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Abstract. Fault attacks (FA) intentionally inject some fault into the
encryption process for analyzing a secret key based on faulty interme-
diate values or faulty ciphertexts. One of the easy ways for software-
based countermeasures is to use time redundancy. However, existing
methods can be broken by skipping comparison operations or by using
non-uniform distributions of faulty intermediate values. In this paper,
we propose a secure software-based redundancy, aptly named table re-
dundancy, applying different linear and nonlinear transformations to re-
dundant computations of table-based block cipher structures. To reduce
the table size and the number of lookups, some outer tables that are
not subjected to FA are shared, while the inner tables are protected by
table redundancy. The basic idea is that different transformations pro-
tecting redundant computations are correctly decoded if the redundant
outcomes are combined without faulty values. In addition, this recombi-
nation provides infective computations because a faulty byte is likely to
propagate its error to adjacent bytes due to the use of 32-bit linear trans-
formations. Our method also presents a stateful feature in the connection
with detected faults and subsequent plaintexts for preventing iterative
fault injection. We demonstrate the protection of AES-128 against FA
and show a negligible advantage of FA.

Keywords: Software cryptography, block cipher, fault attacks, countermea-
sure.

1 Introduction

The idea of inducing errors during the computation of a cryptographic algorithm
to recover the key was first introduced by Boneh et al. [5, 6] in 1997. They pre-
sented a successful attack on a CRT-RSA algorithm with both fault-free and
faulty signatures of the same message. Such attacks are known as fault attacks.
Since then, the fault attack was also applied to block ciphers by Biham and
Shamir, and it was called Differential Fault Analysis (DFA) [1]. After AES was
chosen to be the successor of DES, Giraud investigated two ways of DFA on AES
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by inducing faults in intermediate states or in the AES key schedule [17]. So far,
DFA has been improved in such a way to require less brute-force search and
faulty ciphertexts [3, 13, 19, 28, 34, 36]. In addition, novel attack techniques that
take advantage of faulty intermediate values have been proposed such as inef-
fective fault attacks (IFA) [9], statistical fault attacks (SFA) [14], and statistical
ineffective fault attacks (SIFA) [12].

To protect the key from fault attacks (FA), most of software countermeasures
focus on detection and infection. Detection-based methods are mostly based on
simple time redundancy with subsequent comparison. Infection-based methods,
on the other hand, propagate the effect of faults in order to make faulty cipher-
texts useless. Unfortunately, the existing methods of detection and infection are
known to be vulnerable to attacks including instruction skips and SIFA. In this
paper, we propose a new type of redundancy aptly named table redundancy to
prevent FA on software implementations of block ciphers. By taking advantage
of the internal encoding of white-box cryptography we apply different transfor-
mations to each redundant computation of a table-based AES implementation.
Unless every redundant computation is fault-free, the proposed method leads to
the following consequences with overwhelming probability. First, one or more
faulty intermediate values have a propagation effect on the next lookup val-
ues which prevents the correct key from being recovered. Second, the proposed
method is stateful, so it is likely to compute faulty ciphertexts for the subsequent
encryption once some fault is detected. By doing so, it can avoid attempts to
analyze a number of fault-free and faulty ciphertexts without any penalty.

Contribution. This study introduces table redundancy, a software countermea-
sure for protecting against FA. It improves on a simple time redundancy method
in such a way to withstand biased FA. By adapting the internal encoding to
table-based implementations of block ciphers, our proposed method can be eas-
ily applied to every block cipher. Table redundancy increases the likelihood of
fault detection and error propagation because each redundant lookup table is
generated by applying different encoding. Also, the previously detected faults
are propagated to the next plaintexts thereby reducing the advantage of itera-
tive fault injection. The encryption consists mostly of table lookups and does
not require dedicated random sources to defend against FA.

Outline. The rest of the paper is organized as follows. Section 2 reviews the
internal encoding with the table structure of a white-box AES-128 implementa-
tion and explains previous FA and countermeasures. Section 3 presents our key
idea and proposes a secure AES-128 implementation with table redundancy. We
then analyze its security and performance in Section 4. Section 5 concludes this
paper.



3

2 Preliminaries

In order to obfuscate the intermediate values of block ciphers, white-box cryp-
tography applies the external and internal encodings to table-based implemen-
tations. In particular, the linear transformation provides a diffusion effect on
the encoding of intermediate blocks. In addition, the nonlinear transformation
realizes information confusion and conceals the value of 0. To implement our
table redundancy method for a block cipher, we will adapt the internal encod-
ing of white-box cryptography. However, it does not mean that our proposed
method is resistant to white-box attacks or every gray-box attack; this study is
restricted to FA in the gray-box model on symmetric-key cryptography, where
an attacker has no visibility and control over memory. The internal encoding and
the table diversity will contribute to providing detection and infection features.
In this section, we review an internally encoded implementation of AES-128
from white-box cryptography [8]. Afterwards, we briefly explain previous FA
and countermeasures.

2.1 Internal Encoding on AES-128

White-box cryptography of block ciphers is mostly implemented in a table-based
manner with linear and nonlinear transformations (the term encoding is often
used) in order to hide key-dependent intermediate values. Given an n-bit key,
the table size is certainly problematic when mapping all n-bit plaintexts to n-bit
ciphertexts by using a single lookup table. For example, if n = 128 like in the
case of AES-128, the entire lookup table requires 2128 · 128 bits. To solve this
problem, a set of lookup tables is generated for each step and each round. The
table lookups are then properly ordered in a networked manner.

Given a lookup table T , let’s choose two secret encodings f and g in order
to obfuscate inputs and outputs, respectively. A new table T ′ can be generated
by

T ′ = g ◦ T ◦ f−1.

To get T (x), the input to T ′ will be f(x), and T ′(f(x)) will be decoded by g−1

in the next lookup table, say R. To feed the T output into R, the encoding and
decoding should be connected to each other at the boundary of the tables. For
example,

T ′ = g ◦ T ◦ f−1 and R′ = h ◦ R ◦ g−1,

then we have
R′ ◦ T ′ = (h ◦ R ◦ g−1) ◦ (g ◦ T ◦ f−1).

To reduce the number of lookups, the initial white-box AES (WB-AES) im-
plementation [8] turns AddRoundKey, SubBytes, and part of MixColumns into
a composition by re-writing AES as follows:

state ← plaintext
for r = 1 · · · 9
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ShiftRows(state)

AddRoundKey(state, k̂r−1)
SubBytes(state)
MixColumns(state)

ShiftRows(state)

AddRoundKey (state, k̂9)
SubBytes(state)
AddRoundKey(state, k10)
ciphertext ← state,

where kr is a 4 × 4 round key matrix at round r, and k̂r is the result of applying
ShiftRows to kr. AddRoundKey and SubBytes are first combined into T-boxes,
a series of 160 (one per cell per round) 8×8 lookup tables as follows:

T r
i,j(x) = S(x⊕ k̂r−1i,j ), for i, j ∈ [0, 3] and r ∈ [1, 9],

T 10
i,j (x) = S(x⊕ k̂9i,j)⊕ k10i,j for i, j ∈ [0, 3].

In round 1 to 9, each T-box output is multiplied with each column of the Mix-
Columns matrix MC to reduce the table size. Let [x0 x1 x2 x3]T be a column
vector of the outcome state after mapping the round input to T-boxes. By the
linearity of a matrix multiplication, MixColumns can be decomposed as follows:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02



x0
x1
x2
x3


= x0

 02
01
01
03

⊕ x1
 03

02
01
01

⊕ x2
 01

03
02
01

⊕ x3
 01

01
03
02


= x0 ·MC0 ⊕ x1 ·MC1 ⊕ x2 ·MC2 ⊕ x3 ·MC3.

For the right-hand side (say y0, y1, y2, y3), the commonly named Tyi tables
mapping 8-bits to 32-bits are defined as follows:

Ty0(x) = x · [02 01 01 03]T

Ty1(x) = x · [03 02 01 01]T

Ty2(x) = x · [01 03 02 01]T

Ty3(x) = x · [01 01 03 02]T .

To put it simply, WB-AES is a series of table lookups, consisting of encoded
inputs and outputs of Tyi tables. Precisely, the input is protected by 8×8 linear
transformations while the output is protected by 32×32 linear transformations.
The nonlinear transformation on each byte is then divided into two four-bit con-
catenated forms to avoid huge XOR lookup tables. In the following explanation,
it is assumed for convenience that nonlinear transformations are applied to the
input/output values of all tables.
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Our proposed implementation of AES-128 will adapt the four types of lookup
tables used in WB-AES that are internally encoded [8]. First, TypeII is a compo-
sition of T-boxes and Tyi. This is an 8-bit to 32-bit lookup table, and each 32-bit
output is protected by a 32×32 linear transformation, say L. The MixColumns
multiplication computed by looking up TypeII is followed by the XOR opera-
tions to compute the encoded round output. This is conducted by TypeIV that
takes two four-bit encoded inputs and provides a four-bit encoded XOR result.
However, each single byte of a 32-bit round output protected by L cannot be
solely decoded without the other three bytes. For this reason, the linear trans-
formation L will be replaced with four 8×8 linear transformations by looking up
TypeIII. Let L̂ denote their concatenated transformation. Given a 32-bit vector
[v0 v1 v2 v3]T protected by L, looking up TypeIII and TypeIV performs

L̄

 v0
0
0
0

⊕ L̄
 0
v1
0
0

⊕ L̄
 0

0
v2
0

⊕ L̄
 0

0
0
v3


where L̄ = L̂ ◦ L−1. By doing so, a single-byte input to TypeII in the next
round can be simply decoded by L̂−1. Lastly, TypeV is the lookup table of T 10

in the final round. Since no MixColumns is involved in the final round, each 8-bit
to 8-bit mapping by TypeV gives the corresponding subbyte of the ciphertext.
Because the external encoding is not used in the proposed method, its output is
not encoded.
There are two security metrics: the white-box diversity and ambiguity. The
white-box diversity is a measure of variability, counting distinct constructions for
a particular table type. The white-box ambiguity of a table, on the other hand,
is a measure of the number of alternative interpretations and counts the number
of distinct constructions producing the same table of that type. In our proposed
method, we take advantage of the diversity which can produce abundant lookup
tables using the countless transformations.

2.2 DFA based on a single-byte fault

The basic idea of DFA is as follows: (1) running the target cryptographic al-
gorithm and obtaining a fault-free ciphertext. (2) injecting faults during the
execution of the target algorithm with the same plaintext and obtaining faulty
ciphertexts. (3) analyzing the relationship between the fault-free and faulty ci-
phertexts to reduce the search space of the key. The analysis depends on the
fault model with respect to the fault location and characteristic as follows.
First, injecting a single-byte fault between the 8-th and 9-th round MixColumns
affects four bytes of the ciphertext because the final round does not involve
MixColumns. Among many working principles of DFA based on this fault prop-
agation, we briefly review a technique using the four 9-th round differential
equations [34].
Suppose that the first subbyte denoted by x of the 9-th round input is changed
to a faulty intermediate value denoted by x ⊕ δ, where x, δ ∈ GF(28). Then δ
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is changed to δ′ after SubBytes, and the four-byte difference in the 9-th round
output is represented by (2δ′, δ′, δ′, 3δ′), where the coefficients are the ele-
ments of MC0. ShiftRows will move the difference to four different locations as
shown in Fig. 1. With fault-free and faulty ciphertexts for the same plaintext,
DFA can express the four-byte difference with respect to the key K. Let S−1

denote the inverse SubBytes, C = C1C2 . . . C16 the fault-free ciphertext, and
C̃ = C̃1C̃2 . . . C̃16 the faulty ciphertext. For example, C̃1 = C1 ⊕∆1. Then the
following equations take the fault-free and faulty ciphertexts as well as each
subkey candidate K∗i ∈ GF(28).

δ δ’ δ’

2δ’

δ’

δ’

3δ’

∆1

∆2

∆3

∆4

∆1

∆2

∆3

∆4

9th round SubBytes 9th round ShiftRows

9th round MixColumns

10th round SubBytes10th Round ShiftRows

Fig. 1: Fault propagation across the last two rounds of AES.

2δ′ = S−1(C1 ⊕K∗1 )⊕ S−1(C̃1 ⊕K∗1 )

δ′ = S−1(C8 ⊕K∗8 )⊕ S−1(C̃8 ⊕K∗8 )

δ′ = S−1(C11 ⊕K∗11)⊕ S−1(C̃11 ⊕K∗11)

3δ′ = S−1(C14 ⊕K∗14)⊕ S−1(C̃14 ⊕K∗14).

(1)

These equations are called the 9-th round differential equations [34] which will
reduce the search space of key quartet to an expected value of 28. This means
that only 28 candidates of the key quartet will satisfy the differential equations.
By injecting two such faults the key quartet can be uniquely determined, and the
remaining three quartets can be similarly analyzed. In Section 4, getting the 9-th
round differential equations by injecting a single-byte fault into a non-protected
WB-AES implementation will be demonstrated.
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Second, injecting a single-byte fault between the 7-th and the 8-th round Mix-
Columns gives additional information called the 8-th round differential equa-
tions. By using both 8-th and 9-th round differential equations, a single faulty
ciphertext can further reduce the search space of the key from 232 to 28 with
232 time complexity, as each of 232 candidates of the final round key is tested by
set of four equations. This attack cost can be reduced to 230 by an acceleration
technique [34].

2.3 DFA based on a multi-byte fault

Authors in [27] presented two different multi-byte fault attacks covering all pos-
sible faults on the MixColumns input in the 9-th round. The first attack requires
at least one fault-free byte in one column of MixColumns input, and 6 faulty
ciphertexts discover the key in average. In the second attack, where all four bytes
of the column are supposed to be faulty, approximately 1,500 faulty ciphertexts
can recover the key.
In [33], a diagonal fault model was proposed, where the state matrix is divided
into four diagonals. If faults are injected into one, two, or three diagonals, the key
search space is reduced to 232, 264, or 296, respectively. In the case of injecting
faults into four diagonals, the search space becomes larger than brute force.

2.4 FA based on faulty intermediate values

Impossible DFA (IDFA) [11,31] on block ciphers looks for probability zero differ-
entials between fault-free and faulty intermediate values to remove the wrong key
candidates from the list. A biased fault model is known to be effective to induce
exactly the same faults in both computations of the time redundancy counter-
measures [30]. Differential Fault Intensity Analysis (DFIA) [15] combines fault
injection under different intensity with the principles of Differential Power Anal-
ysis [20]. By using biased fault models as the leakage source, an attacker finds
a correct key producing the minimum of cumulative Hamming Distance among
all key candidates.
IFA [9], as a type of Safe Error Analysis [35], exploits ineffective faults that result
in no computation error. If there is no change in the ciphertext after injecting
the fault, the internal state of the attacked bit or byte can be determined with
a high probability. This approach is likely to bypass time redundancy, as only
one computation needs to be faulty. In practice, however, most attackers are
not powerful enough to inject precise faults for a great number of encryption.
In the case of infective countermeasures, false positives should also be consid-
ered because an attacker does not know whether the attacked byte belongs to
a dummy round. SFA [14], on the other hand, works on faulty ciphertexts un-
der three types of fault models: stuck-at-0; stuck-at-0 with a probability of 0.5
or logical AND with random uniform value with a probability of 0.5; logical
AND with random uniform value. For each subkey candidate, every ciphertext
is decrypted back to the attacked point, and the key is guessed by the highest
squared euclidean imbalance (SEI) of the faulty byte. However, this attack is less
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likely to succeed with increasing redundancy of the countermeasure. SIFA [12]
is an extension from IFA and SFA that exploits both ineffective faults and non-
uniformly distributed intermediate values. For a wide range of faults such as
stuck-at, random, and biased faults that can happen in practice, fault distribu-
tion tables can be computed, where the diagonal gives a non-uniform distribution
of the ineffective fault for each value. This attack exploits ciphertexts in which
the attacked variable follows the non-uniform distribution determined by the
diagonal and recovers the subkey candidate by SEI. This approach is known to
be effective to detection- and infection-based countermeasures. Persistent Fault
Attack (PFA) [38] injects one fault into an element in the SBox table. Based on
biased distribution on ciphertexts resulting from this faulty SBox, an attacker
statistically recovers the key.

Note that in the above attacks, the target implementation is considered stateless
which means that the previous detection of faults does not have an influence on
the next execution of encryption. Therefore, an attacker can recover the entire
secret key by repeating the fault injection. In order to hinder iterative collection
of such information, the proposed method will attempt to prevent a number of
fault injections through a stateful implementation of the block cipher.

2.5 Countermeasures

Detection-based countermeasures, also known as Concurrent Error Detection
(CED) [21], use additional redundancy to detect FA. There are four types of
redundancy as follows. (1) Information redundancy is based on error detecting
codes such as parity bit and robust code. Recently, many hardware implementa-
tions (including Toffoli gates) of error correcting codes that protect against SIFA
have been proposed [7,10,18]. Here we note that this study focuses on software
techniques. (2) Time redundancy is a classical fault tolerance technique in which
a cryptographic operation is computed more than once with the same input. If
there is a mismatch of the results, a random ciphertext or an error code is re-
turned. Assuming that the injected fault is uniformly distributed, an attacker
must inject exactly the same faults in both computations. However, a biased fault
can defeat a time redundancy countermeasure due to a relatively high proba-
bility of fault collision [30]. (3) In hardware redundancy techniques, the same
inputs are fed into both original and duplicated circuits, and the outputs are
compared to each other. (4) A hybrid redundancy combines the characteristics
of the previous techniques. For example, a fault can be detected by comparison
of an original plaintext with a decrypted plaintext. In this case, both encryption
and decryption hardware are placed on a single chip.

Infection-based countermeasures, on the other hand, use the diffusion effects of
faults instead of comparative computations in order to make a faulty ciphertext
unexploitable. Specifically, Tupsamudre et al. [37] proposed to use intermediate
dummy rounds to overcome the weaknesses of deterministic diffusion based in-
fective methods [25] and a random variation [16]. Patranabis et al. [29] modified
it in such a way to randomize the order of the redundant and cipher rounds along
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with masking the previous round outputs in the consideration of instruction skip
attacks.

3 Proposed Method

In this section, we present a secure AES-128 implementation protected by our
proposed method, aptly named table redundancy, for preventing non-invasive FA.
To this end, the internal encoding will be utilized for the following properties.
1) Table redundancy is inspired by time redundancy, but each computation will
involve a different set of lookup tables generated by different encoding. Since an
intermediate value is encoded into different values for each redundant computa-
tion, injecting the same faulty value into all computations will not guarantee a
successful attack without detection. Note that simple time redundancy can be at-
tacked by inserting the same faulty value to each redundant computation. 2) If a
fault is injected into the intermediate value protected by a 32-bit linear transfor-
mation, it also has the effect of spreading the error during the decoding of other
nearby values. 3) Instead of simple comparison operations, the integrity will be
verified through an infective recombination logic composed of table lookups, so
skipping several operations cannot bypass the detection. 4) Unless every compu-
tation is fault-free, the correct decoding of plaintexts for subsequent encryption
is unlikely to be guaranteed. This represents the stateful feature of our method,
which hinders iterative fault injection into software implementations.

3.1 Basic idea

Table redundancy. Before going into depth, we note that a single-bit fault
attack on the initial AddRoundKey or the final round is not considered because
there is no guarantee that the one-bit difference in the input leads to a con-
sistent difference in the output due to the use of encoding. Based on this fact,
redundancy is not applied for the first few rounds of tables that will not be
subject to FA in order to reduce the total table size. In other words, we perform
the redundant computations which are subjected to FA; the other parts of the
computation are shared. To the best of our knowledge, the earliest location of
DFA on AES is AddRoundKey at the 4-th last round in IDFA [11]. Because
AddRoundKey in the 6-th round of AES-128 was shifted into the next round in
our structure, the original sequence of table lookups of WB-AES illustrated in
Fig. 2a is conservatively divided into three parts as depicted in Fig. 2b.

1. From Round 1 to 5
2. From Round 6 to TypeII in Round 9
3. From TypeIV in Round 9 to Round 10.

In Part 1, the first 5 rounds are not under the attack in this paper and therefore
are shared without redundancy. In Part 2, we perform redundant computations
with different sets of lookup tables. The redundant outputs of Part 2 will be
the SubBytes outputs multiplied by each column vector of MC protected by
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different encoding. Before computing the operations in Part 3, the redundant
outputs should be recombined to check if there is no faulty byte; otherwise a
fault spreads to the adjacent four bytes. This summarizes the redundancy and
infective properties of the proposed method.

TypeII TypeIV TypeIII TypeIV

Round 1 - 9

TypeV

Round 10

(a) Sequence of table lookups in WB-AES

TypeII TypeIV TypeIII TypeIV

Round 1 - 5

TypeII TypeIV TypeIII TypeIV

Round 6 - 8

TypeII

Round 9

TypeIV TypeIII TypeIV

Round 9

TypeV

Round 10

1

2

3

(b) Our partitions in the proposed method

Fig. 2: Comparison of table partition.

For the lookup tables generated with the key K, let Tb (b stands for “begin”)
denote a set of shared lookup tables of Part 1. Given a plaintext P, Part 1 is
followed by Part 2 consisting of two different sets of lookup tables, T0 and T1,
which are generated by using different sets of transformations.
By the table diversity, each redundant computation will produce different inter-
mediate values, but their decoded values must be the same. Here, we call the
computation and recomputation using T0 and T1 original and redundant, respec-
tively. The lookup values from T0 and T1 are then the encoded SubBytes output
multiplied by a column vector of MC in the 9-th round. We denote by Q0 and
Q1 these output states of T0 and T1, respectively. In general, Q0 and Q1 will
be provided in a 4×4×4 array because TypeII maps an 8-bit input to a 32-bit
output.
Let Tx denote a set of TypeIV tables regardless of the number of copies. After
recombining the original and redundant outputs through an additional Tx, the
rest of computation in Part 3 is performed by Te (e stands for “end”). Sharing
Part 3 also reduces the total table size and the number of lookups. Table 1 ex-
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plains the encoding notations, and Fig. 3 briefly describes our table redundancy
with a single redundant computation. Note that the TypeIV tables involve only
nonlinear transformations on the input and output due to the distributive prop-
erty of multiplication over addition.

Table 1: Notations for the encoding. The subscript ∗ will be either a number or
a letter.

Notation Description

L∗ Linear transformation
N∗ Nonlinear transformation
E∗ N∗ ◦ L∗

XOR instead of comparison. In Fig. 3, Qx is a result of infective XOR
operations between Q0 and Q1. This step plays an important role of detection
and infection at the same time because two fault-free states guarantee the correct
computation of Part 3 which would otherwise propagate errors violating the
differential equations. Since each 32-bit quartet in Q0 and Q1 is protected by
32×32 linear transformations, a single-byte manipulation has an infectious effect
on the other three bytes.
Now we explain how to pick the 32×32 binary matrices used in T0, T1 and Te,
which are denoted by L0, L1 and Le, respectively. Here we recall that

Qi = Ei(Yj) = Ni ◦ Li(Yj),

where i ∈ {0, 1} and Yj = Tyj∈{0,1,2,3}(·). Then it is easy to know that Tx gives
us Qx:

z = L0 · Yj ⊕ L1 · Yj = (L0 ⊕ L1) · Yj
Qx = Nx(z).

In the beginning of Te, TypeIV combines the TypeII output in the 9-th round
(given by Qx). Next, the TypeIII and the following TypeIV replace the linear
transformation (L0 ⊕ L1) with four 8× 8 linear transformations. For

L0 ⊕ L1 = (Le)
−1,

Le must be invertible while L0 and L1 do not necessarily have to be invertible.
So we pick those matrices as follows:

– Generate a 32×32 invertible binary matrix Le.
– Generate a random 32×32 binary matrix L0.
– Compute L1 = (Le)

−1 ⊕ L0.

The last step for computing a ciphertext C is to lookup TypeV.
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P

C

Fig. 3: Simple description of our key idea with a redundant computation.
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3.2 Enhancing security with additional redundancy

Suppose that an attacker injects two single-byte faults on the 8-th round inputs
in T0 and T1, respectively, and tries to make a fault collision in which two dis-
turbed bytes will be decoded to the same value. The probability of getting valid
differential equations by this event is then 2−8. To further reduce this probabil-
ity, we increase the number of redundant computations by n > 1 with additional
tables generated using different transformations. If n = 3, we have three redun-
dant computations as illustrated in Fig. 4. Here, Ln is obtained from Le and n
random binary matrices Li∈[0,n−1] as follows:

Ln = (Le)
−1 ⊕

n−1⊕
i=0

Li.

In addition, we need more Tx tables for the XOR operation of redundant com-
putations. These are aptly named Tx0, Tx1 and Tx2.

P

C

Fig. 4: Extension with three redundant computations.

3.3 From stateless to stateful encryption

The execution of FA actually needs an attacker owning the victim’s device. In
this case, it is advantageous for the device to strategically avoid iterative attack
attempts to protect the secret key, reducing the repeated leakage of information.
In addition, it is recommended to update the secret key even if the user takes back
the ownership of the device. So it is not necessary to perform correct encryption
until the secret key is updated after detecting faults. From this practical point of
view, we add a stateful feature to our proposed implementation. The following
explains it with a single redundant computation depicted in Fig. 3.
In order to perform the initial encryption, the state of nonlinearly transformed
zeros Z is calculated using Nz and is then stored. In Fig. 5, a black square
indicates Z. In the first step of encryption, the states of the plaintext P and Z
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are XORed via Tx. As shown in Fig. 5, the first Tx here does not decode P, but
only Z by (Nz)−1, and its XOR outcomes are nonlinearly transformed by Np.
This will give the input state to Tb of Part 1 which is now generated with the
input decoding by (Np)−1.

In addition to the original and redundant computations, another redundancy,
called a clean-up computation, is performed by Td (d stands for “detect”) to
interfere with next encryption in case of fault detection. What is important over
here is that the linear transformation Ld protecting the output of Td is set to
(Le)

−1 = L0⊕L1. By doing so, Tx between Qx and Qd produces only zeros which
are nonlinearly transformed if there is no error. The XOR operations via Tx at
here require additional XOR operations to squeeze the nonlinearly transformed
zeros filled in a 4×4×4 array into a 4×4 state Z.

This clean-up computation can contribute to reducing the probability of suc-
cessful FA. In particular, collecting correct ciphertexts (including intermediate
values) and observing ineffective faults are hindered. If Z turns out to be dis-
turbed, it is possible to call an additional routine for requesting the key update
(the entire table). However, we do not deal with key updates in this study.

P

C

Fig. 5: A stateful version of the proposed method with a redundant computation.
The black square is Z connected to the clean-up computation (dotted line)



15

4 Evaluation

The security evaluation in this section will analyze a success probability and
complexity of FA on our method with n redundant computations. For simplicity,
we use the n-th redundant one as the clean-up computation (Tn = Td). To put
it simply, there are n - 1 redundant computations with a clean-up computation.
For a successful attack, the original and redundant outcomes should be decoded
as the same intermediate state, and there should be no faulty byte in Z resulted
from the recombination and the clean-up computation. The performance will be
evaluated in terms of the table size and the number of lookups.

4.1 Protection of DFA

Consider a single-byte fault injection on the first subbyte of each 9-th (or 8-th)
round input in T0 to Tn. The fault collision for obtaining valid faulty ciphertexts
with the correct clean-up computation can be occurred if each of n+1 disturbed
bytes is decoded to the same T-box input, say xf ∈ GF(28). The probability
of this event is (2−8)n, which is negligible as n increases. It is approximately
5× 10−8 if n = 3.
Suppose that a fault collision is not occurred in Ti 6=n, where Li is a singular
linear transformation. Then there can exist x′ ∈ GF(28) such that

x′ 6= xf but Li(Ty0(x′)) = Li(Ty0(xf ))

due to the property of singular linear transformations. We call it a transfor-
mation collision. The number of nonsingular m × m binary matrices denoted
by #GLm(F2) is negligible compared to the number of singular m ×m binary
matrices denoted by #Sgm(F2) if m = 32 like in the case of L∗, where

#GLm(F2) =

m−1∏
k=0

(2m − 2k),

and
#Sgm(F2) = 2m

2

−#GLm(F2).

Therefore, if Li∈[0,n) is randomly generated, it is more likely to be singular than
the probability of nonsingular. For 10,000 singular matrices which are randomly
generated, an average of 1.47 inputs (among 256 elements) to the T-box caused
transformation collisions for each matrix. This is less than 2/256. Then, the
probability of k ∈ [1, n] fault collisions and n − k transformation collisions is
negligible which can be upper bounded by

n∑
k=1

(
n

k

)
(1/256)k · [2/256 ·#Sg32/(232)

2
]n−k.

Next, consider a multi-byte fault which is injected randomly by a non-invasive
way to a quartet (four-byte intermediate value) in Qx and Qd. Then each faulty
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quartet denoted by qx and qd in Qx and Qd, respectively, is valid if

∃x′ ∈ GF (28) such that (Nx)−1 ◦ (qx) = (Le)
−1 ◦ (Ty0(x′))

and
(Nx)−1 ◦ (qx) = (Nd)−1 ◦ (qd).

Because the faults are assumed to be induced randomly, these events happen
with a negligible probability of (2−8)4·2 due to the fixed elements of MC.
By injecting a single-byte fault into the first subbyte of the 9-round inputs, we
simply demonstrate that the 9-th differential equations work on the unprotected
WB-AES implementation (with a 128-bit key), but does not work on our pro-
tected implementation. Within the algorithm, we introduced code for injecting
random faults in the right location, resulting in the four faulty bytes with a
particular pattern illustrated in Fig. 1. Let the plaintext and key have the same
value:

0x000102030405060708090A0B0C0D0E0F.

This computes the final round key and the fault-free ciphertext as represented in
Fig. 6a and Fig. 6b, respectively. By changing the first subbyte of the 9-th round
input of the unprotected WB-AES, we obtained a faulty ciphertext as shown in
Fig. 6c. Plugging the subkeys, the fault-free and faulty bytes shaded in Fig 6a -
Fig. 6c into the 9-th round differential equations, we have

2δ′ = S−1(0x0A⊕ 0x13)⊕ S−1(0x34⊕ 0x13)

δ′ = S−1(0x53⊕ 0x2B)⊕ S−1(0x72⊕ 0x2B)

δ′ = S−1(0x94⊕ 0xA7)⊕ S−1(0x90⊕ 0xA7)

3δ′ = S−1(0x45⊕ 0x17)⊕ S−1(0x02⊕ 0x17),

(2)

where δ′ = 0xD4 (2δ′ = 0xB3, 3δ′ = 0x67). This shows that DFA can extract
the key from WB-AES as the coefficients of δ′ exactly follow the 9-th round
differential equations.
Next, let us demonstrate the protection of DFA in our protected AES with a
redundant computation. With a single-byte fault at each of the first subbyte of
the 9-th round inputs in original and redundant computations, we obtained a
faulty ciphertext as shown in Fig. 6d. Plugging the faulty bytes into the 9-th
round differential equations gives us

0xBF = S−1(0x0A⊕ 0x13)⊕ S−1(0xD4⊕ 0x13)

0xF9 = S−1(0x53⊕ 0x2B)⊕ S−1(0x2C⊕ 0x2B)

0x4C = S−1(0x94⊕ 0xA7)⊕ S−1(0x42⊕ 0xA7)

0x90 = S−1(0x45⊕ 0x17)⊕ S−1(0x76⊕ 0x17),

(3)

where the differences between the inverse SubBytes have nothing to do with the
coefficient elements of MC0. Thus, the differential equations are not valid.
With a single redundant computation and a clean-up computation, there exist
only 256 fault-free triplets of the three first subbytes of the 9-th round input
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13 E3 F3 4D

11 94 07 2B

1D 4A A7 30

7F 17 8B C5

(a) Final round key

0A 41 F1 C6

94 6E C3 53

0B F0 94 EA

B5 45 58 5A

(b) Fault-free ciphertext

34 41 F1 C6

94 6E C3 72

0B F0 90 EA

B5 02 58 5A

(c) Faulty ciphertext obtained from the un-
protected WB-AES.

D4 41 F1 C6

94 6E C3 2C

0B F0 42 EA

B5 76 58 5A

(d) Faulty ciphertext obtained from our pro-
tected AES.

Fig. 6: Final round key, fault-free and faulty ciphertexts (column-major order).
Light shaded: involved subkeys of the final round key and corresponding subbytes
in the faulty-free ciphertext. Gray shaded: faulty bytes after injecting a single-
byte fault.
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for a fixed key. In other words, only 256 triplets lead to fault collisions. For the
rest of faulty 224 - 256 triplets, transformation collisions seem unlikely to take
place based on our experimental results; less than 2 inputs to the T-box result
in transformation collisions in the case of singular matrices.

4.2 Effect of the clean-up computation

In the connection with the attack above, Z and its decoded state (Nz)−1(Z)
are shown in Fig. 7. The four non-zero bytes in the decoded state imply that
there were not successful collisions. In the next encryption, the faulty bytes will
distort the four corresponding subbytes of the plaintext, and the errors will be
propagated to the whole state after the rounds. Thus, all subsequent ciphertexts
are useless for the attacker.
Not only DFA, but also other attacks using the bias in faulty intermediate val-
ues require a target to be stateless in order to induce multiple faults without
being noticed. Otherwise, some procedures essential to the above attacks cannot
be carried out. It is hard to observe the infectiveness of the injected fault by
comparing it with a fault-free ciphertext. Therefore, filtering ineffective faults
for reducing the key search space is not feasible if there is faulty Z. Getting the
fault-free Z, which looks like a state of random numbers, by accurately inducing
faults in the clean-up computation is also infeasible for a non-invasive attack.
This stateful feature of managing Z in the proposed encryption is thus effective
to prevent various types of FA. This is reminiscent of a sensor-based hardware
cryptographic implementation for shielding the internal circuit.

4.3 Performance

For n redundant computations, where the n-th redundancy is dedicated to the
clean-up computation, the total table size is calculated as follows. At the first
shared computation of Part 1 including the initial XOR of P and Z, the sum of
the table sizes of TypeII, TypeIII, and TypeIV is 290,816 bytes. The sum of the
sizes between Part 1 and Part 3 is given by 221,184 × (n + 1) + 16,384 × n +
12,288. Finally, the tables of Part 3 need 45,056 bytes. In total, the table size
including Z can be expressed as

221, 184× (n+ 1) + 16, 384× n+ 348, 176.

When it comes to table access, the number of lookups in Part 1 is 1,152. Next,
the table lookups counted in Part 2 and Part 3 are 432 × (n + 1) + 128 × n +
96 and 224, respectively. In total, the number of table lookups are given by

432× (n+ 1) + 128× n+ 1, 472.

Additionally, there will be load and store operations for Z.
For n ∈ {2, 3, 4} redundant computations, the table size and the number of
lookups (except for ShiftRows) are summarized in Table 2. The AES implemen-
tation of Daemen and Rijmen requires 4,352 bytes for lookup tables and approx-
imately 300 operations (lookups and XORs) [8]. Simple time redundancy with n
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A0 60 6D 2F

9C 63 33 52

6C 24 31 36

FF D5 70 76

(a) Z

D2 0 0 0

0 0 0 28

0 0 5C 0

0 DE 0 0

(b) Decoded Z

Fig. 7: The result of the clean-up computation in the presence of detected faults.
Gray shaded: non-zeros due to the faults.

Table 2: Table size and the number of lookups in the proposed method.

n Bytes # of lookups

2 1,044,496 3,024
3 1,282,064 3,584
4 1,519,632 4,144
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redundant computations based on this implementation will require roughly 300
× (n + 1) operations. Note that in a software-based redundant implementation,
lookup tables are probably reused. However, as explained in Section 2, this is
vulnerable to IFA or SIFA attacks. When it comes to software-based infective
countermeasures [29, 37], these execute a redundant computation of encryption
with up to 30 dummy rounds. In the case of AES-128, infective countermeasures
will require approximately 1500 (= 300 × 5) operations as well as run-time ran-
dom number generation. Importantly, SIFA can also recover the key from them.
Compared to the costs of the existing countermeasures, our countermeasure
seems to be costly. However, it takes advantage of only lightweight operations
such as lookups for protecting against FA without any run-time random source
in the device.

5 Conclusion and Discussion

In this paper, we propose a table redundancy method using internally encoded
lookup tables for protecting against FA. Because additional redundant compu-
tations increase the total table size and the number of lookups, the tables of
the outer rounds for an AES-128 algorithm which are not attacked by FA are
shared. For the non-shared part of the encryption, redundant computations are
performed from the 6-th round to the last MixColumns multiplication based on
internally encoded tables generated using different linear and nonlinear trans-
formations. The redundant outcomes, except for the last one, are recombined in
such a way to propagate errors in the intermediate values. The result of the last
one is summed with the result of the recombination in order to make iterative
FA useless. If no fault is detected, it is designed to produce a state of encoded
zero. Since this state is combined with the plaintext for each encryption, the pre-
viously detected faults will add faulty values to subsequent plaintexts making
useless ciphertexts.

In addition to FA, there are still threats of gray-box attacks on internally en-
coded tables for cryptographic implementations [32]. Importantly, a key-leakage
preventive transformation is required to prevent statistical analysis. An alter-
native is to adapt a masking technique in classical or customized ways [4, 22].
It is also possible for a white-box attacker to extract the key by adopting de-
buggers or cryptanalysis [2, 23, 24, 26]. When counteracting various threats and
merging several techniques, the disadvantages always include the memory re-
quirement and computational costs. For example, if table redundancy is applied
to a customized masking technique in [22], every redundant computation must
be masked and the masks must also be stored in the lookup table. Because the
secure implementations of software cryptography consume resources and costs,
we must first consider where to apply them and what to protect.
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