
Zaphod: Efficiently Combining LSSS and Garbled

Circuits in SCALE

Abdelrahaman Aly1, Emmanuela Orsini1, Dragos Rotaru1,2, Nigel P. Smart1,2, and Tim
Wood1,2

1 imec-COSIC, KU Leuven, Leuven, Belgium.
2 University of Bristol, Bristol, UK.

abdelrahaman.aly@esat.kuleuven.be,emmanuela.orsini@kuleuven.be,

dragos.rotaru@esat.kuleuven.be,nigel.smart@kuleuven.be,t.wood@kuleuven.be

Abstract. We present modifications to the MPC system SCALE-MAMBA to enable the evaluation of
garbled circuit (GC) based MPC functionalities and Linear Secret Sharing (LSSS) based MPC func-
tionalities along side each other. This allows the user to switch between different MPC paradigms to
achieve the best performance. To do this we present modifications to the GC-based MPC protocol of
Hazay et al. (Asiacrypt 2017) (to enable it to support reactive computation), and combine different
aspects of their pre-processing phase with those of Wang et al. (CCS 2017), in order to optimize our
pre-processing protocols. We also give a more efficient method for producing daBits (double authenti-
cated Bits) than that presented in the work of Rotaru and Wood (ePrint 2019). Finally, we examine
how the functionality can be integrated within the existing MPC framework SCALE-MAMBA.

1 Introduction

Multi-Party Computation (MPC) is a set of techniques that enable different parties to com-
pute a function on their joint (and privately held) data, without disclosing anything about
the data itself, bar what can be derived from the result of the function. It was first introduced
in the 1980s and it has, over the last ten years, seen a remarkable improvement in terms
of performance. Indeed, MPC has reached a level where companies are starting commercial
deployments of MPC based solutions.

MPC comes in essentially two flavours (paradigms). One flavour operates via linear secret-
sharing schemes (LSSSs) over some finite field Fp, or sometimes a finite ring. The function to
be computed is expressed as an arithmetic circuit (this is not quite true, but this abstraction
is good enough for us). Secure computation proceeds by evaluating the circuit via a series
of messages being exchanged. We denominate each exchange a communication round. The
number of rounds depends on the multiplicative depth of the circuit, with the total amount of
communication (volume) depending on the number of multiplication gates. Additions do not
require message exchanges, hence we consider them to be “free” in terms of communication.
Protocols in this family date back to [BGW88, CCD88], with modern efficient protocols (for
various access structures) including those in [BDOZ11, DPSZ12, CGH+18, SW19].

The second flavour operates via so-called garbled circuits (GC). In the GC paradigm
the function to be evaluated is expressed as a boolean combinatorial circuit. Each AND-
gate in the circuit is “encrypted” via a garbled table. In the first phase of computation the
parties produce these encrypted tables, then in the second phase the parties evaluate the
function using the tables. In this case, the total amount of communication depends on the

number of AND gates, but the round complexity is constant. In the passively secure two
party case this idea goes back to Yao [Yao82], which was generalised to the honest-majority
multi-party setting by Beaver et al. [BMR90]. Recently, there has been renewed interest in
n-party actively-secure protocols in this paradigm, such as [HSS17, WRK17]. The focus in
these newer protocols is almost always on full-threshold access structures.

It is clear that these two flavours of MPC are mutually complementary, i.e. evaluation of
some functions is more suited to the LSSS paradigm, and for others it is more suited to the
GC paradigm. For example, we would prefer to use boolean circuits to perform computation
over the integers where the operation is better expressed as a boolean circuit, and arithmetic
circuits where the computation to be performed is best expressed as an arithmetic circuit.
Thus we want to combine Zp operations and Boolean operations, and indeed this is the goal
of this work.

We call our system for doing this Zaphod, after the two headed character Zaphod
Beeblebrox from Hitchhiker’s Guide to the Galaxy.

Let us consider the following example, where a set of parties wants to compute the
function F : Fn+mp → {0, 1} defined by

F (x1, . . . , xn, y1, . . . , ym) :=

(
n∑
i=1

x2i

)
?
>

(
m∑
i=1

y2i

)
.

In this case, we might perform the summations of squares using arithmetic circuits over a
field Fp, where p is large enough prime to ensure that the summation is valid, i.e. no overflow
occurs. We might nonetheless prefer to perform the comparison using a boolean circuit, since
comparison is hard in the LSSS paradigm, but integer addition is free in the LSSS paradigm
and integer multiplication is also cheaper in the LSSS paradigm.

However, a major drawback has been that almost all systems have required one to choose
a specific paradigm for one’s MPC computations. While significant work has been done on
rectifying this in the two-party setting with passive security [BPSW07, HKS+10, KSS14,
DSZ15, CGR+17, BDK+18] and some work in the three-party honest-majority active security
setting [MR18], such protocols are often tailored to specific choices of GC and LSSS protocols.

By contrast, Rotaru and Wood [RW19] recently introduced a mechanism, called daBits
(for doubly-authenticated Bits), to combine the GC and LSSS paradigms for general actively
secure n-party computation. The idea there is to make use of the GC and LSSS protocols
as black boxes to the fullest possible extent to allow greater flexibility in choosing the two
protocols. This is done by the parties generating bits which are authenticated both in the GC
and LSSS world, and then using these bits to transfer data from one world to the other, and
then back again. Whilst this is good for general purpose computation, there are significant
engineering issues to be addressed to apply this idea within a working and practical system.
In particular, how such constructs are to be exposed to the user of the system? What data-
types one will support on either side? How the system will be integrated?

Our Contribution In this paper we answer these questions, and explain an integration of
this idea into the LSSS-based SCALE-MAMBA system [AKO+18]. SCALE-MAMBA implements

2

state of the art MPC protocols over finite fields Fp, for various access structures. A number
of issues need to be addressed in such an endeavour:

- SCALE-MAMBA supports reactive computation (i.e. data can be processed so that the system
finishes a specific computation to obtain an intermediate disclosed result, before continuing
with another secure computation using the same data). For this, we need to modify existing
GC based MPC protocols to also support reactive computation. This in turn influences
our selection of the underlying n-party GC protocol. Thus, in this work, we adapt the
BMR-style protocol of [HSS17]. The reason for selecting [HSS17] over, say [WRK17] is
that the former is role symmetric and it is easier to turn into a reactive MPC protocol
compared to [WRK17].

- The GC-based protocol of [HSS17] makes use pre-processing of so-called authenticated bits
and authenticated AND-triples, via OT-extension. There are a number of different ways
of producing such triples e.g., Oblivious Transfer (OT). Thus we need to select the ones
which are most efficient from the existing literature.

- The original method of generating daBits was very costly, involving expensive cut-and-
choose and bucketing techniques. In this work we give a method that deals explicitly
with shares of secrets (rather than handles as described in [RW19]), which allows the
generation of daBits with total communication cost that is up to one quarter less and with
a throughput of up to twice as much.

- SCALE-MAMBA comes with a programming language which enables a user to easily program
the system. Producing boolean circuit level abstractions is a cumbersome task. Instead of
users producing circuit descriptions of functions, it is more desirable to have a suitable
high level abstraction in which a user can program her functions on the GC side of the
computation. For this, we allow the user to interact with GC computations via an abstrac-
tion of signed 64-bit integers, much like any high level programming language would do,
for access to real circuits in silicon.

Despite the LSSS operations being relatively general in regard to which access structure they
support, the GC operations are set to be secure for full threshold access structures only. Our
overall protocol is to be secure for the access structure supported by the underlying LSSS,
assuming output to parties is always performed in the LSSS scheme.

Paper Outline In Figure 1, we show the relationship between our functionalities. Section 2,
after an introduction of some notation from previous papers, contains our online functionality
FMPC. Section 3 describes our pre-processing functionality FPrep that provides the correlated
randomness for both the LSSS (FPrep[SPDZ]) and BMR (FPrep[BMR]) online evaluation, and
the doubly authenticated bits (daBits) to be used to convert from one paradigm to the
other. Then in Section 4 we provide a new, more efficient method to produce daBits than
the method in [RW19]. In Section 5 we give the online protocol, describing how we use the
daBits to produce the conversion between the LSSS computations and the GC computations.
Then in Section 6 we discuss how all this is integrated together into a single system, and
how different aspects of the MPC computation and pre-processing are balanced between
each other.

3

FPrep[BMR]
(§3.2)

DaShare (§4)
FPrep[SPDZ]

(§3.1)

Pre-processing functionality FPrep(§3.3)

Fn−TinyOT

(§3.2)

FCOT (§3.2)

FPrep[AuthLSSS]
(§3.1)

FRand (§2)

FMPC (§2)

Fig. 1. Our functionalities

2 Preliminaries

Here we define the basic notation and constructs needed to describe our protocols. First,
we explain the abstract LSSS-based computation which we will support; here we are totally
general and allow n-party secure computation over a number of access structures (all of which
are supported in the SCALE-MAMBA system). We also specify our notation for authenticated
secret-shared values on the Fp-side of the computation. Then, we introduce the equivalent
authenticated sharing for bits on the GC side of the computation. We conclude this section
by giving the abstract functionality which our modification to SCALE-MAMBA aims to achieve.

Notation We let κ (resp. sec) denote the computational (resp. statistical) security para-
menter and P = {P1, . . . , Pn} be the set of parties. In practice we set κ = 128 (so as to use
AES in our PRF) and, in our experiments we utilized sec = 40 and sec = 80. We denote by
[d] the set of integers {1, . . . , d} and use bold lower-case letters for vectors of elements over
both binary and arithmetic fields.

The protocols presented in this work are all secure in the Universal Composability frame-
work of Canetti [Can00]. We consider security against a static, malicious adversary. For the
most part, the protocols presented here are secure for any full-threshold or Q2 access struc-
ture. In some of our protocols we will need a coin-tossing functionality FRand, which given a
set D, outputs a uniformly random element r from D.

2.1 LSSS-Based MPC for Arithmetic Circuits

In this section we detail the type of secret-sharing-based MPC we will be utilizing, and the
associated access structures.

4

We let 〈·〉p denote a linear secret sharing scheme (LSSS) over the finite field Fp which
realizes either a full threshold access structure or a Q2-access structure. There are various
MPC protocols that enable actively secure MPC with abort to be carried out using such an
LSSS. For example in the full-threshold case, one can define an LSSS 〈·〉p and an associated
MPC protocol, using the SPDZ [DPSZ12] system. For general Q2 (actually multiplicative)
LSSSs one can utilize the protocol by Smart and Wood [SW19] to produce an MPC protocol
directly using the given LSSS. Whereas using a modified LSSS one can do the same using the
protocol given by Chida et al. [CGH+18]. The difference between the last two protocols is
that [SW19] provides an online phase with lower communication complexity than [CGH+18],
at the expense of having to utilize a slightly more expensive offline phase.

We now describe what is meant to share secrets using the LSSS given by 〈·〉p, using the
well-known description of monotone span programs (MSPs) first given by Karchmer and
Widgerson [KW93]. Let M ∈ Fm×kp be a matrix, choose a non-zero “target” vector t ∈ Fkp
and an index function ι : {1, . . . ,m} −→ {1, . . . , n}. To share a secret s using these data,
the dealer samples a vector k← Fkp such that t · kT = s ∈ Fp, sets s = (s1, . . . , sm) = M · k,
and for each j ∈ [m] computes i = ι(j) and sends si to party Pi over a secure channel.
The matrix is chosen in such a way that for any qualified set of parties, there is a (public)
recombination vector r that given the share vector s (i.e. the concatenation of shares held
by the qualified set of parties) can recover the secret by computing s = r · sT.

To ensure correctness in the case of a malicious adversary, we can add authentication
to LSSSs in different ways, depending on the access structure. In the SPDZ protocol, every
secret has a linear information-theoretic message authentication code (MAC) attached to it:
the parties hold a secret-shared global MAC key 〈α〉p, and for every secret x, the parties hold
〈x〉p and 〈α ·x〉p. At the end of a computation, the MACs are checked to reveal whether such
additive errors were introduced. This means that in order to change a secret in the scheme
(without detection) by adding error ε to a share of the secret, the adversary has to modify a
share on the corresponding MAC share by α · ε – i.e. it must correctly guess the MAC key α.
For a Q2 access structure, it has been shown [SW19] that error-detection comes essentially
“for free” using a kind of internal redundancy of the LSSS.

Both of these approaches to authentication are linear, so in fact they can be described
in essentially the same way, as follows. First, note that the MAC’d SPDZ sharing can be
described as above by setting the target vector as t = (1, . . . , 1, 0, . . . , 0) ∈ F2·n−1

p , the
index function as ι(i) = ι(n + i) = i, for i ∈ [n], and M = (I2n−1|mT)T, where m =
(α, . . . , α,−1, . . . ,−1). There is a matrix H (the parity-check matrix of the code generated
by M) which takes the full set of shares s (a vector consisting of both shares of the secret
and shares of the corresponding MAC) and checks whether they are valid. A set of shares is
the output of the above procedure if and only if H · sT = 0.

In MPC based on Q2 access structures, the error-detection process involves the same
multiplication by a parity-check matrix H of the LSSS matrix, where in this case the matrix
H is public, whereas for SPDZ the matrix H is secret. The difference between the protocols
in the Q2 and full threshold case are (essentially) in how one uses H to check shares are

5

valid, i.e. to detect whether the protocol should abort or not. We will denote by [[·]]p values
in Fp that are secret shared according to an LSSS and authenticated.

2.2 BMR-style MPC for Binary Circuits

Our multiparty GC-based protocol is a combination, with some extensions, of protocols
described in [FKOS15, HSS17, KOS15, WRK17]. We let K = F2κ be a finite field, recall we
use K = F2128 in our implementation. For each element x ∈ F2 (resp. K), we denote 〈x〉2
(resp. 〈x〉K) the unauthenticated additive sharing of x over F2 (resp. K), where x =

∑
i∈[n] xi,

with party Pi holding xi ∈ F2 (resp. K).
Similarly to the Fp case, we denote by [[b]]2 a bit that is linearly secret shared according

to 〈·〉2 and authenticated according to the pairwise BDOZ-style MAC introduced by Bendlin
et al. [BDOZ11]. This means that every party Pi authenticate their share bi towards party
Pj, for each j 6= i, by holding a MAC M j

i ∈ K, such that

M j
i = Ki

j + bi ·∆j ∈ K,

where Pj holds the local key Ki
j ∈ K and the fixed global MAC key ∆j ∈ K. In what follows,

we let ∆ denote the vector (∆1, . . . , ∆n), and denote by [[bi]]
ij
2 this 2-party authenticated

sharing of the bit bi. We can also define an n-party representation of a bit b =
∑n

i=1 bi, where
each Pi holds the bit-share bi, n− 1 MACs M j

i , n− 1 local keys Kj
i and ∆i, i.e.

[[b]]2 = {bi, ∆i, {M j
i , K

j
i }j 6=i}i∈[n].

Clearly, two sharings can be added together and multiplied by a constant in the trivial way,
so that also the binary [[·]]2-representation is linear. Addition of constants, [[a]]2 ← [[b]]2 + c
for c ∈ {0, 1}, is done by setting

a1 ← b1 + c and ai ← bi for i 6= 1,

with the MAC values and keys being updated by setting

M j
1 [a]←M j

1 [b], K1
j [a] = K1

j [b]⊕ c ·∆j for 1 ≤ j ≤ n,

M j
i [a]←M j

i [b], Ki
j[a]← Ki

j[b] for i 6= 1, 1 ≤ j ≤ n.

2.3 Zaphod - Online Functionality

Our MPC protocol is defined in the so-called pre-processing model, with an offline phase that
provides all the correlated randomness needed for the online computation. In this section we
explain the online functionality we aim to provide. Our goal is to describe a reactive MPC
protocol which combines both arithmetic and boolean circuits. When using the mapping
from binary to arithmetic circuits we will assume the data being transferred has bit length
bounded by `. In other words every data item x can be represented using in ` bits or is
equivalently an element of Z〈2`〉 = {−2`−1 + 1, . . . , 2`−1}. In our implementation we select

6

` = 64, but of course in practice ` can vary depending on the application. We select ` = 64
so as to easily map onto the unsigned int data-type known to programmers.

As mentioned before, we let sec denote a security parameter related to the statistical
security of our protocols. To enable more efficient protocols we will make one of the following
three assumptions.

1. Either `+ sec < log2 p,
2. Or (p− 2blog2 pc)/p < 2−sec,
3. Or (2dlog2 pe − p)/2dlog2 pe < 2−sec.

In each of these cases we guarantee that selecting log2 p bits bi at random and then forming,
for x ∈ Z〈2`〉,

x+

dlog2 pe∑
i=0

bi · 2i (mod p)

will statistically hide the value of x. The assumptions are needed as the value
∑
bi · 2i

(mod p) is not necessarily a uniformly random element from Fp.

Functionality FMPC - Zaphod Evaluation

The functionality runs with parties P1, . . . , Pn and an ideal adversaryA. Let A be the set of corrupt parties. Given
a set I of valid identifiers, all values are stored in the form (varid , domain, x), where varid ∈ I, domain ∈ {F`2,Fp}
and x ∈ domain. We assume p is restricted as in the main text.

Initialize: On input (Init) from all parties, the functionality activates.
If (Init) was received before, do nothing.
Input: On input (Input , Pi, varid , domain, x) from Pi and (input , Pi, varid , domain) from all other parties, with
varid a fresh identifier, store (varid , domain, x).
Evaluate: Upon receiving ({varid j}j∈m, varid , domain, Cf̄), from all parties, where f̄ : {domain}m → domain
and varid is a fresh identifier, if {varid j}j∈[m] were previously stored, proceed as follows:
1. Retrieve (varid j , domain, xj), for each j ∈ [m]
2. Store (varid , domain, xm+1 ← f̄(x1, . . . , xm))
Output: On input (Output , varid , domain, type), from all parties (if varid is present in memory):
1. If type = 0 (Public Output): Retrieve (varid , y) and send it to A. If the adversary sends Deliver, send y to

all parties.
2. If type = −1 (No Output): Retrieve (varid , y) and send it to A. If the adversary sends Deliver, store

(varid , y) and continue .
3. Otherwise (Private Output): Send (varid) to A. Upon receiving Deliver from A, send y to Pi
Abort: The adversary can at any time send abort , upon which send abort to all honest parties and halt.

Figure 2. The ideal functionality for MPC with Abort over Fp and F`2 - Evaluation

In Figure 2 and Figure 3 we provide the functionality for our MPC black box. Each value
in FMPC is uniquely identified by an identifier varid ∈ I, where I is a set of valid identifiers,
and a domain set domain ∈ {Fp,F`2}. We model the functionality in such a way that it is
independent of the details of the authentication technique used in the protocol, and captures
all the MPC computations enabled by the SCALE-MAMBA system. This abstraction, when
instantiated with Fp, captures both the SPDZ protocol and the Q2 protocol from [SW19], but

7

not the protocol from [CGH+18]. The modifications needed to also encompass the protocol
from [CGH+18] are straightforward, but would lead to a more complex description from
which we spare the reader. When the functionality is instantiated with F`2, it is intended
to implement the BMR-protocol. Also note that our abstract MPC functionality provides
actively secure MPC with abort.

Hence, one can see FMPC- Zaphod Evaluation as a combination of two MPC black
boxes, specified by the set assigned to domain, along with two conversion routines, namely
ConvertToField and ConvertToBinary , given in FMPC- Zaphod Conversion. If domain =
Fp, the MPC black box provides arithmetic operations over the finite field Fp, whereas if
domain = F`2, it enables one to execute arbitrary binary circuits over binary vectors of
length `, i.e. functions with arguments and results in the set F`2. Note that the execution of
Output with type = −1 is a command required for simulation in reactive functionalities.
FMPC- Zaphod Conversion permits parties to switch between the two MPC black boxes.

Note that we have defined ConvertToBinary and ConvertToField to ensure that they are
mutual inverses of each other (if the Fp-input element is fewer than ` bits in length when in
the centred interval (−p/2, . . . , p/2]).

Functionality FMPC - Zaphod Conversion

Convert To Field: On input (Convert , varid1, F`2, varid2, Fp):
1. Retrieve (varid1,F`2,x) and convert x to an element y ∈ Fp by setting y ← −x`−1 · 2`−1 +

∑`−2
i=0 xi · 2

i.
2. Store (varid2,Fp, y).
Convert To Binary On input (Convert , varid1, Fp, varid2, F`2):
1. Retrieve (varid1,Fp, x) as an integer in the range (−p/2, . . . , p/2).
2. Express y = x (mod 2`) as y =

∑`
i=0 yi · 2

i for yi ∈ {0, 1}
3. Consider the values yi as elements in F2 and pack them into a vector y ∈ F`2.

Figure 3. Extending the ideal functionality for MPC over Fp and F`2 to allow conversion

3 Pre-processing

Here we describe the entire pre-processing phase of Zaphod. At a high level, we need to
produce all the correlated randomness needed to implement both the arithmetic and binary
MPC functionalities described in the previous section, and the conversion between them.

3.1 SPDZ and TinyOT-style Pre-processing

We recall here that the main task of the offline phase in our LSSS-based MPC in the pre-
processing model with active security is to produce random authenticated secret-shared val-
ues and random authenticated multiplication triples to allow the input and the multiplication
steps during the online evaluation.

This is formalized by the ideal functionality FPrep[AuthLSSS] described in Figure 4. It
is a general pre-processing functionality for LSSS-based MPC, that allows parties to choose
between arithmetic and binary fields using the Initialize command.

8

Again, we model our functionality so that it is independent of the authentication method
used in the protocol that implements it. However, when the domain set is fixed we concretely
instantiate the handle on values with [[·]]p if domain = Fp, and with [[·]]2 otherwise. We denote
the Fp-instantiations by FPrep[SPDZ].

After the initialization, FPrep[AuthLSSS] allows parties to provide private inputs (Input),
perform linear operations (LinearComb), produce random secret-shared bits (Random-
Bit) and triples (Triple), and reveal values either publicly to every party (Open) or privately
to a single party (OpenTo). These open commands permit the adversary to output incon-
sistent values or shares, so to ensure correctness at a later point in time, the functionality
provides the Check command. Since we aim for security with abort, the adversary can at
any point send the message abort to the functionality (Abort).

This general pre-processing functionality can be implemented in different ways [DPSZ12,
KOS16, NNOB12, KPR18, SW19] depending on the access structure. In particular, in the
SCALE-MAMBA system (when F = Fp) the functionality FPrep[SPDZ] is implemented according
to the Overdrive-High Gear variant of Keller et al. [KPR18], in the full threshold case, and
by the protocol in [SW19], in the Q2 case. We call both these instantiations ΠPrep[SPDZ].
We refer the reader to these papers for a complete description of the protocols and the
corresponding security proofs.

Functionality FPrep[AuthLSSS]

The functionality runs with parties P1, . . . , Pn and an ideal adversaryA. Let A be the set of corrupt parties. Given
a set I of identifiers, all values are stored in the form (varid , domain, x), where varid ∈ I and domain = {F2,Fp}.

Initialize: On input (Init ,F) from all parties, the functionality stores (domain,F), where F is either F2 or Fp .
Input: On input (Input , Pi, varid , domain, x) from party Pi and (input , Pi, varid) from all other parties, with
varid a fresh identifier and x ∈ domain, store (varid , x).
RandomBit: On input (RandomBit , domain, varid) from all parties, with varid a fresh identifier, sample b ∈
{0, 1}, store (varid , b).
LinearComb: On input (LinearComb, domain, varid1, varid2, varid3, a, b, c) from all parties, where a, b, c ∈
domain, retrieve (varid1, x), domain,(varid2, y) and store (varid3, domain, a · x+ b · y + c).
Triple: On command (Triple, domain, varid1, varid2, varid3), for fresh identifiers varid1, varid2, varid3, select
a, b ∈ domain at random and set c← a · b. Store (varid1, domain, a), (varid2, domain, b), (varid3, domain, c).
Open: On input (Open, domain, varid) from all parties (if varid is present in memory), functionality retrieve
(varid , y) and output y to the adversary. Wait for an input y′ from A. If this input is Deliver then output y′ to
all parties. Otherwise send abort to honest parties and halt.
OpenTo: On input (Open, domain, varid , i) from all parties (if varid is present in memory), retrieve (varid , y).
If i ∈ A, send y to A and wait for a reply, otherwise just wait for an input from A. Output according to the
adversary response.
Check: On input (Check , varid1, . . . , varid t, x1, . . . , xt) from all parties, wait for an input from the adversary.
If the adversary inputs Proceed , store the value xi, for all i ∈ [t], and output Proceed to all parties, otherwise
output abort and halt.
Abort: The adversary can at any time send abort , upon which send abort to all honest parties and halt.

Figure 4. The ideal preprocessing functionality for MPC over Fp and F2. We denote this
functionality by FPrep[SPDZ] when domain = Fp.

9

3.2 BMR Preprocessing

Functionality FCOT

This functionality runs with two parties PS (the sender) and PR (the receiver) and an ideal adversary A.

Initialize: On input (Init ,∆), ∆ ∈ K from PS and (Init) from PR, store ∆.
Extend: On input (Extend , b1, . . . , bm) from PR and (Extend) from PS proceed as follows:
1. Sample ti ∈ K, for i ∈ [m]. If PR is corrupted receive ti from A.
2. Set qi ← ti + bi ·∆ ∈ K, for any i ∈ [m]. If Ps is corrupt, receive qi from A and set ti ← qi + bi ·∆ instead.
3. Output ti to PR and qi to PS , for i ∈ [m]

Figure 5. The ideal functionality for COT

In the pre-processing phase of modern variants of the BMR protocol, all parties contribute
to the garbling of each gate individually. We now describe our implementation of the BMR
pre-processing protocol ΠPrep[BMR] which is fully described in Figure 6.

Fn−TinyOT functionality The protocolΠPrep[BMR] uses the ideal functionality FPrep[AuthLSSS]
described in the previous section with F = F2. However, to achieve concrete efficiency and
ease the description, we consider a slightly modified version of FPrep[AuthLSSS] that is better
suited for the [[·]]ij2 and [[·]]2 representations described in Section 2.2, similarly to what was
done by Hazay et al. [HSS17]. We call this modified functionality Fn−TinyOT. (See [HSS17]
for a complete description of it.) We summarize here the main differences compared to
FPrep[AuthLSSS]:

- Fn−TinyOT.Initialize: The functionality receives from the honest parties and the adversary
the MAC key shares ∆i ∈ K, for i ∈ [n].

- Fn−TinyOT.Get: On input (Get,F2, varid , i) from all parties, the functionality samples a
random bi ∈ F2 if i 6∈ A, otherwise receives bi from the adversary. Store (varid ,F2, bi). This
command is used by Fn−TinyOT instead of the private input command in FPrep[AuthLSSS].

- Fn−TinyOT.Triple: On input (Triple,F2, {varid i}i∈[3n+3]) the functionality selects a, b ∈ F2

at random and set c ← a · b. It receives shares ai, bi, ci from A, for i ∈ A, and samples
ai, bi, ci, i 6∈ A, subject to

∑
i ai = a,

∑
i bi = b,

∑
i ci = c. It stores these values with the

corresponding identifiers.

All the other commands, as Fn−TinyOT.Open and Fn−TinyOT.OpenTo, are similar to those in
FPrep[AuthLSSS].

Essentially, this functionality enables the parties to produce random authenticated bits
and bit-triples to be used in the protocol ΠPrep[BMR]. To implement Fn−TinyOT in the FCOT-
hybrid model (where the functionality FCOT is described in Figure 5), we use a combination
of protocols from [KOS15, FKOS15, HSS17, WRK17] as follows. We implement FCOT using
the OT-extension protocols described in the two works [FKOS15, Full Version, Figure 19]
and [KOS15, Full Version, Figure 7]. These correlated OTs are easily converted into random
sharings of authenticated bits (called aShares or aBits in previous papers and [[·]]2-sharings

10

in this paper), by setting M j
i = ti and Ki

j = qi, where ti and qi are the output of FCOT.
For this step we use [HSS17, Full Version, Figure 16]. Finally, these authenticated bits are
converted into triples (aANDs in other works) using [WRK17, Full Version, Figures 16, 8
and 18 in order].

Garbling Using Fn−TinyOT we can now describe the protocol ΠPrep[BMR]. It is a (minor) mod-
ification of the n-party garbled circuit construction given in [HSS17]. The main difference is
that we are interested in a reactive functionality, i.e. we are going to evaluate multiple differ-
ent functions F , with the inputs and outputs of this function being vectors of authenticated
bits [[x]]2. The function we want to compute will be given by

[[y]]2 = F ([[x]]2),

where [[x]]2 and [[y]]2 are vectors of authenticated bits. The number of bits in a vector is
denoted by |x|, and the j-th bit of x is denoted by xj. The common input of all parties in
P is the function to be evaluated given as a binary combinatorial circuit consisting of three
types of gates: XOR, AND and INV. The circuit representing F is assumed to be given in a
topological order.

We describe at a high level the precise garbling being used, and why it works. First, the
parties call the Fn−TinyOT functionality on command Initialize to obtain ∆i, for i ∈ [n]. To
each wire w in the circuit CF we will associate a random wire mask [[λw]]2 that the parties
obtain by calling Fn−TinyOT.Get. It will be used to mask the actual value vw of the wire w,
so to define the external value as εw = vw ⊕ λw. There is a special wire, called the one
wire, which is used to represent the value one (needed in the INV gate which is given by
INV(a) = XOR(a, 1)). This always has wire mask λone = 0 and, consequently, external value
εone = 1.

The wire masks are chosen independently for all wires in the circuit, except for the outputs
of XOR gates, where if we have a gate c = XOR(a, b) then we define λc = λa⊕λb. Note, since
an INV gate is a XOR gate this also applies to the outputs of INV gates where we write for
b = INV(a), λb = λa ⊕ 1.

Associated to each wire w, we also have a vector of secret base keys, kw,0 = (k1
w,0,

. . ., knw,0) ∈ Kn. These are the garbled circuit keys associated with the zero value on this
wire. To enable free-XOR, the value for the one wire is given by ka,1 = ka,0 + ∆, where
we ∆ = (∆1, . . . , ∆n) is the global difference vector. The key observation [HSS17] is that
each party Pi uses the same ∆i as in the [[·]]2-representation, i.e. the MAC keys used to
authenticate in F2 and the global differences used in BMR are the same. The wire keys are
often called wire labels in the literature. The one wire also has a set of base keys given by a
vector kone,0.

We will require a PRF, denoted by Fk0,k1(m), which takes as input a key in K2, a one
block message m and outputs an element in K. The precise PRF we use, since we select
K = F2128 is derived from Matyas–Meyer–Oseas hashing

M = m⊕ (k0 ·X)⊕ (k1 ·X2),

11

ΠPrep[BMR]

Common Input: All the parties hold the circuit CF to be evaluated in a topological order.

Initialize: Each party Pi calls Fn−TinyOT to obtain the global difference ∆i ∈ K.
Garbling:
- For all wires w which are either an input wire to the circuit or the output wire of an AND gate compute the

shared wire mask [[λw]]2 ← Fn−TinyOT.Get().
- For all wires w which are either an input wire or the output wire of an AND gate party Pi samples kiw,0 ∈ K

at random and sets kiw,1 ← kiw,0 +∆i.
- Each Pi selects kione,0 ∈ K at random and sets kione,1 ← kione,0 ⊕∆i.
- The parties now progress through the circuit in the given topological ordering and process the gates as follows:

1. c = XOR(a, b) Gate:
- Each party sets [[λc]]2 ← [[λa]]2 ⊕ [[λb]]2, kic,0 ← kia,0 ⊕ kib,0 and kic,1 ← kia,0 ⊕∆i.

2. c = INV(a) Gate:
- Each party sets [[λc]]2 ← [[λa]]2 ⊕ 1, kic,0 ← kia,0 ⊕ kione,0 and kic,1 ← kia,0 ⊕∆i.

- For each AND gate c = AND(a, b) the parties now execute:
- The parties runs the subprotocol ΠMult to compute [[a]]2 · [[b]]2 and obtain [[λab]]2 ← ΠMult([[λa]]2, [[λb]]2).
- Each party locally obtains a share of 〈λa ·∆j〉K, 〈λb ·∆j〉K and 〈(λab + λc) ·∆j〉K.
- For each εa, εb ∈ {0, 1} and j ∈ [n] party i computes its share of 〈ρj,εa,εb〉K = 〈(λab + λc) ·∆j〉K ⊕ (εa · 〈λb ·
∆j〉K)⊕ (εb · 〈λa ·∆j〉K)⊕ (εa · εb ·∆j).

- Party i can now compute its share of the j column of the garbled gate via

〈gj,εa,εb〉
j
K ← 〈ρj,εa,εb〉

j
K ⊕ Fk

j
a,εa ,k

j
b,εb

(g‖j)⊕ kjc,0

if j = i, and otherwise via
〈gj,εa,εb〉

i
K ← 〈ρj,εa,εb〉

i
K ⊕ Fkia,εa ,k

i
b,εb

(g‖j),

where g is a unique identifier for this AND-gate.
Open Garbling: The parties open the garbled gates 〈gj,εa,εb〉K, and sum the shares so as to obtain, for each
εa, εb ∈ {0, 1} and j ∈ [n],

gj,εa,εb ← kic,εc ⊕
(n⊕
j=1

F
k
j
a,εa ,k

j
b,εb

(g‖j)
)
.

The party i sends kione,1 to all parties.

Figure 6. The BMR pre-prcessing protocol

12

Fk0,k1(m) = σ(M)⊕ AES0(σ(M)),

where k ·X denotes multiplication by X in the finite field K (for X the formal root of the
defining polynomial of K, i.e. we have K = F2/(f(X)), and σ(M) is the function on 128-bit
datablocks defined in [GKWY19] by σ(ML‖MR) = (MR ⊕ML)‖ML, where ML and MR are
the left and right halves of the message M respectively.

A garbled gate is a means of translating the input wire keys (for actual wire values of 0
or 1) into the wire keys for the output of the gate. These are only needed for AND gates
(and any other non-linear gate one wishes to support). The garbled gate, associated with
c = AND(a, b), is indexed by the external values εa and εb of the input wires. Note, in this
case we have vc = va ·vb as we are evaluating an AND gate. The key equation is the following
one:

E(λa, λb, λc, εa, εb) = ((λa · λb)⊕ λc)⊕ (εa · λb)
⊕ (εb · λa)⊕ (εa · εb)

= ((λa · λb)⊕ λc)⊕ ((λb · va)⊕ (λb · λa))
⊕ ((λa · vb)⊕ (λa · λb))
⊕ ((λb · va)⊕ (va · vb))
⊕ ((λa · vb)⊕ (λa · λb))

= (λc ⊕ vc)
= εc.

The key trick in [HSS17] is to enable the Tiny-OT authenticated shares [[λa]]2, [[λb]]2 and [[λc]]2
to be converted without interaction into a sharing 〈ρεa,εb,j〉K = 〈E(λa, λb, λc, εa, εb) ·∆j〉K for
every value of j ∈ [n]. Thus each party Pi can derive a share 〈ρεa,εb,j〉iK, for the values
εa, εb ∈ {0, 1} without knowing the values of λa, λb and λc. This is done via the following
Lemma

Lemma 3.1. Let [[x]]2 be an authenticated bit with value/share/MAC values (xi,M
j
i , K

j
i)

then

yi = M j
i for i 6= j,

yj = (xj ·∆j)⊕
(⊕
k 6=j

Kj
k

)
.

is a 〈·〉K-sharing of x ·∆j.

Proof.

n⊕
i=1

yi = (xj ·∆j)⊕
(⊕
k 6=j

Kj
k

)
⊕
(⊕

i 6=j

M j
i

)
= (xj ·∆j)⊕

(⊕
k 6=j

(Kj
k ⊕M

j
k)
)

= (xj ·∆j)⊕
(⊕
k 6=j

(xk ·∆j)
)

=
n⊕
i=1

(xi ·∆j)

13

= x ·∆j.

ut

To encrypt the gate each party Pi encrypts their output base wire key kic,0 using the PRF
applied to the external wire keys kia,εa and kib,εb . They also add on the sharing 〈ρεa,εb,j〉iK. The
other parties for this output key (column) do a similar operation but do not add on the base
key. Thus in column i (corresponding to the garbling of the ith players base key) for row
(εa, εb) = (1, 0) (say) of the garbled table for gate g we have the following n entries:

〈ρ0,1,i〉(1)K ⊕ Fk
(1)
a,0,k

(1)
b,1

(g‖1)

...

〈ρ0,1,i〉(i−1)K ⊕ F
k

(i−1)
a,0 ,k

(i−1)
b,1

(g‖(i− 1))

〈ρ0,1,i〉(i)K ⊕ Fk
(i)
a,0,k

(i)
b,1

(g‖i)⊕ k
(i)
c,0

〈ρ0,1,i〉(i+1)
K ⊕ F

k
(i+1)
a,0 ,k

(i+1)
b,1

(g‖(i+ 1))

...

〈ρ0,1,i〉(n)K ⊕ Fk
(n)
a,0 ,k

(n)
b,1

(g‖n).

Each garbled gate consists of a table of (4 × n) elements in K held by party Pi. When one
opens the gates at the end of garbling these tables are exchanged and added together.

The sub-protocol ΠMult

ΠMult([[x]]2, [[y]]2): This produces a sharing of x · y.
1. Call Triple on Fn−TinyOT to obtain a triple ([[a]]2, [[b]]2, [[c]]2).
2. The players compute [[d]]2 ← [[a]]2 ⊕ [[b]]2 and [[e]]2 ← [[b]]2 ⊕ [[y]]2.
3. The parties call Fn−TinyOT.Open([[d]]2) and Fn−TinyOT.Open([[e]]2) to obtain d and e.
4. The parties compute [[z]]2 ← [[c]]2 ⊕ d · [[e]]2 ⊕ e · [[a]]2 ⊕ d · e.
5. The parties output [[z]]2.

Figure 7. Subprotocols on authenticated bits

So at the end of garbling all parties how the following value in row (0, 1) and column i
of the table

ρ0,1,i ⊕ k
(i)
c,0 ⊕

(n⊕
j=1

F
k

(j)
a,0,k

(j)
b,1

(g‖j)
)

= (E(λa, λb, λc, 0, 1) ·∆j)⊕ k
(i)
c,0 ⊕

(n⊕
j=1

F
k

(j)
a,0,k

(j)
b,1

(g‖j)
)

14

= (εc ·∆j)⊕ k
(i)
c,0 ⊕

(n⊕
j=1

F
k

(j)
a,0,k

(j)
b,1

(g‖j)
)

= k(i)
c,εc ⊕

(n⊕
j=1

F
k

(j)
a,0,k

(j)
b,1

(g‖j)
)
.

Since we are interested in reactive computations, in the opening garbling phase we do
not reveal the wire mask λw associated to the circuit-output wires w, as happens in previous
works. Our protocol ΠPrep[BMR] securely implements an ideal functionality FPrep[BMR] with
active security in the Fn−TinyOT-hybrid model. We do not give here the details of FPrep[BMR]
since this functionality is essentially the same as the one given in [HSS17]. Active security
is obtained by using the actively secure Fn−TinyOT functionality, and the Open command of
Fn−TinyOT, which enables us to check the opened shares bits. The modifications of the proofs
in [HSS17] to the reactive case are minor, and thus we do not give them.

3.3 Complete Pre-processing Functionality

Other than the correlated randomness needed for the circuit evaluation, both in the LSSS and
GC fashion, we need random doubly-authenticated bits (daBits) to perform the conversions
in the online protocol. The command daShare, together with commands in FPrep[SPDZ]
and FPrep[BMR], completes our ideal pre-processing functionality FPrep, given in Figure 8.
Extending functionalities in the UC framework by combining and adding new commands is
a well-known technique in the literature, e.g. in [KOS16, RW19].

In the next section we give a new procedure for generating daBits and show that it can
be used to realize FPrep UC securely, essentially by the same proof as in [RW19].

FPrep

This functionality has all the commands of FPrep[SPDZ] and all the commands of FPrep[BMR] and additionally
has the command daShare defined below.

daShare: On input (daShare,F2, varid , varid0, . . . , varid`−1, b1, . . . , b`), where bi ∈ {0, 1}, i ∈ [`], compute
r =

∑`
i=0 bi · 2

i ∈ Fp and store (varid ,Fp, r).

Figure 8. Ideal functionality for Preprocessing for Zaphod

4 daBits

It was shown by Rotaru and Wood [RW19] that, if a subprotocol for generating daBits is
given, in which each daBit is a sharing of the same uniformly-random bit in both fields,
except with negligible probability, then there exists a protocol that UC-securely realizes the
functionality FPrep. In this section, we give a new protocol for generating daBits to replace
the procedure from [RW19]. The exposition focuses on the full-threshold case, since it is the

15

most straightforward to explain. However, the protocol works for any Q2 access structure
with some minor modifications, as described later.

The security of using the new protocol to realize our functionality FPrep essentially follows
immediately from the proof in [RW19]; however, there are two minor differences between our
FPrep and the corresponding functionality in [RW19], and so we also provide a sketch proof
of the UC security. The differences are as follows. Firstly, we are only interested specifically
in authenticated sharings of field elements in Fp whose bit-decomposition is also shared
with authentication in F2 (not just bits). This is essentially a notational change since the
conversion is entirely local, and so the functionalities are equivalent in the UC sense (i.e.
there are UC reductions both ways). Secondly, ΠdaBits refers explicitly to shares rather than
abstract handles.

In Figure 9, we describe the protocol ΠdaShare that produces double-authenticated shares
([[r]]p, [[r]]2), where [[r]]p ←

∑`−1
k=0 2k · [[b(k)]]p and [[r]]2 = ([[b(0)]]2, . . . , [[b

(`−1)]]2). This protocol
makes use of our new ΠdaBits protocol (Figure 10) to produce ` daBits ([[b(k)]]p, [[b

(k)]]2)
`−1
k=0 .

The proof of the following theorem is given later, after the proof of correctness of the new
protocol ΠdaBits.

Theorem 4.1. The protocol ΠdaShare UC-securely realizes FPrep in the presence of a static,
active adversary in the FPrep[AuthLSSS],FRand-hybrid model.

ΠdaShare

daShare: Parties do the following:
1. Execute ΠdaBits to generate ` daBits, ([[b(k)]]p, [[b

(k)]]2)`−1
k=0.

2. Compute [[r]]p ←
∑`−1
k=0 2k · [[b(k)]]p and set [[r]]p ← ([[b(k)]]2)`−1

k=0.
3. Output ([[r]]p, [[r]]2).

Figure 9. n-party daShare protocol

4.1 New daBit Protocol

The key observation leading to the new daBit protocol is that for a random bit shared in Fp
between two parties, with probability O(p−1) the XOR of the least significant bits (LSBs)
of the two parties’ shares is equal to the bit they share offset by p mod 2. Since typically
p = O(2sec), this probability is generally negligible in the security parameter sec. This is
proved in Lemma 4.1 . In the protocol, this observation is used to turn n/2 random bits in
Fp, secret-shared among n parties, into one daBit shared in both Fp and in F2.

Before giving the full protocol for generating daBits amongst n parties, we first provide
the intuition. We emphasize that the focus here is on the full-threshold case, with necessary
adaptations in the case of a Q2 access structure summarized later.
First, in the Input step, the parties generate n/2 random bits in Fp. In the DaBits Gen-
eration, each of these is ‘assigned’ to one pair of adjacent parties as follows. For each

16

pair, (2 · i − 1, 2 · i), i ∈ [n/2], the n-party sharing of one of the n/2 bits, [[b(i)]]p, is turned
into a 2-party sharing, which is achieved by each party other than P2·i−1 and P2·i sending
their shares to one of these two parties. To decide which party sends to which in each
pair, we define odd as the set of parties {P1, P3, . . . } with odd index, and even as the
set of parties {P2, P4, . . . } with even index , and require parties always to open to the
party with same parity as themselves. Thus for the adjacent pair (P2·i−1, P2·i), they ob-

tain a sharing b̂
(2·i−1)
i + b̂

(2·i)
i = b(i) mod p of b(i). Now with high probability, it holds that

1 < b̂(2·i), b̂(2·i+1) < p, so (̂b
(2·i)
i mod 2)⊕ (̂b

(2·i+1)
i mod 2)⊕ (p mod 2) = bi mod 2.

Now these two parties provide b̂(2·i−1) mod 2 and b̂(2·i) mod 2 as inputs for FPrep[AuthLSSS]
with domain = F2, so that the parties obtain an n-party boolean sharing of these values.
Then all the parties subtract (XOR) the public value p mod 2 from this sharing in F2. Finally,
after doing this for each pair, the parties take the XOR of all n/2 bits in F2 and in Fp, which
requires n/2 − 1 triples in Fp. In the protocol, instead of removing the offset p mod 2 once
for each pair, they remove it after the XOR with the offset (n/2 · (p mod 2)) mod 2 to obtain
the final daBit.

To achieve active security, i.e. to make sure parties are honest when providing inputs
to FPrep[AuthLSSS], the parties perform the daBits Check step. Note that to produce
m correct daBits securely except with probability 2−sec, the parties need to produce sec
additional daBits that later will be discarded. This also means that the authentication of
the 2-party bit is not necessarily correct when converting from an n-party sharing to a 2-party
sharing since correctness is only guaranteed by the checking procedures.

As long as every party is involved in the generation of at least one daBit, any adversary
corrupting up to n− 1 parties will not learn the value of the daBit, as shown in the proof of
Theorem 4.1. The protocol is given in Figure 10. It makes use of a subprotocol Πlsb, of which
we do not give a full description, that takes as input an authenticated secret-shared element
of Fp, [[x]]p and returns the least significant bit of x in secret-shared form, [[b]]p. Protocols
for this operation (with statistical security) can be found in the literature, e.g. [AKO+18,
v1.5,§12.3.4]. It also uses a subprotocol Πxor, which computes the (generalized) XOR function
of a set of secret-shared bits in Fp: given {[[b(k)]]p}tk=1, it computes [[b]]p ← [[b(1)]]p and then
iteratively computes [[b]]p ← [[b]]p + [[b(i)]]p − 2 · [[b]]p · [[b(i)]]p for all i = 2 to t, requiring t − 1
Beaver triples.

In the proof of Lemma 4.1, we argue that the daBits protocol is correct except with
negligible probability in the statistical security parameter.

Lemma 4.1. If the checks pass without parties aborting, then the protocol ΠdaBits outputs
correct daBits of uniformly random bits, except with probability 2−sec, provided m > 2 · sec.

Proof. First, we argue that the process of converting the n-party sharing to a 2-party sharing
is correct. Given a sharing 〈b〉p of a secret bit, the two shares b1 and b2 are uniformly random
in Fp subject to the constraint that b1 + b2 ∈ {0, 1} and is 0 and 1 with equal probability. If
b1 + b2 = 0 then the probability that they do not wrap around mod p is p−1 since the only
way for this to happen is if b1 = b2 = 0. Thus LSB(b1)⊕LSB(b2)⊕1 = b1 +b2 mod p except
with probability p−1. If b1 +b2 = 1 then the probability that they do not wrap around mod p

17

ΠdaBits

This protocol is realized in the FPrep[AuthLSSS]-hybrid model and uses the sub-protocols Πxor and Πlsb.

Input: A set of m̄ = (m + sec) · n/2 random authenticated bits in Fp, {[[b(k)]]p}k∈[m̄], obtained by calling
FPrep[AuthLSSS].RandomBit.
daBits Generation: For each k ∈ [m+ sec]:
1. For each i ∈ [n/2],

(a) Each Pj ∈ odd \ {P2·i−1} sends their share b
(i+(k−1)·n/2)
j of 〈b(i+(k−1)·n/2)〉p to P2·i−1.

Each Pj ∈ even \ {P2·i} sends their share b
(i+(k−1)·n/2)
j of 〈b(i+(k−1)·n/2)〉p to P2·i.

(b) P2·i−1 sets b̂
(k)
2·i−1 ← ((

∑
j∈odd b

(i+(k−1)·n/2)
j mod p) mod 2). P2·i sets b̂

(k)
2·i ← ((

∑
j∈even b

(i+(k−1)·n/2)
j mod

p) mod 2).

(c) Parties call FPrep[AuthLSSS] with domain = F2, and input b̂
(k)
2·i−1 from P2·i−1, and input b̂

(k)
2·i from P2·i .

2. The parties set

[[̂b(k)]]2 ← (

n⊕
i=1

[[̂b
(k)
i]]2)⊕ ((n/2 · (p mod 2)) mod 2)

and
[[̃b(k)]]p ← Πxor({[[b(i+(k−1)·n/2)]]p}n/2i=1).

daBits Check:
1. The parties call FRand to obtain m · sec random bits {{λk,`}k∈[m]}`∈[sec].
2. For each ` ∈ [sec],the parties set

[[c̃]]p ← Πlsb

(
[[̃b(m+`)]]p +

m∑
k=1

λk,` · [[̃b(k)]]p

)
,

and

[[ĉ]]2 ← [[̂b(m+`)]]2 ⊕
m⊕
k=1

λk,` · [[̂b(k)]]2

3. Call FPrep[Auth].Open to obtain c̃ and ĉ, with domain = Fp and domain = F2, respectively.
4. If c̃ 6= ĉ, then they abort.
Output If all sec checks have passed without the parties aborting then the parties output the first m sharings,
([[̃b(k)]]p, [[̂b

(k)]]2)mk=1 as valid daBit sharings, and discard the rest.

Figure 10. n-party daBit generation

18

is the probability that exactly one of them is 1 and the other is 0, which happens in exactly
two ways. Thus LSB(b1) ⊕ LSB(b2) ⊕ 1 = b1 + b2 mod p except with probability 2 · p−1.
Overall, since the bit b is 0 or 1 with equal probability 1

2
, the probability that the protocol is

is not correct is therefore 1
2
· p−1 + 1

2
· 2 · p−1 = 3

2
· p−1 = O(2−sec). Since the n/2-party XOR

is computed from bits generated from the 2-party bits incurs an error of only a linear factor
in n, and hence the probability is still negligible in sec.

Now suppose the checks all pass but there is an error in at least one daBit. Recall that a
daBit ([[̃b]]p, [[̂b]]2) is considered correct if b̃ = b̂, and note that since the inputs are provided

as input to the functionality Fn−TinyOT, the only possible error is to have b̃ = b̂ ⊕ 1 instead

of b̃ = b̂ since only bits can be provided as input, and the secret b̃ cannot be changed by the
security of FPrep (and the subprotocols Πlsb and Πxor). Let ε ∈ Fm+sec

2 be the error vector
introduced by the adversary by changing inputs when calling Fn−TinyOT. If the checks pass,

then for all k ∈ [m+ sec] we can write b̂(k) = b(k)⊕εk so that for every ` ∈ [sec] it holds that(
b̃(m+`) +

m∑
k=1

λk,` · b̃(k)
)

mod 2 = b̂(m+`) ⊕
m⊕
k=1

λk,` · b̂(k)

= b̃(m+`) ⊕ εm+`

⊕
m⊕
k=1

λk,` · (b(k) ⊕ εk).

Now the chance that ε 6= 0 but that εm+` ⊕
⊕m

k=1 λk,` · εk = 0 for a fixed ` is 1
2
, so because

the sets {λk,`}mk=1 are independently sampled for all ` ∈ [sec], the probability that ε 6= 0 but
the above equation holds for all ` ∈ [sec] is 2−sec. The result follows. ut

We are now ready to give a (sketch) proof of Theorem 4.1.

Proof (of Theorem 4.1 (Sketch)). We will assume that the subprotocol Πlsb reveals no infor-
mation about the secret. SinceΠdaShare is a local procedure, it suffices to show thatΠdaBits+MPC

from [RW19] securely realizes FPrep when using our new protocolΠdaBits for generating daBits.
To do this, we are required to show: firstly, that giving the adversary shares rather than han-
dles does not give the environment a non-negligible distinguishing advantage; and secondly,
that ΠdaBits does not leak any information to the environment that may allow it to distin-
guish.

The argument for the first point is straightfoward: since the adversary corrupts at most
all parties but one, every set of shares revealed to the adversary is indistinguishable from
uniformly-random, and therefore can be simulated perfectly by the simulator given ideal
outputs from FPrep by fixing the one honest party’s input so that the sum is the correct
output. Moreover, all shares handed to the adversary come from FPrep[AuthLSSS] instantiated
over Fp or F2, which the simulator emulates locally to A, and so the transcripts in the hybrid
world and ideal world are perfectly indistinguishable.

For the second point, observe that the proof in [RW19] showed that any leakage leading
to a distinguishing advantage must come from the subprotocol generating daBits, ΠdaBits,

19

since the calls to FPrep[AuthLSSS] (for each field) are black-box. Having argued that shares
reveal nothing more than handles, we can argue in the same way.

Observe that for every daBit generated, there is at least one of the n/2 random bits
generated in Fp for which there is at least one honest party whose share is never observed
by the environment. Since the n/2-party XOR is computed, the sharing is uniform and
unknown to the environment in this part of the subprotocol. Moreover, since the daBits
{([[bk]]p, [[b̂k]]2)}m+sec

k=m+1 are discarded, this removes all information about the linear relations
amongst daBits learnt in the checking procedure as they can be viewed as keys for one-time-
pad-encrypting the linear relations.

This means that even though each daBit generated by emulating honest parties in the
hybrid world is different from the daBit generated by the functionality in the ideal world with
probability 1

2
, the environment cannot observe this difference, and indeed by the high-level

argument above, the simulator can always fix the share of the honest party so that outputs
in the hybrid world simulation match the outputs in the ideal world.

The final argument that the daBit procedure does not leak information involves showing
that the environment learns when the parties abort. A selective failure attack is one in
which the environment can learn which world is being executed by attempting to cheat
without detection. If it succeeds in doing so, it may be able to obtain enough information to
distinguish between worlds. In our case, this means a corrupt party may cheat in providing
its input into FPrep[AuthLSSS]: if the adversary guesses λk,` = 0 for some k ∈ [m] ahead
of time, then it can add an error to its share in Fp, and if the checks do not abort then
it will learn the final bit output from FPrep and with probability 1

2
it will be 0, and thus

the environment will know the interaction was ideal, not real. However, such an attack is
mitigated by the fact that the check is repeated sec times, meaning that if cheating occurs
then the parties abort with overwhelming probability in sec as argued in Lemma 4.1. Thus
the environment cannot mount a selective failure attack successfully except with negligible
advantage in sec, and hence we conclude the worlds are (statistically) indistinguishable to
the environment. ut

General Q2 Protocol In the case of an arbitrary Q2 access structure, when a bit is converted
from an n-party sharing to a 2-party sharing, the pair must receive enough shares so that
between them they hold an additive sharing of the secret, which typically requires less com-
munication than in the full-threshold case. This is most easily done for a pair of parties (i, j)
by taking a qualified set Q containing i and j and requiring all parties in Q to send their
share(s) to one party or the other; then, using the recombination vector for Q, they can
combine these shares into a two-party additive sharing.

For the secrecy of the final daBit (from the adversary, and the environment), it is not
sufficient to generate n/2 bits and to turn them into 2-party sharings for pairs of adjacent
parties as in the full-threshold case because it is possible that the adversary learns every
bit during the conversion procedure. This happens (potentially) if in every pair, at least one
party is corrupt and receives at least one share from an honest party.

20

Fortunately, there is an easy way to get around this problem by choosing the pairs so
as to guarantee at least one pair exists for which both parties are honest. The following
algorithm shows how to choose the pairs, denoted by a set S:

1. Set S ← ∅.
2. For every maximally-unqualified set U ,

(a) If 6 ∃{i, j} ∈ S such that {i, j} 6⊆ [n] \ U ,

i. Choose {i, j} ⊆ [n] \ U .
ii. Set S ← S ∪ {{i, j}}.

3. Output S.

The random choices can be made using a secure coin-flipping functionality. Thus for every
maximally-unqualified set U , the set S contains a pair of parties not in U . Since the access
structure is Q2, for whichever unqualified set of parties the adversary corrupts, there is always
a pair of parties in which both parties are honest. While, in general, iterating over every
maximally unqualified set potentially requires exponential computation in the number of
parties, such iteration is already performed to establish the access structure in the first place
so there is no additional (asymptotic) assumption on the required computational power.

5 Online Evaluation

Finally, we can give the online protocol ΠMPC(Figure 11) implementing the ideal functionality
FMPC given in Figure 2 and Figure 3.

Protocol ΠMPC

Initialize: Parties call FPrep to activate the functionality.
Input, Evaluate, Output: There are two cases:
- If domain = Fp, the parties run the sub-protocol ΠMPC[SPDZ] on commands Input, Evaluate, Output
- Otherwise, the parties run the sub-protocol ΠMPC[BMR] on commands Input, Evaluate, Output
Conversion: Parties call the sub-protocol ΠConvertToField and ΠConvertToBinary

Figure 11. Zaphod online protocol

The sub-protocols ΠMPC[SPDZ] (Figure 12) and ΠMPC[BMR] (Figure 13) are the same
as the SPDZ-online protocol [DPSZ12] and BMR-online protocol [HSS17], respectively. The
only (minor) differences are:

- In ΠMPC[SPDZ] we have the possibility to output to a single party, other than publicly to
P .

- As output of the BMR evaluation in ΠMPC[BMR], the parties only obtain a sharing of the
result of the computation. Note that this means that the final output of the online phase
will always be a value in Fp.

21

Sub-protocol ΠMPC[SPDZ]

Input: Given an input x enterred by party Pi:
1. The parties call the command (Input , Pi, r) of FPrep[SPDZ], so that Pi obtains the value r, and the other

parties obtain a handle on r, i.e. [[r]]p.
2. Party Pi broadcasts the value y ← x− r.
3. The parties compute [[x]]p ← [[r]]p + y.
Evaluate: - Add: On input [[x]]p, [[y]]p the parties locally compute [[x+ y]]p ← [[x]]p + [[y]]p.
- Multiply: On input [[x]]p, [[y]]p :

1. The parties call Triple of FPrep[SPDZ] to obtain a triple ([[a]]p, [[b]]p, [[c]]p).
2. The parties compute the handles [[e]]p ← [[x]]p − [[a]]p and [[f]]p ← [[y]]p − [[b]]p.
3. The parties call FPrep[SPDZ].Open on [[e]]p and [[f]]p
4. The parties evaluate [[z]]p ← [[c]]p + e · [[b]]p + f · [[a]]p + e · f .

Output: To output a value [[y]]p we distinguish two cases:
1. (PublicOutput):

(a) Call FPrep[SPDZ].Check on all opened handled/values since the last execution of FPrep[SPDZ].Check , if it
aborts then abort.

(b) Call FPrep[SPDZ].Open on the handle [[y]]p.
(c) Call FPrep[SPDZ].Check on the single pair ([[y]]p, y) if it aborts then abort, otherwise accept y as the valid

output.
2. (PrivateOutput):

(a) The parties execute (Input , Pi, r) so that Pi obtains the value r, and the other parties obtain a handle
on r, i.e. [[r]]p.

(b) Call FPrep[SPDZ].Check on all opened handled/values since the last execution of FPrep[SPDZ].Check , if it
aborts then abort.

(c) The parties compute [[x]]p ← [[r]]p + [[y]]p.
(d) Call FPrep[SPDZ].Open on the handle [[x]]p.
(e) Call FPrep[SPDZ].Check on the single pair ([[x]]p, x), if it aborts then abort. Otherwise, Pi computes and

accepts y ← x− r.

Figure 12. The sub-protocol for realising evaluation over Fp

22

Sub-protocol ΠMPC[BMR]

Input:
- The parties call FPrep[BMR] on input Cf̄ receiving all the wire masks [[λw]]2 and all the key kw,0.
- For each input wire w the parties have a shared value [[vw]]2. The parties compute [[εw]]2 ← [[vw]]2 ⊕ [[λw]]2.

The value [[εw]]2 is then opened to all parties.
Evalaute:
- For each input wire w Pi broadcasts the key kiw,εw .
- Each Pi now progresses through the circuit in the given topological ordering and locally processes the gates

as follows:
1. c = XOR(a, b) Gate:

- εc ← εa ⊕ εb. and kjc,εc ← kja,εa ⊕ kjb,εb for all j ∈ [n].
2. c = INV(a) Gate:

- εc ← εa ⊕ 1. and kjc,εc ← kja,εa ⊕ kjone,1 for all j ∈ [n].
3. c = AND(a, b) Gate:

- Recover kjc,εc for all j ∈ [n] by computing

kjc,εc ← gj,εa,εb ⊕
(n⊕
j=1

F
k
j
a,εa ,k

j
b,εb

(g‖j)
)

- If kic,εc = kic,0 set εc = 0, if kic,εc = kic,1 set εc = 1, else abort .
Output: For every output wire w the parties compute [[vw]]2 ← [[λw]]2 ⊕ εw, obtaining a (privately) share of
[[vw]]2 .

Figure 13. The BMR-evaluation sub-protocol

5.1 The Conversion Protocol

All that remains to complete the online protocol is to give the protocols for ConvertToField
and ConvertToBinary and show that their implementation does not break either the security
of the LSSS based MPC components or the Garbled Circuit based MPC components. Given
the functionality in Figure 8 our two conversion routines are trivial, see Figure 14 and
Figure 15.

The most complex conversion is that in given in Figure 14 as it requires the evaluation
of a garbled circuit. Here we utilize a simple circuit which takes as input the dlog2 pe bits
of y, and the ` (secret shared) bits of r. The circuit computes z = y + r (mod p), which
can be done with a single addition and conditional subtraction. Then z is compared to p/2,
if less than p/2 then the least 64 bits of z are extracted and assigned to x. Otherwise the
circuit computes w = p− z, extracts the least 64 bits of w and then computes x the bitwise
negation of these 64 bits plus one. As one can see this circuit involves only a small number
of addition/subtraction operations, and is the main reason we restrict our selection of the
prime p so that we do not have to perform more complex modular operations at this stage.

Theorem 5.1. The protocol ΠMPC securely implements the functionality FMPC in the pres-
ence of a static active adversary corrupting up to n− 1 parties in the FPrep-hybrid model.

Proof. Correctness follows by inspection of the protocol and by the choice of p. A simulator S
for any adversary A works as follows. S emulates the adversary A corrupting the set A ⊂ P
of parties and internally runs an execution of the protocol with dummy honest parties and
adversary.

23

Sub-protocol ΠConvertToBinary

Input: A sharing [[x]]p

1. Set `← dlog2 pe in the case that 64 + sec ≥ dlog2 pe, else set `← 64 + sec.
2. The parties call DaShare of FPrep with the given value of ` to get a doubly authenticated share ([[r]]p, [[r]]2).
3. The parties compute [[y]]p ← [[x]]p − [[r]]p.
4. The value y is opened to all parties, so they all obtain y = x− r in the clear.
5. The parties compute [[x]]2 ← y+[[r]]2 running the sub-protocol ΠMPC[BMR] on a circuit representing addition

modulo p. This circuit is designed to convert integers in the set [0, . . . , 263)∪ (p−263, p−1] into 64-bit signed
integers in two’s complement representation.

Figure 14. Protocol to convert a [[·]]p-sharing into a vector of 64 [[·]]2-sharings

Sub-protocol ΠConvertToField

Input: A vector of sharings [[x]]2

1. The parties call FPrep.DaShare with ` = 64, to obtain a doubly authenticated share ([[r]]p, [[r]]2).
2. The parties locally compute, for i = 0, . . . , 63, the shares [[vi]]2 ← [[xi]]2 ⊕ [[ri]]2.
3. The value vi is then opened to all parties.
4. The parties locally compute, for i = 0, . . . , 63, the shares [[xi]]p ← vi + [[ri]]p − 2 · vi · [[ri]]p.
5. From these shared bits they can reconstruct x as an [[·]]p-sharing via [[x]]p ← −[[x63]]p · 263 +

∑62
i=0[[xi]]p · 2i.

Figure 15. Protocol to convert a vector of [[·]]2-sharings into a [[·]]p-sharing

1. Initialize: The simulator emulates an activation of FPrep

2. Input, Evaluation, Output: The simulation of these steps is almost identical to
the respective simulations of ΠMPC[SPDZ] and ΠMPC[BMR] in [DPSZ12] and [HSS17],
respectively. In particular, first time Input is run, S broadcasts random values on behalf
of honest parties and receives corrupt values from the adversary. The random masks used
in this step are obtained from the emulation of FPrep, hence they allow the extraction
of corrupt parties’ input. These inputs values are forwarded to the functionality FMPC.
Subsequent simulations of Input are done consistently with the emulation of the protocol,
so honest shares and/or values are either computed by S honestly or sampled at random,
depending on the different cases, and values from corrupt parties are received from A.
For self containment we include a sketch of the BMR-simulation:
Input-BMR:
- Receive from the adversary the following values 1) {∆i}i∈A, 2) for each input wire w

associated to Pi ∈ A, {λw,i}i∈A and {kiw,0}i∈A, 3) for each output wire wAND of an AND
gate, the keys {kiwAND,0

}i∈A.
- For each wAND, sample a random mask λw
- Compute λc = λa + λb for each output wire of XOR(a, b) = c
- If receive abort from A, forward abort to the functionality
Evaluation-BMR:
- For each input wire {wi}i 6∈A associated to a honest party Pi, sample a random public

value {εwi}i 6∈A and sent it to A; for each input wire {wi}i∈A associated to a corrupt
party, receive the public values {εwi}i∈A from A and extract the inputs xw.

- Send those inputs to the functionality and receive the output y of the computation.

24

- Generate public values εw for each wire w in the circuit and compute the active path
exactly as done in [HSS17].

3. Conversion: Both protocols ΠConvertToField and ΠConvertToBinary only consists of calling to
the FPrep functionality and openings, so the simulation is straightforward.

Indistinguishability between real and ideal execution is proved similarly as in [HSS17] and
[DPSZ12]. ut

6 Engineering

Protocol n sec Comm. (kb) Throughput (ops/s)

daBit [RW19] 2 40 384 1008
dabit (ours) 2 40 94 2150

daBit [RW19] 3 40 1640 560
dabit (ours) 3 40 1104 650

daBit [RW19] 4 40 4781 306
dabit (ours) 4 40 2173 552

daBit [RW19] 2 80 931 424
daBit (ours) 2 80 288 706

daBit [RW19] 3 80 - -
daBit (ours) 3 80 2442 285

Table 1. 10Gb/s LAN experiments for n-party daBit generation

In this section we outline a number of facets about how computing using both [[·]]p and
[[·]]2 sharings were integrated together into the SCALE-MAMBA system, which a system imple-
menting LSSS-based MPC. To perform this integration a number of design decisions had to
be made.

6.1 Threads and Data Queues

The SCALE-MAMBA system allows a number of independent MPC programs to run in par-
allel, thus creating a number of independent online ‘threads’. Since pre-processing for the
〈·〉p-sharing based MPC is more expensive than the online processing, each online thread has
a number of ‘helper’ threads which provide the pre-processed data. Thus for each thread im-
plementing ΠMPC[SPDZ] there are a four threads providing the functionalities of FPrep[SPDZ]
(for example Triples and Random Shared Bits). Each of the data types produced by the of-
fline threads are added to queues, for consumption by the associated online thread. Keeping
one queue per data type, per online thread, means there is no need for complex signaling
between threads as would be needed if there was a single global queue for each data type.

In addition, there are a variable number of global threads (in the case of full thresh-
old access structures) which perform the necessary ZKPoKs associated to the FHE-based

25

ciphertexts (essentially these threads implement the HighGear/TopGear ZKPoKS [KPR18,
BCS19]. In the default configuration there are two such ZKPoK threads. Thus if one is run-
ning o online threads then, in the default configuration for full threshold, one is actually
running 4 · o+ 2 actual threads.

This means that adding the garbled circuit functionality needs to be done in a way
which does not degrade the performance of the existing 〈·〉p-based MPC routines too much.
We thus settled for the following architecture. We added a single additional global thread
(independent of the number of online threads), which performs the base OTs and OT-
extensions, enabling the implementation of the procedure Get from Fn−TinyOT. This thread
maintains a list of o+1 queues of authenticated bits [[b]]2, for random bits b. The throughput
of such a single thread turns out to be more than enough to support the online operations
in up to four online threads, since OT extension is so fast. The first o of the o + 1 queues
of authenticated bits are used to supply the online threads with authenticated bits, whereas
the last of the authenticated bits queues is used to supply another thread whose task is to
produce o queues of triples, one queue per online thread.

As a garbled circuit operation is encountered, the online thread polls the authenticated
bit and triple thread for data; which is then supplied (if it is ready). When it is not yet
ready (which happens if another GC operation has been performed recently, or if this is the
first GC operation to be performed in a run) the online thread waits for the data to become
available. When a garbled circuit needs to be evaluated, the garbling and evaluation are done
on the fly by the online thread, resulting in authenticated bits and triples being consumed
from the respective queues. We thus do not treat garbling as an “offline” operation.

The creation of daBits is performed within the online thread as and when needed. When
a first request for daBits is encountered, the online thread produces a batch of daBits,
consumes what it wants, and then stores any remaining for future use. Subsequent daBit
requests either use the stored unused daBits, or if none are left more daBits are generated.
When daBits are needed they are also consumed from the respective list.

Thus with this architecture we increase the number of actual threads from 4 · o + 2 to
4 · o + 4. By limiting the authenticated bit and triple producing threads to only produce
a limited number of authenticated bits and triples, we can mitigate any slow-down of the
online threads when no garbled circuit based operations are performed. However, we do get
a small stall in performance when the first garbled circuit (resp. daBit) operation is met,
and the associated queues of triples (resp. daBits) need to be filled.

6.2 Circuit Generation

By selecting to operate online on ` = 64-bit data types, it means that we restrict the user to a
small set of well defined operations on the 64-bit signed integers. Thus the user is not able to
call arbitrary circuits, but has access to a library of circuits. This design decision is because
most users are unable to design their own circuits, with few having either VHDL experience
or access to expensive state-of-the-art tool chains. Thus to operate on 64-bit data types
we extended the MAMBA language to support secure signed 64-bit arithmetic, with each
arithmetic operation corresponding to a pre-defined combinatorial circuit. The combinatorial

26

circuits were generated using the Synposis tool chain from a VHDL behavioural description
of the desired circuit functionality.

However, a problem arises when using this methodology for the circuit needed in the F`2
online evaluation. Users in SCALE-MAMBA can select their own prime p for the secret sharing
scheme 〈·〉p, thus the circuit will depend not only on the bits of p, but also on the bit length.
Thus it would seem that users need to be able to ‘compile’ their own circuit for such an
operation, and thus would need access to tool chains such as that from Synopsis.

To avoid this issue we created a global circuit which performs the required operation for
an arbitrary p (of bit length up to 512 bits). Then in a one-time setup procedure, this generic
circuit, consisting of 6185 AND gates, 2893 XOR gates and 5865 INV gates, is specialized
via a C-program to the specific prime selected by the user. This latter specialisation is then
optimized further in C. The resulting circuit depends on the prime p being used, but for
example in a 128-bit p variant the final optimized specialisation resulted in a circuit with
968 AND gates, 523 XOR gates and 629 INV gates.

We also extended SCALE-MAMBA to allow user-defined circuits to be executed. Thus, a
user can define (say) a circuit for the Keccak round function and then evaluate it on 25
secure 64-bit integers (Keccak has a “block” size of 1600 bits). Combined with our daBit
conversion routine this would allow the implementation of the distributed decryption algo-
rithm in [KLO+19] completely within SCALE-MAMBA for an arbitrary number of parties. This
algorithm requires switching between secret sharing modulo p, and then the resulting shared
values need to be passed various garbled circuit constructions, and then passed back to secret
sharing mod p.

6.3 Experiments

We benchmarked the daBit generation between computers with commodity hardware con-
nected via a 10Gb/s LAN network with an average round-trip latency of 0.5ms. The results
are presented in Table 1 with various statistical security parameters sec. According to the
SCALE-MAMBA architecture, these numbers are produced using five FHE factories and eight
online daBit generation threads.

The communication reported in [RW19] for statistical security sec = 40 in the two party
case is 171kb which is about twice as low as the equivalent implementation in SCALE-MAMBA

(384kb). The reason for this is that Rotaru and Wood estimated the pre-preprocessing per
daBit using LowGear with every possible security parameter equal to 40 (zero knowledge
proof soundness, distributed decryption, etc). The communication cost per triple used by
them was 26.3kb. On the other hand we ran the daBit generation in parallel with TopGear
which has a slightly higher communication cost per triple (78kb) but also enjoys higher
security parameters for the ZK proof soundness (2−128) and distributed decryption (2−40).
SCALE-MAMBA already had the method from [RW19] implemented within it, thus making an
apples-to-apples comparison with our method was easier.

For the two party case we see that communication cost are reduced by a quarter, with
the throughput doubled, using the new method for daBit generation. In the three party case
the reduction in communication is less pronounced, and the throughput is roughly the same.

27

However for an odd number of parties n the new method has roughly the same complexity
as the case for the n + 1 parties. Thus when we move to four parties the improvement in
the new method in terms of communication again returns. At 80-bit security we found it
impossible to run the method from [RW19] for three parties, as the limits on the queues of
pre-processed data in SCALE-MAMBA were too small for what is required by the method.

We have also benchmarked the total conversion cost of a 64 bit integer with statistical
security sec = 40 for the two party case. As expected, the conversion throughput from LSSS
to GC is 104 times lower than generating a single daBit ending in 2.12MBytes per conversion
(total communication) with a throughput of 20 conversions per second. The reason for a
factor of 100 slowdown compared to the daBit generation is that a single conversion requires
104 daBits.

Acknowledgements

We would like to thank the anonyomous WAHC 2019 reviewers for their comments.
This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT,

by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare
Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070 and FA8750-19-
C-0502, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA) via Contract No. 2019-1902070006, and by the FWO
under an Odysseus project GOH9718N. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the
views of any of the funders. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

References

AKO+18. Abdelrahaman Aly, Marcel Keller, Emmanuela Orsini, Dragos Rotaru, Peter Scholl, Nigel P. Smart, and
Tim Wood. SCALE-MAMBA v1.2: Documentation, 2018.

BCS19. Carsten Baum, Daniele Cozzo, and Nigel P. Smart. Using topgear in overdrive: A more efficient zkpok
for SPDZ. IACR Cryptology ePrint Archive, 2019:35, 2019.

BDK+18. Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and Thomas Schneider. HyCC:
Compilation of hybrid protocols for practical secure computation. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Com-
munications Security, pages 847–861, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

BDOZ11. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In Kenneth G. Paterson, editor, Advances in Cryptology – EUROCRYPT 2011,
volume 6632 of Lecture Notes in Computer Science, pages 169–188, Tallinn, Estonia, May 15–19, 2011.
Springer, Heidelberg, Germany.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th Annual ACM Symposium on Theory
of Computing, pages 1–10, Chicago, IL, USA, May 2–4, 1988. ACM Press.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd Annual ACM Symposium on Theory of Computing, pages 503–513, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

BPSW07. Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-preserving remote
diagnostics. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS

28

2007: 14th Conference on Computer and Communications Security, pages 498–507, Alexandria, Virginia,
USA, October 28–31, 2007. ACM Press.

Can00. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols (ex-
tended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages 11–19, Chicago, IL,
USA, May 2–4, 1988. ACM Press.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda Lindell, and Ariel Nof. Fast
large-scale honest-majority MPC for malicious adversaries. Cryptology ePrint Archive, Report 2018/570,
2018. https://eprint.iacr.org/2018/570.

CGR+17. Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul Tripathi. EzPC: Pro-
grammable, efficient, and scalable secure two-party computation for machine learning. Cryptology ePrint
Archive, Report 2017/1109, 2017. https://eprint.iacr.org/2017/1109.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptol-
ogy – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662, Santa Barbara,
CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

DSZ15. Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In ISOC Network and Distributed System Security Symposium –
NDSS 2015, San Diego, CA, USA, February 8–11, 2015. The Internet Society.

FKOS15. Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter Scholl. A unified approach to MPC
with preprocessing using OT. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology –
ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Science, pages 711–735, Auckland,
New Zealand, November 30 – December 3, 2015. Springer, Heidelberg, Germany.

GKWY19. Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computation from
fixed-key block ciphers. IACR Cryptology ePrint Archive, 2019:74, 2019.

HKS+10. Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. TASTY:
tool for automating secure two-party computations. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov, editors, ACM CCS 2010: 17th Conference on Computer and Communications Security, pages
451–462, Chicago, Illinois, USA, October 4–8, 2010. ACM Press.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining
BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science, pages 598–628, Hong
Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

KLO+19. Michael Kraitsberg, Yehuda Lindell, Valery Osheter, Nigel P. Smart, and Younes Talibi Alaoui. Adding
distributed decryption and key generation to a ring-LWE based CCA encryption scheme. In Julian Jang-
Jaccard and Fuchun Guo, editors, ACISP 19: 24th Australasian Conference on Information Security and
Privacy, volume 11547 of Lecture Notes in Computer Science, pages 192–210, Christchurch, New Zealand,
July 3–5, 2019. Springer, Heidelberg, Germany.

KOS15. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 724–741, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany.

KOS16. Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure compu-
tation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communications
Security, pages 830–842, Vienna, Austria, October 24–28, 2016. ACM Press.

KPR18. Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In Jesper Buus
Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume
10822 of Lecture Notes in Computer Science, pages 158–189, Tel Aviv, Israel, April 29 – May 3, 2018.
Springer, Heidelberg, Germany.

KSS14. Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer. Automatic protocol selection in secure two-
party computations. In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, ACNS 14: 12th
International Conference on Applied Cryptography and Network Security, volume 8479 of Lecture Notes
in Computer Science, pages 566–584, Lausanne, Switzerland, June 10–13, 2014. Springer, Heidelberg,
Germany.

29

http://eprint.iacr.org/2000/067
https://eprint.iacr.org/2018/570
https://eprint.iacr.org/2017/1109

KW93. Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of Structures in Complexity
Theory, pages 102–111, 1993.

MR18. Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework for machine learning. Cryp-
tology ePrint Archive, Report 2018/403, 2018. https://eprint.iacr.org/2018/403.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 681–700, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

RW19. Dragos Rotaru and Tim Wood. Marbled circuits: Mixing arithmetic and boolean circuits with active
security. IACR Cryptology ePrint Archive, 2019:207, 2019.

SW19. Nigel P. Smart and Tim Wood. Error detection in monotone span programs with application to
communication-efficient multi-party computation. In Mitsuru Matsui, editor, Topics in Cryptology –
CT-RSA 2019, volume 11405 of Lecture Notes in Computer Science, pages 210–229, San Francisco, CA,
USA, March 4–8, 2019. Springer, Heidelberg, Germany.

WRK17. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure multiparty computation. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th
Conference on Computer and Communications Security, pages 39–56, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press.

Yao82. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual Sympo-
sium on Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–5, 1982. IEEE
Computer Society Press.

30

https://eprint.iacr.org/2018/403

	Zaphod: Efficiently Combining LSSS and Garbled Circuits in SCALE

