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Abstract. We propose a mechanism for an m-party dishonest majority Multi-Party Computation
(MPC) protocol to obtain the required pre-processing data (called Beaver Triples), from a subset of
a set of cloud service providers; providing a form of TaaS (Triples-as-a-Service). The service providers
used by the MPC computing parties can be selected dynamically at the point of the MPC computation
being run, and the interaction between the MPC parties and the TaaS parties is via a single round
of communication, logged on a public ledger. The TaaS is itself instantiated as an MPC protocol
which produces the triples for a different access structure. Thus our protocol also acts as a translation
mechanism between the secret sharing used by one MPC protocol and the other.

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of parties to securely compute a function on
their private inputs, revealing no more than what is revealed by the output of the function. Such
computations are however often expensive. In the late 1990’s Beaver [3] had already thought about
the complexity that stems from general cryptographic computation, and to remedy this problem he
defined what he called commodity-based cryptography, related to the notion of beacons introduced
by Rabin [20]. The high level idea of commodity-based cryptography is to have commodity servers
establishing shared resources for a group of computing parties. The commodity servers do not
take part in the actual computation of the cryptographic primitive, but instead provide a resource
which reduces the computational costs of the users of this commodity. In Beaver’s commodity
paradigm, the commodity servers need have no knowledge of each other, only that some parties
asked them for resources. These commodity servers would then respond to the parties request with
a single message containing correlated randomness independent of the parties inputs. In [3] Beaver
proposes a protocol to achieve 2-party OT in the commodity setting, assuming passive corruption
of one client and a minority of the commodity servers. Thus in modern parlance the commodity
servers act like a set of cloud service providers which provide RaaS (Randomness-as-a-Service) to
a set of computing parties.

MPC is not new, it dates back to Yao’s famous protocol [24] for solving the millionaire’s problem,
but was until very recently considered totally inefficient for practical applications. Over the last ten
years there has been considerable work in bridging the gap between theory and practice. A notable
variant of MPC which is particularly efficient, for many parties, is that of secret sharing based
MPC. The rise of secret sharing based MPC can be linked with the pre-processing model, which
was another introduction of Beaver [2], and which was first efficiently implemented in the VIFF
protocol [9]. In the pre-processing model, the protocol is split up into two distinct sub-protocols. In
what we call an offline phase (or pre-processing), the parties interact with each other to emulate
a trusted dealer that securely distributes correlated randomness. The offline phase is independent
from the inputs of the parties and as such can be computed at any point prior the evaluation of
the circuit. The correlated randomness produced during the pre-processing is then consumed in



the so-called online phase. The online phase actually computes the function the parties agreed on.
The advantage of considering MPC in the pre-processing model, much alike the RaaS setting, is
that we can outsource all the cryptographically intensive computation to the offline phase. This
allows us to have a very fast online phase, which usually consists essentially of information theoretic
computation.

Early work, such as VIFF [9] considered the case of a semi-honest adversary, with a honest
majority. That is an adversary that does not deviate from the protocol and can corrupt only a
minority of parties. More recent work are able to defend against a much stronger and arguably
more realistic malicious adversary, which can arbitrarily deviate from the protocol, with dishonest
majority. The first modern work in secret sharing MPC against a malicious adversary that corrupts
a majority of the parties is due to BDOZ [4]. However, since then the SPDZ [12] family of protocols
has been able to achieve better results, replacing the pairwise MACs used in BDOZ by introducing
a unique secretly shared MAC key amongst all the players. One of the major drawbacks of all
those protocols is that the offline phase, which produces correlated randomness, is computationally
heavy.

The correlated randomness produced by the offline phase, is (generally) so-called Beaver triples.
These are sharings of two random values a and b, along with their shared product c = a · b. There
are mainly two methods in the literature for generating such triples: homomorphic encryption, as
presented in the original SPDZ protocol or Oblivious Transfer (OT) extensions proposed in the
MASCOT [17] protocol, which improves on the work of Frederiksen et al [14]. Both these methods
require very expensive public key cryptography, making the offline phase of SPDZ-like protocols
order of magnitudes slower than the online one. We propose to produce these triples used by the
computing parties as a third party Triples-as-a-Service (TaaS).

In [22] a similar methodology for outsourcing triple production was provided for the SPDZ
family of protocols. However, in their work the computing parties have to be fixed and constant
throughout the execution of the outsourcing protocol, thus the model does not directly map onto
the commodity service idea of Beaver, nor is it suited for TaaS for cloud providers to sell. In [10] the
authors look at the outsourcing of triple production in the case where two computing parties; they
show that one can instantiate an actively secure system in the commodity model of Beaver in which
the commodity servers do not communicate, and can even be stateless. Other work has been done
to outsource some parts of MPC protocols, with various goals in mind. Some tackle the problem
of outsourcing garbled circuits generation [5], or their evaluation [15,6]. Others limit themselves
to semi-honest adversaries [13,21] or work in the specific two party case [7,19]. Eventually there
are also works which leverage the functionality of FHE to achieve outsourced MPC [1]. In our
work we generalise the method of [22] to be closer to the original commodity model of Beaver.
In particular we allow the commodity servers to do most of the computation regardless of which
computing parties that will ask for their help. Thus, in our approach of commodity MPC, the set of
computing parties can be dynamic. In addition the computing parties can also dynamically select
which of the commodity servers (subject to some minor conditions) will be selected to produce
the correlated randomness. Thus the resources produced by the commodity servers more closely
match the definition of commodities as envisioned by Beaver. As a consequence, in our approach,
the commodities can be seen as a service available in the cloud.

Contribution: In this work we improve on the outsourcing model of [22] to better match the
communication model envisioned in [3]. We present a method to outsource the pre-processing for
the SPDZ family of protocols to a set of service providers. The main difference from [22] is that in

2



our work we require the set of service providers to be able to communicate with each other only up
to the commodity request. In addition the commodity servers are assumed to only have an honest
majority, or more generally to follow a Q2 access structure, as opposed to a dishonest majority (a
Q2 access structure is one in which no union of two unqualified subsets can form the whole set). In
addition we will require an immutable, append only public ledger to log the transactions.

After receiving the request for correlated randomness from the group of computing parties via
the ledger (one could think of using a smart contract on a public blockchain to achieve this), the
service providers will only perform local computation and point-to-point communication with the
later group to respond to these requests. The computing parties (the clients in our outsourcing
model) can select which subset of commodity servers they wish to obtain data from.

We will denote by SP the set of n service providers that run (say) in the cloud, we assume
these come defined with an access structure S which we assume is Q2. The set SP is the service
provider in our TaaS application. There is in addition a set CP of m computing parties who wish
to perform a secure computation. From SP a set SPr of r service providers are selected by the
computing parties CP. The set SPr must be selected so that the access structure S restricted to
SPr is also Q2.

A Q2 sharing for the set SP instead of a full threshold sharing allows for the set of computing
parties to interact with only a subset of the service providers while still being able to securely retrieve
the required commodities. In addition, this stronger requirement allows the service providers to
benefit from a somewhat cheaper MPC protocol. We can also argue that the computing parties
could easily agree on some big corporation that provide web services to not be malicious when they
act as service providers.

In our setting we let the adversary actively corrupt at most an unqualified set of parties from
the service providers and m − 1 computing parties at the same time. In theory the choice of the
access structure for SP and CP can be either Q2 or full threshold as long as it implies an MPC
protocol. However we note that having a full threshold, SPDZ-like, MPC protocol for SP makes the
offline generation of commodity data much more expensive. Moreover, one will have to take into
account that a SPDZ-like sharing involves a share of a MAC alongside every shared values. Meaning
that the re-sharing procedure will also be more involved. Regarding the online phase where only
the parties in CP are involved, we believe that with access to a pool of correlated randomness,
the choice of a full threshold MPC scheme is more meaningful. Indeed, the online phase of the
SPDZ protocol is almost as efficient as the one induced by a Q2 access structure, but provides
much more confidence when distrusting parties are involved. Therefore, as described above, our
focus will be on a Q2 access structure for SP and a full threshold for CP. In practice, our setting
also gives us the advantage that the computing parties can choose the minimal subset of service
providers that respect the Q2 property and is geographically the closest to optimize the latency of
their communication.

With this notation, we now distinguish four different phases for our commodity MPC model as
presented in Figure 1:

1. First the service providers SP pre-compute Beaver triples.

2. Then the computing parties CP send a commodity request via a ledger to SP.

3. The service providers answer to this request by sharing authenticated triples to the computing
parties; with no interaction between the parties in SP.

4. Eventually the computing parties run the computationally cheap online phase of the SPDZ
protocol.
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In this model, the last three phases respect Beaver’s commodity model exposed in [3] and only the
first step deviates by requiring the commodity servers to communicate with each other.
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Fig. 1: Overview of the four different phases of our commodity MPC

In this paper we will utilize two distinct linear secret-sharing schemes (LSSS). The first one is a
multiplicative secret sharing scheme over n parties implementing a Q2 complete monotone access
structure denoted by 〈·〉n,S , the second one is a full threshold additive sharing overm parties denoted
by [[·]]m. The sharing [[·]]m is authenticated in that each share consists of an additive sharing of the
shared value x, as well as an additive sharing of the MAC-value α · x, for some global (hidden)
MAC key α. Both secret sharing schemes give rise to MPC protocols which are actively secure
with abort, the former, leveraging the multiplicative property, uses classic protocols (see [23] for a
modern presentation), and the latter using the SPDZ protocol [12]. The 〈·〉n,S LSSS will be used
for the parties in SP and the [[·]]m LSSS will be used for the parties in CP.

Our computing parties CP, we assume, want to run a dishonest majority MPC protocol, based
(say) on SPDZ. Thus they have an efficient online protocol which can evaluate any function, as
long as they have access to a functionality providing the authenticated (i.e. MAC’d) Beaver triples
FCP,A
Prep,[[·]]m ; namely the SPDZ offline phase for the LSSS [[·]]m. The computing parties CP want to

outsource this pre-processing to a set of commodity servers SP. Here we assume that the commodity
servers SP operate in an honest majority setting, with an access structure S which is Q2. The
computing parties select a subset SPr of the SP that also satisfies the Q2 property, and reserve a
set of authenticated Beaver triples via a transaction on the ledger. Note that the commodity servers
have no knowledge of the MAC key held by the computing parties, and that each request to the
commodity servers can be from a different set of computing parties.

The commodity servers produce their own offline data, which is essentially Beaver triples with re-
spect to the Q2 multiplicative secret sharing scheme, via access to an offline functionality FSP,A

Prep,〈·〉n,S .

This is a functionality which produces Beaver triples with respect to the 〈·〉n,S LSSS. The precise

nature of how FSP,A
Prep,〈·〉n,S is implemented will not bother us (but see for example [23]). What is of

concern to us, is how the commodity servers respond to the request from the computing parties,
namely a protocol ΠSP→CP,A

Prep which maps the output of FSP,A
Prep,〈·〉n,S to the output of FCP,A

Prep,[[·]]m .
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Our work thus bridges the gap between step 1a and step 1d of Figure 1 by proposing a secure
protocol for step 1c. Informally, the service providers compute a lot of triples interactively before
reading a request on the ledger from a computing group CP. With the commodity request, the
selected subset in SP receives a 〈·〉r,S re-sharing of the [·]m-shared MAC key held by the computing
parties. By using standard re-sharing techniques, the parties in the subset of SP are able to
translate their sharing of correlated randomness from their honest majority sharing scheme to the
full threshold one of CP.

Thanks to the 〈·〉r,S-sharing of the [·]m-sharing of the MAC key received along with the com-
modity request and to the cost of one multiplication (and hence one 〈·〉r,S Beaver-triple) per field
element that is re-shared from SP to CP, parties in SP are also able to create the sharing of the
MAC-value required by the online phase of the SPDZ [12] protocol.

We note that unlike previous work, our protocol permits the parties in SP to create the sharing
of the MAC-value of any value with respect to a MAC key held by the parties in CP without
requiring any interaction after the commodity request. Therefore the novelty of this work is that
phases Figure 1b-1c match Beaver’s commodity paradigm, allowing the exchange of commodities
in only two communication rounds between SP, the Ledger and CP, and no interaction between
the SP after the offline step. Unlike Beaver’s model, the parties in SP do need to communicate in
the first phase, and we also require a Ledger, for which a blockchain seems to be a good candidate.

We end this introduction with a quick overview of what follows: In Section 2 we briefly introduce
the notion of Linear Secret Sharing Schemes and describe the offline phase of SPDZ that we want to
emulate via our commodity protocol. We then introduce our notations. In Section 3 we explain the
main steps of our protocol and state our main theorem. We continue by formally defining ΠR→Q,A

Prep
and give a simulator that proves our theorem in the UC framework. We finish by Section 4 in which
we give some conclusions and further thoughts.

2 Preliminaries

In this section we first briefly introduce the concept of multiplicative Linear Secret Sharing Schemes
(LSSS), and the MPC protocols associated with them. In particular we discuss protocols in the
SPDZ family, i.e. ones based on an offline phase which produces Beaver triples, in more detail. We
finish the section by introducing an ideal functionality for a ledger, which we use to keep a log on
every transactions that happened.

2.1 Linear Secret Sharing Schemes

Recall, we use 〈·〉n,S to denote a mulitplicative LSSS with a Q2 access structure S over n parties,
and [[·]]m to denote a full threshold mutliplicative LSSS over m parties. The Q2 sharing 〈·〉n,S will
be used as the basis of the sharing for the commodity servers SP, whilst the full threshold sharing
[[·]]m will be used as the sharing for the computing parties CP. We let SP = {SP1, . . . ,SPn} and
CP = {CP1, . . . ,CPm}.

The 〈·〉n,S-sharing: To define the 〈·〉n,S we must first introduce the notion of a complete monotone
access structure, and what it means to be Q2.

Definition 2.1. Let P = {P1, . . . , Pn} be a set of parties, Γ ∈ 2P the monotonically increasing
set of qualified set and ∆ ∈ 2P the monotonically decreasing set of unqualified set. If Γ ∩ ∆ = ∅
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then (Γ,∆) is a monotone access structure. If in addition it holds that ∆ = 2P \Γ , then the access
structure is said to be complete.

In the following we will only consider complete monotone access structure, and will refer to those
simply as access structure. We remark that such an access structure is completely defined by P
and either one of the qualified set or unqualified set. Therefore we will often talk about Γ access
structure or ∆ access structure to refer to the (Γ,∆) access structure. For an access structure to
be Q2 we now require an additional property.

Definition 2.2. An access structure (Γ,∆) is Q2 if for all U1, U2 ∈ ∆ we have U1 ∪ U2 ( P

Definition 2.3. A Q2 (share-reconstructable) sharing of a ∈ Fp, with Fp a field of size p for p a
prime power, and S a Q2 access structure on n parties, is defined as 〈a〉n,S such that any qualified
set of parties Q can reconstruct the secret a from a linear combination of their shares.

In the rest of the paper when talking about LSSS we implicitly mean multiplicative LSSS, define
as in 2.4.

Definition 2.4. A LSSS is said to be multiplicative if given two sharings of two secrets s and s′,
the product s · s′ is a linear sum of the Schur product (the local tensor product) of the shares of the
secrets.

To abstract away from any specific scheme, it is easier to think about Q2 LSSS through Monotone
Span Programs (MSPs). This model of computation was first described by Karchmer and Wigder-
son [16], and has been shown to induce LSSSs. We will only informally describe how to use a MSP
to derive a LSSS, and refer the reader to [23] for more details. Informally a MSP is defined by
(Fp,M,k, ι) where Fp is a field, M ∈ Fl×kp a full-rank matrix, k ∈ Fkp a non-zero vector and ι is a

labeling function of rows of M to parties in P. Now to share a secret s, one needs to sample v← Fkp
subject to 〈v,k〉 = s. Then define the vector s = M · v and for all i ∈ {1, . . . , l} let party ι(i) have
s[i]. We note that the definition of a MSP implies that for any qualified set, i.e. any subset Q ∈ Γ ,
there exists a recombination vector λQ such that 〈λQ, sQ〉 = s, where sQ denotes the entries of the
vector s held by parties in Q.

In the following we will denote by 〈a〉n,S = (a1, . . . , al) a Q2 sharing of a. We define ai = 〈a〉in,S .
We also associate such sharing with the labeling function ι : {1, . . . , l} → P such that the share
ai of a is held by the party ι(i). We note that ι need not to be bijective, because it is not always
injective. Therefore, when we refer to ι−1(SPi) for a party SPi ∈ SP, we refer to the rows of the
matrix M owned by this party.

An example of such scheme, that we use as an example throughout this paper, is the Shamir
sharing, for which the MPC protocol of [23] makes use of the fact that if one receives t+ 1 shares
then not only can one reconstruct the secret a, but one can also detect (with high probability if p
is large) if an adversarial set has given one invalid share. This fact is used to produce an actively
secure with abort MPC protocol for honest majority. Thus, in some sense, the Shamir LSSS is self
authenticating. The MSP representation of the (t, n) Shamir sharing is (Fp,M,k, ι) where ι is the
function that maps row i to player Pi, k = (1, 0, . . . , 0) ∈ Ft+1

p and

M =


1 1 1 . . . 1
1 2 4 . . . 2t

1 3 9 . . . 3t

...
...

...
. . .

...
1 n n2 . . . nt


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The [[·]]m-sharing: To define the [[·]]m notation we first introduce a basic full threshold sharing,
with no authentication.

Definition 2.5. A full threshold m-party additive secret sharing of a ∈ Fp, with Fp a finite field of
size p a prime power, is defined as [a]m = (a1, . . . , am), with ∀i ∈ {1, . . . ,m}, ai ∈ Fp, such that
a =

∑m
i=1 ai, with CPi ∈ CP only knowing ai.

Unlike the Shamir scheme the LSSS given by [·]m is not self authenticating. Thus in the SPDZ
papers [12,11] the authors introduce an authenticated full threshold LSSS.

Definition 2.6. An authenticated full threshold m-party additive secret sharing of a ∈ Fp, with Fp
a finite field of size p a prime power, is defined as [[a]]m = ([a]m, [α · a]m), where α ∈ Fp is a global
secret value which is [·]m-shared.

The authentication of a [[a]]m-sharing ([a]m, [α · a]m) given an opening of the [a]m value is not
immediate, unlike in the case of Shamir sharings. However, a protocol (called MACCheck and given
in [11]) allows one to verify such openings, without needing to open either [α · a]m or [α]m.

2.2 Pseudo-Random Secret Sharing

We will make use of the functionality FP,APRSS,〈·〉n,S given in Figure 2, which we take from [23]. In the

case of Shamir sharing (for smallish values of t and n) one can obtain this functionality efficiently
without interaction, using well known techniques dating back to [8]. For other access structures, or
larger values of t and n, one can easily obtain this functionality using interaction.

Ideal Functionality FP,APRSS,〈·〉n,S

On input PRSS(count) from all parties, if the counter value is the same for all parties and has not been used
before, the functionality samples a← Fp, computes share vector 〈a〉n,S and sends 〈a〉kn,S to Pι(k).

Figure 2: Ideal Functionality FPRSS,〈·〉n,S

2.3 SPDZ-Like MPC Protocols

We assume that we aim to produce MPC protocols for arithmetic circuits over Fp, for a prime p. To
simplify our presentation we require p to be large enough such that 1/p is a negligible function of
the security parameter λ. Improvements in the protocols we use can alleviate this constraint, but
we keep to the case of large p for ease of exposition.

Our goal is to produce an MPC protocol for a set of parties P, where an adversary controls a
subset A. Such a protocol is given by the ideal functionality FMPC presented in Figure 3. We will
be examining MPC over different access structures. In particular the m computing parties wish to
execute an MPC protocol for the full threshold case, i.e. the full set of parties are given by P = CP,
and the adversary controls a subset A such that A∩P 6= P. In the case of the n commodity servers
they are essentially executing an MPC protocol (albeit only an offline phase) for a set of parties
P = SP, and the adversary controls an unqualified subset A ∈ ∆.

In [12,11] it is shown how to realise the functionality FMPC in the FP,APrep,[[·]]m-hybrid model in

the case where A∩P 6= P, using the secret sharing scheme [[·]]m. See Figure 4 for the functionality
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Ideal Functionality FP,AMPC

Initialise: On input (Initialise,Fp) from all parties in P, store Fp.

Input: On input (Input, i, id, x) from party i and (Input, i, id) from all other parties, with id a fresh
identifier and x ∈ Fp, store (id, x).

Add: On command (Add, id1, id2, id3) from all parties in P (where id1 and id2 are present in memory),
retrieve (id1, x) and (id2, y) and store (id3, x+ y).

Multiply: On command (Multiply, id1, id2, id3) from all parties in P (where id1 and id2 are present in
memory), retrieve (id1, x) and (id2, y) and store (id3, x · y).

Output: On input (Output, id) from all honest parties (where id is present in memory), retrieve (id, z),
output z to the adversary. If the adversary responds OK then output the value z to all parties, otherwise output
ABORT to all parties.

Figure 3: Ideal MPC Functionality FMPC

Ideal Functionality FP,APrep,[[·]]m

Initialise: On input (Initialise, p, T , R1, . . ., Rm) from all players and the adversary:

1. The functionality samples α←$Fp to be the global MAC key.
2. The functionality receives for each corrupted player i ∈ A a share αi .
3. The functionality samples at random αi for each i 6∈ A s.t.

∑
i∈P αi = α.

4. The functionality sends αi to party i, for all i ∈ P .

Macro: Angle(x):

1. The functionality accepts ({xi, γ(x)i}i∈A) from the adversary.
2. The functionality waits for the adversary to send a signal either ABORT or PROCEED. If ABORT, it aborts,

otherwise it continues.
3. The functionality samples at random {xi, γ(x)i}i6∈A s.t.

∑
i∈P xi = x and

∑
i∈P γ(x)i = α · x.

Preprocessing:

- For i in P
1. If i 6∈ A the functionality samples r(k) ←$Fp for k ∈ Ri. Otherwise i ∈ A so the functionality accepts

r(k) for k ∈ Ri from the adversary.
- For all i ∈ P, for k ∈ Ri:

1. The functionality runs Angle(r(k)).

2. For each j ∈ P , the functionality sends party j the pair (r
(k)
j , γ(r(k))j).

3. Additionaly, to party i, the functionality sends r(k).
- For k ∈ T

1. The functionality samples ak, bk ←$Fp and computes ck = ak · bk.
2. The functionality calls Angle(ak),Angle(bk),Angle(ck).
3. The functionality outputs ((aki , γ(ak)i), (bki , γ(bk)i), (cki , γ(ck)i)) to party i.

Figure 4: The Ideal Functionality FP,APrep,[[·]]m for the LSSS [[·]]m
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FP,APrep,[[·]]m in this case. The functionality is a little different than the one presented in [22] as we do not

allow the adversary to introduce an error in the Angle macro. Instead, as in [17], the functionality
generates the triples optimistically and allows the adversary to abort the protocol before sending
out the shares. We also require the parties to send in a single message the set of handles T ′ on the
triple items and the sets of handles R1, . . ., Rm on the input masks that each of the m parties will
need. During the Initialise part of the pre-processing phase, the parties agree on a global MAC key
α such that each party i ∈ P only knows a share αi of it, subject to

∑
i∈P αi = α. Then, each value

x additively shared by the parties in the Preprocessing part of the offline phase is accompanied by
an additively shared information theoretic MAC γ(x) = α · x. Therefore, at the end of the offline
phase, for all x produced in the Preprocessing, party i ∈ P holds a tuple (xi, γ(x)i) subject to
x =

∑
i∈P xi and α · x =

∑
i∈P γ(x)i. That is, for all x, a [[x]]m sharing is produced. We note that

such a sharing trivially allows for linear operation without interaction, and hence additions are
free and the Beaver multiplication [2] trick can be used to multiply two secret-shared values by
consuming a pre-processed triple. The strength of the SPDZ protocol resides in the fact that at the
end of the online phase, the parties can use the MAC scheme to verify that the adversary did not
deviate from the protocol, and abort the protocol in case of malicious activities.

Ideal functionality FP,APrep,〈·〉n,S

On input (Triple) from all parties, the functionality does the following:

1. (a) Sample a, b← Fp and compute share vectors 〈a〉n,S and 〈b〉n,S .

(b) Send (〈a〉ι
−1(A)
n,S , 〈b〉ι

−1(A)
n,S ) to the adversary.

(c) Receive a subvector of shares 〈c̃〉ι
−1(A)
n,S from the adversary.

(d) Compute a sharing 〈c〉n,S = 〈a · b〉n,S such that 〈c〉ι
−1(A)
n,S = 〈c̃〉ι

−1(A)
n,S . If no such vector c exists, set an

internal flag ABORT to true and continue.
2. Wait for a message OK or ABORT from the adversary.
3. If the response is OK and the internal flag ABORT has not been set to true, for each honest Pi ∈ P, send

(〈a〉ι
−1(i)
n,S , 〈b〉ι

−1(i)
n,S , 〈c〉ι−1(i)

n,S ), otherwise output the message ABORT to all honest parties and abort.

Figure 5: The Ideal Functionality FP,APrep,〈·〉n,S for Q2 sharing 〈·〉n,S

In Figure 5, taken from [23], we present the equivalent offline phase for the multiplicative Q2

secret sharing system. We use the notation FP,APrep,〈·〉n,S to denote this offline functionality. It is shown

in [23] how to realise the functionality FMPC in the FP,APrep,〈·〉n,S-hybrid model in the case where A ∈ ∆,

but this time using the secret sharing scheme 〈·〉n,S .

2.4 The Ledger

To make sure the service providers do not reshare twice the same commodities, every transaction
has to be logged on a ledger. To do this we introduce the ideal functionality FLedger in Figure 6.
The ledger stores which commodities are requested for each transactions, making sure that each
commodity is reserved only once. The use of a ledger allows us to have an agreement in SP on
which commodities have already been used without proceeding to a Byzantine Agreement after
each requests. The latter solution would break the communication model we try to achieve. An im-
plementation of such a ledger could be done via a smart contract executed over a public blockchain.
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In addition the ledger also stores the encrypted re-sharing of the MAC key destined for the service
providers in SPr.

Ideal Functionality FLedger

The functionality emulates a publicly readable, immutable, append only ledger.
The functionality starts with two empty sets T = R = ∅.

Reserve. Upon receiving (RESERVE, T ′, R1, . . ., Rm, {Encskι(j)(〈αi〉
j
r,S)}j∈ι−1(SPr), SPr, CP) from all CPi ∈

CP,

1. If T ∩ T ′ 6= ∅, or ∀i, j ∈ CP, i 6= j, R′i ∩ R′j 6= ∅ or ∀i ∈ CP, R ∩ Ri 6= ∅ send FAIL to every parties in CP
that have already sent a message.

2. Otherwise T = T ∪ T ′ and R = R ∪mi=1 Ri. Plus the functionality stores the request on the ledger.

Read. Upon receiving (READ,SPi) from SPi ∈ SP, reply with all entries of ledger in which SPi is involved.

Figure 6: Ideal Ledger Functionality FLedger

3 Commodity Offline Data

Our goal is to provide a protocol which allows the computing parties to obtain the Beaver triples
needed for secure computation in an outsourced manner from a set of commodity servers. To make
things more concrete we utilizes the two sets of parties defined above, the service providers SP and
the computing parties CP. In practice, the service providers could be computationally powerful
machines hosted in the cloud, producing Beaver triples as a service (TaaS) for low energy devices.
We consider an active adversary A which can corrupt an unqualified set U ∈ ∆ of the n parties in
SP AND m− 1 parties in CP.

The idea for our commodity MPC is to have parties in SP, which can run in the cloud, to
execute the costly offline phase, generating pre-processing data in the 〈.〉n,S-scheme. For this the

parties in SP utilize the functionality FSP,A∩SP
Prep,〈·〉n,S . The service providers then execute our re-sharing

protocol below to transform the data from a 〈.〉n,S-sharing to a [.]m-sharing, and add the correct
MAC to it to make it a [[.]]m-sharing. The computing parties will then be able to use the data in
an online phase of a SPDZ-like protocol. Thus the output of the protocol will be equivalent to
the computing parties executing the functionality FCP,A∩CP

Prep,[[·]]m . The offline data is therefore seen as
commodities, which shall be computed independently of the parties that are going to use it. To
be sure that the same data is not used more than once by SP, we use the public ledger to log
every request made from the sets CPs to SP. In practice this ledger could be implemented via a
blockchain.

Before proceeding with our protocol we present some observations:

- The computing parties are independent of the commodity parties (unlike the case considered
in [22]), because the pre-processing of triples can be done without knowing the MAC key held
by CP.

- On each application of the protocol with the commodity servers SP, there could be a new
distinct set of computing parties CP, and hence a distinct MAC key α. Indeed even the same
set of computing parties can utilize a different MAC key on each execution.
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- Contrary to Beaver’s idea of commodity cryptography in our model the commodity servers
SP do interact with each other. However, as opposed to the outsourcing protocol of [22], the
interaction amongst the commodity servers can all be done before the request of the computing
parties. Thus the interaction between the parties in SP can itself be done in an offline manner.

Our protocol, which we call ΠSP→CP,A
Prep , will allow a set of computing parties CP to select a

subgroup SPr of the set SP which is minimal to satisfy the Q2 property and the geographically
closest to them to optimize latency. The computing parties will then only interact with the commod-
ity servers in SPr so as to realise the functionality FCP,CP∩A

Prep,[[·]]m in the FSP,SP∩A
Prep,〈·〉n,S ,F

CP,CP∩A
PRSS,〈·〉n,S -hybrid

model.

3.1 Overview of the protocol

In this section we first briefly describe the main steps of our protocol. We then formally define
ΠSP→CP,A
Prep and we prove its security, defined by theorem 3.1.

Theorem 3.1. The protocol ΠSP→CP,A
Prep securely realizes the ideal functionality FCP,CP∩A

Prep,[[·]]m in the

(FSP,SP∩A
Prep,〈·〉n,S ,F

SP,SP∩A
PRSS,〈·〉n,S ,FLedger)-hybrid model in the presence of a static, active adversary A that

can corrupt an unqualified set of parties U in SP and m− 1 parties in CP.

Fig 7 outlines the main steps of our Triple as a Service protocol. Initially we only describe the
interactions taking place between SP and a single set of CP. Therefore in this overview we do not
describe the mechanism that prevents a set of commodities to be used more than once, and we only
introduce it later, through calls to the FLedger in the formal description of our protocol.

First, independent from the potential sets of computing parties, the service providers contin-
uously generate Beaver triples in the 〈.〉n,S scheme. For each element of each triple, the service
providers also need to pre-compute an additional triple associated to it, that we denote for e.g.
〈a〉n,S by (〈aa〉n,S , 〈ba〉n,S , 〈ca〉n,S).

Then when a group of computing parties wants to begin a computation, they generate an
additively shared MAC key [α]m, and agree on a restricted set of service providers SPr ⊂ SP they
will interact with. With the commodity request sent from CP to SPr (through the ledger), each
CPi ∈ CP locally executes TransformMac on its share αi of the MAC key, resulting in 〈αi〉r,S . CPi
then sends the shares of its share of α to parties in SPr according to the labeling function ι. Using
only linear operations, the parties in SPr can now compute a sharing 〈α〉r,S of α. In the following
we demonstrate how the service providers now have the ability to authenticate and reshare their
precomputed triples non-interactively, to the cost of one additional triple per resharing.

To do so on e.g. a, all parties in SPr locally execute TransformShare on their 〈a〉n,S sharing of
a and also on their 〈ca〉n,S sharing of ca. They then send the resulting [a]m and [ca]m appropriately
to parties in CP. The service providers also broadcast their shares of 〈a − aa〉n,S and 〈α − ba〉r,S
to all the computing parties. The broadcast allows all CPi ∈ CP to securely reconstruct the values
a − aa and α − ba by locally executing CheckOpening. Using the classic Beaver multiplication
trick, it is now possible for the parties in CP to locally compute a share of the MAC value of a.
At the end of this protocol, the computing parties hold [[a]]m, an authenticated sharing of a under
their global MAC key α.

We now present the different subprotocols used above in our outline of the commodity protocol,
and apply them to our (t, r) Shamir sharing as an example.
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First, Fig 8 shows how the parties in CP can securely transmit a sharing of their global MAC
key α to parties in SPr. We note that in the detailed protocol described later, this subroutine is
slightly modified to take into account the call to the FLedger functionality.

In our example of a (t, r) Shamir sharing, Fig 8 works as follow:
We note that for all CPi ∈ CP we have Pαi(0) = αi, therefore

∑m
i=1 Pαi(0) =

∑m
i=1 αi = α.

Plus
∑m

i=1 Pαi is a sum of m degree t polynomials, therefore a degree t polynomial. By definition
(
∑m

i=1 Pαi(1), . . . ,
∑m

i=1 Pαi(r)) is then a (t, r)-Shamir sharing of α.
For the second step, in Fig 9 we describe the re-sharing from SPr to CP. For our Shamir

sharing example Fig 9 transforms a 〈·〉t,r to a [[·]]m sharing. Given SPr
t+1 ⊂ SPr of size t + 1, we

have:
m∑
k=1

∑
j∈SPrt+1

aj,k =
∑

j∈SPrt+1

m∑
k=1

aj,k

=
∑

j∈SPrt+1

Pa(j) ·∆j(0) with ∆j the Lagrange coefs.

= a

Therefore by definition (
∑

j∈SPrt+1
aj,1, . . . ,

∑
j∈SPrt+1

aj,m) is a [.]m sharing of a.

Finally, we have the opening subprotocol defined in Fig 10. This protocol is executed by the
parties in CP to check correctness of the broadcast shares, and retrieve the secret value from them.
Since we have a qualified set of honest parties in SPr, we know that among the r shares that are
broadcast, enough shares come from honest service providers. Therefore if the subroutine does not
output ⊥, all the service providers must have broadcast their correct share of a. We observe that
in our example with a Shamir sharing, we can do this efficiently using a parity check matrix.

Informally we can see that our commodity protocol is secure because the adversary can only
tamper with the shares of a and ca. Indeed, the checkOpening subroutine prevents the adversary
to tamper with a− aa and α − ba. If the adversary decides to cheat by introducing errors [a]m →
[a+ ε1]m and [ca]m → [ca + ε2]m, the parties end up with the result of Eq 1 instead of αa.

−(a− aa)(α− ba) + (ca + ε2)

+(α− ba)(a+ ε1) + (a− aa)α
= −aα+ aba + aaα− aaba + (ca + ε2)

+α(a+ ε1)− ba(a+ ε1) + aα− aaα
= (a+ ε1)α− baε1 + ε2 (1)

To pass the MAC check, the adversary needs ε2 = baε1, which with ba unkown, results in guessing
with probability λ = 1

p for a finite field of size p.

3.2 Definition and security of ΠSP→CP,A
Prep

In this section we prove that ΠSP→CP,A
Prep described in Fig 11 implements FCP,CP∩A

Prep,[[·]]m described in

Fig 4 securely in the (FSP,SP∩A
Prep,〈·〉n,S , FSP,SP∩A

PRSS,〈·〉n,S ,FLedger)-hybrid model. The first two ideal functional-

ities are defined in [23] and all three are described respectively in Fig 5, 2 and 6 above. To prove
theorem 3.1, we now analyze why the simulator described in Fig 12-13 gives the correct view to
the environment.
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Offline : In the offline phase, the simulator behavior is straightforward. The simulator only emulates
the hybrid functionalities for the offline phase of the 〈·〉n,S scheme. This allows the simulator to

know all the 〈·〉n,S shares held by the adversary for the triples generated by FSP,SP∩A
Prep,〈·〉n,S , and random

elements generated by FSP,SP∩A
PRSS,〈·〉n,S .

Initialise : In the initialise step, the simulator extracts the α̃i for i ∈ CP ∩A from the sharing it
receives from the adversary. This extraction requires that enough shares are seen by the simulator,
meaning that SPr \ A must be a qualified set. The simulator also sets an abort flag to true
if the re-sharing to the honest parties is not consistent, which would be detected later in the
CheckOpening. The simulator creates dummy sharing of α̂i for i ∈ CP \ A and from it, it
computes 〈α̂i〉r,S . Then forwards the α̃i of the adversary to the functionality FCP,CP∩A

Prep,[[·]]m , and keeps

in memory 〈α̂i〉r,S and 〈α̃i〉r,S to be able to respond to read request to the ledger. The functionality
will sample α←$Fp and αi for i ∈ CP \A such that α =

∑
i∈CP\A αi +

∑
i∈CP∩A α̃i. We note that

in the end the environment has access to α , the αi for i ∈ CP \ A, the α̃i for i ∈ CP ∩A, 〈α̃i〉jr,S
for i ∈ CP ∩ A and 〈α̂i〉jr,S for i ∈ CP \ A for all ι(j) ∈ SPr ∩ A. But because SPr ∩ A ∈ ∆ and
because the environment does not have access to the internal states of the honest parties, it is not
able to check for correctness of the dummy 〈α̃i〉r,S against the αi for i ∈ CP \ A. Therefore, the
dummy 〈α̃i〉r,S made by the simulator looks random to the environment, as would the sharing of
the real αi.

SFeedAndMAC : Each parties in SPr ∩ A need to [.]m re-share their shares for the value x
and also for the cx term of the associated triple to parties in CP \ A. As in [22] we note that
having a corrupt party in CP ∩ A to receive a share of the re-share from a party in SP ∩ A and
then introduce an error is equivalent to have the party in SP ∩ A to send a different re-share to
the party in CP ∩ A. Therefore the simulator samples the shares destined to the corrupt parties
CP ∩ A as if no error was introduced. This is made possible because the adversary knows from
the Offline step what are the shares held by SPr ∩ A. By doing so, the simulator produces re-
sharings that do not contain any error and are consistent to what the environment expects. That

means that the simulator receives {x̃ji}i∈CP\A for the re-sharing of 〈x〉jn,S from the adversary which

controls the shares indexed by j ∈ ι−1(SPr ∩ A), and the simulator samples {x̂ji}i∈CP∩A subject

to
∑

i∈CP\A x̃
j
i +

∑
i∈CP∩A x̂

j
i = 〈x〉jn,S . The proof is very similar to [22]. The idea is that when

the adversary re-shares to the honest parties, it does not commit to any error, because the error is
only defined when all the shares are set, during the computing phase of SP. Thus at the end the
view for the environment is as it expects, containing the correct error, introduced by the adversary
when it sets the shares for CP ∩ A for itself. Namely, at some point the adversary will decide on

{x̃ji}i∈CP∩A for j ∈ ι−1(SP ∩ A) in addition to the {x̃ji}i∈CP\A that it sent to the simulator. It is
only at this point that the error introduced by the adversary is really fixed. In consequence, at the
end of the protocol the environment will end up with the faulty shares fixed by the adversary for
itself. Thus fixing the error in combination with the shares forwarded to the ideal functionality. We
note that the environment lacks access to the internal values of the honest parties. Therefore, even
if the simulator does not know the values sampled by the functionality FCP,CP∩A

Prep,[[·]]m , nor does the
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environment. This means that the access structures implies that there are always enough undefined
shares to enable the simulation of the offline phase during the computing phase of CP. In particular
the re-sharing of dummy values done in step (3) of the macro in the simulator looks random to
the environment, as would the re-sharing of the real values. In the last communication phase of
the macro, the simulator receives from the adversary the shares of the two substractions. Thanks
to the MAC extraction during the Initialise step, the simulator checks them for correctness and
abort if need be to emulate the OpenCheck subroutine.

Preprocessing Apart from the call to SFeedAndMAC which security is discussed above, the
simulator only has to make sure that the rk values that parties in CP∩A should receive corresponds
to the sharing the honest parties have. That is why, when the rk is destined to a party controlled
by the adversary rk is sent to the FCP,CP∩A

Prep,[[·]]m in step (2), and then revealed to the adversarial party

in step (4).

3.3 Performance

We have designed our protocol such that the computationally expensive offline phase of the SPDZ
protocol can be outsourced to a set of service providers. By analyzing the above protocol, we observe
that the cost for parties in CP is relatively low, as they only need to compute one encryption per
parties in SPr (which sums up to r public-key encryptions), write their request on the ledger and
receive 12 field elements per triples and 4 field elements per input mask. Those figures are to compare
with the offline phase of SPDZ [18]. For a prime of bit length 64 and two parties [18] advertises a
communication of 9 kbit per triples, whereas in theory our protocol only requires 12 · 2 · 64 = 1536
bits of communication. We also note that the use of a ledger is costly in terms of latency, from
a few seconds to a few minutes depending on the underlying agreement procedure, but cheap in
terms of computation. Whereas the FHE operations (or OTs) require some computational power.
Therefore we argue that our protocol provides an interesting trade-off in terms of communication
and computational power, for low-power devices.

4 Conclusion

In this paper we have shown that Beaver’s vision of commodity cryptography exposed in [3] is
still relevant in today’s cryptography. Especially now, with the trend on computation on encrypted
data which requires computationally heavy public key cryptography. But also the growth of cloud
computing, with service providers that have access to extensive computing power.

We have defined and proved secure a new protocol which can help a group of low-energy com-
puting devices to achieve secure computation, with the help of the cloud. In fact, our protocol allows
for a set of computing parties to outsource the offline phase of the SPDZ [12] protocol. Doing so, the
computing parties are left with computing the online phase, which is mainly information theoretic
primitives, making it computationally cheap to run.

Our communication model does not fall exactly into Beaver’s vision of commodity cryptography.
However, after the initial communication amongst service providers to produce raw triples, they
need not to communicate. Which makes the actual re-sharing and MAC-ing procedure to match
the communication model envisioned by Beaver. Plus this work improves on previous work where
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the service providers needed to communicate throughout the protocol, and induces an overhead of
only four triples to re-share one to the computing parties.

Because we use a public, immutable ledger for logging all requests for commodities, it might
be of interest in the future to look at how one could leverage the functionalities offered by smart
contracts to make TaaS available on a blockchain.
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López, J., Kim, T. (eds.) ASIACCS 18: 13th ACM Symposium on Information, Computer and Communications
Security. pp. 707–721. ACM Press, Incheon, Republic of Korea (Apr 2–6, 2018)

22. Scholl, P., Smart, N.P., Wood, T.: When it’s all just too much: Outsourcing MPC-preprocessing. In: O’Neill, M.
(ed.) 16th IMA International Conference on Cryptography and Coding. Lecture Notes in Computer Science, vol.
10655, pp. 77–99. Springer, Heidelberg, Germany, Oxford, UK (Dec 12–14, 2017)

23. Smart, N.P., Wood, T.: Error detection in monotone span programs with application to communication-efficient
multi-party computation. In: Matsui, M. (ed.) Topics in Cryptology – CT-RSA 2019. Lecture Notes in Computer
Science, vol. 11405, pp. 210–229. Springer, Heidelberg, Germany, San Francisco, CA, USA (Mar 4–8, 2019)

24. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations
of Computer Science. pp. 160–164. IEEE Computer Society Press, Chicago, Illinois (Nov 3–5, 1982)

16

https://doi.org/10.1016/0022-0000(83)90042-9
https://doi.org/10.1016/0022-0000(83)90042-9


Commodity MPC

1 : SP CP

2 : (〈a〉n,S , 〈b〉n,S , 〈c〉n,S)← FSP,A∩SP
Prep,〈·〉n,S

3 : (〈aa〉n,S , 〈ba〉n,S , 〈ca〉n,S)← FSP,A∩SP
Prep,〈·〉n,S

4 : (〈ab〉n,S , 〈bb〉n,S , 〈cb〉n,S)← FSP,A∩SP
Prep,〈·〉n,S

5 : (〈ac〉n,S , 〈bc〉n,S , 〈cc〉n,S)← FSP,A∩SP
Prep,〈·〉n,S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Lines 6-23] SP need not interacting with each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 :

7 : [α]m ← GenMacKey()

8 : Select SPr = {SP1, ..., SPr}

9 :
Select SPr

Broadcast

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . From here we consider only SPr on the left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 :

11 : 〈α〉r,=TransformMAC([α]m)

12 :
〈α〉r,S

Point-to-Point

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Repeat following for 〈b〉n,S and 〈c〉n,S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 :

14 : [a]m = TransformShare(〈a〉n,S)

15 : [ca]m = TransformShare(〈ca〉n,S)

16 :
[a]m

Point-to-Point

17 :
[ca]m

Point-to-Point

18 :
〈(a− aa)〉n,S
Broadcast

19 :
〈(α− ba)〉n,S
Broadcast

20 : CheckOpening(〈(a− aa)〉n,S)

21 : CheckOpening(〈(α− ba)〉r,S)

22 : [αa]m = −(a− aa)(α− ba) + [ca]m+

23 : (α− ba)[a]m + (a− aa)[α]m

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . End repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 :

25 :

Fig. 7: Protocol for commodity MPC
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TransformMAC (IN: [α]m), (OUT: 〈α〉r,S)

For each CPi ∈ CP:

1. CPi creates a 〈αi〉r,S = (αi,1, . . . , αi,k) sharing of its share αi of the MAC key.
2. CPi sends αi,j to ι(j) ∩ SPr.

The parties in SPr set 〈α〉r,S =
∑m
i=1〈αi〉r,S

Figure 8: Subroutine TransformMAC

TransformShare (IN: 〈a〉n,S), (OUT: [a]m)

For each j ∈ ι−1(SPr):

1. Party ι(j) samples (aj1, . . . , a
j
m)← Fmp s.t.

∑
CPi∈CP a

j
i = 〈a〉jn,S

2. Party ι(j) sends aji to each CPi ∈ CP

Every CPi ∈ CP sets [a]im =
∑
j∈ι−1(SPr) βja

j
i .

Note: From the definition of the 〈.〉n,S sharing, there exists a linear combination of the shares of 〈a〉n,S
which sums up to a. We call β1, . . . , βk the public coefficients of this linear combination.

Figure 9: Subroutine TranformShare

CheckOpening (IN: 〈a〉n,S), (OUT: a or ⊥)

Note that in this subroutine, every party in CP has access to the shares of 〈a〉n,S which belong to parties in SPr.
For each CPi ∈ CP

1. If the shares of 〈a〉ι
−1(SPr)
n,S are consistent output a = 〈aSPr ,λSPr 〉 =

∑
j∈ι−1(SPr) βj〈a〉

j
n,S

2. Else otput ⊥.

Figure 10: Subroutine CheckOpening
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Protocol ΠSP→CP,A
Prep

Offline: Parties in SP precompute 4nT + nR triples and nR random shares:

- For i in {1, . . . , nT }
1. The parties in SP call FSP,SP∩A

Prep,〈·〉n,S
to obtain (〈ai〉n,S , 〈bi〉n,S , 〈ci〉n,S).

2. The parties in SP call FSP,SP∩A
Prep,〈·〉n,S

to obtain (〈aia〉n,S , 〈bia〉n,S , 〈cia〉n,S).

3. The parties in SP call FSP,SP∩A
Prep,〈·〉n,S

to obtain (〈aib〉n,S , 〈bib〉n,S , 〈cib〉n,S).

4. The parties in SP call FSP,SP∩A
Prep,〈·〉n,S

to obtain (〈aic〉n,S , 〈bic〉n,S , 〈cic〉n,S).

- For i in {1, . . . , nR}
1. The parties in SP call FSP,SP∩A

PRSS,〈·〉n,S
to obtain 〈ri〉n,S .

2. The parties in SP call FSP,SP∩A
Prep,〈·〉n,S

to obtain (〈air〉n,S , 〈bir〉n,S , 〈cir〉n,S).

Initialise: All sets of computing parties CP do:
On input (Initialise, p, T ′, R1, . . ., Rm) from all parties in CP:

1. Each party CPi ∈ CP samples αi ←$Fp.
2. For each CPi ∈ CP, Party CPi creates 〈αi〉r,S .
3. For each CPi ∈ CP, Party CPi computes {Encskι(j)(〈αi〉

j
r,S)}j∈ι−1(SPr).

4. For each CPi ∈ CP, Party CPi sends (RESERVE, T ′, R1, . . ., Rm, {Encskι(j)(〈αi〉
j
r,S)}j∈ι−1(SPr), SPr, CP)

to FLedger. If it fails, the parties in CP abort.

Macro: FeedAndMAC(〈x〉n,S , (〈ax〉n,S , 〈bx〉n,S , 〈cx〉n,S)):

1. The parties execute TransformShare(〈x〉n,s) and TransformShare(〈cx〉n,s).
2. For each j ∈ ι−1(SPr), Party ι(j) sends (〈x〉jn,S − 〈ax〉

j
n,S) and (〈α〉jr,S − 〈bx〉

j
n,S) to every parties in CP

(broadcast).
3. For each CPi ∈ CP, Party CPi executes checkOpening({〈x〉jn,S − 〈ax〉

j
n,S)}j∈ι−1(SPr)) and checkOpen-

ing({(〈α〉jr,S − 〈bx〉
j
n,S)}j∈ι−1(SPr)). If one of the opening return ⊥ the parties abort.

4. For each CPi ∈ CP, Party CPi sets γ(x)i = −(x− ax)(α− bx)δi,1 + cix + (x− ax)αi + (α− bx)xi

(with δi,j = (i
?
= j) the Kronecker delta).

Preprocessing: All parties SPi ∈ SP send (READ, SPi) to FLedger and for every set CP they are involved with:

- For CPi ∈ CP
1. For j in Ri

(a) Run FeedAndMAC(〈rj〉n,S , (〈ajr〉n,S , 〈bjr〉n,S ,
〈cjr〉n,S).

(b) For each k ∈ ι−1(SPr), Party ι(k) sends 〈rj〉kn,S to Party CPi ∈ CP.
(c) Party CPi ∈ CP executes checkOpening(〈rj〉n,S) and gets rj .

- For i in T ′

1. run FeedAndMAC(〈ai〉n,S , (〈aia〉n,S , 〈bia〉n,S ,
〈cia〉n,S))

2. do the same for 〈bi〉n,S and 〈ci〉n,S .

Figure 11: Protocol ΠSP→CP,A
Prep
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Simulator SCP,CP∩A
Prep (1/2)

The set of corrupt parties is set to be the set of corrupt parties in CP with the corrupt parties in SP.

Setup: We assume a set-up phase where the simulator provides the adversary with public keys to emulate the
secure communication channels to parties in the sets SP \ A and CP \ A.

Offline: The simulator receives multiple calls to the two functionalities FSP,SP∩A
Prep,〈·〉n,S

and FSP,SP∩A
PRSS,〈·〉n,S

from SP∩A.

For each call the simulator emulates the functionality.

1. ith call to FSP,SP∩A
Prep,〈·〉n,S

- The simulator samples ai, bi ←$Fp and sends 〈ai〉ι
−1(SP∩A)
n,S and 〈bi〉ι

−1(SP∩A)
n,S to the adversary.

- The simulator receives 〈c̃i〉ι
−1(SP∩A)
n,S from the adversary, and if possible computes 〈ci〉n,S = 〈ai · bi〉n,S

such that 〈c̃i〉ι
−1(SP∩A)
n,S = 〈ci〉ι

−1(SP∩A)
n,S

- Otherwise, set abort flag.
2. ith call to FSP,SP∩A

PRSS,〈·〉n,S
- Simulator receives PRSS(count) from A. If count 6= i set abort flag

- Sample ai ←$Fp, compute 〈ai〉n,S and send 〈ai〉ι
−1(SP∩A)
n,S to the adversary.

Initialise: The simulator receives (Initialise, p, T ′, R1, . . ., Rm from the adversary:

1. Simulator forwards the message to FCP,CP∩A
Prep,[[·]]m

2. Simulator receives (RESERVE, T ′, R1, . . ., Rm, {Encskι(j)(〈α̃i〉
j
r,S)}j∈ι−1(SPr), SPr, CP) from CP ∩ A. It

emulates the FLedger functionality, and returns FAIL if needed.
3. The Simulator is able to decrypt the 〈α̃i〉jr,S destined to honest SPr \ A, and therefore can reconstruct α̃i

for CPi ∈ CP ∩ A if the sharing is correct or set an abort flag otherwise.
4. Simulator also samples dummy α̂i ←$Fp for CPi ∈ CP \ A, and computes 〈α̂i〉r,S for those.
5. Simulator sends {α̃i}CPi∈CP∩A to FCP,CP∩A

Prep,[[·]]m and keeps both 〈α̃i〉jr,S 〈α̂i〉
j
r,S as the ledger would for j ∈

ι−1(SP r).

Figure 12: Simulator (1/2)
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Simulator SCP,CP∩A
Prep (2/2)

Macro: SFeendAndMAC(〈x〉n,S , (〈ax〉n,S , 〈bx〉n,S , 〈cx〉n,S))

1. The simulator receives {x̃ji}CPi∈CP\A and {c̃ji}CPi∈CP\A from the adversary for j ∈ ι−1(SPr ∩ A)

- The simulator samples dummy {x̂ji}CPi∈CP∩A for j ∈ ι−1(SPr∩A) s.t.
∑

CPi∈CP∩A x̂
j
i+

∑
CPi∈CP\A x̃

j
i =

〈x〉jr,S .
- The simulator repeats the previous step for c

2. The simulator samples (x̂j1, . . . , x̂
j
m) for j ∈ ι−1(SPr \ A) s.t.

∑
CPi∈CP x̂

j
i = 〈x〉jr,S and does the same for

(ĉjx,1, . . . , ĉ
j
x,Q).

3. For each CPi ∈ CP ∩ A the simulator sends {xji}j∈ι−1(SPr) and {cjx,i}j∈ι−1(SPr) to CPi

4. For each j ∈ ι−1(SPr ∩ A) the simulator receives (〈x〉jn,S − 〈ax〉
j
n,S) and (〈α〉jr,S − 〈bx〉

j
n,S). The simulator

transfers these values to CPi ∈ CP∩A along with the one simulated for j ∈ ι−1(SPr \A). If the abort flag
was set during initialize or if values are wrong, abort.

5. The simulator sets γ(x)i = −(x− ax)(α− bx)δ1,i +
∑
ι(j)∈SPr c

j
x,i + (x− ax)αi + (α− bx)

∑
j∈ι−1(SPr) x

j
i for

i ∈ CP ∩ A and sends {
∑
j∈ι−1(SPr) x

j
i , γ(x)i : for i ∈ CP ∩ A} to FCP,CP∩A

Prep,[[·]]m

Preprocessing: The simulator receives (READ, SPi) from parties in SP, and responds appropriately with ad-
versary and dummy data to each request, as would the FLedger functionality. When it has receive (READ, SPi)
from all the SPi parties of a RESERVE request, the simulator does the following:

- For CPi in CP
1. For k in Ri.
2. If CPi is in A, the simulator sends rk to the functionality FCP,CP∩A

Prep,[[·]]m .

3. The simulator runs SFeedAndMAC(〈rk〉n,S , (〈ark 〉n,S ,〈brk 〉n,S , 〈crk 〉n,S)).
4. If CPi is in A, the simulator sends rk to CPi.

- For k in T ′

1. The simulator runs SFeedAndMAC(〈ak〉n,S , (〈aak 〉n,S ,〈bak 〉n,S , 〈cak 〉n,S).
2. Do the same for bk and ck.

Figure 13: Simulator (2/2)
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