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Abstract

Attribute-based encryption (ABE) is an advanced cryptographic tool and useful to build various
types of access control systems. Toward the goal of making ABE more practical, we propose
key-policy (KP) and ciphertext-policy (CP) ABE schemes, which first support unbounded sizes
of attribute sets and policies with negation and multi-use of attributes, allow fast decryption,
and are adaptively secure under a standard assumption, simultaneously. Our schemes are more
expressive than previous schemes and efficient enough. To achieve the adaptive security along with
the other properties, we refine the technique introduced by Kowalczyk and Wee (Eurocrypt’19)
so that we can apply the technique more expressive ABE schemes. Furthermore, we also present
a new proof technique that allows us to remove redundant elements used in their ABE schemes.
We implement our schemes in 128-bit security level and present their benchmarks for an ordinary
personal computer and smartphones. They show that all algorithms run in one second with the
personal computer when they handle any policy or attribute set with one hundred attributes.

Keywords: attribute-based encryption; standard assumption; non-monotone; unbounded; multi-
use; random oracle model

1 Introduction

Attribute-based encryption (ABE) [18] is an advanced form of public key encryption (PKE), which
yields fine-grained access control over encrypted data. More concretely, ABE allows us to embed an
attribute x into a ciphertext when we encrypt a message. An authority that has a master secret key
can issue a secret key that is associated with a predicate y. The ciphertext can be decrypted with the
secret key only if x and y satisfy some relation R.

Previously, ABE schemes have been proposed for various relations, such as equality [10], threshold
[31], orthogonality of vectors [20], and so on. One of the most notable relations among them is that
expressed by an access structure [8,18]. In a key-policy ABE (KP-ABE) scheme, for instance, one can
embed an access structure in a secret key such as (Year:1991-2000 AND Category:jazz). The secret
key can decrypt ciphertexts that have attributes Year:1991-2000 and Category:jazz but cannot
ones that only have at most one of them. Ciphertext-policy ABE (CP-ABE) is a dual of KP-ABE and
allows us to embed an access structure into ciphertexts.

Recently, Agrawal and Chase proposed practical KP-ABE and CP-ABE schemes named FAME [1],
which are the first schemes that simultaneously:

1. have no restriction on sizes of policies and attribute sets (unboundedness);

2. allow an arbitrary string as an attribute (large universe);
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3. are based on the fast Type-III pairings;

4. need a small number of pairings for decryption;

5. satisfy the adaptive security under standard assumptions.

All these properties are arguably important in practice. We briefly explain the reasons. The first two
properties say about scalability. It is not uncommon that we extend a system to add new attributes
to a database in operation. In such cases, scalability is essential property because if the scheme
does not have the scalability, we need a redeployment of the scheme. The second two properties say
about efficiency. The efficiency of building blocks directly affects that of the entire system. Thus,
efficient cryptographic schemes are desirable. The final property says about security. In contrast
to the selective security, the adaptive security considers a model that captures a natural attack of
an adversary against a scheme. Additionally, standard assumptions are based on well-studied hard
problems and thus reliable. Hence, the adaptive security under standard assumptions guarantees that
schemes are secure enough.

1.1 Our Contribution

Toward the goal to make ABE schemes more usable and realistic, we propose more expressive schemes.
More precisely, we propose KP-ABE and CP-ABE schemes that satisfy all the above properties and
additionally allow us to use

6. negation in a natural form (non-monotonicity);

7. the same attribute more than once (multi-use of attributes or compactness);

in a policy. These properties allow us to use more fine-grained policies that are commonly used in
practice. Negation is essential for access control by blacklisting. Multi-use of attributes in policies is
indispensable to express certain types of policies such as (A AND B) OR (A AND C) OR (B AND
D), where A,B,C,D are Boolean variables.

Thanks to great works on ABE [3,23,29], we have several ABE schemes that can handle unbounded
sizes of attribute sets and policies in prime-order groups. To our knowledge, however, there are no
schemes that achieve all the properties listed above simultaneously. We summarize previous schemes
and ours in Table 1.

One note is that our schemes require the random oracle model for security analysis as well as
FAME. Whereas a random oracle cannot be replaced with any implemented hash function in some
particular cases [12], it is still a widely accepted and standard methodology to analyze the security of
cryptographic schemes. Actually, many practical schemes that are used in the real world require the
random oracle model for their security analysis [6, 7, 16].

In the following, we elaborate on the last two properties.

Non-monotonicity. Previously, there are several works that consider access structures including
negation (non-monotone access structures) in ABE [3,4,26,28–30,34]. Among them, only the negation
form defined by Okamoto and Takashima (OT negation) [28, 29] is different from that by the others
(non-OT negation). Considering an example is the best way to describe the difference. Let attributes
consist of a pair of a label and value, e.g., Year:1991-2000, where Year is a label and 1991-2000 is
a value. Suppose there are two labels Year and Category in an access control system supported
by KP-ABE. Then, non-OT negation is like (NOT Year:1991-2000) whereas OT negation is like
(Year:NOT 1991-2000). Semantically, the former implies that the secret key can decrypt a ciphertext
if it does not have attribute Year:1991-2000. On the other hand, the latter implies that a ciphertext
is decryptable if it has an attribute on label Year and its attribute is not 1991-2000.

When we consider large universe ABE, which is exactly the desirable case in practice, the natural
negation form is arguably OT negation. In large universe ABE, it is unreasonable to fix all attributes
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Table 1: Comparison of unbounded KP and CP-ABE schemes based on prime-order groups.

Scheme
Unbounded-

ness
Large

universe
Type-III

Fast
Dec

Standard
assump.

Non-
monotonicity

Multi-
use

w/o
RO

OT12 [29] ✓ ✓ ✓ × ✓ ✓ × ✓
AC17 [1] ✓ ✓ ✓ ✓ ✓ × × ×
CGKW18 [14] ✓ ✓ ✓ × ✓ × × ✓
KW19 [23] ✓ ✓ ✓ × ✓ × ✓ ✓
Att19 [3] ✓ ✓ ✓ × × ×a ✓ ✓
Ours ✓ ✓ ✓ ✓b ✓ ✓ ✓ ×

a The scheme that is explicitly described by Attrapadung [3] can handle negation, but it is not the natural form that we
consider.
b The number of pairings in decryption of our schemes does not depend on the size of policies or the number of attributes
but only depends on the number of multi-use of labels in a policy. Thus, as long as considering the same setting as FAME,
which imposes one-use restriction on policies, the decryption requires only a constant number of pairings.

used in a system at the setup phase because the most significant advantage of large universe ABE is
that we can utilize an exponentially large number of attributes. Associating strings with attributes that
the ABE scheme handles in an ad-hoc way by a hash function would be a better solution. However,
if we use non-OT negation in the system, we have to fix all attributes that the system supports at
the setup phase. This is because a secret key whose policy is negation of an attribute that the system
has not supported before can decrypt all ciphertexts generated so far. More concretely, in the above
example, we consider the case where we add a new label Artist in the system. Then, if an authority
issues a key whose policy is (NOT Artist:The Beatles), all previous ciphertexts are decrypted by the
key even if the underlying content is by The Beatles because they do not have an attribute on label
Artist. On the other hand, OT negation does not cause this inconvenience because a key whose
policy is (Artist:NOT The Beatles) is useless to decrypt ciphertexts without an attribute on label
Artist. Thus, we refer to OT negation as a natural form.

Note that we can use monotone ABE as non-monotone ABE by preparing attributes for both
positive and negative if they are small-universe constructions, in which the number of attributes are
polynomially bounded. That is, non-possession of attributes can be expressed by possession of negative
attributes. However, this is not the case in large-universe constructions because we cannot attach an
exponentially large number of negative attributes to a ciphertext or secret key. Hence, monotone ABE
and non-monotone ABE are completely different things in the context of large-universe constructions.

Multi-use of attributes (Compactness). Many ABE schemes whose security relies on the dual
system methodology [32] have a one-use restriction on access structures [13, 14, 25, 28, 29]. In an
ABE scheme with the one-use restriction, one can use only policies in which all attributes appear
once. That is, one cannot embed a policy into a ciphertext or secret key such as ((Year:1991-
2000 AND Category:jazz) OR (Year:2001-2010 AND Category:jazz) OR (Year:2001-2010 AND
Artist:The Beatles)) because attributes Category:jazz and Year:2001-2010 appear twice in the
policy.

One way to circumvent this restriction is to prepare multiple nominal attributes for each single
attribute in advance like Category:jazz-1, . . . ,Category:jazz-d for Category:jazz. However, this
solution has two problems. The first is that the maximum number d of multi-use is fixed at the setup
phase. Thus, the access structures that the scheme supports are still limited. The second is that, in
KP-ABE, for instance, the solution increases the sizes of ciphertexts proportionally to the maximum
number of multi-use, and it leads to efficiency loss. This prevents the solution to set a sufficiently large
number for the limit.

On the other hand, in an ABE scheme that supports multi-use of attributes, we have no restrictions
on policies and can combine any attributes in an arbitrary way to generate a policy. In KP-ABE, for
instance, the sizes of ciphertexts are independent of policies and thus satisfies “compactness” [23].
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1.2 Design of Our ABE Schemes

In the following, we focus on the design our KP-ABE scheme, and the CP-ABE scheme is similarly
constructed. The relation R of our ABE is close to that by Okamoto and Takashima in [29]. As we
mentioned, an attribute consists of a label and value. Our schemes are unbounded in terms of this
tuple, that is, a user can attach an arbitrary number of tuples of a label and value to a ciphertext or
secret key. A predicate is an arbitrary Boolean formula that is a combination of variables by operations
AND, OR, and NOT such as ((Year:1991-2000 AND Category:jazz) OR (Year:1991-2000 AND
Artist:NOT The Beatles)). That is, our scheme A formal definition of R is described in Definition 2.5.

Our scheme is based on the dual system encryption, which we can instantiate from either composite-
order or prime-order bilinear groups [13,27,32,33]. Our actual scheme is based on prime-order bilinear
groups following the framework by Chen et al. [13] to utilize the dual system methodology in prime-
order groups and the technique by Agrawal and Chase [1] to utilize a random oracle in asymmetric
prime-order bilinear groups. For ease of exposition, we describe the composite-order variant of our
scheme here. Let N = p1p2 for primes p1 and p2, and (G,H,GT ) be bilinear groups of order N . Let g
and h be generators of G and H, and gi and hi be generators of subgroups Gi and Hi of order pi for
i = {1, 2}, respectively. Let R : {0, 1}∗ → G1 × G1 be a hash function modeled as a random oracle,
and its input is a label. We denote the output of R(i) by (gui1 , g

hi
1 ). Then, our scheme can be written

as

pk = (g1, h1, e(g1, h1)
α)

ct = (hs1, {g
s(xiui+hi)
1︸ ︷︷ ︸
ct of IBE

}i∈S , e(g1, h1)sαM)

sk =

{hri1 }i∈[n],

g
αi · gri(yiuψ(i)+hψ(i))

1︸ ︷︷ ︸
sk of IBE

or
g−αi · griuψ(i)

1 ,

gyiαi · grihψ(i)

1︸ ︷︷ ︸
sk of NIBE


i∈[n]

 ,

where S is the set of labels, n is the number of variables in the formula, ψ : [n]→ {0, 1}∗ is a function
that specifies the label of each variable, αi is a share of the secret α, and xi and yi are the values for
label i. Note that the reason ct and sk contain both elements in G and H is to utilize a hash function
in asymmetric groups as FAME [1].

The high-level idea of the construction is a combination of secret sharing (SS) and two-mode
identity-based encryption (TIBE) [34]. TIBE is obtained by just combining identity-based encryption
(IBE) and negation of IBE (NIBE). Our scheme can instantiate an arbitrary number of TIBE on the
fly by leveraging hash function R, and each instance corresponds to each label. A secret key of our
scheme consists of secret keys of IBE and NIBE, and each secret key hides a share αi of a master secret
α generated by SS according to the formula. A ciphertext of ABE consists of ciphertexts of IBE, which
have the same form as those in Boneh-Boyen IBE [9]. Note that ciphertexts of IBE and NIBE are
identical, and thus we do not need to include both ciphertexts of IBE and NIBE in a ciphertext of
our scheme. In decryption, one computes {e(g1, h1)sαi}i for labels in which the relation of (in)equality
between the ciphertext and secret keys is satisfied. Note that one cannot compute e(g1, h1)

sαi if the
relation of (in)equality does not hold in label i, thanks to the security of underlying TIBE. If e(g1, h1)

sα

is recovered via reconstruction of SS, which means that the policy in the secret key is satisfied by the
attribute in the ciphertext, one can decrypt the ciphertext of ABE. By the construction, e(g1, h1)

sαi

cannot be computed if a ciphertext of ABE does not contain a ciphertext of TIBE for label i, and this
property yields OT negation.
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1.3 Our Main Technique

We can easily prove the adaptive security of our scheme from a standard assumption by the dual system
methodology and the predicate encoding framework as in [33] if ψ is injective, or the scheme has the
one-use restriction of labels in policies. However, if it is not the case, to prove the adaptive security
of the scheme from standard assumptions becomes quite difficult and had been a long-standing open
problem. Very recently, Kowalczyk and Wee brought a breakthrough for this problem (KW19) [23].
More precisely, they proposed a methodology to prove the adaptive security of the most simple ABE
scheme, which supports monotone NC1 circuits (or equivalently Boolean formulae) for a small attribute
universe. The scheme can be written in composite-order groups as

pk = (g1, h1, g
w1
1 , . . . , gwℓ1 , e(g1, h1)

α)

ct = (gs1, {g
swi
1 }i∈S , e(g1, h1)sαM)

sk = ({hri1 }i∈[n], {hαi · h
riwψ(i)

1 }i∈[n]).

Roughly speaking, this scheme can be seen as KP-ABE whose ingredients are ElGamal-like encryption
whereas the counterpart of our scheme corresponds to TIBE.

We briefly recall the framework by KW19. Their framework follows the dual system methodology,
which is the standard technique to achieve the adaptive security. In the methodology, we change the
challenge ciphertext and secret keys into the semi-functional form. Roughly speaking, semi-functional
ciphertexts and secret keys have an additional structure in G2 and H2 as follows:

ct = (gs, {gswi}i∈S , e(g, h)sαM)

sk = ({hri1 }i∈[n], {hαi · h
riwψ(i)

1 · hγi2 }i∈[n]),

where γi is a share of a random secret γ.
In the dual system methodology, we consider a series of hybrids where we first change the challenge

ciphertext into the semi-functional form and then the secret keys into the semi-functional form one
by one. In the latter part, the methodology allows us to focus on only one secret key by leveraging
components in G2 and H2. Therefore, to show the following indistinguishability for the adaptive choice
of ct and the one key sk is sufficient to change the target secret key into a semi-functional form:

ct : (gs2, {g
swi
2 }i∈S),

sk : ({hri2 }i∈[n], {h
riwψ(i)+ γ0,i
2 }i∈[n])

≈c

(gs2, {g

swi
2 }i∈S),

({hri2 }i∈[n], {h
riwψ(i)+ γ1,i
2 }i∈[n])


where γ0,i is a share of secret 0 and γ1,i is a share of secret γ. This core component is called core
1-ABE.

The difficulty of showing the indistinguishability of core 1-ABE from a standard assumption arises
from the fact that we need to embed a computational problem into sk depending on ct. That is, if an
adversary first asks for sk, a simulator has no idea on how to embed the computational problem into
sk. Their framework tells us how to construct a series of hybrids to show the above indistinguishability.
In each transition of hybrids, the simulator guesses a part of the adversary’s output that has sufficient
information to embed the problem into sk. Simultaneously, the part must be so small that the simulator
can guess it with non-negligible probability. In our case, the part tells the correct element in sk where
the simulator embeds the problem. Observe that each γi is masked by ElGamal-like encryption in H2.
Thus, we can embed the DDH problem based on the guess and gradually change shares {γi}i∈[n].

At a glance, their framework seems applicable to our scheme directly, but actually, it does not work.
The main problem is the fact that whereas their framework tells us the location and its label where
we should embed the problem in sk, it does not tell us the value of the label in ct. In other words,
the difficulty of directly applying their framework to our scheme seems essentially the same as that
of proving the adaptive security of Boneh-Boyen IBE, which was proven secure only in the selective
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setting. This problem does not occur in the scheme by KW19 because the corresponding part is just
the ElGamal-like encryption, that is, public-key encryption.

To overcome the problem, we introduce new usage of KW19 framework that allows us to utilize the
dual system methodology more beneficially. As we mentioned previously, a secret key of our scheme
contains many secret keys of TIBE based on the dual system encryption. Furthermore, the framework
tells us which secret key should be changed in each hybrid in the core 1-ABE. Thus, we can gradually
randomize the component in H2 of each element in sk by the dual system methodology instead of the
DDH problem in H2.

For simplicity, we show the case where we apply our new technique to the scheme by KW19. In
our technique, we consider the following indistinguishability of core 1-ABE:

(gs, {gswi}i∈S),

({hri1 }i∈[n], {h
riwψ(i)

1 · h
γ0,i
2 }i∈[n])

≈c

(gs, {gswi}i∈S),

({hri1 }i∈[n], {h
riwψ(i)

1 · h
γ1,i
2 }i∈[n])

 .

The difference from the original core 1-ABE is that our core 1-ABE considers both normal space
(G1 and H1) and semi-functional space (G2 and H2), whereas the original one considers only semi-
functional space. We use the dual system methodology to randomize the component in H2. Let i

∗ be
the location where γi∗ is supposed to be changed in some two hybrids, which means that i∗ ̸∈ S. Then,
from the subgroup assumption, the dual system methodology argue that (hri∗1 , h

ri∗wψ(i∗)

1 · hγi∗2 ) ≈c
(hri∗ , hri∗wψ(i∗) · hγi∗2 ). Then, we can observe that wψ(i∗) mod p2 in sk is randomly distributed in Zp2
from the Chinese remainder theorem and the fact i∗ ̸∈ S. Thus, term γi is completely hidden by term
ri∗wψ(i∗). Unlike the framework by KW19, we can apply this technique to our scheme similarly.

1.4 Other Techniques

Furthermore, we give the following technical contributions:

• reducing the number of pairings in decryption;

• reducing the number of shares of secret sharing;

• making the proof simpler;

• presenting our CP-ABE scheme.

Number of pairings. Our scheme described in Section 1.2 requires O(n) pairings in decryption.
To reduce the number, we employ the construction by Agrawal and Chase in [2]. That is, we use an
exponent rπ(i) instead of ri, where π(i) = |{j | ψ(j) = ψ(i), j ≤ i}|. In this construction, we need
O(d) pairings in decryption where d = maxπ(i) is the maximum number of multi-use of labels in the
policy. Because our scheme in prime-order groups follows the construction, it allows fast decryption
for secret keys with a small number of multi-use of labels. We show that we can prove the security of
our schemes under standard assumptions even if we use this construction. Note that the construction
by Agrawal and Chase relies on a q-type assumption.

Number of shares. In the scheme by KW19, they use a secret sharing scheme where the number
of shares corresponds to the summation of the numbers of gates and input wires when we capture a
Boolean formula as a circuit. On the other hand, our schemes employ a secret sharing scheme where
the number of shares corresponds to only the number of input wires. Their framework derives from the
technique to prove the adaptive security of secret sharing for monotone circuits by Jafargholi et al. [19],
which requires the same number of shares as in KW19. We guess that this is why their construction
employs such a secret sharing scheme. However, we show that we do not need shares for the gates in
secret sharing schemes for Boolean formulae to utilize the framework.
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Simpler proof. Our scheme follows the technique of FAME to make our scheme unbounded by a
hash function [1]. We show that we can utilize a pseudorandom function (PRF) to significantly ease
the security proof. Concretely, we can skip the part that corresponds to Hyb0 to Hyb2,3,q in their
security proof [1, Appendix C]. Note that the additional computational cost by the modification is
quite small compared with the whole procedure of the key generation because it requires only small
numbers of PRF evaluations and multiplications in Zp for each element in a secret key.

CP-ABE scheme. We present our CP-ABE scheme and its security proof . Note that the security
proof of our CP-ABE scheme is more complicated than that of our KP-ABE scheme, because we need
two hidden spaces as in [14,17] due to a technical reason.

1.5 Implementation and Evaluation

We implement our KP and CP-ABE schemes in 128-bit security level and measure benchmarks for an
ordinary personal computer and two smartphones: iPhone XR and Pixel 3. In our schemes, a running
time of each algorithm is affected by the numbers of negation and multi-use of labels in a policy as
well as the number of attributes. To show the effects of these factors, we present benchmarks for four
types of policies that differ in the existence of negation and multi-use.

We roughly describe the running times of our schemes when we handle a policy or attribute set
with 100 attributes on a personal computer. In all cases, our KP-ABE (resp. CP-ABE) scheme takes
about 0.4 to 0.7s (resp. 0.4 to 0.9s) for encryption and key generation. Decryption is heavily affected
by a type of policy, and our schemes take only about 0.02s (KP & CP) in the fastest case and 0.5
(KP) or 0.7s (CP) even in the slowest case. Thus, we can conclude that our schemes take less than 1s
in any process and any cases with 100 attributes.

We also implement KP and CP-ABE schemes by Okamoto and Takashima (OT12), which are the
only known ABE schemes that support OT negation and the unboundedness [29]. There are no known
schemes that are as expressive as ours (see Table 1), and OT12 seems to have a closet functionality.
This is why we choose OT12 to compare. The comparison between our schemes and OT12 shows that
our schemes achieve significant speedups for each algorithm.

2 Preliminaries

2.1 Notation

For a natural number n ∈ N, [n] denotes a set {1, . . . , n}. For a set S, s ← S denotes that s is
uniformly chosen from S. For matrices with the same number of rows A1 and A2, (A1||A2) denotes
the matrix generated by their concatenation. We denote the whole space spanned by all columns of
matrix A by span(A). For a matrix A := (aj,ℓ)j,ℓ over Zp, [A]i (i ∈ {1, 2, T}) denotes a matrix over
Gi whose (j, ℓ) entry is g

aj,ℓ
i , and we apply the similar notation to vectors and scalars. We denote

([A]1, [A]2) by [A]1,2. For matrices A and B where A⊤B is defined, we abuse the pairing notation in

the following way: e([A]1, [B]2) = [A⊤B]T . A function f : N→ R is called negligible if f(λ) = λ−ω(1)

and denotes f(λ) ≤ negl(λ). For families of distributions X := {Xλ}λ∈N and Y := {Yλ}λ∈N, X ≈c Y
means that they are computationally indistinguishable.

2.2 Basic Tools

Boolean Formula and NC1. A monotone Boolean formula can be represented by a Boolean circuit
whose all gates have fan-in 2 and fan-out 1. We can specify a monotone Boolean formula f : {0, 1}n →
{0, 1} as f = (n,w, v,G), where n,m, v ∈ N and G : [v]→ {AND, OR}× [w]3. This means the Boolean
formula f has n input wires, w wires including the input wires, and v gates. We number the wires
1, . . . , w and the gates 1, . . . , v. The function G specifies a type, incoming wires, and an outgoing wire
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of each gate. That is, for G(i) = (T, a, b, c) such that a < b < c, T specifies a type of gate i, a and
b specify the incoming wires, and c specifies the outgoing wire. A non-monotone Boolean formula
additionally contains NOT gates, which have fan-in 1 and fan-out 1. It is well-known that we can
express all non-monotone Boolean formulae by one in which all NOT gates are put on the input wires,
and we only consider such formulae in this paper. Thus, we can specify a non-monotone Boolean
formula f ′ : {0, 1}n → {0, 1} as f ′ = (f, t), where f = (n,w, v,G) is a monotone Boolean formula and
t : [n] → {0, 1} specifies input gates that connect to a NOT gate. That is, input wire i connects to a
NOT gate if t(i) = 0 and does not if t(i) = 1.

Standard complexity theory tells us that circuit complexity class NC1 and Boolean formulae are
equivalent. It is known also that NC1 is equivalent to the class captured by log-depth Boolean formulae
(see e.g., [23]). Thus, the circuit complexity class captured by Boolean formulae is equivalent to the
class captured by log-depth Boolean formulae.

Definition 2.1 (Pseudorandom Functions). A pseudorandom function (PRF) family F := {FK}K∈Kλ
with a key space Kλ, a domain Xλ, and a range Yλ is a function family that consists of functions
FK : Xλ → Yλ. Let Rλ be a set of functions consisting of all functions whose domain and range are
Xλ and Yλ respectively. For any PPT adversary A, the following condition holds,

AdvPRFA (λ) := |Pr[1← AFK(·)]− Pr[1← AR(·)]| ≤ negl(λ),

where K ← Kλ and R←Rλ.

Definition 2.2 (Bilinear Groups). A description of bilinear groups G:=(p,G1, G2, GT , g1, g2, e) consist
of a prime p, cyclic groups G1, G2, GT of order p, generators g1 and g2 of G1 and G2 respectively, and
a bilinear map e : G1 ×G2 → GT , which has two properties.

• (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(ha1 , hb2) = e(h1, h2)
ab.

• (Non-degeneracy): For g1 and g2, gT := e(g1, g2) is a generator of GT .

A bilinear group generator GBG(1λ) takes a security parameter 1λ and outputs a description of bilinear
groups G with Ω(λ) bit prime. In this paper, we refer to Type-I groups, where efficient isomorphisms
exist in both way between G1 and G2, as symmetric bilinear groups, and Type-III groups, where no
efficient isomorphisms exist between them, as asymmetric bilinear groups.

For the proofs of our schemes, we utilize the Dk-MDDH assumption [15], which is generalization of
the DDH assumption. There are mainly two types of Dk-MDDH assumption families for asymmetric
bilinear groups. In the first one, an instance contains unilateral group elements such as the SXDH
assumption. The other one consists of assumptions that are involved with bilateral group elements
such as the DLIN assumption used in [1], which is sometimes called the XDLIN assumption. In our
paper, we utilize the latter type.

Definition 2.3 (Dj,k-MDDH Assumption). For j > k, let Dj,k be a matrix distribution over Zj×kp

that outputs full rank matrix with overwhelming probability. We can assume that, wlog, the first k rows
of a matrix A chosen from Dj,k form an invertible matrix. We consider the following distribution:

G← GBG(1λ), A← Dk, v← Zkp, t0 := Av, t1 ← Zjp,
Pβ := (G, [A]1,2, [tβ ]1,2).

We say that the bilateral Dj,k-MDDH assumption holds with respect to GBG if, for any PPT adversary
A,

Adv
Dj,k-MDDH
A,bi (λ) := |Pr[1← A(P0)]− Pr[1← A(P1)]| ≤ negl(λ).

We denote Dk+1,k by Dk. Let Uj,k be a uniform distribution over full rank matrices in Zj×kp . Then,
the following relations hold with tight reductions; Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH.

For an appropriate distribution Dk, the Dk-MDDH assumption generically holds in k-linear groups
[15]. Thus, in asymmetric bilinear groups, we can utilize the bilateral Dk-MDDH assumption for k ≥ 2.
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Matrix Notation. For a matrix A ∈ Dk, we define a matrix A∗ and vectors a1 and a∗1 as follows.
Vector a1 is a k+1 dimensional vector whose last entry is 1 and the others are 0. Then, it is not hard
to see that A := (A||a1) forms a basis of Zk+1

p because the first k rows of a matrix A chosen from Dk
form an invertible matrix. A∗ and a∗1 are the matrix that consists of the left k columns of (A

⊤
)−1 and

the vector that consists of right one column of (A
⊤
)−1, respectively. Note that we have A⊤A∗ = Ik,

A⊤a∗1 = 0, and A∗A⊤ + a∗1a
⊤
1 = Ik+1. We use a similar notation for a matrix B ∈ GLk+η(Zp) where

η ∈ N. B and bi denote a matrix consists of the first k columns of B and a vector consists of the
k+ i-th column of B, respectively. Similarly, B∗, b∗

i denote a matrix consists of the first k columns of

(B
⊤
)−1 and a vector consists of the k + i-th column of (B

⊤
)−1, respectively. For the convenience, we

denote (b1||b2) by B12, and this notation is applied to other cases similarly.

2.3 Attribute-Based Encryption

Definition 2.4 (Attribute-Based Encryption). An attribute-based encryption (ABE) scheme for re-
lation R : X × Y → {0, 1} consists of four algorithms, where X and Y are an attribute universe and
predicate universe, respectively.

Setup(1λ): It takes a security parameter 1λ and outputs a public key pk and a master secret key msk.
pk specifies a message spaceM.

Enc(pk, x,m): It takes pk, an attribute x ∈ X and a message m ∈M and outputs a ciphertext ctx.

KeyGen(pk,msk, y): It takes pk,msk, and a predicate y ∈ Y and outputs a secret key sky.

Dec(pk, ctx, sky): It takes pk, ctx and sky and outputs a message m′ or ⊥.

Correctness. An ABE scheme is correct if it satisfies the following condition. For all λ ∈ N, x ∈ X ,
y ∈ Y such that R(x, y) = 1, and m ∈M, we have

Pr

m = m′

(pk,msk)← Setup(1λ)
ctx ← Enc(pk, x,m)
sky ← KeyGen(pk,msk, y)
m′ := Dec(pk, ctx, sky)

 = 1.

Security. An ABE scheme is adaptively secure if it satisfies the following condition. That is, the
advantage of A defined as follows is negligible in λ for all stateful PPT adversary A:

AdvABEA (λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

β = β′

β ← {0, 1}
(pk,msk)← Setup(1λ)
(x∗,m0,m1)← AKeyGen(pk,msk,·)(pk)
ctx∗ ← Enc(pk, x∗,mβ)
β′ ← AKeyGen(pk,msk,·)(ctx∗)

− 1

2

∣∣∣∣∣∣∣∣∣∣
,

where {yi}i∈[qsk] on which A queries KeyGen must satisfy R(x∗, yi) = 0.

A relation for ABE that we consider in our paper is expressed by a non-monotone Boolean formula
over the equivalence relation in Zp. More specifically, each input of the Boolean formula is decided by
whether certain components in an attribute and predicate are equal. Then, the relation is decided by
the output of the formula. Our relation is very close to that formulated by Okamoto and Takashima
in [29], though their scheme has one-use restriction on labels in policies. One caveat is that we can use
only a non-monotone Boolean formula for a predicate in our scheme, whereas the relation by Okamoto
and Takashima allows us to use a more powerful non-monotone span program for a predicate. In the
following, we consider only non-monotone Boolean formulae where NOT gates exist only on input
wires.
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Definition 2.5 (Relation R). Relations RKP and RCP for our KP and CP-ABE schemes, respectively,
are defined as follows. Let R : X × Y → {0, 1} be a relation defined as follows:

• X =
∪
i∈N Zip × Φi, where Φi consists of all injective functions such that ϕ : [i]→ {0, 1}∗.

• Y =
∪
i∈N Zip × Fi × Ψi × Ti, where Fi consists of all monotone Boolean formulae whose input

lengths are i, and Ψi and Ti consist of all functions such that ψ : [i]→ {0, 1}∗ and t : [i]→ {0, 1},
respectively.

• For x = (x ∈ Zmp , ϕ) and y = (y ∈ Znp , f, ψ, t), we define b = (b1, . . . , bn) ∈ {0, 1}n as

bi :=

{
t(i)⊙ true(xϕ−1(ψ(i)) = yi) ψ(i) ⊆ Im(ϕ)

0 ψ(i) ̸⊆ Im(ϕ)
, where ⊙ denotes xnor. Then, R(x, y) = 1⇔

f(b) = 1.

Then, RKP : XKP ×YKP → {0, 1} is defined as XKP := X , YKP := Y, and RKP(x, y) = R(x, y), whereas
RCP : XCP × YCP → {0, 1} is defined as XCP := Y, YCP := X , and RCP(x, y) = R(y, x)

For X , each element of x ∈ Zmp corresponds to a value for some label, and ϕ specifies which
label each element of x is associated with. For instance, when we consider an attribute (Age:22,
Hobby:tennis), x = (x, ϕ) can be set as x := (22,H1(tennis)), ϕ(1) := Age, and ϕ(2) := Hobby
where H1 : {0, 1}∗ → Zp is a collision resistant hash function.

For Y, each element of y ∈ Znp corresponds to the value for each input wire of f , and ψ specifies
which label each input wire of f is associated with. Additionally, t specifies whether each input
wire connects to a NOT gate. For instance, let us consider a predicate (Age:25 AND Hobby:NOT
baseball). Then, y = (y, f, ψ, t) can be set as y := (25,H1(baseball)), f is a formula with a single
AND gate, ψ(1) := Age and ψ(2) := Hobby, and t(1) = 1 and t(2) = 0.

Definition 2.6 (Linear Secret Sharing Scheme). A linear secret sharing scheme (LSSS) for a function
class F consists of two algorithms Share and Rec.

Share(f,k): It takes a function f ∈ F where f : {0, 1}n → {0, 1} and a vector k ∈ Zℓp. Then, outputs

shares k1, . . . ,kn ∈ Zℓp.

Rec(f, x, {ki}xi=1): It takes f : {0, 1}n → {0, 1}, a bit string x := (x1, . . . , xn) ∈ {0, 1}n and shares
{ki}xi=1. Then, outputs a vector k′ or ⊥.

In particular, Rec computes a linear function on shares to reconstruct a secret; k =
∑
xi=1 aiki where

each ai is determined by f . A LSSS has two properties.

Correctness: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 1,

Pr[Rec(f, x, {ki}xi=1) = k | k1, . . . ,kn ← Share(f,k)] = 1.

Security: For any f ∈ F , x ∈ {0, 1}n such that f(x) = 0, and k1, . . . ,kn ← Share(f,k), shares
{ki}xi=1 have no information about k.

2.4 Piecewise Guessing Framework

Here, we briefly recall the piecewise guessing framework by Kowalczyk and Wee [23], which is based
on the framework by Jafargholi et al. [19]. The framework helps us to prove adaptive security of
cryptographic schemes that are selectively secure.

Definition 2.7 (Interactive Game). An interactive game G is a game between an adversary A and a
challenger C. In the game, A and C send messages interactively, and the messages sent by C depend on
the game G. After the interaction, A outputs β ∈ {0, 1}. We denotes the output of A in G by ⟨A,G⟩.
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Let z ∈ {0, 1}R be a part of messages supposed to be sent by A in the game. In the adaptive game
G, A can send z at arbitrary points as long as it follows a rule of the game. We define the selective
variant of G, denoted by Ĝ, to be the same as G except that A has to declare z that will be sent in the
game, at the beginning of the interaction.

Suppose we want to show that adaptive games G0 and G1 are computationally indistinguishable,
i.e.,

|Pr[⟨A,G0⟩ = 1]− Pr[⟨A,G1⟩ = 1]| ≤ negl(λ).

Then, we consider a series of selective hybrids Ĥh0 , . . . , ĤhL such that

Ĝ0 = Ĥh0 ≈c Ĥh1 ≈c, . . . ,≈c ĤhL = Ĝ1,

where h0, . . . , hL : {0, 1}R → {0, 1}R′
for some R′ ≪ R, and Ĥhι is an interactive game in which C’s

messages depend on u := hι(z). Additionally, h0 and hL need to be constant functions. Note that C
can generate messages depending on u because z is declared at the beginning of the interaction. Next,
we define variants of Ĥhι , namely, Ĥhι0 and Ĥhι1 as follows. In Ĥhιβ for β ∈ {0, 1}, A has to declare
hι−1+β(z) and hι+β(z) instead of z at the beginning of the game. Then, C interacts with A setting

u := hι(z) in both Ĥhι0 and Ĥhι1 . In other words, Ĥhιβ is the same as Ĥhι except that only partial
information of z is declared by A. Now we are ready to state the adaptive security lemma.

Lemma 2.1 (Adaptive Security Lemma [23]). Let G0 and G1 be adaptive interactive games and

{Ĥhi}0≤i≤L be selective hybrids defined above. Suppose they satisfy the two properties:

• G0 = Hh0 and G1 = HhL , where Hh0 and HhL are the same as Ĥh0 and ĤhL , respectively, except
that A does not declare z at the beginning. Note that C’s messages can be correctly defined because
h0 and hL are constant functions.

• For all PPT adversary A and all ι ∈ L, we have

|Pr[⟨A, Ĥhι−1

1 ⟩ = 1]− Pr[⟨A, Ĥhι0 ⟩ = 1]| ≤ ϵ.

Then, we have
|Pr[⟨A,G0⟩ = 1]− Pr[⟨A,G1⟩ = 1]| ≤ 22R

′
Lϵ.

2.5 Pebbling Strategy for Boolean Formula

A pebbling strategy is used for a guide of how to construct a series of hybrids in the piecewise guessing
framework.

Definition 2.8 (Pebbling Game). A player of the pebbling game is given a monotone Boolean formula
f : {0, 1}n → {0, 1} and input b = (b1, . . . , bn) ∈ {0, 1}n such that f(b) = 0. The goal of the game
is to reach the state where a pebble is placed on only the output gate (the gate with the output wire),
starting from the state with no pebbles on the Boolean formula f , following a pebbling rule. The rule
is defined as follows.

1. We can place or remove a pebble on input wire i whose input corresponds to 0, i.e., bi = 0.

2. We can place or remove a pebble on an AND gate if at least one of its incoming wires comes
from a gate or input wire with a pebble on it.

3. We can place or remove a pebble on an OR gate if both of its incoming wires come from a gate
or input wire with a pebble on it, respectively.
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4. We can pass the turn, which allows us to increase the total number of steps in the game without
changing the pebbling strategy.

Definition 2.9 (Pebbling Record). A pebbling record R := (r0, . . . , rL) ∈ ({0, 1}R′
)L is a list of all

pebbling configuration that a player took from the start to the goal in the pebbling game. R′-bit string
rι specifies the configuration at the ι-th step in the play. Thus, r0 specifies the state with no pebbles
and rL specifies the state with one pebble on the output gate. It also means that the player takes L
steps to reach the goal, and all pebbling configurations that the player took can be specified by an R′-bit
string.

The following lemma says that, for any monotone Boolean formula and input, there exists a pebbling
strategy where all pebbling configurations can be specified with a “short” bit string.

Lemma 2.2 (Pebbling Lemma [23]). Let f : {0, 1}n → {0, 1} be any monotone Boolean formula with
a depth d ≤ B, and b ∈ {0, 1}n be any bit string such that f(b) = 0. Then, there exists a deterministic
algorithm PebRec(f, b) that takes f and b and outputs a record R consisting of 8B strings whose lengths
are 3B bits.

3 Our KP-ABE Scheme

First, we describe a linear secret sharing scheme that we use in our schemes as a building block.

3.1 Linear Secret Sharing for Boolean Formulae

Our secret sharing scheme for monotone Boolean formulae is described in Fig 1, which is essentially
the same as the scheme in [24, Appendix G]. Note that it works similarly if all vectors in Fig 1 are
group elements. Let f be a formula and b = (b1, . . . , bn) be a bit string such that f(b) = 1. Then, for
reconstruction, it is not difficult to see that there exists a set S ⊆ {i | bi = 1} such that

∑
i∈S σi = k.

Clearly, the number of shares for formula f corresponds to the number of its input wires. The
secret sharing scheme employed by Kowalczyk and Wee is different from ours [21], where the number
of shares corresponds to the summation of the numbers of input wires and gates in f . We show that
we can utilize their framework even if we replace the secret sharing scheme to ours.

Share(f,k)

Input: A monotone Boolean formula f = (n,w, v,G) and a secret k ∈ Zℓp.

1. Set a vector σout := k on the output wire.

2. For each AND gate g with incoming wires a, b and an outgoing wire c where a vector σc is
set on c, choose ug ← Zℓp and set σa := σc − ug and σb := ug on a and b, respectively.

3. For each OR gate g with incoming wires a, b and an outgoing wire c where a vector σc is set
on c, set σa := σc and σb := σc on a and b, respectively.

4. Output shares σ1, . . . ,σn, which are set on the input wires 1, . . . , n.

Figure 1: Our linear secret sharing scheme for Boolean formulae.

We use the following lemma on the secret sharing scheme in the security proof of our scheme.

Lemma 3.1. Let Share be the algorithm defined in Fig 1. For all ℓ, n ∈ N, monotone Boolean formulae
f = (n,w, v,G), k,a ∈ Zℓp, and µ ∈ Zp, we define the following distribution.

k1, . . . ,kn ← Share(f,k+ µa), k′
1, . . . ,k

′
n ← Share(f,k),

σ1, . . . , σn ← Share(f, µ).
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Then, the two distributions are identical:

{k1, . . . ,kn} and {k′
1 + σ1a, . . . ,k

′
n + σna}.

Proof. Let zi for i ∈ [w] be values set on a wire i in the execution of Share(f, z). From the procedure
of the scheme, we have zi = boutz +

∑
g∈S bgug for some subset S of all gates in f , bout ∈ {0, 1}, and

bg ∈ {−1, 1}. Note that S, bout, bg are determined by f and i.
Let ki, k

′
i, and σi for i ∈ [w] be values set on wire i in the execution of Share(f,k+µa), Share(f,k),

and Share(f, µ), respectively. Then, we have

ki = bout(k+ µa) +
∑
g∈S

bgug, k′
i = boutk+

∑
g∈S

bgu
′
g, σi = boutµ+

∑
g∈S

bgug,

for some randomly chosen ug, u
′
g, and ug. Defining ug := u′

g+uga does not change the joint distribution

of all ug. In this case, we have ki = k′
i + µia for i ∈ [w]. This concludes the proof.

3.2 Construction

For generality, we describe our scheme using a matrix distribution Dk. When we instantiate our scheme
from asymmetric pairings, we typically choose the k-Lin family Lk with k = 2. In this case, we can
set matrices as

A =

a1 0
0 a2
1 1

 , A∗ =

 1
a1

0

0 1
a2

0 0

 , a∗1 =

− 1
a1
− 1
a2
1

 ,

where a1, a2 ← Zp. Let H : {0, 1}∗ → G
(k+1)×k
1 ×G(k+1)×k

1 be a hash function modeled as a random
oracle. Let FK : {0, 1}∗ → Zk+1

p × Zk+1
p be a PRF with a secret key K. Let Kλ be a key space of the

PRF. Let Share be the LSSS described in Fig 1. Note that we can instantiate H from a hash function
H ′ : {0, 1}∗ → G1 by generating each output group element of H with H ′. More precisely, each output
group element of H(i) is defined by H ′(i||$||j), where $ is a special symbol and j ∈ [2k(k+1)] specifies
the location of the matrices. The symbol $ can be expressed by encoding, e.g., 0 → 00, 1 → 11, and
$→ 01. Our scheme for RKP is described as follows.

Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G← GBG(1λ), A← Dk, B← Z(k+1)×k
p , k← Zk+1

p , K ← Kλ,

pk := (G, [A]2, [A
⊤k]T ), msk := (A∗,a∗1,B,k,K).

Enc(pk, x,M): It takes pk, an attribute x = (x ∈ Zmp , ϕ), and a message M ∈ GT and outputs ctx as
follows.

s← Zkp, ([Uϕ(i),0]1, [Uϕ(i),1]1) := H(ϕ(i)),

c1 := [As]2, c2,i := [(xiUϕ(i),0 +Uϕ(i),1)s]1, c3 := [s⊤A⊤k]TM,

ctx := (x, c1, {c2,i}i∈[m], c3).

KeyGen(pk,msk, y): It takes pk, msk, and a predicate y = (y ∈ Znp , f, ψ, t) and outputs sky as follows.
Let π : [n]→ N be a function such that π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|. Let d be the maximum
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number of multi-use of labels in f , i.e., d := maxi∈[n] π(i).

r1, . . . , rd ← Zkp, k1,j := [Brj ]2, k1, . . . ,kn ← Share(f,k) ∈ Zk+1
p ,

([Uψ(i),0]1, [Uψ(i),1]1) := H(ψ(i)), (uψ(i),0,uψ(i),1) := FK(ψ(i)),

If t(i) = 1 :

k2,i := [ki +A∗(yiU
⊤
ψ(i),0 +U⊤

ψ(i),1)Brπ(i) + a∗1(yiu
⊤
ψ(i),0 + u⊤

ψ(i),1)Brπ(i)]1,

If t(i) = 0 :

k2,i := (k2,i,1, k2,i,2) :=

(
[−ki +A∗U⊤

ψ(i),0Brπ(i) + a∗1u
⊤
ψ(i),0Brπ(i)]1,

[yiki +A∗U⊤
ψ(i),1Brπ(i) + a∗1u

⊤
ψ(i),1Brπ(i)]1

)
sky := (y, {k1,j}j∈[d], {k2,i}i∈[n]).

Dec(pk, ctx, sky): It takes pk, ctx, and sky. It computes b ∈ {0, 1}n from x and y as in Definition 2.5.
If f(b) = 0, it outputs ⊥. Otherwise, computes a set S ⊆ {i | bi = 1} such that k =

∑
i∈S ki.

Let S1 := S ∩ {i | t(i) = 1} and S0 := S ∩ {i | t(i) = 0}. Then outputs M ′ as follows.

D1,j := e

 ∑
π(i)=j
i∈S1

k2,i +
∑
π(i)=j
i∈S0

1

yi − xϕ−1(ψ(i))
(xϕ−1(ψ(i))k2,i,1 + k2,i,2), c1


⊤

D2,j := e

 ∑
π(i)=j
i∈S1

c2,ϕ−1(ψ(i)) +
∑
π(i)=j
i∈S0

1

yi − xϕ−1(ψ(i))
c2,ϕ−1(ψ(i)), k1,j


M ′ := c3/

∏
j∈[d]

(D1,j/D2,j).

Correctness: For honestly generated ctx and sky such that R(x, y) = 1,

D1,j=



∑
π(i)=j
i∈S1

(
s⊤A⊤ki + s⊤(yiU

⊤
ψ(i),0 +U⊤

ψ(i),1)Brj

)

+
∑
π(i)=j
i∈S0

(
s⊤A⊤ki+

1

yi−xϕ−1(ψ(i))
s⊤(xϕ−1(ψ(i))U

⊤
ψ(i),0+U⊤

ψ(i),1)Brj

)

T

D2,j =



∑
π(i)=j
i∈S1

(
s⊤(xϕ−1(ψ(i))U

⊤
ψ(i),0 +U⊤

ψ(i),1)Brj

)

+
∑
π(i)=j
i∈S0

(
1

yi − xϕ−1(ψ(i))
s⊤(xϕ−1(ψ(i))U

⊤
ψ(i),0 +U⊤

ψ(i),1)Brj

)

T

.

In the above, we use the relations A⊤A∗ = Ik and A⊤a∗1 = 0. Because xϕ−1(ψ(i)) = yi for i ∈ S1,

we have
∏
j∈[d](D1,j/D2,j) = [s⊤A⊤∑

j∈[d]

∑
i∈S
π(i)=j

ki]T = [s⊤A⊤k]T . Thus, M
′ =M .

3.3 Security

Theorem 3.1. Let B be the maximum depth of formulae on which A queries KeyGen. Let qsk be
the maximum number of A’s queries to KeyGen. Then, our scheme is adaptively secure as long as
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B = O(log λ). More precisely, for any PPT adversary A, there exist PPT algorithms B1 and B2 such
that

AdvABEA (λ)≤AdvPRFB1
(λ)+(29B+2qsk+1)(AdvDk-MDDH

B2,bi
(λ)+2−Ω(λ)).

Proof overview. We prove Theorem 3.1 following the standard dual system methodology. To do so,
we first replace the PRF with a random function. Then, our scheme basically follows the construction
on the dual system group from prime-order groups in [13]. Concretely, we can rewrite c2,i and k2,i in
the challenge ciphertext and secret keys as

c2,i = [(xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1,

k2,i := [ki + (yiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(
[−ki +Wψ(i),0Brπ(i)]1,

[yiki +Wψ(i),1Brπ(i)]1

)
if t(i) = 0,

where Wi,b ∈ Z(k+1)×(k+1)
p . Next, we change the challenge ciphertext into a semi-functional form,

where As is replaced with a vector c← Zk+1
p . That is, the elements in a ciphertext are

c1 = [c]2, c2,i = [(xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)c]1, c3 = [c⊤k]TM.

The indistinguishability directly follows from the Dk-MDDH assumption. After that, we gradually
change the secret keys into a semi-functional form, where ki is a share of secret k+ µa∗1 instead of k
for µ← Zp. To prove each indistinguishability, we utilize the KW technique [23]. In the final hybrid,
we can argue that c⊤k in the challenge ciphertext is statistically close to a uniform randomness.

Proof. We consider a series of hybrids H0, H1, H2, and H3,ι for i ∈ {0, . . . , qsk}, where H0 is the real
game and H3,qsk is the final game. In the following, we denote the event β = β′ in hybrid H by ⟨A,H⟩win,
where β is a random bit chosen by the challenger, and β′ is the output of A. Note that we have

|Pr[⟨A,H0⟩win]− 1/2| = AdvABEA (λ). (1)

H1. We define H1 as the same as H0 except replacing PRF FK in KeyGen with a random function
R : {0, 1}∗ → Zk+1

p × Zk+1
p . From the definition of PRFs, we have

|Pr[⟨A,H0⟩win]− Pr[⟨A,H1⟩win]| ≤ AdvPRFB (λ). (2)

H2. Next, we define H2. We change the behavior of random oracle H and random function R.

Consider another random oracle H ′ : {0, 1}∗ → Z(k+1)×(k+1)
p × Z(k+1)×(k+1)

p that only the challenger
can access. We denote the first and second elements of H ′(i) by Wi,0 and Wi,1, respectively. In H2,

H(i) outputs ([W⊤
i,0A]1, [W

⊤
i,1A]1), and R(i) outputs (W

⊤
i,0a1,W

⊤
i,1a1). Then, we have

Pr[⟨A,H1⟩win] = Pr[⟨A,H2⟩win]. (3)

It is not difficult to confirm that the above equality holds because A = (A||a1) is a regular matrix,

and thus W⊤
i,bA is randomly distributed in Z(k+1)×(k+1)

p for A. By this conceptual change, we can
rewrite c2,i and k2,i in the challenge ciphertext and secret keys as follows:

c2,i = [(xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1,

k2,i := [ki + (yiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(
[−ki +Wψ(i),0Brπ(i)]1,

[yiki +Wψ(i),1Brπ(i)]1

)
if t(i) = 0

In the above, we use the relations A∗A⊤ + a∗1a
⊤
1 = Ik+1.
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H3,ι. To describe H3,ι, we define some distributions on ciphertexts and secret keys as follows. Con-
cretely, we define two types of ciphertexts and secret keys, namely, normal and semi-functional. A
normal ciphertext is one generated as in H2. That is,

c1 = [As]2, c2,i = [(xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1, c3 = [s⊤A⊤k]TM.

A semi-functional ciphertext is the same as the normal one except that As is replaced with c← Zk+1
p .

That is,

c1 = [c]2, c2,i = [(xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)c]1, c3 = [c⊤k]TM.

Similarly, a normal secret key is one generated as in H2. That is,

k1,j = [Brj ]2,

k2,i := [ki + (yiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

k2,i :=

(
[−ki +Wψ(i),0Brπ(i)]1,

[yiki +Wψ(i),1Brπ(i)]1

)
if t(i) = 0

(4)

Especially, k1, . . . ,kn in k2,i is outputs of Share(f,k). On the other hand, in a semi-functional secret
key, k1, . . . ,kn in k2,i is outputs of Share(f,k + µa∗1) where µ ← Zp. Then, H3,ι is the same as H2

except that the challenge ciphertext and the first ι keys that A is given are semi-functional.

Lemma 3.2.

|Pr[⟨A,H2⟩win]− Pr[⟨A,H3,0⟩win]| ≤ AdvDk-MDDH
B,bi (λ). (5)

Proof. To show this, we describe B, which is given an instance of theDk-MDDH problem (G, [A]1,2, [tβ ]1,2).

Let H ′ : {0, 1}∗ → Z(k+1)×(k+1)
p × Z(k+1)×(k+1)

p be a random oracle simulated by B that A cannot
access.

1. B generates B and k by itself.

2. B computes pk = (G, [A]2, e([A]1, [k]2)) and gives it to A.

3. For query H(i), B answers with ([W⊤
i,0A]1, [W

⊤
i,1A]1), where (Wi,0,Wi,1) is an output of H ′(i).

4. For query KeyGen(pk,msk, y), B computes sky as in Eq. (4). Note that B can generate sk without
the random function R because it does not contain terms related to A any more.

5. For the challenge query with the attribute x∗ = (x, ϕ), B flip the coin δ ← {0, 1} and generates
ctx∗ as

c1 = [tβ ]2, c2,i = [(xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)tβ ]1, c3 = e([tβ ]1, [k]2)Mδ.

6. B outputs true(δ = δ′), where δ′ is an output of A.

The case β = 0 corresponds to H2 and the case β = 1 corresponds to H3,0.

In the next lemma, we prove the indistinguishability between H3,ι−1 and H3,ι. That is, all PPT
adversaries cannot distinguish whether the ι-th secret key is normal or semi-functional. To prove this
one-secret-key indistinguishability, we introduce core 1-ABE game G1-ABE

β where β ∈ {0, 1} such that

G1-ABE
0 and G1-ABE

1 are computationally indistinguishable. Roughly speaking, the core 1-ABE game
is designed so that we can construct a distinguisher between G1-ABE

0 and G1-ABE
1 if there exists an

adversary that can distinguish H3,ι−1 and H3,ι.
It is convenient for us to parametrize the core 1-ABE game by η ∈ {1, 2} because we also use it in

the security proof of our CP-ABE scheme. We use the game with η = 1 in the security proof of our
KP-ABE scheme, and that with η = 2 in the security proof of our CP-ABE scheme.
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Definition 3.1 (Core 1-ABE). For η ∈ {1, 2} and β ∈ {0, 1}, we define G1-ABE
η,β as Fig 2. In G1-ABE

η,β ,
A can query OX and OF only once whereas A can query OR polynomially many times. All queries
can be done adaptively. Furthermore, x ∈ X and y ∈ Y on which A queries OX and OF must satisfy
R(x, y) = 0. X and Y are defined in Definition 2.5. Note that the difference between G1-ABE

η,0 and

G1-ABE
η,1 lies in the input of Share in OF . We define the advantage of A against G1-ABE

η,β as follows:

Adv1-ABEA,η (λ) := |Pr[⟨A,G1-ABE
η,0 ⟩ = 1]− Pr[⟨A,G1-ABE

η,1 ⟩ = 1]|.

We defer the proof of the indistinguishability between the two games to Section 4.

G1-ABE
η,β

G← GBG(1λ), µ′ ← Zp, A← Dk, B← Z(k+η)×(k+η)
p

d← Zk+ηp , W← Z(k+1)×(k+η)
p , L := ∅

param :=

{
(G,A, [B]1,2,d,W) η = 1

(G,A, [B]1,2,d,W,b∗
2) η = 2

β′ ← AOX(·),OF (·),OR(·)(param)
OX(·)
Input: x = (x ∈ Zmp , ϕ) ∈ X
A0 := c← Zk+1

p

For i ∈ [m]:
If (ϕ(i), ∗, ∗) ̸∈ L:
Wϕ(i),0,Wϕ(i),1 ← Z(k+1)×(k+η)

p

L := L ∪ (ϕ(i),Wϕ(i),0,Wϕ(i),1)

Ai := (xiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)c

Output (A0, {Ai}i∈[m])
OF (·)
Input: y = (y ∈ Znp , f, ψ, t) ∈ Y
k1, . . . ,kn ← Share(f,Wd), σ1, . . . , σn ← Share(f, βµ′)

π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|
d := maxi∈[n] π(i)
r1, . . . , rd ← Zkp
vi := Bri
P0 := ([v1]2, . . . , [vd]2)
For i ∈ [n]:
If (ψ(i), ∗, ∗) ̸∈ L:

Wψ(i),0,Wψ(i),1 ← Z(k+1)×(k+η)
p

L := L ∪ (ψ(i),Wψ(i),0,Wψ(i),1)
If t(i) = 1 :
Pi := [ki + σia

∗
1 + (yiWψ(i),0 +Wψ(i),1)Brπ(i)]1

If t(i) = 0 :
Pi :=

(
[−(ki + σia

∗
1) +Wψ(i),0Brπ(i)]1, [yi(ki + σia

∗
1) +Wψ(i),1Brπ(i)]1

)
Output (P0, {Pi}i∈[n])
OR(·)
Input: i ∈ {0, 1}∗
If (i, ∗, ∗) ̸∈ L:

Wi,0,Wi,1 ← Z(k+1)×(k+η)
p , L := L ∪ (i,Wi,0,Wi,1)

Output ([W⊤
i,0A]1, [W

⊤
i,1A]1, [Wi,0B]1, [Wi,1B]1)

Figure 2: Core 1-ABE game.
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Lemma 3.3. For ι ∈ [qsk], we have

|Pr[⟨A,H3,ι−1⟩win]− Pr[⟨A,H3,ι⟩win]| ≤ Adv1-ABEB,1 (λ). (6)

Proof. We consider an adversary B against G1-ABE
1,β where η = 1. We describe B’s behavior.

1. B is given (G,A, [B]1,2,d,W) from the 1-ABE game.

2. B sets k := Wd and gives pk = (G, [A]2, [A
⊤k]T ) to A.

3. For query H(i), B makes a query OR(i) and answers with ([W⊤
i,0A]1, [W

⊤
i,1A]1).

4. For the challenge query with an attribute x∗, B flips the coin δ ← {0, 1}. Then, B obtains
(A0, {Ai}i∈[m]) as the reply of OX(x∗). B returns ctx∗ as

ctx∗ :=
(
[A0]2, {[Ai]1}i∈[m], [A

⊤
0 k]TMδ

)
.

5. For the ℓ-th query KeyGen(pk,msk, y), where ℓ < ι and y = (y, f, ψ, t), B computes sky as in
Eq. (4) by setting k1, . . . ,kn ← Share(f,k+ µa∗1) with a fresh randomness µ← Zp.

6. For the ℓ-th query KeyGen(pk,msk, y), where ℓ = ι and y = (y, f, ψ, t), B obtains (P0, {Pi}i∈[n])
as the reply of OF (y). Then, B returns sky as

sky := (P0, {Pi}i∈[n]).

7. For the ℓ-th query KeyGen(pk,msk, y), where ℓ > ι and y = (y, f, ψ, t), B computes sky as in
Eq. (4) by setting k1, . . . ,kn ← Share(f,k).

8. B outputs true(δ = δ′), where δ′ is an output of A.

From Lemma 3.1, the term ki+ σia
∗
1 in the reply of OF is identically distributed with the i-th output

of Share(k + βµa∗1). Thus, if the oracles are those in G1-ABE
1,0 , A’s view corresponds to H3,ι−1, and

otherwise, it corresponds to H3,ι.

Lemma 3.4.

|Pr[⟨A,H3,qsk⟩win]− 1/2| ≤ 2−Ω(λ). (7)

Proof. Because (A∗||a∗1) forms a basis, redefining k as k := A∗z+za∗1 where z← Zkp and z ← Zp does
not change its distribution. Recall that the information on k that A obtains throughout the game is
A⊤k in pk, Share(f,k+µa∗1) in sky, and c⊤k in ctx∗ . However, A⊤k does not contain the information

on z because A⊤a∗1 = 0. Similarly, each k + µa∗1 also does not contain the information on z because
it is masked by fresh randomness µ. Thus, zc⊤a∗1 is randomly distributed in Zp for A, and so is c⊤k,
unless c⊤a∗1 = 0. Since c is randomly chosen from Zk+1

p , c⊤a∗1 = 0 with a probability 2−Ω(λ). If it is
not the case, ctx∗ does not have information on β, and the lemma holds.

Thanks to Eq. (1) to (3) and (5) to (7) and Lemma 4.1, Theorem 3.1 holds.

4 Adaptive Security for Core Component

In this section, we prove the indistinguishability between G1-ABE
η,0 and G1-ABE

η,1 defined in Definition 3.1.
This is formally stated in the following lemma.

Lemma 4.1 (Core 1-ABE Security). Let B be the maximum depth of formula f for all choice of f by
A. For any PPT adversary A and η ∈ {1, 2}, there exists a PPT algorithm B such that

Adv1-ABEA,η (λ) ≤ 29B+2(AdvDk-MDDH
B,bi (λ) + 2−Ω(λ)).
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S̃hare(f,k, u)

Input: f = (n,w, v,G) with a depth B, k ∈ Zℓp, and u ∈ {0, 1}3B

1. Set a vector σout := k on the output wire.

2. Interpret u as a pebbling configuration on f .

3. For each gate g with a pebble that has incoming wires a, b and an outgoing wire c where a
vector σc is set on c, choose ug,1,ug,2 ← Zℓp and set σa := ug,1 and σb := ug,2 on a and b,
respectively.

4. For each AND gate g with no pebble that has incoming wires a, b and an outgoing wire c
where a vector σc is set on c, choose ug ← Zℓp and set σa := σc −ug and σb := ug on a and
b, respectively.

5. For each OR gate g with no pebble that has incoming wires a, b and an outgoing wire c where
a vector σc is set on c, set σa := σc and σb := σc on a and b, respectively.

6. For each input wire i with a pebble, replace σi with a random vector ui ← Zkp.

7. Output shares σ1, . . . ,σn, which are set on the input wires 1, . . . , n.

Figure 3: Description of S̃hare.

Proof. We prove Lemma 4.1 by extending the KW technique [23]. We omit the variable η from
the notation of hybrid games for conciseness, but all hybrids are parametrized by η. Following the
piecewise guessing framework, we define a series of selective hybrids Ĥh0 to ĤhL , where L = 8B , and
two intermediate games G1-ABE

M0 and G1-ABE
M1 , which satisfy

• Ĝ1-ABE
0 = Ĥh0 ≈c, . . . ,≈c ĤhL = Ĝ1-ABE

M0

• G1-ABE
M0 = G1-ABE

M1 .

Let z := (x, y) ∈ {0, 1}R on which A queries OX and OF , respectively. Let b ∈ {0, 1}n be a string
computed from z following Definition 2.5. Note that f(b) = 0 because the game imposes the condition
R(x, y) = 0 on A. Let R be the pebbling record generated as R = (r1, . . . , rL) = PebRec(f, b) as
defined in Lemma 2.2. Then, we define hι : {0, 1}R → {0, 1}3B as hι(z) := rι. Note that h0 and hL
are constant functions because they specify the pebbling configurations where no pebbles on it and a
pebble is placed on only the output gate, respectively.

The hybrids and intermediate games only differ in the Share algorithm in OF as follows. That is,

Ĥhι is the same as Ĝ1-ABE
0 except that Share(f, 0) is replaced with S̃hare(f, 0, hι(z)), which is described

in Fig 3. G1-ABE
M0 is the same as HhL , and G1-ABE

M1 is the same as G1-ABE
M0 except that S̃hare(f, 0, hL(z))

is replaced with S̃hare(f, µ, hL(z)).
We prove that

• G1-ABE
0 ≈c G1-ABE

M0 ,

• G1-ABE
M0 = G1-ABE

M1 ,

• G1-ABE
M1 ≈c G1-ABE

1 .

First, we prove item 2, then prove item 1. We omit the proof of item 3 because it is almost the same
as that of item 1. Then, we are done.
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G1-ABE
M0 = G1-ABE

M1 . Recall that the difference between the two games lies in the input of S̃hare, namely,

(f, 0, hL(z)) or (f, µ, hL(z)). First, we note that u = hL(z) is a constant that specifies the pebbling
configuration on f where a pebble is placed on only the output gate. In this case, it is not difficult

to see that the output of S̃hare is independent of the second argument of the input. This is because
the values set on the two incoming wires of the output gate are chosen independently of σout when a
pebble is placed on the output gate (see item 3 in Fig 3). Then, the values to be set on the rest of
wires are computed based on these values set on the incoming wires of the output gate. Thus, the

output of S̃hare is identically distributed in both games, and the claim holds.

G1-ABE
0 ≈c G1-ABE

M0 . Following Lemma 2.1, we prove the two properties:

1. G1-ABE
0 = Hh0 and HhL = G1-ABE

M0 ,

2. Ĥ
hι−1

1 ≈c Ĥhι0 for ι ∈ [L].

where Ĥhiβ for β ∈ {0, 1} is defined in Section 2.4. For item 1, the latter holds because we defined

G1-ABE
M0 in such a way. To show the former, we need to confirm that the output of Share(f, 0) and

S̃hare(f, 0, h0(z)) is identically distributed. Recall that h0 is a constant function that specifies the
pebbling configuration where no pebbles on it. In this case, no gates correspond to item 3 or 6 in
Fig 3, and the remaining procedures are exactly the same as Share(f, 0). Thus, the former also holds.

The remaining thing is to prove Ĥ
hι−1

1 ≈c Ĥhι0 . Formally, we show that, for any PPT adversary A,
there exists a PPT adversary B such that

|Pr[⟨A, Ĥhι−1

1 ⟩=1]−Pr[⟨A, Ĥhι0 ⟩=1]|≤2AdvDk-MDDH
B,bi (λ)+2−Ω(λ).

To show this, we additionally consider three intermediate selective hybrids Ĥ
hι−1

1,1 to Ĥ
hι−1

1,3 .
In the following, we denote the pebbling configuration on f that is specified by a bit string u

by C(f, u). Let u0 and u1 be the committed values by A, which correspond to hι−1(z) and hι(z)
for z chosen by A. Then, C(f, u0) and C(f, u1) are adjacent pebbling configurations for some input
b ∈ {0, 1}n for f . In other words, there exists b such that u0 and u1 correspond to rι−1 and rι where
(r0, . . . , rL) = PebRec(f, b). Thus, C(f, u0) can be changed to C(f, u1) in one step following the rule

defined in Definition 2.8. Recall that the difference between Ĥ
hι−1

1 and Ĥhι0 is the input of S̃hare. That

is, the input is (f, 0, u0) in Ĥ
hι−1

1 and (f, 0, u1) in Ĥhι0 . Thus, in case of u0 = u1, Ĥ
hι−1

1 and Ĥhι0 are
clearly identical. In the following, we consider the case of u0 ̸= u1.

Let an object O be either a gate g or an input wire i∗, in which the difference between C(f, u0)
and C(f, u1) lies. We consider only the case where a pebble is placed on g or i∗, since the case where

a pebble is removed is just the reverse of the former case. Intermediate hybrids Ĥ
hι−1

1,1 to Ĥ
hι−1

1,3 are

different from Ĥ
hι−1

1 only in OF as shown in Fig 4. That is, when O is a gate, Ĥ
hι−1

1,1 to Ĥ
hι−1

1,3 are the

same as Ĥ
hι−1

1 . When O is an input wire, these hybrids are defined as follows:

• Ĥ
hι−1

1,1 is the same as Ĥ
hι−1

1 except that vπ(i∗) ← span(B,b1),

• Ĥ
hι−1

1,2 is the same as Ĥ
hι−1

1,1 except that random value u is added to σi∗ ,

• Ĥ
hι−1

1,3 is the same as Ĥ
hι−1

1,2 except that vπ(i∗) := Brπ(i∗) for rπ(i∗) ← Zkp.

Thanks to Lemmas 4.2 to 4.5 and observations so far, Lemma 4.1 holds.

Lemma 4.2. |Pr[⟨A, Ĥhι−1

1 ⟩ = 1]− Pr[⟨A, Ĥhι−1

1,1 ⟩ = 1]| ≤ AdvDk-MDDH
B,bi (λ).
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Ĥ
hι−1

1 , Ĥ
hι−1

1,1 , Ĥ
hι−1

1,2 ,

�
�

�
�Ĥ

hι−1

1,3

OF (·)
Input: y = (y ∈ Znp , f, ψ, t) ∈ Y
k1, . . . ,kn ← Share(f,Wd), σ1, . . . , σn ← S̃hare(f, 0, u0)
π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|
d := maxi∈[n] π(i)
r1, . . . , rd ← Zkp
vi := Bri for i ∈ [d]

vi := Bri for i ∈ [d]\π(i∗), vπ(i∗) ← span(B,b1)

P0 := ([v1]2, . . . , [vd]2)
For i ∈ [n]:
If (ψ(i), ∗, ∗) ̸∈ L:

Wψ(i),0,Wψ(i),1 ← Z(k+1)×(k+η)
p

L := L ∪ (ψ(i),Wψ(i),0,Wψ(i),1)
If i = i∗�



�
	u← Zp, σi := σi + u

If t(i) = 1 :
Pi := [ki + σia

∗
1 + (yiWψ(i),0 +Wψ(i),1)vπ(i)]1

If t(i) = 0 :
Pi :=

(
[−(ki + σia

∗
1) +Wψ(i),0vπ(i)]1, [yi(ki + σia

∗
1) +Wψ(i),1vπ(i)]1

)
Output (P0, {Pi}i∈[n])

Figure 4: Description of OF in hybrids.

Proof. The difference between these hybrids is that vπ(i∗) := Brπ(i∗) for rπ(i∗) ← Zkp in the former
and vπ(i∗) ← span(B,b1) in the latter. We show that the Uk-MDDH problem is reduced to this
difference. The reduction algorithm B is given an instance (G, [M]1,2, [tβ ]1,2) where t0 = Mu and
t1 = v, where u ← Zkp and v ← Zk+1

p . In case of η = 1, B just sets B := M, and then the reduction
goes straightforwardly. Thus, we describe the reduction in case of η = 2. B chooses X ← GLk+2(Zp)
and sets

B := X

M̂
M 1

1

 ,

(B
⊤
)−1 := (X⊤)−1

(M̂
⊤
)−1 −(M̂

⊤
)−1M⊤

1
1

 ,

where M̂ is the matrix consists of the first k rows of M, and M is that consists of the last row of M.
Then, B can computes

[B]1,2 =

[
X

(
M
0⊤

)]
1,2

, b∗
2 = (X⊤)−1

(
0
1

)
.

B generate A, d, and W by itself and gives (G,A, [B]1,2,b
∗
2,d,W) to A as its input. When A queries

OX and OR, B replies honestly. When A queries OF , B replies honestly except that it sets

[vπ(i∗)]1,2 :=

[
X

(
tβ
0

)]
1,2
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Because we can write

tβ =

(
M̂
M

)
u+ βu

(
0
1

)
,

where u ← Zkp and u ← Zp, vπ(i∗) is uniformly distributed in span(B) if β = 0, and in span(B,b1)

otherwise. Thus, the view of A corresponds to Ĥ
hι−1

1 if β = 0, and Ĥ
hι−1

1,1 otherwise. This concludes
the proof.

Lemma 4.3. |Pr[⟨A, Ĥhι−1

1,1 ⟩ = 1]− Pr[⟨A, Ĥhι−1

1,2 ⟩ = 1] ≤ 2−Ω(λ).

Proof. We redefine that Wψ(i∗),b := W̃ψ(i∗),b + wψ(i∗),ba
∗
1b

∗⊤

1 , where W̃ψ(i∗),b ← Z(k+1)×(k+η)
p ,

wψ(i∗),b ← Zp, and b ∈ {0, 1}. Since W̃ψ(i∗),b is chosen randomly, the distribution of redefined
Wψ(i∗),b is identical to that of the original definition. Observe that this change does not affect the

outputs of OR because a∗
⊤

1 A = 0⊤ and b∗⊤

1 B = 0⊤. In OF , Pi for i ∈ ψ−1(ψ(i∗)) can be written as

If t(i) = 1 :

Pi :=

[
wi + σia

∗
1 + (yiW̃ψ(i∗),0 + W̃ψ(i∗),1)vπ(i)

+(yiwψ(i∗),0 + wψ(i∗),1)a
∗
1b

∗⊤

1 vπ(i)

]
1

If t(i) = 0 :

Pi :=

(
[−(wi + σia

∗
1) + W̃ψ(i∗),0vπ(i) + wψ(i∗),0a

∗
1b

∗⊤

1 vπ(i)]1,

[yi(wi + σia
∗
1) + W̃ψ(i∗),1vπ(i) + wψ(i∗),1a

∗
1b

∗⊤

1 vπ(i)]1

)
.

For i ̸= i∗, we have b∗⊤

1 vπ(i) = b∗⊤

1 Brπ(i) = 0, and thus the distribution is not changed. For i = i∗, we

have b∗⊤

1 vπ(i∗) ̸= 0 with overwhelming probability because vπ(i∗) is chosen randomly from span(B,b∗
1).

Then, we consider the two cases.

• t(i∗) = 1. This case means that A either does not obtain an information on Wψ(i∗),b or obtains
a vector

(xW⊤
ψ(i∗),0 +W⊤

ψ(i∗),1)c

=(xW̃
⊤
ψ(i∗),0 + W̃

⊤
ψ(i∗),1)c+ (xwψ(i∗),0 + wψ(i∗),1)b

∗
1a

∗⊤

1 c

for some x ̸= yi∗ from OX . In both cases, the value (yiwψ(i∗),0 + wψ(i∗),1)b
∗⊤

1 vπ(i∗) in Pi∗ is
randomly distributed from the viewpoint of A because this is a pairwise independent function.
Thus, adding ua∗1 to Pi∗ does not change the entire distribution.

• t(i∗) = 0. This case means that A either does not obtain an information on Wψ(i∗),b or obtains
a vector

(xW⊤
ψ(i∗),0 +W⊤

ψ(i∗),1)c

=(xW̃
⊤
ψ(i∗),0 + W̃

⊤
ψ(i∗),1)c+ (ywψ(i∗),0 + wψ(i∗),1)b

∗
1a

∗⊤

1 c

for x = yi∗ . In both cases, setting wψ(i∗),0 := w′
ψ(i∗),0 − u/b

∗⊤

1 vπ(i∗) and wψ(i∗),1 := w′
ψ(i∗),1 +

yiu/b
∗⊤

1 vπ(i∗) for randomly chosen w′
ψ(i∗),b does not change the entire distribution.

Thus, the views of A in both hybrids are identical unless b∗⊤

1 vπ(i∗) = 0.

Lemma 4.4. |Pr[⟨A, Ĥhι−1

1,2 ⟩ = 1]− Pr[⟨A, Ĥhι−1

1,3 ⟩ = 1]| ≤ AdvDk-MDDH
B,bi (λ).
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We omit the proof because the proof of this lemma is almost the same as Lemma 4.2.

Lemma 4.5. Pr[⟨A, Ĥhι−1

1,3 ⟩ = 1] = Pr[⟨A, Ĥhι0 ⟩ = 1].

Proof. In Ĥhι0 , the third input of S̃hare is changed to u1 instead of u0, and a random value is no longer
added to σi∗ even if O is an input wire i∗. To see that both hybrids are identical, we consider the
three cases.

1. The object O is an AND gate g with incoming wires a, b and an outgoing wire c, and at least one
of its incoming wires comes from a gate or input wire with a pebble, say O′. In this case, the

outputs of S̃hare(f, 0, u0) and S̃hare(f, 0, u1) are identically distributed. Wlog, we can assume

that the wire a comes from O′. The difference between S̃hare(f, 0, u0) and S̃hare(f, 0, u1) is
whether σa := σc − σb or σa := u where u ← Zp is set on the wire a. The crucial fact is that
O′ is independent of σa. That is, if O

′ is a gate g′ with a pebble, the values set to its incoming
wires are independent of σa (see item 3 in Fig 3). If O′ is an input wire i′ with a pebble, the

value set to the input wire is independent of σa (see item 6 in Fig 3). Thus, Ĥ
hι−1

1,3 and Ĥhι0 are
identical in this case.

2. The object O is an OR gate g and both of its incoming wires come from a gate or an input wire

with a pebble, respectively. From a similar observation to the above case, we can see that Ĥ
hι−1

1,3

and Ĥhι0 are identical in this case.

3. The object O is an input wire i∗. Let a′ be an incoming wire of a gate g′ that the input wire i∗

leads to, that is, a′ = i∗. In this case, the difference between S̃hare(f, 0, u0) and S̃hare(f, 0, u1)
is whether σi∗ is equal to σa′ or replaced with a random value. Observe that computing σi∗ :=

σa′ + u for u ← Zp is the same as replacing it with a random value. Thus, Ĥ
hι−1

1,3 and Ĥhι0 are
also identical in this case.

In conclusion, the difference between Ĥ
hι−1

1,3 and Ĥhι0 is fairly conceptual.

5 Our CP-ABE Scheme

5.1 Construction

For generality, we describe our scheme using a parameter k and distribution Dk. Similarly to our
KP-ABE scheme, when we instantiate our scheme from asymmetric pairings, we can choose the k-Lin
family Lk with k = 2.

Let H : {0, 1}∗ → G
(k+1)×k
1 × G

(k+1)×k
1 be a hash function modeled as a random oracle. Let

FK : {0, 1}∗ → Z(k+1)×2
p ×Z(k+1)×2

p be a PRF with a secret key K. Let Kλ be a key space of the PRF.
Let Share be the LSSS described in Fig 1. Then, our scheme for RCP can be described as follows.

Setup(1λ): It takes a security parameter 1λ and outputs pk and msk as follows.

G← GBG(1λ), A← Dk, B← Z(k+2)×(k+2)
p , W← Z(k+1)×(k+2)

p ,

k← Zk+2
p , K ← Kλ,

pk := (G, [B]2, [WB]1, [B
⊤k]T ), msk := (A,W⊤A,B∗,B∗

12,k,K).

Enc(pk, x,M): It takes pk, an attribute x = (x ∈ Znp , f, ψ, t), and a message M ∈ GT and outputs ctx
as follows. Let π : [n] → N be a function such that π(i) := |{j | ψ(j) = ψ(i), j ≤ i}|. Let d be
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the maximum number of multi-use of labels in f , i.e., d := maxi∈[n] π(i).

r, r1, . . . , rd ← Zkp, [w1]1, . . . , [wn]1 ← Share(f, [WBr]1) ∈ Zk+1
p ,

c1 := [Br]2, c2,j := [Brj ]2, c4 := [r⊤B⊤k]TM,

([Uψ(i),0]1, [Uψ(i),1]1) := H(ψ(i)),

If t(i) = 1 : c3,i := [wi + (xiUψ(i),0 +Uψ(i),1)rπ(i)]1,

If t(i) = 0 : c3,i := (c3,i,1, c3,i,2) := ([−wi +Uψ(i),0rπ(i)]1, [xiwi +Uψ(i),1rπ(i)]1)

ctx := (x, c1, {c2,j}j∈[d], {c3,i}i∈[n], c4).

KeyGen(pk,msk, y): It takes pk, msk, and a predicate y = (y ∈ Zmp , ϕ) and outputs sky as follows.

s← Zkp, ([Uϕ(i),0]1, [Uϕ(i),1]1) := H(ϕ(i)), (Vϕ(i),0,Vϕ(i),1) := FK(ϕ(i))

k1 := [As]2, k2 := [k+W⊤As]1,

k3,i := [B∗(yiU
⊤
ϕ(i),0 +U⊤

ϕ(i),1)As+B∗
12(yiV

⊤
ϕ(i),0 +V⊤

ϕ(i),1)As]1,

sky := (y, k1, k2, {k3,i}i∈[m]).

Dec(pk, ctx, sky): It takes pk, ctx, and sky. It computes b ∈ {0, 1}n from x and y as in Definition 2.5. If
f(b) = 0, it outputs ⊥. Otherwise, computes a set S ⊆ {i | bi = 1} such that WBr =

∑
i∈S wi.

Let S1 := S ∩ {i | t(i) = 1} and S0 := S ∩ {i | t(i) = 0}. Then outputs M ′ as follows.

D1,j := e

 ∑
π(i)=j
i∈S1

c3,i +
∑
π(i)=j
i∈S0

1

xi − yϕ−1(ψ(i))
(yϕ−1(ψ(i))c3,i,1 + c3,i,2), k1

 ,

D2,j := e

 ∑
π(i)=j
i∈S1

k3,ϕ−1(ψ(i)) +
∑
π(i)=j
i∈S0

1

xi − yϕ−1(ψ(i))
k3,ϕ−1(ψ(i)), c2,j


⊤

,

M ′ := c4/

e(k2, c1)⊤/ ∏
j∈[d]

(D1,j/D2,j)

 .

Correctness: For honestly generated ctx and sky such that R(x, y) = 1, we have

D1,j =



∑
π(i)=j
i∈S1

(
w⊤
i As+ r⊤j (xiU

⊤
ψ(i),0 +U⊤

ψ(i),1)As
)

+
∑
π(i)=j
i∈S0

(
w⊤
i As+

1

xi − yϕ−1(ψ(i))
r⊤j (yϕ−1(ψ(i))U

⊤
ψ(i),0 +U⊤

ψ(i),1)As

)

T

D2,j =



∑
π(i)=j
i∈S1

(
r⊤j (yϕ−1(ψ(i))U

⊤
ψ(i),0 +U⊤

ψ(i),1)As
)

+
∑
π(i)=j
i∈S0

(
1

xi − yϕ−1(ψ(i))
r⊤j (yϕ−1(ψ(i))U

⊤
ψ(i),0 +U⊤

ψ(i),1)As

)

T

.

In the above, we use the relations B⊤B∗ = Ik and B⊤B∗
12 = Ok×2. Because xi = yϕ−1(ψ(i)) for

i ∈ S1, we have e(k2, c1)
⊤/
∏
j∈[d](D1,j/D2,j) = [r⊤B⊤k+r⊤B⊤W⊤As]T /[(

∑
j∈[d]

∑
i∈S
π(i)=j

w⊤
i )As]T =

[r⊤B⊤k]T . Thus, M
′ =M .
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5.2 Security

Theorem 5.1. Let B be the maximum depth of a formula used in the challenge ciphertext. Let qsk
be the maximum number of A’s queries to KeyGen. Then, our scheme is adaptively secure as long as
B = O(log λ). More precisely, for any PPT adversary A, there exist PPT algorithms B1 and B2 such
that

AdvABEA (λ) ≤ AdvPRFB1
(λ) + ((29B+2 + 2)qsk + 1)(AdvDk-MDDH

B2,bi
(λ) + 2−Ω(λ)).

Proof overview. Although the security proof of our CP-ABE scheme also follows the dual system
methodology and KW framework [23], it is more complicated than the proof of our KP-ABE scheme.
The main reason arises from the fact that we need to use the MDDH assumption as a sort of sub-group
assumption in the proof of the core 1-ABE indistinguishability in contrast to the KW19 framework. In
the dual system methodology, we first change the challenge ciphertext into the semi-functional one and
then gradually change secret keys into semi-functional ones. In the latter process, we need to apply
the indistinguishability of the core 1-ABE that rely on the sub-group assumption in the ciphertext
side. However, when we apply the sub-group assumption to the ciphertext side, we cannot utilize a
basis of hidden space in the secret-key side and cannot simulate semi-functional keys. To circumvent
the problem, we need one more hidden space as in [14, 17]. We give a bit more detailed overview in
the following.

Similarly to the proof of KP-ABE, we first replace the PRF with a random function. Then, our
scheme basically follows the construction on the dual system group from prime-order groups in [13].
Concretely, we can rewrite c3,i and k3,i in the challenge ciphertext and secret keys as follows:

c3,i := [wi + (xiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

c3,i :=

(
[−wi +Wψ(i),0Brπ(i)]1,

[xiwi +Wψ(i),1Brπ(i)]1

)
if t(i) = 0

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1,

where Wi,b ∈ Z(k+1)×(k+2)
p . After that, we first change the challenge ciphertext and then secret keys

gradually into a semi-functional form. The latter part is more complicated than the corresponding
process in KP-ABE. The reason is that when we apply the indistinguishability of core 1-ABE to change
each secret key into the semi-functional form, b∗

1 is not given to the adversary. This is because the
indistinguishability of core 1-ABE for CP-ABE relies on the MDDH assumption over (B||b1). Thus,
if we define the form of semi-functional secret keys as

k1 := [As]2, k2 := [k+ µb∗
1 +W⊤As]1, k3,i := [(yiW

⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1,

the simulator cannot generate semi-functional secret keys. To circumvent the problem, we leverage
the second hidden space b∗

2 and define the form of semi-functional secret keys as

k1 := [As]2, k2 := [k+ µb∗
2 +W⊤As]1, k3,i := [(yiW

⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1.

To change each secret key into the semi-functional form, we need several hybrids. Finally, we argue
that the challenge ciphertext statistically hide the underlying plaintext.

Proof. We consider a series of hybrids H0, H1, H2, H3,0, H3,ι,1 to H3,ι,3 for ι ∈ {1, . . . , qsk}, where H0

is the real game and H3,qsk,3 is the final game. In the following, we denote the event β = β′ in hybrid
H by ⟨A,H⟩win, where β is a random bit chosen by challenger C, and β′ is the output of A. Note that
we have

|Pr[⟨A,H0⟩win]− 1/2| = AdvABEA (λ). (8)

25



H1. We define H1 as the same as H0 except replacing PRF FK in KeyGen with a random function

R : {0, 1}∗ → Z(k+1)×2
p × Z(k+1)×2

p . From the definition of PRFs, we have

|Pr[⟨A,H0⟩win]− Pr[⟨A,H1⟩win]| ≤ AdvPRFB1
(λ). (9)

H2. Next, we define H2. We change the behavior of random oracle H and random function R.

Consider another random oracle H ′ : {0, 1}∗ → Z(k+1)×(k+2)
p × Z(k+1)×(k+2)

p that only the challenger
can access. We denote the first and second elements of H ′(i) by Wi,0 and Wi,1, respectively. In H2,
H(i) outputs ([Wi,0B]1, [Wi,1B]1), and R(i) outputs (Wi,0B12,Wi,1B12). Then, we have

Pr[⟨A,H1⟩win] = Pr[⟨A,H2⟩win]. (10)

It is not difficult to confirm that the above equality holds because B = (B||B12) ∈ Z(k+2)×(k+2)
p is a

regular matrix, and thus Wi,bB is randomly distributed in Z(k+1)×(k+2)
p for A. By this conceptual

change, we can rewrite c3,i and k3,i in the challenge ciphertext and secret keys as follows;

c3,i := [wi + (xiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

c3,i :=

(
[−wi +Wψ(i),0Brπ(i)]1,

[xiwi +Wψ(i),1Brπ(i)]1

)
, if t(i) = 0

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1.

In the above, we use the relations B∗B⊤ +B∗
12B

⊤
12 = Ik+2.

H3,ι. To describe H3,0 and H3,ι,1 to H3,ι,3, we define some distributions on ciphertexts and secret
keys as follows. Concretely, we define two types of ciphertexts and four types of secret keys. For
ciphertexts, we define a normal ciphertext and semi-functional (SF) ciphertext. A normal ciphertext
is one generated as in H2. That is,

c1 = [Br]2, c2,j = [Brj ]2, [w1]1, . . . , [wn]1 ← Share(f, [WBr]1),

c3,i := [wi + (xiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

c3,i :=

(
[−wi +Wψ(i),0Brπ(i)]1,

[xiwi +Wψ(i),1Brπ(i)]1

)
, if t(i) = 0

c4 = [r⊤B⊤k]TM.

An SF ciphertext is the same as the normal one except that Br is replaced with d← Zk+2
p . That is,

c1 = [ d ]2, c2,j = [Brj ]2, [w1]1, . . . , [wn]1 ← Share(f, [W d ]1),

c3,i := [wi + (xiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

c3,i :=

(
[−wi +Wψ(i),0Brπ(i)]1,

[xiwi +Wψ(i),1Brπ(i)]1

)
, if t(i) = 0

c4 = [ d⊤ k]TM.

(11)
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For secret keys, we define four secret keys, namely, normal, P-normal, P-SF, and SF. That is, sky is
defined as

normal:

(
k1 := [As]2, k2 := [k+W⊤As]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1

)
,

P-normal:

(
k1 := [ c ]2, k2 := [k+W⊤ c ]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1) c ]1

)
,

P-SF:

k1 := [c]2, k2 := [k+ µb∗
2 +W⊤c]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)c]1

 ,

SF:

(
k1 := [ As ]2, k2 := [k+ µb∗

2 +W⊤ As ]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1) As ]1

)
,

(12)

where µ← Zp and c← Zk+1
p . Then, we define H3,0 and H3,ι,1 to H3,ι,3 for ι ∈ {1, . . . , qsk} as follows.

H3,0: The challenge ciphertext is SF, and all secret keys are normal.

H3,ι,1: The challenge ciphertext is SF, the first ι−1 secret keys are SF, the ι-th secret key is P-normal.

H3,ι,2: The challenge ciphertext is SF, the first ι−1 secret keys are SF, and the ι-th secret key is P-SF.

H3,ι,3: The challenge ciphertext is SF, the first ι− 1 secret keys are SF, and the ι-th secret key is SF.

Lemma 5.1.

|Pr[⟨A,H2⟩win]− Pr[⟨A,H3,0⟩win]| ≤ AdvDk-MDDH
B,bi (λ). (13)

Proof. The difference between these hybrids is whether the challenge ciphertext is normal or SF.
To prove the lemma, we describe B, which is given an instance of the Uk+2,k-MDDH problem (G,
[B]1,2, [tβ ]1,2). Let H

′ : {0, 1}∗ → Z(k+1)×(k+2)
p ×Z(k+1)×(k+2)

p be a random oracle simulated by B that
A cannot access.

1. B generates A, W, and k by itself.

2. B computes pk = (G, [B]2, [WB]1, e([B]1, [k]2)) and gives it to A.

3. For a query H(i), B answers with ([Wi,0B]1, [Wi,1B]1), where (Wi,0,Wi,1) is an output of
H ′(i).

4. For a query KeyGen(pk,msk, y), B computes sky as a normal one in Eq. (12). Note that B can
generate sk without the random function R because it does not contain terms related to B any
more.

5. For the challenge query with the attribute x∗ = (x, f, ψ, t), B flips the coin δ ← {0, 1} and
generates ctx∗ as

c1 = [tβ ]2, c2,j = [Brj ]2, [w1]1, . . . , [wn]1 ← Share(f, [Wtβ ]1),

c3,i := [wi + (xiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

c3,i :=

(
[−wi +Wψ(i),0Brπ(i)]1,

[xiwi +Wψ(i),1Brπ(i)]1

)
, if t(i) = 0

c4 = e([tβ ]1, [k]2)Mδ.

6. B outputs true(δ = δ′), where δ′ is an output of A.

27



Clearly, the case β = 0 corresponds to H2 and the case β = 1 corresponds to H3,0. Because

Adv
Uk+2,k-MDDH
B,bi (λ) ≤ AdvDk-MDDH

B,bi (λ), the lemma holds.

Lemma 5.2. Let H3,0 = H3,0,3. For ι ∈ [qsk], we have

|Pr[⟨A,H3,ι−1,3⟩win]− Pr[⟨A,H3,ι,1⟩win]| ≤ AdvDk-MDDH
B,bi (λ). (14)

Proof. The difference between these hybrids is whether the ι-th secret key is normal or P-normal. We
describe B, which is given an instance of Dk-MDDH problem, (G, [A]1,2, [tβ ]1,2). Let H ′ : {0, 1}∗ →
Z(k+1)×(k+2)
p × Z(k+1)×(k+2)

p be a random oracle simulated by B that A cannot access.

1. B generates B, b∗
2 W, and k by itself.

2. B computes pk = (G, [B]2, [WB]1, e([B]1, [k]2)) and gives it to A.

3. For a query H(i), B answers with ([Wi,0B]1, [Wi,1B]1), where (Wi,0,Wi,1) is an output of
H ′(i).

4. For the τ -th query KeyGen(pk,msk, y) such that τ < ι, B computes sky as

k1 := [As]2, k2 := [k+ µb∗
2 +W⊤As]1, k3,i := [(yiW

⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1,

where µ← Zp.

5. For the ι-th query KeyGen(pk,msk, y), B computes sky as

k1 := [tβ ]2, k2 := [k+W⊤tβ ]1, k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)tβ ]1.

6. For the τ -th query KeyGen(pk,msk, y) such that τ > ι, B computes sky as

k1 := [As]2, k2 := [k+W⊤As]1, k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1.

7. For the challenge query, B flips the coin δ ← {0, 1} and generates ctx∗ for Mδ as in Eq. (11).

8. B outputs true(δ = δ′), where δ′ is an output of A.

Clearly, the case β = 0 corresponds to H3,ι−1,3 and the case β = 1 corresponds to H3,ι,1.

Lemma 5.3. For ι ∈ [qsk], we have

|Pr[⟨A,H3,ι,1⟩win]− Pr[⟨A,H3,ι,2⟩win]| ≤ Adv1-ABE2,B (λ). (15)

Proof. We consider an adversary B against G1-ABE
2,β where η = 2, which is defined in Definition 3.1. In

contrast to the proof of our KP-ABE, B uses OX to generate the ι-th secret key and OF to generate
the challenge ciphertext. Thus, the reduction seems to prove indistinguishability of two types of
ciphertexts. However, we show that this indistinguishability is equivalent to that between the cases
where the ι-th secret key is P-normal and P-SF1. We describe B in the following.

1. B is given (G,A, [B]1,2,d,W,b∗
2) from the 1-ABE game.

2. B generates k← Zk+2
p and gives pk = (G, [B]2, [WB]1, e([B]1, [k]2)) to A.

3. For a query H(i), B makes a query OR(i) and answers with ([Wi,0B]1, [Wi,1B]1).

4. For the challenge query with an attribute x∗ = (x ∈ Znp , f, ψ, t), B flips the coin δ ← {0, 1}.
Then, B obtains (P0, {Pi}i∈[n]) as the reply of OF (x∗). B returns ctx∗ computing as

ctx∗ :=
(
[d]2, P0, {Pi}i∈[n], [d

⊤k]TMδ

)
.
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5. For the τ -th query KeyGen(pk,msk, y) where τ < i and y = (y, ϕ), B computes sky as an SF
secret key in Eq. (12) with a fresh randomness µ← Zp.

6. For the τ -th query KeyGen(pk,msk, y) where τ = i and y = (y, ϕ), B obtains (P0, {Pi}i∈[n]) as
the reply of OX(y). Then, B returns sky computing as

sky := ([A0]2, [k+W⊤A0]1, {[Ai]1}i∈[m]).

7. For the τ -th query KeyGen(pk,msk, y) where τ > i and y = (y, ϕ), B computes sky as a normal
secret key in Eq. (12).

8. B outputs true(δ = δ′), where δ′ is an output of A.

Then, we implicitly define that W := W̃ − βµ′a∗
1b

∗⊤
2

b∗⊤
2 d

where W̃ ← Z(k+1)×(k+2)
p . Note that the new

definition does not change the distribution of W. By the definition, the distributions that A obtains
can be written as

pk = (G, [B]2, [W̃B]1, e([B]1, [k]2)),

sky =



(
k1 := [As]2, k2 := [k+ µb∗

2 + W̃
⊤
As]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1

)
τ < ι

k1 := [c]2, k2 := [k −βµ
′b∗

2a
∗⊤
1 c

b∗⊤
2 d︸ ︷︷ ︸

:=βµb∗
2

+W̃
⊤
c]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)c]1

 τ = ι

(
k1 := [As]2, k2 := [k+ W̃

⊤
As]1,

k3,i := [(yiW
⊤
ϕ(i),0 +W⊤

ϕ(i),1)As]1

)
τ > ι

.

Next, we look at the distribution of ctx∗ . We define that wi := ki. From Lemma 3.1, we have

ctx∗ =



c1 = [d]2, c2,j = [Brj ]2,

c3,i := [wi + (xiWψ(i),0 +Wψ(i),1)Brπ(i)]1 if t(i) = 1,

c3,i :=

(
[−wi +Wψ(i),0Brπ(i)]1,

[xiwi +Wψ(i),1Brπ(i)]1

)
, if t(i) = 0

c4 = [d⊤k]TMδ.


,

wherew1, . . . ,wn ← Share(f,Wd+βµ′a∗1) = Share(f,W̃d). In the above, we use the relations a∗
⊤

1 A =

0⊤ and b∗⊤

2 B = 0⊤.
Observe that A’s view corresponds to H3,ι,1 if β = 0 and it corresponds to H3,ι,2 otherwise, by

setting µ := −µ
′a∗⊤

1 c

b∗⊤
2 d

. Note that µ′ appear only in k2 in the ι-th secret key. Thus, µ is randomly

distributed in Zp. This concludes the proof.

Lemma 5.4. For ι ∈ [qsk], we have

|Pr[⟨A,H3,ι,2⟩win]− Pr[⟨A,H3,ι,3⟩win]| ≤ AdvDk-MDDH
B,bi (λ). (16)

We omit the proof because this lemma can be proven similarly to Lemma 5.2.

Lemma 5.5.

|Pr[⟨A,H3,qsk,3⟩win]− 1/2| ≤ 2−Ω(λ). (17)
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Table 2: Specifications of devices for our benchmarks.
Device OS CPU / SoC Compiler

PC
Ubuntu 18.04.2

LTS
Intel Core i7-8700 @ 3.2 GHz

(up to 4.6 GHz by TurboBoost)
gcc 7.4

iPhone XR iOS 12.2 Apple A12 Bionic Apple LLVM 10.0.1
Pixel 3 Android 9 Qualcomm Snapdragon 845 Android clang 8.0.2

Proof. Because (B∗||b∗
1||b

∗
2) forms a basis of Zk+2

p , redefining k as k := B∗z + z1b
∗
1 + z2b

∗
2 where

z← Zkp, z1, z2 ← Zp does not change its distribution. Recall that the information on k that A obtains

throughout the game is B⊤k in pk, k+ µb∗
2 in sky, and d⊤k in ctx∗ . However, B⊤k does not contain

the information on z2 because B⊤b∗
2 = 0. Similarly, each k+µb∗

2 also does not contain information on
z2 because it is masked by the fresh randomness µ. Thus, z2d

⊤b∗
2 is randomly distributed in Zp for A,

and so is d⊤k, unless d⊤b∗
2 = 0. Since d is randomly chosen from Zk+2

p , d⊤b∗
2 = 0 with a probability

2−Ω(λ). If it is not the case, ctx∗ does not have information on β, and the lemma holds.

Thanks to Eq. (8) to (10) and (13) to (17) and Lemma 4.1, Theorem 5.1 holds.

6 Implementation and Evaluation

(a) Enc (b) KeyGen (c) Dec

Figure 5: Benchmarks of our KP-ABE on PC.

(a) Enc (b) KeyGen (c) Dec

Figure 6: Benchmarks of our CP-ABE on PC.

We implement our KP-ABE and CP-ABE schemes and measure the benchmarks of our schemes on
an ordinary personal computer (PC) and two smartphones, iPhone XR and Pixel 3. Their specifications
are shown in Table 2. Theoretical comparisons with previous schemes are presented in Section 7.

We implement building blocks of our schemes such as group exponentiation, hashing to G1 and
pairing from scratch. For efficiency, our programs are implemented in C and assembly language
using major efficient algorithms, e.g., w-NAF and GLV/GLS for G1 and G2-exponentiation and the
sliding window algorithm for GT -exponentiation. Some functions such as SHA-256 are employed from
OpenSSL version 1.1.0j. We also use optimization techniques such as multi-exponentiation and multi-
pairing. We use BN curve whose order of groups is a 462-bit prime for pairing groups [5]. This is a
new parameter considering the results by Kim et al., who proposed a technique that solves the discrete
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(a) Enc (b) KeyGen (c) Dec

Figure 7: Benchmarks of our KP-ABE on iPhone XR.

(a) Enc (b) KeyGen (c) Dec

Figure 8: Benchmarks of our CP-ABE on iPhone XR.

(a) Enc (b) KeyGen (c) Dec

Figure 9: Benchmarks of our KP-ABE on Pixel 3.

(a) Enc (b) KeyGen (c) Dec

Figure 10: Benchmarks of our CP-ABE on Pixel 3.

logarithm problem in a finite field [21, 22]. The running times of time-consuming operations on the
PC are listed in Table 3.

As we can see in Sections 3.2 and 5.1, the efficiency of KeyGen and Dec in KP-ABE (resp. Enc and
Dec in CP-ABE) is affected by formula f used in a secret key (resp. a ciphertext). More concretely, in
KeyGen of our KP-ABE and Enc of our CP-ABE, the numbers of exponentiation in G1 and G2 increase
proportionally to those of negation and multi-use, respectively. On the other hand, the number of
hashing decreases proportionally to that of multi-use. In Dec, the numbers of exponentiation and
pairings increase proportionally to the numbers of negation and multi-use, respectively.

To clarify the effects of these factors, we consider the four types of formulae.

1. no negations and multi-uses (no neg. & no mult.):
i.e., (Label-1:v1 AND Label-2:v2 AND . . . ),
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(a) Enc (b) KeyGen (c) Dec

Figure 11: Comparison of KP-ABE between ours and OT12 on PC.

(a) Enc (b) KeyGen (c) Dec

Figure 12: Comparison of CP-ABE between ours and OT12 on PC.

Table 3: Running times of time-consuming operations on the PC.
Operation Timing (in milli-sec)

G1-exponentiation 0.368
G2-exponentiation 0.641
GT -exponentiation 1.950
Hashing to G1 0.096

Pairing 2.080

2. all negations and no multi-uses (all neg. & no mult.):
i.e., (Label-1:NOT v1 AND Label-2:NOT v2 AND . . . ),

3. no negations and all multi-uses (no neg. & all mult.):
i.e., (Label-1:v1 AND Label-1:v1 AND . . . ),

4. all negations and multi-uses (all neg. & all mult.):
i.e., (Label-1:NOT v1 AND Label-1:NOT v2 AND . . . ).

The formula in item 3 is meaningless but just for measuring the effect of multi-use. The reason for
not using OR in a formula is to use all elements in a secret key for decryption, which is necessary to
evaluate how the number of attributes affects the running time.

We present the benchmarks on the PC in Fig 5 and 6, iPhone XR in Fig 7 and 8, and Pixel 3
in Fig 9 and 10. The figures show the benchmarks with respect to a formula or attribute set with
1, 10, 20, . . . , 100 attributes for each case listed above. Enc in KP-ABE and KeyGen in CP-ABE are
not affected by the types of formula, and we measure the benchmark for encryption/key generation
with attributes Label-1:v1, . . . , Label-n:vn.

In all cases, our KP-ABE (resp. CP-ABE) scheme takes about 0.4 to 0.7s (resp. 0.4 to 0.9s) for
encryption and key generation on the PC to handle 100 attributes. Our schemes allow very fast
decryption for a monotone formula without multi-use (item 1), and they take only about 0.02s (KP &
CP) for a formula with 100 attributes. We can assume that our schemes allow similarly fast decryption
also for a formula in which the ratio of negation and multi-use is small. Even in the slowest case (item
4), it takes about 0.5 (KP) or 0.7s (CP) for decryption.
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Because of small computational resource compared with the PC, the smartphones take more time
for each algorithm. The benchmarks show that running times on iPhone XR are relatively close to
those on the PC, and they are approximately 1.5 times slower. Google Pixel 3 takes further more time
and its running times are 3 to 3.5 times as slow as those on the PC.

Effects of negation and multi-use. The benchmarks for KeyGen in KP-ABE and Enc in CP-ABE
show that both negation and multi-use slow the running time down. It is reasonable that negation
slows the running time down because it increases the number of exponentiation in G1. In contrast,
multi-use decreases the number of hashing to G1 whereas it increases that of exponentiation in G2.
The benchmarks show that the former effect is smaller than the latter in our implementation. However,
multi-use can shorten the running time in a platform where exponentiation in G2 is more efficient or
hashing to G1 is less efficient.

In Dec, both negation and multi-use extend the running time, and the effect of multi-use is larger.
This is since the number of negation affects that of exponentiation in G1 while the number of multi-use
affects that of heavier pairings.

Comparison with OT12. We also implement KP and CP schemes by Okamoto and Takashima
in [29] (OT12), which are the only schemes that support OT negation and unboundedness, and thus
whose functionalities are the closest to our schemes among known ABE schemes. The comparison
between our schemes and OT12 on PC is presented in Fig 11 and 12, which shows that our schemes
achieve significant speedups in every algorithm. We compare them in the one-use restriction of labels
(no multi-use), which corresponds to item 1 and item 2 in the four cases, since OT12 does not support
multi-use of labels. Hence, the blue and gray lines in Fig 5 are the same as those in Fig 11 up to
scale (similarly in Fig 6 and Fig 12). In contrast to our schemes, negation hardly affects the efficiency
in OT12. Note that although we can utilize a bounded number of multi-use of labels by preparing
multiple nominal labels for each single label in OT12, this significantly affects the efficiency. For
example, when we set the bound as 10, this slows down Enc in KP-ABE or KeyGen in CP-ABE by 10
times.

CCA security. In practice, the chosen ciphertext attack (CCA) security is a de facto standard
and desirable security requirement. Fujisaki-Okamoto conversion [16] is not suitable for our case
because it requires the decryption algorithm to run the encryption algorithm, which causes a significant
efficiency loss. However, our schemes can be efficiently converted to CCA secure ones via Boneh-Katz
conversion [11] in a similar manner to [28].

7 Theoretical Comparison

Table 4: Comparison of key generation algorithms in KP-ABE schemes.
Key generation

schemes G1 G2

Exp Hash Exp Hash
Ours 15nt + 18nf 12n′ 3d -
AC17 9n1 + 3n2 + 3 6(n1 + n2) 3 -
OT12 - - 84n1 + 15 -
GPSW06 - - n1 -

We give theoretical comparisons with some KP-ABE schemes in Tables 4 to 7. That is, we compare
them by the number of operations and group elements. For the comparison, we select AC17 by Agrawal
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Table 5: Comparison of encryption algorithms in KP-ABE schemes.
Encryption

schemes G1 G2

Exp Hash Exp Hash
Ours 12m 12m 3 -
AC17 6m 6m 3 -
OT12 84m+ 15 - - -
GPSW06 m - - -

Table 6: Comparison of decryption alogrithms in KP-ABE schemes. We omit multiplication costs in
G1, G2, GT since they are tiny comparing with exponentiation and pairing.

Decryption
Schemes Exponentiation Pairing

G1 G2 GT
Ours 9Ifd - - 6d
AC17 - - - 6
OT12 If - - 14I + 5
GPSW06 - - - I

and Chase [1], the basic scheme of OT12 by Okamoto and Takashima [29], and the asymmetric variant
of GPSW06 by Goyal et al. [18] (written in the FAME paper [1]). The selection criteria are as follows:

• FAME is the most efficient KP-ABE scheme that satisfies properties from (1) to (5) written
in Section 1.

• OT12 satisfies unboundedness and can treat the natural negation form (denoted by OT-negation
in Section 1.1).

• GPSW06 is the most efficient KP-ABE scheme though it satisfies none of the adaptive security,
unboundedness, large universe, fast decryption, and non-monotonicity.

Note that AC17 and OT12 do not satisfy the multi-use property. We consider 2-Lin family L2 described
in Section 3.2 for ours. In Tables 5 and 7, we omit target group elements that hide messages in
ciphertexts in these tables since they are not dominant factors (as Agrawal and Chase did [1]). We
also omit the number of the multiplication operation in Tables 4 to 6 since it is not a dominant factor
compared with exponentiation and pairing operations. The parameters are as follows:

• d: the maximum number of multi-use.

• n, nt, nf : the number of inputs, non-negated and negated inputs to a policy, respectively (n =
nt + nf ).

• n′: the number of distinct labels (n′ ≤ n).

• n1, n2: the number of rows and columns of a matrix for span programs.

• m: the number of attributes.

• I, It, If : the number of attributes, non-negated and negated attributes in decryption, respectively
(I = It + If ).

34



Table 7: Size comparison of KP-ABE schemes.

Key size Ciphertext size
Schemes G1 G2 G1 G2

Ours 3(nt + 2nf ) 3d 3m 3
AC17 3n1 3 3m 3
OT12 - 14n1 + 5 14m+ 5 -
GPSW06 - n1 m -

GPSW06 is the most efficient (note that this is obvious since the functionality of GPSW06 is
limited). Ours is much more efficient than OT12. Note that hashing to G1 is not an expensive
operation as we saw in Section 6. Thus, we focus on a comparison with AC17 below.

We show the number of operations in algorithm KeyGen in Table 4. If we consider d = 1 (no
multi-use), then the efficiency in G2 of ours is the same as that of AC17. Regarding G1, ours is about
2 times slower than AC17 (note that 15nt + 18nf = 15n+ 3nf ).

We show the number of operations in algorithm Enc in Table 5. Ours is just 2 times slower than
AC17 in G1.

We show the number of operations in algorithm Dec in Table 6. It is easy to see that if we use
neither negation nor duplicate attributes, then the performance of ours the same as that of AC17. As
we saw in Section 6, if we use many negations and duplicate attributes, then our decryption algorithm
gets slower.

We show the number of group elements in each secret key and ciphertext in Table 7. It is easy to
see that if we use neither negation nor duplicate attributes, then the performance of ours is the same
as that of AC17. Even if we use negation, the number of group elements increases only 3nf elements
in G1 compared with AC17 since 3(nt+2nf ) = 3(n+ nf ) (due to n = nt+ nf ). Again, we stress that
AC17 cannot treat negation and multi-use of attributes.

Overall, ours is a little bit less efficient than AC17 in the theoretical sense. However, ours is more
expressive than AC17 since ours can treat natural negation and multi-use. Moreover, our implemen-
tation is efficient enough for practical use as we saw in Section 6.
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