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Abstract

In the context of linear cryptanalysis of block ciphers, let p0 (resp. p1) be the probability that a particular
linear approximation holds for the right (resp. a wrong) key choice. The standard right key randomisation
hypothesis states that p0 is a constant p 6= 1/2 and the standard wrong key randomisation hypothesis states
that p1 = 1/2. Using these hypotheses, the success probability PS of the attack can be expressed in terms of
the data complexity N . The resulting expression for PS is a monotone increasing function of N .

Building on earlier work by Daemen and Rijmen (2007), Bogdanov and Tischhauser (2014) argued that
p1 should be considered to be a random variable. They postulated the adjusted wrong key randomisation
hypothesis which states that p1 follows a normal distribution. A non-intuitive consequence was that the
resulting expression for PS is no longer a monotone increasing function of N . A later work by Blondeau and
Nyberg (2017) argued that p0 should also be considered to be a random variable and they postulated the
adjusted right key randomisation hypothesis which states that p0 follows a normal distribution.

In this work, we revisit the key randomisation hypotheses. While the argument that p0 and p1 should be
considered to be random variables is indeed valid, we consider the modelling of their distributions by normal
to be inappropriate. Being probabilities, the support of the distributions of p0 and p1 should be subsets of
[0, 1] which does not hold for normal distributions. We show that if p0 and p1 follow any distributions with
supports which are subsets of [0, 1], and E[p0] = p and E[p1] = 1/2, then the expression for PS that is obtained
is exactly the same as the one obtained using the standard key randomisation hypotheses. Consequently, PS

is a monotone increasing function of N even when p0 and p1 are considered to be random variables.
Keywords: linear cryptanalysis, key randomisation hypotheses
MSC: 94A60, 11T71

1 Introduction

Linear cryptanalysis [8, 9] is one of the basic attacks against a block cipher. The first task in mounting a linear
cryptanalysis is to obtain a linear approximation of the block cipher which holds with some probability p0 which
is significantly different from the probability p1 that such a linear approximation holds for a uniform random
permutation. Obtaining such a linear approximation is a non-trivial task and often requires a substantial amount
of ingenuity. For the actual attack, the cryptanalysis algorithm requires as input plaintext-ciphertext pairs such
that a single secret key was used to encrypt the plaintexts to obtain the corresponding ciphertexts. The output
of the algorithm is a list of possible values of a subset of bits of the secret key. The attack is considered to be
successful if the correct value is in the output list. Such an attack is called a key recovery attack. A weaker form
of attack, called distinguishing attack, has also been considered in the literature.

Statistical techniques are used to assess the efficacy of linear cryptanalysis. The goal is to obtain a relation
between the success probability PS , the number N of plaintext-ciphertext pairs and the size of the output list
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which is expressed in terms of a parameter a called the advantage. The randomness arises from the distribution
of the plaintexts which are n-bit strings. In this work, we consider the setting where the plaintexts are sampled
uniformly at random with replacement. When the number of plaintexts is less than 2n/2, then due to the birthday
bound, the obtained plaintexts are very likely to be distinct even if they are sampled with replacement.

Statistical analysis requires identifying a suitable test statistic T and obtaining its distributions under two
settings: first, when the linear approximation holds for the block cipher, and, second, for a uniform random
permutation. A fundamental requirement for obtaining the two distributions of T , and hence, for the overall
statistical analysis, is to hypothesise the values of p0 and p1. The standard right key randomisation hypothesis
postulates that p0 is a constant p which is different from 1/2 while the standard wrong key randomisation
hypothesis postulates that p1 = 1/2. Using these standard key randomisation hypotheses, the two distributions
of T can be obtained and further statistical methods can be used to obtain an expression for PS in terms of N
and a. Further, it can be proved that PS increases monotonically with N .

Bogdanov and Tischhauser [3] argued that it is not appropriate to consider p1 = 1/2. Rather, p1 should be
considered to be a random variable. They based their arguments on an earlier result on distribution of correlations
in uniform random permutations which was stated by O’Connor [10] and proved by Daemen and Rijmen [4] who
had also given a normal approximation of the distribution. Based on the normal approximation, Bogdanov and
Tischhauser [3] postulated the adjusted wrong key randomisation hypothesis that p1 follows a normal distribution.
Using the adjusted wrong key randomisation hypothesis and the standard right key randomisation hypothesis,
an expression for PS was obtained in terms of N and a. Counter-intuitively, PS given by this expression does
not increase monotonically with N . A later work by Blondeau and Nyberg [2] postulated the adjusted right key
randomisation hypothesis that p0 also follows a normal distribution and obtained an expression for PS under
both the adjusted right and wrong key randomisation hypotheses.

Our Contributions

Our starting point is the observation by Bogdanov and Tischhauser [3] that p1 should be considered to be a
random variable. However, unlike Bogdanov and Tischhauser, we do not use a normal distribution to model p1.
Note that p1 is a probability and so it should take values only in the interval [0, 1]. Using a normal distribution
to model p1 does not ensure this. So, we model p1 directly using the discrete distribution given in [10, 4] instead
of using the normal approximation of this distribution. It is easily proved that the expectation of p1 under this
distribution is 1/2, i.e., E[p1] = 1/2.

More generally, we consider the scenario where p0 and p1 are random variables having arbitrary distributions
with the constraint that the supports of these distributions are subsets of [0, 1] such that E[p0] = p and E[p1] =
1/2. Under this setting, we show that the expression for PS that is obtained is exactly the same as that obtained
using the standard right and wrong key randomisation hypotheses. Consequently, PS is an increasing function
of N as is to be expected. The following are the consequences of our work.

1. Even if p0 and p1 are considered to be random variables, this has no effect on the relation between the
success probability PS , the data complexity N and the advantage a.

2. The adjusted wrong and right key randomisation hypotheses which postulate modelling p1 and p0 using
normal distributions are unnecessary and lead to incorrect results.

3. The counter-intuitive behaviour of PS decreasing with N reported in [3] is an effect of the adjusted wrong
key hypothesis rather than being a model of reality.

Related Works

Since the seminal works of Matsui [8, 9], there has been a vast amount of work on linear cryptanalysis. We
mention only the papers which are directly related to the present work. Selçuk [14] introduced the notion of
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advantage a of an attack and used a result on order statistics to obtain an expression for PS in terms of N and a.
The order statistics based approach built on Matsui’s original key ranking method and the later work by Junod
and Vaudenay [6] on optimal key ranking. Limitations of the order statistics based approach were pointed out
in [11] and the alternative hypothesis testing based approach was used to derive the same expressions.

The standard wrong key randomisation hypothesis was formally stated by Harpes et al. [5]. As mentioned
earlier, Bogdanov and Tischhauser [3] postulated the adjusted wrong key randomisation hypothesis while the
adjusted right key randomisation hypothesis was postulated by Blondeau and Nyberg [2]. Both of these works as
well as the present work assumes that the plaintexts are chosen under uniform random sampling with replacement.
The setting of choosing plaintexts under uniform random sampling without replacement was considered by Ashur
et al. [1]. They considered the adjusted wrong key randomisation and the standard right key randomisation
to obtain an expression for PS . It was pointed out in [13] that the modelling of p0 and p1 using normal
distributions cannot be theoretically justified and heuristic explanations were forwarded. The work also carried
out a comprehensive analysis of PS under standard/adjusted right/wrong key randomisation hypotheses and
both sampling with and without replacement.

Independent works by Matsui [9] and Kaliski and Robshaw [7] considered more than one linear approxima-
tions. A long line of works have analysed the setting where more than one linear approximation is available.
The notion of adjusted key randomisation hypotheses has been carried over to multiple/multi-dimensional linear
approximations [2, 12].

2 Overview of Linear Cryptanalysis of Block Ciphers

Consider a k-bit block cipher with n-bit blocks. The encryption function of such a block cipher is a map
E : {0, 1}k ×{0, 1}n 7→ {0, 1}n where for each K ∈ {0, 1}k, we write EK(·) = E(K, ·) and EK : {0, 1}n → {0, 1}n
is a bijection. Given a key K, a plaintext P , the ciphertext C is obtained as C = EK(P ).

A key recovery attack on a block cipher is a probabilistic algorithm. The input to the algorithm is a set of
N plaintext-ciphertext pairs (Pi, Ci), where Ci = EK(Pi), i = 1, . . . , N . The goal of the attack is to recover
m secret bits of the key. The output of the algorithm is a list of m-bit strings. The attack is successful if the
correct m-bit string is in the output list. The probability of this event is called the success probability of the
attack. Following [14], an attack is said to have advantage a if the size of the output list is equal to 2m−a, i.e.,
a fraction 2−a portion of the possible 2m is produced as candidate keys. The number N of plaintext-ciphertext
pairs provided as input to the algorithm is said to be the data complexity of the attack.

The encryption function of an iterated block cipher is obtained by composing round functions where each
round function is a bijective map parameterised by a round key. The round keys are obtained by applying a
key scheduling algorithm to the secret key K. Suppose the round keys are k(0), k(1), . . . and the round functions

are R
(0)

k(0)
, R

(1)

k(1)
, . . .. For i ≥ 1, let K(i) denote the concatenation of the first i round keys and E

(i)

K(i) denote the

composition of the first i round functions. Suppose the block cipher has r + 1 rounds, i.e., C = E
(r+1)

K(r+1)(P ), and

by B the output after r rounds, i.e., B = E
(r)

K(r)(P ) and C = R
(r)

k(r)
(B). The basic task in the linear cryptanalysis

of an iterated block cipher is to obtain a linear relation of the form

〈ΓP , P 〉 ⊕ 〈ΓB, B〉 = 〈ΓK ,K(r)〉. (1)

where ΓP ,ΓB ∈ {0, 1}n and ΓK(r) ∈ {0, 1}nr denote the plaintext mask, the mask to the input of the last round
and the key mask respectively. A linear relation of the type (1) usually holds with some probability which is
taken over the uniform random choice of the plaintext P .

To compute 〈ΓB, B〉, the subset of the bits of B corresponding to the support of ΓB is required. These bits
of B are obtained from C by partially decrypting C by one round. This partial decryption of C involves a subset
of the bits of the last round key k(r). This subset of bits of the last round key is said to be the target sub-key.
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Let the size of the target sub-key be m. There are 2m possible choices of the target sub-key out of which only
one is correct. The purpose of the attack is to identify the correct value.

In the following, assume that K is the secret key used for encryptions. Once K is chosen, it is fixed and
though it is secret, there is no randomness in K. So, z = 〈ΓK ,K〉 is an unknown, but, fixed bit. Let P be a
plaintext chosen uniformly at random from {0, 1}n; C be the corresponding ciphertext; and Bκ be the result of
partially decrypting C with a choice κ of the target sub-key. Define

p0 = Pr[〈ΓP , P 〉 ⊕ 〈ΓB, Bκ〉 = 1] if κ = κ∗;
p1 = Pr[〈ΓP , P 〉 ⊕ 〈ΓB, Bκ〉 = 1] if κ 6= κ∗.

(2)

Let εi = pi− 1/2, for i = 0, 1. Then ε0 (resp. ε1) is the bias corresponding to the correct (resp. incorrect) choice
of the target sub-key.

Let P1, . . . , PN , be chosen independently and uniformly at random from {0, 1}n. For j = 1, . . . , N , let
Cj = EK(Pj). For each choice κ of the target sub-key it is possible for the attacker to partially decrypt each Cj
by one round to obtain Bκ,j ; j = 1, 2, . . . , N . For κ ∈ {0, 1, . . . , 2m − 1}, z ∈ {0, 1}, j = 1, . . . , N , define

Xκ,z,j = 〈ΓP , Pj〉 ⊕ 〈ΓB, Bκ,j〉 ⊕ z;
Xκ,z = Xκ,z,1 + · · ·+Xκ,z,N .

Since each Pj is chosen uniformly at random from {0, 1}n, from (2), we have that for j = 1, . . . , N ,

Pr[Xκ,0,j = 1] = p0 if κ = κ∗;
Pr[Xκ,0,j = 1] = p1 if κ 6= κ∗.

(3)

From the definition of Xκ,z,j , we have Xκ,z,j ⊕Xκ,1⊕z,j = 1, i.e, one of Xκ,z,j and Xκ,1⊕z,j is 1 and the other is
0, so that Xκ,0 +Xκ,1 = N . For each choice κ of the target sub-key and each choice of z, define the test statistic

Tκ,z = |Wκ,z| where Wκ,z =
Xκ,z

N
− 1

2
.

Then

Tκ,1 = |Wκ,1| =
∣∣∣∣Xκ,1

N
− 1

2

∣∣∣∣ =

∣∣∣∣N −Xκ,0

N
− 1

2

∣∣∣∣ =

∣∣∣∣12 − Xκ,0

N

∣∣∣∣ = | −Wκ,0| = Tκ,0.

So, the test statistic Tκ,z does not depend on the value of z and it is sufficient to consider z = 0.
To simplify notation, we will write Xκ,j and Xκ instead of Xκ,0,j and Xκ,0 respectively; Wκ and Tκ instead

of Wκ,0 and Tκ,0 respectively. In terms of this notation, we have the following.

1. From (3),

Pr[Xκ,j = 1] = p0 if κ = κ∗;
Pr[Xκ,j = 1] = p1 if κ 6= κ∗.

(4)

2. Xκ = Xκ,1 + · · ·+Xκ,N and

Tκ = |Wκ| where Wκ =
Xκ

N
− 1

2
=
Xκ,1 + · · ·+Xκ,N

N
− 1

2
. (5)

This test statistic was considered by Matsui [8].
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There are 2m choices of the target sub-key and so there are 2m random variables Tκ. The distribution of Tκ
is determined from the distribution of the Xκ,j ’s and depends on whether κ is correct or incorrect.

The model of key recovery attack that we consider is based on statistical hypothesis testing. The attack
proceeds as follows. For each possible value of the target sub-key κ, the cryptanalyst computes the value of the
test statistic Tκ as given in (5). A statistical test of hypothesis with H0: κ is correct, versus H1: κ is incorrect
is applied. The decision is based on comparing Tκ to an a priori determined threshold t. Based on the decision,
κ is either retained as a candidate key or is rejected. We refer to [11, 13] for further details of the statistical
hypothesis testing based approach.

In the above attack model, the statistical test is applied to each possible value of the target sub-key κ.
Consequently, in the analysis of the statistical test, the value of κ is fixed and the randomness arises from the
independent and uniform distribution of P1, . . . , PN . In particular, we note that there is no scope to consider κ
to be a random variable.

Before proceeding, we introduce notation on normal distributions. By N(µ, σ2) we will denote the normal
distribution with mean µ and variance σ2. The density function of N(µ, σ2) will be denoted by n(x;µ, σ2). The
density function of the standard normal will be denoted by φ(x) while the distribution function of the standard
normal will be denoted by Φ(x).

Recall that P1, . . . , PN are chosen independently and uniformly at random from {0, 1}n (i.e., uniform ran-
dom sampling with replacement). So, for any κ, Xκ,1, . . . , Xκ,N are independent Bernoulli distributed random
variables. From (4), for κ 6= κ∗, Xκ,j ∼ Ber(p1) and so Xκ ∼ Bin(p1, N). Similarly, from (4), Xκ∗,j ∼ Ber(p0)
and so Xκ∗ ∼ Bin(p0, N). Using the normal approximation for the binomial distribution, we have the following
approximate distributions.

Xκ ∼
{

N(Np0, Np0(1− p0)) if κ = κ∗;
N(Np1, Np1(1− p1)) if κ 6= κ∗.

(6)

The distributions of Wκ and Tκ are obtained from the distribution of Xκ for both κ = κ∗ and κ 6= κ∗.

2.1 Standard Key Randomisation Hypothesis

For obtaining the distributions of Xκ∗ and Xκ, κ 6= κ∗, it is required to hypothesise the behaviour of p0 and p1
respectively. The two standard key randomisation hypotheses are the following.

Standard right key randomisation hypothesis: p0 = p, for some constant p.
Standard wrong key randomisation hypothesis: p1 = 1/2.

The standard wrong key randomisation hypothesis was formally considered in [5], though it was used in earlier
works.

Using p0 = p and p1 = 1/2, from (6), the distribution of Xκ is obtained as follows.

Xκ ∼
{

N(Np,Np(1− p)) if κ = κ∗;
N(N/2, N/4) if κ 6= κ∗.

(7)

Given the above distribution of Xκ, previous analysis provides an expression for the success probability PS in
terms of the data complexity N and advantage a. Such an expression was first given in [14]. A later work [13]
showed that the expression for PS given in [14] is not complete and provided the following expression for PS .

PS = Φ
(

2
√
N |ε| − γ

)
+ Φ

(
−2
√
N |ε| − γ

)
. (8)

where γ = Φ−1
(

1− 2m−a−1

2m−1

)
.



3 ADJUSTED KEY RANDOMISATION HYPOTHESES 6

3 Adjusted Key Randomisation Hypotheses

The rationale for the wrong key randomisation hypothesis is that if the choice κ is wrong, then the block
cipher is assumed to behave like a uniform random permutation of {0, 1}n. The choice of p1 = 1/2 is supposed
to reflect this behaviour. Bogdanov and Tischhauser [3] were the first to suggest that the standard wrong
key randomisation hypothesis is not proper. Their reasoning was based on an earlier work on distribution of
correlations for a uniform random permutation of {0, 1}n. This distribution was stated by O’Connor [10] and
proved by Daemen and Rijmen [4]. The crux of the result on the distribution of correlations for uniform random
permutation is that p1 is not a constant. Rather, it follows the following discrete probability distribution. For
integer x ∈ {0, . . . , 2n−1},

Pr
[
p1 = 1− x

2n−1

]
=

(
2n−1

x

)2(
2n

2n−1

) . (9)

Using a normal approximation of the distribution in (9) given in [4], the following was formally stated in [3].

Adjusted wrong key randomisation hypothesis:

ε1 ∼ N
(
0, 2−n−2

)
, or, equivalently p1 ∼ N

(
1/2, 2−n−2

)
.

From (6), for κ 6= κ∗, Xκ ∼ N(Np1, Np1(1− p1)) where under the adjusted wrong key randomisation hypothesis
p1 ∼ N

(
1/2, 2−n−2

)
. The standard result on compound of a normal distribution with another normal distribution

is the following. If Y1 ∼ N(aY2, σ
2
1) and Y2 ∼ N(µ, σ22) for constants σ1 and σ2, then Y1 ∼ N(aµ, σ21+a2σ22). Since,

the variance of Xκ depends on p1 (and hence is not a constant), this result on compound of normal distributions
does not apply to Xκ and p1. If, however, we make the approximation that Np1(1− p1) ≈ N/4, then the result
on compound of normal distributions applies and we obtain the following approximate distribution of Xκ.

Xκ ∼ N(N/2, N2(1/(4N) + 1/2n+2)) for κ 6= κ∗. (10)

The distribution of Xκ provides the distribution of Wκ and Tκ for κ 6= κ∗. Using the adjusted wrong key ran-
domisation hypothesis along with the standard right key randomisation hypothesis and applying the techniques
from [14], an expression for PS was obtained in [3]. Somewhat surprisingly, it was shown that PS is not monotone
increasing with N , i.e., there is a range of values of N such that as N increases in this range, the value of PS
goes down. This is unintuitive since as the number of plaintext-ciphertext pairs increases, the success probability
should not go down. Explanations were provided in [3] to justify why such a situation may indeed arise.

A later work [2], introduced a modification of the standard right key randomisation hypothesis as follows.

Adjusted right key randomisation hypothesis:

ε0 ∼ N
(
ε, ELP−4ε2

4

)
, or, equivalently p0 ∼ N

(
p, ELP−4ε2

4

)
, where ε = p− 1/2 and ELP ≥ 4ε2.

From (6), Xκ ∼ N(Np0, Np0(1 − p0)) where under the adjusted right key randomisation hypothesis p0 ∼
N
(
p, ELP−4ε2

4

)
. Again, approximating p0(1− p0) by 1/4 and applying the result on compound of normal distri-

butions, we obtain the following approximate distribution of Xκ∗ .

Xκ∗ ∼ N(Np, (N2/4)(1/N + ELP− 4ε2)). (11)

Remark: The quantities p0 and p1 are probabilities and so cannot take values outside [0, 1]. However, the
assumption that these quantities follow normal distributions allows them to take values outside [0, 1]. So, the
normality assumption on the distributions of p0 and p1 are heuristics and cannot be theoretically justified. This
has been pointed out in [13].
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4 Distributions for Wrong and Right Key Choices Revisited

The random variables Xκ,1, . . . , Xκ,N are independent Bernoulli distributed random variables. The probability of
success is p0 if κ = κ∗ and is p1 if κ 6= κ∗. The motivation behind the formulating the adjusted key randomisation
hypotheses is that p0 and p1 are themselves random variables instead of being constant values. We follow this
motivation. Our point of departure from the adjusted key randomisation hypotheses is that we do not consider
approximate normal distributions for p0 and p1. Being probabilities, the supports of the distributions of p0 and
p1 must be subsets of [0, 1], i.e., these variables take values outside [0, 1] with probability 0. To analyse such a
scenario we start with the following simple result.

Proposition 1. Let X and Q be random variables such that X ∼ Ber(Q) and Q follows a distribution whose
support is a subset of [0, 1] and E[Q] = µ. Then X ∼ Ber(µ).

Proof. First suppose that Q follows a discrete distribution taking values q0, . . . , q` ∈ [0, 1]. Then

Pr[X = 1] =
∑̀
i=0

Pr[X = 1 ∧Q = qi]

=
∑̀
i=0

Pr[X = 1 | Q = qi] Pr[Q = qi]

=
∑̀
i=0

qi Pr[Q = qi]

= E[Q] = µ.

The case when Q follows a continuous distribution is tackled in a similar fashion by considering the density
function of Q and changing the sum to integral.

Distribution under wrong key choice: We apply Proposition 1 to analyse the scenario arising from a wrong
key choice. For the analysis, we directly apply the distribution given by (9) instead of the normal approximation
of the distribution formulated in the adjusted wrong key randomisation hypothesis. For κ 6= κ∗, the random
variables Xκ,1, . . . , Xκ,N are independent Ber(p1) distributed random variables, where p1 follows the distribution
given by (9). We compute µ = E[p1] as follows.

µ = E[p1] =
2n−1∑
x=0

(
1− x

2n−1

) (2n−1

x

)2(
2n

2n−1

)
= 1− 1

2n−1

2n−1∑
x=0

x

(
2n−1

x

)2(
2n

2n−1

)
= 1− 1

2n−1
· 1

2
· 2n−1

=
1

2
. (12)

Combining (12) with Proposition 1, we have that the random variables Xκ,1, . . . , Xκ,N are independent Ber(1/2)
distributed random variables. Consequently, Xκ ∼ Bin(N, 1/2) and the approximate normal distribution of Xκ is
given by (7). This is exactly the situation which arises out of considering the standard wrong key randomisation
hypothesis. So, the distribution of Xκ remains the same irrespective of whether we assume p1 = 1/2 or p1 follows
a distribution over [0, 1] such that E[p1] = 1/2.
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The approximate distribution of Xκ given by (10) arises due to the following. The approximate normal
distribution N(Np1, Np1(1− p1)) of Xκ given by (6) is heuristically compounded with the approximate normal
distribution N(1/2, 2−n−2) of p1 given by the adjusted wrong key randomisation hypothesis to obtain the heuristic
and approximate normal distribution N(N/2, N2(1/(4N) + 1/2n+2)) of Xκ given by (10). As seen above, the
heuristic considerations are not only theoretically unjustified, they lead to an incorrect distribution for Xκ.

Distribution under right key: Suppose p0 follows a distribution whose support is a subset of [0, 1] and
E[p0] = p. Then using Proposition 1, Xκ∗,j ∼ Ber(p) for j = 1, . . . , N . Using the independence ofXκ∗,1, . . . , Xκ∗,N ,
we obtain that Xκ∗ ∼ Bin(Np,Np(1 − p)). Consequently, the approximate normal distribution of Xκ∗ is given
by (7). Again, this is exactly the situation which arises out of considering the standard right key randomisation
hypothesis.

The adjusted right key randomisation hypothesis assumes that p0 follows a normal distribution. This requires
heuristic considerations to compound with the approximate normal distribution N(Np0, Np0(1 − p0)) of Xκ∗

resulting in the heuristic and approximate normal distribution of Xκ∗ given by (11). As in the case of distribution
under wrong key choice, such heuristic considerations are unnecessary and lead to an incorrect distribution for
Xκ.

Success probability: From the above analysis, considering p0 and p1 to be random variables (with supports
which are subsets of [0, 1]) leads to the same distribution of Xκ, κ 6= κ∗ and Xκ∗ as is obtained under the
standard key randomisation hypotheses. Consequently, the expression for PS obtained from these distributions
also remain the same as those obtained in the case of the standard key randomisation hypotheses and is given
by (8). It has been proved in [13], that the expression for PS given by (8) is monotone increasing with N for all
N . So, the non-intuitive behaviour of the success probability not being monotone increasing with N as reported
in [3] is really an outcome of the heuristic considerations involved in the adjusted key randomisation hypotheses
rather than being a model of the real world.

5 Conclusion

We have shown that in the setting where the plaintexts are sampled uniformly at random with replacement, the
relation between PS , N and a remain the same as that obtained under the standard key randomisation hypotheses
even if p0 and p1 are considered to be random variables whose support is a subset of [0, 1]. Consequently, it
follows that the adjusted key randomisation hypotheses are unnecessary and lead to incorrect results.

The adjusted wrong and right key randomisation hypotheses have been used to analyse the situation where
plaintexts are sampled without replacement. One possible future work is to extend the results of the present
work to cover this situation. This, however, does not seem to be easy. It requires getting a tractable form of the
distribution obtained by compounding a hypergeometric distribution with the distribution for p1 given by (9).

The adjusted key randomisation hypotheses have also been used in the context of multiple/multi-dimensional
linear cryptanalysis which models the probability vectors with multi-variate normal distributions. This again is
problematic since then the probabilities are allowed to take values outside [0, 1]. So, another direction of research
is to do away with the multi-variate normal distributions postulated by the adjusted key randomisation hypotheses
for multiple/multi-dimensional linear cryptanalysis and instead work directly with the correct distributions of
the probability vectors. This also presents significant technical difficulties.
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