
Automating the Development of Chosen Ciphertext Attacks

Gabrielle Beck*

Johns Hopkins University
becgabri@cs.jhu.edu

Maximilian Zinkus*

Johns Hopkins University
zinkus@cs.jhu.edu

Matthew Green
Johns Hopkins University

mgreen@cs.jhu.edu

Abstract

In this work we investigate the problem of automating the development of adaptive chosen ciphertext
attacks on systems that contain vulnerable format oracles. Unlike previous attempts, which simply
automate the execution of known attacks, we consider a more challenging problem: to programmatically
derive a novel attack strategy, given only a machine-readable description of the plaintext verification
function and the malleability characteristics of the encryption scheme. We present a new set of algorithms
that use SAT and SMT solvers to reason deeply over the design of the system, producing an automated
attack strategy that can entirely decrypt protected messages. Developing our algorithms required us to
adapt techniques from a diverse range of research fields, as well as to explore and develop new ones. We
implement our algorithms using existing theory solvers. The result is a practical tool called Delphinium
that succeeds against real-world and contrived format oracles. To our knowledge, this is the first work to
automatically derive such complex chosen ciphertext attacks.

1 Introduction

The past decades have seen enormous improvement in our understanding of cryptographic protocol design.
Despite these advances, vulnerable protocols remain widely deployed. In many cases this is a result of
continued support for legacy protocols and ciphersuites, such as TLS’s CBC-mode ciphers [Smi12, AP13],
export-grade encryption [BBDL+15, ABD+15, ASS+16], and legacy email encryption [PDM+18]. However,
support for legacy protocols does not account for the presence of vulnerabilities in more recent protocols and
systems [W3C17, JS11, MRLG15, GGK+16, VP17].

In this work we consider a specific class of vulnerability: the continued use of unauthenticated symmetric
encryption in many cryptographic systems. While the research community has long noted the threat of
adaptive-chosen ciphertext attacks on malleable encryption schemes [Bel96, NY90, BN00], these concerns
gained practical salience with the discovery of padding oracle attacks on a number of standard encryption
protocols [Vau02, Hun10, BFK+12, AP13, MDK14, APW09, DP10, CHVV03, Mit05]. Despite repeated
warnings to industry, variants of these attacks continue to plague modern systems, including TLS 1.2’s
CBC-mode ciphersuite [AP13, AP15, MSA+19] and hardware key management tokens [BFK+12, AF18]. A
generalized variant, the format oracle attack can be constructed when a decryption oracle leaks the result of
applying some (arbitrarily complex) format-checking predicate F to a decrypted plaintext. Format oracles
appear even in recent standards such as XML encryption [JS11, KMSS15], Apple’s iMessage [GGK+16]
and modern OpenPGP implementations [MRLG15, PDM+18]. These attacks likely represent the “tip of the
iceberg”: many vulnerable systems may remain undetected, due to the difficulty of exploiting non-standard
format oracles.

*These authors contributed equally to the work.

1

Figure 1: Output of a format oracle attack that our algorithms developed against a bitwise padding check oracle Fbitpad (see §5.2 for
a full description). The original ciphertext is a valid 128-bit (random) padded message encrypted using a stream cipher. Each row of
the bitmap represents a malleation string that was exclusive-ORed with the ciphertext prior to making a decryption query.

From a constructive viewpoint, format oracle vulnerabilities seem easy to mitigate: simply mandate
that protocols use authenticated encryption. Unfortunately, even this advice may be insufficient: com-
mon authenticated encryption schemes can become insecure due to implementation flaws such as nonce
re-use [Jou06, MW16, BZD+16]. Setting aside implementation failures, the continued deployment of unau-
thenticated encryption raises an obvious question: why do these vulnerabilities continue to appear in modern
protocols? The answer highlights a disconnect between the theory and the practice of applied cryptography.
In many cases, a vulnerable protocol is not obviously an exploitable protocol. This is particularly true for
non-standard format oracles which require entirely new exploit strategies. As a concrete example, the authors
of [GGK+16] report that Apple did not repair a complex gzip compression format oracle in the iMessage
protocol when the lack of authentication was pointed out; but did mitigate the flaw when a concrete exploit
was demonstrated. Similar flaws in OpenPGP clients [GGK+16, PDM+18] and PDF encryption [MIM+19]
were addressed only when researchers developed proof-of-concept exploits. The unfortunate aspect of this
strategy is that cryptographers’ time is limited, which leads protocol designers to discount the exploitability
of real cryptographic flaws.

Removing the human element. In this work we investigate the feasibility of automating the design and
development of adaptive chosen ciphertext attacks on symmetric encryption schemes. We stress that our goal
is not simply to automate the execution of known attacks, as in previous works [KMSS15]. Instead, we seek
to develop a methodology and a set of tools to (1) evaluate if a system is vulnerable to practical exploitation,
and (2) programmatically derive a novel exploit strategy, given only a description of the target. This removes
the expensive human element from attack development.

To emphasize the ambitious nature of our problem, we summarize our motivating research question as
follows:

Given a machine-readable description of a format checking function F along with a description
of the encryption scheme’s malleation properties, can we programatically derive a chosen-
ciphertext attack that allows us to efficiently decrypt arbitrary ciphertexts?

Our primary requirement is that the software responsible for developing this attack should require no further
assistance from human beings. Moreover, the developed attack must be efficient: ideally it should not require

substantially more work (as measured by number of oracle queries and wall-clock execution time) than the
equivalent attack developed through manual human optimization.

To our knowledge, this work represents the first attempt to automate the discovery of novel adaptive
chosen ciphertext attacks against symmetric format oracles. While our techniques are designed to be general,
in practice they are unlikely to succeed against every possible format checking function. Instead, in this
work we initiate a broader investigation by exploring the limits of our approach against various real-world
and contrived format checking functions. Beyond presenting our techniques, our practical contribution of
this work is a toolset that we name Delphinium, which produces highly-efficient attacks across several such
functions.

Relationship to previous automated attack work. Previous work [BRB18, PBP+17, CSP16] has looked at
automatic discovery and exploitation of side channel attacks. In this setting, a program combines a fixed
secret input with many “low” inputs that are (sometimes adaptively) chosen by an attacker, and produces a
signal, e.g., modeling a timing result. This setting can be viewed as a special case of our general model (and
vice versa). Like our techniques, several of these works employ SAT solvers and model counting techniques.
However, beyond these similarities, there are fundamental differences that manifest in our results: (1) in this
work we explore a new approach based on approximate model counting, and (2) as a result of this approach,
our results operate over much larger secret domains than the cited works. To illustrate the differences, our
experimental results succeed on secret (message) domains of several hundred bits in length, with malleation
strings (“low inputs”) drawn from similarly-sized domains. By contrast, the cited works operate over smaller
secret domains that rarely even reach a size of 224. Moreover, our format functions are relatively complex. It
is an open question to determine whether the experimental results in the cited works can be scaled using our
techniques.

Our contributions. In this work we make the following contributions:

• We propose new, and fully automated algorithms for developing format oracle attacks on symmetric
encryption (and hybrid encryption) schemes. Our algorithms are designed to work with arbitrary format
checking functions, using a machine-readable description of the function and the scheme’s malleation
features to develop the attack strategy.

• We design and implement novel attack-development techniques that use approximate model counting
techniques to achieve significantly greater efficiency than previous works. These techniques may be of
independent interest.

• We show how to implement our technique practically with existing tools such as SAT and SMT
solvers; and propose a number of efficiency optimizations designed to improve performance for specific
encryption schemes and attack conditions.

• We develop a working implementation of our techniques using “off-the-shelf” SAT/SMT packages,
and provide the resulting software package (which we call Delphinium1), an artifact accompanying
this submission, as an open source tool for use and further development by the research community.

• We validate our tool experimentally, deriving several attacks using different format-checking functions.
These experiments represent, to our knowledge, the first evidence of a completely functioning end-to-
end machine-developed format oracle attack.

1https://github.com/Pythia3431/Delphinium

https://github.com/Pythia3431/Delphinium

1.1 Intuition

We now describe our problem setting and provide an overview of the techniques that we use in this work.
Implementing a basic format oracle attack. In a typical format oracle attack, the attacker has obtained some
target ciphertext C∗ = EncryptK(M∗) where K and M∗ are unknown. She has access to a decryption oracle
that, on input any chosen ciphertext C, returns F(DecryptK(C)) ∈ {0,1} for some known predicate F. The
attacker may have various goals, including plaintext recovery and forgery of new ciphertexts. Here we will
focus on the former goal.

Describing malleability. Our attacks exploit the malleability characteristics of symmetric encryption
schemes. Because the encryption schemes themselves can be complex, we do not want our algorithms
to reason over the encryption mechanism itself. Instead, for a given encryption scheme Π, we require
the user to develop two efficiently-computable functions that define the malleability properties of the
scheme. The function MaulΠciph(C,S)→C′ takes as input a valid ciphertext and some opaque malleation
instruction string S (henceforth “malleation string”), and produces a new, mauled ciphertext C′. The function
MaulΠplain(M,S)→M′ computes the equivalent malleation over some plaintext, producing a plaintext (or,
in some cases, a set of possible plaintexts2). The essential property we require from these functions is
that the plaintext malleation function should “predict” the effects of encrypting a plaintext M, mauling the
resulting ciphertext, then subsequently decrypting the result. For some typical encryption schemes, these
functions can be simple: for example, a simple stream cipher can be realized by defining both functions to
be bitwise exclusive-OR. However, malleation functions may also implement features such as truncation or
more sophisticated editing, which could imply a complex and structured malleation string.

Building block: theory solvers. Our techniques make use of efficient theory solvers, such as SAT and
Satisfiability Modulo Theories (SMT) [stp, dMB08]. SAT solvers apply a variety of tactics to identify or rule
out a satisfying assignment to a boolean constraint formula, while SMT adds a broader range of theories and
tactics such as integer arithmetic and string logic. While in principle our techniques can be extended to work
with either system, in practice we will focus our techniques to use quantifier-free operations over bitvectors (a
theory that easily reduces to SAT). In later sections, we will show how to realize these techniques efficiently
using concrete SAT and SMT packages.

Anatomy of our attack algorithm. The essential idea in our approach is to model each phase of a chosen
ciphertext attack as a constraint satisfaction problem. At the highest level, we begin by devising an initial
constraint formula that defines the known constraints on (and hence, implicitly, a set of candidates for) the
unknown plaintext M∗. At each phase of the attack, we will use our current knowledge of these constraints to
derive an experiment that, when executed against the real decryption oracle, allows us to “rule out” some
non-zero number of plaintext candidates. Given the result of a concrete experiment, we can then update our
constraint formula using the new information, and continue the attack procedure until no further candidates
can be eliminated.

In the section that follows, we use M0,M1 to represent the partition of messages induced by a malleation
string. M0 and M1 represent concrete plaintext message assignments chosen by the solver, members of the
respective partitions.

In our setting, each experiment comprises a concrete malleation string S that can be applied to the target
ciphertext C∗ using the ciphertext malleation function. The technical challenge is to programmatically derive
such a malleation string that (a) represents a meaningful input to the malleation functions, and (b) ensures

2This captures the fact that, in some encryption schemes (e.g., CBC-mode encryption), malleation produces key-dependent effects
on the decrypted message. We discuss and formalize this in §2.

that the results of an experiment will be useful, i.e., that the attack will make progress by eliminating some
candidate plaintexts.

The process of deriving the malleation string represents the core of our technical work. It requires our
algorithms to reason deeply over both the plaintext malleation function and the format checking function
in combination. To realize this, we rely heavily on theory solvers, together with some novel optimization
techniques.

Attack intuition. We now explain the full attack in greater detail. To provide a clear exposition, we will begin
this discussion by discussing a simplified and inefficient precursor algorithm that we will later optimize to
produce our main result. Our discussion below will make a significant simplifying assumption that we will
later remove: namely, that Maulplain will output exactly one plaintext for any given input. This assumption is
compatible with common encryption schemes such as stream ciphers, but will not be valid for other schemes
where malleation can produce key-dependent effects following decryption.

We now describe the basic steps of our first attack algorithm.

Step 0: Initialization. At the beginning of the attack, our attack algorithm receives as input a target ciphertext
C∗, as well as a machine-readable description of the functions F and Maulplain. We require that these
descriptions be provided in the form of a constraint formula that a theory solver can reason over. To
initialize the attack procedure, the user may also provide an initial constraint predicate G0 : {0,1}n→{0,1}
that expresses all known constraints over the value of M∗.3 (If we have no a priori knowledge about the
distribution of M∗, we can set this initial formula G0 to be trivial).

Beginning with i = 1, the attack now proceeds to iterate over the following two steps:

Step 1: Identify an experiment. Let Gi−1 be the current set of known constraints on M∗. In this first step, we
employ the solver to identify a malleation instruction string S as well as a pair of distinct plaintexts M0,M1
that each satisfy the constraints of Gi−1. Our goal is to identify an assignment for (S,M0,M1) that induces
the following specific properties on M0,M1: namely, that each message in the pair, when mauled using S
and then evaluated using the format checking function, results in a distinct output from F. Expressed more
concretely, we require the solver to identify an assignment that satisfies the following constraint formula:

Gi−1(M0) = Gi−1(M1) = 1 ∧ (1)

∀b ∈ {0,1} : F(Maulplain(Mb,S)) = b

If the solver is unable to derive a satisfying assignment to this formula, we conclude the attack and proceed
to Step (3). Otherwise we extract a concrete satisfying assignment for S, assign this value to S, and proceed
to the next step.

Step 2: Query the oracle; update the constraints. Given a concrete malleation string S, we now apply the
ciphertext malleation function to compute an experiment ciphertext C←Maulciph(C

∗,S), and submit C to the
decryption oracle. When the oracle produces a concrete result r ∈ {0,1}, we compute an updated constraint
formula Gi such that for each input M, it holds that:

Gi(M)← (Gi−1(M) ∧ F(Maulplain(M,S)) = r)

If possible, we can now ask the solver to simplify the formula Gi by eliminating redundant constraints in the
underlying representation. We now set i← i+1 and return to Step (1).

3Here n represents an upper bound on the length of the plaintext M∗.

M0
<latexit sha1_base64="M1BMgW9yC0sfoEjw99b+gXKVwgU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj23Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH91XkGI=</latexit>

M⇤
<latexit sha1_base64="5zR0Fbppn5rAnb6ymtZ37sXxhWA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXrwIEc0DkjXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6387S8srq2npuI7+5tb2zW9jbr5so0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhtcTv/HEtRGResBRzP2Q9pXoCUbRSve3j6edQtEtuVOQReJlpAgZqp3CV7sbsSTkCpmkxrQ8N0Y/pRoFk3ycbyeGx5QNaZ+3LFU05MZPp6eOybFVuqQXaVsKyVT9PZHS0JhRGNjOkOLAzHsT8T+vlWDv0k+FihPkis0W9RJJMCKTv0lXaM5QjiyhTAt7K2EDqilDm07ehuDNv7xI6uWSd1Yq350XK1dZHDk4hCM4AQ8uoAI3UIUaMOjDM7zCmyOdF+fd+Zi1LjnZzAH8gfP5A79MjXE=</latexit>

M1
<latexit sha1_base64="qrzZLPbzWZoWeKKFcxmBY7acdOw=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj2vVyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH97bkGM=</latexit>

M0
<latexit sha1_base64="M1BMgW9yC0sfoEjw99b+gXKVwgU=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+wDWWznbRLN5uwuxFK6L/w4kERr/4bb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbqZ+6wmV5rF8MOME/YgOJA85o8ZKj1mXUUHuJj23Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Nrt4Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/yMyyQ1KNl8UZgKYmIyfZ/0uUJmxNgSyhS3txI2pIoyY0Mq2hC8xZeXSbNa8c4r1fuLcu06j6MAx3ACZ+DBJdTgFurQAAYSnuEV3hztvDjvzse8dcXJZ47gD5zPH91XkGI=</latexit>

M⇤
<latexit sha1_base64="5zR0Fbppn5rAnb6ymtZ37sXxhWA=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBDEQ9iNgh6DXrwIEc0DkjXMTibJkNnZZaZXCEs+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K4ilMOi6387S8srq2npuI7+5tb2zW9jbr5so0YzXWCQj3Qyo4VIoXkOBkjdjzWkYSN4IhtcTv/HEtRGResBRzP2Q9pXoCUbRSve3j6edQtEtuVOQReJlpAgZqp3CV7sbsSTkCpmkxrQ8N0Y/pRoFk3ycbyeGx5QNaZ+3LFU05MZPp6eOybFVuqQXaVsKyVT9PZHS0JhRGNjOkOLAzHsT8T+vlWDv0k+FihPkis0W9RJJMCKTv0lXaM5QjiyhTAt7K2EDqilDm07ehuDNv7xI6uWSd1Yq350XK1dZHDk4hCM4AQ8uoAI3UIUaMOjDM7zCmyOdF+fd+Zi1LjnZzAH8gfP5A79MjXE=</latexit>

Gi�1
<latexit sha1_base64="S1j5w+NfiWTdPk8skSfhXhxrrUQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4sSRV0GPRgx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+Oyura+sbm4Wt4vbO7t5+6eCwaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3U791hPXRsTqEccJ9yM6UCIUjKKVWne9TJx7k16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezcyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF77mVBJilyx+aIwlQRjMv2d9IXmDOXYEsq0sLcSNqSaMrQJFW0I3uLLy6RZrXgXlerDZbl2k8dRgGM4gTPw4ApqcA91aACDETzDK7w5ifPivDsf89YVJ585gj9wPn8At6SPKQ==</latexit>

Gi
<latexit sha1_base64="OBeHGUbhgcMPk9H7MrZd2pezA6s=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TxdBnsYhVO6QaBZfoG24EthOFNAoFtsLx7cxvPaHSPJaPZpJgENGh5APOqLGSf9fL+LRXrrhVdw6ySrycVCBHo1f+6vZjlkYoDRNU647nJibIqDKcCZyWuqnGhLIxHWLHUkkj1EE2P3ZKzqzSJ4NY2ZKGzNXfExmNtJ5Eoe2MqBnpZW8m/ud1UjO4DjIuk9SgZItFg1QQE5PZ56TPFTIjJpZQpri9lbARVZQZm0/JhuAtv7xKmrWqd1GtPVxW6jd5HEU4gVM4Bw+uoA730AAfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/26SOtw==</latexit>

Figure 2: Left: illustration of a plaintext candidate space defined by Gi−1, highlighting the two subsets M0,M1 induced by a specific
malleation string S. Right: the candidate space defined by Gi, in which many candidates have been eliminated following an oracle
response b = 1.

Step 3: Attack completion. The attack concludes when the solver is unable to identify a satisfying assignment
in Step (1). In the ideal case, this occurs because the constraint system Gi−1 admits only one possible
candidate plaintext, M∗: when this happens, we can employ the solver to directly recover M∗ and complete
the attack. However, the solver may also fail to find an assignment because no further productive experiment
can be generated, or simply because finding a solution proves computationally intractable. When the solver
conclusively rules out a solution at iteration i = 1 (i.e., prior to issuing any decryption queries) this can be
taken as an indication that a viable attack is not practical using our techniques. Indeed, this feature of our
work can be used to rule out the exploitability of certain systems, even without access to a decryption oracle.
In other cases, the format oracle may admit only partial recovery of M∗. If this occurs, we conclude the attack
by applying the solver to the final constraint formula Gi−1 to extract a human-readable description of the
remaining candidate space (e.g., the bits of M∗ we are able to uniquely recover).

Remark on efficiency. A key feature of the attack described above is that it is guaranteed to make progress at
each round in which the solver is able to find a satisfying assignment to Equation (1). This is fundamental
to the constraint system we construct: our approach forces the solver to ensure that each malleation string
S implicitly partitions the candidate message set into a pair (M0,M1), such that malleation of messages in
either subset by S will produce distinct outputs from the format checking function F. As a consequence of
this, for any possible result from the real-world decryption oracle, the updated constraint formula Gi must
eliminate at least one plaintext candidate that satisfied the previous constraints Gi−1.

While this property ensures progress, it does not imply that the resulting attack will be efficient. In some
cases, the addition of a new constraint will fortuitously rule out a large number of candidate plaintexts. In other
cases, it might only eliminate a single candidate. As a result, there exist worst-case attack scenarios where
the algorithm requires as many queries as there are candidates for M∗, making the approach completely
unworkable for practical message sizes. Addressing this efficiency problem requires us to extend our
approach.

Improving query profitability. We can define the profitability ψ(Gi−1,Gi) of an experimental query by the
number of plaintext candidates that are “ruled out” once an experiment has been executed and the constraint
formula updated. In other words, this value is defined as the number of plaintext candidates that satisfy Gi−1
but do not satisfy Gi. The main limitation of our first attack strategy is that it does not seek to optimize each
experiment to maximize query profitability.

To address this concern, let us consider a more general description of our attack strategy, which we
illustrate in Figure 2. At the ith iteration, we wish to identify a malleation string S that defines two disjoint
subsets M0,M1 of the current candidate plaintext space, such that for any concrete oracle result r ∈ {0,1}
and ∀M ∈Mr it holds that F(Maulplain(M,S)) = r. In this description, any concrete decryption oracle result

must “rule out” (at a minimum) every plaintext contained in the subset M1−r. This sets ψ(Gi−1,Gi) equal to
the cardinality of M1−r.

To increase the profitability of a given query, it is therefore necessary to maximize the size of M1−r. Of
course, since we do not know the value r prior to issuing a decryption oracle query, the obvious strategy is to
find S such that both M0,M1 are as large as possible. Put slightly differently, we wish to find an experiment
S that maximizes the cardinality of the smaller subset in the pair. The result of this optimization is a greedy
algorithm that will seek to eliminate the largest number of candidates with each query.

Technical challenge: model count optimization. While our new formulation is conceptually simple,
actually realizing it involves overcoming serious limitations in current theory solvers. This is due to the fact
that, while several production solvers provide optimization capabilities [dMB08], these heuristics optimize
for the value of specific variables. Our requirement is subtly different: we wish to solve for a candidate S that
maximizes the number of satisfying solutions for the variables M0,M1 in Equation (1).4

Unfortunately, this problem is both theoretically and practically challenging. Indeed, merely counting
the number of satisfying assignments to a constraint formula is known to be asymptotically harder than
SAT [Val79, Tod91], and practical counting algorithms solutions [BL99, BJP00] tend to perform poorly when
the combinatorial space is large and the satisfying assignments are sparsely distributed throughout the space,
a condition that is likely in our setting. The specific optimization problem our techniques require proves to be
even harder. Indeed, only recently was such a problem formalized, under the name Max#SAT [FRS17].

Approximating Max#SAT. While an exact solution to Max#SAT is NPPP-complete [FRS17, Tod91], several
works have explored approximate solutions to this and related counting problems [GSS06, CMV16, SM19, FRS17].
One powerful class of approximate counting techniques, inspired by the theoretical work of Valiant and
Vazirani [VV86] and Stockmeyer [Sto83], uses a SAT oracle as follows: given a constraint formula F over
some bitvector T , add to F a series of s random parity constraints, each computed over the bits of T . For
j = 1 to s, the jth parity constraint can be viewed as requiring that H j(T) = 1 where H j : {0,1}|T |→{0,1} is
a universal hash function. Intuitively, each additional constraint reduces the number of satisfying assignments
approximately by half, independently of the underlying distribution of valid solutions. The implication is
as follows: if a satisfying assigment to the enhanced formula exists, we should be convinced (probabilisti-
cally) that the original formula is likely to possess on the order of 2s satisfying assignments. Subsequently,
researchers in the model counting community showed that with some refinement, these approximate counting
strategies can be used to approximate Max#SAT [FRS17], although with an efficiency that is substantially
below what we require for an efficient attack.

To apply this technique efficiently to our attack, we develop a custom count-optimization procedure,
and apply it to the attack strategy given in the previous section. At the start of each iteration, we begin
by conjecturing a candidate set size 2s for some non-negative integer s, and then we query the solver for a
solution to (S,M0,M1) in which approximately 2s solutions can be found for each of the abstract bitvectors
M0,M1. This involves modifying the equation of Step (1) by adding s random parity constraints to each of
the abstract representations of M0 and M1. We now repeatedly query the solver on variants of this query,
with increasing (resp. decreasing) values of s, until we have identified the maximum value of s that results
in a satisfying assignment.5 For a sufficiently high value of s, this approach effectively eliminates many
“unprofitable” malleation string candidates and thus significantly improves the efficiency of the attack.

4Some experimental SMT implementations provide logic for reasoning about the cardinality of small sets, these strategies scale
poorly to the large sets we need to reason about in practical format oracle attacks.

5Note that s = 0 represents the original constraint formula, and so a failure to find a satisfying assignment at this size triggers the
conclusion of the attack.

The main weakness of this approach stems from the probabilistic nature of the approximation algorithm.
Even when 2s satisfying assignments exist for M0,M1, the solver may deem the extended formula unsatisfiable
with relatively high probability. In our approach, this false-negative will cause the algorithm to reduce the size
of s, potentially resulting in the selection of a less-profitable experiment S. Following Gomes et al. [GSS06],
we are able to substantially improve our certainty by conducting t trials within each query, accepting iff at
least d(1

2 +δ)te trials are satisfied, where δ is an adjustable tolerance parameter.
Unlike Gomes et al. (who only consider model counting), our optimization approach does not allow us to

perform these trials over the course of several distinct solver queries, since each trial in our optimization must
be bound to the same abstract malleation string S. Thus all trials must be contained within a single extended
constraint formula in order to ensure a specific optimal S is found. This added complexity requires us to
carefully tune the parameters of our attack, in order to trade query profitability against solver runtime. We
discuss these tradeoffs in more detail in §5.

Putting it all together. The presentation above is intended to provide the reader with a simplified description
of our techniques. However, this discussion does not convey most challenging aspect of our work: namely,
the difficulty of implementing our techniques and making them practical, particularly within the limitations
of existing theory solvers. Achieving the experimental results we present in this work represents the result of
months of software engineering effort and manual algorithm optimization. We discuss these challenges more
deeply in §4.

Using our techniques we were able to re-discover both well known and entirely novel chosen ciphertext
attacks, all at a query efficiency nearly identical to the (optimal in expectation) human-implemented attacks.
Our experiments not only validate the techniques we describe in this work, but they also illustrate several
possible avenues for further optimization, both in our algorithms and in the underlying SMT/SAT solver
packages. Our hope is that these results will inspire further advances in the theory solving community.

2 Preliminaries

Notation. Let λ be a security parameter. We will use A‖B to denote string concatenation, and |A| to indicate
the length of a string A in bits. Given bitstrings A,B of unequal length, we will denote A⊕B to be the bitwise
exclusive-or of A and B, where the shorter of the two strings is padded on the right side to the length of the
longer. When describing constraint formulae, we will use standard typeface to refer to abstract variables, and
boldface to indicate a concrete variable.

2.1 Encryption Schemes and Malleability

Our attacks operate assume that the target system is using a malleable symmetric encryption scheme. We
now provide definitions for these terms.

Definition 1 (Symmetric encryption) A symmetric encryption scheme Π is a tuple of algorithms

(KeyGen,Encrypt,Decrypt)

where KeyGen(1λ) generates a key, the probabilistic algorithm EncryptK(M) encrypts a plaintext M under
key K to produce a ciphertext C, and the deterministic algorithm DecryptK(C) decrypts C to produce a
plaintext or the distinguished error symbol ⊥. We use M to denote the set of valid plaintexts accepted by a
scheme, and C to denote the set of valid ciphertexts.

Our techniques exploit encryption schemes that are malleable, meaning that there exists an efficient ciphertext
transformation that induces a predictable effect upon decryption. To derive our attack, we require the user to
provide us with a machine-readable description of the malleation features of the scheme.

2.1.1 Malleation Functions

The description of malleation functions is given in the form of two functions. The first takes as input a
ciphertext along with an opaque data structure that we refer to as a malleation instruction string, and outputs
a mauled ciphertext. The second function performs the analogous function on a plaintext. We require that
the following intuitive relationship hold between these functions: given a plaintext M and an instruction
string, the plaintext malleation function should “predict” the effect of mauling (and subsequently decrypting)
a ciphertext that encrypts M.

Definition 2 (Malleation functions) The malleation functions for a symmetric encryption scheme Π com-
prise a pair of efficiently-computable functions (MaulΠciph,MaulΠplain) with the following properties. Let M ,C
be the plaintext (resp. ciphertext) space of Π. The function MaulΠciph : C ×{0,1}∗→ C ∪{⊥} takes as input
a ciphertext and a malleation instruction string. It outputs a ciphertext or the distinguished error symbol ⊥.
The function MaulΠplain : M ×{0,1}∗→ M̂ , on input a plaintext and a malleation instruction string, outputs

a set M̂ ⊆M ∪ {⊥} of possible plaintexts (augmented with the decryption error symbol ⊥). The structure
of the malleation string is entirely defined by these functions; since our attack algorithms will reason over the
functions themselves, we treat S itself as an opaque value.

A malleation function pair must correctly represent the effect of mauling ciphertexts produced by the
encryption scheme. This is captured by the following notion:

We say that (MaulΠciph,MaulΠplain) describes the malleability features of Π if malleation of a ciphertext always
induces the expected effect on a plaintext following encryption, malleation and decryption. More formally,
∀K ∈ KeyGen(1λ),∀C ∈ C ,∀S ∈ {0,1}∗ the following relation must hold whenever MaulΠciph(C,S) 6=⊥:

DecryptK(MaulΠciph(C,S)) ∈MaulΠplain(DecryptK(C),S)

Simple stream ciphers (no truncation). Stream ciphers employ a pseudorandom generator to produce a
keystream that is combined with the plaintext using bitwise exclusive-OR. We will consider an abstract stream
cipher Πstream, with the caveat that our formulation omits many practical details such as the generation and
delivery of nonces/IVs/state (in this formulation we treat these details as external to the ciphertext). We define
the functions MaulΠstream

plain and MaulΠstream
ciph to each be the bitwise exclusive-OR function.

Stream ciphers with truncation. Many stream ciphers permit plaintext truncation, in which bits of cipher-
text (resp. plaintext) are removed from either the beginning or end of the plaintext string.6 We can define a
malleation function MaulΠtstream

ciph (resp. MaulΠtstream
plain) that parses S as S′‖l‖r, where l,r ≥ 0 are each decoded

as an integer indicating the desired amount to truncate from the high-order (resp. low-order) bits of the
plaintext. Truncation is not possible for all stream ciphers, and specific realizations have different limitations.
We discuss these in §4.
Remarks. Note that the function MaulΠciph outputs a single ciphertext. By contrast, the plaintext malleation
function MaulΠplain outputs a set of possible decryption results. This captures the possibility that certain forms

6In some stream ciphers, such as CTR-mode encryption, it is possible to truncate one or more blocks from the input by
incrementing the Initialization Vector. Not every stream cipher admits this capability.

of malleation can induce unpredictable key-dependent effects when ciphertexts are decrypted.7 Finally, we
note that a description of these functions is necessary, but not sufficient for our attacks to work. Malleation
functions can “overfit” an encryption scheme; for example, one can define a trivial MaulΠplain such that for
every possible input, MaulΠplain simply outputs the set M ∪ {⊥}. Similarly, a plaintext malleation function
can be formulated even for schemes that are explicitly non-malleable, such as authenticated encryption modes.
The effectiveness of our attacks depends on both the malleability features of the scheme, and the precision
with which the malleation functions describe them.

CTR and OFB mode. CTR and OFB modes use an `-bit block cipher to implement a stream cipher. The
modes can therefore be described using using the functions above. However, in the case where an explicit IV
is transmitted with the ciphertext, we can define a slightly more powerful malleation function that removes a
multiple of ` bits from the left side of the ciphertext (resp. plaintext).

CBC mode. In CBC mode encryption, an alteration to the ith ciphertext block will cause meaningful
alterations in plaintext block i+ 1 following decryption, while plaintext block i will be replaced with
pseudorandom output (excepting for the special case of the Initialization Vector, i = 0). To describe this
scheme, the function MaulΠCBC

plain can be defined as outputting a list of every possible plaintext candidate that
results from such a malleation. In §4 we describe a more efficient encoding of this output.

2.2 Theory Solvers and Model Counting

Solvers take as input a system of constraints over a set of variables, and attempt to derive (or rule out the
existence of) a satisfying solution. Modern SAT solvers generally rely on two main families of theorem
solver: DPLL [DP60, DLL62] and Stochastic Local Search [HS04]. Satisfiability Modulo Theories (SMT)
solvers expand the language of SAT to include predicates in first-order logic, enabling the use of several
theory solvers ranging from string logic to integer logic. Our prototype implementation uses a quantifier-
free bitvector (QFBV) theory solver. In practice, this is implemented using SMT with a SAT solver as a
back-end.8 For the purposes of describing our algorithms, we specify a query to the solver by the subroutine
SATSolve{(A1, . . . ,AN) : G} where A1, . . . ,AN each represent abstract bitvectors of some defined length, and
G is a constraint formula over these variables. The response from this call provides one of three possible
results: (1) sat, as well as a concrete satisfying solution (A1 . . . ,AN), (2) the distinguished response unsat,
or (3) the error unknown.

Model counting and Max#SAT. While SAT determines the existence of a single satisfying assignment, a more
general variant of the problem, #SAT, determines the number of satisfying assignments. 9 In the literature
this problem is known as model counting [Val79, GSS06, BL99, BJP00, SBB+04, WS05, BDP03, CFMV15].

In this work we make use of a specific optimization variant of the model count problem, which was
formulated as Max#SAT by Fremont et al. [FRS17]. In a streamlined form, the problem can defined as
follows: given a boolean formula φ(X ,Y) over abstract bitvectors X and Y , find a concrete assignment to X
that maximizes the number of possible satisfying assignments to Y .10 We will make use of this abstraction in

7A simple example of this phenomenon occurs with CBC-mode encrypted ciphertext, where a single-bit change in the ciphertext
can result in pseudorandom output within the corresponding block of plaintext.

8In principle our attacks can be extended to other theories, with some additional work that we describe later in this section.
9A variant known as #SMT generalizes model counting to SMT [CDM17]. Since in this work we focus primarily on problems

with discrete solutions (e.g., formulae over boolean and fixed-size integer variables) the #SMT problem can easily be viewed as a
slightly modified version of #SAT.

10The formulation of Fremont et al. [FRS17] includes an additional set of boolean variables Z that must also be satisfied, but is not
part of the optimization problem. We omit this term because it is not used by our algorithms. Note as well that, unlike Fremont et al.,
our algorithms are not concerned with the actual count of solutions for Y .

our attacks, with realizations discussed in §3.2. Specifically, we define our main attack algorithm in terms of
a generic Max#SAT oracle that has the following interface:

Max#SAT(φ,X ,Y)→ X

Fremont et al. provide an algorithm called MaxCount that approximately solves the Max#SAT problem,
using several approximate sampling and counting algorithms [CMV16, CFM+14, CFMV15] as an ingredient.
Our main attack algorithm can be implemented using MaxCount directly. However, using this algorithm
in practice is extremely computationally expensive. To address this, we develop a heuristic substitute that
substantially improves the efficiency of our attacks.

2.3 Format Checking Functions

Our attacks assume a decryption oracle that, on input a ciphertext C, computes and returns F(DecryptK(C)).
We refer to the function F : M ∪ {⊥}→ {0,1} as a format checking function. Our techniques place two
minimum requirements on this function: (1) the function F must be efficiently-computable, and (2) the user
must supply a machine-readable implementation of F, expressed as a constraint formula that a theory solver
can reason over.

Function descriptions. Our attacks employ SAT and SMT solvers. Because our solver will ultimately need
to reason over the implementation of F, we require that its description be provided in a compatible form. For
SAT solvers this typically implies conjunctive normal form (CNF) or equivalent notation. SMT solvers allow
a richer description using a variety of first-order logic predicates, which may involve variable types such
as integers, real numbers and strings. Several industrial SMT solvers additionally provide an interface that
allows functions to be described in a high-level languages such as Python. Although our techniques primarily
rely on a SAT solver as the back-end for our system, we employ Microsoft’s Z3 SMT solver [dMB08]
as our primary user-facing interface, in part because it provides a more flexible interface with support for
various input formats. As a result, the description of F provided to our tools can be given as a Python
script, SMT-LIB file [BFT16], or even as a boolean circuit description. Phan et al. [PBP+17] demonstrated
techniques for deriving such constraint systems automatically from high-level languages such as Java which
could be combined with our work.

3 Constructions

In this section we present a high-level description of our main contribution: a set of algorithms for program-
matically conducting a format oracle attack. First, we provide pseudocode for our main attack algorithm,
which uses a generic Max#SAT oracle as its key ingredient. This first algorithm can be realized approximately
using techniques such as the MaxCount algorithm of Fremont et al. [FRS17], although this realization will
come at a significant cost to practical performance. To reduce this cost and make our attacks practical, we next
describe a concrete replacement algorithm that can be used in place of a Max#SAT solver. The combination
of these algorithms forms the basis for our tool Delphinium.

3.1 Main Algorithm

Algorithm 1 presents our main attack algorithm, which we name DeriveAttack. This algorithm is parameterized
by three subroutines: (1) a subroutine for solving the Max#SAT problem, (2) an implementation of the
ciphertext malleation function Maulciph, and (3) a decryption oracle Odec. The algorithm takes as input a

target ciphertext C∗, constraint formulae for the functions Maulplain,F, and an (optional) initial constraint
system G0 that defines known constraints on M∗.

This algorithm largely follows the intuition described in §1.1. At each iteration, it derives a concrete
malleation string S using the Max#SAT oracle in order to find an assignment that maximizes the number
of solutions to the abstract bitvector M0‖M1. It then mauls C∗ using this malleation string, and queries the
decryption oracle Odec on the result. It terminates by outputting a (possibly incomplete) description of M∗.
This final output is determined by a helper subroutine SolveForPlaintext that uses the solver to find a unique
solution for M∗ given a constraint formula, or else to produce a human-readable description of the resulting
model.11

Theorem 3.1 Given an exact Max#SAT oracle, Algorithm 1 maximizes in expectation the number of candidate
plaintext messages ruled out at each iteration.

A proof of Theorem 3.1 appears in Appendix A.

Remarks. Note that a greedy adaptive attack may not be globally optimal. It is hypothetically possible to
modify the algorithm, allowing it to reason over multiple oracle queries simultaneously (in fact, Phan et al.
discuss such a generalization in their side channel work [PBP+17]). We find that this is computationally
infeasible in practice. Finally, note also that our proof assumes an exact Max#SAT oracle. In practice, this
will likely be realized with a probably approximately correct instantiation, causing the resulting attack to be a
probably approximately greedy attack. Appendices B and C describe example formats for which the greedy
attack is provably optimal and non-optimal, respectively.

3.2 Realizing the Max#SAT Oracle

Realizing Algorithm 1 in practice requires that we provide a concrete subroutine that can solve specific
instances of Max#SAT. We now address techniques for approximately solving this problem.

Realization from Fremont et al. Fremont et al. [FRS17] propose an approximate algorithm called MaxCount
that can be used to instantiate our attack algorithms. The MaxCount algorithm is based on repeated application
of approximate counting and sampling algorithms [CMV16, CFM+14, CFMV15], which can in turn be
realized using a general SAT solver. While MaxCount is approximate, it can be tuned to provide a high degree
of accuracy that is likely to be effective for our attacks. Unfortunately, the Fremont et al. solution has two
significant downsides. First, to achieve the discussed bounds requires parameter selections which induce
infeasible queries to the underlying SAT solver. Fremont et al. address this by implementing their algorithm
with substantially reduced parameters, for which they demonstrate good empirical performance. However,
even the reduced Fremont et al. approach still requires numerous calls to a solver. Even conducting a single
approximate count of solutions to the constraint systems in our experiments could take hours to days, and
such counts might occur several times in a single execution of MaxCount.

A more efficient realization. To improve the efficiency of our implementations, we instead realize a more
efficient optimization algorithm we name FastSample. This algorithm can be used in place of the Max#SAT
subroutine calls in Algorithm 1. Our algorithm can be viewed as being a subset of the full MaxCount algorithm
of Fremont et al.

The FastSample algorithm operates over a constraint system φ(S,M0‖M1), and returns a concrete value
S that (heuristically) maximizes the number of solutions for the bitvectors M0,M1. It does this by first

11Our concrete implementation in §4 uses the solver to enumerate each of the known and unknown bits of M∗.

conjecturing some value s, and sampling a series of 2s low-density parity hash functions of the form
H : {0,1}n→{0,1} (where n is the maximum length of M0 or M1). It then modifies the constraint system
by adding s such hash function constraints to each of M0,M1, and asking the solver to find a solution to the
modified constraint system. If a solution is found (resp. not found) for a specific s, FastSample adjusts the
size of s upwards (resp. downwards) until it has found the maximal value of s that produces a satisfying
assignment, or else is unable to find an assignment even at s = 0.

The goal of this approach is to identify a malleation string S as well as the largest integer s such that at
least 2s solutions can be found for each of M0,M1. To improve the accuracy of this approach, we employ a
technique originally pioneered by Gomes et al. [GSS06] and modify each SAT query to include multiple
trials of this form, such that only a fraction δ+1/2 of the trials must succeed in order for S to be considered
valid. The parameters t,δ are adjustable; we evaluate candidate values in §5.

Unlike Fremont et al. (at least, when implemented at full parameters) our algorithm does not constitute
a sound realization of a Max#SAT solver. However, empirically we find that our attacks using FastSample
produce query counts that are close to the optimal possible attack. More critically, our approach is capable of
identifying a candidate malleation string in seconds on the constraint systems we encountered during our
experiments.

Additional algorithms. Our algorithms employ an abstract subroutine AdjustSize that is responsible for
updating the conjectured set size s in our optimization loop:

(bcontinue,s′,Z′)← AdjustSize(bsuccess,n,s,Z)

The input bit bsuccess indicates whether or not a solution was found for a conjectured size s, while n
provides a known upper-bound. The history string Z ∈ {0,1}∗ allows the routine to record state between
consecutive calls. AdjustSize outputs a bit bcontinue indicating whether the attack should attempt to find a new
solution, as well as an updated set size s′. If AdjustSize is called with s =⊥, then s′ is set to an initial set size
to test, bcontinue = TRUE, and Z′ = Z.

Finally, the subroutine ParityConstraint(n, l) constructs l randomized parity constraints of weight k over a
bitvector b = b1b2 . . .bn where k≤ n denotes the number of bit indices included in a parity constraint (i.e. the
parity constraints come from a family of functions H(b) =

⊕n
i=1 bi ·ai where a ∈ {0,1}n and the hamming

weight of a is k).

3.3 Attacks with Knowledge of the Plaintext Distribution

The attack as presented in the previous section takes an initial constraint formula G0 that represents the
attacker’s initial knowledge of the structure of M∗. This formula can be left empty, however in a typical case
where the ciphertext contains a known-valid message (i.e., F(M∗) = 1), the user can set G0← F. In some
cases the user may know significantly more detailed information about the distribution of M∗: for example,
that it uses a specific format such as e.g., UTF-7 or JSON. This sort of auxiliary data can be encoded into G0
in order to improve the runtime of the attack.

Optimization: weighting the plaintext distribution. Our basic attack algorithm is designed to identify the
largest subset of messages to be eliminated at the ith query. From an optimization perspective, this strategy
assumes that every valid plaintext admitted by Gi is equally likely, and thus the most efficient path to finding
M∗ is to simply maximize the number of plaintext candidates eliminated. This may not produce an optimal
attack. In Appendix D we discuss a more nuanced approach that allows the user to weight plaintexts by their
probability of occurring in M∗.

Algorithm 1: DeriveAttack
Input: Machine-readable description of F,Maulplain; target ciphertext C∗; initial constraints G0;
Output: M∗ or a model of the remaining plaintext candidates
Procedure:
i← 1;
do

Define φ(S,M0‖M1) as
[
Gi−1(M0) = 1 ∧ Gi−1(M1) = 1 ∧ F(Maulplain(M0,S)) = 0 ∧

F(Maulplain(M1,S)) = 1
]
;

S← Max#SAT (φ, S, M0‖M1);
if S 6=⊥ then

r← Odec(Maulciph(C
∗,S));

Define Gi(M) as
[
Gi−1(M)∧ (F(Maulplain(M,S)) = r)

]
;

i← i+1;

while S 6=⊥;
return SolveForPlaintext(Gi);

Algorithm 2: FastSample
Input: φ a constraint system over abstract bitvectors S,M0‖M1; n the maximum length of (each of)

M0,M1; m the maximum length of S; t number of trials; δ fraction of trials that must succeed
Output: S ∈ {0,1}m

Procedure:
(bcontinue,s,Z)← AdjustSize(FALSE,n,⊥,ε);
// define t symbolic copies of the abstract bitvectors M0,M1, and a new

constraint system φt

{M1,0, . . . ,Mt,0}←M0;
{M1,1, . . . ,Mt,1}←M1;
Define φt(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1}) as φ(S,M1,0‖M1,1)∧·· ·∧φ(S,Mt,0‖Mt,1);
while bcontinue do

// Construct 2t s-bit parity constraints
for i← 1 to t do

Hi,0← ParityConstraint (n,s);
Hi,1← ParityConstraint (n,s)

// Query the solver
S← SATSolve{(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1}) :

∃R0 ⊆ [1, t] : |R0| ≥ d(0.5+δ)te,∀ j ∈ R0 : H j,0(M j,0) = 1 ∧
∃R1 ⊆ [1, t] : |R1| ≥ d(0.5+δ)te,∀ j ∈ R1 : H j,1(M j,1) = 1 ∧
φt(S,{M1,0, . . . ,Mt,0},{M1,1, . . . ,Mt,1})};

if S == unsat then
bsuccess = FALSE;

(bcontinue,s,Z)← AdjustSize(bsuccess,n,s,Z);
return S

SMT/SAT solver

Attack Orchestrator

Target interface
(shim)

Target system

Ciphertext
malleator

oracle
queries

responses

Attack tooling

target
ciphertext,
functions,
params

plaintext

Compatibility layer

Figure 3: Architecture of Delphinium.

4 Prototype Implementation

We now describe our prototype implementation, which we call Delphinium. We designed Delphinium as
an extensible toolkit that can be used by practitioners to evaluate and exploit real format oracles.

4.1 Architecture Overview

Figure 3 illustrates the architecture of Delphinium. The software comprises several components:

Attack orchestrator. This central component is responsible for executing the core algorithms of the attack,
keeping state, and initiating queries to both the decryption oracle and SMT/SAT solver. It takes the target
ciphertext C∗ and a description of the functions F and Maulplain as well as the attack parameters t,δ as input,
and outputs the recovered plaintext.

SMT/SAT solver. Our implementation supports multiple SMT solver frameworks (STP [stp] and Z3 [dMB08])
via a custom compatibility layer that we developed for our tool. To improve performance, the orchestrator
may launch multiple parallel instances of this solver.

In addition to these core components, the system incorporates two user-supplied modules, which can be
customized for a specific target:

Ciphertext malleator. This module provides a working implementation of the malleation function MaulΠciph.
We realize this module as a Python program, but it can be implemented as any executable compatible with
the expected interface.12

Target interface (shim). This module is responsible for formatting and transmitting decryption queries to
the target system. It is designed as a user-supplied module in recognition of the fact that this portion will
need to be customized for specific target systems and communication channels.

As part of our prototype implementation, we provide working examples for each of these modules, as
well as a test harness to evaluate attacks locally.

4.2 Implementation Details

Realizing our algorithms in a practical tool required us to solve a number of challenging engineering problems
and to navigate limitations of existing SAT/SMT solvers.

12The interface requires input of a ciphertext and a malleation string, with output the mauled ciphertext.

Test Harness. For our experiments in §5 we developed a test harness to implement the Ciphertext Malleator
and Target Interface shim. This test harness implements the code for mauling and decrypting M∗ locally
using a given malleation string S.

Selecting SAT and SMT solvers. In the course of this work we evaluated several SMT and SAT solvers,
including Z3 [dMB08], Boolector [NPWB18], STP [stp] and CryptoMiniSAT [SNC09] (henceforth CMS).
In developing Delphinium we discovered and either fixed or worked with maintainers to fix various software
issues in these libraries. Fixing these issues was a necessary step, albeit one which hindered our software
development significantly and impacted our ability to run end-to-end tests.

We determined that each package offers significant performance and functionality tradeoffs. Z3 has
the most complete feature set, tooling, and support, and thus was our starting point. Unfortunately, Z3 has
one critical disadvantage: the default SAT solver (MiniSAT [min]) does not by default perform Gaussian
elimination of exclusive-OR gates. The conversion required to handle these gates produces an exponential
increase in formula complexity, which renders our model counting techniques intractable even at modest
parameters. Boolector is optimized for bitvector operations, but was significantly less usable due to software
issues particularly pertaining to the Python bindings.

Combining Z3 and CMS via a CNF bridge. To improve performance, we adopted CMS, which has been

used extensively in the model counting literature [SNC09] due to its ability to simplify exclusive-OR clauses.
CMS is natively supported by the STP SMT solver, which provides powerful constraint simplification routines.
Unfortunately, our experiments with STP exposed a number of other performance limitations, as well as
intermittent bugs in formulae with large (> 64 bit) bitvectors. As a compromise, we adopted a hybrid model
that uses Z3 to periodically simplify the constraint system and generate partial CNF files for CMS to reason
over; we subsequently edit these files directly to add exclusive-OR gates for model counting, and to include
new constraints derived from decryption oracle queries. We note that this approach is suboptimal from a
performance perspective, and that there is still room for performance improvement.13 Nonetheless, we found
that it systematically outperformed the tested alternatives.

CNF manipulation. In order to aid development of Delphinium, we developed tools for manipulating both

textual CNF files and bespoke Python CNF objects. We include these tools in our contribution for general
use, as the DIMACS CNF format is widely used in SAT/SMT work. These tools include efficiently adding
exclusive-OR gates to the “CNFXOR” files which CMS supports, and adding translation layers which allow
for efficient recovery of DIMACS SAT models for programs interfacing with Z3.

A note on future solver development. The complexity of our constraint formulae uncovered a number of

interesting software bugs in the SMT/SAT solver packages we worked with. In every case, we received
excellent support from the development teams. However, a corrollary of this result is that our techniques may
benefit from significant further optimization by the theory solver research and development community. We
are hopeful that the experimental results presented in this work represent a baseline, and that publication of
work will motivate further performance improvements.

Low-density parity constraints. Our implementation of model counting requires our tool to incorporate
2t s-bit distinct parity functions into each solver query. Each parity constraint comprises an average of n

2
exclusive-ORs (where n is the maximum length of M∗), resulting in a complexity increase of tens to hundreds
of gates in our SAT queries. To address this, we adopted an approach used by several previous model counting

13As future work, we are working to develop native Z3 integration for CMS, which will likely provide substantially improved
performance.

works [ZCSE16, EGSS14]: using low-density parity functions. Each such function of these samples k random
bits of the input string, with k centered around log2(n). As a further optimization, we periodically evaluate
the current constraint formula Gi to determine if any bit of the plaintext has been fixed. We omit fixed bits
from the input to the parity functions, and reduce both n and k accordingly.

Implementing AdjustSize. Because SAT/SMT queries are computationally expensive, our algorithms can
benefit from an optimization strategy that minimizes the number of sequential queries required to maximize
the value s.

One optimization is to use a logarithmic binary search procedure to increase (resp. decrease) s. Unfortu-
nately, our experiments show that the runtime efficiency gain from binary search is not clearly logarithmic,
due to the fact that queries which are closer to the “actual” set size require the most solver time, and binary
search spends many queries close to the target size. Moreover, this search must be carefully tuned to deal
with the possibility of false negatives that can occur as a result of the probabilistic model counting procedure.

To avoid this runtime overhead, we employ a parallelization strategy to explore many close values of
s simultaneously. To do this, we create a distinct solver instance for each of a “window” of sequential
values (s1, . . . ,sN) and execute each of these instances in parallel, selecting the largest satisfied result.14

Describing F. In order for SMT solvers such as Z3 to reason about format checking functions using a theory

of quantifier-free bitvectors, the function must be encoded as operations which are supported by this solver
theory. We considered implementations comprising of bitwise operations, boolean operations, and ternary
conditionals. We use Z3’s interface, which allows our to process tool function descriptions encoded as Python
and SMT-LIB. We also developed experimental tooling to support standard boolean circuit formats.

Describing malleation. To avoid making users re-implement basic functionality, Delphinium provides
built-in support for several malleation functions. These include simple stream ciphers, stream ciphers that
support truncation (from either the left or the right side), and CBC mode encryption. The design of these
malleation functions required substantial extensions to the Delphinium framework.

4.2.1 Implementing Malleation Functions

Truncation. Support for truncation requires Delphinium to support plaintexts of variable length. This
functionality is not natively provided by the bitvector interfaces used in most solvers. We therefore modify
the solver values to encode message length in addition to content. This necessitates changes to the interface
for F. We accomplish this by treating the first log2(n) bits of each bitvector as a length field specifying
how long the message is and by having every implementation of F decode this value prior to evaluating the
plaintext. To properly capture truncation off either end of a message, the malleation bitvector is extended
by 2l̇og2(n) so the lowest order log2(n) bits of the malleation bitvector specify how many bits should be
truncated off the low order bits of the plaintext and the next log2(n) bits specify what should be truncated
from high order bits of the message. For ease of implementation, in some schemes the n bits following
the truncation describe the length field of the plaintext. This allows for easily expressing the exclusive-OR
portion of our malleation without bit-shifting and allows encoding extension. Some schemes, such as stream
ciphers, only enable truncation off one side of the message, and so in this case we add a constraint to the
formula which disallows truncation off the low order bits of a message. This is because trunction off the high

14To avoid the overhead of a fork system call, we arrived at a hybrid implementation in which a Z3 solver instance in one process
exports its representation of the constraints as CNF, which we replicate and pass to many parallel instances of CMS after adding the
appropriate parity constraints for each subset size s. The benefit of this approach is that it avoids performance bottlenecks in CNF
generation caused by exclusive-OR expansion.

order bits would imply a misalignment of the ciphertext with the keystream, causing decryption to produce
effectively randomized plaintext.

Truncation for Block Cipher Modes. In block cipher modes such as CTR, CFB, and OFB, an attacker also
has the ability to increment the nonce and truncate off blocks of ciphertext.15 To capture this capability, in the
malleation function we additionally constrain the malleation string to express truncation off the high order
bits of a message (earlier blocks of ciphertext), provided the number of bits being truncated is a multiple of
the block size.

CBC Mode. In contrast with stream ciphers, MaulΠCBC
plain is not equal to MaulΠCBC

ciph and moreover MaulΠCBC
plain

is significantly more complex. In CBC mode, decryption of a ciphertext block Ci is defined as Pi =
Deck(Ci)⊕Ci−1 where Ci−1 denotes the previous ciphertext block. Since the block Ci is given directly to a
block cipher, any implementation must account for the the fact that modification of the block Ci creates an
unpredictable effect on the output Pi, effectively randomizing it via the block cipher.

For a solver to reason over such an effect on the plaintext output, we would need to include constraint
clauses corresponding to encryption and decryption, i.e. boolean operations implementing symmetric schemes
like AES. To avoid this significant overhead, we instead modify the interface of MaulΠCBC

plain to output two
abstract bitvectors (M,Mask). Mask represents a mask string: any bit j where Mask[j] = 1 is viewed as a
wildcard in the message vector M. When Mask[j] = 0, the value of the output message is equal to M[j] at that
position, and when Mask[i] = 1 the value at position M[j] must be viewed as unconstrained. This requires
that we modify F to take (M,Mask) as input. The modified F is able to produce a third value in addition to
true and false. This new output value indicates that the format check cannot assign a definite true/false value
on this input, due to the uncertainty created by the unconstrained bits.16 Realizing this formulation requires
only minor implementation changes to our core algorithms.

Exclusive-OR and Truncation for CBC. With CBC mode decryption, manipulating a preceding ciphertext
block Ci−1 produces a predictable exclusive-OR in the plaintext block Pi. A message that has been encrypted
with a block cipher can also be truncated, provided that truncation is done in multiples of the block size.
Therefore, we define malleability for CBC to capture (1) block-wise truncation (from either the left or
right side of the ciphertext) and (2) exclusive-OR, where exclusive-OR at index i in one block produces the
corresponding bit-flip at index i in the next block of decrypted ciphertext.

Supporting Extension. For encryption schemes that allow truncation off the beginning of a message, an
attacker may also be able to fill in the truncated portion with arbitrary ciphertext, even if this ciphertext may
decrypt to plaintext unknown to them. If the corresponding portion of the plaintext is not examined by the
format check function, the attacker can derive information from such queries (if the portion is checked, the
attacker can only learn the result of the check over random bits by nature of ciphers). Thus, we create an
additional initial constraint for this special case, which allows extension to the ciphertext, limited to where
the corresponding plaintext is not examined by the format function.

4.3 Implementation Considerations

Employing parallelization. Modern SMT and underlying SAT solving strategies are amenable to paralleliza-
tion. Additionally, as a result of our optimizing search for a maximum satisfiable problem, our algorithm

15This is not necessarily possible when dealing with other stream ciphers, due to the keystream being misaligned with the
ciphertext.

16In practice, we implement the output of F as a bitvector of length 2, and modify our algorithms to use 00 and 01 in place of 0
and 1, respectively.

is also highly parallelizable: the inner loop of FastSample can be run with many different values for s
simultaneously. We refer to the width of the range of values for s run in parallel as the window size for
parallelization. In order to effectively allocate cores, we must balance increased window sizes with additional
cores per solver instance. Experientially it is faster to run larger windows with fewer cores per solver.

Efficiently replicating a solver instance is a challenge across SMT implementations (Z3 and STP) which
led to multiple redesigns of our implementation. This is mostly caused by features of the underlying C++
implementations which employ static variables, to which pointers are abstractly operated over in the Python
bindings we use. In order to circumvent these challenges while avoiding the overhead of e.g. the fork system
call, we use a hybrid implementation which involves a Z3 solver instance in a single process which exports
its representation of the constraints as CNF, which we can easily replicate and pass to many parallel instances
of CMS after adding the appropriate exclusive-OR constraints.

Tseitin conversion and CNFXOR. In order to enable parallelization and to avoid the runtime overhead
introduced by STP, we export constraint systems to conjunctive-normal form (CNF) before solving via CMS.
This allows a set of constraints to be rapidly replicated for use by many independent processes. We export
CNF excluding the exclusive-ORs required by the model counting algorithm, and then append them to the
CNF output. CMS is able to process such supplemented CNF (CNFXOR) files efficiently, with exclusive-ORs
represented in linearly-sized statements.

4.4 Software

Our prototype implementation of Delphinium comprises roughly 4.2 kLOC of Python. This includes the
attack orchestrator, example format check implementations, the test harness, and our generic solver Python
API which allows for modular swapping of backing SMT solvers, with implementations for Z3 and STP
provided. In pursuing this prototype, we submitted various patches to the underlying theory solvers that have
since been included in the upstream software projects.

Also included are functions which allow instantiations of Gomes et al.’s [GSS06] model counting tests
with configurable parameters, CNF generation using the Z3 Tactic API and strategies for recovering solutions
from CMS, CNFXOR generation for use in CMS, and translation from CMBC-GC boolean circuit output
(compilations of ANSI C programs to boolean circuits) to Python for use with the Python solver API.

4.5 Extensions

In general, arbitrary functions on fixed-size values can be converted into boolean circuits which SMT solvers
can reason over. Existing work in MPC develops compilers from DSLs or a subset of C to boolean circuits
which could be used to input arbitrary check format functions easily [MGC+16, FHK+14]. Experimenting
with these, we find that the circuit representations are very large and thus have high runtime overhead when
used as constraints. It is possible that circuit synthesis algorithms designed to decrease circuit size (used for
applications such as FPGA synthesis) or other logic optimizers could reduce circuit complexity, but we leave
exploring this to future work.

For complex format checking functions where only compiled implementations are available, existing
works in function approximation (used commonly in fuzzing) can be leveraged to extract approximations of
format check functions, against which possible candidate attacks could be evaluated. Heuristically derived C
function approximations are developed in the American Fuzzy Lop fuzzer and in NeuEx, a machine-learning
driven fuzzing system [Zal, SRS+18]. We additionally provide a translation tool from the output format
of CMBC-GC [FHK+14] to Python (entirely comprised of circuit operations) to enable use of the Python
front-end to Delphinium. We leave the empirical evaluation of such heuristic approximation techniques to

future work. Emerging techniques in symbolic execution such as those explored in [WBL+19] may provide
an additional avenue for format function constraint generation in future work.

5 Experiments

5.1 Experimental Setup

To evaluate the performance of Delphinium, we tested our implementation on several multi-core servers
using the most up-to-date builds of Z3 (4.8.4) and CryptoMiniSAT (5.6.8). The bulk of our testing was
conducted using Amazon EC2, using compute-optimized c5d.18xlarge instances with 72 virtual cores and
144GB of RAM.17 Several additional tests were run a 72-core Intel Xeon E5 CPU with 500GB of memory
running on Ubuntu 16.04, and a 96-core Intel Xeon E7 CPU with 1TB of memory running Ubuntu 18.04. We
refer to these machines as AWS, E5 and E7 in the sections below.

Data collection. For each experimental run, we collected statistics including the total number of decryption
oracle queries performed; the wall-clock time required to construct each query; the number of plaintext bits
recovered following each query; and the value of s used to construct a given malleation string. We also
recorded each malleation string S produced by our attack, which allows us to “replay” any transcript after the
fact. The total number of queries required to complete an attack provides the clearest signal of attack progress,
and we use that as the primary metric for evaluation. However, in some cases we evaluate partial attacks
using the ApproxMC approximate model counting tool [SM19]. This tool provides us with an estimate for the
total number of remaining candidates for M∗ at every phase of a given attack, and thus allows evaluation of
partial attack transcripts.

Selecting attack parameters. The adjustable parameters in FastSample include t, the number of counting
trials, δ, which determines the fraction of trials that must succeed, and the length of the parity constraints
used to sample. We ran a number of experiments to determine optimal values for these parameters across the
format functions PKCS7 and a bitwise format function defined in §5.2. Empirically, δ = 0.5, 2 6 t 6 5, and
parity functions of logarthmic length are suitable for our purposes. Experiments varying t and comparing
parity hash function lengths can be found in Appendix E. These tests were performed on AWS.

5.2 Experiments with Stream Ciphers

Because the malleation function for stream ciphers is relatively simple (consisting simply of bitwise exclusive-
OR), we initiated our experiments with these ciphers. For our initial experiments we do not consider
truncation or other forms of editing. We used these ciphers to implement several format oracles as described
below.

Bytewise Encryption Padding. The PKCS #7 encryption standard (RFC 2315) [Kal98] defines a padding
scheme for use with block cipher modes of operation. This padding is similar to the standard TLS CBC-mode
padding [AP13] considered by Vaudenay [Vau02]. We evaluate our algorithm on both these functions as a
benchmark because PKCS7 and its variants are reasonably complex, and because the human-developed attack
is well understood. Throughout the rest of this paper, we refer to these schemes as PKCS7 and TLS-PKCS7.

The PKCS7 function operates by padding an octet-aligned message to a multiple of B bytes, where B is
typically a cipher’s blocksize. The padding string is of length 1≤ P≤ B bytes, and each byte comprises an
8-bit unsigned encoding of P. The format checking function FPKCS7 recovers P from the final byte of the

17We also mounted 900GB of ephemeral EC2 storage to each instance as a temporary filesystem to save CNF files during operation.

padded message, verifies that P ∈ {1, . . . ,B}, and checks that each of the trailing P bytes contains the same
value. We present a Z3-Python implementation in Appendix F. TLS-PKCS7 is nearly identical, with only
small differences: first, the byte used to pad is not the value P, but rather P−1, and second, padding may
extend beyond the last block of the message. Neither of these differences complicates the constraint formula
significantly.

Setup. We conducted an experimental evaluation of the PKCS #7 attack against a 128-bit stream cipher,
using parameters t = 5,δ = 0.5. Our experiments begin by sampling a random message M∗ from the space of
all possible PKCS #7 padded messages, and setting G0← FPKCS7.18 This evaluation was performed on AWS,
E5, and E7.

Results. Our four complete attacks completed in an average of 1699.25 queries (min. 1475, max. 1994)
requiring 1.875 hours each (min. 1.63, max. 2.18). A visualization of a full resulting attack appears in
Appendix E. These results compare favorably to the Vaudenay attack, which requires ˜2000 queries in
expectation, however it is likely that additional tests would find some examples in excess of this average. As
points of comparison, attacks with t = 3 resulted in a similar number of queries (modulo expected variability
over different randomly sampled messages) but took roughly 2 to 3 times as long to complete, and attacks
with t = 1 reached over 5000 queries having only discovered half of the target plaintext message.

Bitwise Padding. To test our attacks, we constructed a simplified bit padding scheme Fbitpad. This contrived
scheme encodes the bit length of the padding P into the rightmost dlog2(n)e bits of the plaintext string, and
then places up to P padding bits directly to the left of this length field, with each padding bit set to 1. We
verified the effectiveness of our attacks against this format using a simple stream cipher. Using the parameters
t = 5, δ = 0.5 the generated attacks took on average 153 queries (min. 137, max. 178). Figure 1 shows
one attack transcript at t = 5,δ = 0.5. Additional experiments measuring the effect of t on this format are
provided in Appendix E. These experiments were run primarily on E5.

Negative result: Cyclic Redundancy Checks (CRCs). Cyclic redundancy checks (CRCs) are used in many
network protocols for error detection and correction. At a high level, if someone wants to use a CRC to protect
their data from non-malicious errors in transit, they will treat the data stream they wish to compute over as a
polynomial and then take its remainder with respect to the CRC generator polynomial and then attach this
value at the end of the stream. A receiver can then recompute the CRC over the beginning of the data stream
and check for equality. If the verification check fails, then an error has occurred in transmission. CRCs are
well known to be malleable, due to the linearity of the functions: namely, for a CRC it is always the case
that CRC(a⊕b) = CRC(a)⊕CRC(b). While the basic algorithm is intuitive, there are numerous variations
of CRCs in existence. Each CRC-n is defined by the degree n of the generator polynomial, the generator’s
coefficients, the order that the input data will be processed in and the output order (which is sometimes called
input/output reflection), the input mask, and the output mask. The calculation for equality also differs in
some implementations: a CRC computation is done over the data stream concatenated with a number of 0’s
equivalent to the CRC field size and the resulting equality check is done by computing a CRC on the original
data stream concatenated with the CRC and checking if the remainder is 0. To test Delphinium’s ability to
rule out attacks against format functions, we implemented a message format consisting of up to three bytes
of message, followed by a CRC-8 and a 5-bit message length field. The format function Fcrc8 computes the
CRC over the message bytes, and verifies that the CRC in the message matches the computed CRC.19 A key
feature of this format is that a valid ciphertext C∗ should not be vulnerable to a format oracle attack using a

18In practice, this plaintext distribution tends to produce messages with short padding.
19In our implementation we used a simple implementation that does not reflect input and output, or add an initial constant value

before or after the remainder is calculated.

simple exclusive-OR malleation against this format, for the simple reason that the attacker can predict the
output of the decryption oracle for every possible malleation of the ciphertext (due to the linearity of CRC),
and thus no information will be learned from executing a query. This intuition was confirmed by our attack
algorithm, which immediately reported that no malleation strings could be found. These experiments were
performed on E5.

5.3 Ciphers with Truncation

A more powerful malleation capability grants the attacker to arbitrarily truncate plaintexts. In some ciphers,
this truncation can be conducted from the low-order bits of the plaintext, simply by removing them from
the right side of the ciphertext. In other ciphers, such as CTR-mode or CBC-mode, a more limited left-
side truncation can be implemented by modifying the IV of a ciphertext. Delphinium includes malleation
functions that incorporate all three functionalities.

CRC-8 with a truncatable stream cipher. To evaluate how truncation affects the ability of Delphinium to
find attacks, we conducted a second attack using the function Fcrc8, this time using an implementation of
AES-CTR supporting truncation. Such a scheme may seem contrived, since it involves an encrypted CRC
value. However, this very flaw was utilized by Beck and Trew to break WPA [TB09]. In our experiment,
the attack algorithm was able to recover two bytes of the three-byte message, by using the practical strategy
of truncating the message and iterating through all possible values of the remaining byte. Additional CRC
experiments can be found in Appendix E. These experiments were run primarily on E5.

Using truncation, differentiation can be accomplished for all but the last byte: consider a message
encrypting a properly formatted CRC-8 message of two bytes denoted as d15d14d13 . . .d0‖c (with ‖ as
concatenation) where c denotes the CRC value and d15 . . .d0 the bits of the message. If we truncate the
message to be d7 . . .d0‖c, c is no longer valid. But precisely how has it been invalidated? Considering our
message as a polynomial and the CRC generator polynomial as b(x), by the division algorithm there must
exist q(x), r(x) such that

r(x) =
15

∑
i=0

di · xi +q(x)b(x)

where the CRC of d15 . . .d0 The correct CRC for our truncated message ∑
7
i=0 di · xi can then be calculated

as

(r(x)+
15

∑
i=8

di · xi) (mod b(x)) =
7

∑
i=0

di · xi +q(x)b(x)

Therefore, if we want to test whether a ciphertext message begins with d′15 . . .d
′
8 we can truncate

off the end of the ciphertext and send the modified CRC: r(x)⊕ (∑15
i=8 d′i ∗ xi) (mod b(x)). If our guess

for the plaintext was correct, the new CRC is correct for the truncated message, since CRC(d15 . . .d0)⊕
CRC(d′15...d

′
8‖0 . . .0}) = CRC(0 . . .0‖d7 . . .d0). A human attack could then learn bytes starting at the the

end of the message by truncating and modifying the CRC in each query.
As this example demonstrates, the level of customization and variation in how software developers

operate over encrypted data streams can obfuscate the concrete security of an existing implementation. This
illustrates the utility of Delphinium since such variation’s effect on the underlying scheme does not need to
be fully understood by a user, outside of encoding the format’s basic operation.

Thumb Embedded ISA. To exercise Delphinium against a novel format oracle of notably different structure
than those traditionally analyzed (such as padding), we implemented a minimal instruction interpreter for the
16-bit Thumb instruction set architecture (ISA), defined as part of the ARM specification [arm18], capable of
emitting illegal instruction signals. Then, operating over stream-cipher encrypted Thumb instructions and
using illegal instructions as a boolean signal, Delphinium is able to exploit the exclusive-OR malleation to
uncover the top seven bits of each 16-bit instruction, in many cases uncovering nine or more (up to 16) bits of
each instruction,20 in an average of ˜13.3 queries, with each full attack taking only seconds on E5.

Although limited in a few regards, most notably in the simplification of the format oracle into a boolean
signal and the assumption that an attacker could be situated in a way that this signal could be gathered, this
attack is timely in that it is inspired by the widespread use of unauthenticated encryption in device firmware
updates [Ecl20]. If these updates are delivered over-the-air, they may be susceptible to man-in-the-middle
attacks enabling such a decryption oracle. Extensive industry research and a current Internet Draft note that
unauthenticated firmware updates are an ongoing problem [Ecl20, MTB20].

This initial result serves both as validation of Delphinium and as creation of an avenue for future work,
including the development of a model for a more complex but widespread ISA such as 32-bit ARM [arm18],
perhaps exploiting additional signals such as segmentation faults or side channels in order to capture the
capabilities of a sophisticated adversary.

S2N with Exclusive-OR and Truncation. S2N is an open source TLS library that was created by Amazon
Web Services [AWS15]. One of the features includes an implementation of the recently standardized TLS
1.3. Part of the protocol for TLS 1.3 includes a specification for session resumption, which is used when
a client and server have an already established connection but would like to start up a new session without
re-authenticating one another. The client receives a session ticket from the server that it can use to resume
state at a later date. The S2N library delivers a concrete implementation of this protocol in the form of a 60
bytes session state value with the following format:

[RANDOMSECRET][T IMEFIELD][CIPHERSUIT E][PROTOCOLV ERSION][FORMATV ERSION]

The 48-byte RANDOMSECRET denotes a pre-master secret that is used as keying material, and the 8-byte
T IMEFIELD denotes when the ticket was issued. After authentication and decryption of the AES-GCM
encrypted ticket, various checks are performed on values embedded in the ticket. Depending upon these
values, a server either continues communicating with an endpoint or may error. In other words, we may
interpret the check of the ticket as a format and feed in a description of it to Delphinium. While some may
question the efficacy of such an attack, given that the session ticket is encrypted with an AEAD cipher, it is
possible for such an attack to proceed provided that the authentication component of the cipher is broken.
Indeed, it has been shown in the past that reusing a nonce in AES-GCM with small tags results in a higher
than expected chance of forgery and a series of successful forgery attempts even leads to recovery of the
authentication key [Fer05]. Nonce reuse is also not that rare of an occurence and has been seen in the wild
in at least one internet wide scan [BZD+16]. To evaluate a realistic attack on a practical format function,
we developed a format checking function for the Amazon s2n [AWS15] TLS session ticket format. s2n
uses 60-byte tickets with a 12-byte header comprising a protocol version, ciphersuite version, and format
version, along with an 8-byte timestamp that is compared against the current server clock. Although s2n uses
authenticated encryption (AES-GCM), we consider a hypothetical scenario where nonce re-use has allowed
for message forgery [Fer05, BZD+16].

20Such a partial firmware decryption generally leaks the instruction opcode, but not its arguments. This could be very useful to an
attacker, for example in fuzzy comparison with compiled open source libraries to determine libraries and their versions used in a
given firmware update.

Initialization Vector Ciphertext Block 1 Ciphertext Block 2
Trunc
Len

Figure 4: A contiguous set of malleation queries made by Delphinium during a simulated CBC attack. The rightmost bits signal
truncation (from left or right).

Our experiments recovered the 8-byte time field that a session ticket was issued at: in one attack run,
with fewer than 50 queries. However, the attack was unable to obtain the remaining fields from the ticket.
This is in part due to some portions of the message being untouched by the format function, and due to the
complexity of obtaining a positive result from the oracle when many bytes are unknown. We determined
that a full attack against the remaining bytes of the ticket key is possible, but would leave 16 bytes unknown
and would require approximately 250 queries. Unsurprisingly, Delphinium timed out on this attack. These
experiments were run on AWS and E5.

5.4 CBC mode

We also used the malleation function for CBC-mode encryption. This malleation function supports an
arbitrary number of blocks, and admits truncation of plaintexts from either side of the plaintext.21 The CBC
malleation function accepts a structured malleation string S, which can be parsed as (S′, l,r) where l,r are
integers indicating the number of blocks to truncate from the message.

To test this capability, we used the PKCS7 format function with a blocksize of B = 16 bytes, and a two-
block CBC plaintext. (This corresponds to a ciphertext consisting of three blocks, including the Initialization
Vector.) Delphinium generated an attack which took 3441 oracle queries for a random message with four
bytes of padding. This compares favorably to the Vaudenay attack, which requires 3588 queries in expectation.
Interestingly, Delphinium settled on a more or less random strategy of truncation. Where a human attacker
would focus on recovering the entire contents of one block before truncating and attacking the next block of
plaintext, Delphinium instead truncates more or less as it pleases: in some queries it truncates the message
and modifies the Initialization vector to attack the first block. In other queries it focuses on the second block.
Figure 4 gives a brief snapshot of this pattern of malleations discovered by Delphinium. Despite this query
efficiency (which we seek to optimize, over wall-clock efficiency), the compute time for this attack was
almost a week of computation on E5.

Additionally, we created a networked instantiation of the attack against TLS-PKCS7. In this implemen-
tation, malformed ciphertexts are transmitted over a local network to the decrypting endpoint, which then
replies with the leaked boolean signal used to update the solver. We include this for completeness, despite its
equivalence to the shim approach with respect to evaluating Delphinium.

Sudoku. SAT solvers have been used many times to solve Sudoku puzzles, e.g., [RHF+17, Ran18, ppm]. To
evaluate our techniques against arbitrary formats, we instantiated a function Fsudoku that interprets a plaintext
M as an encoded D×D board, and outputs 1 iff the puzzle is valid.

21In practice, truncation in CBC simply removes blocks from either end of the ciphertext.

Because existing implementations e.g., [ppm] make use of algebraic theories (which are not easily
translated to our setting), we wrote a new constraint formula using quantifier-free bitvectors. Each square
of the puzzle is encoded using dlog2(D+1)e bits, with 0 corresponding to an unfilled square. Because our
constraint systems become very large for standard 9×9 puzzles, we tested our system against 4×4 puzzles.
In this format, each square is represented by a 3-bit substring, encoding the values {0, . . . ,7}. This is a very
simple format, since there are only 280 possible valid puzzles.

We tested this format using a simple stream cipher, beginning with 10 random (valid) Sudoku puzzles, and
with G0 = FSudoku, t = 5 and δ = 0.5. We found that our attack was able to derive the correct plaintext
Sudoku solution in an average of 20 queries, with the attacks running in an average of 33 minutes. The
variation in the attack statistics is large (min. 7, max. 32 queries; min. 10, max. 60 minutes). This occurs
because the algorithm is able to derive many more constraints on its model when the oracle returns a TRUE

result, and this occurs only in the relatively rare case where the chosen malleation induces a permutation on
some subset of the entries, preserving the uniqueness of values in rows, columns, and squares, and without
changing values to anything outside of {1, . . . ,4}. Each attack completed after it found the second such
malleation; the variation comes from invalid guesses. A visualization of one attack can be found in Appendix
E.5.

6 Related Work

CCA-2 and format oracle attacks. The literature contains an abundance of works on chosen ciphertext and
format oracle attacks. Many works consider the problem of constructing and analyzing authenticated encryp-
tion modes [BN00, Rog02, RS06], or analyzing deployed protocols, e.g., [BKN04]. Among many practical for-
mat oracle attacks [MRLG15, BFK+12, PDM+18, RD10, YPM05, PY04, JS11, AF18, KMSS15, GGK+16],
the Lucky13 attacks [AP13, AP15] are notable since they use a noisy timing-based side channel.

Automated discovery of cryptographic attacks. Automated attack discovery on systems has been consid-
ered in the past. One line of work [CSP16], [PBP+17] focuses on generating public input values that lead to
maximum leakage of secret input in Java programs where leakage is defined in terms of channel capacity
and shannon entropy. Unlike our work, Pasareanu et al. [CSP16] do not consider an adversary that makes
adaptive queries based on results of previous oracle replies. Both [CSP16] and [PBP+17] assume leakage
results from timing and memory usage side channels.

Using solvers for cryptographic tasks/model counting. A wide variety of cryptographic use cases for
theory solvers have been considered in the literature. Soos et al. [SNC09] developed CryptoMiniSAT
to recover state from weak stream ciphers, an application also considered in [COQ09]. Solvers have
also been used against hash functions [MZ06], and to obtain cipher key schedules following cold boot
attacks [AKMY10]. There have been many model counting techniques proposed in the past based on
universal hash functions [GSS06, ZCSE16]. However, many other techniques have been proposed in the
literature. Several works propose sophisticated multi-query approach with high accuracy [SM19, CMV16],
resulting in the ApproxMC tool we use in our experiments. Other works examine the complexity of parity
constraints [ZCSE16], and optimize the number of variables that must be constrained over to find a satisfying
assignment [IMMV15].

7 Conclusion

Our work leaves a number of open problems. In particular, we proposed several optimizations that we
were not able to implement in our tool, due to time and performance constraints. Additionally, while we
demonstrated the viability of our model count optimization techniques through empirical analysis, these
techniques require theoretical attention. Our ideas may also be extensible in many ways: for example,
developing automated attacks on protocols with side-channel leakage; on public-key encryption; and on
“leaky” searchable encryption schemes, e.g., [GLMP18]. Most critically, a key contribution of this work is
that it poses new challenges for the solver research community, which may result in improvements both to
general solver efficiency, as well as to the performance of these attack tools.

Acknowledgments

The authors would like to thank Amazon Web Services for partially funding our evaluation through EC2
credits, Mate Soos and Kuldeep Meel for answering relevant questions on ApproxMC and Probably Approxi-
mate Model Counters, Rolf Rolles for general help with SAT and SMT solver libraries, and finally Dr. Nadia
Heninger and her students for granting us access to and helping us use their compute cluster.

References
[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J. Alex Halderman,

Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago
Zanella-Béguelin, and Paul Zimmermann. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, pages 5–17,
New York, NY, USA, 2015. ACM.

[AF18] Gildas Avoine and Loïc Ferreira. Attacking GlobalPlatform SCP02-compliant Smart Cards Using a Padding Oracle
Attack. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018(2):149–170, May 2018.

[AKMY10] Abdel Alim Kamal and Amr M. Youssef. Applications of SAT Solvers to AES key Recovery from Decayed Key
Schedule Images. IACR Cryptology ePrint Archive, 2010:324, 07 2010.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen: Breaking the TLS and DTLS Record Protocols. In
IEEE S&P (Oakland) ’13, pages 526–540, 2013.

[AP15] Martin R. Albrecht and Kenneth G. Paterson. Lucky Microseconds: A Timing Attack on Amazon’s s2n Implementation
of TLS. Cryptology ePrint Archive, Report 2015/1129, 2015. https://eprint.iacr.org/2015/1129.

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery attacks against SSH. In Proceedings
of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09, pages 16–26, Washington, DC, USA, 2009. IEEE
Computer Society.

[arm18] ARM Architecture Reference Manual, Mar 2018.

[ASS+16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik Dankel, Jens Steube, Luke Valenta,
David Adrian, J. Alex Halderman, Viktor Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar,
and Yuval Shavitt. DROWN: Breaking TLS using SSLv2. In 25th USENIX Security Symposium (USENIX Security
16), pages 689–706, Austin, TX, 2016. USENIX Association.

[AWS15] Introducing s2n, a New Open Source TLS Implementation. https://aws.amazon.com/blogs/security/
introducing-s2n-a-new-open-source-tls-implementation/, June 2015.

[BBDL+15] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, A. Pironti, P. Strub, and J. K.
Zinzindohoue. A Messy State of the Union: Taming the Composite State Machines of TLS. In 2015 IEEE Symposium
on Security and Privacy, pages 535–552, May 2015.

[BDP03] Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. DPLL with Caching: A new algorithm for #SAT and Bayesian
inference. Electronic Colloquium on Computational Complexity (ECCC), 10, 01 2003.

https://eprint.iacr.org/2015/1129
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/

[Bel96] Steven M. Bellovin. Problem Areas for the IP Security Protocols. In Proceedings of the 6th Conference on USENIX
Security Symposium, Focusing on Applications of Cryptography, volume 6, pages 21–21, Berkeley, CA, USA, 1996.
USENIX Association.

[BFK+12] Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Graham Steel, and Joe-Kai Tsay. Efficient
Padding Oracle Attacks on Cryptographic Hardware. In CRYPTO ’12, volume 7417 of LNCS, pages 608–625. Springer,
2012.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[BJP00] Roberto J. Bayardo, Jr., and J. D. Pehoushek. Counting Models using Connected Components. In In AAAI, pages
157–162, 2000.

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and Provably Repairing the SSH Authenticated
Encryption Scheme: A Case Study of the Encode-then-Encrypt-and-MAC Paradigm. ACM Trans. Inf. Syst. Secur.,
7(2):206–241, May 2004.

[BL99] Elazar Birnbaum and Eliezer L. Lozinskii. The Good Old Davis-Putnam Procedure Helps Counting Models. J. Artif.
Int. Res., 10(1):457–477, June 1999.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among Notions and Analysis of the
Generic Composition Paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, pages 531–545, Berlin, Heidelberg,
2000. Springer Berlin Heidelberg.

[BRB18] L. Bang, N. Rosner, and T. Bultan. Online Synthesis of Adaptive Side-Channel Attacks Based On Noisy Observations.
In 2018 IEEE European Symposium on Security and Privacy (EuroS P), pages 307–322, April 2018.

[BZD+16] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic. Nonce-Disrespecting Adversaries:
Practical Forgery Attacks on GCM in TLS. In 10th USENIX Workshop on Offensive Technologies (WOOT 16), Austin,
TX, 2016. USENIX Association.

[CDM17] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate counting in SMT and value estimation for
probabilistic programs. Acta Informatica, 54(8):729–764, Dec 2017.

[CFM+14] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and Moshe Y Vardi. Distribution-aware
sampling and weighted model counting for SAT. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[CFMV15] Supratik Chakraborty, Dror Fried, Kuldeep S Meel, and Moshe Y Vardi. From weighted to unweighted model counting.
In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[CHVV03] Brice Canvel, Alain Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password interception in a SSL/TLS channel.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, pages 583–599, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[CMV16] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic Improvements in Approximate Counting
for Probabilistic Inference: From Linear to Logarithmic SAT Calls. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI), 7 2016.

[COQ09] Nicolas T. Courtois, Sean O’Neil, and Jean-Jacques Quisquater. Practical Algebraic Attacks on the Hitag2 Stream
Cipher. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and Claudio A. Ardagna, editors, Information Security,
pages 167–176, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[CSP16] Pasquale Malacaria Corina S. Pasareanu, Quoc-Sang Phan. Multi-run side-channel analysis using Symbolic Execution
and Max-SMT. In 2016 IEEE 29th Computer Security Foundations Symposium (CSF). IEEE, June 2016.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A Machine Program for Theorem-proving. Commun. ACM,
5(7):394–397, July 1962.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R. Ramakrishnan and Jakob
Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer, 2008.

[DP60] Martin Davis and Hilary Putnam. A Computing Procedure for Quantification Theory. J. ACM, 7(3):201–215, July
1960.

[DP10] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec in MAC-then-encrypt configurations. In
Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS ’10, pages 493–504, New
York, NY, USA, 2010. ACM.

[Ecl20] Eclypsium. Perilous Peripherals: The Hidden Dangers Inside Windows & Linux Computers, Feb 2020.

[EGSS14] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Low-Density Parity Constraints for Hashing-
Based Discrete Integration, 2014.

[Fer05] Niels Ferguson. Authentication Weaknesses in GCM, 05 2005.

[FHK+14] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Helmut Veith. CBMC-GC: an ANSI C
compiler for secure two-party computations. In International Conference on Compiler Construction, pages 244–249.
Springer, 2014.

[FRS17] Daniel Fremont, Markus N. Rabe, and Sanjit A. Seshia. Maximum Model Counting. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI), pages 3885–3892, February 2017.

[GGK+16] Christina Garman, Matthew Green, Gabriel Kaptchuk, Ian Miers, and Michael Rushanan. Dancing on the Lip of the
Volcano: Chosen Ciphertext Attacks on Apple iMessage. In 25th USENIX Security Symposium (USENIX Security 16),
pages 655–672, Austin, TX, 2016. USENIX Association.

[GLMP18] Paul Grubbs, Marie-Sarah Lacharite, Brice Minaud, and Kenneth G. Paterson. Pump Up the Volume: Practical
Database Reconstruction from Volume Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18, pages 315–331, New York, NY, USA, 2018. ACM.

[GSS06] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model Counting: A New Strategy for Obtaining Good Bounds.
In Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1, AAAI’06, pages 54–61. AAAI
Press, 2006.

[HS04] Holger Hoos and Thomas Sttzle. Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

[Hun10] Troy Hunt. Fear, uncertainty and the padding oracle exploit in ASP.NET. Available at https://www.troyhunt.com/
fear-uncertainty-and-and-padding-oracle/, September 2010.

[IMMV15] Alexander Ivrii, Sharad Malik, Kuldeep Meel, and Moshe Vardi. On computing minimal independent support and its
applications to sampling and counting. Constraints, 21, 08 2015.

[Jou06] Antoine Joux. Authentication failures in NIST version of GCM. Available at https://csrc.nist.
gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-
drafts/gcm/joux_comments.pdf, January 2006.

[JS11] Tibor Jager and Juraj Somorovsky. How to Break XML Encryption. In ACM CCS ’2011. ACM Press, October 2011.

[Kal98] Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315, March 1998.

[KMSS15] Dennis Kupser, Christian Mainka, Jörg Schwenk, and Juraj Somorovsky. How to Break XML Encryption – Automati-
cally. In Proceedings of the 9th USENIX Conference on Offensive Technologies, WOOT’15, Berkeley, CA, USA, 2015.
USENIX Association.

[MDK14] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: Exploiting the SSLv3 Fallback. Available
at https://www.openssl.org/~bodo/ssl-poodle.pdf, September 2014.

[MGC+16] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor. Frigate: A validated, extensible,
and efficient compiler and interpreter for secure computation. In 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), pages 112–127. IEEE, 2016.

[MIM+19] Jens Müller, Fabian Ising, Vladislav Mladenov, Christian Mainka, Sebastian Schinzel, and Jörg Schwenk. PDF
Insecurity. Available at https://www.pdf-insecurity.org/encryption/encryption.html, November 2019.

[min] MiniSAT. Available at http://minisat.se/.

[Mit05] Chris J. Mitchell. Error oracle attacks on CBC mode: Is there a future for CBC mode encryption? In Information
Security, 8th International Conference, ISC 2005, Singapore, September 20-23, 2005, Proceedings, pages 244–258,
2005.

[MRLG15] Florian Maury, Jean-Rene Reinhard, Olivier Levillain, and Henri Gilbert. Format Oracles on OpenPGP. In Topics in
Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, pages 220–236, San Francisco,
United States, April 2015.

https://www.troyhunt.com/fear-uncertainty-and-and-padding-oracle/
https://www.troyhunt.com/fear-uncertainty-and-and-padding-oracle/
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.pdf-insecurity.org/encryption/encryption.html
http://minisat.se/

[MSA+19] Robert Merget, Juraj Somorovsky, Nimrod Aviram, Craig Young, Janis Fliegenschmidt, Jörg Schwenk, and Yuval
Shavitt. Scalable Scanning and Automatic Classification of TLS Padding Oracle Vulnerabilities. In Proceedings of the
28th USENIX Conference on Security Symposium, SEC’19, pages 1029–1046, Berkeley, CA, USA, 2019. USENIX
Association.

[MTB20] Brendan Moran, Hannes Tschofenig, and Henk Birkholz. An Information Model for Firmware Updates in IoT
Devices. Internet-Draft draft-ietf-suit-information-model-05, IETF Secretariat, January 2020. http://www.ietf.
org/internet-drafts/draft-ietf-suit-information-model-05.txt.

[MW16] John Mattsson and Magnus Westerlund. Authentication Key Recovery on Galois/Counter Mode GCM. In Proceedings
of the 8th International Conference on Progress in Cryptology — AFRICACRYPT 2016 - Volume 9646, pages 127–143,
Berlin, Heidelberg, 2016. Springer-Verlag.

[MZ06] Ilya Mironov and Lintao Zhang. Applications of SAT Solvers to Cryptanalysis of Hash Functions. In International
Conference on Theory and Applications of Satisfiability Testing (SAT 06), volume 4121 of Lecture Notes in Computer
Science, pages 102–115. Springer, August 2006.

[NPWB18] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2 , btormc and boolector 3.0. In Hana Chockler
and Georg Weissenbacher, editors, Computer Aided Verification - 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I, volume 10981
of Lecture Notes in Computer Science, pages 587–595. Springer, 2018.

[NY90] M. Naor and M. Yung. Public-key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks. In Proceedings
of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC ’90, pages 427–437, New York, NY,
USA, 1990. ACM.

[PBP+17] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and Tevfik Bultan. Synthesis of Adaptive
Side-Channel Attacks. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF). IEEE, August 2017.

[PDM+18] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising, Sebastian Schinzel, Simon Friedberger, Juraj
Somorovsky, and Jörg Schwenk. Efail: Breaking S/MIME and OpenPGP Email Encryption using Exfiltration
Channels. In 27th USENIX Security Symposium (USENIX Security 18), pages 549–566, Baltimore, MD, 2018.
USENIX Association.

[Pfe03] S. Pfeiffer. The Ogg Encapsulation Format Version 0. RFC 3533, RFC Editor, May 2003.

[png] PNG (Portable Network Graphics) Specification, Version 1.2.

[ppm] ppmx. Z3 Sudoku Solver. Available at https://github.com/ppmx/sudoku-solver.

[PY04] Kenneth G. Paterson and Arnold K. L. Yau. Padding Oracle Attacks on the ISO CBC Mode Encryption Standard. In
Topics in Cryptology - CT-RSA 2004, The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA,
USA, February 23-27, 2004, Proceedings, 2004.

[Ran18] Venkatesh-Prasad Ranganath. SAT Encoding: Solving Simpler Sudoku. Available at https://medium.com/
@rvprasad/sat-encoding-solving-simpler-sudoku-d92671206d1e, April 2018.

[RD10] Juliano Rizzo and Thai Duong. Practical Padding Oracle Attacks. In Proceedings of the 4th USENIX Conference on
Offensive Technologies, pages 1–8, 2010.

[RHF+17] Heinz Riener, Finn Haedicke, Stefan Frehse, Mathias Soeken, Daniel Große, Rolf Drechsler, and Goerschwin Fey.
metaSMT: focus on your application and not on solver integration. International Journal on Software Tools for
Technology Transfer, 19(5):605–621, 2017.

[Rog02] Phillip Rogaway. Authenticated Encryption with Associated Data. In CCS ’02. ACM Press, 2002.

[RS06] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In Serge
Vaudenay, editor, EUROCRYPT 2006, pages 373–390, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[SBB+04] Tian Sang, Fahiem Bacchus, Paul Beam, Henry Kautz, and Toniann Pitassi. Combining Component Caching and
Clause Learning for Effective Model Counting. In SAT 2004, 05 2004.

[SM19] Mate Soos and Kuldeep S. Meel. BIRD: Engineering an Efficient CNF-XOR SAT Solver and its Applications to
Approximate Model Counting. In Proceedings of AAAI Conference on Artificial Intelligence (AAAI), 1 2019.

[Smi12] Michael Smith. What you need to know about BEAST. Available at https://blogs.akamai.com/2012/05/what-
you-need-to-know-about-beast.html, May 2012.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT Solvers to Cryptographic Problems. In International
Conference on Theory and Applications of Satisfiability Testing (SAT 2009), pages 244–257, 06 2009.

http://www.ietf.org/internet-drafts/draft-ietf-suit-information-model-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-suit-information-model-05.txt
https://github.com/ppmx/sudoku-solver
https://medium.com/@rvprasad/sat-encoding-solving-simpler-sudoku-d92671206d1e
https://medium.com/@rvprasad/sat-encoding-solving-simpler-sudoku-d92671206d1e
https://blogs.akamai.com/2012/05/what-you-need-to-know-about-beast.html
https://blogs.akamai.com/2012/05/what-you-need-to-know-about-beast.html

[SRS+18] Shiqi Shen, Soundarya Ramesh, Shweta Shinde, Abhik Roychoudhury, and Prateek Saxena. Neuro-Symbolic
Execution: The Feasibility of an Inductive Approach to Symbolic Execution, 2018.

[Sto83] Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the fifteenth annual ACM symposium
on Theory of computing, pages 118–126. ACM, 1983.

[stp] The Simple Theorem Prover (STP). Available at https://stp.github.io/.

[TB09] Erik Tews and Martin Beck. Practical attacks against WEP and WPA. In Proceedings of the second ACM conference
on Wireless network security, pages 79–86. ACM, 2009.

[Tod91] Seinosuke Toda. PP is As Hard As the Polynomial-time Hierarchy. SIAM J. Comput., 20(5):865–877, October 1991.

[Val79] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM J. Comput., 8(3):410–421, 1979.

[Vau02] Serge Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC, WTLS. In EUROCRYPT
’02, volume 2332 of LNCS, pages 534–546, London, UK, 2002. Springer-Verlag.

[VP17] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, pages 1313–1328, New
York, NY, USA, 2017. ACM.

[VV86] L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science, 47:85 – 93,
1986.

[W3C17] W3C. Web Cryptography API. Available at https://www.w3.org/TR/WebCryptoAPI/, January 2017.

[WBL+19] Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, and Dinghao Wu. Identifying Cache-Based Side
Channels through Secret-Augmented Abstract Interpretation. In 28th USENIX Security Symposium (USENIX Security
19), pages 657–674, Santa Clara, CA, August 2019. USENIX Association.

[WS05] Wei Wei and Bart Selman. A New Approach to Model Counting. In Fahiem Bacchus and Toby Walsh, editors, Theory
and Applications of Satisfiability Testing, pages 324–339, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[YPM05] Arnold K. L. Yau, Kenneth G. Paterson, and Chris J. Mitchell. Padding Oracle Attacks on CBC-Mode Encryption
with Secret and Random IVs. In Fast Software Encryption: 12th International Workshop, FSE 2005, Paris, France,
February 21-23, 2005, Revised Selected Papers, pages 299–319, 2005.

[Zal] Michal Zalewski. Technical "whitepaper" for afl-fuzz.

[ZCSE16] Shengjia Zhao, Sorathan Chaturapruek, Ashish Sabharwal, and Stefano Ermon. Closing the Gap Between Short and
Long XORs for Model Counting. In AAAI 2016, 12 2016.

A Proof that DeriveAttack is Greedy

A.1 Preliminaries

We prove greedy-optimality by defining optimality with respect to profitability, and showing that at each
iteration this function is maximized in expectation. Recall #SAT, an algorithm which given a vector of
boolean variables and a constraint formula over those variables returns the number of assignments to the
variables satisfy the formula. DeriveAttack does not directly use a #SAT oracle, but we use it in this proof
as notational shorthand. Max#SAT(X ,Y,G) given boolean variable vectors X ,Y and constraint formula G
provides an assignment for X which satisfies G, maximizing the number of satisfying assignments to Y . That
is, no other satisfying assignment for X induces a greater number of satisfying assignments for Y subject
to G. Also, recall profitability ψ(Gi−1,Gi), the number of candidate messages eliminated via additional
constraint added between Gi−1 and Gi. This is equal to #SAT((M0,M1),Gi−1)−#SAT((M0,M1),Gi). The
new constraint depends upon the Odec oracle result, and so we will seek to maximize it in expectation
quantified over the possible oracle responses {0,1}. In expectation, profitability is equal to the number of
candidate messages eliminated by each possible oracle response multiplied by the probability the oracle
provides that result. As the true plaintext message is uniformly sampled, this probability is equal to the

https://stp.github.io/
https://www.w3.org/TR/WebCryptoAPI/

number of messages not eliminated by the respective oracle result. Similarly, this approach generalizes to
non-uniform distributions using weighted counting.

Let M be the distribution of plaintext messages of some fixed length n. We consider the uniform message
distribution, but non-uniform distributions are equivalently supported through weighted model counting
(which reduces to unweighted model counting efficiently) [CFMV15]. The message length is known to the
attack algorithm.

Let Odec be the decryption oracle. DeriveAttack minimizes the number of queries to the oracle, making
one per greedy iteration. One query must be made per iteration as the oracle provides the only available
information about the target plaintext; any other computation in an iteration is necessarily speculative.

Let G0 be the initial constraint system, a conjuction of the following constraints:

• F(MaulplainM0,S) = 0

• F(MaulplainM1,S) = 1

• optional auxiliary constraints

G0 primarily enforces that each assignment S to S malforms all assignments to M0 such that they are invalid
under the format check F, and simultaneously malforms all assignments to M1 such that they remain or
become valid. We assume that F and Maulplain are well-defined, and as such each assignment S indexes
(potentially non-uniquely) some partition of the remaining valid assignments to M0 and M1. The additional
constraints may include weighting the message distribution, or arbitrary additional requirements for the
generated attack.

Let Gi i > 0 be defined as G0 conjoined with i additional constraints. These constraints are of the form

F(Maulplain(M0,Si)) =

F(Maulplain(M1,Si)) =

Odec(Maulciph(C,Si))

with Si some assignment to S at each iteration i. This models updating the constraint formula to reflect the
result of an Odec oracle query. We refer to the constraint added at iteration i as iterSi .

A.2 Proof

The proof will proceed using strong induction. However, the strong induction case parallels the base case
with minimal differences. Thus, the base case will be explored thoroughly, and then in the strong induction
case the aforementioned differences will be highlighted and considered. Finally, the case when Max#SAT
aborts will be considered.

A.2.1 Base Case

Isomorphism of concatenation to multiplication: As M0 and M1 partition the remaining candidate messages,

#SAT(M0‖M1,G0) = (#SAT(M0,G0))(#SAT(M1,G0))

As each element of the combined count can be bijectively mapped to one choice of assignment to M0 and one
choice of assignment to M1.

As F is well-defined, no satisfying assignment for M0 is also a satisfying assignment for M1. The
disjunction of satisfying assignment constitutes all satisfying assignments for the plaintext message. Consider
the size of this disjunction to be x≤ 2n. Note that M0 and M1 must each have at least one satisfying assignment
for the formula to be satisfiable, and at most x−1 satisfying assignments.

Max#SAT(S,M0‖M1,G0) produces an assignment S for S which maximizes the number of assignments
to M0‖M1, thus maximizing the previously described product. Maximizing such a product of two integers in
the range [1,x) which sum to x occurs when each integer is as close to x

2 as possible. Thus, S induces as close
as possible to x

2 satisfying assignments to each of M0 and M1.
Next, let p = min(#SAT(M0,G0),#SAT(M1,G0))

x . p then represents without loss of generality the fraction of x
which the smaller of M0,M1 contains. As the message distribution is uniform, p is the likelihood that the
plaintext message lies in the smaller set of satisfying assignments, in which case (1− p)x messages will be
ruled out. Similarly, the larger set of satisfying assignments contains the plaintext message with probability
1− p, and in that case px messages will be eliminated. In expectation, the number of eliminated messages:

p(1− p)x+(1− p)px = 2xp(1− p)

p ∈ (0,1) as both sets of satisfying assignments are non-empty. This quadratic expression is maximized at
p = 0.5, consistent with maximizing the product. Let G1 = G1∧ iterS.

We seek to demonstrate that without consulting Odec (as only one query is allowed per iteration, to
minimize oracle queries), S represents the greedy decision: maximizing the number of eliminated candidates
(and thus profitability) in expectation.

Suppose seeking contradiction that some S′ 6= S exists for which G1
′ = G0 ∧ iterS′ and ψ(G0,G1

′) >
ψ(G0,G1). Define p′ similarly, the fraction represented by the smaller of the two satisfying assignment sets.
p′ > p by necessity, as p′ must be closer to 0.5. This implies that the alternate assignment to S induces a more
even (close to 1

2) division of satisfying assignments amongst M0 and M1. However, this necessarily implies
that S′ induces a larger number of assignments to M0‖M1, which violates the correctness of Max#SAT. As
such, a contradiction is reached, and so in the base case, profitability is maximized in expectation. Note that
nothing in the preceding reasoning specifically relied on the size x or the auxiliary contents of G0.

A.2.2 Strong Induction

Now, assume that for some number of iterations I, DeriveAttack generated an assignment for S which
eliminated the maximal number of messages in expectation. GI represents the constraint system at this
iteration of the attack.

To complete induction for iteration I+1, simply observe that the proof for the base case allowed arbitrary
additional constraints within G0, and did not rely on the overall number of satisfying assignments x. As such,
the reasoning is entirely compatible in the inductive case, replacing G0 with GI .

A.2.3 Max#SAT Aborts

Max#SAT may abort. This implies no satisfying assignment for X or Y can be found, implying the formula
is inconsistent, or it implies that Maulplain cannot induce a differentiation in the format check F, meaning
no further messages may be eliminated. In either of these cases, DeriveAttack should abort, as no further
progress can be made.

B The Greedy Algorithm can be Optimal

In the following proof sketch, we justify our greedy algorithm by demonstrating existence of a simple format
and malleation function pair for which the greedy attack is optimal. The defined format and malleation pair
serves as an existence proof. The intuition behind this format is that each possible query leaks one bit of
information by diving the remaining candidate message space in half, every query must be made to uniquely
identify the plaintext, and repeat queries do not provide any information whatsoever. As such, both the greedy
and optimal attacks are clear, and as is demonstrated, equivalent.

Lemma B.1 For the format F and malleation Maulplain pair (FParity,Truncation), the greedy attack is
optimal.

B.1 Preliminaries

Consider the message distribution of uniform k-bit strings. The size of this message space is then 2k. Consider
the format check FParity to be the bitwise parity function, which maps bitstrings of positive length to {0,1}.
A parity value of 1 corresponds to passing the format check, and parity 0 to failing.22

We will define a plaintext malleation function that performs simple truncation from the right side (the least
significant bits) of the plaintext. Such a function can be constructed for stream ciphers, by simply performing
the identical truncation on a ciphertext.23 The malleation string S represents the truncation instruction as
a non-negative integer that indicates how many bits will be removed. Truncation values that exceed the
message length result in undefined output.

For a given malleation string S (truncation value), let M0 be the subset of plaintexts where which,
∀M ∈M0, it holds that FParity(Maulplain(M,S)) = 0, and let M1 be the equivalent set where the output of the
check is 1. Recall profitability ψ(Gi−1,Gi) from the attack definition, the number of messages “ruled out”
at each iteration. In this proof sketch, we operate over a message distribution rather than a single concrete
message, and as such expected profitability is used for average-case analysis. In this formulation, the most
profitable malleation strings in expectation are those which divide the candidate message evenly: where
approximately as many messages are in M0 as in M1.

Let M∗ be the a target plaintext message, with FParity(M∗) = 1 and C∗ its bitwise stream cipher encryption.

B.2 Observations

The 0-length truncation will always return 1 (parity check success), as the original message is defined to
be validly formatted and is left unchanged. So, we need only consider the other k−1 truncations, those of
non-zero length (as you cannot drop k or more bits from a k-bit message).

Assuming the underlying message is uniformly sampled from the k-bit message space, each truncated bit
will change the parity with 1

2 probability. The length-1 truncation then will result in two message distributions
of equal size: one where the truncated bit was 1 and the other where it was 0. If the truncated bit was 1,
necessarily the parity of the remaining bits is 0, thus the format check over these will fail, and otherwise the
parity of the remaining bits is 1 and the format check will pass. The oracle query on this truncation then
uniquely determines the truncated bit of M by revealing the parity of the remaining bits.

22Here we will consider the parity of strings of less than 1 bit in length to be undefined.
23We only consider right-truncations because left-truncations cause a stream-cipher message to be misaligned with the keystream,

leading to unpredictable results from which the attack can extract no information.

These message distributions are of size 2k−2 each (not k−1: the un-truncated unknown bits must have
parity 0 or 1 as determined by the contents of the truncated bit), are disjoint, and under union form the entire
2k−1 valid message space.

Truncating additional bits in the first query has a similar effect. Consider truncating two bits in the first
query: rather than two cases, there are four (the four values of two truncated bits): two cases which leave the
un-truncated bits valid (unchanged parity), and two which flip parity. A partition is formed over messages
ending in 01 or 10 and messages ending in 00 or 11, and these two message classes are of equal size 2k−3:
parity 1 messages of length k−2 and parity 0 messages of length k−2.

Based on the previous definition of profit, the one- and two- bit truncations are of equal profitability.
It’s clear that longer truncations follow the same pattern inductively, each creating a partition where both
sides consist of twice as many classes of messages where the classes themselves are 1

2 the size. If all
possible truncations are of the same profitability, it must be the case that any choice of truncation is greedy
(highest-profitability-first) for the first query in the attack.

B.3 The Optimal Attack

There are k−1 possible truncations. Repeating a truncation provides information which the attack already
knows (the parity of the un-truncated bits) and therefore no optimal attack can repeat a truncation.

Assume some optimal (in terms of query count) attack makes less than k−1 queries. Necessarily, some
truncation length must be left un-queried. Let that length be u. The attacker must then know the parity of all
subsets of bits of length 1 up to u−1 from the left. If they know the parity of the leftmost bit, they know the
value of the bit. If they know the leftmost bit, and they know the parity of the two leftmost bits, they know the
two leftmost bits. Inductively, the attacker knows all bits up to but not including u. The attacker has also made
queries on truncations of length u+1 up to k−1 (if there are any, u might equal k−1). Thus, they know the
parity of substrings starting from bit u (e.g. u through u+1, u through u+2, ...). Incrementally inducting up
to k, the attacker knows all bits from u+2 to k (if any). Importantly, the only information the attacker lacks
is the parity of the substring of bits from 1 to u, which prevents them from uniquely constraining bits u and
u+1. They know the parity of these two bits, and as such only two of the possible four two-bit strings are
valid candidates, but there is insufficient information to differentiate them.

The above analysis has edge cases at very small values of k. For example, at k = 1 or k = 2, it’s unclear
where the un-queried index would be. However, fewer than k−1 queries in those cases is zero queries, from
which no information can possibly be extracted. k = 1 is trivial as M must have parity 1, and k = 2 clearly
has two candidate messages before any queries are made. At k = 2, the only valid query is to drop the first
bit. The result of this query uniquely constrains the message.

Therefore, after any k−2 optimal queries, the attack is left with two possible messages, and thus has not
uniquely constrained the message space. This attack then, is incomplete, and thus the assumption that an
optimal attack with fewer than k−1 queries exists is faulty.

It is clear that querying the un-queried truncation at u would finish the attack, uniquely constraining the
message bits in k−1 queries by revealing the parity of the bit at u. Thus, any optimal attack must use at least
k−1 queries, and an optimal attack exists using k−1 queries.

B.4 The Greedy Attack

As was shown, the optimal attack makes a truncation query at each available length for a total of k−1 queries.
Order is irrelevant as any k−2 optimal queries allow the last query to uniquely constrain the message. In the

observations considered prior, initially, all truncations are of equal profitability, and thus the greedy attack
could select any of them.

In order to assert that the greedy attack is optimal then, it is sufficient to show that any query made by
the greedy attack leads to a state wherein the greedy attack will not make a redundant query. Once k−1
non-redundant queries are made, an optimal attack has necessarily been executed.

The profitability of a redundant query is zero at any stage of the attack. This is because, having previously
made a given query, the greedy attack excludes from consideration all messages which differ from the oracle
at that truncation length. It does so though iterative constraints which assert that the candidate messages
behave as the oracle did given a particular malleation. Thus, any redundant query will reject all candidate
messages if the oracle returned false on that malleation, or will accept all candidate messages if the oracle
returned true. Either way, no messages are differentiated, and so no redundant query can be selected in the
greedy attack. Therefore, the greedy attack is optimal.

B.5 Discussion

In this simple scenario, the greedy attack is optimal. This can be clearly shown in that all available malleations
are either optimal or completely redundant. In real format checks, parity checks sometimes occur, but often
more complicated systems of constraints are expressed such as range statements, conditionals, or regular
expressions.

C The Greedy Algorithm can be Suboptimal

In the following proof sketch, we provide a counterexample to the optimality of the greedy algorithm as both
analysis of limitations of the attack algorithm and to highlight opportunity for future work. Our greedy attack
algorithm operates over a pair consisting of a format checking function and a malleation function, and as
such an existence proof outlining the possibility of non-optimality requires definition of each element of such
a pair. Here the format check F will be defined as a conditional function given below, and the malleation
Maulplain as the composition of truncation and exclusive-OR.24

F∨(M) =

{
Parity(M0..L−(k+1)) if ML−(k+1)..L = cookie
Padding(M) otherwise

This format check is somewhat contrived to “lead astray” the greedy algorithm. Greedy algorithms are
non-optimal when a locally non-optimal choice enables higher-efficiency (optimality, or profitability per
query) choices later in execution. In order to realize this disparity, we define F∨ conditionally, where one case
applies a parity format check if a cookie value is matched, and the other simply applies a PKCS7-like padding
check if the cookie value is not matched. Guessing the cookie value is locally non-optimal, but then the
enabled attack against parity is more efficient than the greedy attack against the padding format on average.

Lemma C.1 For the format F and malleation Maulplain pair (F∨,Truncation ◦Exclusive-OR), the greedy
attack is not optimal.

24The attack algorithm then can flip any subset of bits, and truncate the message down to any non-zero length.

C.1 Preliminaries

Consider the message distribution of uniform L-bit strings. The size of this message space is then 2L. Let
kl = L and we require that 2k > l.25

Let the encryption scheme be a stream cipher which uses ⊕ (exclusive-OR) to mix the message with the
keystream, and assume it operates “left to right” (that is, we refer to the beginning of the keystream and the
message as the “left side”). Consider the malleation in question to be arbitrary composition of truncation and
exclusive-OR, allowing the attack algorithm to flip any subset of bits of the message. This is a commonly
available malleation for unauthenticated stream ciphers (or those where authentication can be forged, as is
the case in Galois-Counter Mode with nonce reuse). Although truncated messages are potentially accepted
by the format, the length of the message is leaked by the known ciphertext and as such the initial candidate
message space excludes shortened messages.

Recall profitability ψ(Gi−1,Gi) from the attack definition, the number of messages “ruled out” at each
iteration. In this proof sketch, we operate over a message distribution rather than a single concrete message,
and as such expected profitability is used for average-case analysis.

Let M be the real plaintext message, and C its bitwise stream cipher encryption. We allow M to be any
L-bit string, not just those which are valid under the predicate F .

When checking a message, F∨ considers the leftmost k+1 bits, comparing them to some per-instance
randomly sampled “cookie” value26. If the top k+1 bits match this cookie, the remaining L− (k+1) bits are
checked using a bitwise parity check. Otherwise, the entire L-bit message is checked with More intuitive
descriptions of each branch of the conditional format check are provided:

C.1.1 Parity Check

This check evaluates the remaining bits after any truncations (at least 1 bit, per the format definition), and
returns the parity of those bits. Parity 1 is accepted by the format, parity 0 is rejected. As noted in the
greedy-optimal analysis, this format in combination with truncation can leak 1 bit of information per query,
allowing efficiency of message discovery linear in the number of bits.

C.1.2 Padding Check

This check evaluates L bits in k-bit chunks. As such, any truncation renders a message invalid. The message
must be padded with a number of k-bit chunks matching the value of the last chunk. This is very similar
to PKCS7, but chunks are not required to be 8 bits. Requiring 2k > l ensures that the padding can stretch
over the entire L-bit message. Attacking this format involves malleating chunks of the underlying message
to become valid padding, thus creating an exclusive-OR equation with one unknown (which thus can be
immediately solved). This requires guessing the correct exclusive-OR malleation string to flip bits in the
message to become valid padding. As will become clear, guessing a padding chunk will be more profitable
than guessing the cookie value, but enable a less efficient attack than that allowed once the cookie value is
discovered in the optimal attack.

25We will consider l chunks of size k when analyzing this distribution.
26Although the attack algorithm has a full description of the format check, extending the model of the oracle to contain private

randomness is in no way disparate from reality.

C.2 Observations

Note that we will primarily consider truncations off the right side of the known ciphertext as this will allow
the remaining bits to decrypt as expected. If the keystream is pseudorandom, truncation off the left will
misalign the key and ciphertext streams, causing unpredictable bits to arise in the resulting plaintext. As such,
the attack algorithm would be unable to differentiate oracle results on such queries from oracle results on
random strings, and thus these queries yield trivial information about the target plaintext.

C.3 The Optimal Attack

The cookie value is embedded in a conditional as part of the description of the format check provided to
the attack algorithm. This analysis still holds in the case that this value is initially unknown to the attack
algorithm and it has to guess a k+1-bit exclusive-OR string to transform the plaintext into the cookie value in
a sequence of queries, but that assumption complicates the model of the format oracle and as such is elided.

Thus, the optimal strategy is to truncate the known ciphertext to k+ 2 bits27 and guess the plaintext
underlying the first k+1 bits. As the cookie is known, and the exclusive-OR malleation can be controlled,
this requires at most 2k+1 queries, or 2k in expectation. Once a query passes the format check, the cookie is
discovered.

However, it may be the case that the parity of the un-truncated, non-cookie bit(s) is 0, which would
cause a false oracle query result for any guess of the cookie. By querying each guess twice, once with the
un-truncated bit(s) untouched, and once with a single un-truncated bit flipped (exclusive-OR with 0 or 1,
respectively), the cookie will be discovered in 2k+1 queries in expectation.

Then, the remaining L− (k+1) bits can be discovered one query at a time by truncating to incrementally
increasing sizes, at which point each query result describes whether the included bit did or did not change the
parity of the string. This completely compromises the plaintext one bit at a time.

Before the cookie is known, the profitability of making a guess is 2L−(k+2), as each pair of queries
(flipping the un-truncated bits, and not) eliminates the entire class of messages that would have become
valid had the guess been correct (which is of size 2L−(k+1)). After the cookie is known (which also includes
uncovering the un-truncated bit) the profitability is half of the remaining messages at each step, maximizing
profitability in expectation. The optimal attack in expectation will take 2k+1 queries to guess the cookie and
the un-truncated bit, and then L− (k+2) for the remaining bits.

exp. profitability≈ 2L−(k+2)

exp. queries = 2L−(k+1)+L− (k+2)

C.4 The Greedy Attack

On the other hand, the greedy attack strategy simply seeks to maximize the profitability of the malleation
selections. By attempting to guess a k-bit exclusive-OR string which transforms the last k bits into a valid
padding chunk (the k-bit representation of 1, for example), and then proceeding chunk-wise through the
l chunks of the messages, the greedy attack will take in expectation l(2k−1) queries. That is, each chunk
requires 2k−1 guesses in expectation, and the attack must guess all l chunks in this way, malleating them via
exclusive-OR into increasingly long valid paddings.

27Any non-zero amount of truncation leaving at least one non-cookie bit is equally effective but complicates the attack slightly.

The greedy attack will follow this attack path because doing so differentiates a class of messages which
match the guess of the last k bits from the remaining which have some other last k bits. As the message is
uniform, the number of eliminated messages will likely be the smaller class, of size 2L−k, although with some
probability (2−k) it will be the larger class (if the guess was correct). Thus the profitability in expectation is

exp. profitability = (2−k)(2L− (2L−k))+(1−2−k)(2L−k)

The greedy expected profitability exceeds the optimal expected profitability for all L > 0, and thus the
greedy attack will attack the padding scheme as described. As the attack progresses, the profitability is
exponentially reduced as some number of bits have become known. However, the greedy attack will not
switch to attacking the cookie value, because the profitability of a query guessing the cookie is also reduced
by these known bits. They decrease at the same exponential rate (each known bit halving the size of the
candidate message space) and as such the padding attack remains more profitable.

The greedy attack must guess each k-bit chunk and so:

exp. queries = (2k−1)l

The expected number of queries for the greedy attack strictly exceeds the expected number of queries for
the optimal attack for some choices of L and k. As such, there exists a configuration for which the greedy
attack is not optimal.

C.5 Discussion

Although this particular format may seem contrived, Conditionals in format checks are not rare. Many formats
contain headers which define how the remaining message will be processed; examples include indicators
used for compression algorithm selection or format version [png, Pfe03].

C.5.1 Edge Cases

There are numerous edge cases due to the conditional nature of the format check. However, as this is an
existence proof, many of them can be mitigated through selection of k, L, and l (the selection of any two
fixes the third) to reduce the probability and/or impact of the edge case. These cases are summarized below,
regardless.

If the two formats overlap, i.e. the cookie bits are also part of a validly padded message, the implication
of an oracle result can be unclear. However, by truncating when attacking the cookie bits, the complications
of this for the optimal attack are mitigated. The only possible true result from the oracle occurs when the
cookie is correct and the un-truncated is 1. Additionally, this has no effect on the greedy attack. The correct
guess for malleating the leftmost bits will simply be to exclusive-OR them with zeroes. Finally, this occurs
when the cookie values is all zeros, which occurs with probability 2−(k+1), so its effect on average-case
analysis is minimal.

Another possibility of overlap is that the message is already validly padded and the first k+1 bits are
not already the cookie value. This occurs with probability slightly greater than 2−k. The optimal attack is
unaffected due to the truncation strategy. The greedy attack is somewhat affected in that malleating the last k
bits will result in a valid padding in up to two ways: leaving the bits unchanged, and whatever transforms
the bits to a k-bit representation of 1. Thus, the greedy attack in some cases gains less information when
querying on an exclusive-OR which leaves padding bits unchanged. Not only does this mean that the greedy

attack will de-prioritize such malleations, it also means that in this somewhat rare case the greedy algorithm
is at least as inefficient as in the common case.

Alternatively, The first k+ 1 bits of the message may be equal to the cookie value. With a uniform
message and a k+1-bit cookie, this occurs with probability 2−(k+1). The optimal attack will be unaffected;
the correct guess will not malleate these bits. However, the greedy attack is potentially affected. An oracle
query on an incorrect guess attempting to malleate the last k bits into may return true if the parity of the
message bits is 1, even if the last k bits were not transformed to correct padding. This case degrades the
expected profitability of the greedy attack somewhat (upper-bounded by (2L−(k+1))(2−(k+1))), the class of
messages which cannot entirely be ruled out times the probability of this edge case), but as k grows with
some fixed l this bound shrinks proportionately to the overall profitability.

Finally, if a combination of these events occur, the complications are less clear. However, while events
are not entirely independent, the probability of coincidence is roughly 2−((k+1)k), which does not significantly
affect average-case analysis for at least some k.

D Realizing Plaintext Weight Functions

As discussed in §3, our basic attack algorithm is designed to identify the largest subset of messages to be
eliminated at the ith query. From an optimization perspective, this strategy embeds a critical assumption:
namely, that every valid plaintext admitted by Gi is equally likely, and thus the most efficient path to finding
M∗ is to simply eliminate as many messages as possible, without regard to message probability.

This approach can produce counter-intuitive results in practice. One example manifests in our attacks
on the PKCS7 encryption padding scheme [Kal98], which we discuss in §5. In this format, messages may
be padded with up to P bytes of padding. If our target is a valid ciphertext C∗ in which F(M∗) = 1, then
plaintext candidates with P = 1 bytes of padding will be 28 times as common as candidates with P = 2 bytes
of padding, and so on. Since our attack strategy is optimized to eliminate the largest subset of messages first,
experiments that eliminate longer messages will tend to dominate over those that eliminate short messages.
A practical result is that our attack algorithm will “assume” that short padding is more likely than longer
padding, and will focus on experiments that make sense based on this assumption. Such a strategy makes
sense if a typical M∗ is truly 2112 times more likely to have P = 1 than to have P = 15. However, such a
distribution may not reflect the typical distribution of messages in a real system.

Approximations with plaintext weight. To address this assumption, our attack algorithm can be updated to
weight plaintext candidates according to some formula provided by the user. This information can be encoded
via an abstract plaintext weighting function W : M → {0, . . . ,B} defined with respect to some constant B,
where W (M)→ A defines the fractional weight A

B of a given plaintext M. A custom weighting function can
be developed, for example, to encode the assumption that all PKCS7 padding lengths are equally likely. A
naive weighting function adds a constraint for each possible message which returns a weight. However, such
an approach suffers from exponential runtime overhead. To efficiently apply this weighting information to
the attack, we can sample a fresh universal hash function H : {0,1}m→{1, . . . ,B} for each trial, and extend
the solver query with the following additional constraint term constructed over M0,M1:

H(M0)≤W (M0) ∧ H(M1)≤W (M1)

This formulation allows the weighting function to arbitrarily reduce the number of satisfying solutions for
any possible class of messages. Notice also that the original attack algorithm is equivalent to using a trivial
weighting function where ∀M ∈M it holds that W (M) = B.

E Additional Experimental Results

E.1 PKCS7

Figure 5 demonstrates an example sequence of malleations strings displayed as bitmaps, with one malleation
string per row. This image represents a full attack, constituted of 1475 queries, against PKCS7 with a 128-bit
plaintext encrypted with a stream cipher. As the attack progresses, bytes are discovered from right to left in a
similar fashion to the human attack. This emergent behavior occurs as it is the most efficient way to discover
the underlying plaintext bytes, in expectation.

E.2 Bitwise Padding Format Tests Over t

We empirically observe the parameter δ has limited impact on solver runtime and set δ = 0.5.28 This produces
reasonable performance and is consistent with previous works [GSS06]. After running a variety of test we
determined that t is a key parameter affecting attack runtime. Analysis confirmed that larger t increases
query profitability by increasing the certainty of the underlying counting formula [GSS06]. However, larger t
significantly increases the complexity of each constraint formula, which results in an (approximately linear)
increase in CNF complexity and a variable increase in solver runtime depending on the underlying constraints.
Additionally, despite increased runtime, we find that increasing t is subject to rapidly diminishing returns. As
such, we generally use the lowest value for t which empirically succeeds. Figure 6 demonstrates malleation
string bitmaps for full attacks against the bitwise padding format for t ∈ {1, . . . ,5}. The t = 1 bitmap is
truncated significantly.

Additionally with the bitwise format, for each t from {1, . . . ,6} we execute a full attack, once each for
logarithmically-sized and full hash functions. We use ApproxMC to evaluate generated queries by model
counting the messages which are excluded by a given query. This value is tightly related to the remaining valid
candidate messages and as such the experiments are comparable. Figures 7 and 8 demonstrate ApproxMC
evaluations of counts of removed messages across t with logarithmically- and full-sized parity constraints,
respectively.

To evaluate the impact of changing t on our attacks against the bytewise PKCS7 padding format,
we conducted a series of “microbenchmarks” of our attack’s experiment generation procedure. In each
experiment, we asked the algorithm to derive 10 malleation strings S at arbitrary points along a complete
attack run, and then used the ApproxMC model counting tool to measure and average the minimum profitability
of the resulting malleation string.29 We repeated each experiment for each t ∈ {1, . . . ,6}, and measured the
wall-clock execution time of experiment generation. This strategy is necessarily heuristic, but is a useful
method for indicating appropriate parameters for a full attack run without a priori knowledge of attack
performance. The output data of these microbenchmarks is omitted for brevity.

28i.e. requiring all trials to be satisfied.
29We did this by simulating each possible result from the decryption oracle, and using ApproxMC the number of plaintext

candidates eliminated by each.

Figure 5: PKCS7 malleation bitmap

t=1 t=2 t=3 t=4 t=5

(Approximately 90% of attack truncated)

186 total queries

169 total queries
163 total queries

153 total queries

2238 total queries

Figure 6: Malleation strings for 128-bit bitwise padding (Fbitpad) using a stream cipher. Experiments consider several different
values of t, all with δ = 0.5. Each uses a different random 128-bit message, which can account for some variability in the attack
progress. For t = 1 the total number of queries is too large to show, and so we only present approximately the first 10% of the full
attack transcript.

Figure 7: Approximations of how many messages were removed in a 128-bit Bitwise Padding Format attack with long parity
constraints.

Figure 8: Approximations of how many messages were removed in a 128-bit Bitwise Padding Format attack with short parity
constraints.

E.3 Bitwise Padding Format Test: Differences between Short and Long exclusive-OR

(a) Approximate number of removed
candidate messages for each query in
the attack, with parity constraints of
size n

2 .

(b) Approximate number of removed
candidate messages for each query in
the attack, with parity constraints of
size logn.

Figure 9: Attacks on 128-bit Bitwise Padding Format.

E.4 CRC

Figure 10 displays a bitmap of malleation strings for an attack against CRC, allowing truncation and
exclusive-OR malformations.

E.5 Sudoku

In Figure 11 we show an attack against the Sudoku format check. This format maps a 48-bit bitvector to
entries into a 4x4 Sudoku board and checks the validity of the resulting solution. Values are coded as 3 bits,
allowing entries from 0 to 7 (where 0 is coded as an unfilled square). Initially, the solver knows nothing about
the real plaintext, which is a given Sudoku solution. The mauled boards show the malleation chosen by the
solver applied to the real plaintext. After 7 queries, the solver has uniquely constrained its model for the real
plaintext, which is correct. When the solver chooses a malleation which causes the resulting Sudoku board
to remain valid, it can derive many additional constraints on the values of its model for the real plaintext.

Figure 10: Representation of a malleation string an attack on a CRC-8 where the length of the data to compute the CRC over is 3
bytes long.

Other attacks took up to 33 queries, but have a similar pattern (deriving notable information from True oracle
results) and thus are omitted for brevity.

F Format Check Implementations

We present a listing of several Python-Solver format check functions below.

F.1 PKCS7 padding FPKCS7

def checkFormatPKCS7(padded_msg, solver):
""" PKCS7 check format as solver constraints """
size of a byte
unit_size = 8
number of units which make up a block
block_size = 16
base case of an OR iteratively constructed
is_valid = solver.false()
for each possible padding size
for i in range(1, block_size+1):

base case of an AND iteratively constructed
correct_pad = solver.true()
for each byte of a pad of size i
for j in range(i):

extract from padded_msg the bits
which should make up a padding byte
pad_byte = solver.extract(

padded_msg,
(j + 1)*unit_size-1,
j*unit_size)

pad is correct if this and all previous
checked bytes match the bitvector
representing the size

Query #

Knowledge of boardMauled board

1

2

3

4

5

6

7

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4

4 2

2 4

4 2

2 4

1 2 3 1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 3

4 2

2 4

4 2

2 4

1 2 3 1 2 3

1 2 3

1 2 3

1 2 31 2 3

1 2 3

1 2 3

False

True

True

False

False

False

False

Query result

1 5 3 3

3 3 5 1

4 1 3 2

2 3 1 4

6 4 5 3

4 2 3 1

7 6 5

1 4 2 3

3 6 4 5

3 2 4 1

4 1 3 2

1 7 2

6 3 1

3 2 3 6

3 6 1

2 3 6 3

3 2 4 1

1 4 2 3

4 3 1 2

2 1 3 4

4 7 4 3

2 5 7 4

7 6 1 4

5 6 7

1 4 2 3

2 3 4 1

4 1 3 2

3 2 1 4

Figure 11: An example of an attack against the Sudoku format check. When the solver has narrowed a square to some candidate
entries, multiple numbers are shown in a given square. Squares which are changed from their original values by a malleation are
colored in light red.

correct_pad = solver._and(
correct_pad,
solver._eq(

solver.bvconst(i, unit_size),
pad_byte))

padding is valid if one size matched
thus, return the OR of padding checks at each size
is_valid = solver._or(is_valid, correct_pad)

return is_valid

F.2 AWS Session Ticket FTicket

def checkFormatAWSSessionTicket(full_msg, time, state, mall=0, trunc=0):
If value is changed for these fields, will fail
if grabByte(mall, 1) != 0:

return 2
if grabNBytes(mall, 2, 2) != 0:

return 2

message must be at least S2N_STATE_SIZE_IN_BYTES bytes long
if full_msg & ((1 << length_field_size)-1) != test_length:

return 0
msg = full_msg >> length_field_size
first byte must match S2N_SERIALIZED_FORMAT_VERSION
if grabByte(msg,0) != S2N_SERIALIZED_FORMAT_VERSION:

return 0

protocol version from earlier point in time
this is stateful information
if grabByte(msg, 1) != state["proto_version"]:

return 0

iana value of cipher suite negotiated, this is also stateful information
if grabNBytes(msg, 2, 2) != state["iana"]:

return 0

checking expiry of the session ticket, this is also stateful
time_on_ticket = grabNBytes(msg, 8, 4)
this is going to change every time it’s called...
if time_on_ticket > time:

return 0
if (time - time_on_ticket) > TICKET_LIFETIME:

return 0

return 1

F.3 Bitwise padding Fbitpad

def checkFormatBitwisePadding(padded_msg, solver):
numBits = solver.extract(padded_msg, paddingSizeBits-1, 0)
compound_expr = solver.true()
numVal = 1
for i in range(1, ciphertextBits-paddingSizeBits+1):

ones = solver.extract(padded_msg, paddingSizeBits+i-1, paddingSizeBits)
compound_expr = solver._if(solver._eq(numBits, i),

solver._eq(ones, solver.bvconst(numVal,i)),
compound_expr)

numVal = (numVal << 1) | 1

length_check = solver._ule(numBits,ciphertextBits-paddingSizeBits)
return solver._and(length_check, compound_expr)

	Introduction
	Intuition

	Preliminaries
	Encryption Schemes and Malleability
	Malleation Functions

	Theory Solvers and Model Counting
	Format Checking Functions

	Constructions
	Main Algorithm
	Realizing the Max#SAT Oracle
	Attacks with Knowledge of the Plaintext Distribution

	Prototype Implementation
	Architecture Overview
	Implementation Details
	Implementing Malleation Functions

	Implementation Considerations
	Software
	Extensions

	Experiments
	Experimental Setup
	Experiments with Stream Ciphers
	Ciphers with Truncation
	CBC mode

	Related Work
	Conclusion
	Proof that DeriveAttack is Greedy
	Preliminaries
	Proof
	Base Case
	Strong Induction
	Max#SAT Aborts

	The Greedy Algorithm can be Optimal
	Preliminaries
	Observations
	The Optimal Attack
	The Greedy Attack
	Discussion

	The Greedy Algorithm can be Suboptimal
	Preliminaries
	Parity Check
	Padding Check

	Observations
	The Optimal Attack
	The Greedy Attack
	Discussion
	Edge Cases

	Realizing Plaintext Weight Functions
	Additional Experimental Results
	PKCS7
	Bitwise Padding Format Tests Over t
	Bitwise Padding Format Test: Differences between Short and Long exclusive-OR
	CRC
	Sudoku

	Format Check Implementations
	PKCS7 padding FPKCS7
	AWS Session Ticket FTicket
	Bitwise padding Fbitpad

