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Abstract. In somewhat homomorphic encryption schemes (e.g. B/FV,
BGV) the size of ciphertexts and the execution performance of homo-
morphic operations depends heavily on the multiplicative depth. The
multiplicative depth is the maximal number of consecutive multiplica-
tions for which an homomorphic encryption scheme was parameterized.

In this work we propose an improved multiplicative depth minimization
heuristic. In particular, a new circuit rewriting operator is introduced,
the so called cone rewrite operator. The results we obtain using the
new method are relevant in terms of accuracy and performance. Smaller
multiplicative depths for a benchmark of Boolean circuits are obtained
when compared to a previous work found in the literature. In average, the
multiplicative depth is highly improved and the new heuristic execution
time is significantly lower. The proposed rewrite operator and heuristic
are not limited to Boolean circuits, but can also be used for arithmetic
circuits.
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1 Introduction and related works

We denote by encryption scheme the way to encrypt plaintext messages and to
decrypt ciphertexts such that discovering the plaintext message from encrypted
data is either computationally very hard or even impossible without a secret.
An homomorphic encryption scheme (HE) allows some operations to be per-
formed directly in the ciphertext space, i.e. without decrypting ciphertexts. An
homomorphic encryption is said to be functionally complete when both addition
and multiplication operations are supported. Since the seminal work of Gentry
[15], many other simpler and more efficient homomorphic encryption schemes
have been proposed [5, 6]. A HE scheme with a binary plaintext space allows to
execute any Boolean circuit directly over encrypted data.

A common characteristic of HE schemes ciphertexts is the noise component,
which is added to the ciphertexts during the encryption for security reasons.



Each homomorphic operation applied on ciphertexts increases this noise com-
ponent. Decryption correctness cannot be ensured after a predefined number of
homomorphic operations as the noise component becomes too large to guarantee
exact decryption. Usually, the noise growth induced by the multiplication oper-
ation is greater than the noise growth induced by addition. This is why in most
cases the multiplicative depth of Boolean circuits to be evaluated is considered
when HE schemes are parametrized. The multiplicative depth is the maximal
number of sequential homomorphic multiplications which can be performed on
fresh ciphertexts such that once decrypted we retrieve the result of these multi-
plications. For an equivalent security level, the increase of circuit multiplicative
depth implies larger size ciphertexts and by consequence the cost of homomor-
phic operations increases also.

Several solutions to ciphertext size increase exist. One of them is the cipher-
text bootstrapping procedure introduced in [16] and further developed in [13,
11]. The bootstrapping procedure consists in executing homomorphically the
HE scheme decryption algorithm with a noisy ciphertext as input. The noise of
the resulting “bootstrapped” ciphertext is lower and independent of the input
ciphertext noise. Several works [20, 18, 2] study the problem of minimizing the
number bootstrappings in Boolean circuits.

Reducing the multiplicative depth of Boolean circuits is a major impediment
in the practical use of somewhat homomorphic encryption. HE scheme parame-
ters increase in size with every multiplicative level. The execution time for the
whole Boolean circuit increases accordingly. Many works in the literature treat
problems of Boolean circuit optimization for hardware targets or more generally
the problem of hardware synthesis. We refer to the open-source software system
used for hardware synthesis ABC [3]. It is an open-source environment providing
implementations of state-of-the-art circuit optimization algorithms. These algo-
rithms are mainly designed for minimizing circuit area or latency but, currently,
none of them is designed for multiplicative depth minimization.

Some of the works in the cryptographic literature [4, 17, 21] focused on the
minimization of the number of AND gates in Boolean circuits. [7] deals with the
minimization of Boolean circuit depth. This paper presented depth minimization
techniques in the context of multi-party computation, with no differentiation
between AND and XOR gates.

The authors of the Cingulata toolchain [10] proposed a multi-start prior-
ity based heuristic [9] based on multiplicative depth-2 path rewriting operators.
These operators decrease locally the multiplicative depth of the circuit. In aver-
age, their algorithm managed to lower by more than 3 times the multiplicative
depth. Nonetheless, the computational cost of the overall algorithm is very large
as the base heuristic is executed several times with different priority functions.
None of the proposed priority functions ensures smallest multiplicative depth for
all benchmark circuits. Sometimes better results were obtained with a random
priority function than with a non-random one.

In this paper, we recall the multiplicative depth-2 path rewrite operator
from [9] and generalize it to cone rewriting operators. Afterwards, we present a

2



new heuristic using the cone rewrite operators. Experimental studies show that
smaller multiplicative depth circuits and better computational performances are
obtained using the proposed heuristic. We finalize the paper with concluding
remarks and some perspectives.

2 Rewrite operators

2.1 Preliminary definitions

We represent a Boolean circuit as a directed acyclic graph C = (V,E) with a
set of nodes V and a set of edges E. Circuit nodes represent Boolean functions
(gates) and circuit edges are connections between nodes. The set of nodes can
be split into 3 independent sub-sets:

– Nodes without a predecessor define circuit inputs. An input can be either
a Boolean input variable or a Boolean constant (i.e. logic “0” or logic “1”
inputs ci).

– Nodes without successors (and necessarily with 1 predecessor) define circuit
outputs co.

– Nodes representing a gate applying a basic Boolean function to the value
of its predecessors. The input degree of gates is 2 and the output degree is
at least 1. In this work we suppose that the Boolean circuit use AND and
XOR operators only. The set {AND,XOR} together with the constant “1”
is functionally complete [23]. Every Boolean functions can be expressed by
these operators.

Let pred : V → 2V and succ : V → 2V be the functions giving the set of
predecessors, respectively successors, of a node v ∈ V in a Boolean circuit C.
We denote anc : V → 2V (resp. desc → 2V ) the functions giving the set of
ancestors (resp. descendants) of a node v ∈ V .

The multiplicative depth defines the number of successively executed AND. It
influences the parameters of HE schemes. The minimization of the multiplicative
depth allows not only to obtain smaller ciphertext sizes but also to minimize the
overall execution time of the Boolean circuit. Let us define the function d : V →
{0, 1} which return 1 for AND nodes and zero otherwise. The multiplicative
depth is influenced only by nodes v ∈ V such that d (v) = 1.

The multiplicative depth of nodes is given by l : V → N. The multiplicative
depth of a node is the maximum number of AND gates on any path beginning
by an input node and ending in node v. l function is defined by:

l (v) =

{
0 if |pred (v)| = 0,

maxu∈pred(v) l (u) + d (v) otherwise.

The reverse multiplicative depth of nodes is given by r : V → N. The reverse
multiplicative depth is the maximum number of AND gates on any path begin-
ning by a successor of v and ending by an output node. r function is defined
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by:

r (v) =

{
0 if |succ (v)| = 0,

maxu∈succ(v) (r (u) + d (u)) otherwise.

Both l and r are computed recursively. The overall multiplicative depth of a
circuit C is the maximal multiplicative depth of its nodes:

lmax = max
v∈V

l (v) = max
v∈V

r (v) .

A node is said critical if relation (1) is verified. We denote by critical circuit
C∗ the sub-circuit containing all the critical nodes of circuit C. A critical path
is a path in this circuit and a critical cone is a subset of connected critical nodes
with a common descendant.

l (v) + r (v) = lmax, v ∈ V (1)

The overall multiplicative depth of circuit C is equal to the multiplicative
depth of the critical circuit C∗. Decreasing the multiplicative depth of the critical
circuit then can be expected to decrease the overall multiplicative depth (and
cannot increase it).

2.2 Multiplicative depth-2 path rewriting

In [9] the authors presented two rewriting operators for multiplicative depth min-
imization. The combined application of these operators allows to reorder circuit
gates such that the multiplicative depth is reduced. We improved their method
by combining these two operators into a single one. We start by introducing the
combined multiplicative depth-2 path rewriting operator and afterwards describe
its limitations when applied to arbitrary depth-2 paths.

Let p = (v1, Uy, vt) be a path starting and ending with AND gates v1 and vt.
Between these two gates there is a multi-input XOR1 gate Uy having inputs v1
and y1, . . . , ym. We denote a1, a2 the inputs of node v1 with l (a1) ≥ l (a2) and
a3 is the input of vt other than Uy. Refer to the left-hand side of figure 1 for an
illustration. The Boolean formula of path p is ((a1 · a2)⊕

⊕
i yi) · a3.

The multiplicative depth-2 path rewrite operator we propose rewrites this
path as ((a2 · a3) · a1) ⊕ (a3 ·

⊕
i yi). Figure 1 illustrates this transformation.

Once applied the multiplicative depth locally decreases by one (on the path
from a1 to r) if relation (2) is verified.

min
u∈pred(v)

l (u) < l (v1)− 1, v ∈ {v1, vt} . (2)

Entries yi can be rearranged in a tree structure of 2-input XOR gates after
the rewriting in order to obtain again a 2-input gate circuit. Their order does

1 For the sake of simplicity and without loss of generality, we have grouped inter-
mediary 2-input XOR gates from the initial circuit into a single multi-input XOR
gate.
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Fig. 1. Rewriting operator for multiplicative depth-2 paths. Bold lines denote critical
paths.

not matter. Nonetheless, it would be more interesting to reuse existing XORs
for lowering the number of newly created gates. Some special cases need more
explanation. If path p does not have any XOR node, then the final path refor-
mulation will be (a2 · a3) ·a1. If Uy is a 2-input XOR gate, then it will disappear
in the transformed circuit and the AND gate uy will have y1 and a3 as inputs.

In the initial path the multiplicative depth of output r is l (a1) + 2. When
relation (2) is verified we have l (a1) > l (a2) and l (a1) > l (a3). After the depth-2
path transformation the multiplicative depth of r becomes:

max (l (a1) , l (y1) , . . . , l (ym)) + 1.

Suppose that a node yi, i = 1, . . . ,m, is on the critical path before the
transformation, i.e. its multiplicative level is l (yi) + 1. After the transformation
the multiplicative level of yi will stay the same, thus the multiplicative level of r
does not decrease. At least another depth-2 path rewriting on a path ending in
uy is needed in order to decrease the multiplicative depth of r from l (a1) + 2 to
l (a1) + 1. For example in the left-hand side of figure 1 if node y1 is on a critical
path then the multiplicative depth of r remains unchanged. We used “at least”
previously because a path rewriting will be needed for each input of Uy which
belongs to the critical circuit.

The authors of [9] studied only the particular case of multiplicative depth-2
paths where intermediary nodes y1, . . . , ym do not belong to the critical circuit.
This limits the applicability of their operator and the number of necessary path
rewritings in order to decrease the multiplicative depth.
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2.3 Multiplicative depth-2 cone rewriting

We have seen previously that in some cases the overall multiplicative depth does
not decrease after a single application of multiplicative depth-2 path operator. In
order to address this issue we generalize the multiplicative depth-2 path operator
to cones of multiplicative depth 2. We traverse upwards the circuit starting from
the sub-set of nodes of y1, . . . , ym which are critical and stop at the first found
AND gate. In this way, a cone of multiplicative depth-2 is obtained. In what
follows, we introduce a method to rewrite these types of cones such that the
overall multiplicative depth decreases.

The cone rewriting operator is equivalent (in terms of multiplicative depth
decrease) with the application of the depth-2 path rewriting operator for each
critical input of XOR gate Uy (refer to figure 1) as it has been stated earlier.
A unified rewrite operator allows to perform a single transformation reducing
the multiplicative depth and not several rewrite operator for each critical input
of Uy. Also, we seek to reduce the number of newly created nodes after the
transformation. The new heuristic we propose is based on that cone rewriting
operator. We firstly present the transformation for multiplicative depth-2 critical
cones and we further generalize it to cones of arbitrary depth.

A multiplicative depth-2 critical cone δ2 is a Boolean structure ending by an
AND gate vt and beginning with AND gates v1, . . . , vn, such that vi ∈ anc (vt)
and l (vi) = l (vt)−1, for any i = 1, . . . , n. The left-hand side of figure 2 illustrates
such a cone. The outputs of v1, . . . , vn are combined by a XOR gate Uy (as
previously we merged intermediary 2-input XOR gates into one multi-input gate)
and connected to one input of node vt. Let at be the input of vt other than Uy.

We denote a
(i)
1 and a

(i)
2 the 2 inputs of vi such that l

(
a
(i)
1

)
≥ l

(
a
(i)
2

)
and by

y1, . . . , ym the inputs of XOR gate Uy which are not critical. By construction we
have l (yi) < l (vt) for any yi.
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Fig. 2. Rewriting operation for multiplicative depth-2 cone. Bold lines denote critical
paths.
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Figure 2 illustrates the transformation to be performed in order to decrease
the multiplicative depth of cone δ2. It follows the same idea as the depth-2
path rewriting operator presented earlier. The Boolean formula of the illustrated
multiplicative depth-2 cone is:(

n⊕
i=1

(
a
(i)
1 · a

(i)
2

)
⊕

m⊕
i=1

yi

)
· at.

After the rewrite operation the formulation becomes:(
n⊕

i=1

(
at · a(i)2

)
· a(i)1

)
⊕

(
at ·

m⊕
i=1

yi

)
.

Thus each AND gate vi from the input cone is rewritten as u(i) =
(
a
(i)
2 · at

)
·a(i)1

using 2 AND gates and has a smaller multiplicative depth. A new XOR gate U
′

y

is added for non critical inputs yi. The output of this gate and at are the inputs
of a new AND gate uy. The outputs of gates u(1), . . . , u(n) and uy are finally
combined together using a multi-input XOR gate. The multiplicative depth of r
is reduced by 1 because the following relations are verified (as a consequence of
the cone construction procedure):

min
u∈pred(vk)

l (u) < l (vt)− 2, ∀vk, k ∈ {1, .., n, t} (3)

The main benefit of multiplicative depth-2 cone rewriting is that the multi-
plicative depth of r is reduced if relations 3 are verified. A single cone transfor-
mation is needed instead of n depth-2 path transformations. After cone rewriting
only n new AND gates are created (a new gate for each vi).

2.4 Cone rewriting

Multiplicative depth-2 cone rewrite operators requires that condition (3) is sat-
isfied for all of the cone input nodes, i.e. at least one input of the vi node must
be non critical. In the case when both inputs of vi are critical we can explore the

cones starting with a
(i)
1 and a

(i)
2 and build a multiplicative depth-3 cone. If all

inputs of only one of these input cones satisfy the reducibility conditions, then
the multiplicative depth can be reduced. We can easily extend this operator to
multiplicative depths larger than 3.

Our cone construction procedure ConeRec is given in Algorithm 1. It re-
cursively explores the set of critical predecessor nodes starting from node v and
incrementally constructs a reducible cone (as the procedure output). If the mini-
mal multiplicative depth to explore is reached (line 2) or at least one predecessor
of an AND node v is not critical (line 6) then the exploration stops. Otherwise
there are two possibilities as a function of node v type:

AND node If at least one predecessor is reducible then the cone corresponding
to this predecessor (or a random one if both are reducible) is added to the
result, otherwise the exploration is complete.
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Algorithm 1 Recursive algorithm for cone construction.

Require: minDepth – explore up to this multiplicative depth
1: function ConeRec(v) . v – start node
2: if l (v) = minDepth then
3: return ∅
4: end if
5: P ← {p ∈ pred (v) | l (p) = l (v)− d (v)}
6: if |P | < 2 and v is an AND node then
7: return {v}
8: else
9: ∆r ← {ConeRec(p) | p ∈ P}

10: ∆r ← {δr ∈ ∆r | δr 6= ∅} . reducible input cones
11: if v is an AND node then
12: if |∆r| = 0 then . no cone is reducible
13: return ∅
14: else
15: δ ← choose randomly from ∆r

16: end if
17: else . v is a XOR node
18: if |∆r| = |P | then . critical cones are reducible
19: δ ←

⋃
δr∈∆r

δr
20: else
21: return ∅
22: end if
23: end if
24: return δ ∪ {v}
25: end if
26: end function
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XOR node If both predecessors are reducible then the respective cones are
added to the result, otherwise exploration is also complete.

To summarize, an AND node is reducible if at least one of its ancestor is reducible
and a XOR node is reducible if both its ancestors are reducible.

The ConeRec procedure is called on a circuit node v. If the procedure
returns an empty set then the cone ending at v cannot be reduced. Otherwise
the procedure output represents the cone to be rewritten and it ensures that
the multiplicative depth of this cone can be reduced. We use a minDepth value
equal to l (p) + 1, where p is the non-critical input of node v.

Observe that the ConeRec procedure when applied to the ending node of
a reducible multiplicative depth-2 cone will find exactly that cone. In the case
when no reducible multiplicative depth-2 cone ending at v exists the ConeRec
procedure will return a cone with a multiplicative depth larger than 2. Rewriting
such a cone is very similar to the depth-2 cone rewriting method presented previ-
ously. The multiplicative depth cone rewriting is a powerful tool for minimizing
the multiplicative depth of Boolean circuits.

In the next section, we introduce the heuristic we have developed to minimize
the multiplicative depth of Boolean circuits.

3 Improved heuristic

3.1 Overview

In [9] the authors propose a multi-start heuristic based on multiplicative depth-2
path rewriting operator. This operator is the simplest way to locally reduce the
multiplicative depth of a Boolean circuit. Their heuristic use a priority function
in order to select the multiplicative depth-2 path to be reduced. None of the
priority functions seems to give better results than the others in general as the
structure of the Boolean circuit appears to play an important role on which of
the priority functions is the most appropriate. Therefore, the authors execute the
heuristic with all the priority functions and output the minimal multiplicative
depth circuit they obtain. The computational cost of all these executions is
therefore high and can be prohibitive for large size Boolean circuits.

The heuristic presented in Algorithm 2 aims at minimizing the multiplica-
tive depth of a given Boolean circuit in a single pass. Indeed, the number of
times critical circuits have to be computed is reduced thanks to the proposed
cone rewriting operator. At each iteration a set ∆min of cones to minimize is
computed. More details about how this set is constructed are given in the next
section. If the set ∆min is not empty then the cones from this set are trans-
formed. Afterwards, the multiplicative depths of the circuit nodes are updated.
If the multiplicative depth of the new circuit becomes smaller then the output
circuit Cout is updated. Otherwise, a new set ∆min of cones is computed and
the process starts over.

Indeed transforming cones from ∆min does not guarantee that the multiplica-
tive depth is globally reduced as some of the performed reductions may affect
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the inputs of critical AND gates. Thus, additional cone transformations may be
applicable after this step. The algorithm terminates when the set ∆min is empty.
Other termination criteria (e.g. run time, iteration count, multiplicative depth
to achieve) can also be considered.

Algorithm 2 Multiplicative depth minimization heuristic based on cone rewrit-
ing.

Require: C – input Boolean circuit
Ensure: Cout – multiplicative depth optimized
1: Cout ← C
2: ∆min ← compute reducible cones set
3: while ∆min is not empty do
4: Rewrite cones from ∆min

5: Update multiplicative depth of C
6: if lmax (Cout) > lmax (C) then
7: Cout ← C
8: end if
9: ∆min ← compute reducible cones set

10: end while

3.2 Cone selection method

The goal of the cone selection method is to find a minimal set of cones to rewrite,
the reduction of which is likely to lead to a decrease in the overall multiplicative
depth. As we have seen earlier any cone rewriting operator adds new nodes to
the circuit. So minimizing the set of cones is also beneficial in order to limit the
number of newly created nodes.

In order to do so we want to find a minimal size set ∆min of cones such that
each critical path in C contains the ending node of at least one cone from this set.
Hence, we are guaranteed that the overall multiplicative depth decreases after
the cones from ∆min are rewritten. This problem is known as the DVD (DAG
vertex deletion) problem [19] in the combinatorial optimization community. The
DVD problem is UG-hard [22], thus finding an optimal ∆min in the general case
is possible only using an exponential-time algorithm. We propose a heuristic for
finding an approximate solution to this problem.

Our cone selection heuristic starts by finding the set ∆ of all reducible cones
(using the ConeRec procedure). Then, a graph CAND containing the critical
AND nodes is built. Two AND nodes are connected in CAND if there is a depth-2
critical path between them in the initial circuit. An AND node is said reducible
if it is the (topological) last of a reducible cone. For each cone δ ∈ ∆, there is a
unique terminal AND node in CAND.

A network-flow inspired Algorithm 3 is used to find a minimal set of cones
∆min. All the nodes v of CAND are visited in topological order. Node flow f+ (v)
and edge flow g+ (v, v) are computed for each node and respectively each output
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edge of v. Node flow f+ (v) is equal to the sum of flows on input edges or 1 for
input nodes. An output edge flow g+ (v, u), u ∈ succ (v), is the node flow f+ (v)
split equally between node v outputs.

We perform the same computation on graph CAND where the edge direc-
tions have been reversed (i.e. in the initial circuit this corresponds to starting
from outputs and traversing CAND in reverse topological order) and compute
the ascending node flows f− (v) for each node v. Afterwards, we compute the
node weight f (v) defined as the product between its descending and ascending
node flows. The node u with the highest weight is selected and deleted from
graph CAND. The critical cone terminating in u is added to ∆min. This process
(ascending, descending flow computation, etc.) is repeated until CAND is empty.

Finally, the critical cones from ∆min are the ones which are rewritten in
Algorithm 2.

Algorithm 3 Cone selection algorithm.

Require: CAND – input circuit
Ensure: ∆min – minimal set of cones
1: function CompFlow(C) . C – input circuit
2: for v ∈ C in topological order do
3: if v is input then
4: f (v) = 1
5: else
6: f (v) =

∑
u∈pred(v) g (u, v)

7: end if
8: g (v, u) = f(v)

|succ(v)| for all u ∈ succ (v)
9: end for

10: return f
11: end function
12: ∆min ← ∅
13: while CAND is not empty do
14: f+ ← CompFlow(CAND)
15: Reverse circuit CAND edge directions
16: f− ← CompFlow(CAND)
17: f (v) = f− (v) · f+ (v) for all v ∈ CAND
18: u = arg maxv∈CAND f (v)
19: Remove node u from CAND

20: Add critical cone ending at node u to ∆min

21: end while

3.3 Reductions on non-critical circuits

In some cases, no more reducible cones are available in the critical circuit CAND.
Yet, this does not mean that the multiplicative depth of C cannot be further
reduced as we could further rewrite non-critical parts of circuit C. This may
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decrease the multiplicative depth of certain nodes and, as a consequence, some
cones which did not fulfilled the reducibility conditions before may become re-
ducible.

For this purpose, we construct a sub-circuit Cv which contains all the an-
cestors of a node v. Observe that by computing the critical circuit of Cv and
applying Algorithm 2 on this circuit we can reduce the multiplicative depth of v.
Afterwards, we verify if there are new reducible cones in C and transform them
if this is the case.

In this work, we only reduce sub-circuits Cv such that v is a non-critical
input of a critical AND node. We could imagine to extend these reductions to
other nodes of C. Still, as we wanted to limit the number of created nodes, we
did not explore this idea. Nevertheless, we think it is an interesting perspective
for further decreasing the multiplicative depth.

4 Experimental results

We used for our experimentations the Boolean circuits from the EPFL Combi-
national Benchmark Suite. Three types of combinational circuits are provided:
arithmetic, random/control and very large (multi-million gate designs). One can
refer to [1] for more details about these benchmarks. In our experiments, only
two types of benchmarks are used: 10 arithmetic and 10 random/control cir-
cuits. Benchmark circuits have been beforehand optimized and mapped with
ABC commands resyn2 and map. map command is used to obtain circuit rep-
resentations with only AND and XOR gates. Table 1 shows the characteristics
of the obtained benchmarks after these commands were performed. The same
benchmarks were used in [9].

We firstly present results on the minimization of multiplicative depth and
afterwards we try to estimate the induced acceleration factor for an homomorphic
execution of these circuits.

4.1 Multiplicative depth minimization

The heuristic described in previous section was implemented in C. The binary
uses ABC as a helper library. We have executed the new heuristic on a single
core of an Intel CoreTM i7-7600U CPU @ 2.80GHz. The obtained solutions by
the new heuristic and the results from work [9] are shown in Table 2.

The initial characteristics of circuits are also recalled (column “initial”). The
notations we use are the multiplicative depth (“×depth”), the number of AND
gates (“#AND”), the ratio between the multiplicative depth of the input circuit
and the optimized one (“ratio”) and the execution time in seconds (“time(s)”).

The new heuristic presented in this paper gives better results for almost every
circuits in the benchmark. The multiplicative depth is reduced when compared
to solutions from [9] for all the arithmetic circuits and lower or equal for all
random/control circuits. When the multiplicative depths are equal the number
of AND nodes is lower for cavlc, priority and router benchmarks. The voter circuit
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Table 1. EPFL Combinational Benchmark Suite characteristics after initial optimiza-
tion with ABC.

Circuit name #input #output ×depth #AND

adder 256 129 255 509

bar 135 128 12 3141

div 128 128 4253 25219

hyp 256 128 24770 120203

log2 32 32 341 20299

max 512 130 204 2832

multiplier 128 128 254 14389

sin 24 25 161 3699

sqrt 128 64 4968 15571

square 64 128 247 9147

arbiter 256 129 87 11839

ctrl 7 26 8 108

cavlc 10 11 16 658

dec 8 256 3 304

i2c 147 142 15 1161

int2float 11 7 15 213

mem ctrl 1204 1231 110 44795

priority 128 8 203 676

router 60 30 21 167

voter 1001 1 36 4229

is the only case where the multi-start heuristic [9] gives a better result in terms
of AND gate count, although the difference is of only 27 gates. On the other
side, the output circuits found by our heuristic for sin and arbiter contain less
AND gates and a lower multiplicative depth.

In term of computational performance the new heuristic is clearly faster than
the multi-start heuristic and this for example allows to minimize the multiplica-
tive depth of complex circuits such as arbiter, div or sqrt in a reasonable time.
For the hyp circuit, the minimal multiplicative depth for the circuits has not
been found after 48 hours of execution. Nonetheless, the multiplicative depth
has been significantly reduced compared to the multi-start heuristic.

4.2 Homomorphic execution acceleration

In this subsection we study the influence of multiplicative depth minimization
on an homomorphic execution of the benchmark circuits. The homomorphic
multiplication operation (i.e. the AND gate) is the heaviest one in the some-
what homomorphic encryption schemes described in introduction. We start by
explaining how we estimate the complexity of a multiplication operation.

An in-depth study of parameters for homomorphic encryption schemes is
performed in [12]. The authors provide in the appendices several samples of
HE scheme parameters for different multiplicative depths, plaintext spaces, etc.
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Table 2. Solutions obtained by the heuristic proposed in this work (column “this
work”) and best obtained solutions for the multi-start heuristic [9] (combined priority
functions, random and non-random ones). Bold font is used to emphasize the best
solutions in terms of multiplicative depth as well as number of AND gates. The ratio
between multiplicative depths of the input circuit and the optimized one is shown in
columns “ratio”.

Circuit
initial this work multi-start [9]

× depth #AND × depth #AND ratio time(s) × depth #AND ratio time(s)

adder 255 509 9 16378 28.3 125 11 1125 23.2 40.0

bar 12 3141 10 4193 1.2 0.7 12 3141 1.0 10.4

div 4253 25219 532 190855 8 3731 1463 31645 2.9 72000

hyp 24770 120203 15230 135433 1.6 172000 24562 120307 1.0 72000

log2 341 20299 129 31573 2.6 94 141 27362 2.4 14690

max 204 2832 26 7666 7.8 14.5 27 4660 7.6 1712

multiplier 254 14389 57 23059 4.5 30.73 59 17942 4.3 14810

sin 161 3699 74 5507 2.2 4.5 76 5922 2.1 652.83

sqrt 4968 15571 2084 321555 2.4 107814 4225 18435 1.2 72000

square 247 9147 26 11306 9.3 12.5 28 10478 8.8 9840

arbiter 87 11839 10 5183 8.7 43 42 8582 2.1 72000

ctrl 8 108 5 110 1.6 0.0 5 109 1.6 0.0

cavlc 16 658 9 667 1.8 0.0 9 669 1.8 3.78

dec 3 304 3 304 1.0 0.0 3 304 1.0 0.0

i2c 15 1161 7 1213 2.1 0.1 8 1185 1.9 7.26

int2float 15 213 7 216 2.1 0.0 8 216 1.9 0.24

mem ctrl 110 44795 40 54816 2.4 85 45 49175 2.4 66222

priority 203 676 102 876 2.0 0.5 102 1106 2.0 22.22

router 21 167 11 198 1.9 0.0 11 204 1.9 0.52

voter 36 4229 30 4315 1.2 1.55 30 4288 1.2 112.42

Table 3 shows a sample of parameters for the FV scheme [14] and a Boolean
plaintext space 2. A power regression model is fitted onto this data and used
afterwards to extrapolate ciphertext size as a function of multiplicative depth.
The power regression model we obtain is y = 1.2215 · x2.0179 where x is the
multiplicative depth and y is the ciphertext size in kBytes. The obtained model
is highly accurate (coefficient of determination > 0.9999 and root mean squared
relative error < 1%). Estimated ciphertext sizes are given in the third row of
Table 3.

Using this model we are able to estimate the size of ciphertext for a given
multiplicative depth. The asymptotic complexity of ciphertext multiplication in
HE schemes is comparable to the complexity of multiplying arbitrary-precision
numbers. One of the best known algorithms for multiplying arbitrary-precision
numbers is the Schönhage–Strassen algorithm. It has an asymptotic run-time bit
complexity of O (n · log (n) · log (log (n))). So, to find the run-time complexity of

2 We have performed the same estimations for other HE schemes (Yashe and BGV)
and similar results, as the ones described in what follows, were obtained.
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Table 3. Multiplicative depth and ciphertext size (kBytes) for FV scheme instances
from [12].

× depth 2 5 10 20 30

size 5 31 127 513 1180

estimated size 4.95 31.4 127.3 515.5 1168.2

multiplying 2 HE ciphertexts we use the ciphertext bit-size as n in the above
complexity formula. We consider that the run-time complexity of a Boolean
circuit HE execution is equal to the number of AND gates in the circuit scaled
by the complexity of ciphertext multiplication at the multiplicative depth of
this circuit. For example the run-time complexity of the adder circuit is equal
to 509 (number of AND gates) multiplied by α · log (α) · log (log (α)), where
α = 8192 · 1.2215 · x2.0179. Here, the 8192 factor corresponds to the number of
bits in 1 kByte (i.e. power regression model units).

We have computed run-time complexities for input circuits, circuits from [9]
and circuits generated by the heuristic proposed in this paper. Table 4 shows
the ratios between the run-time complexity of optimized circuits and the ini-
tial ones. These ratios give an estimation of the acceleration factor between
the homomorphic execution of an optimized circuit when compared to the ho-
momorphic execution of the input one. We note that these estimates of the
acceleration factor only provide orders of magnitude since other factors (cipher-
text key-switch, memory complexity, circuit XOR gates, etc.) which influence
the execution time were not considered. Moreover, not considering the size (by
consequence memory access times on a real machine) of ciphertexts is advan-
tageous for large ciphertexts (i.e. high multiplicative depth circuits). The third
column (“best”) provides the best expected run-time acceleration ratio obtained
during the execution of the heuristic proposed in this paper. For this purpose,
our heuristic returns the circuit with the best run-time complexity instead of
the circuit with the lowest depth.

Homomorphic execution times of Boolean circuits depend not only on the
multiplicative depth but also on the number of AND gates to be executed. The
results presented in Table 4 suggests that circuit optimization heuristics for HE
execution should consider other objectives complementary to the multiplicative
depth solely. For example, even if the multiplicative depth, 9, of the adder circuit
found by our heuristic is smaller compared to the multiplicative depth, 11, of
the same circuit from [9] the acceleration factor of our circuit HE execution is 10
times smaller (44.92 vs 419.52). The homomorphic execution of the optimized
circuit will be slower than a circuit with a larger multiplicative depth. The best
run-time complexity is obtained by our algorithm for a multiplicative depth of
12. Thus, the ratio is below but close the acceleration factor obtained by [9]
(408.29 vs 419.52). For several other examples such as sqrt, div or max, the
acceleration factor is much higher when choosing the Boolean circuit with the
best acceleration ratio.
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Table 4. Run-time complexity of optimized circuits compared to initial ones, i.e. how
many times faster the execution of an optimized circuit will be.

Circuit
acceleration factor

this work
multi-start [9]

lowest depth best

adder 44.92 408.29 419.52

bar 1.17 1.17 1.00

div 10.98 40.26 7.66

hyp 2.47 2.47 1.02

log2 5.19 5.45 4.95

max 32.04 61.03 48.53

multiplier 15.68 17.46 18.70

sin 3.60 3.80 3.16

sqrt 0.31 2.05 1.19

square 105.81 109.34 97.10

arbiter 257.93 257.93 6.69

ctrl 2.80 2.80 2.82

cavlc 3.51 3.51 3.50

dec 1.00 1.00 1.00

i2c 5.16 5.16 3.93

int2float 3.93 3.93 3.95

mem ctrl 7.43 7.43 6.32

priority 3.40 3.40 2.69

router 3.50 3.50 3.40

voter 1.47 1.47 1.47
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5 Conclusion and perspectives

In this work, we proposed an improved method for minimizing the multiplica-
tive depth of Boolean circuits. In order to do so, we introduced new advanced
operators for rewriting critical paths and cones. The presented heuristic is based
on these rewriting operators. The multiplicative depth of Boolean circuits is re-
duced by searching for a set of reducible cones and then rewriting them. This
heuristic gives better results compared to the method from [9] in terms of mul-
tiplicative depth and HE execution time. For a majority of benchmarks we have
obtained smaller multiplicative depth circuits within a much smaller computa-
tional budget. We also experimentally demonstrated that, in the context of an
homomorphic execution of Boolean circuits, the minimization of multiplicative
depth is beneficial only if the number of newly created AND gates is below a
threshold.

Some further improvements of the heuristic are envisaged as perspectives. For
example, the trade-off between reduction of multiplicative depth and the number
of newly created AND gates must be made more precise in the context of HE
execution. An interesting approach would be to determine a budget of AND
gates to be created at each iteration of our algorithm. Indeed, we can compute
the cost, in terms of number of newly added AND gates, of a cone transformation
before performing it. Another approach would be to try to minimize the number
of AND gates between two iteration of our heuristic.

In the literature can be found some HE implementations of algorithms with
a low multiplicative depth and small number of AND gates but with a huge
amount of XOR gates [8]. In such kind of circuits, the computational time and
the influence on ciphertext noise of XOR gates must be taken into account too.
An interesting perspective would be to measure the noise increase incurred by
the homomorphic execution of a Boolean circuit, and, to propose heuristics which
try to optimize this noise instead of the multiplicative depth (or an estimation
of the acceleration factor).
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