
On NIST’s Compression Estimate Test

P. R. Mishra∗ Bhartendu Nandan† Navneet Gaba‡

Abstract

In this paper we present our observations about NIST’s Compression

estimate test given in SP-800 90B. We observe that steps 4 and 7 of the

test may be re-framed to gain efficiency. Based on our observations,

we propose a modified algorithm for the test which is twice as fast as

the NIST’s algorithm. We further claim that the values of probability

and min-entropy in the example given for the test are incorrect. We

also provide computational evidence in support of this claim.

1 Introduction

NIST’s compression estimate test is one of the ten tests given in NIST’s

special publication SP-800 90B [1] for entropy estimation for non-IID data.

This test is based on the Compression estimate proposed by Hagerty and

Draper [2]. It calculates the entropy rate of a dataset, based on the extent

to which it can be compressed.

This test mainly comprises five steps viz.,

i. partitioning the data into two disjoint groups

ii. creating a dictionary with help of the first partition

iii. test the other partition with respect to the created dictionary

∗prasanna.r.mishra@gmail.com
†bhartendun@gmail.com
‡navneetgaba2000@gmail.com

1



iv. computing a modified value of mean with help of mean and standard

deviation

v. solving an equation through binary search in order to find the probability

We propose an alternate formulation of step iii. and step v. Using this

formulation we present a modified algorithm for Compression Estimate Test.

We show that our algorithm is twice as fast as the NIST’s algorithm. We

also indicate an error in the example given after description of the test and

provide computational evidence in support of our findings.

The paper is structured in the following manner.

In the next section we provide description of Compression Estimate Test

given in NIST’s special publication SP-800 90B [1]. In the third section,

we provide an alternate formulation of step iii. and step v. as described

above. In the fourth section we show that the values of probability (p) and

the min entropy given in the example of the test are incorrect and provide

the correct values upto 4 places of the decimal. The next i.e., the fifth section

contains an algorithm for the test based on our findings and the computation

of its complexity. We take NIST’s implementation of the test as a benchmark

and compare the timings for different data sets.

2 NIST’s Description of Compression Esti-

mate Test[1]

Given the input S = (s1, . . . , sL), where si ∈ A = {0, 1},

1. Let b = 6. Create a new sequence, S ′ = (s′1, . . . , s
′
bL/bc), by dividing S

into non-overlapping b-bit blocks. If L is not a multiple of b, discard

the extra data.

2. Partition the dataset, S ′, into two disjoint groups. These two groups

will form the dictionary and the test data.

a. Create the dictionary from the first d = 1000 elements of

S ′, (s′1, . . . , s
′
d).

2



b. Use the remaining v = bL/bc− d observations, (s′d+1, . . . , s
′
bL/bc), for

testing.

3. Initialize the dictionary dict to an all zero array of size 2b. For i from

1 to d, let dict[s′i] = i. The value of dict[s′i] is the index of the last

occurrence of each s′i in the dictionary.

4. Run the test data against the dictionary created in Step 2.

a. Let D be a list of length v.

b. For i from d+ 1 to bL/bc:

i. If dict[s′i] is non-zero, then Di−d = i−dict[s′i]. Update the dictio-

nary with the index of the most recent observation, dict[s′i] = i.

ii. If dict[s′i] is zero, add that value to the dictionary, i.e., dict[s′i] =

i. Let Di−d = i.

5. Calculate the sample mean X̄, and the sample standard deviation (σ̂),

of (log2(D1), . . . , log2(Dv)).

X̄ =

∑v
i=1 log2Di

v
,

c = 0.5907

and

σ̂ = c

√∑v
i=1(log2Di)2

v − 1
− X̄2.

6. Compute the lower-bound of the confidence interval for the mean, based

on a normal distribution [3] with a confidence level of 99 %,

X̄ ′ = X̄ − 2.576
σ̂√
v

7. Using a binary search (bisection method [4]), solve for the parameter

p, such that the following equation is true:

X̄ ′ = G(p) + (2b − 1)G(q) (1)

where

G(z) =
1

v

L∑
t=d+1

t∑
u=1

(log2 u)F (z, t, u),

3



F (z, t, u) =

z2(1− z)u−1 if u < t

z(1− z)t−1 if u = t,

and

q =
1− p
2b − 1

. (2)

The bounds of the binary search should be 2−b and 1.

8. If the binary search yields a solution, then the min-entropy estimation

is the negative logarithm of the parameter, p:

min-entropy = − log2(p)/b.

If the search does not yield a solution, then the min-entropy estimation

is:

min-entropy = log2(2) = 1.

3 Our Observations and Reformulations

We have observed that there are logical errors and redundancies in the de-

scription for Compression Test proposed by NIST. Moreover, there are scopes

of improvement at various places to gain efficiency. A significant error in the

example has also been observed. These are described in subsequent subsec-

tions.

3.1 Testing the Data against the Dictionary Created

Refer to 4.b. of section 2. As per the description, if for some integer i ∈
[d+1, bL/bc], dict[s′i] is non-zero, the values of arrays D and dict are updated

as Di−d = i − dict[s′i] and dict[s′i] = i. In the other case, when dict[s′i] = 0,

the array D is updated as Di−d = i and the value i is added to the dictionary

i.e. dict[s′i] = i.

The dictionary is an array of size 2b initialised with zeros. Note that the size

of dictionary is decided at the beginning of the test and it remains constant

4



throughout. It means adding a new value to the dictionary array is equivalent

to updating it. With this observation it becomes clear that the condition i.

and ii. of 4.b. can be clubbed in a single condition without using if.

The restatement of 4.b. is as under:

For i from d+ 1 to bL/bc: Set Di−d = i− dict[s′i] and dict[s′i] = i.

3.2 Calculation of X̄ and σ̂

Using the restatement of 4.b as given in section 3.1, it can be shown that

creation of list D of size v may be avoided for calculation of X̄ and σ̂. For the

computation of these quantities we require two summations viz.,
∑v

i=1 log2Di

and
∑v

i=1(log2Di)
2. We have,

v∑
i=1

log2Di =

bL/bc∑
i=d+1

log2Di−d =

bL/bc∑
i=d+1

log2(i− dict[s′i]).

Similarly,
v∑

i=1

(log2Di)
2 =

bL/bc∑
i=d+1

(log2(i− dict[s′i]))2.

From the above expression it is clear that the two terms can be computed

with the loop in step 4.b. of section 3.1, and the creation of list D is not

necessary. Further, for simplicity, the constants c = 0.5907 and 2.576 used

in steps 5 and 6 of section 2 can be combined to get a single constant, which

is 1.5216.

3.3 Modification in Expression for function G

The function G defined in section 2 contains a double summation over indices

t and u. We observe that this double summation can be written as a single

summation with lesser number of summands. We have

G(z) =
1

v

L∑
t=d+1

t∑
u=1

(log2 u)F (z, t, u) (3)

5



where

F (z, t, u) =

z2(1− z)u−1 if u < t

z(1− z)t−1 if u = t
(4)

We define function T (z, u) as,

T (z, u) = z(1− z)u−1 (5)

Using (5),(4) can be written as

F (z, t, u) =

zT (z, u) if u < t

T (z, u) if u = t
(6)

We have from (3),

G(z) =
1

v

L∑
t=d+1

(
t−1∑
u=1

(log2 u)F (z, t, u) + (log2 t)F (z, t, t)

)

=
1

v

L∑
t=d+1

t−1∑
u=1

(log2 u)zT (z, u) +
1

v

L∑
t=d+1

(log2 t)T (z, t)) (7)

Consider the summation
L∑

t=2

t−1∑
u=1

(log2 u)zT (z, u). Observe that in the summa-

tion, given a value of 1 ≤ u < L, say k, the term (log2 k)zT (z, k) will occur

once for each t > k. Therefore, for each k s.t. 1 ≤ k < L, this term will be

repeated L− k times in the summation. Consequently,

L∑
t=2

t−1∑
u=1

(log2 u)zT (z, u) =
L−1∑
k=1

(L− k)(log2 k)zT (z, k) (8)

From (8),

L∑
t=d+1

t−1∑
u=1

(log2 u)zT (z, u)

=
L−1∑
k=1

(L− k)(log2 k)zT (z, k)−
d−1∑
k=1

(d− k)(log2 k)zT (z, k)

=
L∑

k=d+1

(L− k)(log2 k)zT (z, k) + (L− d)
d∑

k=1

(log2 k)zT (z, k) (9)

6



From (7) and (9) we have

G(z) =
1

v

L∑
k=d+1

((L− k)(log2 k)zT (z, k) + (log2 k)T (z, k))

+
L− d
v

d∑
k=1

(log2 k)zT (z, k)

Since log2 1 = 0, we have

G(z) =
1

v

[
L∑

k=d+1

((L− k)z + 1) (log2 k)T (z, k) + z(L− d)
d∑

k=2

(log2 k)T (z, k)

]
(10)

The double summation in (3) contains (L−d)(L+d+1)
2

terms whereas the new

expression (10) has L − 1 terms only. As d << L, the computational com-

plexity of G gets reduced from O(L2) to O(L). As computation of G is

the most intensive step of the algorithm, execution of the whole algorithm

becomes significantly faster with this reformulation.

3.4 Error in Example of the Test

NIST has given a worked out example of this test with a shorter sequence

on page 47 of [1]. In this example a binary sequence of 48 bits is taken. The

value of d is taken as 4. We have experimentally verified that the calculated

values are correct upto point 6 of section 2. The values of p and min-entropy

are incorrect. The value of p depends on four parameters viz., X̄ ′, b, v and

d. From (1) and (2), it is clear that p is an approximate value of p satisfying

L(p, X̄ ′, b, v, d) = 0 where,

L(p, X̄ ′, v, d) = X̄ ′ −G(p)− (2b − 1)G

(
1− p
2b − 1

)
.

For the example under consideration, b = 6, v = 4, d = 4, X̄ ′ = 1.4617.

As per example, the p satisfying L(p, X̄ ′, b, v, d) = 0 for the above quoted

values of the parameters is 0.5715. A simple calculation shows that

L(0.5715, 1.4617, 6, 4, 3) = −22.4135.

7



We have calculated the value of p as 0.9578. For this value of p, we have

L(0.9578, 1.4617, 6, 4, 3) = −0.0016.

Clearly, the value of p calculated by us is much more accurate. Accordingly,

the value of min-entropy comes out to be 0.0059.

4 Our algorithm and experimental results

Based on our observations, we propose the modified algorithm for computa-

tion of min-entropy.

Given the input S = (s1, . . . , sL), where si ∈ A = {0, 1},

1. Let b = 6. Create a new sequence, S ′ = (s′1, . . . , s
′
bL/bc), by dividing S

into non-overlapping b-bit blocks. If L is not a multiple of b, discard

the extra data.

2. Partition the dataset, S ′, into two disjoint groups. These two groups

will form the dictionary and the test data.

a. Create the dictionary from the first d = 1000 elements of S ′,

(s′1, . . . , s
′
d).

b. Use the remaining v = bL/bc − d observations, (s′d, . . . , s
′
bL/bc), for

testing.

3. Initialize the dictionary dict to an all zero array of size 2b. For i from

1 to d, let dict[s′i] = i. The value of dict[s′i] is the index of the last

occurrence of each s′i in the dictionary.

4. Run the test data against the dictionary created in Step 2 as:

a. Initialize sum and sum of square to zero.

b. For i from d+ 1 to bL/bc:

i. Set Q = log2(i− dict[s′i]) and dict[s′i] = i.

ii. Update sum and sum of square as,

sum = sum+Q

8



and

sum of square = sum of square+Q ∗Q.

5. Calculate the sample mean X̄, and the sample standard deviation (σ̂)

as

X̄ =
sum

v
,

and

σ̂ =

√
sum of square

v
− X̄2.

6. Compute the lower-bound of the confidence interval for the mean, based

on a normal distribution with a confidence level of 99 %,

X̄ ′ = X̄ − 1.5216
σ̂√
v

7. Using a binary search, solve for the parameter p, such that the following

equation is true:

X̄ ′ = G(p) + (2b − 1)G(q) (11)

where G(z) is:

1

v

[
L∑

k=d+1

((L−k)z+1)(log2 k)z(1−z)k−1+z(L−d)
d∑

k=2

(log2 k)z(1−z)k−1

]
and

q =
1− p
2b − 1

.

The bounds of the binary search should be 2−b and 1.

8. If the binary search yields a solution, then the min-entropy is given as:

min-entropy = − log2(p)/b.

If the search does not yield a solution, then the min-entropy estimation

is 1.

Remark. We have observed a descriptive error in step 8 of section 2. As per

step 8, if the binary search yields a solution, then the min-entropy estimation

is the negative logarithm of the parameter, p. It means when the binary search

yields a solution, then the min-entropy is − log2(p), which is incorrect. We

have suitably modified this in our algorithm.

9



4.1 Comparison of Timings

To compare efficiency of our algorithm, five sets of binary sequences of dif-

ferent lengths were taken. On each of the five sets NIST algorithm and our

algorithm were run. The experiments were performed on an i-7 machine with

4GB of RAM. The timings are compared in table 1. Please note that d = 100

is used for the purpose of efficiency test only.

S.No. Length of

sequences

(in bits)

Number of

Sequences

d Time taken in secs

NIST

Algorithm

Our Algo-

rithm

1 900000 10 100 186.92 79.02

2 90000 100 100 149.18 61.41

3 900000 10 1000 190.63 81.69

4 90000 100 1000 150.75 61.19

5 60000 10 1000 9.82 4.05

Table 1: Comparison of timings of NIST’s algorithm and our algorithm

Remark. The comparison of timings shows that our implementation (as per

modified algorithm) is twice as fast as the NIST’s algorithm. The improve-

ment from quadratic to linear complexity (as discussed in section 3.3) is not

visible in the table for timings. The reason is that we have used NIST’s im-

plementation of Compression Test for comparison in which they have used

certain optimisation to avoid quadratic complexity.

5 Conclusion

Our present and the earlier work [5] on NIST’s Non-IID Tests suggest that

there are logical and descriptive errors as well as some redundancies even in

final version of NIST document “Recommendation for the Entropy Sources

Used for Random Bit Generation” (NIST Special Publication 800-90B, Jan-

uary, 2018). Moreover, at various places there are scopes of improvement in

order to make the tests more efficient.

10



We have also shown that a major step in the Compression Test proposed

by NIST may be reformulated in order to reduce its time complexity from

quadratic to linear. However, in NIST’s implementation of the Compression

Test, certain optimisation has been used to gain efficiency. Still, the com-

parison of timings shows that our algorithm is twice as fast as the NIST’s

algorithm. We hope that this paper will be useful for experts and researchers.

References

[1] Meltem Sonmez Turan, Elaine Barker, John Kelsey, Kerry A. McKay,

Mary L. Baish, Mike Boyle; Recommendation for the Entropy Sources

Used for Random Bit Generation, NIST Special Publication 800-90B,

January, 2018.

[2] P. Hagerty and T. Draper; Entropy Bounds and Statistical

Tests, NIST Random Bit Generation Workshop, December 2012,

https://csrc.nist.gov/csrc/media/events/random-bit-generation-

workshop-2012/documents/hagerty entropy paper.pdf.

[3] K. Krishnamoorthy, Handbook of Statistical Distribution with Applica-

tions,Chapman and Hall, 2006.

[4] Richard L. Burden, J. Douglas Flairs, Numerical Analysis, 8th Edition,

Brooks/Cole Cengage Learning.

[5] P. R. Mishra, Bhartendu Nandan, Navneet Gaba, An Efficient and

Compact Reformulation of NIST’s Collision Estimate Test, available

on IACR eprint archive.

11


