
Efficient Range-Trapdoor Functions and

Applications: Rate-1 OT and More

Sanjam Garg∗ Mohammad Hajiabadi† Rafail Ostrovsky‡

Abstract

Substantial work on trapdoor functions (TDFs) has led to many powerful notions and ap-
plications. However, despite tremendous work and progress, all known constructions have pro-
hibitively large public keys.

In this work, we introduce new techniques for realizing so-called range-trapdoor hash func-
tions with short public keys. This notion, introduced by Döttling et al. [Crypto 2019], allows for
encoding a range of indices into a public key in a way that the public key leaks no information
about the range, yet an associated trapdoor enables recovery of the corresponding input part.

We give constructions of range-trapdoor hash functions, where for a given range I the pub-
lic key consists of O(n) group elements, improving upon O(n|I|) achieved by Döttling et al.
Moreover, by designing our evaluation algorithm in a special way involving Toeplitz matrix
multiplication and by showing how to perform fast-Fourier transforms in the exponent, we ar-
rive at O(n log n) group operations for evaluation, improving upon O(n2), required of previous
constructions. Our constructions rely on power-DDH assumptions in pairing-free groups.

As applications of our results we obtain

1. The first construction of (rate-1) lossy TDFs with public keys consisting of a linear number
of group elements (without pairings).

2. Rate-1 string OT with receiver communication complexity of O(n) group elements, where
n is the sender’s message size, improving upon O(n2) [Crypto 2019].

3. Two-round private-information retrieval protocols for one-bit records, where for a server
of N bits, the client’s message consists of O(λ)polylog(N) group elements, improving upon
O(λ2)polylog(N).

4. Semi-compact homomorphic encryption for branching programs: A construction of homo-
morphic encryption for branching programs, with ciphertexts consisting of O(λnd2) group
elements, improving upon O(λ2nd3). Here λ denotes the security parameter, n the input
size and d the depth of the program.

∗University of California, Berkeley. supported in part from DARPA/ARL SAFEWARE Award W911NF15C0210,
AFOSR Award FA9550-15-1-0274, AFOSR Award FA9550-19-1-0200, AFOSR YIP Award, NSF CNS Award 1936826,
DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa
Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are
those of the author and do not reflect the official policy or position of the funding agencies.
†University of California, Berkeley
‡University of California, Los Angeles. Supported by DARPA SPAWAR contract N66001-15-C-4065.

1

1 Introduction

Trapdoor cryptosystems are at the heart of modern cryptography. What is common among all
these cryptosystems is the notion of a trapdoor key, which allows a certain computation to be
inverted. The exact formulation of what inversion means specifies the strength of the notion.

For example, trapdoor functions (TDFs) extend the functionality of public-key encryption
(PKE) by allowing the inversion algorithm to recover the entire input. This seemingly slight exten-
sion makes the notion relatively versatile, enabling applications (from variants of TDFs) including
CCA2-secure PKE, selective-opening security and designated-verifier non-interactive (NIZK) [PW08,
BFOR08, BHY09, LQR+19], which are currently out of reach of the basic PKE primitives.

Perhaps not surprisingly, trapdoor systems that demand a richer functionality are harder to
realize, and in cases this is possible, the resulting realizations come with poor efficiency. For
instance, while for PKE we have a plethora of instantiations with close to optimal public-key,
secret-key and ciphertext sizes, the situation for TDFs is much different. Concretely, the public
keys of all DDH-based TDFs consist of O(n2) group elements, where n is the input size, lagging
behind their PKE counterparts, which consist of a constant number of group elements. Although
recent works [GH18, GGH19, DGI+19] showed how to make the image size of TDFs almost the
same as the input size, they too are stuck with the O(n2) group elements overhead for the public
key. As we will see later, this is due to a lack of batching techniques for TDF keys. Our goal,
in this work, is to develop techniques that help us mitigate this issue. We will do this in a way
general enough to be applicable not just to TDFs, but also to more advanced primitives, such as
lossy TDFs [PW08] and trapdoor hash functions [DGI+19].

Trapdoor Hash (TDH) functions. Recently, Döttling, Garg, Ishai, Malavolta, Mour and Os-
trovsky introduced a primitive, called trapdoor hash functions [DGI+19], and showed strong ap-
plications of this notion, including lossy TDFs, rate-1 oblivious transfer (OT), private information
retrieval (PIR) with low communication complexity and more. In its simplest form, a TDH scheme
comes with a length-compressing hash function Hhk : {0, 1}n → {0, 1}λ and an evaluation algorithm
E. The scheme allows one to generate an evaluation/trapdoor key (iki, tki) for any particular index
i ∈ [n] in such a way that (1) the output of E(iki, x) is a single bit, (2) using tki, one may retrieve
the value of xi from H(hk, x) ∈ {0, 1}λ and E(iki, x) ∈ {0, 1} and (3) iki hides the index i.

Usefulness of trapdoor hash. To show the utility of this notion, let us sketch a construction of
lossy TDFs using this primitive, given by [DGI+19]. Consider a sequence of TDH-evaluation keys
ik1, . . . , ikn/2 generated for the range of indices [1, n/2] and suppose we additionally include a mes-

sage x∗
$←− {0, 1}n/2 as part of the public key. Assume the input x to the lossy TDF has n/2 bits. To

evaluate x, form a bigger string x′ := (x||x∗) ∈ {0, 1}n and return (H(hk, x′),E(ik1, x
′), . . . ,E(ikn/2, x

′)).1

Using the trapdoor keys of ik1, . . . , ikn/2, we may recover x. Now if we switch the evaluation keys
to ikn/2+1, . . . , ikn corresponding to the second-half range of indices, then we will statistically lose
information about x. The reason is that n/2− λ bits of information are lost about x.

1Here for simplicity we assume that E is deterministic and that each trapdoor enables perfect recovery of the
underlying indexed bit. Under the actual definition, the function E should be randomized, so as to provide the
desired privacy guarantees, needed by OT, etc applications. This issue can be handled by using a fixed randomness
for the sketched construction.

2

Rate-1 two-round oblivious transfer (OT): Another important application of trapdoor hash
is in realizing rate-1 two-round OT protocols [DGI+19]. We say that an OT protocol achieves rate-1
if the ratio |m0|/|ots| asymptotically approaches one, where ots is the sender’s protocol message on a
pair of inputs (m0 ∈ {0, 1}n,m1 ∈ {0, 1}n) and on the corresponding message otr of the receiver. As
shown by Ishai and Paskin [IP07], rate-1 OT leads to constructions of semi-compact homomorphic
encryption for branching programs (where the ciphertext size grows only with the depth as opposed
to the size of the program) as well as communication-efficient private-information retrieval (PIR)
protocols. All these applications rely on the rate-1 property of the OT in a crucial way, allowing one
to sequentially pass ots as an input to a new OT-sender’s message and pass the resulting ots to the
next sender’s message and so on. Trapdoor hash schemes provide an elegant way for realizing rate-1
OT [DGI+19]. Specifically, if the size of each message of the sender is n, the receiver on an input
bit b sends n evaluations key ek1, . . . , ekn corresponding to either indices in [1, n] or [n+ 1, . . . , 2n].
The sender then returns (H(hk,m0||m1)),E(ek1,m0||m1), . . . ,E(ekn,m0||m1). The receiver may then
use his trapdoors to recover the corresponding message.2 We have |ots| = n+ poly(λ), where poly
is a fixed function, and hence the protocol has rate-1 (asymptotically). Döttling et al. [DGI+19]
used the above protocol to get the first constructions of rate-1 OT from DDH, OR and LWE.

Lack of batching techniques for evaluation keys. In the examples above, the public key of
the lossy TDF or the receiver’s message in the OT protocol each consists of O(n) TDH-evaluation
keys. Under DDH instantiations of TDH [DGI+19], an evaluation key for any given index has O(n)
group elements, resulting in O(n2) group elements for the whole range, an overhead alluded to
earlier. Moreover, lack of batching methods affects similarly the other applications: the ciphertext
size in the case of homomorphic encryption for branching programs, and the client’s message size in
the case of PIR. While bilinear maps may open up venues for batching-style tricks [BW10, DGI+19],
it is not clear how to do so without pairings. (See Section 1.3 for more details.)

Obtaining linear-sized public keys asymptotically. We note that if one’s goal is solely to
obtain TDFs with public-key size linear in input size, that is easy to do by making the input larger;
e.g., TDF(ik, x1|| . . . ||xn) = TDF(ik, x1)|| · · · ||TDF(ikn, xn). Similarly, one may make the size of the
receiver’s message otr in an OT protocol almost the same as that of the sender’s input, by making
each of the sender’s input consist of (sufficiently) many blocks of messages and re-using otr across
each opposite pair of them. These results are only for the asymptotic case, falling short in concrete
cases. For example, increasing the size of the sender’s input messages — in order to make the size
of otr close to that of the sender’s message — translates into larger homomorphically-evaluated
ciphertexts in the case of homomorphic encryption for branching programs.

1.1 Our Results

In this work, we will mitigate the above-mentioned issue, through efficient realizations of a new
notion of range-trapdoor hash, which we introduce next.

Range-Trapdoor Hash. We introduce a notion called range-trapdoor hash functions, which
is an immediate generalization of TDH schemes for index functions. In particular, under range-

2Again, we are giving an over-simplified construction, by assuming that decryption has perfect correctness. More-
over, in the actual construction, the function H should be randomized, so to provide sender privacy.

3

trapdoor hash, one would issue evaluation keys ekI (and some public parameter s) for a range
of indices I = [i + 1, ..., i + s], in such a way that given ekI ’s trapdoor key, one can recover
x[I] := (xi+1, . . . , xi+s) from H(hk, x) and E(ekI , x). We require that ekI should hide I (except for
|I|) and that |E(ekI , x)| = |I|. Under Diffie-Hellman type assumptions, we seek realizations where
ekI consists only of O(n) group elements, as opposed to O(n|I|).

Our construction. We give constructions of range-trapdoor hash schemes, where on inputs of
length n, an encoding key for a given range I ⊆ [n] consists of O(n) group elements. Our construc-
tion relies on the 2n-power DDH assumption — namely, that the distribution (g, ga, ga

2
, . . . , ga

2n
)

should be pseudorandom, where g is a random generator of the group and a is a uniformly-random
exponent. This notion has been used in some previous works, e.g., [BB04, DY05, CNs07, AHI11,
BMZ19], but for different purposes.

In addition to obtaining a smaller ekI , we obtain efficiency improvements in the computation
time of the evaluation algorithm. Specifically, while the evaluation algorithm of [DGI+19] requires
O(n|I|) group operations (among some other private-key operations), the number of public-key
operations in our construction is only O(n log |I|). At a high level, we achieve this by designing
our range-trapdoor hash scheme in a structured way, so that the evaluation involves multiplying a
Toeplitz matrix (given in the exponent) with an input vector xT . Since Toeplitz matrices are closely
related to circulant matrices which are amenable to the fast-Fourier transform, we show how to
do this matrix multiplication in a fast way using (inverse) discrete Fourier transform (IDFT/DFT)
modulo Zp in the exponent.

Applications: Rate-1 Two-Message String OT and More. Our techniques yield a con-
struction of string OT with rate-1 from the power-DDH assumption with improved communication
and computation. Specifically, in our two round protocol the communication from receiver to
sender consists of a linear (in sender’s message size) number of group elements. The previous
work of [DGI+19] required a quadratic number of group elements by relying on DDH. Additionally,
our construction also improves the computational cost of the sender — namely, our construction
improves the computational effort of the sender from quadratic to quasi-linear. This allows us to
obtain the following new results:

1. Lossy Trapdoor Functions: We obtain the first construction of lossy trapdoor functions [PW08],
where on inputs of size n, the public key consists of O(n) group elements. All previous (even
non-lossy) TDF constructions from pairing-free groups had public keys with O(n2) group
elements.

2. Semi-Compact Homomorphic Encryption for Branching Programs: A construction of public-
key homomorphic encryption for branching programs, with ciphertexts consisting of O(λnd2)
group elements, improving upon O(λ2nd3) [DGI+19], where d denotes the depth of the pro-
gram. We achieve this by plugging our rate-1 OT scheme into the homomorphic encryption
construction of [IP07]. See Table 1.

3. Private Information Retrieval : For a database of N bits, we get a two-message PIR protocol
with total communication complexity that grows only polylogarithmically with the database
size, and with a client’s message consisting of O(λ)polylog(N) group elements, improving
upon O(λ2)polylog(N), given by [DGI+19]. See Table 2.

4

work assumption ciphertext size

ours O(λd)-power DDH λnd2 log p

[DGI+19] DDH λ2nd3 log p

Table 1: Bit complexity for branching programs. The size of public keys, secret keys and
homomorphically-evaluated ciphertexts in both schemes are the same. Here p = Θ(2λ) is the
order of the group, n is the input size of the program and d is the depth of the branching program.

work assumption primitive receiver message sender message

ours 2n-power DDH OT Θ(n log p) n+ log p

[DGI+19] DDH OT Θ(n2 log p) n+ log p

ours power-DDH PIR Θ(λ2)polylog(N) log(N) log p

[DGI+19] DDH PIR Θ(λ3)polylog(N) log(N) log p

Table 2: Bit complexity: p = Θ(2λ) is the order of the group and n is the bit size of each of the
sender’s message (in the case of OT) and N is the database size (in the case of PIR).

1.2 Related Work and Open Problems

As mentioned above, Döttling et al. [DGI+19] introduced the notion of trapdoor hash, and used
it to build several new primitives. Among others, they obtained the first DDH-based and QR-
based constructions of PIR for one-bit records with a total communication complexity that grows
polylogarithmically with the database size; i.e., it is p(λ)polylog(N)) for a fixed function p, where
N is the database size and λ is the security parameter. Previously, such protocols were only known
under DCR, LWE and Φ-hiding assumptions [CMS99, Cha04, Lip05, OS07].

The notion of trapdoor hash builds on tools that were developed in the context of trapdoor
function constructions [GH18, GGH19], as well as those developed in the context of identity-based
encryption (IBE) [DG17b, DG17a, BLSV18, DGHM18].

Variants of TDFs are typically used as CCA-enhancing tools [PW08, RS09, GH18, GGH19].
Koppula and Waters [KW19] showed that for CCA applications, full randomness recovery, a feature
provided by TDF-based tools, is not necessary. They gave a generic transformation from CPA
to CCA for PKE and attribute-based encryption (ABE) using hinting pseudorandom generators
(PRGs). The notion of hinting PRGs was later used in subsequent works in contexts such as
designated-verifier NIZK [LQR+19] and CCA key-dependent-message (KDM) security [KMT19].
Boyen and Waters show that in the bilinear setting one may shorten the public key the Peikert-
Waters lossy-TDF construction from a quadratic number of group elements to linear [BW10].

Concurrent work. In independent and concurrent work, Goyal, Vusirikala and Waters [GVW19]
give constructions of primitives such as hinting PRGs [KW19] and one-way function with encryp-
tion (OWFE) [GH18] with short public-parameter and ciphertext sizes. In terms of Diffie-Hellman
related assumptions, they give (1) a construction of hiniting PRGs from power-DDH-related as-
sumptions (without pairings) with public parameters of O(n) group elements and (2) a construc-
tion of OWFE from pairing-based power-DDH-related assumptions with public parameters of O(n)
group elements and ciphertexts of one group element. Specifically, their result (2) also leads to a
construction of TDFs (and deterministic encryption) with public keys of O(n) group elements and
images of O(n) bits. In contrast, in our work we do not use pairings, but focus primitives such

5

as lossy TDFs and range-trapdoor hash schemes, which have applications in constructing OT and
PIR.

Open problems. The main open problem is to achieve the same results from DDH.

1.3 Technical Overview

It will be instructive to give an overview of our results in the context of lossy TDFs and then to
adapt them to the trapdoor-hash setting. Let us review an optimized version of the DDH-based
lossy TDF of [PW08], given by [FGK+10]. Recall that in a group with a generator g, if we have
an encoding [M] = gM of an invertible matrix M of exponents, we may then encode any column
vector X of bits by computing M · X in the exponent. One may invert using M−1. We may argue
lossiness by making the matrix M rank one. The downside of this scheme is that a public key and
an image point consist of, respectively, n2 and n group elements, which is rather large. Recent
works [GH18, GGH19], which in turn inspired the notion of TDH, showed how to make the image
size linear in input size, but they still leave us with public keys of O(n2) group elements.

Parallels from Ideal Lattices? To make the public keys smaller, one may be tempted to draw
inspirations from ideal lattices [LPR10, LPR13], and especially the way ring-LWE is used to shorten
public keys. Sample a vector v := (g1, . . . , gn) and expand v into a “circulant-like” matrix

M :=


g1 g2 . . . gn−1 gn
g2 g3 . . . gn g1
...

...
...

...
...

gn g1 . . . gn−2 gn−1

 , (1)

and use M as the public key of the TDF given above. The problem with this approach is that we
do not know how to prove one-wayness. Even if there is a clever way to prove one-wayness, this
approach does not appear to scale to give us more advanced schemes such as lossy TDFs, (range)
trapdoor hash schemes, or TDFs with linear-sized outputs.

Circulant structure using power DDH. We show how to work out the above intuition by
relying on the power DDH assumption. Specifically, we give a way of expanding two vectors
(v ∈ Gn,w ∈ G2n−1) into an (n+ 1)× n matrix, and two indistinguishable distributions on (v,w),
where under one distribution we can invert, while under the other, we will lose information.

Given two vectors v = (v1, . . . , vn) ∈ Gn and w = (w1, . . . , w2n−1) ∈ G2n−1, we expand them
into an (n+ 1)× n matrix M = Expand(v,w) as follows:

M :=


m1

m2
...

mn+1

 :=


v1 v2 . . . vn
wn wn+1 . . . w2n−1

wn−1 wn . . . w2n−2
...

... . . .
...

w1 w2 . . . wn

 ∈ G(n+1)×n (2)

6

To evaluate an input x ∈ {0, 1}n using M, return (x · m1, . . . , x · mn+1), where x · v :=
∏n
i=1 v

xi
i .

Define the lossy distribution lossy as

lossy v := (gα, gα
2
, . . . , gα

n
)

w := (grα, grα
2
, . . . , grα

2n−1
).

If (v,w)
$←− lossy, then M := Expand(v,w) will be of rank one, statistically losing information

about x. We set the real (i.e., injective) distribution by putting a bump g on the nth element of w:

real v := (gα, gα
2
, . . . , gα

n
) (3)

w := (grα, grα
2
, . . . , grα

n−1
, ggrα

n
, grα

n+1
, . . . , grα

2n−1
). (4)

To see how to invert in injective mode, notice that the matrix M := Expand(v,w) is

M :=


m1

m2
...

mn+1

 =



gα gα
2

. . . gα
n−1

gα
n

ggrα
n

grα
n+1

. . . grα
2n−2

grα
2n−1

grα
n−1

ggrα
n

. . . grα
2n−3

grα
2n−2

...
...

...
...

...

grα
2

grα
3

. . . ggrα
n

grα
n+1

grα grα
2

. . . grα
n−1

ggrα
n


∈ G(n+1)×n, (5)

where the bump g propagates as indicated. Using the trapdoor values α and r, we show how to
recover the ith bit of x from the image u := (gh, g1, . . . , gn) := (x ·m1, . . . , x ·mn+1). To do this,
notice that the bump that affects the ith bit of x occurs in row i+ 1 of matrix M, which is off the
first row by an exponent rαn−i (excluding the bump). Thus, we may compute gxi ∈ {g0, g1} as

gxi =
gi

grα
n−i

h

∈ {g0, g1}. (6)

Finally, the indistinguishability between lossy and real follows from (2n− 1)-power DDH, which
implies that the distribution ((gα, gα

2
, . . . , gα

2n−1
), (grα, grα

2
, . . . , grα

2n−1
)) is pseudorandom: the

pseudorandom of the first vector comes from 2n− 1-power DDH and the pseudorandomness of the
second one is implied by the fact that t-power (for t ≥ 3) implies DDH (Lemma 2.4).

Source of computational efficiency. Excluding the fist row of matrix M, the rest of the matrix
is Toeplitz-like, which, if given in the clear as opposed to in the exponent, can be multiplied with any
given vector in time O(n log n) using discrete FFT techniques. We observe that this computation
may in fact be carried out in the exponent, providing us with a relatively fast way of O(n log n)
group exponentiations for evaluating an input. See Section 4 for more details.

Making the image shorter. The public key of the above lossy TDF has O(n) group elements,
a goal we had set before. The image, however, is quite large, consisting of n + 1 group elements.
We now show how to use image-shrinking techniques of Garg, Gay and Hajiabadi [GGH19] (later
improved by Döttling et al. [DGI+19]) in order to make the image size linear in input size. Looking
ahead, this will allow us to make |E(ekI , x)| = |I|, where ekI is the TDH-evaluation key for a range

7

I. For concreteness, let us focus on how to recover the first bit x1 from a succinct output. If the
corresponding (long) image of x is u := (gh, g1, . . . , gn), then for recovering x1 we have to look at
gh and g1: we either have g1 = grα

n−1

h , in which case xn = 0, or g1 = ggrα
n−1

h , in which case
xn = 1 (or informally, xn has hit the bump). Now instead of outputting one whole group element
g1, we output a single bit, corresponding to the output of a hint function Φk : G → {0, 1} on g1.
This function guarantees that for any g∗ ∈ G, the probability that Φk(g

∗) = Φk(g
∗g) (a.k.a., the

hung probability) is very small, where k is chosen at random (and included in the public key).
The inverter will then match Φk(g1), comes as part of the image, against Φk(g

r
h) and Φk(g

r
hg).

Garg, Gay and Hajiabadi [GGH19] gave a function Φ which outputs a constant c number of bits
(instead of a single bit) with hung probability being at most 1

2c . Later, Döttling et al. [DGI+19]
substantially improved this by making Φ output a single bit with hung probability being at most 1

nc ,
for any desired constant c. They achieved this by using a PRF-based distance-function technique
from [BGI16]. Finally, since the inversion algorithm may fail (i.e., be hung) for some indices, we
pre-process the TDF input using erasure-correcting codes, making the task of decoding easier.

Adaptation to the trapdoor hash setting. The lossy TDF sketched above (without erasure-
correcting codes) lends itself naturally into the range TDH setting. Recall that for range trapdoor
hash, we encode an index range I = [s+ 1, s+ t] into an encoding key ek in such a way that (1) ek
only reveals |I| and (2) Using the associated trapdoors, one can recover each bit of x[I] with high
probability from H(hk, x) and E(ek, x) ∈ {0, 1}|I|. Moreover, ek should only contain O(n) group
elements (as opposed to O(n|I|)).

We achieve range-trapdoor hash by carefully placing the bump in a coordinate which enables
recovery of exactly x[I], and nothing more. First, let hk := v := (gα, gα

2
, . . . , gα

n
) and define

H(hk, x) = x · v. Assuming I = [s+ 1, s+ t] and noting that |I| = t, set ek := (w, t), where

w := (grα, grα
2
, . . . , grα

s+t−1
, ggrα

s+t
, grα

s+t+1
, . . . , grα

2n−1
), (7)

obtained from hk by raising every element to the power of r and putting the bump g in the (s+t)’th
coordinate. Now to evaluate x on ek := (w, t+ 1), return

(x ·w[t, n+ t− 1], x ·w[t− 1, n+ t− 2], . . . , x ·w[1, n]) ∈ Gn,

where w[i, j] denotes the elements of w which are in the range {i, i + 1, . . . , j}. Given α and r
we may recover all the bits x[s, s + t]. The only remaining thing is that the output of E consists
of t group elements, as opposed to t bits. We make it consist of t bits by using image-shrinking
techniques described above.

2 Preliminaries

Notation. We use λ for the security parameter. We use
c≡ to denote computational indistin-

guishability and use ≡ to denote two distributions are identical. For a distribution S we use x
$←− S

to mean x is sampled according to S and use y ∈ S to mean y ∈ sup(S), where sup denotes

the support of a distribution. For a set S we overload the notation to use x
$←− S to indicate

that x is chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm, then
A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random variable obtained by sampling
random coins r uniformly at random and returning A(a1, . . . , an; r). We use [n] := {1, . . . , n} and
[i, i+s] := {i, i+1, . . . , i+s}. For a vector v = (v1, . . . , vn) we define v[i, i+s] := (vi, vi+1, . . . , vi+s).

8

2.1 Standard Definitions and Lemmas

Definition 2.1 (Trapdoor functions (TDFs)). Let n = n(λ) be a polynomial. A family of trapdoor
functions TDF with domain {0, 1}n consists of three PPT algorithms TDF.KG, TDF.F and TDF.F−1

with the following syntax and security properties.

• TDF.KG(1λ): Takes the security parameter 1λ and outputs a pair (ik, tk) of index/trapdoor
keys.

• TDF.F(ik, x): Takes an index key ik and a domain element x ∈ {0, 1}n and deterministically
outputs an image element u.

• TDF.F−1(tk, u): Takes a trapdoor key tk and an image element u and outputs a value x ∈
{0, 1}n ∪ {⊥}.

We require the following properties.

• Correctness:

Pr
(ik,tk)

[∃x ∈ {0, 1}n s.t. TDF.F−1(tk,TDF.F(ik, x)) 6= x] = negl(λ), (8)

where the probability is taken over (ik, tk)
$←− TDF.KG(1λ).

• One-wayness: For any PPT adversary A: Pr[A(ik, u) = x] = negl(λ), where (ik, tk)
$←−

TDF.KG(1λ), x
$←− {0, 1}n and u := TDF.F(ik, x).

Definition 2.2 (Lossy TDFs [PW08, PW11]). An (n, k)-lossy TDF ((n, k)-LTDF) is given by four
PPT algorithms TDF.KG, TDF.KGls, TDF.F, TDF.F−1, where TDF.KGls(1

λ) only outputs a single
key (as opposed to a pair of keys), and where the following properties hold:

• Correctness in real mode. The TDF (TDF.KG,TDF.F,TDF.F−1) satisfies correctness in
the sense of Definition 2.1.

• k-Lossiness. For all but negligible probability over the choice of ikls
$←− TDF.KGls(1

λ), we
have |TDF.F(ikls, {0, 1}n)| ≤ 2k, where we use TDF.F(ikls, {0, 1}n) to denote the set of all
images of TDF.F(ikls, ·).

• Indistinguishability of real and lossy modes. We have ik
c≡ ikls, where (ik, ∗) $←−

TDF.KG(1λ) and ikls
$←− TDF.KGls(1

λ).

Lossiness rate. In the definition above, we refer to the fraction 1 − k/n as the lossiness rate,
describing the fraction of the bits lost. Ideally, we want this fraction to be as close to 1 as possible,
e.g., 1− o(1).

Expansion rate. In the definition above, we refer to n/|u| as the expansion rate, and say the
scheme has rate 1 if this fraction approaches one asymptotically.

9

2.2 Computational Assumptions

We now review the power DDH assumption, which we use in our constructions. This notion is a
variant of the t-Diffie-Hellman Inversion (t-DHI) problem [BB04]: given (g, gα, . . . , gα

t
) the adver-

sary should distinguish g1/α from random. Under our variant, we require the whole distribution
(g1/α, g, gα, . . . , gα

t
) to be pseudorandom. We present this version, called power-DDH [CNs07],

below.

Definition 2.3 (t-power DDH assumption [CNs07, AHI11]). Let G be a group-generator scheme,
which on input 1λ outputs (G, p, g), where G is the description of a group, p is the order of the
group which is always a prime number and g is a generator for the group. Let t := t(λ). We say

that G is t-DDH-hard if the distribution (g, gα, . . . , gα
t
) is pseudorandom, where (G, p, g)

$←− G(1λ)

and α
$←− Zp.

Boneh and Boyen [BB04] show that t-DHI implies the so-called (t+1)-generalized Diffie-Hellman
((t+1)-generalized DH): given (g, ga1 , . . . , gat) and an oracle that for any given proper subset S ⊂ [t]
returns gΠi∈Sai , the adversary should distinguish ga1...at from random. The following lemma gives
an adaptation of this lemma to the power-DDH setting for a very simple case: namely that power-
DDH hadrness implies DDH hardness.

Lemma 2.4. Let G be t-power DDH hard. Then (g1, g
α
1 , . . . , g

αt
1) is pseudorandom, where (G, p, g)

$←−
G(1λ), g1

$←− G and α
$←− Zp.3 Also, for any t ≥ 3, if a group is t-power DDH hard, it is also DDH-

hard.

Proof. The first part of the lemma follows straightforwardly using random self reducibility. The
second part follows immediately from techniques of [BB04], but we give the proof for completeness.
Notice that if a group is t+ 1-power DDH hard, then it is also t-power DDH hard. Thus, it suffices
to show that 3-power DDH hardness implies DDH hardness. Suppose for a group G there is a DDH
adversary A that can distinguish (g, ga, gb, gab) from random. We want to use A to distinguish
(g, gα, gα

2
, gα

3
) from random, hence breaking 3-power DDH hardness. The problem is that A is

only guaranteed to work as long as the two exponents a and b are chosen uniformly at random —
while in the 3-power DDH case the two exponents α and α2 are correlated.

To fix the above problem, we use the random-self reducibility of DDH [NR97]. That is, letting

(g, g1, g2, g3) be the challenge tuple, we sample r1, r2
$←− Zp and call A on (g, gr11 , g

r2
2 , g

r1r2
3).

It is easy to see that the above transformation converts a 3-power DDH tuple into a random
DDH tuple, and converts a random tuple into another random tuple.

2.3 Standard Lemmas

Lemma 2.5 (Chernoff inequality). Let X be binomially distributed with parameters n ∈ N and
p ∈ [0, 1]. Assuming p′ > p:

Pr[X > 2p′n] < e−p
′n/3.

In some of our proofs, we need to use a version of Chernoff bounds involving Bernoulli variables
which are not necessarily independent, but where each of them has a bounded probability of success,

3Notice that the only difference between this version and the standard t-power DDH assumption is that the element
g1 is now also chosen uniformly at random — as opposed to it being g, the fixed group generator.

10

conditioned on any fixed sequence of outcomes of the others. We give such a version of the Chernoff
inequality below, and prove it by relying on Lemma 2.5.

Lemma 2.6 (Chernoff inequality with bounded dependence). Let X1, . . . , Xn be Bernoulli variables
(not necessarily independent), where for all i, and for all values b1, . . . , bi−1, bi+1, . . . , bn:

Pr[Xi = 1 | X1 = b1, . . . , Xi−1 = bi−1, Xi+1 = bi+1, . . . , Xn = bn] ≤ p. (9)

Assuming p′ > p:

Pr[
∑
i∈[n]

Xi > 2p′n] < e−p
′n/3.

Proof. We will define n random variables X ′1, . . . , X
′
n and also n independent i.i.d. boolean random

variables Y1, . . . , Yn, where Pr[Y1] = p, and where

1. (X ′1, . . . , X
′
n) is identically distributed as (X1, . . . , Xn); and

2. for all i ∈ [n], X ′i ≤ Yi.

Thus

Pr
(X1,...,Xn)

[
∑
i∈[n]

Xi > 2p′n] = Pr
(X′1,...,X

′
n)

[
∑
i∈[n]

X ′i > 2p′n] ≤ Pr[
∑
i∈[n]

Yi > 2p′n] < e−p
′n/3,

where the last inequality comes from Lemma 2.5.
To define Yi, let Ui for i ∈ [n] be i.i.d. real-valued random variables, each uniformly distributed

over [0, 1]. For i ∈ [n] let Yi be the Bernouli random variable where Yi = 1 iff Ui ≤ p.
For b1, . . . , bi−1 ∈ {0, 1} define Z = Pr[X1] and

Z(b1, . . . , bi−1) = Pr[Xi = 1|X1 = b1, . . . , Xi−1 = bi−1].

We may now represent the joint distribution (X1, . . . , Xn) as

(X ′1, . . . , X
′
n) := (U1 ≤ Z, U2 ≤ Z(X1), . . . , Un ≤ Z(X1, . . . , Xn−1)), (10)

where A ≤ B is the Bernoulli random variable which is one if and only if A ≤ B.
We now show that whenever Ui ≤ Z(X1, . . . , Xi−1), we have Yi = 1, as desired. To see this,

recall that by Equation 9 Z(X1, . . . , Xi−1) ≤ p. Thus, whenever Ui ≤ Z(X1, . . . , Xi−1), we have
Ui ≤ p, which means Yi = 1. The proof is now complete.

2.4 Error Correcting Codes

Definition 2.7 ((n,m, s)2-Codes). We recall the notion of (n,m, s)2 erasure-correcting codes. Such
a code is given by efficiently computable functions (Encode,Decode), where Encode : {0, 1}n →
{0, 1}m, and where

1. Minimum distance. For any two distinct x1, x2 ∈ {0, 1}n, Hdst(Encode(x1),Encode(x2)) ≥
s, where Hdst denotes the Hamming distance.

11

2. Erasure correction. For any x ∈ {0, 1}n, letting z := Encode(x), given any string z′ ∈
{0, 1,⊥}m, which has at most s− 1 ⊥ symbols, and whose all non-⊥ symbols agree with z, we
have Decode(z′) = x.

We are interested rate-1 codes (that is, n/m approaches 1 asymptotically) with fast encoding
and decoding algorithms. If we are willing to settle for a constant rate (as opposed to rate 1),
there are binary concatenated codes which are linear time for both encoding and decoding; see,
e.g., [GI05], Theorem 6. For rate-1 binary codes, we use the following code from [CDD+16].

Theorem 2.8 ([CDD+16], Theorem 6). Fix a finite field F of constant size. There exists a constant
υ > 0 and a family of F-linear codes C = {Cs}s with codeword length O(s2), rate 1− 1

sυ and minimum
distance at least s. Moreover, C admits a linear-time computable encoding algorithm Encode.

3 Lossy TDFs with Short Public Keys from Power DDH

As a warm-up to our range-trapdoor hash construction, we first give a construction of rate-1 lossy
TDFs from the O(n)-power DDH assumption, wherein a public key has only O(n) group elements.

For our construction, we need a function Φ: G → {0, 1} which has the property that for any
group element h, Φ(h) 6= Φ(hg) with high probability. The work of Boyle, Gilboa and Ishai [BGI16]
gives such a function. Below we review an adaptation of this function to the binary output space,
as done by [DGI+19]. In what follows, we use LSB(i) to denote the least significant bit of i.

Distance function DistG,g(h, δ,M, f) [BGI16]. Given a group G with a generator g, a group
element h, a value 0 < δ < 1, integer M ≥ 1 and a function f : G → {0, 1}log(2M/δ), we define a
function Dist as follows:

1. Let T := [2M loge(2/δ)]/δ and set i := 0.

2. While i ≤ T :

(a) if f(hgi) = 0log(2M/δ), then output LSB(i), otherwise set i = i+ 1.

3. Output LSB(i).

T -close/far group elements. For an integer T , we say two group elements g1 and g2 are T -close
with respect to g if g2 ∈ {g1, g1g, . . . , g1g

T } or g1 ∈ {g2, g2g, . . . , g2g
T }. We say g1 and g2 are at

least (T + 1)-far with respect to g if g1 and g2 are not T -close with respect to g. When g is clear
from the context, we simply say g1 and g2 are T -far/T -close.

The following lemma is from[BGI16], giving a distance function, defined based on a randomly
chosen function f , which serves a hint bit in our construction (i.e., the function Φ described above).
We will later replace such a random function with a PRF.

Lemma 3.1 (Proposition 3.2 in [BGI16]). Let G be a group of prime order p, g ∈ G, M ∈ N,
δ > 0 and assume [2M loge (2/δ)]/δ < p. Let RF be the set of all functions f : G→ {0, 1}dlog(2M/δ)e.
Then for any integer x ≤M and h ∈ G

Pr
f

$←−RF

[DistG,g(h, δ,M, f) = LSB(x)− DistG,g(hg
x, δ,M, f)] ≥ 1− δ. (11)

12

Moreover, for any set of group elements h1, . . . , hm which are mutually at least (T + 2)-far, the
events Success1, . . . ,Successm are independent, where Successi is the event that DistG,g(hi, δ,M, f) =
1− DistG,g(hig, δ,M, f).

Proof. The first part of the lemma was proved in [BGI16]. The second part follows because (1)
f is chosen at random and (2) for any group element h, the outputs of DistG,g(h, δ,M, f) and
DistG,g(hg, δ,M, f) only depend on the outputs of f on {h, hg, hg2, . . . , hgT+1}.

Notation. For x ∈ {0, 1}n and v := (g1, . . . , gn) ∈ Gn we define x · v :=
∏n
i=1 g

xi
i .

Construction 3.2 (Doubly-Linear lossy TDF). Let G be a group scheme and let (Encode,Decode)
for Encode : {0, 1}n → {0, 1}m be an ECC code. Let ` := log(2/δ) and let PRF : G → {0, 1}` be a
PRF with key space {0, 1}λ. We will instantiate the value of δ later.

• TDF.KG(1λ):

1. Sample (G, p, g)
$←− G(1λ). Sample α, r

$←− Zp and set

v := (gα, gα
2
, . . . , gα

m
) (12)

w := (grα, grα
2
, . . . , grα

m−1
, ggrα

m
, grα

m+1
, . . . , grα

2m−1
). (13)

2. Sample a key K
$←− {0, 1}λ for PRF.

3. Set ik := (K, g, v,w) and tk := (K, g, α, r). Return (ik, tk).

• TDF.KGls(1
λ): Return ikls := (g, v,w′), where g, v are as above, and

w′ := (grα, grα
2
, . . . , grα

2m−1
). (14)

• TDF.F(ik, x ∈ {0, 1}n): Parse ik := (g, v,w) and z := Encode(x). For 1 ≤ i ≤ m

1. Let w′i = w[m+ 1− i, 2m− i].
2. Let gi = z ·w′i.
3. Let bi := DistG,g(gi, δ, 1,PRFK).

Let gc := z · v and return
u := (gc, b1, . . . , bm). (15)

• TDF.F−1(tk, u): Parse u := (gc, b1, . . . , bm). Recover z bit-by-bit as follows. For i ∈ [m]:

1. Let gi,0 = grα
m−i

c and gi,1 = gi,0g.

2. If

(a) DistG,g(gi,0, δ, 1,PRFK) = DistG,g(gi,1, δ, 1,PRFK), then set zi = ⊥;

(b) Else, let b the bit for which DistG,g(gi,b, δ, 1,PRFK) = bi, and set zi = b.

Return Decode(z).

We now prove all the required properties of the scheme.

13

Lemma 3.3 (Mode indistinguishability). We have ik
c≡ ikls, where ik

$←− TDF.KG(1λ) and ikls
$←−

TDF.KGls.

Proof. Follows immediately from (2m− 1)-power DDH (Lemma 2.4).

Lemma 3.4 (Lossiness). Assuming p is the oder of the group, for any ikls ∈ TDF.KGls(1
λ),

|TDF.F(ikls, {0, 1}n)| ≤ p.

Proof. Parse ikls := (g, v,w′), where v is sampled as in Equation 12 and w′ is sampled as in
Equation 14. We claim the following: for any x′, x′ ∈ {0, 1}n, letting z := Encode(x) and z′ :=
Encode(x′), if z · v = z′ · v, then TDF.F(ikls, x) = TDF.F(ikls, x). Assuming the claim holds, the
lemma follows immediately. This is because, under the lossy key ikls, once the first component gc
of the image u := (gc, . . .) is determined, the rest of the output is uniquely determined. To prove
the claim, suppose gc = z ·v = z′ ·v. Notice that the group element gi computed in Line 2 of TDF.F
is equal to the fixed element grα

m−i
c , irrespective of whether the underlying input is x or x′. This

follows from the way w′ is formed (Equation 14). The proof is now complete.

Lemma 3.5 (Correctness). Let (Encode,Decode) be an (n,m, s)2 code, where n = λ + ω(log λ).
Assuming δ ≤ s−1

2m and T := [2 loge(2/δ)]/δ = poly(λ), for any input x:

β(λ) := Pr
(ik,tk)

[TDF.F−1(tk,TDF.F(ik, x)) 6= x] ≤ 1

e
s−1
6

+ negl(λ), (16)

where the probability is taken over (ik, tk)
$←− TDF.KG(1λ). In particular, by setting n = λ+ω(log λ),

s ∈ ω(log λ) and δ ≤ s−1
2m , we will have a negligible inversion error.

Proof. Fix x ∈ {0, 1}n and let z := Encode(x). Consider a variant of Construction 3.2, in which we

replace the PRF PRFK with a truly random function f : G $←− {0, 1}`. (Recall that ` = log(2/δ).)
That is, in this variant, calls of the form DistG,g(gi, δ, 1,K) are replaced with DistG,g(gi, δ, 1, f).
Let β′ be the probability that TDF.F−1(tk,TDF.F(ik, x)) 6= x in this experiment. We will show
β′ ≤ 1

e
s−1
6

+ negl(λ). By PRF security we have β ≤ β′ + negl(λ), and thus Equation 16 will follow.

The reason that we can use PRF security here (despite the fact that K is given in the clear in ik)
is that the procedure Dist may efficiently be computed via only blackbox access to PRFK (resp., f
alternatively) and that we evaluate PRFK on inputs generated independently of K.

For an index i ∈ [m], let gi = z ·w′i be the group element computed in Line 2 of TDF.F, and let

gi,0 = grα
m−i

c and gi,1 = gi,0g be the two corresponding group elements computed during inversion.
Notice that gi = gi,zi .

For i ∈ [m], let the indicator variable

Faili = 1⇔ DistG,g(gi,0, δ, 1, f) = DistG,g(gi,1, δ, 1, f).

Notice that Faili = 1 iff we fail to recover zi. For all i, by setting M = 1 in Lemma 3.1,
Pr[Faili] < δ, and hence Pr[Faili] < p′, where p′ = s−1

2m .
Let Fail =

∑
i∈[m] Faili. Inversion fails if Fail > s−1. We may now be tempted to use Lemma 2.5

to bound the probability that Fail > s − 1. The problem is that the events Faili’s may not be
independent. Thus, we define an event Bad which captures all the dependencies, and then we will
argue that conditioned on Bad, the events {Faili}i∈[m] are independent.

14

• Bad: there are two distinct indices i, j ∈ [m] such that gi,0 and gj,0 are (T + 1)-close, where
T := [2 loge(2/δ)]/δ.

By Lemma 3.1 we know that conditioned on Bad, the events Faili’s are independent. Below we
will show Pr[Bad] = negl(λ), but assuming this for now:

Pr[Fail > s − 1] ≤ Pr[Bad] + Pr[Fail > 2p′m | Bad] <∗ negl(λ) +
1

ep′m/3
= negl(λ) +

1

e
s−1
6

,

where the inequality marked with * follows from Lemma 2.5, noting that conditioned on Bad, the
events {Faili}i∈[m] are independent.

We are now left to prove Pr[Bad] = negl(λ). Recall that (g1,0, . . . , gm,0) = (grα
m−1

c , . . . , grα
0

c).
Notice that gc 6= 1 except with negligible probability, and thus grc is statistically close to a uniformly
random group element. By Lemma 2.4

(g1,0, . . . , gm,0) = (grα
m−1

c , . . . , grα
0

c)
c≡ (g′1, . . . , g

′
m),

where g′i’s are random group elements. When replacing {gi,0}i∈[m] with {g′i}i∈[m] the probability
of the event Bad becomes negligible. (This is because T = poly(λ).) Thus, the event Bad with gi,0’s
should also be negligible.

3.1 Running Time of our Lossy TDFs

We count the number of public-key operations (i.e., group operations) involved in the computation
of TDF.F. (The other operations involved in TDF.F are either private-key, i.e., PRF evaluations,
or information theoretic; i.e., error correcting codes).4 For TDF.F, in Line 2, one may compute the
group elements gi = z ·w′i one at a time, by using m group multiplications for each of them, hence
O(m2) group multiplications in total. We observe that the computations of all gi’s together may
be thought of as multiplying a Toeplitz matrix gM ∈ Gm×m, given in the exponent, with a given
vector zT of bits. It is known that one can compute M × zT (mod p) in O(m logm) time using
(inverse) discrete Fourier transform (IDFT/DFT) modulo p. In Section 4 we show how to carry
out this computation in the exponent, at the cost of O(m logm) group exponentiations.

Comparison with the trivial approach. As mentioned above, the trivial computation takes
O(m2) group multiplications. Our FFT-based approach takes O(m logm) group exponentiations,
which translate into O(mλ logm) multiplications, assuming |G| = 2λ. Thus, we obtain improve-
ments when λ logm ∈ ω(m). We also note that the reason that the trivial approach takes
O(m logm) multiplications (as opposed to exponentiations) is that we multiply with a bit vector,
translating into multiplications. In applications where the entries of the given vector are integers
modulo p, the trivial approach will take O(m2) exponentiations, while our FFT-based approach
still takes O(m logm) exponentiations. This observation may be useful in future work.

4We only focus on TDF.F, because TDF.F−1 may be done using n group exponentiations, which seems hard to
improve.

15

4 Fast Fourier Transform in the Exponent

In this section we show how to perform FFT in the exponent in order to have a fast algorithm for
multiplying a circulant or a Toeplitz matrix, given in the exponent, with a vector of integers, with
the result being computed in the exponent. We begin with some basic background.

For a vector u of integers and a group element g we use gu to mean element-wise exponentiation.

Lemma 4.1 (Primitive nth root of unity mod p). We say w ∈ Zp is a primitive nth root of unity
mod p if wn ≡ 1 (mod p) and for all i ∈ [n − 1], wi 6≡ 1 (mod p). If p is prime, then Zp has a
primitive nth root of unity if and only if p ≡ 1 (mod n).

(Inverse) Discrete Fourier modulo Zp. Let w ∈ Zp be a primitive nth root of unity modulo p
(Lemma 4.1). The discrete fourier transform (DFT) of (y0, . . . , yn−1) ∈ Znp , denoted DFT(y0, . . . , yn−1),
is (d0, . . . , dn−1) ∈ Znp , where for k ∈ {0} ∪ [n− 1]:

dk =

n−1∑
j=0

yjw
−jk (mod p). (17)

The inverse discrete Fourier transform (IDFT) inverts the above process. For (d0, . . . , dn−1) ∈
Znp , IDFT(d0, . . . , dn−1) is defined to be (y0, . . . , yn−1), where for k ∈ {0} ∪ [n− 1]

yk = n−1
n−1∑
j=0

djw
jk (mod p). (18)

For all (y0, . . . , yn−1) ∈ Znp , IDFT(DFT(y0, . . . , yn−1)) = (y0, . . . , yn−1).
A major step in performing fast circulant matrix multiplication involves computing DFT and

IDFT in a fast way.

Computing (I)DFT in the exponent. For y := (y0, . . . , yn−1) ∈ Znp , we would like to compute

DFT(y) in the exponent; i.e., to compute gDFT(Y) from gy. Since DFT(y) is a linear function
in the entries of y and w is a fixed integer, we may compute each component of DFT(y) using n
exponentiations, resulting in a total of O(n2) exponentiations. There is, however, a faster, recursive
way of doing this using O(n log n) exponentiations.

Let f = w−1, and note that f is also a primitive nth root of unity. Computing DFT(y) amounts
to evaluating a degree n − 1 polynomial p(x) =

∑n−1
j=0 yjx

j at (p(1), p(f), . . . , p(fn−1)). We may
now evaluate these n invocations in time O(n log n) using divide-and-conquer. Specifically, letting
n = 2t, we can find two degree t− 1 = n/2− 1 polynomials peven and podd such that

(a) p(f2k) = peven(f2k) for k ∈ {0} ∪ [t− 1]; and

(b) p(f2k+1) = podd(f2k) for k ∈ {0} ∪ [t− 1].

Now since f2 is a primitive t’th root of unity and since the degree of each of peven and podd is t− 1,
we can recursively continue this process. We now explain how to find peven and podd.

Specifically, peven(x) :=
∑t−1

j=0 αjx
j and podd(x) :=

∑t−1
j=0 βjx

j , where

αj := yj + yj+t βj := (yj − yj+t)f j . (19)

16

We now show why peven and podd satisfy Items (a) and (b) above.

p(f2k) =
t−1∑
j=0

yjf
2kj +

n−1∑
j=t

yjf
2kj =

t−1∑
j=0

(yjf
2kj + yj+tf

2k(j+t)) =
t−1∑
j=0

(yjf
2kj + yj+tf

2kjfkn)

=

t−1∑
j=0

(yj + yj+t)f
2kj = peven(f2k). (20)

p(f2k+1) =

t−1∑
j=0

(yjf
(2k+1)j + yj+tf

(2k+1)(j+t)) =

t−1∑
j=0

(yjf
j)f2kj + (yj+tf

j)f2kjfkn+t

=∗
t−1∑
j=0

(yjf
j)f2kj + (yj+tf

j)f2kj(−1) =
t−1∑
j=0

(yj − yj+t)f (2k+1)j = podd(f2k), (21)

where the equation marked with * follows from the fact that f t = fn/2 = −1. Finally, notice
that given y := (y0, . . . , yn−1) in the exponent (i.e., given gy), the coefficients of peven and podd
(Equation 19) can also be computed in the exponent. Thus, we have the following lemma.

Lemma 4.2 (DFT/IDFT in the exponent). Let n be a power of two, let p be a prime number
satisfying p ≡ 1 (mod n) and let G be group of order p with a generator g. Let w ∈ Zp be a
primitive nth root of unity modulo p (which exists by Lemma 4.1). For any y ∈ Znp we may

compute gDFT(y) from gy using O(n log n) group exponentiations. The same holds for computing
gIDFT(y).

Circulant matrices. Let v = (v0, . . . , vn−1) be a vector of dimension n. The circulant matrix of
v, denoted Rot(v), is

Rot(v) :=



v0 vn−1 vn−2 . . . v3 v2 v1

v1 v0 vn−1 . . . v4 v3 v2

v2 v1 v0 . . . v5 v4 v3
...

...
... . . .

...
...

...
vn−1 vn−2 vn−3 . . . v0 vn−1 vn−2

vn−2 vn−3 vn−4 . . . v1 v0 vn−1

vn−1 vn−2 vn−3 . . . v2 v1 v0


(22)

Lemma 4.3 (Circulant matrix multiplication in the exponent). Let n, p, G and w be as in
Lemma 4.2. Let u := (u0, . . . , un−1) ∈ Znp and v := (v0, . . . , vn−1) ∈ Znp and M := Rot(v). Then we

can compute gMuT from gv and u via O(n log n) group exponentiations.

Proof. Throughout the proof, we may use negative indices, with the understanding the index is
taken modulo n. For example, we may write u−1 for un−1. Given gv and u, for k ∈ {0} ∪ [n − 1]
we need to compute ghk , where

hk =
n−1∑
i=0

vjuk−j . (23)

17

Let (a0, . . . , an−1) and (b0, . . . , bn−1) be the discrete fourier transform of the two sequences
(v0, . . . , vk−1) and (u0, . . . , uk−1), respectively. That is, for k ∈ {0, . . . , n− 1}

ak =
n−1∑
j=0

vjw
−jk (mod p) bk =

n−1∑
j=0

ujw
−jk (mod p).

It is well-known that the inverse fourier transform of (a0b0, . . . , an−1bn−1) gives us the values
(h0, . . . , hn−1). That is, for k ∈ {0} ∪ [n− 1]

(h0, . . . , hn−1) = IDFT(a0b0, . . . , an−1bn−1). (24)

By Lemma 4.2 we can perform all the above steps via O(n log n) exponentiations.

Fast Toeplitz matrix multiplication. We now show how to perform fast Topelitz matrix
multiplication in the exponent, via a well-known conversion to circulant matrices. See [BDD+00]
for further conversions. For x := (x1, . . . , x2n−1) ∈ Z2n−1

p we define

Toep(x) :=


xn xn−1 . . . x1

xn+1 xn . . . x2
...

... . . .
...

x2n−1 x2n−2 . . . xn

 . (25)

Let M := Toep(x) and y ∈ Znp . We show how to compute gMy from gM and y. Toward this, define

S :=


0 x1 x2 . . . xn−1

x2n−1 0 x1 . . . xn−2

x2n−2 x2n−1 0 . . . xn−3
...

... . . .
...

xn+1 xn+2 xn+3 . . . 0

 ∈ Zn×np . (26)

Let T :=

(
M S
S M

)
∈ Z2n×2n

p . Note that T is a circulant matrix. We have M

(
y

0n×1

)
=

(
Ty
Sy

)
.

Thus, we may compute My in the exponent via O(n log n) group exponentiations. Thus, we have
the following lemma.

Lemma 4.4 (Toeplitz matrix multiplication in the exponent). Let n, p, G and w be as in
Lemma 4.2. Let u := (u0, . . . , un−1) ∈ Znp and v := (v0, . . . , vn−1) ∈ Znp and M := Toep(v).

Then we can compute gMuT from gM and u using O(n log n) group exponentiations.

5 Range-Trapdoor Hash Functions

In this section we define the notion of range-trapdoor hash functions and give a construction of this
notion with short evaluation keys. This notion generalizes the notion of trapdoor hash functions
for index keys [DGI+19]. We say that an index set I is a range set if I = {s+ 1, . . . , s+ t} for some
integers s and t. We now give the definition of range-trapdoor hash for the special case where we
output a single-bit hint for every index in the range set.

18

Definition 5.1 (Range Trapdoor Hash). An n-bit input, range-trapdoor hash is a tuple of PPT
algorithms H = (S,KG,H,E,D) with the following syntax, correctness and security properties.

• S(1λ, n): Takes the security parameter 1λ and input length n, and outputs a hashing key hk
and a trapdoor key thk.

• KG(hk, I): Takes hk and a range of indices I = [s+ 1, . . . , s+ t] ⊆ [n] as input, and outputs
an evaluation key ek and a trapdoor key tk. We assume ek contains |I|; i.e., ek := (|I|, . . .),
and also assume tk := (I, . . .).

• H(hk, x; ρ): Takes hk, a message x ∈ {0, 1}n and randomness ρ as input, and outputs a hash
value h.

• E(ek, x; ρ): Takes an evaluation key ek, message x and randomness ρ as input, and outputs a
hint value e ∈ {0, 1}|I|.

• D(thk, tk, h, e): Takes as input a hash-trapdoor key thk, a trapdoor key tk := (I, . . .), a hash
value h and a hint value e, and deterministically outputs |I| pairs of 0/1-encodings (ei,0, ei,1) ∈
{0, 1} × {0, 1}, for i ∈ [|I|].

We require the following properties.

• Correctness: For 0 ≤ ε < 1 we say H is 1− ε correct (or has ε decryption error) if for any
n, any range set I := [s+ 1, s+ t] ⊆ [n], both the following conditions hold:

1. For any i ∈ [t] and for any input x ∈ {0, 1}n, Pr[ei = ei,x[s+i]] = 1; and

2. For any input x ∈ {0, 1}n, any i ∈ [t] and any bj ∈ {0, 1} for j ∈ [t] \ {i}:

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] ≤ ε+ negl(λ), (27)

where for i ∈ [t], Faili is an indicator variable, defined as Faili = 1 if ei = ei,1−x[s+i],

where (hk, thk)
$←− S(1λ, n), (ek, tk)

$←− KG(hk, I), ρ
$←− {0, 1}∗, h := H(hk, x; ρ), e := E(ek, x; ρ),

(ei,0, ei,1)i∈[t] := D(thk, tk, h, e).

• Range privacy: For any n and any two range sets I, I ′ ⊆ [n] satisfying |I| = |I ′|, (hk, ek)
c≡

(hk′, ek′), where (hk, ∗) $←− S(1λ, n), (ek, ∗) $←− KG(hk, I) and (ek′, ∗) $←− KG(hk, I ′).

• Input privacy: Fix polynomial n := n(λ). For any two inputs x, x′ ∈ {0, 1}n, (hk, h)
c≡

(hk, h′), where (hk, ∗) $←− S(1λ, n), h
$←− H(hk, x) and h′

$←− H(hk, x).

• Compactness: There exists a polynomial poly(λ) such that for all n := n(λ), |H(hk, x)| ≤
poly(λ), where (hk, ∗) $←− S(1λ, n) and x ∈ {0, 1}n.

We note the following remark.

Remark 5.2. For decryption we also require a trapdoor key thk associated with hk. This will
be required in our construction. In contrast, the notion of trapdoor hash as defined in [DGI+19]
does not require a trapdoor for the hash function in order to perform decryption. Nonetheless, all
applications stated in [DGI+19] still hold with respect to our definition.

19

Implicit in the work of [DGI+19] is the following construction of range-trapdoor hash.

Lemma 5.3 (Theorem 4.3 of [DGI+19]). Assuming DDH, there exists a range-trapdoor hash scheme
where for inputs of length n, an evaluation key for a range set I consists of O(n|I|) group elements.

We give the following corollary, which helps one in bounding the number of Faili’s in situations
where, e.g., we need to do error correction, such as the rate-1 OT application. We say ε > negl(λ)
if ε is not a negligible function.

Lemma 5.4. Assuming a trapdoor hash scheme H = (S,KG,H,E,D) has decryption error ε, and
that ε > negl(λ), then for any constant c > 1:

Pr[Fail > 2cε|I|] < e−cε|I|/3,

where Fail :=
∑|I|

i=1 Faili and Faili is defined in the correctness condition of Definition 5.1.

Proof. The proof follows immediately from the bounded-dependence version of the Chernoff bound
(Lemma 2.6).

We now show how to adapt our batching technique from Section 3 to obtain range-trapdoor hash
schemes, where the evaluation key consists of O(n) group elements, as opposed to O(n|I|) group
elements given by [DGI+19]. As we will see in Section 6, this size reduction results in a shorter
receiver’s message in rate-1 OT protocols and shorter ciphertexts in homomorphic encryption for
branching programs.

5.1 Range-Trapdoor Hash with Linear-Sized Evaluation Keys

Construction 5.5. Let ε ∈ [0, 1) be the decryption error we are wiling to tolerate. Let ` := log(2/ε),
G be a group scheme and PRF : G→ {0, 1}` a PRF with key space {0, 1}λ.

• S(1λ, n): and (G, p, g)
$←− G(1λ). Sample α

$←− Zp, set thk := α and hk := (G, p, g, v), where

v := (gα, gα
2
, . . . , gα

2n
). Return (hk, thk).

• KG(hk, I): Sample a key K
$←− {0, 1}λ for PRF. Let I = [s+ 1, s+ t]. Parse hk := (G, p, g, v),

where v := (g1, . . . , g2n). Sample r
$←− Zp and let

w := (gr1, g
r
2, . . . , g

r
s+t−1, gg

r
s+t, g

r
s+t+1, . . . , g

r
2n).

Set ek := (t,w,K) and tk := (I, r,K).

• H(hk, x; ρ): Parse hk := (G, p, g, v), where v := (g1, . . . , g2n). Let v′ := (g1, . . . , gn), and
return (x · v′)gρ1.

• E(ek, x; ρ): Parse ek := (t,w,K), where t ∈ N and w ∈ G2n. Parse w := (w1, . . . , w2n). For
i ∈ [t]:

1. let w′i = (w1+t−i, . . . , wn+t−i) ∈ Gn;

2. let g′i := (x ·w′i)w
ρ
1+t−i;

3. let bi := DistG,g(g
′
i, ε, 1,PRFK).

20

Return (bt, . . . , b1).

• D(thk, tk, h, e): Parse thk := α, tk := (I, r,K) and I := [s + 1, s + t]. For i ∈ [t], set ei,0 :=

DistG,g(h
rαt−i , ε, 1,PRFK) and ei,1 := DistG,g(gh

rαt−i , ε, 1,PRFK). Return ((e1,0, e1,1), . . . , (et,0, et,1)).

The compactness of the scheme is clear. Range privacy follows from 2n-power DDH. We now
prove the input privacy and correctness of the scheme.

Lemma 5.6 (Input privacy). The scheme provides perfect input privacy: for any two inputs x, x′ ∈
{0, 1}n, (hk, h) ≡ (hk, h′), where (hk, ∗) $←− S(1λ, n), h

$←− H(hk, x) and h′
$←− H(hk, x).

Proof. We need to show (v, (x·v)gαρ) is independent of x, where v := (gα, gα
2
, . . . , gα

2n
) and ρ

$←− Zp.
This immediately follows from the presence of the masking exponent ρ.

Lemma 5.7 (Correctness). Assuming T := [2 loge (2/ε)]/ε = poly(λ) (which is satisfied if ε is an
inverse polynomial), the range TDH scheme provides (1− ε) correctness.

Proof. Fix n, I, x ∈ {0, 1}n and suppose I = [s+ 1, s+ t]. We need to prove Conditions 1 and 2 of
the correctness definition. For i ∈ [t] let g′i be computed as in E (Line 2 of E’s procedure) and let

gi,0 = hrα
t−i

and gi,1 = ghrα
t−i

.
First, we claim g′i = gi,x[s+i], which proves Condition 1 of the correctness definition. To see why

this claim holds, recall that

v′ = (gα, gα
2
, . . . , gα

n
)

w1+t−i = grα
1+t−i

w′
i = (grα

1+t−i
, . . . , grα

s+t−1
, ggrα

s+t︸ ︷︷ ︸
coordinate:s+i

, grα
s+t+1

, . . . , grα
n+t−i

),

and that h = (x · v′)gαρ, g′i := (x ·w′i)w
ρ
1+t−i. Letting b = x[s+ i]:

gi,x[s+i] = gbhrα
t−i

= gb((x · v′)gαρ)rαt−i = gb(x · v′)rαt−i(grαt−i+1
)ρ

= gb(x · v′)rαt−iwρ1+t−i = (x ·w′i)w
ρ
1+t−i = g′i, (28)

as desired.
We now prove Condition 2 of the correctness definition. Fix x ∈ {0, 1}n, i ∈ [t] and bj ∈ {0, 1}

for j ∈ [t] \ {i}, and let

β := Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}]. (29)

Consider a variant of Construction 5.5, in which we replace the PRF PRFK with a truly random

function f : G $←− {0, 1}`. That is, in this variant, calls of the form DistG,g(gi, ε, 1,K) are replaced
with DistG,g(gi, ε, 1, f). Let β′ be the probability that

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] (30)

in the experiment where we replace PRFK with a random f . We will show β′ ≤ ε + negl(λ). By
PRF security we have β ≤ β′ + negl(λ), and thus Equation 29 will follow. The reason that we can

21

use PRF security here (despite the fact that K is given in the clear in ik) is that the procedure Dist
may efficiently be computed via only blackbox access to PRFK (resp., f alternatively) and that we
evaluate PRFK on inputs generated independently of K.

To bound the probability in Equation 30 we first define an event Bad which captures all the
dependencies. Then we will argue that conditioned on Bad, the events {Failj}j∈[t] are independent.
To give some intuition, first notice that Failj holds iff

DistG,g(gj,0, ε, 1, f) = DistG,g(gj,0g, ε, 1, f), (31)

where recall that gj,0 = hrα
t−j

. Also, by definition of Dist, the outputs of the two distance functions
of Equation 31 are only dependent on the outputs of f on group elements {gj,0, gj,0g, . . . , gj,0gT+1},
where T := [2 loge(2/ε)]/ε. Since f is chosen at random, we will have dependencies across Failj ’s
only when the following event Bad holds:

• Bad: there are two distinct indices j, h ∈ [t] such that gj,0 and gh,0 are (T + 1)-close, where
T := [2 loge(2/ε)]/ε.

By Lemma 3.1

Pr[Faili = 1 | Bad ∧ Failj = bj for j ∈ [t]/{i}] = Pr[Faili = 1] ≤ ε. (32)

Below we will show Pr[Bad] = negl(λ), and this will allow us to conclude

Pr[Faili = 1 | Failj = bj for j ∈ [t]/{i}] ≤ Pr[Bad] + Pr[Faili = 1 ∧ Bad | Failj = bj for j ∈ [t]/{i}]
≤ negl(λ) + Pr[Faili = 1 | Bad ∧ Failj = bj for j ∈ [t]/{i}] = ε+ negl(λ), (33)

as desired. It only remains to show Pr[Bad] = negl(λ). Recall that (g1,0, g2,0, . . . , gt,0) = (hr, hrα . . . , hrα
t−1

).
Notice that h 6= 1 except with negligible probability, and thus hr is statistically close to a uniformly
random group element. By Lemma 2.4

(g1,0, g2,0, . . . , gt,0) = (hrα
t−1
, hrα

t−2
, . . . , hr)

c≡ (g′1, g
′
2, . . . , g

′
t),

where g′i’s are random group elements. When replacing {gi,0}i∈[t] with {g′i}i∈[t], the probability
of the event Bad becomes negligible. (This is because T = poly(λ).) Thus, the event Bad with gj,0’s
should also be negligible.

Running time: We specify the running time for tolerated error ε = 1
nc . For E, we can compute

all the values x · w′
i altogether with total O(n log |I|) exponentiations by Lemma 4.4. Also, we

spend |I| exponentiations for computing wρi for i ∈ [I]. Thus, the total number of group operations
is O(n log |I|) exponentiations.

6 Applications of Range-Trapdoor Hash

In this section we review the applications of our range-trapdoor hash scheme.
A two-round OT protocol consists of three PPT algorithms (OT1,OT2,OT3), where (OT1,OT3)

are the two-stage algorithms run by the receiver, and OT2 is run by the sender. We will be concerned

22

with honest-but-curious security (for both parties), and the corresponding definitions of security
are standard. We use otr and ots to denote the receiver’s and sender’s message, respectively.

For an OT protocol OT where the size of each message of the sender is n, we call |n|
|ots| the

download rate of the protocol. We say OT is rate-1 if |n||ots| asymptotically approaches one.

As shown in [IP07], a rate-1 OT implies homomorphic encryption for branching programs with
semi-compactness: the size of ciphertexts only grows with the depth of the program, as opposed to
the size.

Let us first present the implication of our results with respect to rate-1 OTs. Implicit in the work
of [DGI+19] is a construction of rate-1 OT from range trapdoor-hash schemes; see Constructions
5.1 and 5.2 of [DGI+19]. This result of [DGI+19], combined with Lemma 5.5, gives us the following.

Corollary 6.1 (Rate-1 OT with short receiver’s message). Let G be a group scheme, where the
size of a group element is O(λ). Fix a message-size function t(λ) ∈ ω(λ). Assuming 2t-power
DDH, there is a rate-1 two-round honest-but-curios OT protocol with sender’s input (m0,m1) ∈
({0, 1}t, {0, 1}t) and receiver’s input b ∈ {0, 1}, where the receiver’s message otr consists of O(t)
group elements.

Comparison to [DGI+19]. The work of [DGI+19] gives a DDH-based rate-1 OT, where in the
parameter regime of Lemma 6.1, otr consists of O(t2) group elements. Our efficiency improvement
stems from shorter evaluation keys: for a range set I, our scheme’s evaluation key contains O(n)
group elements, as opposed to O(n|I|) group elements given by [DGI+19]. See Lemma 5.3.

Improving upload rate. As noted in [DGI+19], asymptotically speaking, one may make the
length of |otr| as close as possible to |m0| (i.e., achieving upload rate 1, defined as |m0|/|otr|) by
re-using otr and making the input size of the sender larger. For example, assuming |m0| = |m1| =
O(λ2), one may give a two-round OT based on DDH with both download and upload rates being 1.
However, in concrete applications (e.g., homomorphic encryption for branching programs), the OT
ends up being applied on sender’s messages of much smaller asymptotic size, and thus improving
the efficiency for this smaller regime leads to efficiency improvements in those applications.

Homomorphic encryption for branching programs with shorter ciphertexts. Ishai and
Paskin [IP07] show how to build semi-compact homomorphic encryption for bounded-depth branch-
ing programs from rate-1 OT. Semi-compact means that the size of a ciphertexts grows only with
the depth and the input size, and is independent of the program size otherwise. For the OT proto-
col, let sizer(λ, n) denote the size of otr when the length of each of sender’s message is n. Assuming
the input size is n and the depth of the branching program is at most d, the size of a ciphertext
is nd× sizer(λ, t), where t ∈ O(λd). The result of [DGI+19] gives a DDH-based semi-compact en-
cryption for branching programs with ciphertexts consisting of O(λ2nd3) group elements. Applying
Corollary 6.1, our ciphertexts will contain O(λnd2) group elements.

Corollary 6.2. Assuming t-power DDH, there exists a PKE scheme for branching programs of
depth d and input size n, where a ciphertext consists of O(λnd) group elements.

Private information retrieval (PIR) with improved communication. A PIR protocol
involves a server, holding N = 2d blocks (m1, . . . ,mN), each of length β, and a client, holding an

23

index i ∈ [N]. The goal is to allow the client to retrieve mi while keeping i hidden from the server.
We would like to achieve this while minimizing communication complexity. Ishai and Paskin [IP07]
gives a two-round block single-server PIR (one message from each side), achieving download rate
1, from rate-1 OT. The download rate of a PIR is defined as the ratio between the server’s message
and β. The size of the client’s message is O(sizer(λ, β) logN), where β ∈ O(λ logN), and recall that
sizer denotes the size parameter of the receiver’s message in the underlying OT protocol. Thus,
under DDH, the rate-1 OT of [DGI+19] gives rise to a PIR, where the client’s message consists of
O(λ2polylog(N)) group elements. Using Corollary 6.1 and under the power DDH assumption, the
client’s message will have O(λpolylog(N)) group elements.

7 Acknowledgements

We would like to thank Nico Döttling, Xiao Liang and Nick Spooner for helpful discussions.

References

[AHI11] B. Applebaum, D. Harnik, and Y. Ishai. Semantic security under related-key attacks
and applications. In ICS 2011, pages 45–60, Tsinghua University, Beijing, China,
January 7–9, 2011. Tsinghua University Press. 4, 10

[BB04] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption with-
out random oracles. In EUROCRYPT 2004, LNCS 3027, pages 223–238, Interlaken,
Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany. 4, 10

[BDD+00] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the
solution of algebraic eigenvalue problems: a practical guide. SIAM, 2000. 18

[BFOR08] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption:
Definitional equivalences and constructions without random oracles. In CRYPTO 2008,
LNCS 5157, pages 360–378, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany. 2

[BGI16] E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure com-
putation under DDH. In CRYPTO 2016, Part I, LNCS 9814, pages 509–539, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany. 8, 12, 13

[BHY09] M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In EUROCRYPT 2009, LNCS
5479, pages 1–35, Cologne, Germany, April 26–30, 2009. Springer, Heidelberg, Ger-
many. 2

[BLSV18] Z. Brakerski, A. Lombardi, G. Segev, and V. Vaikuntanathan. Anonymous IBE, leak-
age resilience and circular security from new assumptions. In EUROCRYPT 2018,
Part I, LNCS 10820, pages 535–564, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. 5

24

[BMZ19] J. Bartusek, F. Ma, and M. Zhandry. The distinction between fixed and random
generators in group-based assumptions. In CRYPTO 2019, Part II, LNCS, pages 801–
830, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.
4

[BW10] X. Boyen and B. Waters. Shrinking the keys of discrete-log-type lossy trapdoor func-
tions. In ACNS 10, LNCS 6123, pages 35–52, Beijing, China, June 22–25, 2010.
Springer, Heidelberg, Germany. 3, 5

[CDD+16] I. Cascudo, I. Damg̊ard, B. David, N. Döttling, and J. B. Nielsen. Rate-1, linear
time and additively homomorphic UC commitments. In CRYPTO 2016, Part III,
LNCS 9816, pages 179–207, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany. 12

[Cha04] Y.-C. Chang. Single database private information retrieval with logarithmic communi-
cation. In ACISP 04, LNCS 3108, pages 50–61, Sydney, NSW, Australia, July 13–15,
2004. Springer, Heidelberg, Germany. 5

[CMS99] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval
with polylogarithmic communication. In EUROCRYPT’99, LNCS 1592, pages 402–
414, Prague, Czech Republic, May 2–6, 1999. Springer, Heidelberg, Germany. 5

[CNs07] J. Camenisch, G. Neven, and a. shelat. Simulatable adaptive oblivious transfer. In
EUROCRYPT 2007, LNCS 4515, pages 573–590, Barcelona, Spain, May 20–24, 2007.
Springer, Heidelberg, Germany. 4, 10

[DG17a] N. Döttling and S. Garg. From selective IBE to full IBE and selective HIBE. In
TCC 2017, Part I, LNCS 10677, pages 372–408, Baltimore, MD, USA, November 12–
15, 2017. Springer, Heidelberg, Germany. 5

[DG17b] N. Döttling and S. Garg. Identity-based encryption from the Diffie-Hellman assump-
tion. In CRYPTO 2017, Part I, LNCS 10401, pages 537–569, Santa Barbara, CA,
USA, August 20–24, 2017. Springer, Heidelberg, Germany. 5

[DGHM18] N. Döttling, S. Garg, M. Hajiabadi, and D. Masny. New constructions of identity-based
and key-dependent message secure encryption schemes. In PKC 2018, Part I, LNCS
10769, pages 3–31, Rio de Janeiro, Brazil, March 25–29, 2018. Springer, Heidelberg,
Germany. 5

[DGI+19] N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor
hash functions and their applications. In CRYPTO 2019, Part III, LNCS, pages 3–32,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 2, 3,
4, 5, 7, 8, 12, 18, 19, 20, 23, 24

[DY05] Y. Dodis and A. Yampolskiy. A verifiable random function with short proofs and keys.
In PKC 2005, LNCS 3386, pages 416–431, Les Diablerets, Switzerland, January 23–26,
2005. Springer, Heidelberg, Germany. 4

25

[FGK+10] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions
of lossy and correlation-secure trapdoor functions. In PKC 2010, LNCS 6056, pages
279–295, Paris, France, May 26–28, 2010. Springer, Heidelberg, Germany. 6

[GGH19] S. Garg, R. Gay, and M. Hajiabadi. New techniques for efficient trapdoor functions
and applications. In EUROCRYPT 2019, Part III, LNCS, pages 33–63, Darmstadt,
Germany, May 19–23, 2019. Springer, Heidelberg, Germany. 2, 5, 6, 7, 8

[GH18] S. Garg and M. Hajiabadi. Trapdoor functions from the computational Diffie-Hellman
assumption. In CRYPTO 2018, Part II, LNCS 10992, pages 362–391, Santa Barbara,
CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany. 2, 5, 6

[GI05] V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal
rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005. 12

[GVW19] R. Goyal, S. Vusirikala, and B. Waters. New constructions of hinting prgs, owfs with
encryption, and more. Cryptology ePrint Archive, Report 2019/962, 2019. https:

//eprint.iacr.org/2019/962. 5

[IP07] Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In
TCC 2007, LNCS 4392, pages 575–594, Amsterdam, The Netherlands, February 21–24,
2007. Springer, Heidelberg, Germany. 3, 4, 23, 24

[KMT19] F. Kitagawa, T. Matsuda, and K. Tanaka. CCA security and trapdoor functions via
key-dependent-message security. In CRYPTO 2019, Part III, LNCS, pages 33–64,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 5

[KW19] V. Koppula and B. Waters. Realizing chosen ciphertext security generically in attribute-
based encryption and predicate encryption. In CRYPTO 2019, Part II, LNCS, pages
671–700, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Ger-
many. 5

[Lip05] H. Lipmaa. An oblivious transfer protocol with log-squared communication. In
ISC 2005, LNCS 3650, pages 314–328, Singapore, September 20–23, 2005. Springer,
Heidelberg, Germany. 5

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors
over rings. In EUROCRYPT 2010, LNCS 6110, pages 1–23, French Riviera, May 30 –
June 3, 2010. Springer, Heidelberg, Germany. 6

[LPR13] V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography.
In EUROCRYPT 2013, LNCS 7881, pages 35–54, Athens, Greece, May 26–30, 2013.
Springer, Heidelberg, Germany. 6

[LQR+19] A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New constructions
of reusable designated-verifier NIZKs. In CRYPTO 2019, Part III, LNCS, pages 670–
700, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 2,
5

26

https://eprint.iacr.org/2019/962
https://eprint.iacr.org/2019/962

[NR97] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random
functions. In 38th FOCS, pages 458–467, Miami Beach, Florida, October 19–22, 1997.
IEEE Computer Society Press. 10

[OS07] R. Ostrovsky and W. E. Skeith III. A survey of single-database private information
retrieval: Techniques and applications (invited talk). In PKC 2007, LNCS 4450, pages
393–411, Beijing, China, April 16–20, 2007. Springer, Heidelberg, Germany. 5

[PW08] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In 40th
ACM STOC, pages 187–196, Victoria, BC, Canada, May 17–20, 2008. ACM Press. 2,
4, 5, 6, 9

[PW11] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. SIAM
Journal on Computing, 40(6):1803–1844, 2011. 9

[RS09] A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In
TCC 2009, LNCS 5444, pages 419–436. Springer, Heidelberg, Germany, March 15–
17, 2009. 5

27

	Introduction
	Our Results
	Related Work and Open Problems
	Technical Overview

	Preliminaries
	Standard Definitions and Lemmas
	Computational Assumptions
	Standard Lemmas
	Error Correcting Codes

	Lossy TDFs with Short Public Keys from Power DDH
	Running Time of our Lossy TDFs

	Fast Fourier Transform in the Exponent
	Range-Trapdoor Hash Functions
	Range-Trapdoor Hash with Linear-Sized Evaluation Keys

	Applications of Range-Trapdoor Hash
	Acknowledgements

