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Abstract—Hardware reverse engineering is a powerful and universal tool for both security engineers and adversaries. From a defensive
perspective, it allows for detection of intellectual property infringements and hardware Trojans, while it simultaneously can be used for
product piracy and malicious circuit manipulations. From a designer’s perspective, it is crucial to have an estimate of the costs associated
with reverse engineering, yet little is known about this, especially when dealing with obfuscated hardware. The contribution at hand
provides new insights into this problem, based on algorithms with sound mathematical underpinnings.
Our contributions are threefold: First, we present the graph similarity problem for automating hardware reverse engineering. To this end,
we improve several state-of-the-art graph similarity heuristics with optimizations tailored to the hardware context. Second, we propose a
novel algorithm based on multiresolutional spectral analysis of adjacency matrices. Third, in three extensively evaluated case studies,
namely (1) gate-level netlist reverse engineering, (2) hardware Trojan detection, and (3) assessment of hardware obfuscation, we
demonstrate the practical nature of graph similarity algorithms.
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1 INTRODUCTION

IN times of globalized Integrated Circuit (IC) design and
off-shore fabrication processes, the need for protection

of valuable Intellectual Property (IP) assets and detection
of manipulations such as hardware Trojans has highly
increased [1]. To mitigate these serious risks for Applica-
tion Specific Integrated Circuits (ASICs) as well as Field
Programmable Gate Arrays (FPGAs), security engineers are
forced to resort to reverse engineering to witness IP infringe-
ment in competitors’ products [2] or to detect malicious
design manipulations [3] (e.g., in untrusted third-party IP
cores), since the Register Transfer Level (RTL) source code
is typically not available in these scenarios. Unfortunately,
manual reverse engineering is a time-consuming task even
for an experienced team of analysts, thus automated and
reliable techniques are inevitable to reduce time and costs.

In addition to being useful for actual reverse engineering
applications, understanding of automated reverse engineer-
ing also provides valuable guidelines for threat estimation
against (powerful) attackers, and it aids with the design
of sound protective countermeasures such as hardware
obfuscation or physical design obfuscation [4]. For example,
numerous solutions have been proposed to protect IP against
illegitimate reuse or modification, see Shakaya et al. [5]
for a comprehensive overview. Although many of these
schemes seem promising, they typically neglect automated
reverse engineering capabilities to analyze hardware designs
armed with obfuscation features (e.g., see Wallat et al. [6]).
Here, insights in reverse engineering facilitates improved
countermeasures to mitigate aforementioned risks.

In typical real-world scenarios (e.g., detection of hardware
Trojans in third-party IP cores or analysis of a competitor
product), a reverse engineer has access to a flattened, unstruc-
tured gate-level netlist of the target design. From a high-level
point of view, there are two technical key challenges for
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automated gate-level netlist reverse engineering: (1) module
boundary and hierarchy recovery, and (2) matching to known
library components. To infer high-level functionality of an
unstructured netlist, an analyst has to identify boundaries of
candidate modules to subsequently analyze their hierarchy, cf.
Subramanyan et al. [7]. Typically, extracted candidate mod-
ules are matched to a set of library modules (e.g., counters
or cryptographic Sboxes) with Boolean function analysis or
subgraph isomorphism. However, these approaches suffer
from limitations of reliability in case of imperfect netlist
recovery or design obfuscation. Here, even minor errors
typically lead to unrecognized candidate modules since
both matchings techniques require strict information. For
example, chip-level reverse engineering uses imperfect image
processing [2], which is prone to faults such as incorrectly
assigned or missing signals, or incorrectly recovered gate
types. In addition, design obfuscation, different optimiza-
tion strategies, and diversity of implementation strategies
challenges identification of candidate modules even if an
error-free netlist is available.

Goals and Contributions. In this work, we focus on de-
tection of similarities between gate-level netlists rather than
exact matchings of Boolean function analysis or subgraph
isomorphism. Our goal is to examine its suitability for the
hardware security domain. This approach seems promising
since these heuristics have been used successfully in several
other settings, including malware detection [8], [9], grading
of programming assignments [10], bioinformatics and data
mining [11]. To this end, we first analyze characteristics
of hardware netlists to improve state-of-the-art similarity
heuristics through tailored optimizations. Subsequently, we
introduce our novel approach based on spectral analysis
of adjacency matrices. Finally, in three case studies, we
demonstrate the efficacy of similarity analysis for large
and complex hardware designs. In summary, our main
contributions are:

• Graph Similarity for Hardware Security. To the best
of our knowledge, we are the first to apply the graph
similarity problem in the hardware security domain.
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We show a broad spectrum of graph similarity applica-
tions by means of three case studies, namely (1) gate-
level reverse engineering of security-relevant circuitry,
(2) detection of hardware Trojans, and (3) assessment
of hardware obfuscation. To this end, we improve state-
of-the-art similarity heuristics in terms of accuracy and
computation time by optimizations and novel prepro-
cessing techniques tailored to the hardware setting.

• Novel Similarity Heuristic. We present a novel graph
similarity heuristic based on spectral graph analysis.
More precisely, we analyze spectral information of of
two graphs in a multiresolutional way to determine their
similarity. Eigenvalues of the graph’s adjacency matrices
are computed and a suitable distance measure between
respective eigenvalue distributions is determined.

• Extensive Evaluation. Our evaluation demonstrates
the efficacy of graph similarity heuristics for large
hardware benchmarks while keeping analysis time
practical. Additionally to the variety of algorithms, our
evaluation covers different FPGA families and several
design optimization goals to emphasize the reliability of
our approach for each case study.

2 SYSTEM MODEL

We assume a reverse engineer with access to a flattened
(placed and routed) gate-level netlist without any a priori
knowledge of the design’s internal workings. More precisely,
the adversary has no information of module hierarchies,
synthesis options, or names of gates and signals.

The high-level goal of the reverse engineer is able to be
able to retrieve information of the design’s internal workings
for a specific purpose (e.g., hardware Trojan detection,
competitor analysis, or finding evidence of IP infringement).
The gate-level netlist can be obtained through several means:
(1) chip-level or layout reverse engineering [4] in case of
ASICs, (2) bitstream-level reverse engineering [12] in case of
FPGAs, (3) directly from an IP provider [1].

Note that this system model is in line with prior research
on hardware security [3].

3 THE GRAPH SIMILARITY PROBLEM

Before we detail a variety of state-of-the-art graph similarity
heuristics and our hardware-specific improvements, we
provide essential background on graph similarity and the
notation used throughout the remainder of this work. Note
that we represent gate-level netlists as graphs and leverage
similarity algorithms between graphs for hardware reverse
engineering.

3.1 Preliminaries
Definition 1 (Directed Graph). A digraph G = (V,E) is a
pair where V is a set of vertices, and E ⊆ V × V is a set of
edges (ordered pairs of vertices). d−G(v) denotes outgoing edges for
a vertex v in G, and d+G(v) denotes ingoing edges, respectively.
cG(v) is the set of child vertices for a vertex v in G, i.e. the
projection cG(v) = π1(d

−
G(v)) := {π1(v, va), . . . , π1(v, vz)} =

{va, . . . , vz}. pG(v) is the set of parent vertices for a vertex v
in G, i.e. the projection π0(d+G(v)). The function label : V → N
determines the label of a vertex.

Two relationships are relevant for our work: (1) isomor-
phism, and (2) similarity. From a high-level perspective,

graph isomorphism captures whether two graphs are struc-
turally equivalent or not. Graph similarity relaxes this binary
decision to a real number indicating a level of similarity,
see Figure 1.

Definition 2 (Graph Isomorphism). Let G1 = (V1, E1) and
G2 = (V2, E2) be two graphs. G1 and G2 are isomorph, if there
exists a bijection f : V1 → V2 such that ∀(u, v) ∈ E1 ⇐⇒
(f(u), f(v)) ∈ E2.

Definition 3 (Graph Similarity Algorithm). Let G1 and G2 be
two graphs. A graph similarity algorithm A : (G1, G2)→ [0, 1]
computes a real-valued similarity score forG1 andG2. A similarity
score of 1 indicates that G1 and G2 are identical.

In order to effectively measure similarity, we use the
notion of graph edit distance, see Definition 4. The edit
distance measures the smallest number of edit operations
transforming one graph into another one.

Definition 4 (Graph Edit Distance). Let G1 and G2 be two
graphs. The graph edit distance is a function GED(G1, G2)→ N
which computes the smallest number of edit operations to trans-
form G1 into G2. The edit operations are: adding an isolated
vertex e+v , deleting an isolated (without connecting edges) vertex
e−v , adding an edge e+e , deleting an edge e−e , relabeling a
vertex erv . Each edit operation has a specific cost, defined by
cost : {e+v , e−v , e+e , e−e , erv} → N, typically 1 for vertex-edit and
edge-edit operations.

Even though the problem of graph isomorphism and
graph edit distance are conceptionally easy to understand,
both are hard to solve in a generic way: computation of the
graph edit distance is NP-hard (exponential in number of
vertices/edges), the graph isomorphism problem is in the
low hierarchy of NP, and the subgraph isomorphism problem
is NP-complete [13]. Over the years, various heuristic algo-
rithms have been proposed to provide a similarity measure.
These heuristics often involve scenario-specific optimizations
(1) to increase accuracy, and (2) to reduce computation time
via reduction of analyzed graphs.

3.2 Hardware Characteristics and Optimizations
Since we deal with graphs representing hardware (i.e., gate-
level netlists), we now describe algorithm-specific optimiza-
tions based on general hardware characteristics, namely (1)
vertex labeling, and (2) subgraph analysis. Our optimizations
increase the accuracy and reliability of graph similarity
heuristics and simultaneously enable major reduction of
computation times. Note that graph similarity algorithms
may have to be adapted to incorporate these optimizations.

Vertex Labeling. Since we target graphs representing
gate-level netlists, vertices represent gates that implement
Boolean functions. To effectively distinguish vertices, each
gate type is assigned a specific label (e.g., an XOR gate
is labeled xor, an AND gate is labeled and, etc.). To be
more precise, we use natural numbers to represent labels,
cf. Definition 1. Note that typical hardware libraries may
contain up to one hundred or more atomic gates. Thus, we
may have to adapt similarity algorithms to support labels.

Subgraph Analysis. Since modern hardware designs are
typically assembled from a variety of modules such as IP
cores, our main focus is to identify these small (e.g., 100
vertices) subgraphs in a large (e.g., 5000 vertices) design
graph rather than a similarity analysis for two large graphs.
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Figure 1: Example of the difference between isomorphism and similarity. G1 and G2 are isomorph (f(1) = C, f(2) =
A, f(3) = B, f(4) = D), whereas G2 and G3 are not isomorph, even though they are topologically similar. The missing
edge for an isomorphism from G2 to G3 is (α, δ).

Therefore, we may have to adapt similarity algorithms to
support a subgraph analysis rather than two equally-sized
graphs.

3.3 Graph Similarity Preprocessing Strategies
We now provide a high-level overview of our two-phased
graph similarity analysis using different netlist preprocessing
steps. From a high-level point of view, phase 1 represents a
fast coarse-grained similarity analysis, however, phase 1 is
inevitably prone to false-positive identified similarities. To
overcome its fundamental limitations, we perform a slower
but fine-grained and thus more reliable phase 2.

3.3.1 Phase 1: Combinational Logic Subgraphs
A typical hardware design consists of combinational logic im-
plementing Boolean functions to transform data stored in Flip
Flops (FFs) forming registers. In particular, combinational
logic between register stages are interesting for the human
analyst since they implement crucial Boolean functions
(e.g., a hardware Trojan trigger). Therefore, we analyze
graph similarity among combinational logic subgraphs rather
than the whole graph. This approach yields both increased
accuracy since registers are a potential pitfall for false-
positives and reduced computation time since combinational
logic subgraphs are significantly smaller and can be analyzed
in parallel.

To determine combinational logic subgraphs, we process
the design in a two-phased approach. First, we determine so-
called register groups [14]. To be more precise, we group all FFs
which have equal control signals (e.g., clock, chip enable, or
(a)synchronous (re)set). Second, for each FF in each register
group we perform a reverse breath-first search until we reach
a FF. Here, reverse means that we change direction of each
edge. Each combinational logic gate visited during reverse
breath-first search is added to the combinational logic group
for the register group. Note that we also report the register
group size, since this information yields valuable information
about the design’s architecture for the human analyst. For
example, the register grouping identifies general-purpose
registers of a Central Processing Unit (CPU) or the datapath
of a crypto implementation, see Section 4.

In summary, phase 1 analyzes similarities among combi-
national logic subgraphs of both hardware designs.

3.3.2 Phase 2: Combinational Logic Bitslices and LUT
Decomposition
Combinational Logic Bitslices. Even though combinational
logic subgraphs are significantly smaller than the original

graph, they can still consist of numerous gates (e.g., a
datapath of a CPU or crypto algorithm). In order to further
reduce the size of the subgraphs, we analyze so-called
bitslices [7] of combinational logic subgraphs. More precisely,
a bitslice is a Boolean function with one output and multiple
inputs. Hence, each output signal of a combinational logic
subgraph yields a single bitslice. Our bitslice analysis is
based on the observation that similar combinational logic
subgraphs share similar bitslice subgraphs, and analysis
of bitslices provides a more fine-grained similarity value.
Analogous to our combinational logic subgraph generation,
we perform a reverse breath-first search for each output
signal until we reach inputs of the subgraph. Each visited
gate is added to the bitslice.

For each combinational logic subgraph, we do not obtain
one but multiple similarity values since we compare multiple
bitslices. Even though a human analyst is capable to analyze
such a vector of similarity values, we found it practical to
reduce this number to a single values. To this end, we simply
determine the arithmetic mean of the similarity values. Note
that we also report the standard deviation in case similarity
values are spread over a wide range of values.

FPGA LUT Decomposition. We now describe a netlist
preprocessing technique tailored to FPGA designs which
on one hand significantly increases the accuracy of graph
similarity algorithms, but on the other hand increases the
size of the analyzed graphs. A crucial building block of
FPGAs are so-called Look-up tables (LUTs), typically small
truth tables (with 2 to 6 inputs) which implement Boolean
functions and thus form combinational logic of a hardware
design (along with other dedicated multiplexers or carry
gates). From a graph theory perspective, each LUT is treated
as a single vertex regardless of its implemented Boolean
function, so even if a LUT L1 implements a simple Boolean
OR and a LUT L2 implements (parts of ) a highly non-linear
cryptographic Sbox, both L1 and L2 are treated equally even
if labeling is used.

To address this fundamental limitation, we preprocess
the target gate-level netlist and replace each LUT with its
implemented Boolean function. More precisely, we determine
the minimal form of a Boolean function with the Quince-
McCluskey algorithm [15] in order to represent each LUT
with the minimum number of AND-OR-INV logic gates.
Note that the Quince-McCluskey algorithm’s runtime grows
exponentially with the number of variables, however, typical
LUTs have a small input size (≤ 6), hence this is not a
limitation in practice. This preprocessing step naturally
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increases the netlist size, however, this strategy enables
to address the aforementioned issue in a generic way, i.e.
independent of any graph similarity heuristic. Furthermore,
this step unifies netlists of different LUT architectures.

In summary, phase 2 analyzes similarities among combina-
tional logic bitslices of both hardware designs whose LUTs
have been decomposed.

Similarity Algorithms. In the following, we present
two state-of-the graph similarity algorithms (Section 3.4
and Section 3.5) including our adaptions in the hardware
context. Subsequently, we present our multiresolutional
spectral analysis (Section 3.6). In addition to the presented
graph similarity algorithms, we evaluated the applicability
of maximum common subgraph and VF2 subgraph iso-
morphism (implemented in Boost). However, either both
searches identifies that no subgraph is found in a range of
seconds (even using combinational subgraph preprocessing),
or its computation time is beyond several hours thus we
found both approaches to be impractical for our evaluation.
Note that such a mismatch occurs due to multi-level circuit
minimization.
Furthermore, we implemented and evaluated the ap-
plicability of a label transition systems approach by
Sokolsky et al. [16] and the k-subgraph analysis by
Kruegel et al. [8]. However, computation time of the labeled
transition system is beyond several days for larger graphs
and thus impractical for our evaluation. Moreover the k-
subgraph analysis provides inaccurate similarity results for
our case studies even though computation time is practical
(several minutes up to hours for selected hardware designs).
Note that we adapted the original subgraph generation by
Kruegel et al. to cope with hardware graphs where nodes
may have more than 2 successors.

We refer the reader to Section 5 for details on our
algorithm selection.

3.4 Graph Edit Distance Approximation
Although the graph edit distance effectively measures simi-
larity of two graphs, its computational complexity is a fun-
damental drawback. Hu et al. [9] proposed an algorithm to
approximate the graph edit distance to measure similarities
among software function-call graphs for malware detection.
The key idea of this algorithm is to analyze edit operations
to map each vertex in the two graphs, and then leverage the
Hungarian method that solves this assignment problem1 in
O(|V |3) polynomial time [17]. The Hungarian method finds
the optimal assignment, i.e. a matching for vertex sets with
minimal cost.

Optimizations Tailored to Hardware. Hu et al. [9]
described an optimization similar to vertex labeling to
increase accuracy. In our case, we incorporate vertex labeling
described in Section 3.1. Also, more importantly for our case,
we add a subgraph search capability to the algorithm to
measure similarity for a small subgraph rather than two
equally sized graphs. Note that in the subgraph search, we
assume thatG1 is the small subgraph andG2 is the larger one.
In case the subgraph search is not used, butG1 is significantly
smaller than G2 we obtain a small similarity value. Note that
we parameterized optimizations to measure its impact on
the heuristic’s accuracy in our evaluation, see Section 4.

1. The assignment is defined as follows: Let S, T be two sets of equal
size and let c : S × T → R be a cost function. The goal is to find a
bijection f : S → T such that the cost

∑
s∈S c(a, f(a)) is minimized.

Algorithm 1 Graph Edit Distance Approximation

Input: Graph G1 = (V1, E1), G2 = (V2, E2),
Boolean label, Boolean subgraph

Output: Similarity Score s ∈ [0, 1] for G1 and G2

Vertex matching m ∈ N(|V1|+|V2|)×(V1|+|V2|)

// initialization of cost matrix
1: matrix (cij) ∈ N(|V1|+|V2|)×(|V1|+|V2|) initialized with 0
2: for vertex vi ∈ V1 do
3: for vertex vj ∈ V2 do
4: cij ← edit distance(vi, vj , label, subgraph)
5: for row i with 0 ≤ i < |V1| do
6: for column index j with 0 ≤ j < |V1| do
7: column index k ← j + |V2|
8: if i = j then
9: cik ← |d+G1

(vi)|+ |d−G1
(vi)|+ 1

10: else
11: cik ←∞
12: if subgraph = false then
13: for row index i with 0 ≤ i < |V2| do
14: for column index j with 0 ≤ j < |V2| do
15: row index k ← i+ |V1|
16: if i = j then
17: ckj ← |d+G2

(vi)|+ |d−G2
(vi)|+ 1

18: else
19: ckj ←∞

//search optimal vertex matching
20: vertex matching m← hungarian((cij)) ∈ N(|V1|+|V2|)2

//similarity computation
21: if subgraph = false then

22: return s← 1−
∑|V1|+|V2|−1

i←0 cimi

|V1|+|V2|+2(|E1|+|E2|)
23: else
24: return s← 1−

∑|V1|+|V2|−1
i←0 cimi

2|V1|+4|E1|

Algorithm 1 shows the graph edit distance approximation
extended with our optimizations. First, the quadratic cost
matrix (cij) is initialized ( 1 - 19). Note that |V2| dummy
vertices are added to V1, and |V1| dummy vertices to V2.
The quadratic cost matrix is split into four equally sized
parts. The top left part denotes the edit distance to transform
a vertex from V1 into a vertex from V2 ( 2 - 4 ). Note
that the function edit distance is described below. The top
right part denotes cost to transform a vertex from V1 to
a dummy vertex from V2, i.e. deletion of ingoing |d−G(v)|
and outgoing |d+G(v)| edges as well as vertex deletion ( 5 -
11). Similarly, the bottom left part denotes cost to transform
a vertex from V2 to a dummy-vertex from V1 ( 13 - 19).
The bottom right part denotes cost to transform dummy
vertices from V1 into dummy vertices from V2, which has
zero associated cost 1 . Second, the Hungarian method is
used to find the optimal vertex matching with smallest
costs between vertex sets V1 and V2 (initialization in 20).
Third, graph similarity is computed ( 21 - 24). Note that the
original algorithm computed an approximation of the graph
edit distance and not a similarity score, Chan et al. [18]
defined a formula to compute this value for a given edit
distance 22. The computational complexity of the graph
edit distance approximation is O((|V1| + |V2|)6) since the
Hungarian method can be implemented with O(|V |3).
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label subgraph Equation
false false ed←max (|d+G1

(vi)|, |d+G2
(vj)|)−min (|d+G1

(vi)|, |d+G2
(vj)|) + max (|d−G1

(vi)|, |d−G2
(vj)|)−min (|d−G1

(vi)|, |d−G2
(vj)|)

true false ed←|pG1
(vi)|+ |pG2

(vj)| − 2|C(pG1
(vi) ∩ pG2

(vj))|+ |cG1
(vi)|+ |cG2

(vj)| − 2|C(cG1
(vi) ∩ cG2

(vj))|
false true ed←|d+G1

(vi)| −min (|d+G1
(vi)|, |d+G2

(vj)|) + |d−G1
(vi)| −min (|d−G1

(vi)|, |d−G2
(vj)|)

true true ed←|pG1 (vi)| − |C(pG1 (vi) ∩ pG2 (vj))|+ |cG1 (vi)| − |C(cG1 (vi) ∩ cG2 (vj))|

Table 1: Edit cost equations for parameter configurations label and subgraph.

In case of a subgraph search (subgraph = true) we omit
the bottom left part 12, i.e. cost to transform a vertex from
V2 to dummy vertices from V1. Thus, we can remove these
vertices from V2 at no cost since we are only interested in
measuring cost of identifying the small subgraph G1 in G2.
Furthermore, we adjust the denominator in the similarity
computation 24 to the highest number of edit operations to
transform a subgraph of G2 in G1, i.e. delete and add |V1|
vertices (cost of 2|V1|) as well as delete and add |E1| edges
(cost of 4|E1|). Note that the cost of edge edit operations are
2, see Definition 1.

Edit Distance Computation. To compute the
edit distance 4 , we use distinct strategies for all 4 different
parameter possibilities, see Table 1. Equation 1 states the
original edit distance cost formula by Chan et al. [18].

ed←max (|d+G1
(vi)|, |d+G2

(vj)|)−min (|d+G1
(vi)|, |d+G2

(vj)|)
+max (|d−G1

(vi)|, |d−G2
(vj)|)−min (|d−G1

(vi)|, |d−G2
(vj)|)

(1)

In case that both parameters label and subgraph are false,
Equation 1 computes the edit distance. For vertex labeling
optimization (label = true, subgraph = false), we count
occurrences of vertex labels in parent and child sets instead of
the number of ingoing d+G and outgoing d−G edges. Formally,
the input for the function C in Table 1 is a set of vertices and it
returns a multiset of vertex labels with their multiplicity. For
subgraph optimization (label = false, subgraph = true),
we omit these edit distance costs for G2 since we are only
interested in subgraph G1. If both parameters are true, both
strategies are combined.

In our implementation, we also return the vertex match-
ing m to analyze similar vertices in both graphs. To detect
multiple matchings, for example if a hardware unit is
instantiated multiple times, the algorithm is executed again
but we initialize costs for already matched vertices to ∞.
Furthermore, we implemented all for loops in 2 - 19 in a
parallel fashion to speed up execution.

3.5 Neighbour Matching
In addition to graph edit distance approximation, another
strategy to address the issue was proposed by Vujos̆ević-
Janic̆ić et al. [10]. The key idea of this algorithm is to analyze
the graph topology and match neighboring vertices. To this
end, a similarity submatrix is built that compares topology
of a vertex, and then the Hungarian method is leverged to
solve this assignment problem. Similar to graph edit distance
approximation, the Hungarian method finds the optimal
assignment for this matrix, i.e. a matching for vertex sets
with minimal cost.

Optimizations Tailored To Hardware. Since Vujos̆ević-
Janic̆ić et al. [10] developed an algorithm to compare
software implementations, their vertex labeling focuses on
instructions. In our case, we incorporate the vertex labeling
described in Section 3.1 and we adjusted the final similarity
score computation by a subgraph search. As noted before,

we assume that G1 is the small subgraph and G2 is the large
one and we parameterize each optimization to measure its
impact on the algorithm’s accurarcy.

Algorithm 2 shows the neighbour matching extended
with our optimizations. First, the topological similarity
matrix (simij) is initialized ( 1 - 7 ). In case of vertex
labeling (label = true), we utilize the experimentally
determined value 0.5 to distinguish vertices with different
labels, i.e. (label(vi) 6= label(vj)). Note that a value in
range [0.1 − 0.3] resulted in higher false negative rate and
smaller false positive rate, values in range [0.7− 0.9] caused
a higher false positive rate. Second, the similarity matrix
is iteratively updated until each element in the temporary
matrix (tmpij) is not larger than some chosen precision ε
9 , i.e. ε = 10−4 [18]. In each iteration ( 10 - 28), the new

similarity matrix (simij) is determined as follows: for vertex
pair (vi, vj) the optimal vertex matching is computed with
the Hungarian method 19. Based on this vertex matching,
the vertex similarity value is determined for the parent
(input) vertices simin (line 20) and the child (output)
vertices simout 28. Note in case both vertices have no parents
or children, we set the vertex similarity value to 1. Finally, the
new similarity value simij is determined ( 29 - 32). Third,
after the similarity matrix stabilizes, the similarity value s
is computed ( 33 - 37). Therefore, the Hungarian method
is applied again to find the optimal vertex matching. For
subgraph search (sg = true), we adjust the denominator
since we are only interested to determine a subgraph in G2

similar to graph G1.
Note that a computational complexity of the neighbour

matching algorithm is non-trivial as the similarity value
depends on the convergence for a given precision which
depends on the graph itself, and thus is out of the scope of
this work.

In our implementation, we also return the vertex match-
ing m 33 to analyze similar vertices in both graphs. To detect
multiple matchings, we again execute the algorithm but
we initialize the similarity of already matched vertices to
0. Furthermore, we implemented all for loops in a parallel
fashion to speed up execution.

3.6 Multiresolutional Spectral Analysis

Next, we present our novel graph similarity heuristic based
on spectral analysis of adjacency matrices. Our key idea is
that eigenvalues of adjacency matrices exhibit two important
properties from spectral graph theory [19]:
(1) If eigenvalues of two adjacency matrices are different,

the graphs are different. This observation does not imply
that different graphs have different eigenvalues of their
adjacency matrices, so we expect that this only happens
with small probability for typical graphs of interest.

(2) Eigenvalues are invariant under cyclic permutation with
respect to vertex labels. This is an important feature,
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Algorithm 2 Neighbour Matching

Input: Graphs G1 = (V1, E1), G2 = (V2, E2),
Boolean label, Boolean sg (subgraph), ε > 0

Output: Similarity score s ∈ [0, 1] for G1 and G2

// initialization of the sim. matrix
1: matrix (simij) ∈ R|V1|×|V2|

2: for vertex vi in V1 do
3: for vertex vj in V2 do
4: if label = false or label(vi) = label(vj) then
5: simij ← 1
6: else
7: simij ← 0.5

8: (tmpij) = (simij)
9: while ∀ indices i, j : |simij − tmpij | < ε do

10: (tmpij) = (simij)
11: for vertex vi in V1 do
12: for vertex vj in V2 do

//compute parent neighborhood similarity
13: matrix (inlk) ∈ R|pG1

(vi)|×|pG2
(vj)|

14: for row index 0 ≤ l < |pG1(vi)| do
15: for column index 0 ≤ k < |pG2

(vj)| do
16: row index l′ ← lth index in pG1

(vi)
17: col. index k′ ← kth index in pG2(vj)
18: inlk ← (1− tmpl′k′)/ε

//search optimal matching
19: vertex matching mp← hungarian((inlk))

20: simin ←
∑min(|pG1

(vi)|,|pG2
(vj)|)−1

l←0 inlmpl

max(|pG1
(vi)|,|pG2

(vj)|)
//compute child neighborhood similarity

21: matrix (outlk) ∈ R|cG1
(vi)|×|cG2

(vj)|

22: for row index 0 ≤ l < |cG1
(vi)| do

23: for column index 0 ≤ k < |cG2(vj)| do
24: row index l′ ← lth index in cG1

(vi)
25: col. index k′ ← kth index in cG2

(vj)
26: outlk ← (1− tmpl′k′)/ε

//search optimal matching
27: vertex matching mc← hungarian((inlk))

28: simout ←
∑min(|cG1

(vi)|,|cG2
(vj)|)−1

l←0 outlmcl

max(|cG1
(vi)|,|cG2

(vj)|)
29: if label = false then
30: simij ← simin+simout

2
31: else
32: simij ←

√
tmpij · simin+simout

2

//search optimal vertex matching
33: vertex matching m← hungarian((simij))

//similarity computation
34: if sg = false then

35: return s←
∑min(|V1|,|V2|)−1

i←0 simimi

max (|V1|,|V2|)
36: else
37: return s←

∑min(|V1|,|V2|)−1
i←0 simimi

|V1|

since we only want to compare the graph topology (and
obviously not its vertex labels).

In contrast to other related works on similarity measures
based on spectral analysis (e.g., Crawford et al. [20]), we
are mainly interested in localized (non-global) similarity
information to identify small modules (e.g., a hardware
Trojan) in a potentially erroneous graph. Therefore, we use a
multiresolutional strategy to search at all local positions.

Notation. Let A be the adjacency matrix of a graph
G = (V,E). Moreover, let λi, #»v i, i = 1, . . . , |V | be the eigen-
values arranged in decreasing order which form the spectral
decomposition of A, i.e. Ai #»v i = λi

#»v i, i = 1, . . . , |V |. Once
again, G1 is the small reference subgraph and G2 the large
targeted one.

Algorithm 3 Spectral Analysis

Input: Graphs G1 = (V1, E1), G2 = (V2, E2), Integer k
Output: Spectral distance matrix (dij) ∈ Rk×|V2| for G1

and G2

//generate local k-subgraphs
1: list of subgraphs S1 ← ∅
2: for vertex v ∈ ranked vertices(G1) do
3: S1.append(local subgraph(G1, v, k))

4: list of subgraphs S2 ← ∅
5: for vertex v ∈ V2 do
6: S2.append(local subgraph(G2, v, k))

//compute spectral distance matrix
7: row index i← 0
8: for subgraph s1 ∈ S1 do
9: vector (λs11 , . . . , λ

s1
m)← eigenvalues(s1)

10: column index j ← 0
11: for subgraph s2 ∈ S2 do
12: vector (λs21 , . . . , λ

s2
n )← eigenvalues(s2)

13: spectral distance dij ←
∑max(m,n)
k←1

∣∣∣λs2
k

λ
s2
1
− λ

s1
k

λ
s1
1

∣∣∣
14: j ← j + 1

15: i← i+ 1
16: return (dij)

Algorithm 3 shows our graph similarity approach based
on multiresolutional spectral analysis. First, we generate
local k-subgraphs ( 1 - 6 ) for G1 and G2. Since a cross-
comparison of all k-subgraphs for both G1 and G2 is com-
putationally expensive, we limit the number of k-subgraphs
for G1. To this end, we make the following assumption: if
the small subgraph G1 is present in G2, this should turn up
in a comparison for basically any vertex of G1. Hence, we
select some representative vertices in G1 (ranked vertices in
2 ) (e.g., determined by Google’s page rank algorithm [21]).

Second, we compute the spectral distance matrix ( 7 -
15). In particular, we compute eigenvalue vectors of the
subgraphs s1 and s2 by means of the function eigenvalue
( 9 and 12). Note that we assume that eigenvalues are
arranged in decreasing order, i.e. λ1 is the largest eigenvalue.
We then compute the spectral distance with normalized
eigenvalue sequences 13. Finally, matching vertices in G2

are identified by the smallest spectral distance to any of the
vertices in G1. The computational complexity of our spectral
analysis is bound by O(

(|V2|
k

)
) (for a complete graph) since

the number of subgraphs in S1 is bound by the number
of ranked vertices, i.e. k = 3 in our evaluation. Moreover
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note that the eigenvalue computation for a k × k matrix is
neglected as a constant factor since k is small.

Note that our spectral analysis returns a spectral distance
matrix rather than a rational similarity value when compared
to aforementioned algorithms. Since our approach analyzes
a spectral distance, distance values of 0 indicate a high
similarity.

4 EVALUATION

We now provide results of our three case studies, namely
gate-level netlist reverse engineering (Section 4.2), Trojans de-
tection (Section 4.3), and obfuscation assessment (Section 4.4).
In addition, we provide implementation-specific details for
previously mentioned graph similarity algorithms.

4.1 Implementation
Graph Similarity Algorithms. We implemented the graph
edit distance approximation (Section 3.4) and neighbor
matching (Section 3.5) in C++ 14 using Boost for graph
processing, BuDDy for Binary Decision Diagrams (BDDs),
munkres-cpp for the Hungarian method, and Nauty for
graph canonicalization. In particular, we used OpenMP
for parallelization to significantly accelerate computation,
see Section 3 for the steps that can be parallelized for each
algorithm. The spectral analysis (Section 3.6) is implemented
in R and Python. For our experiments, we utilized several
Google Cloud Platform instances with 64 vCPUs which costs
around $3/h per instance.

Gate-level Netlist Generation. We generated gate-level
netlists for numerous designs using the Xilinx Synthesis
Technology (XST) suite from Xilinx ISE 14.7, see Table 2.
Our evaluation targets 3 Xilinx FPGA families, namely
Spartan-6 (XC6SLX16), Virtex-6 (XC6VLX75T), and Kintex-
7 (XC7K70T). Furthermore, we consider the available XST
synthesis optimization goals speed, and area to measure the
robustness among different synthesis options. We want to
emphasize that we also evaluated each case study for other
families and different FPGA devices within the same families
yielding similar results. In addition to the aforementioned
preprocessing techniques in Section 3.2, we also removed all
(for our case irrelevant) buffers from each analyzed gate-level
netlist to reduce the graph size and thus computation time.

We want to remark that we additionally evaluated relia-
bility against potential errors in the netlist graphs (occurring
due to imperfect image processing in chip-level reverse
engineering). To this end, we randomly changed or deleted
around 5% of all edges, yielding similar results. Moreover,
we investigated whether grouping of nets (bundled wires
connecting one or more gates) had an influence on accuracy,
however, we observed that the accuracy is only marginally
effected decimal places of the similarity value. Thus, we
deliberately omitted this in both algorithm’s description and
practical evaluation.

4.2 Case Study I: Netlist Reverse Engineering
In our first case study, we evaluated the use of graph sim-
ilarity algorithms for gate-level netlist reverse engineering
with a particular focus on security-critical circuits. To this
end, we examined to what extent graph similarity algorithms
can reliably identify specific parts of a cryptographic prim-
itive, i.e. identification an Sbox implementation based on

Table 2: Hardware design description and resource utilization
synthesized for XC6SLX16 with optimization goal area. We
selected XC6SLX16 FPGA as an representative, since resource
utilization only slightly deviate for other FPGA families.

Design Description Source #LUTs #FFs Freq. (MHz)
0 Composite-field Sbox [22] 63 0 -
1 AES (composite-field Sbox) [22] 2049 587 225
2 AES (table-based Sbox) [22] 781 584 162
3 AES (table-based Sbox) [22] 1006 586 177
4 AES (table-based Sbox) [23] 5101 723 91
5 AES (PPRM-based Sbox) [22] 2230 587 91
6 AES (ANF-based Sbox) [22] 6469 587 89
7 AES (table-based Sbox) [24] 517 692 125
8 I2C Bus [25] 293 154 214
9 12-bit PIC CPU [26] 514 248 64

10 16-bit MSP430 CPU [27] 2235 686 43
11 AES (no Trojan) [28] 1917 1077 181
12 AES (with Trojan) [28] 1992 1162 181
13 Trojan (in design 12) [28] 48 1 -
14 GCD (no obfuscation) [29] 234 128 152
15 GCD (with obfuscation) [29] 325 96 171

a composite-field optimization as part of the widely-used
cipher Advanced Encryption Standard (AES). We want to
emphasize that this case study represents a typical instance
of gate-level netlist reverse engineering, since we focus on
identification of submodules in a flattened netlist which
subsequently enables to retrieve hierarchy information and
parts of the original high-level design implementation goals.
In addition, knowledge about the internal architecture of a
cryptographic design provides valuable information for other
scenarios, for example, to enable injection of cryptographic
Trojans through Sbox tampering or to improve assessment
of physical attacks such as fault injection or side-channel
analysis [12].

4.2.1 Hardware Designs
We obtained numerous publicly available third-party AES
implementations and other hardware designs such as CPUs
(e.g., from OpenCores). Note that our considered AES
designs (1 - 7) utilize different Sbox implementation strategies
(e.g., precomputed lookup tables or composite-fields) [30]. To
demonstrate the reliability of graph similarity algorithms, we
provide results for other non-cryptographic general-purpose
designs, i.e. design 8 (I2C), design 9 (12-bit PIC CPU), and
design 10 (MSP430 CPU). Table 2 provides further details for
each hardware design such as resource consumptions and
origins of each design.

We want to emphasize that design 1 (composite-field
Sbox implementation) should exhibit highest similarity for
all designs in this case study, since the composite-field Sbox
of this design is our small reference subgraph G1. Also, we
expect design 5 (PPRM-based Sbox implementation) and
design 6 (ANF-based Sbox implementation) to cause high
similarity values, since both Sbox implementation strategies
are mainly based on AND-XOR gates. In addition, note that
both phase 1 and phase 2 are used in this case study.

4.2.2 Results (Phase 1)
Our evaluation results for phase 1 analysis (combina-
tional logic subgraph) for the similarity comparison of
the composite-field Sbox to other designs are summarized
in Table 3 and Figure 2.

Table 3 shows results for graph edit distance approx-
imation and neighbour matching for designs 1 - 10 for
three Xilinx FPGA families and both synthesis optimization
goals speed and area. The graph edit distance approximation
indicates a high similarity ≥ 0.9 to the composite-field Sbox
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Device Synthesis Algorithm Hardware Design
Option 1 2 3 4 5 6 7 8 9 10

XC6SLX16 speed GED 0.921 0.822 0.779 0.896 0.945 0.908 0.705 0.768 0.826 0.952
XC6SLX16 area GED 0.915 0.763 0.768 0.898 0.942 0.903 0.704 0.719 0.791 0.942

Computation Time 3.22s 1.81s 2.66s 10.8s 3.44s 19.0s 0.87s 0.30s 2.31s 25.1s
XC7K70T speed GED 0.944 0.766 0.758 0.900 0.945 0.912 0.695 0.707 0.799 0.951
XC7K70T area GED 0.950 0.762 0.768 0.896 0.953 0.915 0.695 0.719 0.791 0.942

Computation Time 3.51s 1.74s 3.32s 10.7s 3.77s 20.1s 1.00s 0.29s 2.60s 29.7s
XC6VLX75T speed GED 0.910 0.763 0.758 0.897 0.942 0.920 0.695 0.748 0.799 0.950
XC6VLX75T area GED 0.922 0.762 0.768 0.898 0.941 0.916 0.695 0.719 0.791 0.943

Computation Time 3.61s 1.81s 3.37s 9.15s 4.26s 19.4s 0.79s 0.26s 2.27s 24.7s
XC6SLX16 speed NM 0.770 0.610 0.571 0.699 0.779 0.783 0.526 0.615 0.641 0.773
XC6SLX16 area NM 0.763 0.567 0.573 0.665 0.752 0.757 0.541 0.575 0.622 0.745

Computation Time 54.7s 26.9s 36.9s 4.01m 59.3s 10.7m 14.2s 6.96s 36.6s 4.05m
XC7K70T speed NM 0.805 0.578 0.564 0.710 0.783 0.774 0.425 0.583 0.629 0.782
XC7K70T area NM 0.809 0.567 0.573 0.665 0.757 0.765 0.420 0.576 0.622 0.754

Computation Time 49.6s 11.8s 28.6s 3.75m 58.5s 9.18m 7.84s 5.33s 30.7s 4.16m
XC6VLX75T speed NM 0.755 0.579 0.564 0.708 0.786 0.778 0.425 0.605 0.629 0.780
XC6VLX75T area NM 0.773 0.567 0.573 0.665 0.758 0.768 0.420 0.576 0.622 0.749

Computation Time 53.1s 16.1s 30.5s 3.98m 7.84s 8.22m 14.1s 7.12s 36.5s 3.83s
GED - Graph edit distance approximation NM - Neighbour matching using ε = 0.0001

Table 3: Gate-level netlist reverse engineering case study results (phase 1) comparison between design 0 (composite-field
AES Sbox) and designs 1 - 10. AES Sbox is synthesized for XC6SLX16 with optimization goal area. Parameter subgraph and
label are true for all experiments, and only the combinational logic subgraph preprocessing technique is used.

(a) Design 1 (AES composite-field Sbox). (b) Design 3 (AES table-based Sbox). (c) Design 4 (AES table-based Sbox).

(d) Design 10 (MSP430 processor). (e) Design 5 (AES PPRM-based Sbox). (f) Design 6 (AES ANF-based Sbox).

Figure 2: Gate-level netlist reverse engineering case study results for our multiresolutional spectral analysis without any
preprocessing techniques, comparison between design 0 (composite-field AES Sbox) and designs 1 - 10. AES Sbox (composite
field) is synthesized for XC6SLX16 with optimization goal area, the representative designs in a) - f) are also synthesized for
XC6SLX16 with optimization goal area. The top-ranked vertex (marked in black), 75%-quantile vertex (marked in blue), and
50%-quantile vertex (marked in green). The y-axis shows the spectral distance, and the x-axis shows the vertex labels.

Device Synthesis Algorithm Hardware Design
Option 1 5 6 10

XC6SLX16 speed GED 0.899 0.914 0.885 0.818
XC6SLX16 area GED 0.899 0.899 0.887 0.818

Computation Time 10.3h 11.4h 11.5h 68h

Table 4: Gate-level netlist reverse engineering case study results (phase 2), comparison between design 0 and 1, 5, 6, and 10.
AES Sbox (composite field) is synthesized for XC6SLX16 with optimization goal area. Parameter subgraph and label are true
for all experiments, and the combinational logic bitslice and LUT decomposition preprocessing techniques are used.
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for designs 1, 4, 5, 6, and 10 independent of FPGA family or
optimization goal. The neighbour matching indicates a high
similarity ≥ 0.77 for designs 1, 5, 6, and 10 independent of
FPGA family or optimization goal.

Figure 2 shows results for several representative designs
for our multiresolutional spectral analysis. Similar to graph
edit distance and neighbour matching, we see that distance
matrices indicate a high similarity for design 1 since it has
sufficiently small spectral distances (< 0.05). Similar to graph
edit distance and neighbor matching, we see that designs
5, 6, and 10 exhibit some similarity to the composite-field
Sbox. Note that we selected three vertices after ranking: (1)
top-ranked vertex (marked in black), (2) 75%-quantile vertex
(marked in blue), and (3) 50%-quantile vertex (marked in
green). Moreover, the top-10 candidate vertices with smallest
spectral distance to the three chosen vertices are actual S-
Box vertices with accuracy of 100% (top-ranked), 100% (for
75%-quantile), and 70% (for 50%-quantile). Thus, a statistical
test shows that 27 out of 30 true-positive vertices rejects
a null hypothesis with high significance (binomial test, p-
value < 10−7). Note that the results for different synthesis
options and FPGA families are similar to the one in Figure 2,
hence we deliberately deliberately did not provide evaluation
figures.

Hence, graph edit distance, neighbor matching, and
spectral analysis yield high similarities to designs 1, 5, 6,
and 10, since these three similarity algorithms provide an
accurate and reliable measure. Note that similarity scores are
determined within seconds to minutes for all algorithms.
We want to emphasize that the combinational logic subgraph
which exhibits highest similarity for design 10 is a register
using 81 FFs handling memory access. Obviously, such a
register size is implausible for an AES implementation, hence
a reverse engineer would put this result aside in practice and
just focus on designs 1, 5, and 6 since these Sbox candidate
gates are identified for a subgraph with 128-bit, i.e. the
actual AES datapath registers. Note that our graph similarity
analysis yields 63 gates that have to be further analyzed (e.g.,
with Boolean function analysis or manually).

Sensitivity of Parameter Choice. In addition to afore-
mentioned results, we present several counterexamples
which demonstrate why our selected parameters and prepro-
cessing techniques perform best.

If we compute similarity of the composite-field Sbox to
design 1 using GED without any preprocessing technique
and parameters subgraph = label = false, we obtain a similarity
value of 0.0035 in 5m (baseline). Enabling both parameters
subgraph = label = true yields a high similarity value of
0.943 in 2s, however, the matched gates in design 1 contain
around 10% registers which are erroneously matched to
combinational logic gates of the Sbox circuit. To this end, our
combinational logic subgraph preprocessing generally pre-
vents this mismatch between combinational and synchronous
gates and thus increase accuracy.

If we compute similarity of the composite-field Sbox to
design 1 (AES using the composite-field Sbox) using GED
algorithm in phase 1, subgraph = false, and label = true, we
obtain a low similarity value of 0.239 in 15s (compared to
the high similarity value of 0.915 for subgraph = true). Even
though GED determines correct Sbox gates in design 1, a
low similarity value occurs due to the original similarity
computation equation, see Section 3.4.

If we compute similarity of the composite-field Sbox to
design 1 with all other AES designs (design 2 - 7) using
GED algorithm in phase 1, subgraph = true, and label = false,
we obtain high similarity values ranging between 0.963 and
1.000. Thus without labeled vertices check, similarity values
cannot be used for effective distinction.

4.2.3 Results (Phase 2)
Since phase 1 analysis indicates a high (false-positive) simi-
larity score design 10, we now provide results of our more
robust phase 2 (LUT decomposition and combinational logic
bitslice) similarity analysis. Note that our LUT decomposi-
tion unifies different FPGA families, hence we deliberately
selected Spartan-6 as a representative as other families
yield similar results. Also, we selected graph edit distance
approximation since its requires the least computation time
in phase 1.
Our evaluation results are summarized in Table 4. We see that
graph edit distance approximation indicates a high similarity
∼ 0.9 to bitslices of the composite-field Sbox while design 10
exhibits a similarity of ∼ 0.8, thus we have evidence that the
composite-field Sbox is unlikely present in design 10. Hence,
we have a certain degree of confidence that a composite-field
Sbox gate structure is within designs 1, 5, and 6, but not in
design 10.

In summary, we demonstrated that graph similarity
algorithms can indeed be utilized for automated and reliable
gate-level netlist reverse engineering. To this end, graph edit
distance approximation, neighbor matching, and spectral
analysis should be used in concert to report reliable and
accurate similarity. In case phase 1 analysis yields high
similarities for more than one design, phase 2 analysis should
be used to obtain more reliable and accurate similarity
results. We want to emphasize that we are the first to
demonstrate automatic reverse engineering of composite-
field-based Sboxes to the best of our knowledge. So far it
was only demonstrated that precomputed LUT Sboxes can
be automatically identified in third-party IP cores [31].

4.3 Case Study II: Trojan Detection
Over the past decade, numerous works have addressed
th emerging threat of hardware Trojans since current IC
design and fabrication practices rely on untrusted entities
(e.g., untrusted third-party IP cores or untrusted offshore
fab). To counteract this threat and inspired by malicious
software detection approaches [9], we evaluated whether
graph-similarity algorithms can be leveraged to reliably
detect hardware Trojans in gate-level netlists of potentially
untrusted third-party IP cores.

4.3.1 Hardware Designs
We obtained a publicly available hardware Trojan benchmark
AES-T1000 from the trusthub benchmark suite [32]. Design
11 refers to the AES-T1000 without the Trojan, design 12
refers to the AES-T1000 including the Trojan, and design
13 is the Trojan itself. The Trojan leaks the AES key for
a predefined input plaintext through a covert power side-
channel using a code-division multiple access sequence. More
specifically, an Linear Feedback Shift Register (LFSR)-based
Pseudo Random Number Generator (PRNG) (initialized with
the input plaintext) is used to XOR modulate the secret key
and finally the output of the XOR gate is connected to 8
identical FF gates to mimic a large capacitance.
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Device Synthesis Algorithm Hardware Design
Option 11 12 1 5 6 7 8 9 10

XC6SLX16 speed GED 0.779 1.000 0.699 0.696 0.753 0.702 0.867 0.865 0.958
XC6SLX16 area GED 0.722 1.000 0.699 0.691 0.699 0.699 0.870 0.865 0.945

Computation Time 28.0s 29.8s 2.53s 2.51s 13.0s 0.74s 0.19s 1.87s 24.7s
XC7K70T speed GED 0.779 1.000 0.696 0.691 0.751 0.702 0.808 0.865 0.958
XC7K70T area GED 0.715 1.000 0.699 0.699 0.702 0.699 0.870 0.865 0.943

Computation Time 8.02s 9.65s 2.70s 2.58s 14.9s 0.69s 0.19s 2.04s 25.0s
XC6VLX75T speed GED 0.772 1.000 0.696 0.694 0.756 0.702 0.865 0.865 0.958
XC6VLX75T area GED 0.753 1.000 0.699 0.699 0.699 0.699 0.870 0.865 0.945

Computation Time 6.72s 9.73s 2.67s 2.42s 12.7s 0.71s 0.21s 1.94s 26.2s
XC6SLX16 speed NM 0.692 0.825 0.630 0.615 0.670 0.474 0.691 0.614 0.767
XC6SLX16 area NM 0.639 0.825 0.619 0.592 0.647 0.475 0.681 0.609 0.811

Computation Time 2.08m 3.05m 25.6s 31.8s 10.4m 7.42s 3.84s 19.5s 2.85m
XC7K70T speed NM 0.595 0.825 0.631 0.615 0.669 0.468 0.642 0.610 0.766
XC7K70T area NM 0.541 0.825 0.627 0.611 0.645 0.471 0.681 0.609 0.811

Computation Time 45.5s 1.06m 30.3s 34.8s 8.75m 7.32s 3.12s 19.8s 2.67m
XC6VLX75T speed NM 0.580 0.825 0.629 0.618 0.669 0.468 0.689 0.610 0.762
XC6VLX75T area NM 0.541 0.825 0.618 0.615 0.645 0.471 0.681 0.609 0.811

Computation Time 43.6s 1.02m 27.9s 36.3s 6.53m 8.09s 2.56s 19.2s 2.58m
GED - Graph edit distance approxmiation NM - Neighbour matching using ε = 0.0001

Table 5: Trojan detection case study results (phase 1) comparison between design 13 and designs 1, 5 - 12. Trojan (design 13)
is synthesized for XC6SLX16 with optimization goal area. Parameter subgraph and label are true in all experiments, and only
the combinational logic subgraph preprocessing technique is used.

(a) Design 9 (12-bit PIC). (b) Design 11 (AES without Trojan). (c) Design 12 (AES with Trojan).

Figure 3: Trojan detection case study results for our multiresolutional spectral analysis without any preprocessing techniques,
comparison between design 13 and designs 9, 11, and 12. Trojan (design 13) is synthesized for XC6SLX16 with optimization
goal speed, the representatative designs 9, 11, and 12 are also synthesized for XC6SLX16 with optimization goal area. The
top-ranked vertex (marked in black), 75%-quantile vertex (marked in blue), and 50%-quantile vertex (marked in green). The
y-axis shows the spectral distance, and the x-axis shows the vertex labels.

To demonstrate the reliability of graph similarity algo-
rithms, we also provide results whether the Trojan designs
exhibits high similarities to other benign designs, i.e. design 1,
5, 6, and 7 (AES circuits using different Sbox implementation
strategies), design 8 (I2C), design 9 (12-bit PIC), and design
10 (MSP430). Table 2 provides resource consumptions for
each hardware design.

We want to emphasize that design 12 (AES-T1000 includ-
ing the Trojan) should exhibit highest similarity to the Trojan
for all designs in this case study.

4.3.2 Results (Phase 1)
Our evaluation results are summarized in Table 5 and Fig-
ure 3. Table 5 shows results for graph edit distance ap-
proximation and neighbour matching, for designs 1, 5, 6,
7, 8, 9, 10, 11, and 12 for three Xilinx FPGA families and
both synthesis optimization goals speed and area. The graph
edit distance approximation indicates highest similarity 1.0
for design 12 independent of FPGA family or optimization
goal, followed by the MSP430 processor with ∼ 0.95. The
neighbour matching also indicate a high similarity ≥ 0.852
for design 12 independent of FPGA family or optimization

goal. Figure 2 shows results for several representative designs
for our multiresolutional spectral analysis. We selected three
vertices after ranking: (1) top-ranked vertex (marked in
black), (2) 75%-quantile vertex (marked in blue), and (3)
50%-quantile vertex (marked in green). Based on results in
Table 6, we selected designs 9 - 12, and similar to graph edit
distance approximation and neighbour matching, spectral
analysis does identify a higher similarity to the hardware
Trojan for design 12 and less similarity to design 9 and 11.
Note that vertices with the smallest distance to the 50%-
quantile vertex (marked in green) in design 12 belong to
the actual Trojan. Since we have underpinned robustness
of our spectral analysis regarding different FPGA families
and optimization goals, see Section 4.2, we deliberately omit
these results here.

Note that similarity scores are determined within sec-
onds to minutes for all algorithms. Furthermore, other
parameter configurations for graph similarity algorithms
and preprocessing techniques yield similar negative results,
see Section 4.2.2. Since our evaluation results indicate that
design 12 is most similar design for phase 1 analysis (and
we actually identify the hardware Trojan), we deliberately
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not evaluate phase 2 results. We want to note that other
parameter configurations for the graph similarity algorithms
and preprocessing techniques yield similar negative results,
see Section 4.2.2.

In summary, we demonstrated that graph similarity can
indeed be utilized for automated and reliable hardware
Trojan detection in untrusted third-party IP cores. To this
end, graph edit distance approximation, neighbor matching,
and our spectral analysis should be used in concert to
report accurate and reliable similarity values for hardware
Trojan detection. Additionally we want to note that other
static hardware Trojan detection schemes (such as FANCI or
COTD [33]) are able to detect the selected Trojan, however,
our goal was to demonstrate that known Trojan can also be
identified with graph similarity based approaches.

4.4 Case Study III: Obfuscation Assessment
Over the past decades numerous hardware obfuscation trans-
formations have been developed to protect valuable IP from
reverse engineering and other threats, see Shakaya et al. [5]
for a comprehensive overview. However, the development
of practical and sound obfuscation schemes is challenging
since metrics for obfuscation are hard to quantify (e.g., how
much effort has to be invested to break obfuscation) since
it requires to quantify a human reverse engineer which is
challenging and still unsolved so far [34].

In our third case study, we evaluate the application
of graph similarity analysis for assessment of obfuscation
transformations. We want to emphasize that the ideal goal
of an obfuscation transformation is to destroy any relation
between an unobfuscated circuit C1 and its obfuscated
version O(C1), so a graph similarity analysis of C1 and
O(C1) should not yield a higher similarity than for other
circuits C2, . . . , Cn implementing a different functionality.
Otherwise (if there is a significant similarity of C1 to O(C1)),
we can derive critical information from an obfuscated circuit
and thus circumvent the obfuscation. We acknowledge that
graph similarity analysis is obviously not sufficient to entirely
quantify a degree of obfuscation, however, it supports
obfuscation designers with a valuable metric indicating
topological difference induced by a transformation.

Hardware Obfuscation Transformations. In order to
demonstrate a typical obfuscation assessment, we selected
the obfuscation transformation proposed by Li et al. [29]
targeting obfuscation of sequential circuits. In particular, we
re-implemented the conditional stuttering and sweep trans-
formations for the 32-bit Greatest Common Divisor (GCD)
circuits as proposed.
Note that we deliberately did not choose Finite State Machine
(FSM)-based obfuscation transformations (e.g., [35]), since
they do not or marginally alter a circuit’s datapath and
thus do not induce large topological differences. Hence, it
is obvious that our approach works and detects datapath
circuits such as an Sbox, see Section 4.2.

4.4.1 Hardware Design
To assess the obfuscation scheme, we evaluate the two GCD
circuits (designs 14 - unobfuscated and 15 - obfuscated).
Moreover, we selected several cryptographic designs (design
1, 5, 6, 7) and general-purpose hardware design: design
8 (I2C), design 9 (12-bit PIC), and design 10 (MSP430). In
Table 2 we provide resource consumptions for each hardware
design.

We want to emphasize that design 14 (unobfuscated)
should exhibit highest similarity for all designs in this case
study, since we compare all designs with the obfuscated
GCD circuit (design 15).

4.4.2 Results (Phase 1)
Our evaluation results are summarized in Table 6 and Fig-
ure 4. Table 6 shows results for graph edit distance ap-
proximation and neighbour matching. Overall, we see that
graph edit distance approximation and neighbour matching
indicate design 14 as highly similar to the obfuscated GCD
(similarity values [0.97, 1.0]), independent of FPGA family
or synthesis optimization goal. Note that the reason for this
unreliability is similar to the one described in case study 1.
Moreover note that all combinational subgraphs for 7 (tiny
AES implementation) and 8 (I2C bus) (for the 0.000 results)
are smaller than the smallest one for design 15, and hence
design 15 cannot be part of designs 7 or 8 in these cases.

Figure 4 shows results for our spectral analysis. Based
on results in Table 6, we selected design 14 and 10 as
representatives since design 10 exhibits also high similarities
for graph edit distance approximation. We selected three
vertices after ranking: (1) top-ranked vertex (marked in
black), (2) 75%-quantile vertex (marked in blue), and (3)
50%-quantile vertex (marked in green). Similar to graph edit
distance approximation, both design exhibit high similarities
since both spectral distance matrices possess vertices with
distance [0.5, 0.7]. Since we have underpinned the robustness
of our spectral analysis regarding different FPGA families
and optimization goals, see Section 4.2, we deliberately omit
these results here.

Similarity scores are determined within seconds to min-
utes for all algorithms. Furthermore, other parameter config-
urations for graph similarity algorithms and preprocessing
techniques yield similar negative results, see Section 4.2.2.
Since our evaluation results indicate design 14 as most
similar design for phase 1 analysis, we deliberately do not
further investigate phase 2. We want to note that other
parameter configurations for graph similarity algorithms
and preprocessing techniques yield similar negative results,
see Section 4.2.2.

In summary, we demonstrated graph similarity algo-
rithms provide a valuable metric to indicate an obfuscation
degree to support both designers of obfuscation transfor-
mations and engineers instantiating them in their designs.
For the selected GCD circuit, we see that the topological
difference induced by the obfuscation transformation may
not be sufficient to hamper reverse engineering. Furthermore,
we want to emphasize that this assessment approach scales to
larger designs including multiple IP cores since we analyze
register groups with our combinational logic subgraph
preprocessing. To report a reliable and accurate metric, graph
edit distance approximation, neighbor matching and spectral
analysis should be used in concert.

5 DISCUSSION

Implications. In previous case studies, we have demon-
strated that graph similarity has a variety of applications
to hardware security. We have shown that graph similarity
heuristics indeed provide accurate and reliable heat spots while
keeping analysis time practical. Our case studies demon-
strated that in general graph edit distance approximation,
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Device Synthesis Algorithm Hardware Design
Option 14 1 5 6 7 8 9 10

XC6SLX16 speed GED 0.975 0.741 0.754 0.759 0.643 0.816 0.841 0.926
XC6SLX16 area GED 0.979 0.738 0.749 0.750 0.000 0.808 0.831 0.937

Computation Time 2.52s 11.8s 14.3s 66.1s 1.93s 1.91s 16.6s 2.51m
XC7K70T speed GED 0.975 0.755 0.756 0.764 0.000 0.000 0.840 0.925
XC7K70T area GED 0.979 0.750 0.750 0.751 0.000 0.808 0.831 0.942

Computation Time 3.46s 13.1s 14.2s 72.7s 1.67s 0.44s 15.5s 2.56m
XC6VLX75T speed GED 0.975 0.734 0.754 0.762 0.000 0.801 0.839 0.926
XC6VLX75T area GED 0.979 0.728 0.750 0.750 0.000 0.808 0.831 0.942

Computation Time 3.45s 13.3s 13.3s 63.8s 1.61s 1.87s 16.3s 2.56m
XC6SLX16 speed NM 0.973 0.624 0.627 0.687 0.000 0.584 0.573 0.717
XC6SLX16 area NM 0.970 0.603 0.611 0.680 0.000 0.532 0.566 0.692

Computation Time 22.2s 6.11m 6.58m 44.3s 1.21s 23.2s 2.28m 24.9m
XC7K70T speed NM 0.973 0.623 0.627 0.687 0.000 0.000 0.570 0.712
XC7K70T area NM 0.970 0.613 0.613 0.682 0.000 0.531 0.566 0.686

Computation Time 10.8s 4.96m 5.08m 37.1m 0.89s 19.4s 2.21m 23.5m
XC6VLX75T speed NM 0.973 0.607 0.649 0.688 0.000 0.522 0.570 0.710
XC6VLX75T area NM 0.970 0.610 0.627 0.683 0.000 0.531 0.566 0.688

Computation Time 9.58s 5.90m 6.08m 36.3m 1.32s 18.8s 2.25m 23.2m
GED - Graph edit distance approxmiation NM - Neighbour matching using ε = 0.0001

Table 6: Hardware obfuscation assessment case study results (phase 1) comparison between design 15 and 1, 5 - 10, 14. GCD
(design 15) is synthesized for XC6SLX16 with optimization goal area. Parameter subgraph and label are true and only the
combinational logic subgraph preprocessing technique is used.

(a) Design 14 (GCD with obfuscation). (b) Design 10 (MSP430 processor).

Figure 4: Hardware obfuscation assessment case study results for our multiresolutional spectral analysis without any
preprocessing techniques, comparison between design 15 and designs 10 and 14. GCD (design 15) is synthesized for
XC6SLX16 with optimization goal area, the designs 14 and 10 are also synthesized for XC6SLX16 with optimization goal area.
The top-ranked vertex (marked in black), 75%-quantile vertex (marked in blue), and 50%-quantile vertex (marked in green).
The y-axis shows the spectral distance, and the x-axis shows the vertex labels.

neighbor matching, and spectral analysis should be used in
concert (with a majority vote) to report reliable and accurate
similarity values, using labeled vertices, subgraph adjust-
ments, and our two-phased analysis. As noted in Section 4.1,
we also evaluated other similarity heuristics and subgraph
isomorphism algorithms, however, their computation time
or accuracy turned out to be impractical for larger graphs.

We want to emphasize that we deliberately did not
perform a pair-wise comparison of large designs, since our
main focus is to find small modules (e.g., hardware Trojans
or datapath circuits) rather than comparing similarity of two
large designs.

Algorithm Selection. As noted before graph similarity
approaches are used in a wide strand of research fields
from bioinformatics to software security research. Since each
concrete similarity algorithm exploits graph characteristics
for a field-specific problem, we selected algorithms which
have already shown to be effective for software security re-
search. Algorithms used for graph similarity problems in the
software context are close to our hardware applications (e.g.,
Trojan detection and reverse engineering), see Chan et al. [18]
or Hu et al. [9].

Analysis and evaluation of graph similarity algorithms from
other fields (e.g., data mining Li et al. [36], Zhang et al. [37])
based on graph kernels or graphlet comparisons are out
of the scope of this work and may be investigated (and
potentially adapted to the hardware context) by future
research.

Generality. Our approach scales even to larger designs
including numerous IP cores, because only the number of
combinational logic subgraphs will increase but not their
size. Moreover, subgraphs can be processed in parallel. In
addition, we want to emphasize that our graph similarity
heuristics are not specific to FPGAs and can be applied to
ASIC gate-level netlists as well.

Theoretical Limitations. We acknowledge that our work
has limitations with respect to statements regarding theoret-
ical bounds or proofs of convergence. Proofs or statement
of soundness for presented graph similarity heuristics are
highly desirable from a theoretical point of view, however,
they are an open challenge and out of scope of our work.
For example, this has to consider the distribution of test
statistics “under the alternative” (non-zero difference between
the graphs locally) for our multiresolutional spectral analysis.
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Moreover, we want to emphasize that in practice, a reverse
engineer is interested in accurate and reliable heat spots which
are determined in practical computation times so that he can
investigate the identified subcircuit in more detail.

Future Work. Research on graph similarity can be inves-
tigated in several directions. For example similarity analysis
might be used to analyze security of split-manufacturing
schemes, since isomorphism property might be to rigid
for a security criterion as explained before. For further
investigations, our evaluation could be extended to a variety
of synthesizers to examine reliability among different syn-
thesizers. As noted before, future work may also explore
theoretical bounds or proofs of convergence to support
statements of similarity algorithms.

6 RELATED WORK

Gate-Level Netlist Reverse Engineering. Modern digital
circuit design is typically realized at RTL which models sig-
nal flow among registers. Logic synthesis tools convert RTL
descriptions to gate-level netlists, i.e. a list of gates and their
interconnections. From a reverse engineering perspective,
valuable information is lost during this translation: module
boundary information as well as hierarchy information [7].
In addition, diverse optimizations are performed to achieve
a predefined optimization goal.

Several works targeted automatic functional module
extraction (e.g., [7]) such as FSMs or datapath circuits such
as adders. Meade et al. [38] performed another notable
work using a similarity-based approach, since they examined
similarity of a netlist’s graph topology to identify control
registers of state machines. Note that their technique is
based on similarity analysis of one netlist, rather than our
technique which compares similarity between two netlists.
While previous approaches such as Boolean function anal-
ysis or (sub)graph isomorphism require strict information,
i.e. an error-free netlist, we investigated graph similarity
algorithms which are reliable even in the presence of errors
and obfuscation, see Section 1. Note that in case any error
(e.g., a misidentified gate type or a missing signal) is
present, approaches based on strict Boolean measures such as
subgraph isomorphism or Boolean function analyses cannot
be applied to yield desired results which emphasizes the
general use of similarity approaches. In particular, errors
are particularly worrisome in case a malicious Trojan was
equipped with physical design obfuscation [4] to evade
Boolean function analyses by design.

In addition, similarity analyses can be leveraged during
IC design, simulation, verification and testing phases to
improve designer’s productivity for IP reuse [39]. We want
to emphasize that such approaches are orthogonal to reverse
engineering since high-level information is already available.

Hardware Trojans. Since an initial report by the US DoD
in 2005, the scientific community extensively researched
offensive and defensive aspects of hardware Trojans, see
Bhunia et al. [3] for a comprehensive overview. In general,
a hardware Trojan consists of a payload circuit delivering
the malicious functionality (e.g., leakage of cryptographic
keys or denial of service) and an optional payload activating
trigger circuit (e.g., a counter or sensor). Defensive research
focuses on detection of hardware Trojans based on diverse
characteristics such as physical attributes, trigger features,
and payload features. In order to detect Trojan’s characteris-
tics, various approaches based on side-channel analysis, and

design analysis have been proposed. Our work is comparable
to static analysis approaches. Hasagawa et al. [40] proposed
a hardware Trojan classification based on machine learning
using support vector machines. Note that support vector
machines and graph similarity are fundamentally different
approaches: the first being a technique from supervised
learning whereas the second is a descriptive method which
yields data on similarity properties and can be used for both
supervised or unsupervised methods.

7 CONCLUSION

Hardware reverse engineering is a general tool for a variety
of purposes. On one hand it enables detection of malicious
circuitry or find evidence for IP infringement, on the other
hand it also reveals necessary high-level information to facili-
tate malicious circuitry injection. Numerous works addressed
this arms race between reverse engineering techniques and
obfuscation transformations.

In this paper, we presented the graph similarity problem
for the first time in the domain of hardware security,
particularly for reverse engineering, Trojan detection, and
assessment of obfuscation. To this end, we significantly
improved graph similarity heuristics with optimizations
tailored to hardware designs. Furthermore, we introduced a
new technique based on a multiresolutional spectral graph
analysis. In our three case studies, we demonstrated the
practical feasibility of graph similarity for different FPGA
families and several design optimization goals. Particularly,
our results showed that graph edit distance approximation,
neighbor matching, and our spectral analysis should be used
in concert to report accurate and reliable similarity scores.

Since we believe that our work represents a fundamen-
tal building block for future research and applications in
industry, we plan to publicly release our implementation.
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