

Observe that both |〈hCRHF〉| = poly(n, λ) and |〈hFS〉)| = poly(n, λ). Therefore, by the efficient encoding
of C, the computation of C(〈hCRHF〉‖〈hFS〉) takes poly(n, λ) time. The protocols MerkleCom and MerkleOpen
both take poly(n, λ) time. Lastly, the emulation of PL′ can also be performed in time poly(n, λ).

Therefore, the malicious prover P∗ runs in time poly(n, λ), convincing the prover VFS to accept any input
x with probability 1.

5 A Secure Fiat-Shamir Hash Function for a Trivial PCP

In this section we show that the FSKM protocol can be securely instantiated (based on standard assumptions),
albeit only for a trivial PCP. We start by introducing the tools that we will use in the construction.

5.1 Technical Tools: Correlation Intractability and Somewhere Statistically
Binding Hashing

The following definitions are taken verbatim from [CCH+19].

Definition 5.1 (Correlation Intractability). For a given relation ensemble R = {Rλ ⊆ {0, 1}n(λ)×{0, 1}m(λ)},
a hash family H = {Hλ : {0, 1}s(λ) × {0, 1}n(λ) → {0, 1}m(λ)} is said to be δ-correlation intractable for R if
for every polynomial-size adversary A,

Pr
h←Hλ,x←A(h)

[(x, h(x)) ∈ R] = O(δ(λ)).
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Definition 5.2 (Sparsity). For any relation ensemble R = {Rλ ⊆ {0, 1}n(λ)×{0, 1}m(λ)}, we say that R is
ρ(·)-sparse if for λ ∈ N and any x ∈ {0, 1}n(λ),

Pr
y←{0,1}m(λ)

[(x, y) ∈ R] ≤ ρ(λ).

Definition 5.3 (Efficiently Searchable Relation). We say that a relation ensemble R is efficiently searchable
if there exists a poly(λ)-time function f = fR : {0, 1}∗ → {0, 1}∗ that for any input x, if (x, y) ∈ R, then
y = f(x); that is, f(x) is the unique y such that (x, y) ∈ R, provided such a y exists.

Definition 5.4 (Efficiently Sampleable Relation). We say that a relation ensemble R is efficiently sampleable
if there exists a poly(λ)-time algorithm Samp(x; r) such that for any (x∗, y∗) ∈ R,

Pr
r

[Samp(x∗; r) = y∗] = |{y ∈ {0, 1}m : (x∗, y) ∈ R}|−1 .

It is shown in [CCH+19] that correlation intractability for efficiently searchable relations directly implies
correlation intractability for efficiently sampleable relations for which every input x has at most polynomially
many outputs y for which (x, y) ∈ R.

Peikert and Shiehian [PS19] recently constructed a correlation intractability hash family for any efficiently
searchable relation, assuming LWE with suitable polynomial approximation factors.

Definition 5.5 (SSB Hash [HW15a]). A somewhere statistically binding hash (SSB) consists of polynomial
time algorithms HSSB = (GenSSB,EvalSSB,OpenSSB,VerifySSB) along with a block alphabet Σ = {0, 1}`blk ,
output size `hash and opening size `opn, where `blk(λ), `hash(λ), `opn(λ) are some fixed polynomials in the
security parameter. The algorithms have the following syntax:

• hSSB ← GenSSB(1λ, L, i) takes as input an integer L ≤ 2λ and index i ∈ {0, . . . , L − 1} (both of these
are in binary) and outputs a public hashing key hSSB.

• Eval(hSSB, x) is a deterministic polynomial time algorithm that takes the hash key hSSB and input
x = (x[0], . . . , x[L− 1]) ∈ ΣL and outputs y ∈ {0, 1}`hash .

• π ← OpenSSB(hSSB, x, j) : Given the hash key hSSB, x ∈ ΣL, and an index j ∈ {0, . . . , L − 1}, creates
an opening π ∈ {0, 1}opn.

• VerifySSB(hSSB, y, j, u, π) : Given a hash key hSSB and y ∈ {0, 1}`hash , an integer index j ∈ {0, . . . , L−1},
a value u ∈ Σ and an opening π ∈ {0, 1}`opn , outputs a decision ∈ {accept, reject}. This is intended to
verify that a pre-image x of y = Eval(hSSB, x) has x[j] = u.

We require the following properties:

Correctness: For any integers L ≤ 2λ and i, j ∈ {0, . . . , L− 1}, and hSSB ← GenSSB(1λ, L, i), x ∈ ΣL, π ←
OpenSSB(hSSB, x, j) : we have VerifySSB(hSSB,Eval(hSSB, x), j, x[j], π) = accept.

Index Hiding: We consider the following game between an attacker A and a challenger:

• The attacker A(1λ) chooses an integer L and two indices i0, i1 ∈ {0, . . . , L− 1}.

• The challenger chooses a bit b← {0, 1} and sets hSSB ← GenSSB(1λ, L, ib).

• The attacker A gets hSSB and outputs a bit b′.

We require that for any polynomial time attacker A we have |Pr[b = b′]− 1
2 | ≤ negl(λ) in the above game.

Somewhere Statistically Binding: We say that hSSB is statistically binding for an index i if there do
not exist any values y, u 6= u′, π, π′ s.t. VerifySSB(hSSB, y, i, u, π) = VerifySSB(hSSB, y, i, u

′, π′) = accept. We
require that for any integers L ≤ 2λ, i ∈ {0, . . . , L−1}, the key hSSB ← GenSSB(1λ, L, i) is statistically binding
for i.

Hubáček and Wichs [HW15a] construct an SSB hash from an FHE scheme E = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval).
We will not give all the details of the construction here, and instead just note that for an hSSB generated
with index i, the value of Eval(hSSB, x) is FHE.Encsk(x[i]), where the FHE key pair (pk, sk) is drawn during
SSB key generation.
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5.2 An FSKM-Compatible Construction

We consider a variant of the trivial PCP Π∅ defined in Section 3.2. In this variant, the PCP proof string
is composed of q(λ) blocks, each of length log2(λ) bits. The verifier selects a random block i ∈ [q] and a

random string r ∈ {0, 1}log2(λ) and check that the i-th block of the proof string is exactly equal to r. In the
rest of this subsection we refer to this PCP as PCP∅.

We show that under standard assumptions, it is possible to soundly instantiate the FSKM protocol with
Π∅, if we replace the collision resistant hash function with an SSB hash. The Fiat-Shamir hash function we use
will be a correlation intractable hash function for efficiently searchable relations. While FSKM for the empty
language is not necessarily interesting on its own, we hope that this is a first step towards obtaining stronger
possibility results for soundly instantiating FSKM. The reason that we do not contradict Corollary 3.6 is
because our feasibility result requires the collision resistant hash function to satisfy an additional property.

Theorem 5.6. Let HSSB = (GenSSB,EvalSSB,OpenSSB,VerifySSB) be the somewhere statistically binding hash
from [HW15a], and let HCI be a correlation intractable hash family for efficiently searchable relations. Then
the protocol FSKM[Π∅,HSSB,HCI] is sound.

Proof. Let (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) be an FHE scheme and fix polynomials q(λ) and m(λ).
For a given (pk, sk)← FHE.Gen(1λ), define the following relation Rsk:

Rsk = {(x, (r0 | r1)) : r0 ∈ {0, 1}log(q(λ)), r1 ∈ {0, 1}m(λ), r1 = FHE.Decsk(x)}.

Note that Rsk is efficiently sampleable given sk, and has polynomially many outputs (r0 | r1) for each input
x. Thus there exists a hash family HCI that is correlation intractable for Rsk, assuming LWE.

Now consider HSSB with block alphabet {0, 1}log2(λ). The FSKM[Π∅,HSSB,HCI] protocol is written ex-
plicitly in Fig. 6.

Protocol 6: FSKM[Π∅,HSSB,HCI]

Common input: 1λ

1 V generates hash keys hSSB ← GenSSB(1λ, q(λ), 0), hCI ← H(λ)
CI and sends them to P.

2 P chooses arbitrary π, computes rt = EvalSSB(hSSB, π), (r0 || r1) = hCI(rt) where r0 ∈ {0, 1}log(q(λ)) and

r1 ∈ {0, 1}log
2(λ), and sends (rt, r0, r1, op := Open(hSSB, rt, r0)) to V.

3 V accepts iff hCI(rt) = (r0 || r1) and Verify(hSSB, rt, r0, r1, op) accepts.

Figure 6: The Fiat-Shamir transform applied to Kilian’s protocol, instantiated with an SSB hash and
correlation intractable hash function. Note that there is no common input x since Π∅ is for the empty
language.

We argue that FSKM[Π∅,HSSB,HCI] is sound. Let A be a prover that convinces V to accept some
statement x with 1/poly(λ) probability. Since there are q(λ) = poly(λ) possible values of r0, by averaging,
there exists some r∗0 ∈ {0, 1}log(q(λ)) such that on input hSSB and hCI, A returns (rt, r0, r1, op) such that
Verify(hSSB, rt, r0, r1, op) accepts and r0 = r∗0 with 1/poly(λ) probability. Thus, by the index hiding property
of HSSB, if hSSB ← GenSSB(1λ, q(λ), r∗0), (that is, the SSB hash key is sampled to be statistically binding at
position r∗0) then A also returns (rt, r0, r1, op) such that the above properties are satisfied with 1/poly(λ)
probability.

Now consider the following reduction B that breaks the correlation intractability of HCI. B receives
hCI from its challenger and samples hSSB ← Gen(1λ, q(λ), r∗0). B sends (hCI, hSSB) to A, which returns
(rt, r0, r1, op). Then with 1/poly(λ) probability, rt is a hash that opens to r1 at location r0 = r∗0 , so
r1 = FHE.Decsk(rt), and B can output (rt, (r∗0 | r1)) which breaks the correlation intractability of HCI.
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A A SNARK with Computationally Unique Proofs

In this section, we argue that a fully-succinct SNARK implicit in [BCI+13, BCCT13] has computationally
unique proofs. In particular, we show that a particular preprocessing SNARK of [BCI+13] built on a knowl-
edge of exponent assumption (see Assumption A.3 below) has computationally unique proofs.9 Then we
argue that the bootstrapping procedure of [BCCT13] which converts a preprocessing SNARK into a fully-
succinct SNARK preserves the computational unique proofs property. This implies that the impossibility
stated in Theorem 3.5 holds assuming Assumption A.3. Throughout this section, all SNARKs will be publicly
verifiable.

We will actually first show how to construct a SNARK satisfying a weaker soundness property, which
we call leveled adaptive proof of knowledge.10 This is a notion of soundness against cheating provers that
are not only polynomial-size, but also only make claims whose NP verification time grows polynomially. In
particular, there are no guarantees about polynomial-size provers that on security parameter λ, produce a
false claim about a time-λlog λ nondeterministic computation.

• Leveled Adaptive Proof of Knowledge. For every polynomial-sized prover P∗ there exists a
polynomial-sized extractor EP∗ such that for every auxiliary input z ∈ {0, 1}poly(λ), every time bound

9We note that [BCI+13] gives more than one preprocessing SNARK construction, but we focus on a particular one.
10In previous work, SNARKs satisfying a variant of this property were called SNARKs for NP, in contrast to SNARKs for the

universal relation.
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B ∈ N, and every constant c > 0,

Pr

 V(crs, (〈M〉, x, T ), π) = 1
T ≤ |x|c(

(〈M〉, x, T ), w
)
/∈ RU

:
crs← G(1λ, B)(

(〈M〉, x, T ), π
)
← P∗(z, crs)

w ← EP∗(z, crs)

 ≤ negl(λ).

We sketch (following [BCCT12, Theorem 5.5]) how to convert a SNARK that is leveled adaptive proof
of knowledge with computationally unique proofs into a SNARK that is (non-leveled) adaptive proof of
knowledge and has computationally unique proofs, under the assumption that there exists an exponentially
secure injective one-way function f . That is, we assume there is an ε > 0 such that, given f(x) for x← {0, 1}n,
no 2εn-size adversary can find x with probability better than 2−εn.

We will augment the SNARK crs with f(u(1)), . . . , f(u(λ)), where each u(i) is sampled uniformly at
random from {0, 1}i. Now, we will require that a valid SNARK for

(
〈M〉, x, T

)
for 2t ≤ T < 2t+1 must also

include u(t). This is feasible for the honest prover with little additional overhead — generating a SNARK
would anyways have taken time T , and finding u(t) via brute-force takes time 2t · poly(t) ≤ Õ(T ). This
augmentation also clearly preserves the computationally unique proofs property.

On the other hand, let P ∗ = {P ∗λ} be any ensemble of polynomial size provers such that for all λ in
an infinite set Λ ⊆ Z+, the prover P ∗λ convinces the verifier of a false statement (〈Mλ〉, xλ, Tλ) with non-
negligible probability (where each Mλ, xλ, and Tλ is a random variable). There are two cases: either there is
some O(log λ) bound on tλ that holds with overwhelming probability, in which case the leveled adaptive proof
of knowledge property is applicable, or there is an ω(log λ) lower bound that holds on tλ with non-negligible
probability for all λ in some infinite set Λ′ ⊆ Λ, in which case the exponential security of f is violated.

Thus, in the rest of this section we focus on sketching why the [BCI+13, BCCT12] SNARK has compu-
tationally unique proofs.

A.1 Definitions and Assumptions

A linear probabilistically checkable proof (LPCP) of length m is an oracle that computes a linear function
〈π, ·〉 : Fm → F, so that the answer to each oracle query qi ∈ Fm is 〈π,qi〉 ∈ F. In what follows, we abuse
notation and write such a linear function as π : Fm → F. For completeness, we state below the formal
definition given in [BCI+13].

Definition A.1 (Linear PCP (LPCP) [BCI+13]). Let F be a finite field, PLPCP be a polynomial-time algo-
rithm, and VLPCP be a polynomial-time oracle machine. (PLPCP,VLPCP) is an input-oblivious k-query linear
PCP for language L ∈ NP over F with knowledge error ε and query length m if the following are satisfied.

1. Syntax: On any input x and oracle π, the verifier Vπ
LPCP makes k “input-oblivious” queries to π and

then decides whether to accept or reject.

That is, VLPCP consists of a probabilistic query algorithm QLPCP and a deterministic decision algorithm
DLPCP working as follows. Based on its internal randomness, and independent of x, QLPCP generates
k queries q1, . . . ,qk ∈ Fm to π and state information u. Then, given x, u, and the k oracle answers
〈π,q1〉, . . . , 〈π,qk〉, DLPCP accepts or rejects.

On any input x ∈ L with witness w, the prover PLPCP(x,w) outputs the description of a linear function
π : Fm → F.

2. Completeness: For every x ∈ L with witness w, the output of PLPCP(x,w) is a description of a linear
function π : Fm → F such that Vπ

LPCP(x) accepts with probability 1.

3. Knowledge: There exists a polynomial-time oracle machine ELPCP (which we call a knowledge extrac-
tor) such that for every linear function π∗ : Fm → F, if the probability that Vπ∗

LPCP accepts is greater
than ε, then Eπ∗LPCP outputs w such that w is a witness for x ∈ L.
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We now give the [BCI+13] definition of a linear interactive proof (LIP). An LIP differs from an LPCP in
that the answer to each oracle query is allowed to be an affine function of qi, and furthermore the affine
function itself can depend on i (this relaxation applies to both honest and cheating provers). In contrast,
an LPCP restricts the oracle responses to use the same coefficients π for each qi and does not allow affine
shifts.

Definition A.2 (Two-message Linear Interactive Proof [BCI+13]). This is defined exactly like an LPCP,
except that we consider more general linear prover strategies. For a k-query LIP over finite field F, we
consider affine strategies Π∗ : Fkm → Fk where Π∗(x) = A · x+ b. VLIP consists of a query algorithm QLIP

and a decision algorithm DLIP, where VLIP queries its oracle non-adaptively with the concatenation q ∈ Fkm
of k queries q1, . . . ,qk ∈ Fm, and receives back A · q + b. For the knowledge property, we require that there
exists a polynomial-time oracle machine ELIP (which we call a knowledge extractor) such that for every affine
prover strategy Π∗ = (A,b), if the probability that VΠ∗

LIP accepts is greater than ε, then EΠ∗

LIP outputs w such
that w is a witness for x ∈ L.

We will also require the following knowledge of exponent assumption over bilinear groups stated in [BCI+13]
to construct a preprocessing SNARK (note this assumption is essentially identical to the assumptions used
in [Gro10, Lip12, GGPR13]). We stress that while this is an extremely strong assumption, its security can
be proven in the generic group model [Nec94, Sho97, Mau05].

Assumption A.3 (KEA and poly-power discrete log in bilinear groups [BCI+13]). There exists an efficiently-
sampleable group ensemble {Gλ}λ∈N, where for (G,GT ) ∈ Gλ, G and GT are groups of prime order p ∈
(2λ−1, 2λ) having a corresponding efficiently-computable pairing e : G × G → GT , such that the following
properties hold.

1. Knowledge of exponent: For any polynomial-size adversary A, there exists a polynomial-size ex-
tractor E such that for any “benign” auxiliary input z ∈ {0, 1}poly(λ), and any group element sampler
S,

Pr

 f ′ = fα

Πi∈[t]g
πi
i 6= f

:

(G,GT )← Gλ
(g1, . . . , gt)← S(G,GT )

α← Fp
(f, f ′)← A(G,GT , g1, gα1 , . . . , gt, gαt ; z)

(π1, . . . , πt)← E(G,GT , g1, gα1 , . . . , gt, gαt ; z))

 ≤ negl(λ).

2. Hardness of poly-power discrete logarithms: For any polynomial-size adversary A, polynomial
t = poly(λ), and any group generator sampler S (which is a potentially randomized algorithm that on
input a group description G outputs a group generator g),

Pr

s′ = s :

(G,GT )← Gλ
s← Fp

g ← S(G) where 〈g〉 = G
s′ ← A(G,GT , g, gs, gs

2

, . . . , gs
t

)

 ≤ negl(λ).

We remark that our knowledge of exponent property in Assumption A.3 is formulated with respect to a
“benign” auxiliary input z. If z can be arbitrary, the results of [BCPR14] show that this assumption is false
assuming indistinguishability obfuscation exists. Since the [BCPR14] impossibility embeds an obfuscated
program into z, it does not rule out the case where z is drawn from a “benign” distribution (such as a
uniform distribution) which does not permit encoding of an obfuscated program. For our applications,
this restriction to “benign” distributions suffices. A similar restriction to such distributions is also made
in [CFH+15, FFG+16, Gro16, BCC+17].

A.2 A Preprocessing SNARK with Computationally Unique Proofs

In this section, we show that the Bitansky et al. [BCI+13] preprocessing SNARK constructed from a variant
of the Hadamard-based LPCP of Arora et al. [ALM+98] (hereafter the Hadamard PCP) has computationally
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unique proofs. That is, for every polynomial-size adversary A, there exists a polynomial-size extractor EA
such that

Pr


V(τ, x, π1) = 1
V(τ, x, π2) = 1

π1 6= π2
(x,w1) /∈ R ∨ (x,w2) /∈ R ∨ w1 = w2

:
crs← G(1λ)

(y, π1, π2)← A(crs)
w1, w2 ← EA(crs)

 ≤ negl(λ).

Note that, for simplicity, we have suppressed the time bound B, constant c, and auxiliary input z that
appear in Definition 3.2, as they will not be relevant to the discussion here. Also note that as in Definition 3.2,
we always assume τ is included in crs since we only consider public verifiability.

At a high level, the [BCI+13] preprocessing SNARK is constructed as follows. First, [BCI+13] give a
simplified version of the Hadamard PCP, formulated as an LPCP. Next, they transform this LPCP into
an LIP via a generic procedure ([BCI+13, Construction 3.1]). In the final step, they turn the resulting
LIP into a preprocessing SNARK by using a special “linear-only encoding scheme.” We show that the
computationally unique proofs property holds for the original [BCI+13] LPCP and is maintained through the
above transformations.

A.2.1 Step 1: An LPCP from Hadamard with Unique Proofs

We proceed to give a quick overview of the LPCP of [BCI+13] based on the Hadamard PCP. The construction
is for a relation R that is decided by an s-gate arithmetic circuit C : Fn × Fh → F` in the following sense.
For x ∈ Fn and w ∈ Fh, (x,w) ∈ R iff C(x,w) = 0`. We let zi denote the value of the i-th wire of C on
input statement x ∈ Fn and witness w ∈ Fh, where we order starting at the input wires and ending with
the output wires. Let z denote the length s vector consisting of all s wire values. The proof π is simply the
length s+ s2 vector (z, z⊗ z), consisting of all wire values zi and all pairwise products zi · zj .

The verifier makes three queries q1,q2,q3. The first query asks for 〈r1, z〉, where r1 is sampled uniformly
at random from Fh. The second query asks for (r1 ⊗ r1) · (z⊗ z). The decision algorithm DLPCP checks that
the prover’s answers to the second query is the square of its answer to the first. If the proof is not of the
form (z, z⊗ z) then, by the Schwartz-Zippel Lemma, with probability O(1/|F|) the verifier rejects. Thus, we
may assume that the proof π is of the form (z, z⊗ z), for some z ∈ Fs. Next, the verifier must confirm that
the first n entries of z are equal to the statement x, the last ` entries of z are 0, and for each gate, the output
wire is consistent with the input wires. This is all accomplished with one linear query q3 (see [BCI+13,
Section A.1] for a more precise description). Let rx be the first n elements of q3. rx is included in the
state information u, and the decision algorithm DLPCP checks that the prover’s answer to the third query is
equal to 〈rx · x〉. Again, by Schwartz-Zippel, if this check passes, then z begins with x, ends with 0’s, and
is consistent with all gates of C, with overwhelming probability.

Now we can argue that there exists a special knowledge extractor E∗LPCP such that for every statement x
and pair of linear functions π1,π2 such that π1 6= π2,

Pr

 DLPCP(x,u, {〈π1,qi〉}i) = 1
DLPCP(x,u, {〈π2,qi〉}i) = 1

(x,w1) /∈ R ∨ (x,w2) /∈ R ∨w1 = w2

:
(u, {qi}i)← QLPCP

w1,w2 ← E∗LPCP(x,π1,π2)

 ≤ negl(λ).

The extractor simply returns the (n + 1)th through (n + h)th elements of π1 and π2, respectively. The
(informal) arguments above establish that (with overwhelming probability) DLPCP will only accept a proof
that has the form (z, z ⊗ z), where z represents a consistent assignment to the circuit C(x, ·) that outputs
0`. Now assume that the extracted w1 = w2. Then each proof is of the form (z, z⊗ z), where z represents
a consistent assignment to all the wires of the circuit C(x,w) that outputs 0` (in particular implying that
(x,w1) ∈ R, (x,w2) ∈ R). However, there is only one consistent assignment once the entire input is fixed,
meaning it must be the case that π1 = π2, a contradiction.
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A.2.2 Step 2: An LIP with Unique Proofs

Next, Bitansky et al. [BCI+13] show a generic transformation from a k-query LPCP to a (k + 1)-query LIP.
The goal is to force the prover to use the same linear function π (with no affine shift) to answer each query
qi, so that any affine prover strategies that do not correspond to valid LPCP prover strategies will fail. This
is accomplished by having the verifier’s (k + 1)th query be a random linear combination of q1, . . . ,qk, and
having DLIP verify that the (k + 1)th answer is the appropriate linear combination of the first k answers.
Again, this is shown to be sound in [BCI+13] via an application of Schwartz-Zippel. In addition, the proof
given also suffices to show that there exists a special extractor E∗LIP such that for every instance x and pair
of (not necessarily unequal) affine prover strategies Π∗1 = (A1,b1),Π∗2 = (A2,b2),

Pr


DLIP(x,u,a1) = 1
DLIP(x,u,a2) = 1

a1 6= a2

DLPCP(x,u, {〈π1,qi〉}i∈[k]) 6= 1
∨ DLPCP(x,u, {〈π2,qi〉}i∈[k]) 6= 1

∨ π1 = π2

:

(u,q)← QLIP

a1 = A1 · q + b1

a2 = A2 · q + b2

q = (q1‖q2‖ . . . ‖qk+1)
π1,π2 ← E∗LIP(x, (A1,b1), (A2,b2))

 ≤ negl(λ).

In particular, [BCI+13] show that if the prover strategy (A,b) causes the verifier VLIP to accept with answers
a, then with overwhelming probability, it is possible to extract a π such that ai = 〈π,qi〉 for all i ∈ [k], and
that π causes DLPCP to accept with queries {qi}i∈[k]. If a1 6= a2, then clearly the extracted π1,π2 must be
unequal.

A.2.3 Step 3: A Preprocessing SNARK with Unique Proofs

Finally, Bitansky et al. [BCI+13] compile the Hadamard-based LIP into a preprocessing SNARK by using a
special “linear-only one way encoding” scheme, which has two (deterministic) modes of encryption Enc and
SEnc, where Enc is a linear-only mode of encoding and SEnc is a standard mode of encoding. Roughly, such
a scheme is linearly homomorphic with respect to the Enc encodings, and additionally guarantees that if
an adversary A is given some set of encodings Enc(a1), . . . ,Enc(am),SEnc(ã1), . . . ,SEnc(ãm̃), and produces
new encodings Enc(a∗1), . . . ,Enc(a∗m∗), it is possible to extract from A an affine transformation (A,b) such
that (a∗1, . . . , a

∗
m∗)
> = A · (a1, . . . , am)> + b. Bitansky et al. [BCI+13] provide a construction of linear-only

one way encoding scheme from Assumption A.3.
At a high level, the SNARK crs consists of Enc encodings of the set of LIP verifier queries q and SEnc

encodings of the LIP verifier state u. The SNARK prover P uses the linear homomorphism property of the
encoding scheme to compute answers to the queries q, and the SNARK verifier V uses the decision algorithm
DLIP and a special zero-test property of the encoding scheme to verify the proof. Now it follows from
properties of the encoding scheme that for every polynomial-size prover A, there exists a polynomial-size
extractor E∗ such that

Pr


V(τ, x, π1) = 1
V (τ, x, π2) = 1

π1 6= π2
DLIP(x, τ,a1) 6= 1 ∨ DLIP(x, τ,a2) 6= 1 ∨ a1 = a2

:

crs← G(1λ)
(x, π1, π2)← A(crs)

(A1,b1), (A2,b2)← E∗(x, π1, π2)
a1 = A1 · q + b1,a2 = A2 · q + b2

 ≤ negl(λ).

The soundness proof in [BCI+13] shows that for any prover that produces an accepting π, there is an
extractor that produces (A,b) such that π = Enc(A ·q + b), and (A,b) is a perfectly convincing LIP prover
strategy. This means that a1 and a2 will both cause DLIP to accept, and furthermore, π1 6= π2 implies that
a1 6= a2 since Enc is deterministic and injective.

A.3 Removing Preprocessing from SNARKs with Unique Proofs

The above construction only gives a preprocessing SNARK with computationally unique proofs, while we
require a fully-succinct SNARK with computationally unique proofs for Theorem 3.5. To accomplish this, we
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rely on the work of Bitansky et al. [BCCT13] who gave a generic transformation from a publicly verifiable
preprocessing SNARK to a publicly verifiable fully-succinct SNARK. In this section, we outline why this
generic transformation preserves computationally unique proofs. For the sake of completeness, we first recall
some of the definitions given in [BCCT13] for notions of distributed computation, proof-carrying data, and
compliance. The following Appendix A.3.1 is taken verbatim from [BCCT13].

A.3.1 [BCCT13] Background

A distributed computation is viewed as a directed acyclic graphG = (V,E) with node labels linp : V → {0, 1}∗
and edge labels data : E → {0, 1}∗. The node label linp(v) of a node v represents the local input (which
may include a local program) used by v in its local computation. (Whenever v is a source or a sink,
we require that linp(v) = ⊥.) The edge label data(u, v) of a directed edge (u, v) represents the message
sent from node u to node v. Typically, a party at node v uses the local input linp(v) and input messages
(data(u1, v), . . . , data(uc, v)) where u1, . . . , uc are the parents of v in lexicographic order, to compute an
output message data(v, w) for a child node w; the party also similarly computes a message for every other
child node. We can think of the messages of edges going out from sources as the “inputs” to the distributed
computation, and the messages on edges going into sinks as the “ouptuts” of the distributed computation;
for convenience we will want to identify a single distinguished output.

Definition A.4. A (distributed computation) transcript is a triple T = (G, linp, data), where G =
(V,E) is a directed acyclic graph, linp : V → {0, 1}∗ are node labels, and data : E → {0, 1}∗ are edge labels;
we require that linp(v) = ⊥ whenever v is a source or a sink. The output of T, denoted out(T), is equal to
data(ũ, ṽ), where (ũ, ṽ) is the lexicogaphically first edge such that ṽ is a sink.

A proof-carrying transcript is a transcript where messages are augmented by proof strings, i.e., a function
proof : E → {0, 1}∗ provides for each edge (u, v) an additional label proof(u, v), to be interpreted as a proof
string for the message data(u, v).

Definition A.5. A proof-carrying (distributed computation) transcript PCT is a pair (T, proof) where
T is a transcript and proof : E → {0, 1}∗ is an edge label.

Next, we define what it means for a distributed computation to be compliant, which is the notion of
“correctness with respect to a given local property”. Compliance is captured via an efficiently-computable
compliance predicate C, which must be locally satisfied at each vertex; here, “locally” means with respect to
a node’s local input, incoming data, and outgoing data. For convenience, for any vertex v, we let children(v)
and parents(v) be the vector of v’s children and parents respectively, listed in lexicographic order.

Definition A.6. Given a polynomial-time predicate C, we say that a distributed computation transcript
T = (G, linp, data) is C-compliant (denoted by C(T) = 1) if, for every v ∈ V and w ∈ children(v), it holds
that

C(data(v, w); linp(v), inputs(v)) = 1,

where inputs(v) := (data(u1, v), . . . , data(uc, v)) and (u1, . . . , uc) := parents(v). Furthermore, we say that a
message z is C-compliant if there is T such that C(T) = 1 and out(T) = 1 .

Definition A.7. Given a distributed computation transcript T = (G, linp, data) and any edge (v, w) ∈ E,
we denote by tT,C(v, w) the time required to evaluate C(data(v, w); linp(v), inputs(v)). We say that T is
B-bounded if tT,C(v, w) ≤ B for every edge (v, w).

Definition A.8. The depth of a transcript T, denoted d(T), is the largest number of nodes on a source-
to-sink path in T minus 2 (to exclude the source and the sink). The depth of a compliance predicate
C, denoted d(C), is defined to be the maximum depth of any transcript T compliant with C.

Definition A.9. A proof-carrying data (PCD) system for a class of compliance predicates C is a triple
of algorithms (G,P,V) that works as follows:
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• The (probabilistic) generator G, on input the security parameter λ and time bound B, outputs a refer-
ence string σ which includes a verification state τ (we only consider public verifiability).

• For any C ∈ C, the (honest) prover PC := P(C, . . . ) is given a reference string σ, inputs ~zi with
corresponding proofs ~πi, a local input linp, and an output zo, and then produces a proof πo attesting to
the fact that zo is consistent with some C-compliant transcript.

• For any C ∈ C, the verifier VC := V(C, . . . ) is given the verification state τ , an output ~zi, and a proof
string πo, and accepts if it is convinced that zo is consistent with some C-compliant transcript.

After the generator G has been run to obtain σ, an interactive protocol ProofGen(C, σ, S,P) is run, where S
samples a graph and corresponding transcript T, and P iteratively provides proofs for the C-compliance of
T. This process outputs a triple (zo, πo,T) where zo is the output message with corresponding proof πo.

We require that the PCD system satisfy the following:

1. Completeness: For every compliance predicate C ∈ C and (possibly unbounded) distributed compu-
tation generator S,

Pr

 T is B-bounded
C(T) = 1

VC(τ, zo, πo) 6= 1

∣∣∣∣∣∣ σ ← G(1λ, B)
(zo, πo,T)← ProofGen(C, σ, S,P)

 ≤ negl(λ).

2. Proof of Knowledge: For every polynomial-size prover P∗ there exists a polynomial-size extractor
EP∗ such that for every compliance predicate C ∈ C, every large enough λ, every auxiliary input
x ∈ {0, 1}poly(λ), and every time bound B ∈ N,

Pr

 VC(τ, z, π) = 1
(out(T) 6= z ∨ C(T) 6= 1)

∣∣∣∣∣∣
σ ← G(1λ, B)

(z, π)← P∗(σ, z)
T← EP∗(σ, z)

 ≤ negl(λ).

3. Efficiency: There exists a universal polynomial p such that, for every compliance predicate C ∈ C,
every large enough security parameter λ ∈ N, every time bound B ∈ N, and every B-bounded distributed
computation transcript T,

• the generator G(1λ, B) runs in time

{
p(λ+B) for a preprocessing PCD

p(λ+ log(B)) for a fully-succinct PCD
,

• the prover PC(σ, data(v, w), linp(v), inputs(v), ~πi) runs in time{
p(λ+ |C|+ tT,C(v, w) +B) for a preprocessing PCD

p(λ+ |C|+ tT,C(v, w) + log(B)) for a fully-succinct PCD
,

• the verifier VC runs in time p(λ+ |C|+ |z|+ log(B)),

• and an honestly generated proof has size p(λ+ log(B)).

We shall also consider a restricted notion of PCD system: a path PCD system is a PCD system where
completeness is guaranteed to hold only for distributed computation transcripts T whose graph is a line.

A.3.2 A Fully Succinct SNARK with Computationally Unique Proofs

Constant-depth PCD. Bitansky et al. [BCCT13] first show that a preprocessing SNARK can be used
to construct a constant-depth preprocessing PCD system. At each node v of the graph, the prover takes as
input the PCD crs σ, the output message zv = data(v, w) where w is any child of v, the local input linp(v),
the input vector ~zi = {data(ui, v)}ui∈parents(v), and corresponding proofs ~πi. It invokes the SNARK prover to
generate an outgoing proof πv attesting to the fact that
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• C(zv; linp(v),~zi) = 1; that is, the computation occurring at node v is C-compliant, and

• the SNARK verifier accepts each proof π in ~πi as a valid proof of the C-compliance of the corresponding
z in ~zi.

The constant depth restriction arises from the recursive proof that establishes proof of knowledge, which
may blow up the size of the extractor by a poly(λ) factor at each step.

We argue that if the preprocessing SNARK has computationally unique proofs, then the resulting constant-
depth preprocessing PCD has a similar “computational unique transcript” property. That is, for any prover

that produces two outgoing proofs (π
(1)
o , z

(1)
o ) and (π

(2)
o , z

(2)
o ) such that (π

(1)
o , z

(1)
o ) 6= (π

(2)
o , z

(2)
o ), there is an

extractor that produces two compliant transcripts T1,T2 such that T1 6= T2.
Recall that a transcript T consists of a set of messages and local inputs {data(v), linp(v)}v∈V , one for

each node of a graph G = (V,E). If z
(1)
o 6= z

(2)
o , then already T1 6= T2 (since each z is a message), so

assume otherwise, meaning that π
(1)
o 6= π

(2)
o . The witness extracted by the SNARK extractor given any

outgoing proof π from any node v accompanying some message z will consist of (linp(v),~zi, ~πi), where ~zi is
the set of input messages to v and ~πi is the set of accompanying proofs. So the computationally unique
proofs property of the SNARK implies that producing two different outgoing proofs from any node requires

knowledge of two different witnesses (linp(v)(1),~z
(1)
i , ~π

(1)
i ) 6= (linp(v)(2),~z

(2)
i , ~π

(2)
i ). Now for each node in the

graph, always assume that the extracted (linp(v)(1),~z
(1)
i ) = (linp(v)(2),~z

(2)
i ), since otherwise T1 6= T2. By

recursing backwards from the sink node, this implies that there will be some π1 6= π2 accompanying the same
message coming out of a source node x. However, the only witness satisfying the relation (is C-compliant)
at a source node is (linp(x),~zi, ~πi) = ⊥, so producing the two different proofs π1 6= π2 at x violates the
computationally unique proofs property of the SNARK.

RAM checking. Recall that the goal is to construct a SNARK for NP, which can prove membership
of an instance y = (〈M〉, x, t) in the universal language. Bitansky et al. [BCCT13] take inspiration from
incrementally-verifiable computation [Val08], and decompose the RAM computation M(x) into a sequence
of steps, each of which can be locally verified by checking consistency with the transition function of M .
This computation is potentially expensive if M uses a large amount of memory. Thus, [BCCT13] use a
result of [BCGT13], which states that, assuming collision resistant hashing, membership of an instance
y = (〈M〉, x, t), of the universal language, can be computationally reduced to membership of an instance
y′ = (〈M ′〉, x, t′), where the space complexity of M ′ is bounded by a fixed polynomial p(λ), and t′ = t·poly(λ).
The idea is originally from [BEG+91] in the context of online memory checking, and it consists of maintaining
and updating a Merkle hash of M ’s memory. At a high level, given a collision resistant hash h, extending a
witness w to (〈M〉, x, t) into a witness w′ for (〈M ′〉, x, t′) for the locally efficient instance consists of appending
a sequence of Merkle openings under h.

We argue that no polynomial size adversary can find two different accepting witnesses w′1 and w′2 for
the instance (〈M ′〉, x, t′) with the same prefix w (which would be the witness to the original RAM instance
(〈M〉, x, t)). In particular, if M is about to load from or store to a memory location i, then M ′ (who has
the Merkle root stored, which was initially computed from a memory with all 0’s) will access its w′ tape
and expect to see a Merkle opening for location i. It will immediately reject if the opening is not consistent
with h. Note that on a store operation, M ′ will update its root accordingly. Thus in order to break the
above claim, an adversary must find two Merkle openings for the same memory location i, breaking collision
resistance of h.

Constant- to Polynomial-Depth PCD. By the arguments above, it suffices to construct a SNARK with
computationally unique proofs for locally efficient RAM computation. Bitansky et al. [BCCT13] simply make
use of a polynomial depth PCD system, where each node locally checks one step of the RAM computation.
The local efficiency means that the time bound B of the PCD system can be set to a fixed polynomial
p(λ), which means that even using a preprocessing PCD results in a fully-succinct SNARK. Note that the
transcript T of the PCD system consists entirely of information about the instance (M ′, x, t′) and witness
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w′, so it suffices to have a polynomial-depth (preprocessing) PCD system with computationally unique
transcripts. Above, we saw that a SNARK with computationally unique proofs gives rise to a constant-depth
preprocessing PCD system with computationally unique transcripts.

Bitansky et al. [BCCT13] show that a PCD system for constant-depth compliance predicates can be
used to construct a path PCD system for polynomial-depth compliance predicates. Here we describe the
special case of their transformation corresponding to when the polynomial-depth PCD system is verifying
a (locally efficient) RAM computation, which is sufficient for our purposes. The graph corresponding to
the constant-depth PCD is a tree, with arity equal to the security parameter λ, where the leaves consist of
the polynomial-depth computation path, and the internal nodes check that timestamps and execution states
of their subtrees match appropriately. In more detail, let τi denote timestamps and Si denote execution
states of the RAM machine M ′. Each leaf node takes an input message ((0, τ1, S1), (0, τ2, S2)) and outputs
(1, τ, S, τ ′, S′). The compliance predicate verifies that τ2 = τ1 + 1, τ = τ1,τ ′ = τ2, S = S1, S′ = S2 and that
S2 follows S1 in the execution of M ′ on input x. An internal tree node at height d takes an input message
((d, τi, Si, τ

′
i , S
′
i))

λ
i=1 and outputs (d + 1, τ, S, τ ′, S′). The compliance predicate verifies that τ ′i−1 = τi and

S′i−1 = Si for all i ∈ [λ], and that τ = τ1, τ
′ = τ ′λ, S = S1, S

′ = S′λ.
Now, it is clear that given the inputs to the leaf nodes (corresponding to the sequence of RAM states

during computation, along with their timestamps), the rest of the messages in this PCD system are fixed.
Thus, two different transcripts for the constant-depth PCD system must correspond to two different tran-
scripts for the polynomial-depth RAM checking PCD system. This completes the argument that [BCCT13]
bootstrapping maintains the computationally unique proofs property (assuming collision resistant hashing).

B Error Correcting Codes

We give a brief reminder on error correcting codes.

Definition B.1 (Error correcting code). An error correcting code C over alphabet Σ is an injective function
C : Σk → Σn, where k is the message length and n is the block length. The rate of C is k

n , and its relative
distance is min

x6=y

(
∆(C(x), C(y))

)
.

Definition B.2 (Code ensemble). A code ensemble C over alphabet Σ is an ensemble C , {Ck}k∈N s.t. Ck
is a code for messages in Σk for every k ∈ N.

The ensemble C has rate ρ (resp. relative distance δ) if for every k, the code Ck has rate ρ (resp. relative
distance δ). We say that C is efficiently encodable (resp. efficiently decodable) if there exists a polynomial-
time algorithm Encode (resp. Decode), s.t. for all k ∈ N and x ∈ Σk holds that Encode(x) = Ck(x) (resp.
Decode(Ck(x)) = x).

Codes that are efficiently encodable and decodable are known. In particular:11

Theorem B.3 (e.g., [Spi96]). There exists an efficiently encodable and decodable binary code ensemble with
constant relative distance and constant rate.

11Note that the codes provided by [Spi96] are actually much stronger than what is actually needed for our results.
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